
Theoretical Computer Science 409 (2008) 511–520

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On weighted balls-into-bins games
Petra Berenbrink a,∗, Tom Friedetzky b, Zengjian Hu a, Russell Martin c
a School of Computing Science, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada
b Department of Computer Science, University of Durham, Durham, DH1 3LE, UK
c Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK

a r t i c l e i n f o

Article history:
Received 21 February 2008
Received in revised form 1 September 2008
Accepted 5 September 2008
Communicated by P. Spirakis

Keywords:
Balls-into-bins games
Random resource allocation
Weighted balls

a b s t r a c t

We consider the well-known problem of randomly allocating m balls into n bins. We
investigate various properties of single-choice games as well asmultiple-choice games in the
context of weighted balls. We are particularly interested in questions that are concerned
with the distribution of ball weights, and the order in which balls are allocated. Do any of
these parameters influence the maximum expected load of any bin, and if yes, then how?
The problem of weighted balls is of practical relevance. Balls-into-bins games are

frequently used to convenientlymodel load balancing problems. Here, weights can be used
to model resource requirements of the jobs, i.e., memory or running time.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The balls-into-bins game, also referred to as occupancy problem or allocation process, is awell knownandmuch investigated
model. The goal of a (static) balls-into-bins game is to sequentially allocate, at random, a set ofm independent balls (tasks,
jobs, . . .) into a set of n bins (printers, servers, . . .), such that the maximum number of balls in any bin is minimised. In
the dynamic case, we do not have a fixed number of balls but rather new balls arrive over time (and existing ones may be
removed).
In this paper, we are interested in static sequential games, where a fixed number of balls, m, are allocated one after the

other; see [9] for an overview of balls-into-bins games in different settings. The classical single-choice game allocates each
ball to a bin that is chosen independently and uniformly at random (i.u.r.). For m = n balls and n bins the maximum load
(maximum number of balls) in any bin is Θ (log(n)/ log log(n)). More generally, for m balls and n bins the maximum load
is (m/n) + Θ(

√
m log n/n). Surprisingly, the maximum load can be decreased dramatically by allowing every ball to i.u.r.

choose a small number of d > 1 bins. The ball is then allocated to one of the least loaded of the d chosen bins. Then, the
maximum load drops toΘ(log log(n)/ log(d)) in them = n case (see [1]), and (m/n)+Θ(log log(n)/ log(d)) in the general
case, respectively (see [2]). Notice that the results cited above all holdwith high probability1 (w.h.p.). Following [1], we refer
to the multiple-choice algorithm defined above as Greedy[d].
Most work done so far assumes that the balls are uniform and indistinguishable. In this paper, we concentrate on the

weighted case where the i-th ball comes with a weight wi. We define the load of a bin to be the sum of the weights of the
balls allocated to it. In [5] the authors compare the maximum load of weighted balls-into-bins games with the maximum
load of corresponding uniform games. They compare the maximum load of a game with m weighted balls with maximum
weight 1 and total weightW = w1+· · ·+wm to a gamewith approximately 4W uniform balls. Basically, they show that the

∗ Corresponding author. Tel.: +1 49524246951.
E-mail address: petra@cs.sfu.ca (P. Berenbrink).
1 We say an event A occurs with high probability, if Pr[A] ≥ 1− 1/nα for some constant α ≥ 1.

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.09.023

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:petra@cs.sfu.ca
http://dx.doi.org/10.1016/j.tcs.2008.09.023

512 P. Berenbrink et al. / Theoretical Computer Science 409 (2008) 511–520

maximum load of the weighted game is not larger than the load of the game with uniform balls (which has a slightly larger
total weight). Their approach can be used for a variety of balls-into-bins games and can be regarded as a general framework.
However, the results of [5] seem to be somewhat unsatisfactory. The authors compare the allocation of a (possibly huge)

number of ‘‘small’’ weighted ballswith an allocation of fewer but ‘‘heavier’’ uniformballs. Intuitively, it should be clear that it
is better to allocatemany ‘‘small’’ balls compared to fewer ‘‘big’’ balls. After all, themany small balls comewithmore random
choices. The main goal of this paper is to get tighter results for the allocation of weighted balls, both for the single-choice
and the multiple-choice game. To show our results we will use the majorisation technique introduced in [1].

1.1. Known results

Single-choice game. In [9] the authors give a tight bound on themaximum load of any binwhenmuniform balls are allocated
uniformly at random into n bins. [11] considers (among other results) the following problem: Assume the total weight of
the ballsW and themaximumball weightwmax is fixed. Then the expectedmaximum load is is maximised forW/wmax balls
of weight wmax. In [7] Koutsoupias et al. consider the random allocation of weighted balls. Similar to [5], they compare the
maximum load of an allocation of weighted balls to that of an allocation of a smaller number of uniform balls with a larger
total weight. They repeatedly fuse the two smallest balls together to form one larger ball until the weights of all balls are
within a factor of two of each other. They show that the bin loads after the allocation of the weighted balls aremajorised by
the loads of the bins after the allocation of the balls generated by the fusion process. Their approach also applies to more
general games in which balls can be allocated into bins with nonuniform probabilities.

Multiple-choice game. During recent years much research has been done for games with multiple choices in different
settings. See [9] for a nice overview. Here, we shall only mention the ‘‘classical’’ and most recent results, and the results
for weighted balls.
The case where each of the m balls has unit weight has been studied extensively. Azar et al. [1] introduced Greedy[d]

to allocate n balls into n bins. Their algorithm Greedy[d] chooses d bins i.u.r. for each ball and allocates the ball into a bin
with minimum load. They show that after placing n balls the maximum load isΘ(log log(n)/ log(d)+ 1), w.h.p. Compared
to single-choice games, this is an exponential decrease of the maximum load. Vöcking [12] introduced the Always-Go-Left
protocol yielding amaximum load of (log log n)/d, w.h.p. In [2] the authors analyse Greedy[d] form� n. They show that the
maximum load ism/n+ log log(n)/ log d, w.h.p. This shows that the multiple-choice process behaves inherently differently
from the single-choice process, where it can be shown that the difference between the maximum load and the average load
depends onm. They also show amemorylessness property of the Greedy process, i.e., whatever the situation is after allocation
of some ball, after sufficientlymany additional balls themaximum load of any bin can again be bounded as expected. Finally,
Mitzenmacher et al. [10] show that a similar performance gain occurs if the process is allowed to store the location of the
least loaded bin in memory.
In [5] the authors present a general framework for multiple choice games that relates the results of weighted balls-

into-bins games back to game for uniform balls. They show that the maximum load of a game with m weighted balls with
maximumweight 1 and total weightW is not larger than the one resulting by the allocation of 4W uniformballswithweight
one. See [4] for more details.
In [6] the authors generalize the results of [2] to the weighted case where balls have weights drawn from an arbitrary

weight distribution with a finite second moment. They show that the gap between the weight of the heaviest bin and the
weight of the average bin is independent of the number balls thrown. Furthermore, if the fourth moment of the weight
distribution is finite, the expected value of the gap is shown to be independent of the number of balls.

1.2. Model and definitions

We assume that we have m balls and n bins. In the following we denote the set {1, . . . ,m} by [m]. Ball i has weight wi
for all i ∈ [m]. Let w = (w1, . . . , wm) be the weight vector of the balls. We assume wi > 0 for all i ∈ [m].W =

∑m
i=1wi is

the total weight of the balls. If w1 = · · · = wm we refer to the balls as uniform. In this case, we normalise the ball weights
such thatwi = 1 for ∀i ∈ [m].
The load of a given bin is the sumof theweights of all balls allocated to it. In the case of uniformballs the load is simply the

number of balls allocated to the bin. The status of an allocation is described by a load vector L(w) = (`1(w), . . . , `n(w)). Here,
`i is the load of the i-th bin after the allocation of weight vectorw. Whenever the context is clear we write L = (`1, . . . , `n).
In some cases we consider the change that occurs in an allocation after allocating some number of additional balls. Then we
define Lt to be the load vector after the allocation of the first t balls with weights w1, . . . , wt for 1 ≤ t ≤ m. In many cases
we will normalise a load vector L by assuming a non-increasing order of bin loads, i.e. `1 ≥ `2 ≥ · · · ≥ `n. We then define
Si(w) =

∑i
j=1 `j(w) as the total load of the i highest-loaded bins. Again, when the context is clear we shall drop the ‘‘w’’

and write Si =
∑i
j=1 `j. Finally, in what follows, we letΩ = [n].

To compare two load vectors and also the balancedness of vectors of balls weights we use the concept of majorisation.
First, we briefly review the notion of majorisation from [8].
Definition 1.1. For two normalised vectors w = (w1, . . . , wm) ∈ Rm and w′ = (w′1, . . . , w

′
m) ∈ Rm with

∑m
i=1wi =∑m

i=1w
′

i , we say thatw
′ majorisesw, writtenw′ �w, if

∑k
i=1w

′

i ≥
∑k
i=1wi for all 1 ≤ k ≤ m.

P. Berenbrink et al. / Theoretical Computer Science 409 (2008) 511–520 513

Majorisation is a strict partial ordering between (normalised) vectors of the same dimensionality. Intuitively, vector v′
majorises another vector v if v is ‘‘more spread out’’, or ‘‘more balanced’’, than v′. In the following, if we refer to a weight
vector w that is more balanced than weight vector w′, we mean that w′ majorises w. We will use the term majorisation if
we refer to load vectors.
Some examples are:

(1, 0, . . . , 0︸ ︷︷ ︸
m−1

) � (1/2, 1/2, 0, . . . , 0︸ ︷︷ ︸
m−2

) � · · · � (1/(m− 1), . . . , 1/(m− 1)︸ ︷︷ ︸
m−1

, 0) � (1/m, . . . , 1/m︸ ︷︷ ︸
m

).

1.3. New results

In the next section, we first present some additional definitions that we will use later on in this paper. Section 3 is
concerned with the single-choice game. In Theorem 3.1 we fix the number of balls and show that the expected maximum
load is smaller for more balanced ball weight vectors. In more detail, we allocate two sets of balls into bins, where the first
set has amore evenweight distribution than the second one, i.e., the second correspondingweight vector majorises the first
one.We show that the expectedmaximum load after allocating the first set is smaller than the one after allocation the second
set. This also holds for the sum of the loads of the i largest bins. One could say that themajorisation is preserved: if oneweight
vector majorises another one, then we have the same order with respect to the resulting expected bin load vectors. Hence,
uniform balls minimise the expected maximum load. Theorem 3.1 uses majorisation together with T -transformations (see
the definition in the next section), thereby allowing us to compare sets of balls that only differ in one pair of balls.
Corollary 3.4 extends the results showing that the allocation of a large number of small balls with total weightW ends

up with a smaller expected maximum load than the allocation of a smaller number of balls with the same total weight. We
also show that the results are still true for many other random functions that are used to allocate the balls into the bins. Our
results are much stronger than the ones of [7] since we compare arbitrary weight distributions with the same total weight.
Compared to [7] we also allow for the same number of balls. In addition, we consider the entire load distribution and not
only the maximum load.
Section 4 deals with multiple-choice games. The main result here is Theorem 4.6. It shows that, for sufficiently many

balls, allocation of uniform balls is not necessarily better than allocation of weighted balls. It is better to allocate first the
‘‘big balls’’ and then some smaller balls on top of them, instead of allocating the same number of average sized balls. This
result uses the memorylessness property of [2]. For fewer balls we show in Lemma 4.7 that the majorisation order is not
generally preserved. Assume that we have two allocationsA andB, and that the load vector of allocationA is majorised by
the load vector of allocation B. Now, throwing only one additional ball into both allocations may reverse the majorisation
order and suddenlyB is majorised byA (or possibly the two load vectors could be noncomparable under the majorisation
partial ordering).
The previous results mentioned for the single-choice game use the majorisation technique inductively. Unfortunately, it

seems difficult to use T -transformations and themajorisation technique to obtain results for weighted balls in themultiple-
choice game. We also present several examples showing that, for the case of a small number of balls with multiple-choices,
the expected maximum load is not necessarily smaller if we allocate more evenly weighted balls.

2. Majorisation and T -transformations

In Section 1.2 we defined the concept of majorisation. In [1] Azar et al. use this concept for random processes. Here we
give a slightly different definition adjusted for our purposes.

Definition 2.1 (Majorisation). Letw andw′ be twoweight vectors withm balls, and letΩm be the set of all possible random
choices for Greedy applied on m balls. Define w(ω) (respectively, w′(ω)) to be the allocation resulting from the choices
ω ∈ Ωm, and let f : Ωm −→ Ωm be a one-to-one correspondence. Then we say that w′ is majorised by w if there exists a
function f such that for any ω ∈ Ωm we havew(ω) � w′(f (ω)).

A slightly weaker form of the majorisation is the expected majorisation defined below. We will use it in order to compare
the allocation of two different load vectors with each other.

Definition 2.2 (Expected Majorisation). Let w and w′ be two weight vectors with m balls, and let Ωm be the set of all
possible random choices. Let L(w, ω) = (`1(w, ω), . . . , `n(w, ω)) (resp., L′(w′, ω) = (`1(w

′, ω), . . . , `n(w
′, ω))) be the

normalised load vector that results from the allocation ofw (respectively,w′) using ω ∈ Ωm. Let Si(w, ω) =
∑i
j=1 `j(w, ω)

and Si(w′, ω) =
∑i
j=1 `j(w

′, ω). Then we say that L(w′) is expectedly majorised by L(w) if for all i ∈ [n], we have
E[Si(w)] ≥ E[Si(w′)]. (The expectation is over all possible nm elements, selected uniformly at random, inΩm.)

Nowwe introduce a class of linear transformations on vectors called T-transformationswhich are crucial to our later analysis.
We write

w
T
=⇒w′,

514 P. Berenbrink et al. / Theoretical Computer Science 409 (2008) 511–520

meaning that w′ can be derived from w by applying one T-transformation. Recall that a square matrix Π = (πij) is said
to be doubly stochastic if all πij ≥ 0, and each row sum and column sum is one. Π is called a permutation matrix if each
row and each column contains exactly one unit and all other entries are zero (in particular, a permutation matrix is doubly
stochastic).

Definition 2.3 (T-transformation). A T-transformation matrix T has the form T = λI + (1 − λ)Q , where 0 ≤ λ ≤ 1, I is
the identity matrix, and Q is a permutation matrix that swaps exactly two coordinates. Thus, for some vector x of correct
dimensionality, xT = (x1, . . . , xj−1, λxj + (1− λ)xk, xj+1, . . . , xk−1, λxk + (1− λ)xj, xk+1, . . . , xm).

T -transformations and majorisation are closely linked by the following lemma (see [8]).

Lemma 2.4. For w,w′ ∈ Rm, w � w′ if and only if w′ can be derived from w by successive applications of at most m − 1
T-transformations.

One of the fundamental theorems in the theory of majorisation is the following.

Theorem 2.5 (Hardy, Littlewood and Pólya, 1929). Forw,w′ ∈ Rm, w � w′ if and only ifw′ = wP, for some doubly stochastic
matrix P.

3. Weighted Single-choice Games

In this section we study the classical balls-into-bins game where every ball has only one random choice. Let w and w′
be twom-dimensional weight vectors. Recall that Si(w) is defined to be the random variable counting the cumulative loads
of the i largest bins after allocating w. Si(w, ω) counting the cumulative loads of the i largest bins after allocating w using
the random choices ω. In this section we show that, if there exist a majorisation order between two weight vectors w and
w′, the same order holds for E[Si(w)] and E[Si(w′)]. This implies that, if w majorises w′, the expected maximum load after
allocatingw is larger than or equal to the expected maximum load after allocatingw′.
The proof of the following theorem is due to an anonymous reviewer of the paper. Our original proof (see [3]) used the

majorization technique.

Theorem 3.1. Ifw � w′, then E[Si(w)] ≥ E[Si(w′)] for all i ∈ [n].

Proof. Fix an arbitrary allocation ω ∈ Ωn. We first prove a lemma which indicates that the function Si(w, ω) is convex.

Lemma 3.2. The function Si(w, ω) is convex.

Proof. Let v and v′ be twom-dimensional vectors such thatw = (1− λ)v + λv′.

Si(w, ω) = max
A⊂[n],|A|=i

∑
1≤j≤m :ωj∈A

wj

= max
A⊂[n],|A|=i

∑
1≤j≤m :ωj∈A

((1− λ)vj + λv′j)

≤ (1− λ) max
B⊂[n],|B|=i

∑
1≤j≤m :ωj∈B

vj + λ max
B′⊂[n],|B′|=i

∑
1≤j≤m :ωj∈B′

v′j

= (1− λ)Si(v, ω)+ λSi(v′, ω).

Now we are ready to prove the theorem using an induction. If w � w′ then w′ can be derived from w by ` ≤ m − 1
T -transformations (see Lemma 2.4). Let

w
T
=⇒w1, w1

T
=⇒w2, . . . w`−1

T
=⇒w′.

Since w
T
=⇒w1 we have w1 = λ · w + (1 − λ)w · P , where P is a permutation matrix. The same holds for

w1
T
=⇒w2, . . . , w`−1

T
=⇒w′. Using Lemma 3.2, we get

E[Si(w1)] ≤ λE[Si(w)] + (1− λ)E[Si(wP)]
= E[Si(w)].

The second equation holds since E[Si(w)] = E[Si(wP)] for any permutation matrix P . Again, we get the same inequality for

all T -transformationsw1
T
=⇒w2, . . . , w`−1

T
=⇒w′, yielding E[Si(w)] ≥ E[Si(w′)].

It is clear that the uniformweight vector is majorised by all other vectors with same dimension and same total weight. Using
Theorem 3.1, we get the following corollary.

P. Berenbrink et al. / Theoretical Computer Science 409 (2008) 511–520 515

Table 1
AllocationsA,B, C, andD

Allocations Firstm/2 balls Lastm/2 balls

Ball weights Algorithm Ball weights Algorithm

A 3 Greedy[d] 1 Greedy[d]
B 2 Greedy[d] 2 Greedy[d]
C 3 Optimal 1 Greedy[d]
D 2 Optimal 2 Greedy[d]

Corollary 3.3. Letw = (w1, . . . , wm), W =
∑m
i=1wi, andw

′
= (Wm , . . . ,

W
m). For all i ∈ [n], we have E[Si(w)] ≥ E[Si(w

′)].

Proof. Note that w′ = wP , where P = (pij) and pij = 1/m ∀i, j ∈ [m]. Clearly P is a doubly stochastic matrix. Hence by
Lemma 2.5,w � w′. Consequently, from Theorem 3.1 we have E[Si(w)] ≥ E[Si(w′)].

Theorem 3.1 also shows that an allocation of a large number of small balls with total weight W ends up with a smaller
expected load than the allocation of a smaller number of balls with the same total weight. Note that in the next corollary
the relation w � w′ must be treated somewhat loosely because the vectors do not necessarily have the same length, but
the meaning should be clear, namely that

∑j
i=1wi ≥

∑j
i=1w

′

i for all j ∈ [m].

Corollary 3.4. Let w = (w1, . . . , wm) and W =
∑m
i=1wi. Suppose that w

′
= (w′1, . . . , w

′

m′) with m ≤ m
′, and also that

W =
∑m
i=1w

′

i . Ifw � w
′ we have E[Si(w)] ≥ E[Si(w′)] for all i ∈ [n].

Proof. Simply add zeros tow until it has the same dimension thanw′.

It is easy to see that we can generalise the result to other probability distributions that are used to choose the bins.

Corollary 3.5. If w � w′, and the probability that a ball is allocated to bin bi, 1 ≤ i ≤ n, is the same for all balls, then we have
E[Si(w)] ≥ E[Si(w′)] for all i ∈ [n].

4. Weighted multiple-choice games

In the first sub-sectionwe show that formultiple-choice games it is not always better to allocate uniformballs. Form� n
we construct a set of weighted balls that ends up with a smaller expected maximum load than a set of uniform balls with
the same total weight. The second sub-section considers the case where m is not much larger than n. As we will argue in
the beginning of that section, it appears that it may not be possible to use the majorisation technique to get tight results for
the weighted multiple-choice game. This is due to the fact that the order in which weighted balls are allocated is crucial,
but the majorisation order is not necessarily preserved for weighted balls in the multiple-choice game (in contrast to [1] for
uniform balls). We discuss several open questions and give someweight vectors that result in a smaller expectedmaximum
load than uniform vectors with the same total weight.

4.1. Large number of balls

We compare two allocations, A and B, respectively. In A we allocate m/2 balls of weight 3 each and thereafter m/2
balls of weight 1 each, using the multiple-choice strategy. AllocationB is the uniform counterpart ofAwhere all balls have
weight 2.We show that the expectedmaximum load inA is strictly smaller than that inB.Wewill use the short termmemory
property stated below in Lemma 4.1. See [2] for a proof. Basically, this property says that after allocating a sufficiently large
number of balls, the load depends on the last poly(n) many balls only. If m is now chosen large enough (but polynomially
large in n suffices), then themaximum load is (w.h.p.) upper bounded by 2m/n+ log log n. In the case of balls with weight 2,
the maximum load is w.h.p. upper bounded by 2m/n+2 log log n. Since [2] gives only upper bounds on the load, we can not
use the result directly. We introduce two auxiliary allocations named C and D , respectively. Allocation C is derived from
Allocation A, and D is derived from B. The only difference is that in allocations C and D we allocate the first m/2 balls
optimally (i.e. we always place the balls into the least loaded bins). In Lemma 4.5 we first show that the expected maximum
loads ofA andC will be nearly indistinguishable after allocating all the balls. Similarly, the maximum loads ofB andD will
be nearly indistinguishable. Moreover, we show that the expectedmaximum load inD is larger than that in C. Then we can
show that the expected maximum load in A is smaller than that in B (Theorem 4.6). For an overview of the four systems,
we refer to Table 1.
To state the short memory property we need one more definition. For any two random variables X and Y defined jointly

on the same sample space, the variation distance betweenL (X) (the ‘‘law’’, or distribution, of X) andL(Y) is defined as

‖L(X)−L(Y)‖ = sup
A
| Pr(X ∈ A)− Pr(Y ∈ A)|,

where A is an arbitrary subset of the events. The following lemma is from [2, Corollary 1].

516 P. Berenbrink et al. / Theoretical Computer Science 409 (2008) 511–520

Lemma 4.1. Suppose L0 = (`1, . . . , `n) is an arbitrary normalised load vector describing an allocation of m balls into n bins.
Define∆ = `1−`n to be themaximum load difference in L0. Let L′0 be the load vector describing the optimal allocation of the same
number of balls to n bins. Let Lk and L′k, respectively, denote the vectors obtained after inserting k further balls to both allocations
using the multiple-choice algorithm, Then for k ≥ n5 ·∆

‖L(Lk)−L(L′k)‖ ≤ k
−α

where α is an arbitrary constant.

Intuitively, Lemma 4.1 indicates that given any configurationwithmaximumdifference∆, in∆ ·poly(n) steps the allocation
‘‘forgets’’ the difference, i.e., the allocation is nearly indistinguishable from the allocation obtained by starting from a
completely balanced allocation. This is in contrast to the single-choice game requiring∆2 ·poly(n) steps in order to ‘‘forget’’
a load difference∆ (see [2]).

Lemma 4.2. Suppose we allocate m balls to n bins using Greedy[d] with d ≥ 2, m � n. Then the number of bins with load at
least m/n+ i+γ is bounded above by n · exp(−di), w.h.p, where γ denotes a suitable constant. In particular, the maximum load
is w.h.p.

m
n
+
log log n
log d

±Θ(1).

Proof. The result that themaximum load is at mostm/n+ log log n/ log d+Θ(1) has been shown in [2]. To show the lower
boundwe first recall two results shown in [1]. First, let u and v be two positive integer vectors such that u1 ≥ u2 ≥ . . . ≥ un
and v1 ≥ v2 ≥ · · · ≥ vn. Azar et. al show that if u � v, then also u+ ei � v + ei, where ei is the ith unit vector. Now let u,
v be two vectors with same total weight. Denote by u′ and v′ the load vectors obtained by allocating a unit-size ball b into
two allocations having initial loads u, v respectively. Then Azar et al. show the following theorem:

Theorem 4.3. If u � v, there is a coupling of two allocations with respect to the allocation of b such that u′ � v′.

We consider two allocations E and F . In E we allocate m balls into n bins using Greedy[d], while in F , we first place
m− n balls optimally, and then allocate the remaining n balls by Greedy[d]. Clearly after allocating the firstm− n balls, the
normalised load vector of E always majorises the normalised load vector of F . Applying Theorem 4.3 on the last n balls, we
see that E � F . Since the maximum load in F is known to be lower bounded by m/n + log log n/ log d − Θ(1) w.h.p [1],
the same lower bound holds for the maximum load of E .

Let Li(A) (or Li(B), Li(C), Li(D)) be themaximum load in AllocationA (respectively,B,C,D) after the allocation of the first
i balls. If we refer to the maximum load after the allocation of all m balls we will simply write L(A) (or L(B), L(C), L(D)).
Lemma 4.5 below compares the load of the four allocations described in Table 1. First, we give a lemma stating that, given
two random variables, a small variation distance implies a small difference between their expectations.

Lemma 4.4. Let X and Y be two discrete random variables sharing the same sample space. Let ζ be the maximum possible value
of X and Y . Then,

|E[X] − E[Y]| ≤ ζ · ‖L(X)−L(Y)‖.

Proof. Let G= {k| Pr(X = k) > Pr(Y = k)}, S = {k| Pr(X = k) < Pr(Y = k)}. Due to choice of G and S,∑
k∈G

(Pr(X = k)− Pr(Y = k)) =
∑
k∈S

(Pr(Y = k)− Pr(X = k)).

Hence,

|E[X] − E[Y]|

=

∣∣∣∣∣∑
k

((Pr(X = k)− Pr(Y = k)) · k)

∣∣∣∣∣
=

∣∣∣∣∣∑
k∈G

((Pr(X = k)− Pr(Y = k)) · k)−
∑
k∈S

((Pr(Y = k)− Pr(X = k)) · k)

∣∣∣∣∣
≤ max

{∑
k∈G

((Pr(X = k)− Pr(Y = k)) · k),
∑
k∈S

((Pr(Y = k)− Pr(X = k)) · k)

}

≤ max

{
ζ ·
∑
k∈G

(Pr(X = k)− Pr(Y = k)), ζ ·
∑
k∈S

(Pr(Y = k)− Pr(X = k))

}
= ζ ·

∑
k∈G

(Pr(X = k)− Pr(Y = k)) ≤ ζ · sup
A
| Pr(X ∈ A)− Pr(Y ∈ A)| = ζ · ‖L(X)−L(Y)‖.

P. Berenbrink et al. / Theoretical Computer Science 409 (2008) 511–520 517

Lemma 4.5. Let m = Ω(n6).

(a) E[L(D)] − E[L(C)] ≥ log log n
log d −Θ(1).

(b) |E[L(A)] − E[L(C)]| ≤m−β , where β is an arbitrary constant.
(c) |E[L(B)] − E[L(D)]| ≤m−β

′

, where β ′ is an arbitrary constant.

Proof. Part (a). The deviation of the maximum load from the average in AllocationD is exactly twice that of C, or

E[L(D)] −
2m
n
= 2 ·

(
E[L(C)] −

2m
n

)
.

Hence,

E[L(D)] − E[L(C)] = E[L(C)] −
2m
n
.

By Lemma 4.2, the maximum load of Allocation C is at least 2mn +
log log n
log d −Θ(1)w.h.p. Hence,

E[L(D)] − E[L(C)] = E[L(C)] −
2m
n
≥
log log n
log d

−Θ(1).

Part (b). For 0 ≤ i ≤ m/(2n), we define AllocationAi as follows. InAi, we allocate the first i · n balls optimally and the rest
m− i · n balls by Greedy[d] (clearlyA0 = A andAm/(2n) = C). Note that for 1 ≤ i ≤ m/(2n), the maximum load difference
between Ai and Ai−1 is 3n. Since m/2 = Ω(n6) > n5 · n, by Lemma 4.1, the Greedy[d] algorithm has ‘‘short memory’’. In
other words, after allocating all them balls of Ai−1 and Ai, both allocations will become almost indistinguishable. Moreover,
we note that the variation distance of two random vectors is certainly no bigger than that of their respective maxima, thus

‖L(L(Ai−1))−L(L(Ai))‖ ≤
(m
2

)−α
,

for an arbitrary constant α. Consequently

‖L(L(A))−L(L(C))‖ ≤
m/2n∑
i=1

‖L(L(Ai−1))−L(L(Ai)) ‖ ≤
(m
2

)−α
·

(m
2n

)
≤ m−(α−1).

It is clear that the maximal possible loads of both allocations A and C are 2m (if we allocate all the balls into one bin). By
Lemma 4.4,

|E[L(A)] − E[L(C)]| ≤
(m
2

)−(α−1)
· 2m ≤ m−β

as long as we choose α = (1+β) log2 m+1
log2 m−1

+ 1.
Part (c). This can be shown similar to part (b).

Finally, we present the main result of this section, showing that uniform balls do not necessarily minimize the expected
maximum load in the multiple-choice game.

Theorem 4.6. E[L(B)] ≥ E[L(A)] + log log n
log d −Θ(1).

Proof. Of course,

E[L(B)] − E[L(A)] = (E[L(D)] − E[L(C)])− (E[L(A)] − E[L(C)])+ (E[L(B)] − E[L(D)]).

Since the difference between (E[L(A)] − E[L(C)]) and (E[L(B)] − E[L(D)]) is at mostm−β (Lemma 4.5), we conclude that

E[L(B)] − E[L(A)] ≥
log log n
log d

−Θ(1)−m−β −m−β
′

≥
log log n
log d

−Θ(1).

4.2. Majorisation Order for arbitrary values of m

In this section, we consider the Greedy[2] process applied on weighted balls, but most of the results can be generalised
to the Greedy[d] process for d > 2. Just to remind you, in the Greedy[2] process each ball sequentially picks i.u.r. two bins
and the current ball is allocated in the least loaded of the two bins (ties can be broken arbitrarily). This means, of course,
that a bin with relative low load is more likely to get an additional ball than one of the highly loaded bins.
Another way to model the Greedy[d] process is the following: Assume that the load vector of the bins are normalised,

i.e. `1 ≥ `2 ≥ · · · ≥ `n. If we now place an additional ball into the bins, the ball will be allocated to bin i with probability

518 P. Berenbrink et al. / Theoretical Computer Science 409 (2008) 511–520

(id − (i − 1)d)/nd, since all d choices have to be among the first i bins, and at least one choice has to be i. For d = 2 this
simplifies to (2i − 1)/n2. Hence, in this fashion, the process can be viewed as a ‘‘one choice process’’, provided the load
vector is re-normalised after the allocation of each ball. This means that the load distribution of the bins highly depends on
the order in which the balls are allocated.
Unfortunately, the dependence of the final load distribution on the order in which the balls are allocated makes it very

hard to get tight bounds using themajorisation technique together with T -transformations. Theorem 3.1 highly depends on
the fact that we can assume that wj and wk (yj and yk) are allocated at the very end of the process, an assumption that can
not be used in the multiple-choice game. In order to use T -transformations for multiple choice games, we would again need
a result that shows that the majorisation order is preserved when we add more (similar) balls into the allocation. We need
a result showing that if A � B and we add an additional ball to both A and B, after the allocation we still have A′ � B ′

(whereA′ andB ′ denote the new allocations with the one additional ball). While this is true for uniform balls (see [1]), this
is not necessarily true for weighted balls and the multiple choice game. In the following sections we study the majorisation
order for weighted multiple choice games, and the effect that the the allocation order or the number of balls have on the
final load distribution.

Majorisation Order. The following easy example shows that themajorisation order need not be preserved for weighted balls
in the nultiple-choice case. Let A = (7, 6, 5) and B = (7, 5.8, 5.2). If we now allocate one more ball with weight w = 2
into both systems (using the Greedy[2] protocol), with probability 5/9 the ball is allocated to the third bin in both allocations
and we haveA′ = (7, 7, 6) andB ′ = (7.2, 7, 5.8), henceB ′ � A′. Alternatively, with probability 1/3 the ball is allocated
to the second bin in each allocation resulting in load vectorsA′ = (8, 7, 5) andB ′ = (7.8, 7, 5.2). Finally, with probability
1/9 the ball is allocated to the first bin resulting in load vectorsA′ = (9, 6, 5) andB ′ = (9, 5.8, 5.2). In both cases we still
haveA′ � B ′. This shows that after the allocation of one additional ball using Greedy[2], the majorisation relation can turn
around. Note that the load distributions ofA andB are not ‘‘atypical’’, but they can easily come up using Greedy[2].
The next lemma gives another example showing that the majorisation relation need not be preserved for weighted balls

in the multiple-choice game. The idea is that we can consider two allocations C and D where C � D , but by adding one
additional ball (with large weightw), we then have E[S1(D ′)] ≥ E[S1(C ′)]. It is easy to generalise the lemma to cases where
w is not larger than the maximum bin load to show that the majorisation relation need not be preserved.

Lemma 4.7. Let v and u be two (normalised) load vectors with v
T
=⇒u (so v � u). Let w be the weight of an additional ball

with w > v1. Let v′, u′ be the new (normalised) load vectors after allocating the additional ball into v and u. Then we have
E[S1(u′)] > E[S1(v′)].

Proof. First we assume v
T
=⇒u. Then, by the property of T -transformations, there must exist two bins with rank j, k ∈ Z+,

j < k, such that vj > uj > uk > vk, and for ∀i 6= j, k, that ui = vi. Besides, we have vj − uj = uk − vk > 0. We observe
that, sincew > v1 ≥ u1, the destination of the new ball immediately becomes the maximum loaded bin in both allocations.
Since the probability to place the new ball on top of the i-th largest bin in both allocations is i

d
−(i−1)d

nd
we get

E[S1(u′)] − E[S1(v′)] =
n∑
i=1

id − (i− 1)d

nd
· (ui − vi)

=
jd − (j− 1)d

nd
· (uj − vj)+

kd − (k− 1)d

nd
· (uk − vk) (1)

> 0. (2)

Here (1) holds since ∀i 6∈ {j, k}, ui = vi. Inequality (2) is due to the facts that j < k and vj − uj = uk − vk > 0.

Remark: We feel it necessary to point out that the preceding lemma applies only to the largest elements of u′ and v′.
It is possible that after the allocation of the new ball we could have E[S2(u′)] > E[S2(v′)] or the reverse inequality
E[S2(v′)] > E[S2(u′)].
For example, (using the Greedy[2] protocol) take v = (7, 7, 3), u = (7, 5, 5), and w = 20, and the first inequality

holds. It is easy to check that E[S2(u′)] = 32 > 31 79 = E[S2(v
′)]. On the other hand, using the vectors v = (100, 1, 1), u =

(35, 34, 33), and a newball havingweightw = 101we find that E[S2(v′)] = 202 > 169 49 = E[S2(u
′)]. However, Lemma 4.7

tells us that E[S1(u′)] ≥ E[(S1(v′)] holds in both cases.
Lemma 4.7 and the example preceding that lemma both showed that a more unbalanced weight vector can end up with

a smaller expected maximum load after the allocation of some additional (and similar) balls. However, in those cases we
assumed that the number of bins is very small, or that one of the balls is very big. Simulation results show that for most
weight vectors w,w′ with w � w′ the expected maximum load after the allocation of w′ is smaller than the one after the
allocation ofw. Unfortunately, we have been unable to show a result along these lines formally.

Order of the balls. Another interesting question concerns the order of allocating balls under the multiple-choice scenario.
In the case that m ≥ n, we conjecture that if all the balls are allocated in decreasing order, the expected maximum is the
smallest among all possible permutations. This is more or less intuitive since if we always allocate bigger balls first, the

P. Berenbrink et al. / Theoretical Computer Science 409 (2008) 511–520 519

Fig. 1. Left: successive equalisation of weights. Right: successive swapping of weights.

chances would be low to place the remaining balls in those bins which are already occupied by the bigger balls. However,
we still do not know how to prove this conjecture. We can answer the peer question: what about if we allocate balls in
increasing order? The next observation shows that the increasing order does not always produce the worst outcome.

Observation 4.8. Fix a set of weighted balls. The expected maximum load is not necessarily maximised by allocating the balls in
increasing order.

Proof. We compare two allocationsA andB both with n bins. LetwA = {1, 2, 1, 5}, andwB = {1, 1, 2, 5} be two weight
vectors (sequences of ball weights). Notice thatwB is a monotonically increasing sequence whilewA is not. After allocating
the first three balls, observe that the possible outcomes for A and B are (2, 1, 1, 0, . . . 0), (3, 1, 0 . . . , 0), (2, 2, 0 . . . , 0)
and (4, 0, . . . 0). We can calculate the probabilities forA andB to end up in outcome (2, 2, 0 . . . , 0) are (1− 1/n2) · 3/n2
and (1 − 1/n2) · 1/n2, respectively. Moreover, notice both A and B have the same probability to end up in outcome
(2, 1, 1, 0, . . . 0) and (4, 0, . . . , 0). Consequently,B has more (in fact, (1− 1/n2) · 2/n2) probability to end up in outcome
(3, 1, 0, . . . , 0) thanA, whileA is more likely to end up in outcome (2, 2, 0, . . . , 0). Hence, after allocating the first three
balls, B certainly majorises A. Since the last ball (with weight 5) is bigger than the loads of all bins in both A and B
after allocating the first three balls, by Lemma 4.7 the expected maximum load after allocatingwA is bigger than that after
allocatingwB .

Many small balls. Another natural question to ask is the one we answered in Corollary 3.4 for the single-choice game. Is it
better to allocate a large number of small balls compared to a smaller number of large balls with the same total weight? The
next example shows again that the majorisation relation is not always maintained in this case.

Observation 4.9. We consider two systems A and B both of n bins. Let WA = (0, 2, 4, . . . , 2m−1) and WB =

(1, 1, 4, . . . , 2m−1) denote two allocations both of m ≥ 3 balls. Note both systems are of same total weight and WA � WB ,
but if m is odd, the expected maximum load ofA is smaller thanB .

Proof. Clearly after allocating the first two balls System A majorises System B. Besides, note that for both systems, the
weight of every newly allocated ball is bigger than the sum of weights of all the balls allocated before. Hence, by Lemma 4.7,
every time when a new ball is allocated, the majorisation relation would be ‘‘reversed". Hence, for any odd numberm ≥ 3,
SystemB certainly majorises SystemA.

To see this, when m = 3, simply by enumerating all cases we can get, the expected maximum load of A is 4 + 2/n2,
which is smaller than that ofB (4+ 4/n2 − 2/n4).
We emphasize again that the initial majorisation relation is no longer preserved during the allocation. However, we still

conjecture that in ‘‘most’’ cases the allocation of a large number of small balls is majorised by the one of a smaller number
of large balls with the same total weight, but so far we have been unable to show formal results. The next section contains
empirical results obtained by computer simulations examining some of the issue we have raised earlier.

4.3. Simulation results

In this section, we conduct an empirical study for the weightedmultiple-choice balls-into-bins game.We allocatem = n
balls into n bins while the number of choices, d, is chosen to be 2. We examine cases in which n is set to 100, 200, 500, and
1000, respectively. Note it is not feasible to enumerate the huge number of possible allocations (which is nm·d) to calculate
the exact expectedmaximum loads. Instead,we approximate themby taking the averagemaximum loads for a large number
(specifically 100,000) number of iterations.

520 P. Berenbrink et al. / Theoretical Computer Science 409 (2008) 511–520

The goal of the first experiment is to demonstrate the following observation: the more balanced the ball weights are, the
less the expected maximum load will be, after allocating all balls. In our experiment, we first randomly assign a weight in
(0, 1) to each ball. After that, we perform a few ‘‘mixing’’ steps, in which we choose two balls at random and equalise their
weights, to make the overall weight vectors more balanced. We record the corresponding expected maximum loads vs. the
number of mixing steps in the left part of Fig. 1.
Although the first observation above is almost always true, we still note that there do exist ball weight distributions

which achieve smaller expected maximum load than their corresponding uniform ones, as shown in Theorem 4.6.
Next, we perform an experiment regarding the order of placing balls. We aim at showing that if we allocate balls in

decreasing order of their weights, we would get the least expected maximum load. This seems intuitively likely since if we
allocate big balls first, the small balls later are likely to fall into the holes left by the big ones. For the experiment, we first
randomly assign each ball a weight in (0, 1) and sort all ball weights by non-increasing order. Later, we perform a number
of ‘‘swaps’’, i.e., we randomly choose two balls and exchange their weights, to get different ball arrangements. The right part
of Fig. 1 shows the relation between the number of swaps and the corresponding expected maximum loads.
Clearly our experiment appears to support the conjecture that the decreasing order achieves the minimum expected

maximum load. Unfortunately, we have not yet succeeded in proving this conjecture.

References

[1] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, Eli Upfal, Balanced allocations, SIAM Journal on Computing 29 (1) (1999) 180–200.
[2] Petra Berenbrink, Artur Czumaj, Angelika Steger, Berthold Vöcking, Balanced allocations: The heavily loaded case, SIAM Journal on Computing 35 (6)
(2006) 1350–1385.

[3] Petra Berenbrink, Tom Friedetzky, Zengjian Hu, Russell A. Martin, On weighted balls-into-bins games, in: Proc. of the 22nd Symposium on Theoretical
Aspects of Computer Science, STACS, 2005, pp. 231-243.

[4] Petra Berenbrink, Randomized allocation of independent tasks, University of Paderborn, 2000.
[5] Petra Berenbrink, Friedhelm Meyer auf der Heide, Klaus Schröder, Allocating weighted jobs in parallel, Theory of Computing Systems 32 (3) (1999)
281–300.

[6] Kunal Talwar, Udi Wieder, Balanced allocations: The weighted case, in: Proc. of the 39th Annual ACM Symposium on Theory of Computing, STOC,
2007, pp. 256–265.

[7] Elias Koutsoupias, MariosMavronicolas, Paul G. Spirakis, Approximate equilibria and ball fusion, Theory of Computing Systems 36 (6) (2003) 683–693.
[8] Albert W. Marshall, Ingram Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, 1979.
[9] Michael Mitzenmacher, Andrea W. Richa, Ramesh Sitaraman, The power of two random choices: A survey of techniques and results, in: Handbook of
Randomized Computing, 2000.

[10] Michael Mitzenmacher, Balaji Prabhakar, Devarat Shah, Load balancing with memory, in: Proc. of the 43rd Annual IEEE Symposium on Foundations
of Computer Science, FOCS, 2002, pp. 799–808.

[11] Peter Sanders, On the competitive analysis of randomized static load balancing, in: Proceedings of the first Workshop on Randomized Parallel
Algorithms, RANDOM, 1996.

[12] Berthold Vöcking, How asymmetry helps load balancing, Journal of the ACM 50 (4) (2003) 568–589.

	On weighted balls-into-bins games
	Introduction
	Known results
	Model and definitions
	New results

	Majorisation and T-transformations
	Weighted Single-choice Games
	Weighted multiple-choice games
	Large number of balls
	Majorisation Order for arbitrary values of m
	Simulation results

	References

