Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 262 (2001) 415-435

www.elsevier.com/locate/tcs

Parallel algorithms for red—black trees ™

Heejin Park, Kunsoo Park *

Department of Computer Engineering, Seoul National University, Seoul 151-742, South Korea

Received November 1996; revised March 2000; accepted June 2000
Communicated by A. Apostolico

Abstract

We present parallel algorithms for the following four operations on red-black trees: construc-
tion, search, insertion, and deletion. Our parallel algorithm for constructing a red—black tree from
a sorted list of n items runs in O(1) time with n processors on the CRCW PRAM and runs in
O(loglogn) time with n/loglogn processors on the EREW PRAM. Our construction algorithm
does not require the assumptions that previous construction algorithms used. Each of our parallel
algorithms for search, insertion, and deletion in red-black trees runs in O(logn + logk) time
with &k processors on the EREW PRAM, where £ is the number of unsorted items to search for,
insert, or delete and » is the number of nodes in a red-black tree. (© 2001 Elsevier Science
B.V. All rights reserved.

Keywords: Red-black trees; Balanced search trees; Parallel algorithms; Dictionary operations

1. Introduction

The red-black tree is a balanced binary search tree whose height is O(log n) and
dictionary operations such as search, insertion, and deletion are performed in O(log n)
time in sequential computation, where # is the number of nodes in the red—black tree.
Bayer [2] invented “symmetric binary B-trees” and Guibas and Sedgewick [7] called
them “red-black trees”.

Another well-known balanced search tree is the 2-3 tree [1], which also has height
O(log n) and supports dictionary operations in O(log) time. However, there are some
important differences between the 2-3 tree and the red-black tree. An internal node
of the 2-3 tree has 2 or 3 children, while an internal node of the red-black tree has

* This work was supported by the Brain Korea 21 Project.
* Corresponding author. Fax: 00-82-2-886-7589.
E-mail address: kpark@theory.snu.ac.kr (K. Park).

0304-3975/01/$ - see front matter (© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304-3975(00)00287-5

416 H. Park, K. Park | Theoretical Computer Science 262 (2001) 415435

2 children. In the 2-3 tree, items are stored in the leaves, while items are stored in
internal nodes in the red-black tree. The leaves of the 2-3 tree have the same depth,
but the leaves of the red-black tree may not.

In this paper we consider the following four operations on red—black trees: construc-
tion of a red-black tree from a sorted list of n items, search for & unsorted items in a
red-black tree, insertion of & unsorted items into a red-black tree, and deletion of &
unsorted items from a red-black tree. Let n be the number of nodes in the red-black
tree in each of search, insertion, and deletion.

Some parallel algorithms have been developed for the above four operations on bal-
anced search trees. Moitra and Iyengar [9, 10] gave a parallel algorithm for constructing
a balanced binary search tree of minimum height, which runs in O(1) time with » pro-
cessors on the EREW PRAM. Wang and Chen [15] gave two parallel algorithms for
constructing the 2-3 tree. One runs in O(1) time with n processors on the CREW
PRAM, and the other runs in O(log log n) time with n/log log n processors on the
EREW PRAM. However, those algorithms in [9, 10, 15] rely on assumptions that are
not easy to satisfy. Moitra and Iyengar assumed that the depth of each node is known
in advance and Wang and Chen assumed that |log, | and |log;i| are computed in
O(1) time by a single processor. Paul et al. [11] gave parallel algorithms for search, in-
sertion, and deletion on the 2-3 tree. Each of these algorithms runs in O(log n+log k)
time with k processors on the EREW PRAM.

We present parallel algorithms for the four operations on the red-black tree. Our
construction algorithm runs in O(1) time with n processors on the CRCW PRAM and
in O(log log n) time with n/log log n processors on the EREW PRAM. We do not
assume that the depth of each node is known in advance or that |log,i| is computed
in O(1) time by a single processor (|log;i| is not relevant to the construction of the
red-black tree).

Our parallel algorithms for search, insertion, and deletion on the red—black tree run in
O(log n+log k) time with k processors on the EREW PRAM. The time and processor
complexities of our algorithms are the same as those of Paul et al. [11] for the 2-3
tree. However, designing parallel algorithms for insertion and deletion on the red—black
tree is harder than that on the 2-3 tree. In the 2-3 tree, all items are stored in the
leaves and the leaves have the same depth, i.e., all insertions or deletions of items
occur only in the bottom level of the 2-3 tree. Hence, after some items are inserted
or deleted, rebalancing can be done level by level from bottom to top of the 2-3 tree.
In the red-black tree, however, there are two major difficulties:

1. The leaves of the red—black tree may not have the same depth. To rebalance from
bottom to top after some items are inserted (resp. deleted), we introduce itree(i)
(resp. dtree(i)) which is a generalization of the red-black tree for parallel insertion
(resp. deletion).

2. In the red-black tree, the items are stored in internal nodes, i.e., deletions of items
can occur in any place of the red—black tree, which makes parallel deletion particu-
larly harder. To overcome this, we find the predecessors of the items to be deleted

H. Park, K. Park /[Theoretical Computer Science 262 (2001) 415435 417

in O(1) time in each of O(log k) iterations of parallel deletion, and swap the items
to be deleted with the items in the predecessors.

This paper is organized as follows. In Section 2, we give some notations and
definitions for red-black trees. We describe our parallel algorithms for construction,
search, insertion, and deletion in Sections 3, 4, 5, and 6, respectively. We conclude in
Section 7.

2. Preliminaries

Our model of computation is the parallel random-access machine (PRAM), which
is a shared-memory model of parallel computation that consists of a collection of
identical processors and a shared memory [8]. Each processor is a RAM working syn-
chronously and communicating via the shared memory. The exclusive-read—exclusive-
write (EREW) PRAM does not allow concurrent reads or concurrent writes to a
memory location. The concurrent-read—exclusive-write (CREW) PRAM allows only
concurrent reads to a memory location. The concurrent-read—concurrent-write (CRCW)
PRAM allows both concurrent reads and concurrent writes to a memory location, and
it has several variants depending on how concurrent writes are handled. We use the
weakest version (called common in [6]), in which the concurrent writes are allowed
only when all processors are attempting to write the same value.

We first describe the input for each of the four operations. For construction, let
ai,...,a, be the given sorted list of items and let p,..., p, be the processors. For
search, insertion, and deletion, we first sort the given k items by Cole’s parallel merge-
sort in O(log k) time with & processors on the EREW PRAM ([3], and let ay,...,a; be
the sorted items from smallest to largest and py,..., py the processors. For simplicity,
we assume that no two items are the same.

We give some notations and definitions. Let root(T) denote the root node of a red—
black tree T and item(x) denote the item stored in node x. Let p(x) denote the parent
of node x and p"*'(x) the parent of p"(x), n>1. Let rchild(x) denote the right child
of node x and /child(x) the left child of x. The successor of node x is the node with
the smallest item larger than item(x). The predecessor of node x is the node with the
largest item smaller than ifem(x). Each node x has a space for its item, a bit for its
color (red or black), and three pointers to p(x), Ichild(x), and rchild(x). If a node
does not have a parent or a child, nil is stored in the corresponding pointer. We will
regard nil as a pointer to an external node (leaf) and the nodes holding items as
internal nodes (Fig. 2).

A red-black tree is a binary search tree satisfying the following red-black pro-
perties [5]:

1. Every node is either red or black.
2. Every external node (nil) is black.
3. If a node is red, then both its children are black.

418 H. Park, K. Park | Theoretical Computer Science 262 (2001) 415435

\@ o (b)
< T %

Single rotation

Double rotation

Fig. 1. Rotations. A symmetric variant for double rotation is not shown.

4. Every simple path from a node to a descendant leaf contains the same number of
black nodes.

The red-black properties can be rewritten using nonnegative ranks instead of red and
black colors [14]:

(a) If x is any node with a parent, rank(x) <rank(p(x))<rank(x)+ 1.
(b) If x is any node with a grandparent, rank(x)<rank(p?(x)).
(c) If x is an external node, rank(x)=0 and rank(p(x))=1 if x has a parent.

The above conditions (a)—(c) are called balance conditions. The rank of node x corre-
sponds to the number of black nodes in any simple path from x to a descendant leaf.
Hence, rank(p(x))=rank(x) + 1 if x is black and rank(p(x))=rank(x) otherwise.
Note that rank(x) need not be stored in x. We will use balance conditions rather than
red—black properties because balance conditions are more convenient in describing and
proving our algorithms.

The atomic operations used for rebalancing red—black trees are promotion, demotion,
single rotation, and double rotation [14]. A promotion (resp. demotion) of a node is
to increase (resp. decrease) the rank of the node by 1. A single rotation and a double
rotation are shown in Fig. 1. Each of these atomic operations takes O(1) time.

3. Construction

In this section we give a parallel algorithm for constructing a red-black tree from
a sorted list of n items, which runs in O(1) time with n processors on the CRCW

H. Park, K. Park /[Theoretical Computer Science 262 (2001) 415435 419

12(3) +2)

2(4)

10(6) 14(7) 2(4) 8(6) 10(7)
1(8) 5(10) 9(12) 13(14) / / / /
: 3(9) :mn f\:(w) f\l.sus) I(SKM) ‘

(a) 15 nodes (b) 10 nodes

Fig. 2. Internal nodes are represented by circles and external nodes by rectangles. Dark circles (resp. rectan-
gles) are black internal (resp. external) nodes, and white circles are red internal nodes. The number in the
parentheses by a node is the index of the processor that creates the node. The number outside the parentheses
is the index of the item stored in the node.

PRAM and in O(log log n) time with n/log log n processors on the EREW PRAM.
We first describe the algorithm on the CRCW PRAM, and then on the EREW PRAM.

Our parallel construction algorithm on the CRCW PRAM is divided into three parts:
(1) build an empty binary tree; (2) store the n items into internal nodes; (3) color
each node red or black. The only difficult part in this construction is part (2). In our
algorithm, processors are assigned to internal nodes in breadth-first order (Fig. 2), and
each processor finds the item to be stored in its node. In Moitra and Iyengar’s algorithm
[9, 10], the ith processor is assigned to the ith item and each processor computes the
destination node of its item:

1. Build an empty binary tree. Processor p;, 1<<i<n, creates an internal node x; and
two edges between x; and its children xp; and xp;41. Note that if 2i>n (resp. 2i +
1>n), its left (resp. right) child is an external node. Let D(i) be the depth of x;.
Then D(i) = |log i].

2. Processor p;, 1<i<n, finds the item to be stored in internal node x; and stores it
in x; as follows. We first consider the case of a complete binary tree and then the
general case:

o If there are n=27 — 1 items for some ¢, we build a complete binary tree. For
example, the red-black tree constructed from 15 items is shown in Fig. 2(a). We
exploit the fact that the items to be stored in internal nodes of a same depth
form an arithmetic progression. See Fig. 2(a). Let CI(i) be the index of the
item to be stored in x; and J(i) the number of nodes whose depths are D(7)
and whose items are smaller than the item to be stored in x;. According to
[9], J(i)=i —2P® and CI(i)=(2J(i) + 1)2l°g 2] ;2P For example, if i=6 in
Fig. 2(a), then D(i)=2, J(i)=2, and CI(i)=10. Processor p; stores acy; in
Xi.

e If there are n # 27 — 1 items for any ¢, we build a binary tree with minimum
height such that the lengths of the longest path and the shortest path from the
root to external nodes differ by 1, and that the deepest internal nodes are located

420 H. Park, K. Park | Theoretical Computer Science 262 (2001) 415435

at the leftmost side of the tree as in Fig. 2(b). We first define CI(i) and CL(7) in
the complete binary search tree 77 whose depth is the same as the empty binary
tree for n. Let x] be the ith internal node when we visit 7’ in breadth-first order.
Let CI(i) be the index of the item to be stored in x!, and CL(i) the number of
the deepest internal nodes in 7’ whose items are smaller than the item stored
in x{. Let L(n) be the number of the deepest internal nodes in the empty binary
tree for n, and /(i) the index of the item to be stored in x;. According to [10],
CL(i) = | CI(i)/2], L(n)=n+ 1 —2l°e "] "and I(i) = min(CI(i), CI(i) — CL(i) +
L(n)). For example, if i =6 in Fig. 2(b), then CI(i)=10,CL(i)=5,L(n)=3, and
I(i)=8. Processor p; stores aj in x;.
3. Color the internal nodes. If n =27 — 1, every processor colors its node black. Other-
wise, processors whose nodes are the deepest internal nodes (i.e., 2L0g il =2llog 1y
color their nodes red and other processors color their nodes black.

It is easy to see that all steps above take O(1) time except for computation of 212 1]
and 2U°2] For these values, we initialize an auxiliary array P such that P[i]=2ll°g]
for 1 <i<n. In the appendix, we will show how to compute array P in O(1) time with
n CRCW processors. Hence, we can construct a red—black tree from a sorted list of n
items in O(1) time with n processors on the CRCW PRAM.

Constructing the red—black tree on the EREW PRAM is similar to that on the CRCW
PRAM except that we initialize an additional array N and that each processor constructs
O(log log n) internal nodes:

e Array N is initialized such that N[i]=2l""¢") for 1 <i<n. This array is needed to
avoid read conflicts on the EREW PRAM. In the appendix we will show how to
compute arrays P and N in O(log log n) time using n/log log n EREW processors.

e Each processor p;, 1<i<|n/|log log n]|, constructs O(log log n) internal nodes.
Since processor p; can build a node #;, store an appropriate item in it, and color it
in O(1) time using P[j] and N[j], a processor can construct O(log log n) nodes in
O(log log n) time.

Hence, we construct a red-black tree from a sorted list of » items in O(log log n) time
with n/log log n processors.

Theorem 1. Parallel construction of a red-black tree from a sorted list of n items can
be done in O(1) time with n processors on the CRCW PRAM and in O(log log n)
time with n/log log n processors on the EREW PRAM.

4. Search

Given an item « and a red-black tree 7 with n nodes, the sequential search algorithm
[5, 14] finds out and returns a node of T containing a in O(log n) time. If such a node
is not in 7, it returns an external node where item a should be inserted. In parallel

H. Park, K. Park /[Theoretical Computer Science 262 (2001) 415435 421

search, given k items and a red-black tree 7, we return the nodes each of which is
the result of sequential search of an item.

Parallel search is easy on the CREW PRAM. Each processor p;, 1<\i<k, searches
for item a; sequentially. Since no write operations are involved, this algorithm takes
O(log n) time on the CREW PRAM. On the EREW PRAM, however, it may cause
read conflicts.

On the EREW PRAM, we describe a parallel search algorithm that is similar to the
Paul et al. [11] for 2-3 trees. It requires O(log n+log k) time with k processors. Recall
that ay,...,a; are the sorted items from smallest to largest. Block b(i,j), 1 <i<j<k,
denotes the sorted list of elements a;,a;.1,...,a;. For block b(i, j), only processor p; is
active among processors pj, pi+i,..., p; and it maintains b(i, j). Block b(i, j) is smaller
(resp. larger) than b(k,1) if j<k (resp. [<i). Block b(i,j) is a subblock of b(k,!) if
k<i<j<I. We say that block b(i, ;) hits an internal node x if a; <item(x)<a;. The
main part of parallel search proceeds in stages, which are repeated until we find all
search results of the items. Initially (stage 0), block b(1,k) is at root(T). In a stage,
each block either traverses down the tree (i.e., moves from a node to its child) or
it is halved. The invariant of a stage is that the search results of all items in each
block are in the subtree rooted at the node where the block is. The following stage is
performed simultaneously by each active processor. We denote by x the node where a
block b(i,) is.

e If x is an internal node, there are three cases:
— item(x) <a;: Processor p; sets x as rchild(x) (i.e., b(i,j) goes down to rchild(x)).
— item(x)>a;: p; sets x as [child(x).
— a;<item(x)<a; (i.e., b(i,j) hits x): If i=j, p; returns x. Otherwise, p; splits
b(i,j) into b(i, |(i + j)/2]) and b(|(i + j)/2] + 1,j). Processor p; keeps
b(i, | (i +j)/2]) and activates p|jy2 41 to maintain b(|(i + j)/2] + 1,/).
e If x is an external node, there are two cases:
— p; has one item in its block b(7,j): p; returns x.
— p; has two or more items in b(i,j): p; divide b(i,j) into b(i, |(i + j)/2]) and
b([(i+j)/2] + 1,k). Processor p; keeps b(i, [(i +/)/2]) and activates p|()2+1
to maintain b(|(i + j)/2] + 1,J).

We will show that the above algorithm can be performed on the EREW PRAM by
showing that at most 4 processors access the same item at the same time. We say that
b(i, |(i+7)/2]) and b(|(i+/)/2] 4+ 1,j) are generated at x in stage [>1 if b(i,) splits
at x in stage /. A block at x in stage / was either generated at x in stage / — 1 or it
arrived at x in stage / — 1. Since at most one block can hit x at the same time, at most
two blocks were generated at x in stage / — 1. The following lemma shows that at
most two blocks arrive at x in a stage, which means that at most 4 processors access
the same item at the same time.

Lemma 1. At most two blocks arrive at a node x in a stage. If two blocks arrive at
x in stage I, one of the blocks is smaller and the other is larger than all the blocks

422 H. Park, K. Park | Theoretical Computer Science 262 (2001) 415435

that arrived at x in stages 1 to | — 1. If one block arrives at node x in stage I, the
block is either smaller or larger than all the blocks that arrived at x in stages 1 to
I—1.

Proof. We prove this lemma by induction on the depths of nodes in the tree. Since
b(1,k) is at root(T) in stage 0 and no blocks arrive at root(T') in other stages, root(T')
satisfies the lemma.

Assume that all nodes of depth m satisfy the lemma. Let x be a node of depth m+1.
A block that arrives at x in stage / either arrived at p(x) or was generated at p(x) in
stage / — 1. We show that x satisfies the lemma by the following two cases:

1. No blocks were generated at p(x) in stage [— 1: All blocks that arrive at x in
stage / arrived at p(x) in stage / — 1. Since at most two blocks could arrive at
p(x) in stage / — 1, at most two blocks can arrive at x in stage /. Consider the case
that two blocks, b; and b,, arrived at p(x) in stage / — 1. (The case of one block
is similar.) By inductive hypothesis, one of the blocks (say, b;) is smaller and the
other (b,) is larger than the blocks that arrived at p(x) in stages 1 to / — 2. Since
the blocks that arrived at x in stages 1 to / — 1 are subblocks of the blocks that
arrived at p(x) in stages 1 to / — 2, by is smaller and b, is larger than the blocks
that arrived at x in stages 1 to / — 1.

2. A block b(i, j) hit p(x) and two blocks b(i, |(i+)/2]|) and b(|(i+/)/2]+1,)) were
generated in stage | —1: Consider the case that x is Ichild(p(x)). (The other case is
similar.) Block b(|(i+/)/2]+1,/) cannot go down to x because item(x) <a;. Blocks
smaller than b(|(i+/)/2]+1,j) may go down to x in stage /. If b(i, | (i+/)/2]) does
not hit p(x), b(i, | (i +)/2]) arrives at x in stage . Block b(i, | (i +)/2]) is larger
than the blocks that arrived at x in stages 1 to / — 1 because b(|(i +j)/2| + 1,))
and any block larger than b(|(i + j)/2| + 1,/) cannot go down to x. By inductive
hypothesis, there is at most one block (say, b) such that b arrived at p(x) in stage
! —1 and b is smaller than the blocks that arrived at p(x) in stages 1 to / —2 (and
thus smaller than b(|(i + j)/2] + 1,/)). Block b arrives at x in stage / and it is
smaller than the blocks that arrived at x in stages 1 to / — 1, which are subblocks
of the blocks that arrived at p(x) in stages 1 to [—2. [J

Now, we compute the running time of the above algorithm. It is easy to see that
a stage takes O(1) time. In one stage, a block either traverses down the tree or it is
halved. Since the depth of a tree is O(log #) and there are k items, the total time is
O(log n + log k). Therefore, we get the following theorem.

Theorem 2. Parallel search for k unsorted items in a red-black tree with n nodes
can be done in O(log n + log k) time with k processors on the EREW PRAM.

H. Park, K. Park /[Theoretical Computer Science 262 (2001) 415435 423

1
1
1
1 2\ 1 12
R SEEEE TR
lalad (} a3 {}@8ad () ./ la,a5} {a7}

4 p7
pl p3 p8 {al} peop {a8}

j 2 p8
(a) After stage 2 (b) After stage 3

Fig. 3. The number by an internal node is its rank. Shaded nodes are illegal nodes: (a) after stage 2, (b)
after stage 3.

5. Insertion

We describe an EREW PRAM algorithm that inserts a set of £ items into a red—
black tree consisting of #n nodes in O(log n + log k) time with & processors. A node is
legal if it satisfies all the balance conditions (Section 2), and illegal otherwise. We say
that a number of nodes are incomparable if a node is not an ancestor or a descendant
of any other node. An itree(i) is a generalization of the red—black tree such that some
nodes of rank i may be illegal. The conditions for itree(i) are as follows:

(1) All the nodes except some nodes of rank i are legal.

(2) Some nodes of rank i may be illegal. An illegal node x satisfies rank(x)=rank
(p(x))=rank(p?*(x))=i and balance condition (c). The color of an illegal node
is red.

(3) The illegal nodes are incomparable.

We first give an algorithm running in O(log n log k) time and then modify it so
that it runs in O(log n + log k) time. The O(log n log k)-time algorithm consists of
four stages: (1) search for k items in 7; (2) make a block for each external node that
some items reached; (3) insert the center item of each block into T; (4) restore T
to a red-black tree. Stages 1 and 2 are performed only once but stages 3 and 4 are
repeated O(log k) times.

Stage 1: Perform parallel search with k£ items in the red-black tree 7. Using the
parallel search algorithm in the previous section with k£ sorted items aj,...,a;, we find
k internal or external nodes in O(log n + log k) time. Let ¢; be the node where a;
reaches. Note that multiple items may reach the same external node, e.g., ay,as,as,
and a; in Fig. 3(a).

Stage 2: For each external node, we make a block consisting of the items that
reached the node (Fig. 3(a)). Since the items that reached the same external node are
consecutive items, we can represent those items by a block. For example, we represent

424 H. Park, K. Park | Theoretical Computer Science 262 (2001) 415435

as,as,a¢ and a; as a block b(4,7). To make a block, we find the smallest and the
largest items for each external node as follows:

1. Compute array FB (resp. LB) such that FB[i] (resp. LB[i]), 1 <i<k, is 1 if and
only if a; is the smallest (resp. largest) item in the external node a; reached. First,
pi, 1<i<k, initialize FB[i] as 0. Then, p; writes 1 in FB[1] if e; is an external
node and p;, 2<i<k, writes 1 in FB[i] if ¢; is an external node and ¢;_; # e;.
Array LB is computed similarly.

2. Compute array M such that M[i], 1<i<k, holds the index of the largest item of
the ith block. Initially, M[i], 1<i<k, is 0. Let psl(i)=LB[1] + --- + LB[i]. If
LB[i]=1, p; writes i in M[ps1(i)]. In Fig. 3(a), M[3]=7 since a; is the largest
item of the third block.

3. If FB[i]=1, p; makes a block b(i, M[psf(i)]), where psf(i)=FB[1]+ - - -+ FB[i].
In Fig. 3(a), ps makes b(4,7) since psf[4]=3 and M[3]=7. Computing psl(i)
and psf(i) requires O(log k) time by prefix-sum operations.

We will repeat stages 3 and 4 until no blocks are left at the external nodes. From
now on, only processors whose items are the smallest in their blocks are active.

Stage 3: Insert the center item of each block into 7. Let b(i,[;) denote the block
at external node e; and let ¢; = [(i 4+ /;)/2]. Processor p; creates an internal node x of
rank 1 (i.e., a red node), stores a., into x, and makes x a child of p(e;) instead of e;.
If i<c¢;, p;i moves b(i,c; — 1) to Ichild(x) and activates p., to maintain a.. If ¢; </,
pi moves b(c; + 1,1;) to rchild(x) and activates p.+; to maintain b(c; + 1,7;). See
Fig. 3(b).

We refer to the operations performed in stage 3 as an attachment. 1t is easy to see
that an attachment is done in O(1) time. A tree after an attachment is depicted in
Fig. 3(b), where all illegal nodes are of rank 1. Lemma 2 shows that it is generally
true.

Lemma 2. After an attachment, T is a red-black tree or an itree(1).

Proof. If no illegal nodes exist after an attachment, 7 is a red—black tree. Otherwise, T
is an itree(1) as follows. We first show that T satisfies condition (1) for itree(1). Every
node x which was in 7 before an attachment remains legal after an attachment because
rank(x), rank(p(x)), and rank(p>(x)) are not changed by an attachment. Hence, illegal
nodes, if any, are some of the internal nodes of rank 1 created by an attachment.

Let Y denote the set of all illegal nodes and y be an element of Y (i.e., rank(y)=1).
It is easy to see that 7' satisfies condition (3) for itree(1) and balance condition (c).
Since p(y) was the parent of an external node before an attachment, rank(p(y))=1.
Since rank(p(y))=1 and p(y) is legal, rank(p*(y))=1 or 2. Since y is illegal,
rank(p*(y)) =1, i.e., y satisfies condition (2) for itree(1). [

Stage 4: Restore T to a red—black tree. We show how to convert an itree(i) to an
itree(i+1) in O(1) time, which implies that an itree(1) can be restored to a red—black

H. Park, K. Park /[Theoretical Computer Science 262 (2001) 415435 425

tree in O(log n) time. To convert an itree(i) to an itree(i + 1), we apply rebalancing
steps to all subtrees rooted at the grandparents of illegal nodes. We first show that the
grandparents of illegal nodes are black nodes of the same rank.

Lemma 3. In an itree(i), i=1, the grandparents of illegal nodes are black nodes of
rank i.

Proof. Let x be an illegal node of rank i. The rank of p?(x) is i by definition of
itree(i) and the rank of p3(x) is i + 1 because p(x) is legal. Hence, p*(x) is a black
node of rank i. [

By Lemma 3, the grandparents of illegal nodes are incomparable. Hence, we can
apply the rebalancing steps concurrently to all subtrees rooted at the grandparents of
illegal nodes in an itree(i).

We now describe a rebalancing step in parallel insertion. Let x be a grandparent of
some illegal nodes. The rebalancing step has several cases depending on the number of
illegal nodes in the subtree rooted at x, and it is performed by the leftmost processor
(the processor whose item is the smallest in the subtree).

Rebalancing step (Fig. 4)
Case 1: One node is illegal:
1.1. Two children of x are of rank i: Promote x.
1.2. One child of x is of rank i and the other is of rank i — 1: Perform a single or
double rotation.
Case 2: Two nodes are illegal:
2.1. Two illegal nodes have the same parent: If the sibling of the parent is of rank
i, promote x; otherwise (the sibling of the parent is of rank i — 1), perform a
rotation and promote x.
2.2. Two nodes have different parents: Promote x.
Case 3: Three or four nodes are illegal: Promote x.

Let RBI(i) denote a concurrent application of rebalancing steps to all subtrees rooted
at the grandparents of illegal nodes in an itree(i). Lemma 4 shows that RBI(i) con-
verts an ifree(i) to an itree(i + 1) or a red—black tree. In stage 4, we perform RBI(1),
RBI(2), ... until T becomes a red-black tree.

Lemma 4. If we perform RBI(i) in T which is an itree(i), T becomes a red-black
tree or an itree(i + 1).

Proof. If no illegal nodes exist in T after RBI(i), T is a red-black tree. Otherwise, T
is an itree(i+ 1) as follows. Since all illegal nodes are of rank i+ 1 and incomparable
after RBI(i), T satisfies conditions (1) and (3) for itree(i + 1). As in the proof of
Lemma 2, one can show that T satisfies condition (2) for itree(i +1). O

426 H. Park, K. Park | Theoretical Computer Science 262 (2001) 415435

(b) The sibling of the parent is of rank i-/

Case 2.1

Case 2.2 Case 3

Fig. 4. The rebalancing step in parallel insertion. Shaded nodes in the subtree to the left of an arrow are
illegal nodes and those to the right may be illegal according to the ranks of their grandparents. Symmetric
variants are not shown.

We now consider the time complexity of parallel insertion. In each iteration of stages
3 and 4, blocks with one item are removed and blocks with two or more items are
halved. Thus, no blocks are left after O(log k) iterations of stages 3—4. Since stage 3
takes O(1) time and stage 4 takes O(log n) time, a simple implementation of stages 3
and 4 requires O(log n log k) time.

We can apply pipelining to stages 3 and 4 to get the time complexity of O(log n +
log k). Stage 3 and each RBI(i) are performed in O(1) time. RBI(i) may access and
update the nodes of rank i, and the edges between nodes of ranks i — 1 and 7, of
ranks i and i, and of ranks i and i 4+ 1. Thus, back-to-back executions of RBI(i)’s
may cause read/write conflicts. To avoid read/write conflicts, we start stage 3 of the
(j + 1)th iteration at the beginning of RBI(2) of the jth iteration so that RBI(1) of the
(j + 1)st iteration and RBI(3) of the jth iteration are performed concurrently. Since
the number of pipeline stages is O(log n) and stage 3 is performed O(log k) times,
the time complexity of the pipelined algorithm is O(log n + log k). Therefore, we get
the following theorem.

H. Park, K. Park /[Theoretical Computer Science 262 (2001) 415435 427

Theorem 3. Parallel insertion of k unsorted items into a red-black tree with n nodes
can be done in O(log n + log k) time with k processors on the EREW PRAM.

6. Deletion

We describe an EREW PRAM algorithm that deletes a set of & items from a red—
black tree consisting of # nodes in O(log n+log k) time with k processors. Let succ(x)
denote the successor of node x and pred(x) the predecessor of x. A node is deletable if
at least one of its children is an external node and undeletable otherwise. A deletable
node is of rank 1 by its definition. A dtree(i) is a generalization of the red-black
tree such that some nodes of rank i may be illegal. The conditions for dtree(i) are as
follows:

(1) All the nodes except some nodes of rank i are legal.

(2) Some nodes of rank i may be illegal. An illegal node x satisfies rank(x) + 2=
rank(p(x)). If x is an external node, x is of rank 0. The color of an illegal node
is undefined.

(3) The illegal nodes are incomparable.

As in parallel insertion, we first give an algorithm running in O(log nlogk) time
with & processors and then modify it so that it runs in O(log n + log k) time. The
O(log n log k)-time algorithm consists of four stages: (1) search for & items in 7 and
mark the items to be deleted; (2) exchange the marked items in undeletable nodes with
the unmarked items in their predecessors; (3) remove all deletable nodes with marked
items from 7; (4) restore T to a red-black tree. Stage 1 is performed only once but
the remaining stages are repeated O(log k) times.

Stage 1: Perform parallel search with & items in the red—black tree 7, and mark the
items. A node with a marked item will be called a marked node.

Stage 2: For each marked undeletable node x, we find pred(x) and exchange item(x)
with item(pred(x)) if pred(x) is unmarked. If pred(x) is marked, we do nothing on
x in this stage. Since x is undeletable, pred(x) is in the left subtree of x and pred(x)
is deletable. Since processors traverse down the tree concurrently starting from distinct
nodes in finding their predecessors, no read/write conflicts occur. Note that after stage
2, the number of marked deletable nodes is at least the number of marked undeletable
nodes because every marked undeletable node has a marked deletable predecessor.

Stage 3: Remove all marked deletable nodes from 7. Since deletable nodes are
of rank 1, they are in the subtrees rooted at black nodes of rank 1. In each subtree
rooted at a black node of rank 1 that contains marked deletable nodes, the leftmost
processor removes the marked deletable nodes and creates a new subtree consisting of
the remaining nodes (Fig. 5). Since black nodes of rank 1 are incomparable, we can
remove all marked deletable nodes concurrently.

We show that 7" becomes a dtree(0) after we remove all marked deletable nodes
from 7. Fig. 5 shows all kinds of new subtrees created. If one or two internal nodes

428 H. Park, K. Park | Theoretical Computer Science 262 (2001) 415435

e S e

TR

After ./O}.}\. ﬁn A -

e

Fig. 5. Removing marked deletable nodes.Deletable nodes are indicated by ‘D’. If a subtree contains one
marked deletable node, the resulting subtree is pointed to by a dashed arrow. If a subtree contains two
marked deletable nodes, the resulting subtree is pointed to by a solid arrow.

are left in a subtree after we remove marked deletable nodes, no illegal nodes are
generated. Otherwise (no internal nodes are left), an empty subtree (an external node)
is created and the external node is illegal because it is of rank 0 and its parent (which
was the parent of a black node of rank 1) is of rank 2. Hence, T satisfies condition
(2) for dtree(0). Since all illegal nodes are of rank 0 and incomparable, conditions (1)
and (3) for dtree(0) are satisfied.

Stage 4: Restore T to a red-black tree. We show how to convert a dtree(i) to a
dtree(i+1) in O(1) time, which implies that a dtree(0) can be restored to a red-black
tree in O(logn) time. To convert a dtree(i) to a dtree(i + 1), we apply rebalancing
steps concurrently first to all subtrees rooted at red nodes of rank i + 2 and then to all
subtrees rooted at black nodes of rank i + 2. Since nodes of the same color and the
same rank are incomparable, we can apply rebalancing steps concurrently.

We describe a rebalancing step in parallel deletion. Let x be a parent of some illegal
nodes. The rebalancing step has several cases depending on the number of illegal
children of x, and it is performed by the leftmost processor.

Rebalancing step (Fig. 6)
Case 1: One node is illegal:
1.1. The legal child s of x is of rank i 4 1:
1.1a. Both children of s are of rank i: Demote x.
1.1b. The child of s farthest from the illegal node is of rank i + 1. Perform a
single rotation.
I.1c. The child of s farthest from the illegal node is of rank i and the other
child of s is of rank i + 1: Perform a double rotation.
1.2. The legal child of x is of rank i + 2: Perform a single rotation and proceed as
in case 1.1.
Case 2: Two nodes are illegal: Demote x.

H. Park, K. Park /[Theoretical Computer Science 262 (2001) 415435 429

#
i+2
3
i+ i+1
ii(i+l) i i
Case 1.1a Case 1.1b
. —
i+2 i+2 i+2
* . .
i+1 i+1 i i+2 i+2 i+]
i i+1
i ioq i i+1 i+]
Case 1.1c Case 1.2

Case 2

Fig. 6. The rebalancing step in parallel deletion. Heavily shaded nodes to the left of an arrow are illegal
nodes and those to the right may be illegal according to the ranks of their parents. Lightly shaded nodes
are red or black. Nodes whose ranks are changed from i + 1 to i + 2 (resp. from i + 2 to i + 1) have #’s
(resp. *’s). Symmetric variants are not shown.

Let RBD(i) denote two concurrent applications of rebalancing steps such that the first
is to all subtrees rooted at red nodes of rank i + 2 that have illegal children and the
second is to all subtrees rooted at black nodes of rank i+ 2 that have illegal children.
Lemma 5 shows that RBD(i) converts a dtree(i) to a dtree(i + 1) or a red—black tree.
In stage 4, we perform RBD(0), RBD(1), ... until T becomes a red-black tree.

Lemma 5. If we perform RBD(i) in T which is a dtree(i), T becomes a red—black
tree or a dtree(i + 1).

Proof. In a rebalancing step, cases 1.1b, 1.1c, and 1.2 do not generate any new illegal
nodes. The demoted nodes in cases 1.1a and 2 become illegal if they were black
before the rebalancing step. Thus, the first concurrent application of rebalancing steps
of RBD(i) generates no new illegal nodes and the second one may generate illegal
nodes of rank i 4+ 1. If no illegal nodes are generated, 7" becomes a red—black tree.
Otherwise, one can easily show that T is a dtree(i + 1) from the fact that all illegal
nodes are of rank 7 4+ 1 and incomparable, and their parents are of rank i +3. [J

430 H. Park, K. Park | Theoretical Computer Science 262 (2001) 415435

We now consider the time complexity of the above algorithm. In stage 1, the par-
allel search takes O(log n + log k) time. In stage 2, finding predecessors of marked
undeletable nodes takes O(log n) time. It is easy to see that stage 3 takes O(1) time and
stage 4 takes O(log n) time. Since at least one half of marked items are removed in an
iteration of stages 2—4, stages 2—4 are repeated O(log k) times. Overall, O(log n log k)
time is required.

The above algorithm is hard to improve by applying pipelining because finding
predecessors in stage 2 is not easily divided into pipeline stages which should be
performed concurrently without read/write conflicts. Hence, we modify the above al-
gorithm so that finding predecessors takes O(1) time (except the first one in the first
iteration) and we apply pipelining to the modified algorithm to get the time complexity
of O(logn + logk).

Before describing the modified algorithm, we list some facts and lemmas on RBD(i).
Facts 1 and 2 follow immediately from the description of the rebalancing steps (Fig. 6).

Fact 1. RBD(i) accesses the nodes of rank i, i + 1, and i + 2, and edges between
nodes of rank i, i + 1, i+ 2, and i + 3.

Fact 2. RBD(i) may change a node of rank i+ 1 to a node of rank i+ 2 and a node
of rank i+ 2 to a node of rank i + 1.

Lemma 6. If rank(x)<2 for a node x in a dtree(0), rank(x)<3 in the dtree(2) which
is obtained by applying RBD(0) and RBD(1) to the dtree(0).

Proof. It follows from Fact 2. [

Lemma 7. A node x is deletable in a dtree(2) if and only if x is deletable in the
red-black tree obtained by applying RBD(2), RBD(3),... to the dtree(2).

Proof. Since RBD(i) for i =2 does not access the subtrees rooted at the nodes of rank
1 by Fact 1, a deletable node in dtree(2) is deletable in the red—black tree. By Fact 2,
a node whose rank was at least 2 in dtree(2) is still of rank at least 2 after RBD(i) for
i =2 is applied. Hence, an undeletable node in dtree(2) is undeletable in the red—black
tree. [J

We introduce procedure A4 that plays an important role in finding predecessors in
O(1) time. Let pred(x)*! denote the predecessor of pred'(x), i>1 and U(x) denote
predi(x) such that all pred*(x), k<i, are marked deletable nodes and pred'(x) is
not a marked deletable node. The input of procedure A4 is a marked deletable pred(x)
where x is a marked undeletable node. Since x is undeletable, the left subtree of x
is not empty, and thus it contains pred(x) and rchild(pred(x)) is an external node.
Procedure A4 returns U(x) if it is in the left subtree of x and a nil pointer otherwise.
We describe procedure 4 in the following. Note that procedure A accesses nodes of
rank at most 2 (Fig.7).

H. Park, K. Park /[Theoretical Computer Science 262 (2001) 415435 431

2
pred(x)) @ Ux) @2 lor2 x
U O\.l 1 pred(x) pred(x) 1 1 pred(x)
{ 1 1

Case 1.1 Case 1.2.1 Case 1.2.2 Case 2.1
2 U
lor Z\U(x) 10O U L NG
lor 2/ 1 @ pred(x) ./ 1@ pred(x)
VAN 1
||
Case 2.2.1 Case 2.2.2a Case 2.2.2b

Fig. 7. Dark circles are marked internal nodes and white circles are unmarked internal nodes. Shaded circles
are marked or unmarked internal nodes.

Procedure A.
Case 1: Ichild(pred(x)) is an internal node: Since pred(x) is of rank 1, so is Ichild
(pred(x)). Hence, Ichild(pred(x)) is deletable and Ichild(pred(x)) is pred?®
(x).
1.1. [child(pred(x)) is unmarked: Return Ichild(pred(x)) as U(x).
1.2. Ichild(pred(x)) is marked:
1.2.1. pred(x) is rchild(p(pred(x))): p(pred(x))is pred’(x). Since p(pred(x))
is of rank 2, it is undeletable. Return p(pred(x)) as U(x).
1.2.2. pred(x) is Ichild(p(pred(x))): p(pred(x)) is x, which means that U(x)
is not in the left subtree of x. Return a nil pointer.
Case 2: Ichild(pred(x)) is an external node:
2.1. pred(x) is Ichild(p(pred(x))): p(pred(x)) is x. Return a nil pointer.
2.2. pred(x) is rchild(p(pred(x))): p(pred(x)) is pred?(x).
2.2.1. The sibling of p(pred(x)) is an internal node: p(pred(x)) is undeletable.
Return p(pred(x)) as U(x).
2.2.2. The sibling of p(pred(x)) is an external node: p(pred(x)) is deletable.
2.2.2a. p(pred(x)) is unmarked: Return p(pred(x)) as U(x).
2.2.2b. p(pred(x)) is marked: If p(pred(x)) is rchild(p*(pred(x))), p*
(pred(x)) is pred’(x). Since p?(pred(x)) is undeletable, return
p*(pred(x)) as U(x); otherwise, return a nil pointer because
p*(pred(x)) is x.

Lemma 8. If U(x) is not in the left subtree of x, rank(x)<2.

432 H. Park, K. Park | Theoretical Computer Science 262 (2001) 415435
Proof. It follows from Cases 1.2.2, 2.1, and 2.2.2b. [

Now, we describe the modified algorithm. The first stage is performed only once
but the remaining stages are repeated O(logk) times.

Stage 1: Perform parallel search with £ items in 7, and mark the items. For each
marked undeletable node x, find pred(x) in O(logn) time.

Stage 2: For each marked undeletable node x, we exchange item(x) with item(pred
(x)) if pred(x) is unmarked. If pred(x) is marked, we perform procedure A with
pred(x). (Note that x is marked undeletable and pred(x) is marked deletable.) Then,
either we get U(x) or rank(x)<2 by Lemma 8. We need to perform procedure A
before stage 3 because once a marked pred(x) is removed in stage 3 we cannot find
U(x) from x in O(1) time. In a subtree rooted at a node of rank 2, there may be
several procedure A’s with distinct pred(x)’s. Since the number of procedure 4’s in
the subtree is constant, we perform the procedure A’s one by one in O(1) time.

Stage 3: Remove marked deletable nodes from 7" and perform RBD(0) and RBD(1)
in T.

Stage 4: For each marked undeletable node x, find pred(x) in O(1) time as follows.
Since x was marked undeletable in stage 2, either we have found U(x) or rank(x)<2
in stage 2. If we found U(x), pred(x) is U(x) because all marked deletable nodes
are removed in stage 3. Otherwise, we find pred(x) in the left subtree of x, which
requires O(1) time because rank(x)<3 by Lemma 6.

Stage 5: Restore T into a red-black tree by performing RBD(2), RBD(3),...in T.
Since the undeletable nodes in the red-black tree are the undeletable nodes in stage
4 by Lemma 7, all the marked undeletable nodes in the red-black tree know their
predecessors, which is necessary for stage 2 of the next iteration to start.

We now consider the time complexity of the modified algorithm. In stage 1, the
parallel search and finding predecessors can be performed in O(logn + logk) time. It
is easy to see that stages 2—4 take O(1) time and stage 5 takes O(logn) time. Since
stages 2—5 are repeated O(log k) times, the time complexity of this modified algorithm
is still O(lognlogk).

We pipeline stages 2—5 of the modified algorithm to get the time complexity of
O(logn + logk). We merge stages 2—4 and refer to them as SM. The pipeline stages
are SM and each RBD(i), i =2, which are performed in O(1) time. The pipeline stages
cannot be performed back-to-back because RBD(i) and RBD(i+1) cannot be performed
concurrently by Fact 1. We start SM of the (k + 1)th iteration at the beginning of
RBD(S) of the kth iteration. We first show that SM can be performed concurrently
with RBD(i), i =5. RBD(i), i=5, accesses nodes of rank at least 5 and edges between
the nodes of rank at least 5. Most operations in SM (procedure A, RBD(0), RBD(1),
and finding predecessors) do not access nodes of rank at least 5 and edges between
the nodes of rank at least 5. Only when we exchange items in stage 2, we may
access nodes of rank at least 5. But, in this case we access the items in the nodes
while RBD(i) accesses the ranks of the nodes. Hence, SM and RBD(i), i>=5, can be
performed concurrently without read/write conflicts. It follows from Fact 1 that RBD(i)

H. Park, K. Park /[Theoretical Computer Science 262 (2001) 415435 433

can be performed concurrently with RBD(i + j), j=4. Hence, if we start SM of the
(k + 1)st iteration at the beginning of RBD(5) of the kth iteration, read/write conflicts
are avoided. Since the number of pipeline stages is O(logn) and SM is performed
O(logk) times, the time complexity of the pipelined algorithm is O(logn + logk).
Therefore, we get the following theorem.

Theorem 4. Parallel deletion of k unsorted items from a red-black tree with n nodes
can be done in O(logn + logk) time with k processors on the EREW PRAM.

7. Conclusion

We have presented parallel algorithms for four operations on red-black trees which
are construction, search, insertion, and deletion. It takes O(1) time by n processors to
construct a red—black tree on the CRCW PRAM and O(loglogn) time by n/loglogn
processors on the EREW PRAM. Each of parallel search, insertion, and deletion takes
O(logn + log k) time by k processors on the EREW PRAM.

Appendix A. Initialization of arrays P and N

We initialize arrays P and N such that P[i]=2U¢/ and N[i]=2U¢" for all
1 <i<n. Since 21°¢i] is the largest power of two smaller than i, it can be obtained
from i by converting all 1 bits to 0 bits except the leftmost 1 bit in the bit repre-
sentation of i. We show how to compute array P in O(1) time with n processors on
the CRCW PRAM and how to compute arrays P and N in O(loglogn) time with
n/loglogn processors on the EREW PRAM.

A.l. CRCW PRAM

Integer |logi| and an entry P[i]=2l"¢) for some 1 <i<n can be computed in O(1)
time with logn processors as follows. Fich et al. [6] developed a method that finds the
location of the leftmost 1 in the bit representation of an integer i in O(1l) time with
logn processors on the CRCW PRAM. Finding the location of the leftmost 1 bit in
the bit representation of i means computing integer |logi|. Once the location of the
leftmost 1 bit of i is found, we can compute P[i] from i by converting all 1 bits to 0
bits except the leftmost 1 bit in O(1) time with logn processors.

If nlogn processors are available, all n entries of P are computed in O(1) time by
allocating logn processors to each entry. To reduce the number of processors from
nlogn to n, we first compute O(n/logn) entries and then compute other entries from
the computed entries. The following steps show how to compute array P in O(1) time
with n processors.

Step 1: Compute |logn].

434 H. Park, K. Park | Theoretical Computer Science 262 (2001) 415435

Step 2: Compute P[i] for all i’s that are multiples of |logn|. Processors from
DP(j—1)|logn]+1 10 Pjliogn| are allocated to the computation of P[j|logn]], where 1</ <
[/ log).

Step 3: Compute P[i] for all i’s that are not multiples of |logn]| between |logn|
and |n/|logn|] - [logn]|. Let m; = j|logn| for 1<j<|n/|logn]]|. Since [logm;|<
|log2m;| =1+ |logm;|, 2lleml js 2lloem] op pllemJ+1 (=2P[m;]). Processor p;,
m;<i<mj,i, sets P[i] as P[m;] if i <2P[m;]; as 2P[m;] otherwise.

Step 4: Compute P[] for 1<i<|logn]| or |n/|logn|]||logn|<i<n. Compute the
O(logn) entries of P using log® n processors.

A.2. EREW PRAM

We first show how to compute |logi| and 2U°¢7l for an integer 1<i<n in
O(log log n) time with a single processor. Since [logi| is a (|loglogn| + 1)-bit integer,
let bjioglogn) - -+ bo be the bit representation of [logi] (i.e., |logi] :Z}f(%lognj b;2)).
Since

log 1 i loglogn .
ZLlog ij _ 22 :/\::)g og | bjzj . L gl_[g J 2b/-27
- - b

j=0

we will compute 2121 by determining b;’s from b|jog10gs] t0 bo. We first initialize
an array Q in step 1 and then compute 21971 in |loglogn| + 1 iterations of steps 2
and 3. At the end of every iteration, we maintain x = H}Eﬁ"lg n) obi2

Step 1: Initialize array Q such that Q[/] =22 for all 0< j<|loglogn| by repeated
squaring. Set k as |loglogn] and x as 1.

Step 2: If x - 2% (=x-Q0[k])<i, set x as x - 22k; otherwise, leave x unchanged.

Step 3: Set k as k — 1. If k= — 1, return x (=2L°¢]); otherwise, go to step 2.

It is easy to see that step 1 takes O(loglogn) time and that steps 2 and 3 take
O(1) time. Since steps 2 and 3 are repeated |loglogn]| + 1 times, the total time is
O(loglogn).

Now, we compute array P on the EREW PRAM. We first compute O(n/loglogn)
entries and then compute other entries.

Step 1: Each processor p;, 1<i<|n/|loglogn]|, computes |loglogn]| by repeated
squaring.

Step 2: Compute P[] for all i’s that are multiples of [loglogn|. Each processor p;
computes P[j|loglogn]], where 1<j<|n/|loglogn]].

Step 3: Compute P[i] for all i’s that are not multiples of |loglogn| between
lloglogn| and |n/|loglogn|]|loglogn]. Let m; = j|loglogn]| for 1<;<|n/|loglog
n]|. Processor p; computes P[i] for all m;<i<mj,. Since [logm;i|<|log2m;|=
1+ [logm; |, 2lleeminl jg plloem] or plleeml+l (=2P[m;]). Processor p; sets P[i] as
Plm;] if i<2P[m;]; as 2P[m,] otherwise.

Step 4: Compute P[i] for 1 <i<|loglogn| or |n/|loglogn]|||loglogn]| <i<n. Com-
pute the O(loglogn) entries of P using loglogn processors.

H. Park, K. Park /[Theoretical Computer Science 262 (2001) 415435 435

It is easy to see that steps 1 and 3 take O(loglogn) time with n/loglogn processors.
Steps 2 and 4 take O(loglogn) time because 21°¢’) for some 1<i<n is computed in
O(loglogn) time. Hence, array P is computed in O(loglogn) time with n/loglogn
processors on the EREW PRAM. The computation of array N is similar to (in fact,
simpler than) that of array P.

Acknowledgements

We would like to thank the referees for their valuable comments which helped
improve the presentation of this paper.

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, USA, 1974.
[2] R. Bayer, Data structure and maintenance algorithms, Acta Inform. 1 (1972) 290-306.
[3] R. Cole, Parallel merge sort, SIAM J. Comput. 17 (1988) 770-785.
[4] S.A. Cook, C. Dwork, R. Reischuk, Upper and lower time bounds for parallel random access machines
without simultaneous writes, SIAM J. Comput. 15 (1986) 87-97.
[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press, Cambridge, MA,
USA, 1990.
[6] F.E. Fich, P. Ragde, A. Wigderson, Relations between concurrent-write models of parallel computation,
SIAM J. Comput. 17 (1988) 606—627.
[7] LJ. Guibas, R. Sedgewick, A dichromatic framework for balanced trees, Proc. FOCS’78, 1978,
pp. 8-21.
[8] J. JaJa, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, USA, 1992.
[9] A. Moitra, S.S. Iyengar, A maximally parallel balancing algorithm for obtaining complete balanced
binary trees, IEEE Trans. Comput. 34 (6) (1985) 563-565.
[10] A. Moitra, S.S. Iyengar, Derivation of a parallel algorithm for balancing binary trees, IEEE Trans.
Software Eng. 12 (3) (1986) 442—449.
[11] W. Paul, U. Vishkin, H. Wagener, Parallel dictionaries on 2-3 trees, in: Proc. ICALP’83, Lecture Notes
in Comput. Sci., vol. 154, Springer, Berlin, 1983, pp. 597-609.
[12] R. Sedgewick, Algorithms in C + +, Addison-Wesley, Reading, MA, USA, 1992.
[13] R.E. Tarjan, Updating a balanced search tree in O(1) rotations, Inf. Process. Lett. 16 (1983) 253-257.
[14] R.E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, PA, USA, 1983.
[15] B.F. Wang, G.H. Chen, Cost-optimal parallel algorithms for constructing 2-3 trees, J. Parallel Distributed
Comput. 11 (1991) 257-261.

