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a b s t r a c t

This paper deals with the existence and search for properly edge-colored paths/trails
between two, not necessarily distinct, vertices s and t in an edge-colored graph from an
algorithmic perspective. First we show that several versions of the s− t path/trail problem
have polynomial solutions including the shortest path/trail case. We give polynomial
algorithms for finding a longest properly edge-colored path/trail between s and t for a
particular class of graphs and characterize edge-colored graphs without properly edge-
colored closed trails. Next, we prove that deciding whether there exist k pairwise
vertex/edge disjoint properly edge-colored s − t paths/trails in a c-edge-colored graph
Gc is NP-complete even for k = 2 and c = Ω(n2), where n denotes the number of
vertices in Gc . Moreover, we prove that these problems remain NP-complete for c-edge-
colored graphs containing no properly edge-colored cycles and c = Ω(n). We obtain some
approximation results for those maximization problems together with polynomial results
for some particular classes of edge-colored graphs.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction, Notation and Terminology

In the last few years a great number of problems have been dealt with in terms of edge-colored graphs for modeling
purposes, as well as for theoretical investigation [3,7–9,18,23]. Previous work on the subject has focused on the
determination of particular properly edge-colored subgraphs, such as Hamiltonian or Eulerian configurations, colored in
a specified pattern [1,2,4–6,10,21,22,25,27], that is, subgraphs such that adjacent edges have different colors.
Our first aim in that respect was to extend the graph-theoretic concept of connectivity to colored graphs with a view to

gaining some insight into our problem fromMenger’s Theorem in particular. In otherwords, we intended to define some sort
of local alternating connectivity for edge-colored graphs. Informally speaking, local connectivity in general (non-colored)
graphs is a local parameter. For two given vertices x and y, it is the maximum number of (edge-disjoint or vertex-disjoint)
paths between them. By contrast, connectivity is a global parameter defined to be theminimum number over all x, y of their
local connectivity’s. Difficulties arose, however, from local connectivity being not polynomially characterizable in edge-
colored graphs, as can easily be seen. Thus, there can be no counterpart toMenger’s Theorem as such, and even the notion of
a connected component as an equivalence class does not carry over to edge-colored graphs since the concatenation of two
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properly edge-colored paths is not necessarily properly edge-colored. We settled then for some practical and theoretical
results, herein presented, which deal with the existence of vertex-disjoint paths/trails between given vertices in c-edge-
colored graphs.Most of those path/trail problems happen to be NP-complete, which thwarts all attempts at systematization.
Formally, let Ic = {1, 2, . . . , c} be a set of given colors, c ≥ 2. Throughout the paper, Gc will denote an edge-colored

simple graph such that each edge is in some color i ∈ Ic and no parallel edges linking the same pair of vertices occur. The
vertex and edge-sets of Gc are denoted by V (Gc) and E(Gc), respectively. The order of Gc is the number n of its vertices. The
size of Gc is the number m of its edges. For a given color i, E i(Gc) denotes the set of edges of Gc colored i. For edge-colored
complete graphs, we write K cn instead of G

c . If Hc is a subgraph of Gc , then N iHc (x) denotes the set of vertices of H
c , linked to

x by an edge colored i. The colored i-degree of x in Hc , denoted by diHc (x), is |N
i
Hc (x)|, i.e., the cardinality of N

i
Hc (x). An edge

between two vertices x and y is denoted by xy, its color by c(xy) and its cost (if any) by cost(xy). The cost of a subgraph is the
sum of its edge costs. A subgraph of Gc containing at least two edges is said to be properly edge-colored if any two adjacent
edges in this subgraph differ in color. A properly edge-colored path does not allow vertex repetitions and any two successive
edges on this path differ in color. A properly edge-colored trail does not allow edge repetitions and any two successive edges
on this trail differ in color. However, note that the edges on this trail need not form a properly edge-colored subgraph since
we can have adjacent and not successive edges with the same color. The length of a path/trail is the number of its edges.
Given two vertices s and t in Gc , we define a properly edge-colored s − t path/trail (or just, s − t path/trail for short) to
be a path/trail with end-vertices s and t . Sometimes s will be called the source, and t the destination of the path/trail. A
properly edge-colored path/trail is said to be closed if its endpoints coincide, and its first and last edges differ in color. A
closed properly edge-colored path (trail) is usually called a properly edge-colored cycle (closed trail).
Given a digraph D(V , A), we denote by Euv an arc of A, where u, v ∈ V . In addition, we define N+D (x) = {y ∈ V : Exy ∈ A}

the out-neighborhood of x in D, and by N−D (x) = {y ∈ V : Eyx ∈ A} the in-neighborhood of x in D. Finally, we represent by
ND(x) = N+D (x) ∪ N

−

D (x) the in-out-neighborhood of x ∈ V (or just neighborhood for short). Also, given an induced subgraph
Q of a non colored graph G, a contraction of Q in G consists of replacing Q by a new vertex, say zQ , so that each vertex x in
G− Q is connected to zQ by an edge, if and only if, there exists an edge xy in G for some vertex y in Q .
This paper is concerned with algorithmic issues regarding various trail/path problems between two given vertices s and

t in Gc . First, we consider the s − t path/trail version problem whose objective is to determine the existence or not of an
arbitrary properly edge-colored s−t path/trail inGc . Polynomial algorithms are established for such problems as the Shortest
properly edge-colored path/trail, the Shortest properly edge-colored path/trail with forbidden pairs, the Shortest properly edge-
colored cycles/closed trails and the Longest properly edge-colored path/trail for a particular class of instances. Actually, we
show that all these results may be derived from the Szeider’s Algorithm for the properly edge-colored s− t paths. We also
characterize edge-colored graphs without properly edge-colored closed trails. Next, we deal with the Maximum Properly
Vertex Disjoint Path and Maximum Properly Edge Disjoint Trail problems (respectively, mpvdp and mpedt for short), whose
objective is to find the maximum number of properly edge-colored vertex-disjoint paths (respectively, edge-disjoint trails)
between s and t . Although these problems can be solved in polynomial time in general non-colored graphs, most of their
instances are proved to be NP-complete in the case of edge-colored graphs. In particular we prove that, given an integer
k ≥ 2, deciding whether there exist k properly edge-colored vertex/edge disjoint s − t paths/trails in Gc is NP-complete
even for k = 2 and c = Ω(n2). Moreover, for an arbitrary kwe prove that these problems remain NP-complete for c-edge-
colored graphs containing no properly edge-colored cycles/closed trails and c = Ω(n). We show a greedy procedure for
these maximization problems, through the successive construction of properly edge-colored shortest s− t paths/trails. This
is a straightforward generalization of the greedy procedure tomaximize the number of edge or vertex disjoint paths between
k pair of vertices in non-colored graphs (see [20,17] for details). Similarly, we obtain an approximation performance ratio.
We finish the paper by exhibiting a polynomially solvable class of instances for the related maximization problems.
The following two results will be used in this paper. The first result, initially proved by Grossman and Häggkvist [16]

for 2-edge-colored graphs and generalized by Yeo [27], characterizes c-edge-colored graphs without properly edge-colored
cycles.
Theorem 1.1 (Yeo). Let Gc be a c-edge-colored graph, c ≥ 2, such that every vertex of Gc is incident with at least two edges
colored differently. Then either Gc has a properly edge-colored cycle or for some vertex v, no component of Gc − v is joined to v
by at least two edges in different colors.
In terms of edge-colored graphs, Szeider’s main result [24] on graphs with prescribed general transition systems may be

formulated as follows:
Theorem 1.2 (Szeider). Let s and t be two vertices in a c-edge-colored graph Gc , c ≥ 2. Then, either we can find a properly
edge-colored s− t path or else decide that such a path does not exist in Gc in linear time on the size of the graph.
GivenGc , themain idea of the proof is based on earlierwork by Edmonds (see for instance Lemma1.1 in [21]) and amounts

to reducing the properly edge-colored path problem in Gc to a perfect matching problem in a non-colored graph defined
appropriately. The latter graph will be called henceforth the Edmonds–Szeider graph and is defined as follows. Given two
vertices s and t in Gc , setW = V (Gc) \ {s, t}. Now, for each x ∈ W , we first define a subgraph Gx with vertex- and edge-sets,
respectively:

V (Gx) =
⋃
i∈Ic

{xi, x′i|N
i
Gc (x) 6= Ø} ∪ {x

′′

a , x
′′

b} and
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E(Gx) = {x′′ax
′′

b} ∪

 ⋃
{i∈Ic |x′i∈V (Gx)}

(
{xix′i} ∪

(⋃
j=a,b

{x′ix
′′

j }

)) .
Now, the Edmonds–Szeider non-colored graph G(V , E) is constructed as follows:

V (G) = {s, t} ∪

(⋃
x∈W

V (Gx)

)
, and

E(G) =
⋃
i∈Ic

(
{sxi|sx ∈ E i(Gc)} ∪ {xit|xt ∈ E i(Gc)} ∪ {xiyi|xy ∈ E i(Gc)}

)
∪

(⋃
x∈W

E(Gx)

)
.

The interesting point in the construction is that, given a particular (trivial) perfect matching M in G − {s, t}, a properly
edge-colored s− t path exists in Gc if and only if there exists an augmenting path P relative toM between s and t in G. Recall
that a path P is augmenting with respect to a given matchingM if, for any pair of adjacent edges in P , exactly one of them is
inM , with the further condition that the first and last edges of P are not inM . Since augmenting paths in G can be found in
O(|E(G)|) linear time (see [26], p.122), the same execution time holds for finding properly edge-colored paths in Gc as well,
since O(|E(G)|) = O(|E(Gc)|).

2. The s − t path/trail problem

Given two, not necessarily distinct, vertices s and t inGc , themain question of this section is to give polynomial algorithms
for finding (if any) a properly edge-colored s− t path or trail in Gc . The properly edge-colored s− t path problem was first
solved by Edmonds for two colors (see Lemma 1.1 in [21]) and then extended by Szeider [24] to include any number of
colors. Here we deal with variations of the properly edge-colored path/trail problem, i.e., the problem of finding an s − t
trail, closed trails, the shortest s− t path/trail, the longest s− t path (trail) in graphs with no properly edge-colored cycles
(closed trails) and s− t paths/trails with forbidden pairs.

2.1. Properly edge-colored s− t trails and the characterization of graphs without properly edge-colored closed trails

This section is devoted to the properly edge-colored s − t trail problem. Among other results, we prove that the s − t
trail problem reduces to the s − t path problem over a new c-edge-colored graph. As the latter problem has been proved
polynomial [24], it follows that our problem is polynomial as well. We conclude the section with some results on closed
trails in edge-colored graphs. Let us start with the following simple, though important, result.
Lemma 2.1. Given two vertices s, t of Gc , assume that there exists a properly edge-colored s − t trail T in Gc . Further, suppose
that at least one internal vertex on this trail is visited three times or more. Then, there exists another properly edge-colored s− t
trail T ′ in Gc such that no vertex is visited more than twice on T ′.

Proof. Set T = e1e2 . . . ek, where ei are the edges of the trail. Let {a1, a2, . . . , ar} denote the set of distinct vertices of T .
Let now λi denote the number of times vertex ai is visited on T , for each i = 1, 2, . . . , r . Set λ = max(λ1, λ2, . . . , λr).
Let us choose T to be the shortest such trail so that λ is the smallest possible, as is therefore the number of vertices ai
with λi = λ. If λ ≤ 2 we are done. Assume therefore λ ≥ 3. Thus, there exist some vertex, say ap, 1 ≤ p ≤ r ,
visited at least three times on T . Assume λ = 3, the proof being almost identical for higher values. Let us rewrite
T = e1e2 . . . eiei+1 . . . ejej+1 . . . ef ef+1ef+2 . . . ek so that : (i) ap is the vertex common to the pair of edges ei, ei+1, (respectively
to ej, ej+1 and to ef , ef+1) and (ii) ap is not a member of the vertex set of the graph induced by the edges of the segment
ef+2 . . . ek. Notice that edges ei and ej+1 have the same color, for otherwise, the trail e1e2 . . . eiej+1 . . . ef ef+1ef+2 . . . ek violates
the choice of T , since ap is visited fewer times on this trail than on T . Similarly, edges ei and ef+1 have the same color. But
then the trail e1e2 . . . eiei+1 . . . ej−1ejef+1ef+2 . . . ek violates the choice of T . Finally, we update every λi in this trail and repeat
the process until no more vertices with λ ≥ 3 are found. This completes the argument and the proof of lemma. �

Thus, as will be discussed later, for checking the existence of s− t trails, it suffices to take into account only those trails
where no vertices are visited more than twice.
Now,we show how to transform the trail- to the path-problem over a new c-edge-colored graph. Given Gc and an integer

p ≥ 2, let us consider an edge-colored graph denoted by p− Hc (henceforth called the trail-path graph) obtained from Gc as
follows. Replace each vertex x of Gc by p new vertices x1, x2, . . . , xp. Furthermore for any edge xy of Gc colored, say j, add
two new vertices vxy and uxy, add the edges xivxy, uxyyi for i = 1, 2, . . . , p all of them colored j, and finally add the edge
vxyuxy with color j′ ∈ {1, 2, . . . , c} and j′ 6= j. For convenience of notation, the edge-colored subgraph of p − Hc induced
by the vertices xi, vxy, uxy, yi (for i = 1, . . . , p) and associated with the edge xy of Gc will be denoted throughout by Hcxy.
Moreover for p = 2, we just write Hc instead of p− Hc .
Therefore, as a consequence of Lemma 2.1, we have the following relation between Gc and trail-path graph Hc :

Theorem 2.2. Given two vertices s and t in Gc , there exists a properly edge-colored s − t trail in Gc , if and only if, there exists a
properly edge-colored s1 − t1 path in Hc .
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Proof. Let s, t be two vertices in Gc . Assume first that there exists a properly edge-colored trail, say, T = e1, e2, . . . , ek
between s and t in Gc , where ei are the edges of the trail and s is the left endpoint of e1 while t is the right endpoint of ek.
By Lemma 2.1, we may choose T so that no vertex is visited more than twice on T . Given Hc as defined above, we show
how to construct a properly edge-colored path P between s1 and t1 in Hc . For any edge ei = xy of T , we consider the
associated subgraph Hcei in H

c , and then replace the edge ei by one of the segments x1vxy, vxyuxy, uxyy1 or x1vxy, vxyuxy, uxyy2
or x2vxy, vxyuxy, uxyy1 or x2vxy, vxyuxy, uxyy2 in Hc .
Conversely, any properly edge-colored s1 − t1 path in Hc uses precisely one of the sub-paths x1vxy, vxyuxy, uxyy1 or

x1vxy, vxyuxy, uxyy2 or x2vxy, vxyuxy, uxyy1 or x2vxy, vxyuxy, uxyy2 in each subgraphHcxy ofH
c . Now it is easy to see that a properly

edge-colored s1 − t1 path in Hc will correspond to a properly edge-colored s − t trail T in Gc where no vertices are visited
more than twice on T . �

The following corollary is a straightforward consequence of Theorems 1.2 and 2.2. The proof is left to the reader.

Corollary 2.3. Consider two distinct vertices s and t in a c-edge-colored graph Gc . Thenwe can either find a properly edge-colored
s− t trail or else decide correctly that such a trail does not exist in Gc in linear time on the size of Gc .

Another possibility, is to deal with a based BFS procedure to solve the properly edge-colored s − t trail problem. In our
case, however, we are particularly concerned with the Szeider’s algorithm and its consequences.
Now, we intend to characterize edge-colored graphswithout properly edge-colored closed trails. Recall that the problem

of checking whether Gc contains no properly edge-colored cycle was initially solved by Grossman and Häggkvist [16] for
2-edge-colored graphs and then by Yeo [27] for an arbitrary number of colors (see Theorem 1.1). In both studies, the authors
used the concept of a cut-vertex separating colors, i.e., a vertex x such that all the edges between each component of Gc − x
and x are colored alike. Thus, from the definition of trail-path graph and the Theorem 1.1 we obtain the following:

Theorem 2.4. Let Gc be a c-edge-colored graph, such that every vertex of Gc is incident with at least two edges colored differently.
Then either Gc has a bridge or Gc has a properly edge-colored closed trail.

Proof. Given Gc , consider the trail-path graph Hc associated with Gc as in the foregoing. Observe that if a vertex x of Gc is
incident with two edges colored differently in Gc , then both x1 and x2 will be incident with edges of different colors in Hc .
In addition, for every edge xy of Gc , we have by the definition of Hc that both vxy and uxy are incident with edges of two
different colors. Therefore, we conclude that if every vertex of Gc is incident with at least two edges in different colors in
Gc , than every vertex of Hc will be incident with at least two edges of different colors in Hc . Then, it follows by Theorem 1.1
that Hc has either a cut-vertex separating colors or a properly edge-colored cycle.
Now, suppose first that Hc has a cut-vertex separating colors. Notice that, since every vertex x of Gc is incident with at

least 2 edges of different colors, we cannot have a vertex xi separating colors in Hc (even if x is a cut-vertex separating colors
in Gc). Thus, if this cut-vertex is one of vxy ∈ Hcxy, it is easy to see that uxy is another cut-vertex of H

c separating colors.
Therefore, the edge vxyuxy is a bridge in Hc . This implies that the edge xy of Gc associated with Hcxy is also a bridge in G

c . In
addition, note that if Hc contains no cut-vertex separating colors, Gc contains no bridges.
Assume now that Hc has a properly edge-colored cycle. Then we conclude that Gc has a properly edge-colored trail if and

only if we have a properly edge-colored cycle in Hc .
From the above, it follows that if each vertex of Gc is incident with at least two edges colored differently, then Gc has

either a bridge or a properly edge-colored trail, as required. �

As for the algorithmic aspects of this problem, it suffices to delete all bridges (if any) and all vertices adjacent to edges of
the same color in Gc , to test for the existence of a properly edge-colored closed trail in polynomial time. Notice that all such
edges and vertices may be deleted without any properly edge-colored closed trail being destroyed. Thus, if the resulting
graph is non-empty, it will contain a properly edge-colored closed trail.

2.2. Shortest properly edge-colored paths/trails

In this sectionwe consider shortest properly edge-colored s−t paths and trails. By associating appropriate costs with the
edges of the Edmonds–Szeider non-colored graph G(V , E) defined in Section 1, we first show how to find, if any, a shortest
properly edge-colored path between (not necessarily distinct) s and t in Gc . As a consequence, this procedure may be used
to find a shortest properly edge-colored trail between s and t in Gc . At the end of the section, we will show how adapt these
ideas to find a shortest properly edge-colored cycle and closed trail. For the shortest properly edge-colored path problem,
let us consider the following algorithm:
Algorithm 1: Shortest properly edge-colored path
Input: A c-edge-colored graph Gc , vertices s, t ∈ V (Gc).
Output: If any, a shortest properly edge-colored s− t path P in Gc .
Begin
1. Define:W = V (Gc) \ {s, t};
2. For every x ∈ W , construct Gx as defined in Section 1;
3. Construct the Edmonds–Szeider graph G associated with Gc ;
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4. Define: E ′ = ∪x∈WE(Gx);
5. For every pq ∈ E(G) \ E ′ do cost(pq)← 1;
6. For every pq ∈ E ′ do cost(pq)← 0;
7. Find a minimum weighted perfect matchingM in G (if any);
8. UseM to build a path P in Gc and return P , or say that P does not exist;

End.
Henceforth, we define the weighted non-colored graph G above as the weighted Edmonds–Szeider graph. Intuitively, the

idea in Algorithm 1 is to penalize all edges of G associated with edges in the original graph Gc . In this way, we ensure that a
minimum perfectM will maximize the number of edges of E(Gx) (with cost 0) associated with x ∈ V (Gc) \ {s, t}. To obtain
P from M in Step 8, we contract all subgraphs Gx of G to a single vertex x. The remaining edges of M in this resulting non-
colored graph, say G′, will define a s − t path in G′ which is associated to a properly edge-colored s − t path in Gc . Notice
that all the vertices not in this s− t path in Gc are isolated, i.ewe cannot have properly edge-colored cycles containing these
vertices (otherwise,M would not be a minimum weighted perfect matching in G).
In addition, observe that the overall complexity of Algorithm 1 is dominated by the complexity of a minimum weighted

perfect matching (Step 7). Several matching algorithms exist in the literature. Gabow’s bound [12] inO(n(m+nlogn)), is one
of the best in terms of n andm, but other bounds are possiblewhen the edgeweights are integers. Note that Algorithm 1may
be easily adapted if we deal with arbitrary positive costs associated with colored edges. Gabow and Tarjan [14] proposed an
ingenious approach to obtain a bound inO(mlog(nN)

√
nα(n,m)logn)), whereα(n,m) is the Tarjan’s “inverse" of Ackerman’s

function and N is the maximum weight of an edge. See Gerards [15] for a good reference on general matchings.
Formally, we have established the following result:

Theorem 2.5. Algorithm 1 always find in polynomial time, a shortest properly edge-colored s− t path in Gc , if any.

Proof. Let M be a minimum weighted perfect matching in G and P the associated path in Gc (obtained after Step 8). For a
contradiction, suppose that P is not a properly edge-colored shortest path in Gc . Then, there exists another properly edge-
colored s− t path P ′ in Gc with cost(P ′) < cost(P). In addition, suppose that all the remaining vertices not in P ′ are isolated.
Now, observe that cost(pq) = 1 for every pq ∈ E(G) \ E ′ and cost(pq) = 0 for every pq ∈ E ′. Thus, we can easily construct a
newmatchingM ′ in G such that all edges with unit costs are associated with edges in the s− t path P ′. The remaining edges
of M ′ will have cost zero. In this way, since cost(P ′) < cost(P), we obtain cost(M ′) < cost(M) resulting in a contradiction.
Therefore, P is a shortest properly edge-colored path in Gc . Obviously, Algorithm 1 runs in polynomial time. �

Now, to solve the shortest trail problem, it suffices to use the above algorithm as follows: Given s and t in Gc , construct
the trail-path graphHc associatedwithGc . Next, we find a shortest properly edge-colored s1−t1 path P inHc by the previous
algorithm. Then, by using path P ofHc , comeback and construct a shortest properly edge-colored s−t trail T inGc . Remember
that each subgraph Hcxy of H

c is associated with some edge xy of Gc . Furthermore, observe that a properly edge-colored path
between xi and yj inHcxy contains exactly 3 edges. Thus, in order to obtain T inG

c from P inHc , it suffices to replace each xi−yj
path of P in Hcxy with the corresponding edge xy in G

c . Therefore, we obtain a shortest s − t trail with cost(T ) = cost(P)/3.
The correctness of this algorithm is guaranteed by Theorems 2.2 and 2.5.
We conclude this sectionwith some algorithmic results on shortest properly edge-colored cycles and closed trails. Firstly,

we adapt the ideas described above to construct such shortest cycles in Gc (if any), as follows. For an arbitrary vertex x of
Gc , construct a graph Gc+1sc (x) (with c + 1 colors) associated with x by appropriately splitting x into vertices, say sx and tx,
and c auxiliary vertices x1, . . . , xc . Vertices sx and tx will correspond to temporary source and destination of Gc+1sc (x), and
vertices x1, . . . , xc are defined in such a way that properly edge-colored sx− tx paths in Gc+1sc (x)will correspond to properly
edge-colored cycles in Gc passing through vertex x ∈ V (Gc). Therefore, to find a shortest properly edge-colored cycle, it
suffices to repeat this process for every vertex x of Gc while saving the minimum cost solution at each iteration. Formally,
we define:

V (Gc+1sc (x)) = (V (G
c) \ {x}) ∪ {sx, tx, x1, . . . , xc} and

E(Gc+1sc (x)) = (E(G
c) \ {xy : y ∈ NGc (x)}) ∪

(⋃
i∈Ic

{xiy : y ∈ N iGc (x)}

)
∪ ({sx, tx} × {x1, . . . , xc}).

In the construction of E(Gc+1sc (x)) above we set c(xiy) = i for every color i ∈ Ic . In addition we color every edge of
{sx, tx} × {x1, . . . , xc}with a new color c + 1. After this construction, we find (if any) a shortest properly edge-colored path
between sx and tx in Gc+1sc (x). This process is repeated for the remaining vertices of G

c . Note that a properly edge-colored
sx − tx path Px in Gc+1sc (x) of length |Px| is associated with a properly edge-colored cycle Cx in G

c passing through x of length
|Cx| = |Px| − 2. We denote this algorithm by PSC (Properly Shortest Cycle), for short.
Formally we have established the following result:

Theorem 2.6. Given Gc , Algorithm PSC above always finds in polynomial time a shortest properly edge-colored cycle in Gc or else
decides correctly that Gc has no properly edge-colored cycles at all.
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The correctness and polynomial complexity of Algorithm PSC is guaranteed by Theorem 2.5.
As for shortest properly edge-colored cycles, to exhibit a shortest properly edge-colored closed trail, we define a graph

Gc+1sct (x) associated to x ∈ V (G) in the following way. Let Gcxaux be an auxiliary edge-colored graph with cx ≤ c colors obtained
from Gc after deleting x ∈ V (Gc). Now, as described in the Section 2.1, construct the trail-path graph Hcxaux associated to G

cx
aux.

Thus, Gc+1sct (x) is defined by:

V (Gc+1sct (x)) = V (H
cx
aux) ∪ {sx, tx, x1, . . . , xc} and

E(Gc+1sct (x)) = E(H
cx
aux) ∪

(⋃
i∈Ic

(∪j∈{1,2}{xiyj : y ∈ N iGc (x)})

)
∪ ({sx, tx} × {x1, . . . , xc}).

We define color(pq) = c+1 for every pq ∈ {sx, tx}×{x1, . . . , xc}. Finally, for every i ∈ Ic and y ∈ N iGc (x), color c(xiyj) = i
for j ∈ {1, 2}. After this construction, we find a shortest properly edge-colored path between sx and tx in Gc+1sct (x) using
Algorithm 1. The overall process is repeated for the remaining vertices of Gc . Note that a shortest properly edge-colored
sx − tx path Px in Gc+1sct (x) of length |Px| is associated with a shortest properly edge-colored closed trail CTx in Gc passing
through x of length |CTx| =

|Px|−4
3 + 2. We denote this algorithm by PSCT (Properly Shortest Closed Trail), for short. The

correctness of PSCT is guaranteed by Lemma 2.1, Theorems 2.2 and 2.5.

2.3. The longest properly edge-colored s− t path/trail problem

The problem of finding the longest properly edge-colored s − t path in arbitrary c-edge-colored graphs is obviously
NP-complete since it generalizes the Hamiltonian Path problem in non-colored graphs. Based on the maximum weighted
perfect matching problem (see [12,14] for further details), we propose a polynomial time procedure for finding a longest
properly edge-colored s− t path (trail) in graphs with no properly edge-colored cycles (closed trails).
Theorem 2.7. Assume that Gc has no properly edge-colored cycles. Then, we can always find in polynomial time a longest properly
edge-colored s− t path or else decide that such a path does not exist in Gc .
Proof. Construct the weighted Edmonds–Szeider graph G (associated to Gc) and compute the maximum weighted perfect
matchingM in G (if any), otherwise, we would not have a properly edge-colored path between s and t in Gc (see [12,14] for
the complexity of the maximumweighted perfect matching problem). Now, givenM , to determine the associated s− t path
P in Gc , we construct a new non-colored graph G′ by just contracting subgraphs Gx to a single vertex x. It is easy to see that G′
will contains a s− t path, cycles and isolated vertices, associated respectively to a properly edge-colored s− t path, properly
edge-colored cycles and isolated vertices in Gc . However, by hypothesis Gc does not contains properly edge-colored cycles.
Therefore, each edge with unitary cost inM it will be associated to an edge of P and vice-versa. Then, sinceM is a maximum
weighted perfect matching, the associated path P will be the longest properly edge-colored s− t path in Gc . �

Observe in the problem above that, since every vertex is visited at most once and we do not have properly edge-colored
cycles, all the vertices not in the longest s− t path will be isolated. However, to find a longest properly edge-colored s− t
trail we do not know howmany times a given vertex x ∈ V (Gc)\{s, t}will be visited. Note that Lemma 2.1 cannot be applied
to this case. Nonetheless, constructing a trail-path graph p−Hc for a convenient parameter p, we obtain the following result
concerning the longest properly edge-colored s− t trail.
Theorem 2.8. Let Gc be a c-edge-colored graph with no properly edge-colored closed trails and two vertices s, t ∈ V (Gc). Then,
we can always find in polynomial time, a longest properly edge-colored s− t trail in Gc , provided that one exists.
Proof. Given Gc , construct the associated trail-path graph p − Hc for p = b(n − 1)/2c (as described in Section 2.1). Note
that, no vertices may be visited more than p times in Gc . To see that, consider a properly edge-colored s − t trail T passing
by x ∈ V (Gc)with the maximum possible number of cycles through x of length 3.
Now, using the same arguments as in Theorem 2.2, we can easily prove that each properly edge-colored closed trail in

Gc is associated with a properly edge-colored cycle in p − Hc . Therefore, since Gc does not contain properly edge-colored
closed trails (by hypothesis), it follows that p − Hc has no properly edge-colored cycles. In addition, note that p − Hc has
O(n2) vertices. Thus, by Theorem 2.7 we can find (if any) a longest properly edge-colored path, say P between s1 and t1 in
p−Hc in polynomial time. Therefore, the associated trail, say T in Gc will be a longest properly edge-colored s− t trail with
cost(T ) = cost(P)

3 . �

2.4. The forbidden-pair version of the one s− t path/trail problem

Consider a c-edge-colored graph Gc for an arbitrary c ≥ 2, a pair of vertices s, t and a set S =

{{s1, t1}, {s2, t2}, . . . , {sk, tk}} of k pairs of vertices of Gc . In the Properly edge-colored s − t Path with k Forbidden Pairs
problem (ppkfp for short), the objective is to find a properly edge-colored s − t path containing at most one vertex from
each pair in S. Using a simple transformation attributed to Häggkvist [21], we prove the following result concerning c-edge-
colored graphs:
Theorem 2.9. The ppkfp problem is NP-complete even for graphs without properly edge-colored cycles.
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Proof. The ppkfp obviously belongs to NP. To prove that ppkfp is NP-hard, we construct a reduction from the Path with
Forbidden Pairs problem— pfp. Given a digraph D(V , A), a pair a vertices s, t and a set S = {{s1, t1}, {s2, t2}, . . . , {sk, tk}} of k
pair of vertices, the objective in the pfp problem is to find a s−t directed path inD that contains atmost one vertex from each
pair in S or else decide that such a path does not exist in D. As discussed in [13], this problem is NP-complete even on acyclic
digraphs. In the present reduction, we construct a c-edge-colored graph Gc(V ′, E) with V ′ = V ∪ {P1

Exy, . . . , P
c−1
Exy : Exy ∈ A}.

To simplify the notation, for every Exy ∈ A consider x = P0
Exy and y = P

c
Exy. Now, the edge set E is constructed in the following

way: every arc Exy ∈ A is changed by edges P j
ExyP
j+1
Exy for j = 0, . . . , c − 1 with c(P

j
ExyP
j+1
Exy ) = j+ 1. The set S of forbidden pairs

in Gc remains the same. Notice that the new edge-colored graph does not contains properly edge-colored cycles. After that,
it is easy to see that feasible s− t paths in D corresponds to feasible s− t paths in Gc and vice-versa. �

In addition, notice that if k = O(logn), the ppkfp problem can be easily solved in polynomial time. Basically, at each step
i of this algorithm, we construct a new graph Gcii (Vi, Ei)with ci ≤ c colors and Vi = V (G

c) \ Pi where Pi = {pi1, . . . , p
i
k} and

pij = sj or tj (for j = 1, . . . , k), and Ei = E(G
ci
i ). For each subgraph G

ci
i for i = 1, . . . ,O(n); we polynomially find a properly

edge-colored s − t path (provided that one exists) using its associated Edmonds–Szeider graph. Finally, the s − t trail case
is analogous and will be omitted here.

3. The k-path/trail problem

Let k-pvdp and k-pedt be the decision versions associated respectively with Maximum Properly Vertex Disjoint Path
(mpvdp) and theMaximum Properly Edge Disjoint Trail (mpedt) problems, i.e., given a c-edge-colored graph Gc , two vertices
s, t ∈ V (Gc) and an integer k ≥ 2, we want to determine if Gc contains at least k properly edge-colored vertex disjoint paths
(respectively, edge disjoint trails) between s and t . Initially, in next section we show that both k-pvdp and k-pedt are NP-
complete even for k = 2 and c = Ω(n2). In particular, in graphs with no properly edge-colored cycles (respectively, closed
trails) and c = Ω(n) colors, we prove that k-pvdp (respectively, k-pedt) is NP-complete for an arbitrary k ≥ 2. Next, at the
end of the section, we establish some approximation results and polynomial algorithms for special cases for bothmpvdp and
mpedt problems.

3.1. NP-complete results for general graphs

In Theorem 3.2 we will prove that both 2-pvdp and 2-pedt are NP-complete for 2-edge-colored graphs. In view of that
theorem, let us first consider 2 auxiliary results concerning directed cycles and closed trails in (non-colored) digraphs. Let
u and v be two fixed vertices in a digraph D. Deciding if D contains or not a directed cycle containing both u and v is known
to be NP-complete [11]. In next theorem we prove that deciding if D contains or not a directed closed trail containing both
u and v is also NP-complete. We will denote these 2 problems, respectively, by Directed Cycle (dc) and Directed Closed Trail
(dct).
Theorem 3.1. The dct problem is NP-complete.
Proof. The dct problem obviously belongs to NP. To prove that dct is NP-hard, we define a reduction from the following
problem. Given four vertices p1, q1, p2, q2 belonging to a digraphD, wewish to determine if there exist 2 arc-disjoint directed
trails connecting p1 − q1 and p2 − q2 in D. Here, this problem will be named 2-Arc Disjoint Trail (2-adt) problem. As proved
in [11] the 2-adt is NP-complete.
In particular, given a digraph D, we show how to construct in polynomial time another directed graph D′ with a pair of

vertices u, v in D′ such that there are 2 arc-disjoint trails p1− q1 and p2− q2 in D, if and only if there exists a directed closed
trail containing both u and v in D′.
Before constructing D′ let us set S = {p1, p2, q1, q2}, S ′ = {p′1, p

′

2, q
′

1, q
′

2} and S
′′
= {p′′1, p

′′

2, q
′′

1, q
′′

2}. The idea is to split
appropriately each vertex pi (vertex qi) in S into two new vertices p′i and p

′′

i (q
′

i and q
′′

i ) belonging to S
′ and S ′′, respectively.

Thus, we have:

V (D′) = (V (D) \ S) ∪ S ′ ∪ S ′′ ∪ {u, v},

and

A(D′) =

(
A(D) \

{⋃
x∈S

{ Exy, Eyx : y ∈ ND(x)}

})
∪

( ⋃
x′′∈S′′
{ Ex′′w : w ∈ N+D (x)}

)

∪

(⋃
x′∈S′
{ Ewx′ : w ∈ N−D (x)}

)
∪ { Eup′1, Ep

′

1p
′′

1,
Ep′2p
′′

2,
Eq′1q
′′

1,
Eq′′1v, Evp

′

2,
Eq′2q
′′

2,
Eq′′2u}.

Given the definitions above, consider two arc-disjoint trails p1 − q1 and p2 − q2, say T1 and T2 respectively, in D. Then, it
is easy to see that the sequence:

T = (u, p′1, p
′′

1, T1, q
′

1, q
′′

1, v, p
′

2, p
′′

2, T2, q
′

2, q
′′

2, u)
defines a closed trail containing both u and v in D′ (see Fig. 1).
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Fig. 1. Reduction 2-ADT α DCT.

Conversely, consider a directed closed trail containing both vertices u and v in D′. Note that, we have exactly one
outcoming and one incoming arc incident to u and v. It follows that, all closed trails containing u and v, also contain all
vertices in S ′ and S ′′ and each pair (p′i, p

′′

i ) and (q
′

i, q
′′

i ), for i = 1, 2, must be visited exactly once. This is possible, if and only
if we have a trail between p′1 and q

′′

1 , and p
′

2 and q
′′

2 in D
′. If we delete u, v ∈ D′, and contract all pairs (p′i, p

′′

i ) to obtain pi,
and (q′i, q

′′

i ) to obtain qi, i = 1, 2, we obtain 2 arc-disjoint trails p1 − q1 and p2 − q2 in D. �

Now, using both dc and dct problems we prove the following result:

Theorem 3.2. Both 2-pvdp and 2-pedt problems are NP-complete for 2-edge-colored graphs.

Proof. We can easily check in polynomial time that both 2-pvdp and 2-pedt problems are in NP. To show they are NP-hard,
we propose polynomial time reductions from the dc and dct problems, respectively. Consider two vertices u and v in a
digraph D . We show how to construct in polynomial time, a 2-edge-colored graph Gc and a pair of vertices a, b ∈ V (Gc),
such that there is a cycle (respectively, closed trail) containing u and v in D, if and only if there are 2 vertex-disjoint properly
edge-colored a − b paths (respectively, 2 edge-disjoint properly edge-colored a − b trails) in Gc . Let us first define from D
another digraph D′ by replacing u by two new vertices s1, s2 with N−D′(s2) = N

−

D (u), N
+

D′(s1) = N
+

D (u). Similarly replace t1, t2
and N−D′(t2) = N

−

D (v), N
+

D′(t1) = N
+

D (v). Finally, add the arcs (s2, s1) and (t2, t1) in D
′. Now in order to define Gc replace each

arc Exy ofD′ by a colored segment xzywhere z is a new vertex and edges xz, zy are on colors red and blue, respectively. Finally,
we define z = a for z between s1 and s2, and z = b for z between t1 and t2. Observe now that there is a vertex-disjoint cycle
(respectively, arc-disjoint closed trail) containing u and v in D if and only if there are two vertex-disjoint properly edge-
colored a− b paths (respectively, properly edge-colored edge-disjoint a− b trails) in Gc . �

Intuitively speaking, note that both 2-pvdp and 2-pedt problems become easier when 3 colors or more are considered
(an extreme case is when all edges of Gc have different colors). As a consequence of that, an interesting question is to study
the NP-completeness of these problems for graphs with many colors. Thus, we prove the following result:

Theorem 3.3. Both 2-pvdp and 2-pedt problems remain NP-complete even for graphs withΩ(n2) colors.

Proof. Both 2-pvdp and 2-pedt problems restricted to graphs with Ω(n2) colors obviously belong to NP. Now, given a 2-
edge-colored graph Gc with n vertices, define a complete graph K c

′

n with Ic′ ⊇ Ic and an additional edge xywith x ∈ V (K
c′
n ),

y ∈ V (Gc) and some color c(xy) ∈ Ic′ . In this way, the new resulting graph Gc
′

α with vertices V (G
c′
α ) = V (G

c) ∪ V (K c
′

n ) and
edges E(Gc

′

α ) = E(G
c)∪ E(K c

′

n )∪ {xy}will have, respectively, 2n vertices and at most
n(n−1)
2 different edge colors. Therefore,

2 properly edge-colored s − t paths/trails in Gc (with 2 colors) will correspond to 2 properly edge-colored paths/trails in
Gc
′

α with c
′
= Ω(n2) colors and vice-versa. Thus, from the preceding theorem (restricted to 2-edge-colored graphs), we

conclude that both 2-pvdp and 2-pedt problems in graphs withΩ(n2) colors are NP-complete. �

3.2. NP-complete results for graphs with no properly edge-colored cycles (closed trails)

Now, we prove that k-pvdp (respectively, k-pedt) for k ≥ 2, remains NP-complete even for 2-edge-colored graphs with
no properly edge-colored cycles (respectively, closed trails). We conclude this section generalizing these results for graphs
withΩ(n) colors.
Recall that, as discussed in previous sections, the existence or not of properly edge-colored cycles or closed trails in edge-

colored graphs may be checked in polynomial time. Our proof is based on some ideas similar to those used by Karp [19] for
the Discrete Multicommodity Flow problem for non-oriented (and non-colored) graphs (usually known in the literature as
the Vertex Disjoint Path problem).
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Fig. 2. Blocking property.

Theorem 3.4. Let Gc be a 2-edge-colored graph without properly edge-colored cycles (respectively, closed trails). Given two
vertices s, t in Gc and an integer k, to decide if there exist k properly edge-colored vertex-disjoint s− t paths (respectively, edge-
disjoint s− t trails) in Gc is NP-complete.
Proof. Let us first consider the vertex-disjoint case. The k-pvdp problem obviously belongs to NP. To show that k-pvdp is NP-
hard we construct a reduction using the Satisfiability problem. Consider a boolean expression B = ∧kl=1Cl in the Conjunctive
Normal Formula with k clauses and n variables x1, . . . , xn. We show how to construct a 2-edge-colored graph Gc with two
vertices s, t ∈ V (Gc) and with no properly edge-colored cycles, such that a truth assignment for B corresponds to k properly
edge-colored vertex disjoint s − t paths in Gc , and reciprocally, k properly edge-colored vertex-disjoint s − t paths in Gc
define a truth assignment for B. Basically, the idea is to construct a set of k auxiliary source-sink pairs sl, tl of vertices, each
pair corresponding a to clause Cl. Each variable xj is associated to a 2-edge-colored grid graph Gj. Then graph Gc is obtained
by appropriately joining all together these grid graphs and then adding two new vertices s and t . As described in the sequel,
the construction of Gc will be done in 4 steps.
Given B, consider a boolean variable x occurring in the positive form in clauses i1, i2, . . . , ip and in the negative form in

clauses j1, j2, . . . , jq. Each occurrence of x in the positive (negative) form is associated to a horizontal path sia − tia (vertical
path sjb−tjb ) in the gridGx such that all consecutive edges between vertices sia and tia for a = 1, . . . , p (respectively, between
sjb and tjb for b = 1, . . . , q) differ in one color. Every properly edge-colored path sia − tia has a vertex in common with every
properly edge-colored path sjb − tjb . We say that grid Gx satisfy the blocking property if there are no properly edge-colored
paths between sia and tjb , or respectively, between sjb and tia for every a ∈ {1, . . . , p} and b ∈ {1, . . . , q} (see the example
of Fig. 2). In the first step, all grids Gxj , for j = 1, . . . , n, are constructed in order to satisfy the blocking property. Note that,
different colorings of Gx satisfying the blocking property are possible. In this case, we can choose any one at random among
them. This finish the first step.
Now, we say that a set of grids satisfies the color constraint if all edges incident to sl and tl, l = 1, . . . , k, in all occurrences

of sl and tl in the various grids, have the same color. All grids Gxj for j = 1, . . . , n, must be constructed in order to satisfy
both blocking property and color constraint. However, note that the color constraint may be not verified after the first step.
To solve this problem, suppose w.l.o.g., that all edges incident to sl in the various grids must be red if l is odd, and blue if l is
even. Similarly, all edges incident to tl (in the various grids) must be blue if l is odd, and red if l is even.
Therefore, suppose that edge slw (forw ∈ NGxj (sl)) must be blue. If c(slw) = blue, we are done. Otherwise, we add a new

vertex p between sl andw and fix c(slp) = blue and c(pw) = red. We apply this procedure for every edge incident to sl (for
l = 1, . . . , k) in the various subgraphs Gxj for j = 1, . . . , n. Finally, we repeat the same transformation for every tl and Gxj for
l = 1, . . . , k and j = 1, . . . , n. Note that, at the end of the second step, we have all grids satisfying both blocking property
and color constraint (see Fig. 3(a)).
Now, in the third step, we identify all occurrences of sl (respectively, tl) belonging to the various grids Gxj , as a single

vertex s′l (respectively, t
′

l ). We repeat this process for each l = 1, . . . , k. Let G
′ be this new 2-edge-colored graph. Note that,

due to the color constraint, all edges incident to s′l (respectively t
′

l ) in G
′ must have the same color. Finally, in the third step,

we add a source s and destination t , and new edges ss′l and t
′

l t for l = 1, . . . , k. Therefore, to construct k properly edge-
colored paths between s and t in this new graph, all edges ss′l (respectively t

′

l t) must be colored with a different color, other
than those incident to sl or tl in G′ (see Fig. 3(b)). Let G′′ this new 2-edge-colored graph.
In the last step, note that we can have c(ss′a) 6= c(ss

′

b) (analogously c(t
′
at) 6= c(t

′

bt)) for some a, b ∈ {1, . . . , k} and
a 6= b. In addition, by construction of our grids, we can have a properly edge-colored path between s′a and s

′

b in some grid
Gxj for some j ∈ {1, . . . , n}. Therefore, in this case, we can have a properly edge-colored cycle through s (or t) in G

′′ (what
is not allowed by hypothesis). To avoid that in the construction of Gc , it suffices to add auxiliary vertices pi between s and s′i
(respectively, auxiliary vertices qi between t and t ′i ) and conveniently change the colors of edges spi (respectively qit) such
that all edges incident to s (respectively t), have the same color. In this way, the new resulting graph Gc (obtained from G′′)
will contains no properly edge-colored cycles.
Thus, given a truth assignment for B, we obtain a set of k properly edge-colored vertex disjoint s− t paths in the following

manner. If variable xj is true, we select the horizontal paths in the grid Gxj between vertices sia and tia (for a = 1, . . . , p); if xj
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Fig. 3. Reduction using B = (x1 ∨ x2 ∨ x3)∧ (x̄1 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x̄2 ∨ x3). (a) To satisfy the color constraint, we colored all edges incident to s1, s3, t2 and
s2, t1, t3 , respectively, with red and blue colors. (b) To construct Gc we add s and t . All edges incident to s and t must be blue and red, respectively.

Fig. 4. Transformation from the k-pvdp to the k-pedt problem.

is false, we select the vertical paths between sjb and tjb (for b = 1, . . . , q). Note that, if either xj or x̄j occurs in clause Cl, and
is true in the assignment, we have a path between vertices s′l and t

′

l in G
′ and consequently, between s and t in Gc . Therefore,

if B is true, we will have k properly edge-colored vertex-disjoint paths between s and t in Gc , each of them passing by s′l and
t ′l for l = 1, . . . , k.
Conversely, consider a set of k properly edge-colored vertex disjoint s− t paths in Gc . Observe in the grid Gxj that, if we

have a properly edge-colored path between vertices sia and tia′ for a ∈ {1, . . . , p} and a
′
≤ a, the clause Cia and variable

xj will be true. Analogously, if we have a path between sjb and tjb′ for b ∈ {1, . . . , q} and b
′
≤ b, the clause Cjb will be true

and variable xj will be false. Thus, k properly edge-colored vertex disjoint s− t paths will correspond to k true clauses in B.
Therefore, for an arbitrary k ≥ 2, we proved that k-pvdp problem is NP-complete in 2-edge-colored graphs with no properly
edge-colored cycles.
We turn now to the edge-disjoint version (k-pedt) of this problem. We will first consider properly edge-colored s − t

paths and finally conclude with properly edge-colored s − t trails. We can use similar arguments in the construction of Gc
as above. However, we can have 2-edge-disjoint paths between s and t in Gc corresponding to vertical and horizontal paths
in some grid Gx. In another words, we can have a vertex in the intersection of two s − t paths. If this happens, we cannot
determine the value of x in B. To solve this problem, we add a fifth step in the construction of a new 2-edge-colored graph,
say Gcα , obtained from G

c as follows.We change each vertex of Gx (represented by Xab) in the intersection of paths sia− tia for
a = 1, . . . , p (horizontal path) and sjb − tjb for b = 1, . . . , q (vertical path) by 3 new verticesw1, w2 andw3 obtaining a new
gridG′x as described in Fig. 4. In addition, for every gridGx, suppose that vertices va, Xab and vc belong to path sia−tia , vertices
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vb, Xab and vd belong to path sjb − tjb , and c(vaXab) = c(Xabvd) = red and c(vbXab) = c(Xabvc) = blue in G
c . Finally, set

c(w1w2) = blue and c(w2w3) = red in the grids G′x (see Fig. 4). Note that G
c
α with these new grid graphs G

′
x also satisfy both

blocking property and color constraint. Therefore, if we have a path between sia and tia (for some a ∈ {1, . . . , p}) passing by
va and vc , we cannot have a path between sjb and tjb (for some b ∈ {1, . . . , q}) passing by vb and vd inG

c
α (otherwise, both s−t

paths would not be edge-disjoint). Now, to deal with properly edge-colored s− t trails we can replace one or more arbitrary
edges xy of Gcα with some color i ∈ {red, blue} by a colored segment xyz where z is a new vertex between x and y, and 2
additional vertices p, q with edges zp, pq and qz. These edges are colored in the following way: c(xz) = c(zy) = c(pq) = i
and c(zp) = c(qz) 6= i. If we repeat this construction for every grid G′x, we conclude that k-pedt problem is NP-complete in
2-edge-colored graphs with no properly edge-colored cycles.
Finally, to apply this result to 2-edge-colored graphs with no properly edge-colored closed trails (represented by Gcβ ),

it suffices to repeat the construction of steps 1, 2, 3 and 5 as above. Note that, since the forth step was ommited, we can
have properly edge-colored cycles passing by s or t in Gcβ , but no properly edge-colored closed trails. In this way, k properly
edge-colored edge-disjoint s− t trails in Gcβ will be associated to a true assignment for B and vice versa. �

Theorem 3.5. The k-pvdp (respectively, k-pedt) problem remains NP-complete even for graphs withΩ(n) colors and no properly
edge-colored cycles (respectively, closed trails).

Proof. Here, we only deal with the k-pvdp problem, the k-pedt will be analogous. The k-pvdp problem in graphs with n
colors and with no properly edge-colored cycles is obviously in NP. Let Gc be a 2-edge-colored graph with no properly edge-
colored cycles and 2 vertices s, t ∈ V (Gc). Using Gc , we construct a new graph Gc

′

γ with no properly edge-colored cycles
and c ′ ≤ n, such that k properly edge-colored vertex-disjoint s − t paths in Gc , corresponds to k properly edge-colored
vertex-disjoint s− t paths in Gc

′

γ and vice versa.
Firstly, consider a non-colored complete graph G1 = Kn. For every non-colored graph Gi for i = 1, . . . , n − 1, choose

x ∈ V (Gi) and color c(xy) = j for every y ∈ NGi(x) with some color j ∈ {1, 2, . . . , i}. Let Gi = Gi−1 \ {x} (for i ≥ 2) be the
resulting non-colored complete graph. Obviously, the final edge-colored K c

′

n (with c
′
≤ n− 1) obtained in this way contains

no properly edge-colored cycles. Finally, add a new edge pq with p ∈ V (Gc), q ∈ V (K c
′

n ) and a new color c(pq) = c
′
+ 1.

Note that the new graph Gc
′

γ with vertices V (G
c′
γ ) = V (K

c′
n ) ∪ V (G

c) and edges E(Gc
′

γ ) = E(G
c) ∪ E(K c

′

n ) ∪ {xy} contains
no alternating cycles and will have at most n different colors. Therefore, it follows from the preceding theorem (restricted
to 2-edge-colored graphs) that both k-pvdp and k-pedt problems in graphs withΩ(n) colors and no properly edge-colored
cycles/closed trails is NP-complete. �

3.3. Some approximation and polynomial results

In this section, we describe greedy procedures for bothmpedt andmpvdp, based in the determination of shortest properly
edge-colored s − t trails (respectively s − t paths). Their performance ratio are based on the same arguments used for the
Edge/Vertex Disjoint Path problem between k pairs of vertices in non-directed graphs [17,20]. We conclude this section by
presenting some polynomial results for some particular instances of both problems.
At each steep of the greedy procedure for the mpedt problem, we find a shortest properly edge-colored s − t trail T in

Gc . We then delete all edges in this trail and repeat the process until no s− t trails are found. We denote this procedure by
Greedy-ED, for short.
In this section, s − t trails (or paths), means properly edge-colored s − t trails (or paths) for short. Now consider the

following definitions: we say that a s − t trail T1 hits a s − t trail T2, or equivalently, that T2 is hitted by T1, if and only if T1
and T2 share a common edge. If Γ denotes the set of all properly edge-colored s− t trails, we define I ⊆ Γ as the subset of
trails obtained by the greedy procedure and J ⊆ Γ the subset of s− t trails associated to an optimal solution. Then, we have
the following:

Theorem 3.6. Algorithm Greedy-ED has performance ratio equal to O(1/
√
m).

Proof. Let T ∈ Γ be an arbitrary properly edge-colored s−t trail inGc .We say that a s−t trail T ∈ Γ is short if |E(T )| ≤
√
m,

and long otherwise. Therefore, for a trail T ∈ Jlong we have |E(T )| ≥ (
√
m+ 1) and |Jlong |(

√
m+ 1) ≤ m. Thus, w.l.o.g., if we

consider |I| ≥ 1, it follows that |Jlong | <
√
m < |I|

√
m.

Additionally, we can say that every s− t trail Tj ∈ Jshort \ I is hitted by a s− t trail Ti ∈ Ishort , otherwise (if Ti ∈ Ilong ) at the
point when Ti was picked, Tj was available and shorter than Ti and should have been taken by the greedy procedure. Thus,
if Ti is the shortest s− t trail that hits Tj we have |E(Ti)| ≤ |E(Tj)| ≤

√
m.

Now, observe that all s− t trails in Ishort have at most |Ishort |
√
m edges and each Pj ∈ Jshort \ I is hitted by at least one edge

of Ishort . Furthermore, since all s− t trails Tj are edge-disjoint it follows that one edge in Ishort cannot hit more then one s− t
trail Tj. Thus, |Jshort \ I| ≤ |Ishort |

√
m ≤ |I|

√
m.

Finally, we have |J| = |Jshort |+|Jlong | < |(Jshort \I)∪I|+|I|
√
m ≤ (2

√
m+1)|I|which guarantees aO(1/

√
m) performance

ratio for the mpedt problem. �

To give some idea about the determination of the value
√
m above, suppose that a s− t trail T1 hits k s− t trails of J \ I1

at the first step of the Greedy-ED. Note that, one edge of T1 can hit at most one other trail of J and therefore T1 has length at
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Fig. 5. Let Gc be a 2-edge-colored graph. Suppose |E(Ti)| = k+ 2 for i = 1, . . . , k/2. The ratio between Greedy-ED and the optimal solution is 2/k.

least k. Since T1 is a shortest s− t trail, all other trails in J \ I1 also have at least k edges. Therefore, k2 ≤ m, so k =
√
m. This

idea may be inductively applied for the remaining steps of the greedy procedure.
In the Fig. 5, we consider a 2-edge-colored graph Gc with |E(Ti)| = k + 2 for i = 1, . . . , k/2. In this case, since

|E(T0)| = k + 1 (the shortest s − t trail), the Greedy-ED procedure first select T0, hitting k/2 properly edge-colored s − t
trails. Clearly an optimal solution is obtained by choosing trails T1, . . . , Tk/2. Thus 2/k is ratio between the greedy and an
optimal solution where k ≤

√
m.

We turn now to the vertex-disjoint version of the above problem, namely, the Maximum number of Properly Vertex-
Disjoint s− t paths in Gc . We can easily modify the Greedy-VD procedure to solve thempvdp problem. In this case, after the
determination of a shortest s − t path P (instead of a s − t trail T ), it suffices to remove all vertices belonging to P \ {s, t}.
We repeat this process until no more properly edge-colored s− t paths are found. We call this new procedure Greedy-VD.
Using the same ideas as described in Theorem 3.6, we prove the following result:

Theorem 3.7. The Greedy-VD procedure has performance ratio equal to O(1/
√
n) for the mpvdp problem.

We end this section with some polynomial results for some specific families of graphs. To begin with, we introduce the
following definition: given an c-edge-colored graph Gc , we say that a cycle Cx = xa1 . . . ajx with x 6= ai for i = 1, . . . , j is
an almost properly edge-colored cycle (closed trail) through x in Gc , if and only if c(xa1) = c(xaj) and both paths (respectively
trails) x − a1 and x − aj are properly edge-colored . If c(xa1) 6= c(xaj), then Cx define a properly edge-colored cycle (closed
trail) through x. In the sequel, we show how to solve thempvdp (respectively,mpedt) problem in polynomial time for graphs
containing no properly or almost properly edge-colored cycles (respectively, closed trails) through s or t . Notice that to check
if an edge-colored graph Gc contains or not a properly edge-colored or an almost properly edge-colored cycle (closed trail)
through x, it suffices to define an auxiliary graph Gcx obtained from G

c by replacing x with two new vertices xa and xb and
setting NGcx (xa) = NGc (x) and NGcx (xb) = NGc (x). Now, using Theorem 1.2 (respectively, Corollary 2.3) we compute, if any, a
properly edge-colored xa−xb path (trail) in Gcx . Clearly if no such xa−xb path (trail) exists in G

c
x , then there exists no properly

or almost properly edge-colored cycle (closed trail) through x in Gc .
Initially, consider the following decision version associated with mpvdp problem. Given an integer k ≥ 1, we show how

to construct a polynomial time procedure for the k-pvdp in graphs with no (almost) properly edge-colored cycles through s
or t .

Theorem 3.8. Consider an integer k ≥ 1 and a c-edge-colored graph Gc with no (almost) properly colored cycles through s or t.
Then, the k-pvdp problem may be solved in polynomial time.

Proof. Suppose, w.l.o.g., that we do not have (almost) properly edge-colored cycles through vertex s in Gc . Observe in this
case that (almost) properly edge-colored closed trails through s are allowed.
For k = 1, the problem is polynomially solved by Edmonds–Szeider’s Algorithm. For k ≥ 2, we construct an auxiliary

non-colored graph G′ in the following way. As discussed in Section 1, we first defineW = V (Gc) \ {s, t}, and non-colored
graphsGx for every x ∈ W (see the first part in the definition of the Edmonds–Szeider’s graph). Now, define Sk = {s1, . . . , sk},
Tk = {t1, . . . , tk} and proceed as follows:

V (G′) = Sk ∪ Tk ∪

(⋃
x∈W

V (Gx)

)
, and

E(G′) =
⋃
j=1,...,k

(⋃
i∈Ic

(
{sjxi|sx ∈ E i(Gc)} ∪ {xitj|xt ∈ E i(Gc)}

))

∪

(⋃
i∈Ic

{xiyi|xy ∈ E i(Gc)}

)
∪

(⋃
x∈W

E(Gx)

)
.
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Now, find a perfect matchingM (if any) in G′ and contract each subgraph Gx into a single vertex x. Let G′′ this new non-
colored graph. Observe that all si − tj paths in G′′ are defined by edges belonging toM ∩ E(G′′). In addition, we cannot have
a path between si and sj in G′′ (otherwise, we would have a (an almost) properly edge-colored cycle through s in Gc). In this
way, all paths in G′′ begins at vertex si ∈ Sk and finish at some vertex tj ∈ Tk. Finally, we construct a non-colored graph
G′′′ by contracting subsets Sk and Tk respectively to vertices s and t . In this way, note that non-colored s− t paths in G′′′ are
associated to properly edge-colored s− t paths in Gc and vice-versa. Therefore, if the construction of a perfect matchingM
in G′ is possible (what is done in polynomial time), we obtain k properly edge-colored s− t paths in Gc . �

Since the perfect matching problem is solved in polynomial time, we can easily construct a polynomial time procedure
for thempvdp in graphs with no (almost) properly colored cycles through s or t . To do that, it suffices to repeat all the steps
described in Theorem 3.8 for k = 1, . . . , n− 2 until some non-colored graph G′ containing no perfect matchings is found.
The ideas above may be generalized for thempedt in graphs with no (almost) properly colored closed trails through s or

t . Firstly, we deal with its associated decision version.

Theorem 3.9. Consider a constant k ≥ 1 and a c-edge-colored graph Gc with no (almost) properly edge-colored closed trails
through s or t. Then, the k-pedt problem can be solved in polynomial time.

Proof. Given Gc , construct the associated trail-graph p − Hc (as described in Section 2) for p = b(n − 1)/2c. Note that,
no vertices may be visited more than p times in Gc even if they are shared by different properly edge-colored s − t trails.
To see that, consider a vertex x ∈ V (Gc) and a properly edge-colored s − t trail of length 2 through x, all other properly
edge-colored trails through xwill have at least 4 edges, each of them containing at least 2 new vertices in Gc .
Thus, suppose w.l.o.g., that we do not have (almost) properly colored closed trails through vertex s in Gc . Now, using

Theorem 2.2, we can easily prove that Gc contains a (an almost) properly colored closed trail through s, if and only if, Hc
contains a (an almost) properly colored cycle through s1. As a consequence of that, we have no (almost) properly edge-
colored cycles through s1 in p − Hc . Thus, by Theorem 3.8 we can find in polynomial time (if any) k properly edge-colored
paths between s1 and t1 in the graph p − Hc . Now, substituting every subgraph Hcxy in p − H

c by edge xy in Gc we obtain k
properly edge-colored s− t trails in Gc in polynomial time. �

Similarly to the mpvdp problem, to construct a polynomial procedure for the mpedt, it suffices to repeat all the steps
above (in Theorem 3.9) for k = 1, . . . , n− 2 until some non-colored graph associated to p− Hc and containing no perfect
matching is found.

4. Conclusions and open problems

In this work, we have considered path and trail problems in edge-colored graphs. We generalized some previous results
concerning properly edge-colored paths and cycles in edge-colored graphs, which allowed us to devise efficient algorithms
for finding them.On the negative side,weproved that finding kproperly vertex/edge disjoint s−t paths/trails is NP-complete
even for k = 2 and c = Ω(n2). In addition, we showed that both problems remain NP-complete for arbitrary k ≥ 2 in
graphs with no properly edge-colored cycles (closed trails) and c = Ω(n), which led us to investigate approximation. For
that purpose, a procedure formpedt, which greedily builds shortest properly edge-colored s− t trails, was shown to have a
respectable O(1/

√
m) performance ratio. Similarly, we obtained an approximation ratio in O(1/

√
n) for the mpvdp. Finally,

we showed that both mpvdp (mpedt) are solved in polynomial time when restricted to graphs with no (almost) properly
edge-colored cycles (closed trails) through s or t . However, the following questions are left open.
Is the following problem NP-complete?

Problem 4.1. Input: Given a 2-edge-colored graph Gc with no properly edge-colored cycles, two vertices s, t ∈ V (Gc) and a
fixed constant k ≥ 2.
Question: Does Gc contains k properly edge-colored vertex/edge disjoint paths between s and t?

As a future direction, another important question is to consider improved approximation performance ratios (as well
as inapproximability results) for both mpvdp and mpedt for general edge-colored graphs, or for graphs with no properly
edge-colored cycles (closed trails). We conclude our paper by recalling the following open problem from [21].

Problem 4.2. Input: Given a 2-edge-colored complete graph K cn and two vertices s, t ∈ V Question: Does there exist a
polynomial algorithm for finding the maximum number of properly edge-colored edge-disjoint s− t trails in K cn?
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