
Theoretical Computer Science 262 (2001) 1–24
www.elsevier.com/locate/tcs

On the power of Las Vegas II: Two-way 'nite automata�

Juraj Hromkovi,ca ; ∗, Georg Schnitgerb

aLehrstuhl f
ur Informatik I, RWTH Aachen, Ahornstra�e 55, 52074 Aachen, Germany
bFachbereich Informatik, Johann Wolfgang Goethe Universit
at Frankfurt, Robert Mayer Stra�e 11-15,

60054 Frankfurt am Main, Germany

Received August 1999; revised November 1999; accepted February 2000

Abstract

The investigation of the computational power of randomized computations is one of the central
tasks of complexity and algorithm theory. While for one-way 'nite automata the power of
di:erent computational modes was successfully determined, one does not have any nontrivial
result relating the power of determinism, Las Vegas and nondeterminism for two-way 'nite
automata. The main results of this paper are as follows.
(i) If, for a regular language L, there exist small two-way nondeterministic 'nite automata for

both L and L–, then there exists a small two-way Las Vegas 'nite automaton for L.
(ii) There is a quadratic gap between nondeterminism and Las Vegas for two-way 'nite au-

tomata.
(iii) For every k ∈ N, there is a regular language Sk such that Sk can be accepted by a

two-way Las Vegas 'nite automaton with O(k) states, but every two-way deterministic
'nite automaton recognizing Sk has at least <(k2=log2k) states.

c© 2001 Elsevier Science B.V. All rights reserved.

1. Introductions and de�nitions

The comparative study of the computational power of deterministic, randomized and
nondeterministic computations is one of the central tasks of complexity and algorithm
theory. This is not surprising since a problem should be called tractable if there is a
randomized polynomial-time algorithm solving it. In this paper we focus on the power

� The work on this paper has been supported by DFG-Project HR 14=3-2. An extended abstract of this
paper has been presented at ICALP ’99.

∗ Corresponding author.
E-mail address: jh@I1.informatik.rwth-aachen.de (J. Hromkovi,c).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00155 -9

2 J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24

of Las Vegas computations. 1 The central questions P versus ZPP and ZPP versus NP
are unresolved. But for restricted models some progress has been achieved. 2 A linear
relation between determinism and Las Vegas was established for the time complexity of
CREW PRAMs [5] and one-way communication complexity [4]. A polynomial relation
between determinism and Las Vegas is known for the combinational complexity of
nonuniform circuits (see, for instance, [19]), two-way communication complexity [11],
the size of one-way 'nite automata [4] and the size of OBDDs [4]. The last result is
in contrast to the exponential gap between Las Vegas and determinism for one-time-
only branching programs [15] that are a generalization of OBDDs. An exponential gap
between Las Vegas and nondeterminism is known for one-way 'nite automata [4],
two- and one-way communication complexity (see, for instance, [1, 7, 9, 13, 20]) and
OBDDs [14]. 3

In this paper we concentrate on two-way 'nite automata. In contrast to the well-
developed theory of one-way 'nite automata we do not know to answer basic questions
(like whether there is a polynomial relation between determinism and nondeterminism)
for two-way automata. Only when restricting this model to so-called two-way sweeping
'nite automata, Sipser [17] has proved an exponential gap between determinism and
nondeterminism. Whether an exponential gap exists in the general case is a famous
old open problem [3, 10, 16, 17]. Two-way Las Vegas 'nite automata have not been
considered up till now.
In this paper we consider four 'nite automata models: two-way deterministic '-

nite automaton (2DFA), two-way Las Vegas 'nite automaton (2LVFA), two-way self-
verifying nondeterministic 'nite automaton (2SVNFA) and two-way nondeterministic
'nite automaton (2NFA). For 2DFAs and 2NFAs we consider the standard de'nition
used in the literature [8, 17]. The states of these automata are considered to be divided
into three disjoint sets of working, accepting and rejecting states. No action is possible
from any rejecting or accepting state. For convenience we assume that the nondeter-
ministic choice of 2NFAs is bounded by 2. For every automaton A; L(A) denotes the
language accepted by A. A con'guration of a 'nite automaton A is a pair (p; i1), where
p is a state of the automaton A and i1 is the position of the head on the input tape.
For 2LVFAs and 2SVNFAs we consider the standard de'nitions as introduced in

[4]. A 2SVNFA M can be viewed as a 2NFA with four types of states: working,
accepting, rejecting and neutral (“I do not know”) states. There is no possible move
from accepting, rejecting and neutral states. M is not allowed to make mistakes: If
there is a computation of M on an input x 'nishing in an accepting (rejecting) state,
then x must be in L(M) (x must not be in L(M), i.e. x∈ (L(M))–). For every input

1 The term “Las Vegas” was introduced by Babai [2] to distinguish probabilistic algorithms that reply
correctly when they reply at all from those that occasionally (with some bounded probability) make a
mistake.

2 This paper is a continuation of [4], where one-way communication protocols, 'nite automata and ordered
binary decision diagrams have been investigated.

3 There are several further results for Monte Carlo randomized (one-sided error and two-sided error)
computations but we do not deal with this form of randomization here.

J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24 3

y there is at least one computation of M that 'nishes either in an accepting state (if
y∈L(M)) or in a rejecting state (if y �∈L(M)).
A 2LVFA A may be viewed as a 2SVNFA with probabilities assigned to every

nondeterministic branching. The probability of a computation of A is de'ned through
the transition probabilities of A. We require for every y∈L(A) (y =∈L(A)) that A
reaches an accepting (rejecting) state with a probability of at least 1

2 .
For any regular language L we de'ne s(L); ns(L); svns(L), and lvs(L), respectively,

as the size (the number of states) of a minimal one-way deterministic, nondeterministic,
self-verifying nondeterministic, and Las Vegas 'nite automaton for L. Analogously, we
de'ne s2(L); ns2(L); svns2(L) and lvs2(L) for two-way versions of these automata. In
[4] it is proved that lvs(L)¿

√
s(L) for every regular language L and the optimality of

this lower bound is proved by constructing a language L′ with s(L′)=<((lvs(L′))2).
Moreover, exponential gaps between svns(L) and lvs(L), and between svns(L) and
ns(L) are established in [4].
The proofs of these results are based on the fact that s(L) is exactly the num-

ber of messages of the best uniform one-way communication protocol for L. For ev-
ery mode of computation the number of messages of the best one-way protocol is
a lower bound on the number of states of the corresponding 'nite automata model.
Since we know the relations between determinism, Las Vegas, and nondeterminism
for two-way communication protocols and the number of messages of the best two-
way deterministic (Las Vegas, nondeterministic) protocols for L is a trivial lower
bound on s2(L) (lvs2(L); ns2(L)), the 'rst idea could be to investigate the rela-
tions between s2(L); lvs2(L); svns2(L) and ns2(L) in the same way as in the one-
way case. But in the two-way case this approach does not work because there is an
exponential gap between s2(L) and the numbers of messages of the optimal two-way
protocol. 4

We focus on the relation between lvs2(L) on one side and the other measures on
the other side. Our main results are as follows:

1. For every regular language L,

lvs2(L)64 svns2(L) + 3:

2. There is a sequence of regular languages {Mk}∞k=1 such that
(i) ns2(Mk)62k +O(1),
(ii) lvs2(Mk)¿k2 − 2.

3. There is a sequence of regular languages {Sk}∞k=1 such that
(i) lvs2(Sk)=O(k),
(ii) s2(Sk)=<(k2= log k), and
(iii) lvs(Sk)= 2<(k).

4. There is a sequence of regular languages {Lk}∞k = 1 such that
(i) ns(Lk)=O(k3) and ns2(Lk)=O(k),

4 This contrasts to the one-way case where the complexity measures are even equal.

4 J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24

(ii) ns((Lk)–)¿2k and so s(Lk)¿lvs(Lk)¿2k ,
(iii) lvs2(Lk)=O(k).

By the 'rst result, small two-way nondeterministic 'nite automata for L and L– imply
a small 2LVFA for L. The second result shows a quadratic gap between nondeterminism
and Las Vegas. The third result shows an almost quadratic gap between determinism
and Las Vegas for two-way 'nite automata. The last result shows that two-way Las
Vegas can be essentially better than one-way nondeterminism. A similar result was
established by Sakoda and Sipser [18] who proved an exponential gap between 2DFAs
and NFAs by presenting a language Bn with s2(Bn)=O(n2) and ns(Bn)¿2n for every
n∈N. Note that our result is stronger than the consequence of [18] for Las Vegas,
because we establish lvs2((Lk)–)=O(k) and ns((Lk)–)¿2k . A consequence is an expo-
nential gap between one-way Las Vegas 'nite automata and two-way ones. Moreover,
the language Lk is a candidate for an exponential gap between two-way Las Vegas and
two-way determinism.
The paper is organized as follows. Section 2 veri'es the 'rst two results that compare

nondeterminism and Las Vegas. In Section 3 the last two results focusing on the
comparison of Las Vegas and determinism are presented. Section 4 is devoted to a
discussion and the formulation of some open problems.

2. Las Vegas versus nondeterminism

In this section we show that in some sense the power of 2LVFAs is not too far
from 2SVNFAs. First we present a simple observation.

Observation 1. For any language L;

max{ns2(L); ns2(L–)}6svns2(L)6ns2(L) + ns2(L–) + 1:

Proof. Every 2SVNFA A can be transformed into a 2NFA B by adding the neutral
states of A to the set of rejecting states of A. Obviously L(A)=L(B) and s(A)= s(B).
If one takes the rejecting states of A as the accepting ones of an 2NFA C, and the
accepting and the neutral states of A as the rejecting ones of C, then L(C)= (L(A))–

and s(C)= s(A). Thus, svns(L)¿max{ns(L); ns(L–)}.
Let E and F be two 2NFAs such that L(E)= (L(F))–. A 2SVNFA D recognizing

L(E) can be constructed as follows. D connects a new initial state via �-moves to the
initial states of E and F . The set of accepting sets of D is exactly the set of accepting
states of E, and the set of rejecting states of D is exactly the set of accepting states
of F . All remaining nonworking states of E and F are neutral states of D.

We 'rst establish a linear relation between svns2(L) and lvs2(L) for every regular
language L, i.e. small nondeterministic 'nite automata for L and L– imply the existence
of a small two-way Las Vegas 'nite automaton for L.

J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24 5

Theorem 1. For every regular language L;

svns2(L)6lvs2(L)64 svns2(L) + 3:

Idea of the Proof. svns2(L)6lvs2(L) is obvious because every 2LVFA can be viewed
as a 2SVNFA. To simulate an 2SVNFA by a 2LVFA it is suPcient to modify
the method of Macarie and Seiferas [12] used to simulate two-way nondeterministic
k-head 'nite automata by two-way one-sided error probabilistic k-head 'nite automata
for k¿2. Since the proof is rather technical and no essentially new ideas are introduced
we moved this proof to the appendix.

Now, we show that nondeterminism can be more powerful than Las Vegas for two-
way automata. Towards this goal we consider the following languages:

Mk = {w ∈ {0; 1}∗ | if w = w1w2 : : : wm; m¿1; wi ∈ {0; 1}; for i = 1; : : : ; m;

then there exists r ∈ N such that wr(k2−1) = 1}
for any k ∈N.

Theorem 2. For any positive integer k;
(i) ns2(Mk)62k +O(1);
(ii) lvs2(Mk)¿k2 − 2.

Proof. (i) We 'rst describe a 2NFA Ak that accepts Mk . Ak moves r(k + 1) steps to
the right for some nondeterministically guessed r ∈N, and checks whether wr(k+1) = 1.
Then Ak moves l(k − 1) steps to the left for some l∈N. If after these l(k − 1) steps
to the left Ak reaches the left endmarker, then r(k + 1)= l(k − 1), i.e. the index of
the right most visited position is divisible by (k2 − 1)= (k + 1)(k − 1). Obviously, if
w∈L(Mk), then Ak can always guess the right position containing 1, and 2k + O(1)
states are suPcient to move in cycles of lengths k + 1 and k − 1.
(ii) Following Observation 1 it is suPcient to prove ns2(M

–

k)¿k
2 − 2. We prove it

by contradiction. Let Bk be a 2NFA accepting M –

k and s(Bk)¡k
2−2. We consider the

word 1k
2−20 which does not belong to Mk , i.e. 1k

2−20∈M –

k . Using a standard pumping
argument we show that Bk must accept 1k

2−2+k2!0. Let D be an accepting computation
of Bk on 1k

2−20. We can write D as C1; C2; : : : ; Cm for some m∈N, where
1. For every i∈{0; 1; : : : ; �m=4	 − 1}; C1+4i is a part of the computation D in which

only the symbols of the input part c|1k2−2 were read and the last action in C1+4i
was the movement to the right after reading c|.

2. For every i∈{1; 2; : : : ;
m=2�}, C2i is a part of the computation D in which every
1 has been read at least once by Mk , no symbol di:erent from 1 was read, and in
the last step of C2i the reading head was moved to a symbol di:erent from 1.

3. For every i∈{0; 1; : : : ; L(m− 3)=4}; C3+4i is a part of the computation D in which
only the symbols of the input part 1k

2−20$ were read, and the last action in C3+4i
was the movement to the left after reading 0.

6 J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24

Fig. 1. A partition of a computation an the input 1k
2−20.

The computation parts of the kind 2 are called exhaustive walks (on 1k
2−2), and the

other parts (of the kind 1 and 3) are called local walks (on 1k
2−2). As one can see at

Fig. 1 the reading head crosses the whole subword 1k
2−2 from one side to the other

side in any exhaustive walk (parts C2; C4 and C6 at Fig. 1).
Intuitively, in any local walk the number of 1’s in the input cannot be measured.

Since every exhaustive walk C2j consists of at least k2 − 2 steps, and s(Bk)¡k2 − 2,
a state pj has appeared at least twice in C2j. Moreover, we may assume that Bk is in
the state pj in di:erent con'gurations 〈pj; ij;1〉, and 〈pj; ij;2〉; ij;1¡ij;2. So, C2j may
be written as

C2j = C2j;1; 〈pj; ij;1〉; C2j;2; 〈pj; ij;2〉; C2j;3:

Now, we consider the word 1k
2−2+k2!0 that is obviously in Mk and so not in M

–

k . We
construct an accepting computation H of Bk on 1k

2−2+k2!.
Let, for any con'guration C; C̃ denote the state of C. Analogously, for any compu-

tation F =F1; : : : ; Fm, F̃ = F̃1; : : : ; F̃m is the sequence of states of F . So, the computation
H on 1k

2−2+k2! can be determined by H̃ as follows:

H̃ = C̃1; C̃2;1; (p1; C̃2;2)k
2!=(i1;2−i1;1)p1; C̃2;3;

C̃3; C̃4;1; (p2; C̃4;2)k
2!=(i2;2−i2;1)p2; C̃4;3;

C̃5; : : : ; C̃m:

This construction works because 0¡ij;2;−ij;16k2 − 2 for every i, and so ij;2 − ij;1
divides k2! for every j.

J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24 7

Fig. 2. The geometrical interpretation of the symbols of �.

3. Las Vegas versus determinism

The goal of this section is to 'nd a family of languages L1; L2; L3; : : :, such that Lk
can be recognized with O(k) states by 2LVFAs but not within a linear number of
states by 2DFAs. Following the result of Section 2 we see that we have to search for
languages Lk such that both Lk and L

–

k are easy for two-way nondeterministic 'nite
automata but not for deterministic automata. To achieve this goal we shall consider lan-
guages whose words de'ne directed, acyclic graphs embedded in the two-dimensional
grid. The idea is to de'ne the membership of a word in Lk in such a way that one
requires (for the acceptance) the existence of a directed path leading from the upper
boundary to the lower boundary of the layout of the corresponding graph. Usually,
to 'nd a path nondeterministically is easy. But the main point is that we restrict the
class of graphs considered (and their layouts, too) in such a way that it is also easy
to nondeterministically verify the nonexistence of such paths. On the other hand, the
class of graphs considered is suPciently complicated for a superlinear lower bound on
the number of states of 2DFAs.
In what follows, we consider the alphabets �= {#; a1; a2; a3; : : : ; a10} and �=� −

{a6}, where the ai’s have the geometrical interpretations as depicted in Fig. 2. Each
ai represents a square of the layout of a graph in the two-dimensional grid. Each
such square contains either four or 've vertices. Each of the four boundaries of the
square contains exactly one vertex. The 'fth vertex, if any, lies in the middle of the
square (see the interpretation of symbols a7; a8; a9; a10). Some directed edges between
the vertices of the squares are allowed. Following Fig. 2, we see that the edges lead
only from the left to the right or downwards. Note that this is a crucial fact in our
construction. If we would allow edges in other directions, then we would not be able to
'nd any simple 2LVFA for the language constructed. On the other hand if one would
take still a harder restriction like the prohibition 5 of the use of a6, then we would

5 This corresponds to the requirement for the planarity of the layout.

8 J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24

Fig. 3. The geometrical interpretation of the input words x=#6a5a4a2a7 ##a6a1a10a3 ##a3a5a1a8#6 and
y=#6a10a4a1a9 ##a4a8a2a10 ##a3a2a1a5#6.

not be able to prove any superlinear lower bound on the size of two-way deterministic
'nite automata.
In what follows, we consider only words from

U =
∞⋃
i=1

Ui; Ui = #i+1(#�i#)∗#i+1:

Fig. 3 shows the geometrical interpretations for two words x and y from U4. The
symbol # de'nes the boundary of the layout and every subword from #�i# corresponds
to one row of the picture. So, the words from Ui correspond to layouts with i columns
and an arbitrary number of rows. For any x∈L, we denote by G(x) the directed,
acyclic graph determined by x, and Pic(x) denotes the grid layout of G(x) as depicted
in Fig. 3. In what follows, we will speak about rows and columns of pictures (graph
layout). The rows are ordered in the order of their occurrence in the input word. For
instance, a5a4a2a7 is the 'rst row of Pic(x). The columns are ordered from the left to
the right. For instance, the second column of Pic(y) corresponds to a4a8a2. For any
row R of a Pic(z) for a z ∈Ui, we distinguish, with the obvious meaning, three classes
of vertices of G(x):

• the upper vertices of R (exactly i vertices),
• the middle vertices of R (j vertices with i + 16j62i + 1),
• the lower vertices of R (exactly i vertices).

So, the lower vertices of the mth row Rm are the upper vertices of the (m+ 1)th row
Rm+1. The only own vertices of every row are its middle vertices. Similarly, we speak
about left, middle and right vertices for every column of a picture. The upper vertices
of the 'rst row of a picture Pic(z); z ∈U , are called the sources of the graph G(z).
The lower vertices of the last row of a picture Pic(z); z ∈U , are called the destinations

J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24 9

of the graph G(z). For every i∈N and every z ∈Ui; s1(z); s2(z); : : : ; si(z) (d1(z); d2(z);
: : : ; di(z)) denote of the sources (the destinations) of G(z). Note, that si(z) and di(z)
are the middle vertices of the ith column of Pic(z).
Before de'ning some special languages we give an obvious observation.

Observation 2. For every i∈N, the language Ui can be accepted by a one-way de-
terministic 9nite automaton with 3(i + 2) states.

Observe, that one can interpret a two-way 'nite automaton A as moving within
Pic(x) instead on x. Obviously, each horizontal movement in the picture corresponds
to one step of A on x. To realize a vertical movement A needs to move k + 2 steps
using k + 2 special states.
To get a quadratic gap between 2LVFAs and 2DFAs we consider very special graph

layouts. Let, for every even k ∈N,

Sk = {x ∈ Uk | x = #k+1#x1#x2# : : : #xk=2+4##k+1; |xi| = k for i = 1; : : : ; k=2 + 4;

x1; xk=2+4 ∈ a∗1 a3a∗1 ; x2 = (a3a1)k=2; xk=2+3 = (a1a3)k=2;

for i = 3; 4; : : : ; k=2 + 2; xi ∈ (a0a3)i−3a4b(a6b)∗; b ∈ {a6; a10};
G(x) contains such a directed path P from a source to a destination;

that P contains exactly two direction changes (vertical → horizontal

→ vertical) and the 'rst change of the direction is given by a4}:

Observe, that for every x∈ Sk ; G(x) contains exactly one path from a source to a
destination, because there is only one source s2i+1 with outdegree 1 (given by x1) and
only one destination d2j with indegree 1 (given by xk=2+4). Moreover, if a consistent
path exists, then it must go vertically from s2i+1 to a4 in the (i + 3)th row, and it
must again change the direction in the square (i + 3; 2j) in order to reach d2j. So, if
one knows the indices 2i+1 and 2j, then it is suPcient to look at the unambiguously
given sequence of squares starting in (1; 2i+ 1) and 'nishing in (k=2 + 4; 2j) in order
to check the existence of the special path de'ned by Sk . Observe, that the middle part
x2#x3# : : : #xk=2+3 of x may connect any upper vertex of the second row laying in an
odd column 2j − 1 (j=1; : : : ; k=2) with any lower vertex of the (k=2 + 3)th row that
lies in one of the columns 2j; 2j+2; : : : ; k. An example of such a middle part is given
in Fig. 4. For instance, there is the possibility to connect s1 with d2 and d6, but not
with d4 and d8, by a consistent, directed path.

Theorem 3. For any positive; even integer k;
(i) svns(Sk)=O(k3) and svns2(Sk)=O(k);
(ii) lvs2(Sk)=O(k);
(iii) s2(Sk)=<(k2= log k);
(iv) s(Sk)¿2k=2 and lvs(Sk)¿2k=4.

10 J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24

Fig. 4.

Proof. (i) Two runs with O(k) states from the left to the right on an input x are
suPcient to check (deterministically) whether x has the form of words in Sk . The
search for a consistent path in G(x) starts in the only upper vertex of the 'rst row
with outdegree 1. Let this vertex be si. The path unambiguously continues downwards
via the ith column until a4 is reached in the (i + 3)th row. Then the self-verifying
nondeterministic automaton A accepting Mk moves to the right. In every even column
A nondeterministically decides whether to continue to the right or downwards. If A
decides to continue downwards, then A stores the contents of this position (a6 or a10)
in its state. If the decision was correct, then A reaches the only destination. A accepts
if the stored symbol was a10, and A rejects if the stored symbol was a6. So, a self-
verifying nondeterministic automaton can determine whether G(x) contains a path from
a source to a destination with O(k) states.
Using O(k3) states, a one-way self-verifying nondeterministic FA accepting Sk can

simulate the three runs of the 2SVNFA in one run over the input.
(ii) lvs2(Sk)=O(k) is a direct consequence of (i) and Theorem 1.
(iii) Let D be a 2DFA accepting Lk with a set Q of states. For every input subword

from Fk =(#�k#)∗ we de'ne the pattern of y, Pat(y), as follows. For every state q∈Q
and every of the two positions in which D can move to y and start to read it, we
determine the state in which D leaves and the side on which B leaves y. Obviously,
there are at most (2|Q|)2·|Q| di:erent patterns. If one considers the relation xRDy on Fk
if and only if x and y have the same pattern, then Fk consists of equivalence classes

J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24 11

corresponding to the patterns. It can be easily proved that if x; y∈Fk have the same
pattern, then for every z1; z2 ∈�∗

z1xz2 ∈ L ⇔ z1yz2 ∈ Lk :
Now, we consider a large set Sk of words from Fk so that for every two x1; x2 ∈ Sk ,
x1 �= x2 implies Pat(x1) �=Pat(x2). For simplicity we assume k is even. To every sym-
metric k=2× k=2 Boolean matrix [aij]k=2× k=2 we assign words x∈Fk that have the fol-
lowing properties:

(1) if aij = aji=1, i6j, there is a directed path from the (2i–1)th source of Pic(x) to
the 2jth destination of Pic(x), and

(2) there are no directed paths from the sources of Pic(x) to the destinations of Pic(x)
besides the paths determined by (1).

For every symmetric k=2× k=2 Boolean matrix M there exists at least one word from
Fk corresponding to M . Fig. 4 describes the idea of constructing a corresponding word
for a given matrix M . For instance Pic(x) in Fig. 4 corresponds to the matrix

Mx =



1 0 1 0
0 0 0 1
1 0 0 1
0 1 1 1


 :

We show, for all x; y∈Fk , that Mx �=My implies Pat(x) �=Pat(y). Let Mx �=My, Mx =
[vij]k=2× k=2 and My = [wij]k=2× k=2. Without loss of generality, we may assume that there
exist i; j∈{1; : : : ; k=2}, i6j, such that 1= vij �=wij =0. So, there is a directed path from
(2i−1)th source of Pic(x) to the (2j)th destination of Pic(x), but there is no path from
the (2i − 1)th source of Pic(y) to the (2j)th destination of Pic(y). Now, we choose

z1 = #k+1#(a1)2j−1a3(a1)k−2j##k+1

and

z2 = #(a1)2j−1a3(a1)k−2j##k+1:

One observes, that z1xz2 ∈ Sk but z1yz2 =∈ Sk .
So, the number (2|Q|)2·|Q| of distinct patterns has to be at least as large as the number

2(
k=2
2) of di:erent symmetric k=2× k=2 Boolean matrices. Thus, |Q|=<(k2= log2 k).
(iv) If one takes the pre'x #k+1#a3(a1)k−1#, then there are 2k=2 possible choices for

the middle part #x2#x3# : : : #xk=2+3 resulting in di:erent sets of paths from s1 to the
lower vertices of the (k=2− 3)th row on the k=2 even positions. So, s(Sk)¿2k=2. In [4]
it is proved that lvs(L)¿

√
s(L) for every regular language L and so lvs(Sk)¿2k=4.

Sakoda and Sipser [18] proved an exponential gap between 2DFAs and NFAs by
constructing a language Bn with s2(Bn)=O(n2) and ns(Bn)¿2n for every n∈N. This
directly implies an exponential gap between ls2(Bn) and ns(Bn). We improve this result

12 J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24

for Las Vegas automata by proving ls2(L
–

k)=O(k) and ns(L–k)¿2k for the following
languages Lk , k ∈N.
Let, for every k ∈N,

Lk = {x ∈ �∗ | x ∈ Uk and G(x) contains a directed path starting in

a source of G(x) and 'nishing in a destination of G(x)}:
Let L =

⋃∞
k=1 Lk and Ũ = U ∩ (� ∪ {#})∗.

There are two reasons to consider the languages Lk . The 'rst reason is to show
an exponential gap between 2LVFAs and NFAs (ns(L–k)= 2<(lvs2(Lk))). The second and
major reason is that we conjecture that Lk is a candidate for an exponential gap between
2DFAs and 2LVFAs. If one is interested in the exponential gap between NFAs and
2LVFAs only, then it is suPcient to take the following languages:

Dk = Lk ∩ {a1; a10; #}∗

for any k ∈N, and several of the following technicalities may be essentially reduced.

Observation 3. If z ∈Lk ; k ∈N; then there exist l; m; 16l6m6k such that G(x) has
a path from sl(z) to dm(z).

Proof. The proof is obvious, because we can move only downwards or from the left
to the right in Pic(x).

Observation 4. For every z ∈L; G(z) is acyclic.

Before formulating the next theorem we shall show that the nonexistence of any path
from a source of a G(z) to a destination of a G(z), z ∈ Ũ , implies the existence of a
special cut of Pic(z). In this way, we reduce a task de'ned by the universal quanti'er
(every path starting in a source does not reach any destination) to a task de'ned by
the existential quanti'er. 6

De�nition 1. Let z ∈ Ũ . A cut C of Pic(z) is a path consisting of the undirected
grid-edges of Pic(z) having the following properties:
(i) C divides the vertices of G(z) into three disjoint groups UpC; LowC , and MidC

by removing the vertices of MidC lying on the grid-edges of C,
(ii) UpC ∪MidC contains all sources of G(z),
(iii) LowC contains all destinations of G(z), and
(iv) for every node u in MidC , if there is an edge (v; u) in G(x) with v∈UpC or u is

a source, then u has outdegree 0.

An example of a cut is indicated in Fig. 3 (y) by a thick horizontal line. The picture
Pic(x) at Fig. 3 (x) does not contain any cut.

6 Which is very convenient for a nondeterministic automaton.

J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24 13

Lemma 1. For every k ∈N and every x∈Lk ; Pic(x) does not contain any cut.

Proof. The proof directly follows from the de'nitions of G(x), Pic(x) and De'nition 1.

In what follows, we shall show that if x∈ (Uk ∩ Ũ) − Lk (i.e., if G(x) does not
contain any path from a source of G(x) to a destination of G(x)), then there exists a
special, nice cut of Pic(x) that can be found by a simple strategy. This will be useful
for the proof of our next theorem. Note, that we can always consider a cut as a path of
grid-edges, that starts from the left border of the picture and ends on the right border
of the picture.

De�nition 2. Let z ∈ Ũ . A vertex u of G(z) is called a 1-vertex if there exists a
directed path from a source of G(z) to u. A vertex v of G(z) is called a 0-vertex, if
there exists no directed path from any source of G(z) to v.

Observation 5. A word z belongs to (Uk ∩ Ũ)− Lk for some k ∈N if and only if all
destinations of G(z) are 0-vertices.

Observation 6. For any cut C of Pic(z); with z ∈ Ũ ; every vertex in LowC is a
0-vertex.

De�nition 3. Let z ∈ Ũ . A horizontal edge e of the grid of Pic(z) is called the
0-maximal edge of a column H if
(i) e lies in the column H ,
(ii) all middle and right vertices of H lying below e are 0-vertices (the vertex involved

in e may be a 1-vertex) and
(iii) any grid-edge of H lying above e does not have property (ii).
Let y∈ Ũ . A cut of Pic(y) is called 0-maximal if it contains the 0-maximal edge

of every column of Pic(y).

The cut C of Pic(y) in Fig. 3 is not 0-maximal. This is because the cut in the third
column does not contain the 0-maximal edge of that column. The 0-maximal edge of
the third column is the upper edge containing the source s3(y) of this column. All
other columns of Pic(y) have their 0-maximal edges in C.

Lemma 2. For every k ∈N and every x∈ (Uk ∩ Ũ)−Lk ; Pic(x) contains a 0-maximal
cut.

Proof. A more important fact than the almost obvious assertion of Lemma 2 is that
one can construct a 0-maximal cut C from given (precomputed) 0-maximal edges by
a simple deterministic strategy.
Let ei be the 0-maximal edge of the ith column of Pic(x) for i=1; : : : ; k: C starts

with e1 and 'nishes with ek . So, it is suPcient to explain how to connect ei and ei+1
via grid-edges for i=1; : : : ; k − 1. Since x =∈Lk no destination of G(x) lies on ei’s.

14 J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24

Fig. 5. A possible path around 0-vertices connected to the 0-vertex v in the (i + 1)th column.

If ei and ei+1 are on the same horizontal level, then we are done. If the horizontal
level (common part of two rows) of ei+1 lies below the horizontal level of ei then
the situation is again simple. One moves from the right end of ei down via grid-edges
between the ith column and the (i + 1)th column until ei+1 is reached. Moving down
we do not need to take care of the contents of adjacent squares because the vertices of
LowC are on the left side of the vertical grid-edges used in the connection and G(x)
does not have any edge directed from the right to the left.
If the horizontal level of ei+1 lies above the horizontal level of ei, then we try to

go upwards via grid-edges between the ith column and the (i + 1)th column. Now,
we have to be careful because the area of LowC is lying on the right side. So, we
move upwards via a vertical grid-edge g only if the vertex v of g has indegree zero
or outdegree zero. If there are two edges (w; v) and (v; u) adjacent to v we cannot go
up (see property (iv) of a cut in De'nition 1). Since u is a middle vertex or a right
vertex of the (i + 1)th column and u lies below ei+1, u is a 0-vertex. Because of the
existence of the path w; v; u in G(x), the vertices w and v must be 0-vertices.
Now, we draw a path going around all 0-vertices having a directed path to v in

G(x), and reaching again the left border of the (i+1)th column. We start this drawing
procedure called GO AROUND by moving to the left. Note, that the movement to the
left is allowed now without any restriction, because LowC is considered to be above
the horizontal grid-edges we use (see Fig. 5).
One can simply determine the set Ver(v) of all 0-vertices having a directed path

to v. No source is among these vertices and all these vertices lay in the rectangle of
Pic(z) with v as the left-down corner of R(v). So, one can easily draw the boundary
(consisting of grid-edges) around these special 0-vertices by following the next rules:

(i) if the last step was the movement to the left, you never continue downwards,
(ii) if the last step was the movement downwards, you never continue to the left,

and
(iii) if you move to the right or upwards via a grid-edge h, then the vertex laying on

h does not have both indegree and outdegree 1.

J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24 15

Fig. 6. Two di:erent boundaries built by two applications of GO AROUND may cross each other.

We can draw this boundary with rules (i) and (ii), because all edges of G(x) are
directed from the left to the right or downwards. Because of property (iii) we are sure
that the bounded area Area(v) containing Ver(v) does not contain any 1-vertex 7 as an
inner vertex.
So the boundaries built by the procedure GO AROUND is a consistent candidate for a

part of the cut C.
After 'nishing GO AROUND we are again on the left side of the (i + 1)th column

above v. If we have 'nished above ei+1 then we simply go down to ei+1 and 'nish
the attempt to connect ei and ei+1. Otherwise, we try to continue upwards to ei+1. If
it is impossible we again use the drawing procedure GO AROUND for a new left vertex
of the (i+ 1)th column. It can happen that some areas Area(v1) and Area(v2) overlap
(see Fig. 6). But in this case we may take the common boundary bounding the union
of these two areas. So, in this way we 'nd a part of the cut C that connects ei with
ei+1.
Let, for every i∈{1; : : : ; k − 1}; Pi be the path on grid-edges that connects ei and

ei+1. To complete the proof it remains to show that Pi and Pj do not have any common
part if i �= j. Let us assume the opposite as depicted at Fig. 7. Making a cycle we obtain
a closed area H bounded by a part of Pi, the whole Pi+1; : : : ; Pj−2, a part of Pj−1 and by
the 0-maximal edges ei+1; : : : ; ej−1. We claim that all vertices of G(x) laying in H are
0-vertices. This is true because a vertex of H can be reached from a source only from
the left side or from the upper side. But on the left side we have the part of the ith
column whose middle and right vertices are 0-vertices. Following the construction of
Pj−1 we know that all nodes laying on the horizontal grid-edges used for the movement
to the left are 0-vertices. So, there is no possibility to reach any vertex of H from a

7 Observe at Fig. 5 that moving upwards LowC is always on the right side of the grid-edge used and
moving to the right LowC is always below the grid-edge used.

16 J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24

Fig. 7. An impossible situation.

1-vertex. But this is a contradiction with the 0-maximality of ei+1 because the whole
intersection of H and the (i + 1)th column lies above ei+1 and it contains 0-vertices
only.

Now, we are ready to formulate our last result.

Theorem 4. For every k ∈N;
(i) ns2(Lk)=O(k) and ns(Lk)=O(k2);
(ii) ns((Lk)–)¿2k and so s(Lk)¿lvs(Lk)¿2k ;
(iii) lvs2(Lk)=O(k).

Proof. (i) To decide whether x∈Uk or not it is suPcient to read once the input
from the left to the right. This can be done deterministically with 3(k + 2) states (see
Observation 1). If one knows that x∈Uk then a NFA A can follow any path of G(x).
If the path is going to the right, A moves its head to the right. If the path is going
downwards, then A moves k+1 steps to the right in order to achieve the corresponding
square of the grid. So, if there is a path from a source to a destination, then A can
nondeterministically 'nd it.
(ii) It is suPcient to show that ns((Lk)–)¿2k . Let us consider 2k words from

#k+1#{a1; a3}k# as possible input pre'xes. Clearly, these 2k words w1; w2; : : : ; w2k cor-
respond to the 2k di:erent assignments of 1- and 0-vertices to the lower vertices of the
'rst row. For every wi=#k+2wi1wi2 : : : wik# we consider wi=#wi1 wi2 : : : wik#k+2, where
wij = a1 if wij = a3 and wij = a3 if wij = a1 for j=1; : : : ; k. It is suPcient to observe that
wiwi =∈Lk for any i∈{1; 2; : : : ; k}, but wiwj ∈Lk for every i �= j; i; j∈{1; 2; : : : ; k}. (The
2k × 2k communication submatrix M for (Lk)– with rows corresponding to w1; : : : ; w2k
and columns corresponding to w1; : : : ; w2k is the diagonal matrix [7, 9]. Every one-way
nondeterministic protocol needs 2k di:erent messages to recognize M and the number
of states of every NFA is at least as large as the number of messages of the optimal
one-way nondeterministic protocol [7, 4].)

J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24 17

(iii) In (i) we have already shown that there is a 2NFA accepting Lk with O(k)
states. Following Observation 1 and Theorem 1 it is suPcient to show that there is a
2NFA B accepting (Lk)– with O(k) states. Obviously, to recognize that x =∈Uk , O(k)
states are suPcient. It remains to 'nd a “proof” that x =∈Lk if x∈Uk ∩ Ũ . Clearly, the
existence of a cut of Pic(x) is the proof of the fact x =∈Lk . To search for a cut B
proceeds by the following 10 rules:

The start rule:
1. Moving downwards B determines the 0-maximal edge of the 'rst column and

moves to the right on this edge.
The movement rules:
2. B always remembers in its states the direction of the last movement on the grid-

edges.
3. B never traverses the last grid-edge in the reverse direction.
4. B never moves to the left when the preceding movement was downwards.
5. B never moves downwards when the preceding movement was to the left.
6. B never moves to the right or upwards via a grid-edge h, when the vertex laying

on h has both indegree and outdegree 1.
7. In every point of the grid B guesses an allowed direction to continue with.
The acceptance rules:
8. If B reaches a grid-edge containing a destination, then B halts and rejects. If B

reaches a grid-edge containing a source with outdegree 1, then B halts and rejects.
9. If B reaches the right boundary of Pic(x), then B halts and accepts.
10. If there is no possibility to continue in an inner point of the grid, then B halts and

rejects.

Following the proof of Lemma 2 and the strategy of B described above we can be
sure that if x ∈ (Uk ∩ Ũ)− Lk , then B will 'nd a cut 8 of Pic(x).
It remains to prove that if B reaches the right boundary of Pic(x) by a path (crossing

possibly several times itself), then x =∈ Lk . This is obvious for any simple path found
by B, because of rules 4, 5 and 6. However the path B may cross itself. Let v1 be the
'rst crossing point of the trajectory of B (see Fig. 8). The trouble is when visiting v1
the second time B has another view on the layout of MU than when visiting v1 for the
'rst time. We distinguish two possibilities according to the direction of the movement
in which the point v1 was repeatedly visited. Because of rules 4 and 5, this cannot
happen by moving upwards or to the right:

1. Consider that B reaches v1 for the second time after moving to the left (Figs. 8
and 9). Then the next part of the trajectory of B lies in LowC . This means that if
B wants to reach the right side of Pic(x) then B must cross its trajectory again in
a point v2. Note, that this is due to rules 4 and 5 forbidding to move downwards

8 Following the above rules of B one can be sure that B will 'nd a 0-maximal cut of Pic(x).

18 J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24

Fig. 8. A trajectory of the movement of B that crosses itself, after some movement to the left.

Fig. 9.

after moving upwards or to the left. If v2 was visited before v1 was visited for
the 'rst time (v2 lies before v1 on the trajectory, Fig. 8), then reaching v2 again
B has the same orientation according to the layout of LowC and UpC as when
visiting v2 for the 'rst time. So, removing the cycle from v2 to v2 we obtain a
new trajectory that has two crossing points less than the original one. The only
remaining possibility is that both visits of v2 happen after the second visit of v1
(see Fig. 9). In this case we 'x the point v3 laying immediately above v2 on the
trajectory. Then we remove the part of the trajectory from v3 to the second visit of
v2 and add a new part from v3 to v2. This part can be added without looking on
the contents of the adjacent squares because the trajectory goes downwards with
LowC on the left side. Again, we get a new trajectory that has two crossing points
less than the original one.

2. Let B reach v1 for the second time after moving downwards (Figs. 10 and 11).
The situation at Fig. 10 can be solved in the same way as the situation at Fig. 8
by removing the trajectory part from v2 to v2. For the situation at Fig. 11 we 'rst
remove the part of the trajectory from the 'rst visit of v1 to the second visit of v2.

J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24 19

Fig. 10. A trajectory of the movement of B that crosses itself, after some movement downwards.

Fig. 11.

Fig. 12.

If the initial part of the trajectory to v1 and the 'nal part of the trajectory from v2
do not cross each other, then these two trajectory parts together surely separate the
sources from the destinations. If these two trajectories cross each other in a point
v3 (Fig. 12), then they have the same orientation in v3. So, removing the trajectory
part from v3 to v1 and from v2 to v3 we obtain a new trajectory having 4 crossing
points less than the original one. 9

9 Note that the situation at Fig. 11 can be also solved in an analogous way as the situation at Fig. 9 was
solved. So, one does not need to break the trajectory.

20 J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24

4. Conclusions and open problems

In this paper we have proved that two-way Las Vegas 'nite automata are very
powerful because
(i) if one has small nondeterministic automata for L and L–, then one has a small

2LVFA for L,
(ii) 2LVFAs may be essentially more powerful than NFAs, i.e. ns((Lk)–)=

2<(lvs2((Lk)
–)),

(iii) there is an exponential gap between LVFAs and 2LVFAs, and
(iv) there is at least an almost quadratic gap between 2DFAs and 2LVFAs.

The main remaining open problems are
1. Is there an exponential gap between 2DFAs and 2LVFAs?
2. Is there an exponential gap between 2LVFAs and 2NFAs?

Observe, that a positive answer to any of these two questions would solve the
famous open problem of [17] asking for the relation between 2DFAs and 2NFAs. We
conjecture that s2(Lk) for the language Lk of Theorem 4 is not polynomial in k. Since
lvs2(Lk)=O(k) the proof of our conjecture would yield the solution of the 'rst open
problem.
Note, that the simulation of 2SVNFAs by 2LVFAs in Theorem 1 results in a Las

Vegas automaton that works in an expected exponential time according to the input
length. This contrasts to deterministic automata which always work in linear time. 10

Also, the length of the shortest accepting (rejecting) computation of a 2NFA on any
input x is of linear length in |x|. Exponential time seems to be inevitable because
one needs to increase the probability of success by numerous repetitions of simulation
attempts. But one can consider the comparison between 2LVFAs and 2DFAs to be
unfair, since this can be viewed as a comparison of exponential time and linear time.
So, a research problem is to consider polynomial-time 2LVFAs and compare them with
2DFAs, 2NFAs, as well as with unrestricted 2LVFAs.
These comparisons are of importance especially if one considers Las Vegas automata

as a data structure for the representation of regular languages. But this can be practical
only if the Las Vegas automaton works in a reasonable time. This question is strongly
connected with the question whether there is a reasonable general upper bound f(n)
on the number of random bits used by 2LVFAs on inputs of length n.
If one wants to use Las Vegas automata to represent regular languages, the following

questions may be of interest:

(i) Given a probabilistic automaton A, how hard is it to decide whether A is a Las
Vegas automaton?

(ii) One-way Las Vegas 'nite automata work in linear time and so they are a reason-
able data structure for regular languages if one wants to decide the membership

10 More precisely, in time at most s · n, where s is the number of states and n is the length of the tape.

J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24 21

problem. But the ePciency of the use of LVFAs for regular languages represen-
tation depends on the kind of manipulations one would like to realize with the
representations. How hard is it to 'nd a minimal LVFA? How hard is it to con-
struct the minimal DFA for a given LVFA? The straightforward approach uses the
construction of an equivalent NFA for a given DFA, and so the space complexity
of this algorithm is exponential. Does there exist a more ePcient way? How hard
is it to decide the equivalence problem for LVFAs?

(iii) All known examples of one-way Las Vegas 'nite automata use a constant number
of random decisions only, and all these random decisions can be moved to the
very beginning of the computation (before starting to read the input) [4]. Is there a
possibility to convert any LVFA into a LVFA using a constant number of random
decisions? Can all these random decisions be moved to the very beginning?

Acknowledgements

We would like to thank Pavol ,DuriVs for his comments. We are indebted to Tomasz
Jurdzinski pointing out an error in a previous version of this paper.

Appendix. The Proof of Theorem 1

Let A be a 2SVNFA. We shall construct a 2LVFA B with L(B)=L(A) and s(B)6
4s(A) + 3. The construction is based on the method of Macarie and Seiferas [10] who
generalized the method for the simulation of nondeterministic space by one-sided error
Monte Carlo probabilistic space [6] for small (sublogarithmic) spaces. In fact, we have
only to consider “one-head” 'nite automata instead of multihead 'nite automata or Tur-
ing machines and we have to exchange one-sided-error Monte Carlo computations for
Las Vegas computations. But this exchange causes no trouble because we additionally
know that (L(A))– is easy for nondeterministic 'nite automata, too.
First, we describe the work of B and then we prove that B is really a 2LVFA

accepting L(A).
The states of B consist of the states of A plus some additional states. For each

nondeterministic transition of A to two states 11 we have the same two transitions,
each with probability 1

2 , in B. The accepting (rejecting) states of B are exactly the
accepting (rejecting) states of A. B has only one neutral state qneutral, where qneutral is a
new state. Every neutral state of A is a working state of B. If B working on an input
w reaches a neutral state of A, then B starts the following procedure:

1. Move the head on the left endmarker c| in a new special state.

11 Note that we agreed to assume here that each nondeterministic branching is bounded by 2.

22 J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24

2. B tosses rw =(2s(A) + 1)(|w| + 2) times a coin, where |w| is the length of the
input w. Obviously, this can be realized by using 2s(A) + 1 new working states
and by running |w|+2 steps (via the input tape) in each one of these states. If the
outcome is “all heads” (this happens with the probability of 1=2rw), then B moves
to the state qneutral and halts. Otherwise B immediately enters a new special state
in which the head is moved to the left endmarker c|. After this B restarts a new
simulation on the input w from the initial state.

Note, that the goal of the use of the above procedure is to essentially decrease the
probability of 'nishing in the state qneutral and so to increase the probability of reaching
an accepting (rejecting) state if w∈L(A) (w =∈L(A)).
Besides this, B has still s(A) new states, each one as a counterpart for a state of

A. These states are used after every simulation step of B in order to randomly decide
(with equal probabilities) whether to continue in the simulation of the computation of
A or to restart a new simulation. As one can see later, this additional coin tossing is
important in order to decrease the probability of simulating a very long computation
of A that contains repetitions of the same con'gurations.
We observe that B has 4s(A)+3 states, and that B can reach an accepting (rejecting)

state on an input w if and only if w∈L(A) (w =∈L(A)). So, it remains to show that for
every input w ∈ L(A) (w =∈L(A)) the probability of reaching an accepting (rejecting)
state is at least 1

2 .
For any input w, there exist at most 2w = s(A)(|w| + 2) di:erent con'gurations of

A on w. So, if w ∈ L(A) (w =∈L(A)), then there exists at least one computation of A
on w 'nishing in an accepting (rejecting) state after at most 2w computation steps. So,
simulating 2w steps of A, B reaches an accepting (rejecting) state with probability at
least

(
1
2

)2w .
In what follows, we show that Prob(B accepts w |w∈L(A))¿ 1

2 . The case w =∈L(A)
is treated analogously. Let Step(w) be the random variable 12 saying how many steps
of A will be simulated by B on w in one attempt. Obviously,

Prob(Step(w)¡ 2w) =
2w−1∑
i=1

1
2i
¡ 1− 1

22w
: (1)

Let ACCEPT (w) be the event that B accepts w during one simulation attempt of B
and let Neg-ACCEPT (w) be the complementary event.
Due to Prob(ACCEPT (w) |Step(w)¿2w)¿

(
1
2

)2w and (1) we obtain
Prob(Neg-ACCEPT (w))

= Prob(Step(w)¡ 2w)Prob(Neg-ACCEPT (w) |Step(w)¡ 2(w))

+Prob(Step(w)¿2w)Prob(Neg-ACCEPT (w) |Step(w)¿2w)

12 Obviously, Step(w) depends on |w|, but not on the word w itself.

J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24 23

6Prob(Step(w)¡ 2w)1 + (1− Prob(Step(w)¡ 2w))
(
1− 1

22w

)

6
1
22w

Prob(Step(w)¡ 2w) + 1− 1
22w

¡
1
22w

(
1− 1

22w

)
+
(
1− 1

22w

)

= 1− 1
222w

:

Finally, we bound the probability that B does not accept w in any simulation attempt.
We assume as before that w∈L(A).

Prob(B does not accept w)

6Prob(Neg-ACCEPT)
1
2rw

∞∑
i=0

(Prob(Neg-ACCEPT))i
(
1− 1

2rw

)i

6
(
1− 1

222w

)
1
2rw

∞∑
i=0

(
1− 1

222w

)i (
1− 1

2rw

)i

6
(
1− 1

222w

)
1
2rw

1
1− (1− 1

222w)(1− 1
2rw)

:

Since,

1−
(
1− 1

222w

)(
1− 1

2rw

)
¿ 1−

(
1− 1

222w

)
=

1
222w

;

we obtain

Prob(B does not accept w)¡ 1
1
2rw

1
1=222w

= 222w−rw

= 22s(A)(|w|+2)−2(s(A)+1)(|w|+2)

= 2−2(|w|+2)6 1
16 :

References

[1] A.V. Aho, J.E. Hopcroft, M. Yannakakis, On notions of information transfer in VLSI circuits, Proc.
15th Ann. ACM STOC, ACM, 1983, pp. 133–139.

[2] L. Babai, Monte Carlo algorithms in graph isomorphism techniques, Research Report No. 79-10,
DXepartement de mathXematiques et statistique, UniversitXe de MontrXeal, 1979.

[3] P. Berman, A note on sweeping automata, in: J.W. de Bakker, Jan van Leeuwen (Eds.), Proc. 7th
ICALP ’80, Lecture Notes in Computer Science, vol. 85, Springer, Berlin, 1980, pp. 91–97.

[4] M. Dietzelfelbinger, M. Kutylowski, R. Reischuk, Exact lower bounds for computing Boolean functions
on CREW PRAMs, J. Comput. System Sci. 48 (1994) 231–254.

[5] P. ,DuriVs , J. Hromkovi,c, J.D.P. Rolim, G. Schnitger, Las Vegas versus determinism for one-way
communication complexity, 'nite automata and polynomial-time computations, in: Proc. STACS ’97,
Lecture Notes in Computer Science, vol. 1200, Springer, Berlin, 1997, pp. 117–128.

24 J. Hromkovi0c, G. Schnitger / Theoretical Computer Science 262 (2001) 1–24

[6] J. Gill, Computational complexity of probabilistic Turing machines, SIAM J. Comput. 6 (1977) 675–
695.

[7] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages and Computations,
Addison-Wesley, Reading, MA, 1979.

[8] J. Hromkovi,c, Communication Complexity and Parallel Computing, Springer, Berlin, 1997.
[9] E. Kushilevitz, N. Nisan, Communication Complexity, Cambridge University Press, Cambridge, 1997.
[10] I.I. Macarie, J.I. Seiferas, Strong equivalence of nondeterministic and randomized space-bounded

computations, manuscript, 1997.
[11] K. Mehlhorn, E. Schmidt, Las Vegas is better than determinism in VLSI and distributed computing,

Proc. 14th ACM STOC’82, ACM, 1982, pp. 330–337.
[12] S. Micali, Two-way deterministic 'nite automata are exponentially more succinct than sweeping

automata, Inform. Process. Lett. 12 (2) (1981) 103–105.
[13] Ch. Papadimitriou, M. Sipser, Communication complexity, J. Comput. System Sci. 28 (1984) 260–269.
[14] M. Sauerho:, On nondeterminism versus randomness for read-once branching programs. Electron. Coll.

on Computational Complexity, TR 97-030.
[15] M. Sauerho:, On the size of randomized OBDDs and read-once branching programs for k-stable

functions, in: Proc. STACS ’99, Lecture Notes in Computer Science, 1563, Springer 1999, pp. 488–499.
[16] W.J. Sakoda, M. Sipser, Nondeterminism and the size of two way 'nite automata, Proc. 10th ACM

STOC, ACM, 1978, pp. 275–286.
[17] M. Sipser, Lower bounds on the size of sweeping automata, Proc. 11th ACM STOC, 1979, pp. 360

–364.
[18] M. Sipser, Lower bounds on the size of sweeping automata, J. Computer System Sci. 21 (1980) 195–

202.
[19] I. Wegener, The Complexity of Boolean Functions, Wiley-Teubner Series in Computer Science, Wiley

and Teubner, Stuttgart, 1987.
[20] A.C. Yao, Some complexity questions related to distributed computing, Proc. 11th ACM STOC, ACM,

1979, pp. 209–213.

