
Theoretical Computer Science 409 (2008) 557–564

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Playing with Conway’s problem
Emmanuel Jeandel a,b, Nicolas Ollinger b,∗
a LIP, École Normale Supérieure de Lyon, CNRS, 46 allée d’Italie, 69007 Lyon, France
b LIF, Aix-Marseille Université, CNRS, 39 rue Joliot-Curie, 13013 Marseille, France

a r t i c l e i n f o

Article history:
Received 17 October 2005
Received in revised form 15 May 2008
Accepted 15 September 2008
Communicated by B. Durand

Keywords:
Formal languages
Commutation
Centralizer
Undecidability

a b s t r a c t

The centralizer of a language is the maximal language commuting with it. The question,
raised by Conway in [J.H. Conway, Regular Algebra and Finite Machines, Chapman Hall,
1971], whether the centralizer of a rational language is always rational, recently received
a lot of attention. In Kunc [M. Kunc, The power of commuting with finite sets of words,
in: Proc. of STACS 2005, in: LNCS, vol. 3404, Springer, 2005, pp. 569–580], a strong
negative answer to this problem was given by showing that even complete co-recursively
enumerable centralizers exist for finite languages. Using a combinatorial game approach,
we give here an incremental construction of rational languages embedding any recursive
computation in their centralizers.

© 2008 Elsevier B.V. All rights reserved.

In 1999, Choffrut et al. [1] renewed an old problem raised by Conway [2] in 1971: given a rational language, does its
centralizer — the maximal language commuting with it — have to be rational? The property is known to hold for some
particular families of languages. In the case of codes, Ratoandramanana [3] showed in 1989 that it holds for prefix codes,
raising a restriction of Conway’s problem to codes which recently received a positive answer by Karhumäki et al. [4]. In
the general case, until recently, the best known result, by Karhumäki and Petre [5], was that the centralizer of a recursive
language has to be co-recursively enumerable. This propertymay also be considered as a particular case of results of Okhotin
[6] concerning the computational power of systems of equations on languages. For a complete survey on Conway’s problem,
the reader may refer to [7–10]. In 2004, the community was thrilled by an announcement by Kunc [11] that a centralizer
can actually be non-recursive. This announcement was followed by a conference communication [12] in 2005 showing that
finite languages exist whose centralizers are complete for co-recursively enumerable languages.1 It includes a sketch of the
proof for the special case of rational languages. While simpler than the proof for finite languages, this proof is still rather
involved — mostly due to a direct construction of the language encoding a given Minsky machine.
In this paper we propose another proof of the existence of rational languages with non-recursive centralizers. The key

arguments of the proof come from a careful study of the first example in Kunc [12] leading to the core constructions of
our proof: checking and flooding. Our approach significantly differs for two reasons. First, a combinatorial game point of
view is taken through the whole proof. Games are convenient tools to embed a dynamical process like a computation into
a static object like a fix-point. Using this point of view, a computation can be transformed incrementally into a centralizer
by transforming winning strategies from one game to another more specialized game. Secondly, the construction of the
language embedding a particular computation is incremental — explicitly explaining how to compile any program into a
language so that its centralizer corresponds to the computation. Whereas the final proof is by no way shorter than Kunc
original proof, cutting the construction into locally independent propositions improves its readability. Our proof also uses
Post tag systems instead of Minsky machines as Post tag systems are in a way closer to centralizers.

∗ Corresponding author.
E-mail address: Nicolas.Ollinger@lif.univ-mrs.fr (N. Ollinger).
1 Since the writing of the present paper, a journal version appeared in [13].

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.09.026

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:Nicolas.Ollinger@lif.univ-mrs.fr
http://dx.doi.org/10.1016/j.tcs.2008.09.026

558 E. Jeandel, N. Ollinger / Theoretical Computer Science 409 (2008) 557–564

Fig. 1. Graphical representation of a simple cutenation game.

In this paper, the letters Σ and Γ denote finite alphabets. The set of finite words over an alphabet Σ is denoted by Σ?,
the empty word by ε, the catenation of two words x and y by xy and the length of x ∈ Σ? by |x|. A word x is a prefix (resp.
suffix) of a word y, if there exists a word z ∈ Σ? such that xz = y (resp. y = zx); this word z is unique and is denoted as
x−1y (resp. yx−1). A word x is a subword of a word y if there exist two words z, z ′ ∈ Σ? such that zxz ′ = y. A language over
Σ is a subset of Σ?. The product XY of two languages X and Y is the language {xy : x ∈ X, y ∈ Y }. The language of prefixes
(resp. suffixes) of a language X , denoted as Pref(X) (resp. Suff(X)), is the set of all prefixes (resp. suffixes) of words in X . The
language of subwords of a language X , denoted as Sub(X), is the set of all subwords of words in X . The language X−1Y is the
language {z : ∃x ∈ X, ∃y ∈ Y , y = xz}. The language YX−1 is the language {z : ∃x ∈ X, ∃y ∈ Y , y = zx}.
Two languages X and Y commute if the equation XY = YX is satisfied. The set of languages that commute with a given

language X is closed under infinite union. Thus, it admits a unique maximal element for inclusion called the centralizer of
X , denoted by C(X). The centralizer of X always contains X?. Moreover, if X contains the empty word then its centralizer is
equal toΣ?. Otherwise, it is contained in Pref(X?) ∩ Suff(X?).

Conway’s Problem Is C(X) rational if X is rational?

The paper is constructed as follows. In Section 1, a particular family of games called cutenation games are introduced.
These games can be viewed as an extension of tag systems with states, languages constraints on states and the ability to
cut and catenate on both sides of the word. In Section 2, tag systems are encoded into games verifying some regularity
properties. In Section 3, these games are recursively transformed into games with only two states. In Section 4, language
constraints on both states are removed. In Section 5, every parts are glued together to obtain the main result.

1. Cutenation games

In this section cutenation2 games are introduced and their relations with centralizers are explained before sketching the
proof of existence of rational languages with non-recursive centralizers.

1.1. Definition

A cutenation game is a tuple (A,B, L, R, VA, VB) where A and B are finite, both (A,B, L) and (A,B, R) are bipartite
graphs whose edges are tagged with words on Σ (i.e. L, R ⊆ A × B × Σ?) and the mappings VA : A→ Rat(Σ?) and
VB : B→ Rat(Σ?) constraint the positions. Given such a game, an A-configuration (a, x) ∈ A × Σ? verifies x ∈ VA(a). A
pair (a, x) ∈ A × Σ? might not be a valid position of the game. Symmetrically a B-configuration (b, y) ∈ B × Σ? verifies
y ∈ VB(b).
Remark. In this paper we will only consider connected cutenation games, that is cutenation games (A,B, L, R, VA, VB) for
which the bipartite graph (A,B, L ∪ R) is connected.
Notation.We will depict L and R by a graph where A-vertices are represented by black points,B-vertices are represented
by white points, L-edges are represented by plain edges and R-edges are represented by dashed edges (for clarity ε tags will
be omitted).
Example. A sample cutenation game, omitting VA and VB, is depicted on Fig. 1 where A = {α, β, γ , δ}, B = {a, b, c},
L = {(α, b, ε), (α, c, ε), (β, a, ab)} and R = {(α, a, ε), (β, c, ε), (γ , c, ε), (δ, b, baa), (δ, c, ε)}.
A cutenation game is played as an iterated two-player combinatorial game where the set of A-configurations is the set of

positions of the player A and the set of B-configurations is the set of positions of the player B. A move of the player A, from
an A-configuration (a, x) to a B-configuration (b, y), is a catenation:

• Either an l-move (a, x) `A,l (b, zx) such that y = zx and (a, b, z) ∈ L;
• Or an r-move (a, x) `A,r (b, xz) such that y = xz and (a, b, z) ∈ R.

Symmetrically, a move of the player B, from a B-configuration (b, y) to an A-configuration (a, x), is a cut:

2 Cutenation is a free contraction of both words cut and catenation.

E. Jeandel, N. Ollinger / Theoretical Computer Science 409 (2008) 557–564 559

• Either an l-move (b, zx) `B,l (a, x) such that y = zx and (a, b, z) ∈ L;
• Or an r-move (b, xz) `B,r (a, x) such that y = xz and (a, b, z) ∈ R.

A round of the game starts from an A-configuration (a, x) and consists first of a move of the player A from (a, x) to a
B-configuration (b, y), then of a move of the player B from (b, y) to an A-configuration (a′, x′). Furthermore, if A plays an
l-move then Bmust play an r-move and symmetrically if A plays an r-move then Bmust play an l-move. If a player cannot
move then the player loses. The next round will start from (a′, x′). If the game lasts forever then the player Bwins.
Example. For the cutenation game of Fig. 1, this is a valid sequence of consecutive rounds, assuming VA(a) and VB(b) always
equal toΣ?:

1. (β, aa) `A,l (a, abaa) `B,r (α, abaa) ;
2. (α, abaa) `A,l (b, abaa) `B,r (δ, a) ;
3. (δ, a) `A,r (c, a) `B,l (α, a) .

Notice that such a game can be playedwithoutmemory. Thus, a strategy for the player A in this game is simply amapping
from A-configurations to valid moves from the given configuration. The strategy is winning for a given configuration if,
when the player A plays according to the strategy, whatever moves the player B decide to play, the player Awins the game.
Strategies and winning strategies for the player B are defined symmetrically. A configuration is called a winning position for
a given player if there exists a winning strategy from this configuration for this player. The following classical result holds
for these games, we give here a sketch of a proof.

Lemma 1. Starting from an A-configuration (a, x) either the player A has a winning strategy or the player B has a winning
strategy.

Proof. Let (a, x) be an A-configuration for which neither the player A nor the player B has a winning strategy. If every
move from the player A starting from (a, x) would lead to a B-configuration from which the player B could move to an
A-configuration on which the player B has a winning strategy then the position (a, x) would be winning for the player B.
Thus, the player A has a valid move from (a, x) to a B-configuration (b, y) from which the player B can move either to A-
configurations on which the player A has a winning strategy or to A-configurations on which neither the player A nor the
player B has a winning strategy. On such configurations the best moves from both the player A and the player Bwould lead
to an infinite run. By the rules, the player Bwould win which implies that the player B has a winning strategy starting from
(a, x). �

1.2. Languages and centralizers

Given a cutenation game (A,B, L, R, VA, VB) and an element a of A, the language L(a) is the set of words x ∈ Σ? such
that the configuration (a, x) admits a winning strategy for the player B.
In the special case where L, R, VA and VB are recursive, given an element a of A, the language L(a) is co-recursively

enumerable. It follows from the fact that one can exhaustively search a winning strategy for the player A as a finite one
exists — the player B only has finitely many valid moves starting from a B-configuration, as one word has finitely many
subwords.
The centralizer C(X) of a given language X can be expressed as the language L associated with the unique element of A

of the cutenation game where both A andB are singletons, L and R are both equal to the language X , and both VA(a) = Σ?

and VB(b) = Σ?. In the following, we call such a game a commutation game. For the sake of readability, whenmanipulating
cutenation gamewhereA andB are singletons, we will manipulate L, R, VA and VB as subsets ofΣ? and denote the language
associated with the game as L. For the same reasons A-configurations and B-configurations will be considered as elements
ofΣ?.
In order to prove themain result of this paper,wewill proceed through the following steps. First, we restrict ourselves to a

specific subset of special cutenation games. Then, we show how to recursively encode co-recursively enumerable languages
into the language of such a game. After that we proceed to the core of the proof and explain how to transform such special
cutenation game into a commutation game. During this transformation, the language associated with any element of A is
recursively encoded into the language associated with the commutation game of a rational language.

2. Encoding post tag systems

In order to encode every co-recursively enumerable language into the language associated with a commutation game,
the family of cutenation games is first restricted to games with special properties that will allow further reductions; then
Post tag systems are encoded into games verifying these particular properties.

560 E. Jeandel, N. Ollinger / Theoretical Computer Science 409 (2008) 557–564

2.1. Restraining cutenation games

The following special kinds of cutenation games will be used in the proof. The main reason to enforce these properties is
to enable the later encoding of both A andB into L, R, VA and VB.
Unfairness. A cutenation game is unfair if the player A has no constraint. More formally, a cutenation game
(A,B, L, R, VA, VB) over the alphabetΣ is unfair if for all b ∈ B, VB(b) = Σ?.
Rootedness. A cutenation game is rooted if the player A can catenate non-empty words on the left (respectively, on
the right) from at most one position called the left root (respectively, the right root). More formally, a cutenation game
(A,B, L, R, VA, VB) is rooted if there exists a left root aL ∈ A such that for all (a, b, x) ∈ L if x 6= ε then a = aL and there
exists a right root aR ∈ A such that for all (a, b, x) ∈ R if x 6= ε then a = aR.
Oscillation. A cutenation game is oscillating if the player A is enforced to oscillate at each round between l-moves and r-
moves. More formally, a cutenation game (A,B, L, R, VA, VB) is oscillating if the set A can be split into two disjoint sets AL
and AR such that for all (a, b, x) ∈ L necessarily a ∈ AL and for all (a, b, x) ∈ R necessarily a ∈ AR.
Separation. A cutenation game is separated if positions can be viewed as pairs of left and right positions, a left position
being only affected by l-moves and a right position only by r-moves. More formally, a cutenation game (A,B, L, R, VA, VB)
is separated if there exist two sets SL and SR such thatA∪B ⊆ SL×SR and both L and R satisfy the following requirements. For
every move ((s, t), (s′, t ′), x) ∈ L only the left part is modified, so t = t ′. Moreover, for every t ′′ ∈ SR such that (s, t ′′) ∈ A

necessarily (s′, t ′′) ∈ B and the move ((s, t ′′), (s′, t ′′), x)must be in L. Symmetrically, for every move ((s, t), (s′, t ′), x) ∈ R
only the right part is modified, so s = s′. Moreover, for every s′′ ∈ SL such that (s′′, t) ∈ A necessarily (s′′, t ′) ∈ B and the
move ((s′′, t), (s′′, t ′), x)must be in R.
Orientation. A cutenation game is oriented if it is both separated and oscillating and if its left and right positions can be
ordered into minimal and maximal positions, a move changing the corresponding position fromminimal to maximal. More
formally, a cutenation game (A,B, L, R, VA, VB) is oriented if it is both separated and oscillating and if the set SL, respectively
SR, can be split into two disjoint sets S−L and S

+

L , respectively S
−

R and S
+

R , such that AL ⊆ S−L × S
+

R , AR ⊆ S
+

L × S
−

R , and
B ⊆ S+L × S

+

R .

Lemma 2. Let (A,B, L, R, VA, VB) be an oscillating cutenation game. Let νL, symmetrically νR, be the functionmapping an element
of A ∪ B to its connected component in the bipartite graph (A,B, L), symmetrically (A,B, R). If the mapping ν : a 7→

(νR(a), νL(a)) is injective then the given oscillating cutenation game can be considered, up to the isomorphism ν , as a separated
oscillating cutenation game where SL = νR(A ∪B) and SR = νL(A ∪B).

Proof. Let (A,B, L, R, VA, VB) be an oscillating cutenation game satisfying the hypothesis. Let (a, b, x) be in L and let both
(s, t) = ν(a) and (s′, t ′) = ν(b). By definition of νL, as a and b are connected by L then νL(a) = νL(b) thus t = t ′. Moreover,
as the game is oscillating a ∈ AL. Let t ′′ ∈ SR be such that (s, t ′′) = ν(a′) for some a′ ∈ A. By definition of νR this means that
a and a′ are connected by R. As a ∈ AL it implies that a = a′. A symmetrical reasoning applies to R. Therefore, the game is,
up to the isomorphism ν, separated. �

Lemma 3. Let (A,B, L, R, VA, VB) be a separated oscillating cutenation game obtained by Lemma 2. Such a game is oriented.

Proof. Let (A,B, L, R, VA, VB) be a separated oscillating cutenation game obtained by Lemma 2. Let S+L be defined as
{s : ∃t ∈ SR, (s, t) ∈ B} and S−L = SL \ S

+

L . Symmetrically, let S
+

R be defined as {t : ∃s ∈ SL, (s, t) ∈ B} and S−R = SR \ S
+

R . By
construction, the inclusionB ⊆ S+L × S

+

R holds. Let (s, t) be in AL. As the cutenation game is connected there is at least one
move in L involving (s, t) thus t ∈ S+R . Assume that s ∈ S

+

L . This means that there exists some t
′
∈ S+R such that (s, t

′) ∈ B.
By definition of νR necessarily (s, t) and (s, t ′) are connected by R. As the game is oscillating it implies that t = t ′, but A and
B are disjoint. This is a contradiction, therefore smust be in S−L . Symmetrically, the same holds for AR. �

2.2. Post tag systems

A Post tag system P is a triple (Σ, k, ϕ) whereΣ is a finite alphabet, k is a positive integer and ϕ is a mapping fromΣk
to Σ?. A configuration of the system is a word from Σ?. For all y in Σ? and i in Σk, the configuration iy evolves into the
configuration yϕ(i). The computation stops when no further evolution is possible, i.e. when the length of the word is less
than k. The language LP associated with the Post tag system is the set of words for which the evolution eventually stops.
Post tag systems are universal in the sense that one can recursively encode any recursively enumerable language into their
languages. For more details about tag systems and their computational power, the reader might consult Minsky [14].

Proposition 4. Let P be a Post tag system over the alphabet Σ . There exists an unfair rooted oriented cutenation game
(A,B, L, R, VA,Σ?) over the same alphabet such that, for some distinguished element a ∈ A, the languages L(a) and Σ?

\ LP
are equal.

Proof. LetP be a Post tag system (Σ, k, ϕ). The tag systemwill be encoded as a cutenation game (A,B, L, R, VA,Σ?)where

A = {α, η} ∪
⋃
i∈Σk {βi, γi, δi, ζi} ,

B = {a} ∪
⋃
i∈Σk {bi, ci, di}

E. Jeandel, N. Ollinger / Theoretical Computer Science 409 (2008) 557–564 561

Fig. 2. The rooted oriented cutenation game of a Post system.

and the relations L and R are depicted on Fig. 2.
The constraints VA are defined as follows: VA(α) = Σ?, VA(η) = Σ?, and for all i inΣk:

VA(βi) =
(
Σk \ {i}

)
Σ?ϕ(i),

VA(γi) = iΣ?ϕ(i),
VA(δi) = iΣ?ϕ(i),
VA(ζi) = Σ?

\ iΣ?ϕ(i).

This game is unfair and rooted, the roots being α and η. Moreover, it is oscillating and fulfills the requirements of Lemma 2
thus by Lemma 3 it is oriented. It remains to prove thatL(α) equalsΣ?

\ LP .
Let x be a word in LP . A winning strategy for the player A starting from the A-configuration (α, x) is to follow the

computation steps of the Post tag system. If a transition of the tag system exists starting from x then x can be written as
iy with i ∈ Σk. Going through the states bi, ci, di and a, the player A will force the player B to go to the A-configuation
(α, yϕ(i)). If no transition of the tag system exists starting from x, this means that |x| is less than k, the player Amoves to bi
for any i ∈ Σk. The player B has no valid move. The player A wins. Therefore, the player A has a winning strategy starting
from (α, x)with x ∈ LP .
Let x be a word inΣ?

\ LP . A winning strategy for the player B starting from the A-configuration (α, x)works as follows.
In this game the player B has no choice so his strategy is to play when he can. The only possibility for the player B to have
no valid move is to play from some position bi obtained from the position α with a word of length less than k. Observe
that the only possible sequences of moves going from a configuration (α, y) to a configuration (α, z) imply that in the tag
system there is a valid sequence of forward and backward transitions from y to z. Thus, as in the tag system x has an infinite
sequence of valid forward transitions, the position (α, x) is winning for the player B. Therefore, the player B has a winning
strategy starting from (α, x)with x ∈ Σ?

\ LP . �

3. Removing states

In order to transform unfair rooted oriented cutenation games into commutation games, the first step is to transform the
state setsA andB into singletons and to ensure that L = R. This is done by choosing a proper encoding of every configuration
((s, t), x) into a proper word 〈s, x, t〉.

3.1. Encoding states

Let (A,B, L, R, VA, VB) be an unfair rooted oriented cutenation game. We encode each configuration ((s, t), x) into a
proper word 〈s, x, t〉 using the following encoding.
Let m be the size of S−L and Γ

−

L be an alphabet of m − 1 ordered new letters {α1, . . . , αm−1}. Let ρ map S
−

L into
{0, 1, . . . ,m− 1} so that the left coordinate of the left root is mapped into 0. Let ϕ−L map s ∈ S

−

L into the word αρ(s) · · ·α2α1
of lengthρ(s). The encodingϕL(s) of a state s ∈ SL is equal toϕ−L (s)when s ∈ S

−

L . Let n be the size of S
+

L andΓ
+

L be an alphabet
of n ordered new letters {β1, . . . , βn}. Let σ map S+L into {1, . . . , n}. Let ϕ

+

L map s ∈ S
+

L into the word βσ(s)αm−1 · · ·α1 of
lengthm. The encoding ϕL(s) of a state s ∈ SL is equal to ϕ+L (s)when s ∈ S

+

L . For each pair of states (s, s
′) ∈ S−L × S

+

L define
φL(s, s′) as ϕ+L (s

′)ϕ−L (s)
−1, which is βσ(s′)αm−1 · · ·αρ(s)+1. Notice that φL(s, s′) ∈ Γ +L

(
Γ −L

)?.
Symmetrically, letm′ be the size of S−R and Γ

−

R be an alphabet ofm
′
− 1 ordered new letters {γ1, . . . , γm′−1}. Let ρ ′ map

S−R into
{
0, 1, . . . ,m′ − 1

}
so that the right coordinate of the right root is mapped into 0. Let ϕ−R map t ∈ S

−

R into the word
γ1γ2 · · · γρ′(t) of length ρ ′(t). The encoding ϕR(t) of a state t ∈ SR is equal to ϕ−R (t)when t ∈ S

−

R . Let n
′ be the size of S+R and

Γ +R be an alphabet of n
′ ordered new letters {δ1, . . . , δn′}. Let σ ′ map S+R into

{
1, . . . , n′

}
. Let ϕ+R map t ∈ S

+

R into the word

562 E. Jeandel, N. Ollinger / Theoretical Computer Science 409 (2008) 557–564

γ1 · · · γm′−1δσ ′(t) of length m′. The encoding ϕR(t) of a state t ∈ SR is equal to ϕ+R (t) when t ∈ S
+

R . For each pair of states
(t, t ′) ∈ S−R × S

+

R define φR(t, t
′) as ϕ−R (t)

−1ϕ+R (t
′), which is γρ′(t)+1 · · · γm′−1δσ ′(t ′). Notice that φR(t, t ′) ∈

(
Γ −R

)?
Γ +R .

Let τL and τR be the two morphisms from Σ? to (Σ ∪ {o})?, where o is a new letter, defined for each letter a ∈ Σ by
τL(a) = oa and τR(a) = ao. For each word x ∈ Σ? define τ(x) as τL(x)o, which is equal to oτR(x). These morphisms will be
used to encode configurations of the game with two goals in mind: first of all, ensure that no word is encoded as the empty
word; secondly ensure that each encoded word has an odd length.
A configuration ((s, t), x) ∈ (SL × SR)×Σ? of the game will be encoded by the word ϕL(s)τ (x)ϕR(t) denoted as 〈s, x, t〉.

The set Lwill be encoded using the mappingψL defined byψL((s, t), (s′, t), x) = φL(s, s′)τL(x). Symmetrically, the set Rwill
be encoded using the mapping ψR defined by ψR((s, t), (s, t ′), y) = τR(y)φR(t, t ′).
Remark. To summarize, AL-configurations are encoded by words in the language Suff(αm−1 · · ·α1) (oΣ)?oγ1 · · · γm′−1Γ +R ,
symmetrically AR-configurations are encoded by words in Γ +L αm−1 · · ·α1 (oΣ)

?oPref(γ1 · · · γm′−1), and finally, B-
configurations are encoded by words in Γ +L αm−1 · · ·α1 (oΣ)

?oγ1 · · · γm′−1Γ +R .

Proposition 5. Let (A,B, L, R, VA,Σ?) be an unfair rooted oriented cutenation game. Let V ′A be the set {〈s, x, t〉 : (s, t) ∈ A, x ∈
VA((s, t))} and V ′B the set Sub

({
〈s, x, t〉 : x ∈ Σ?, (s, t) ∈ S+L × S

+

R

})
. Let ((s, t), x) be an A-configuration of the game. There

exists a valid l-move for the player A in the cutenation game
(
{a} , {b} , ψL(L), ψR(R), V ′A, V

′

B

)
from the configuration 〈s, x, t〉 to

a configurationw if and only ifw =
〈
s′, y, t ′

〉
for some s′, y, t ′ and the l-move from ((s, t), x) to ((s′, t ′), y) is valid for the player

A in the first game. The same holds for r-moves and B-configurations.

Proof. Let (A,B, L, R, VA,Σ?) be an unfair rooted oriented cutenation game. Let ((s, t), x) be a configuration of the game.
Let ((s′, t ′), y) be a configuration of the game such that a move from ((s, t), x) to ((s′, t ′), y) is valid. Letw =

〈
s′, y, t ′

〉
. If

the move is an l-move for the player A then t = t ′ and ((s, t), (s′, t), z) ∈ L where y = zx, and thus φL(s, s′)τL(z) ∈ ψL(L).
To prove that this move is a valid l-move in the new game, it is sufficient to show that φL(s, s′)τL(z) 〈s, x, t〉 =

〈
s′, y, t ′

〉
. If

(s, t) is the left root then ϕL(s) = ε and φ(s, s′) = ϕL(s′) thus φL(s, s′)τL(z) 〈s, x, t〉 = ϕL(s′)τ (zx)ϕR(t). If (s, t) is not the left
root then z = ε, and therefore φL(s, s′)τL(z) 〈s, x, t〉 = ϕL(s′)τ (x)ϕR(t) as φL(s, s′)ϕL(s) = ϕL(s′). Therefore, if the move is a
valid l-move for the player A in the original game then it is a valid l-move for the player A in the new game. The three other
cases work on the same principle (do not forget to check with VA in the case of a move for the player B).
Let w be a word such that there is a valid move for the player A in the new game from 〈s, x, t〉 to w where (s, t) ∈ A.

If it is an l-move, there exist some s′, s′′ and z such that φL(s′, s′′)τL(z) ∈ ψL(L) and w = φL(s′, s′′)τL(z) 〈s, x, t〉. As w ∈ V ′B
and both s′′ ∈ S+L and t ∈ S

+

R then w =
〈
s′′, y, t

〉
for some y ∈ Σ?. This implies that s = s′ and y = zx. To prove that

there is a valid l-move in the original game for the player A from the configuration ((s, t), x) to the configuration ((s′′, t), zx)
it is sufficient to show that (s′′, t) ∈ B and ((s, t), (s′′, t), z) ∈ L. As φL(s, s′′)τL(z) ∈ ψL(L) there exists some t ′ such
that ((s, t ′), (s′′, t ′), z) ∈ L. As the original game is separated and both (s, t) ∈ A and (s, t ′) ∈ A then (s′′, t) ∈ B and
((s, t), (s′′, t), z) ∈ L. The case of an r-move for the player Aworks symmetrically.
Letw be a word such that there is a valid move for the player B in the new game from 〈s, x, t〉 tow where (s, t) ∈ B. If it

is an l-move then there exists some s′, s′′ and z such that φL(s′, s′′)τL(z) ∈ ψL(L) and φL(s′, s′′)τL(z)w = 〈s, x, t〉. As w ∈ V ′A
and both s ∈ S+L and t ∈ S

+

R then s
′′
= s and w =

〈
s′, y, t

〉
where (s′, t) ∈ A and y ∈ VA((s′, t)) is such that zy = x. To

prove that there is a valid l-move in the original game for the player B from the configuration ((s, t), zy) to the configuration
((s′, t), y) it is sufficient to show that (s′, t) ∈ AL and ((s′, t), (s, t), z) ∈ L. As φL(s′, s)τL(z) ∈ ψL(L) there exists some t ′ such
that ((s′, t ′), (s, t ′), z) ∈ L. As the original game is separated and both (s′, t) ∈ A and (s′, t ′) ∈ A then ((s′, t), (s, t), z) ∈ L.
The case of r-move for the player Bworks symmetrically. �

3.2. Enforcing symmetry

In a commutation gameboth sets of leftmoves L and rightmovesR are equal. If the setsVA andVB bring enough constraints
to the game, both L and R can be replaced by L ∪ R to enforce this symmetry.

Proposition 6. Let ({a} , {b} , L, R, VA, VB) be a cutenation game. Let X be the language L∪ R. If the four sets RVA ∩ VB, VAL∩ VB,
R−1VB∩VA and VBL−1∩VA are empty then the valid moves, both for the player A and the player B, are the same in the given game
and in the cutenation game ({a} , {b} , X, X, VA, VB).

Proof. Every move in the original game is allowed in the new game. Conversely, let x `A,l y be a valid l-move for the player
A in the new game. There exists z ∈ X such that y = zx so y ∈ XVA ∩ VB. As RVA ∩ VB is empty, then z ∈ L and the move is
also valid in the original game. The three remaining cases are similar using the three other empty sets (use VAL∩VB for`A,r ,
use R−1VB ∩ VA for `B,l, and use VBL−1 ∩ VA for `B,r). �

The construction to enforce symmetry can be applied directly after encoding the states as the new encoding verifies the
required hypothesis.

Lemma 7. Let (A,B, L, R, VA,Σ?) be some unfair rooted oriented cutenation game. Let V ′A and V
′

B be defined as in Proposition 5.
Let X be the set ψL(L) ∪ ψR(R). The valid moves for both the player A and the player B are the same in both games(
{a} , {b} , ψL(L), ψR(R), V ′A, V

′

B

)
and

(
{a} , {b} , X, X, V ′A, V

′

B

)
.

E. Jeandel, N. Ollinger / Theoretical Computer Science 409 (2008) 557–564 563

Proof. ByProposition 6 it is sufficient to show that the four setsψR(R)V ′A∩V
′

B,V
′

AψL(L)∩V
′

B,ψR(R)
−1V ′B∩V

′

A, andV
′

BψL(L)
−1
∩V ′A

are empty.
The language ψR(R)V ′A does not intersect V

′

B because every word of ψR(R)V
′

A contains an occurrence of a letter in Γ
+

R
before a letter o and this is never the case in V ′B. A symmetrical proof works for V

′

AψL(L) ∩ V
′

B.
The language ψR(R)−1V ′B does not intersect V

′

A because ψR(R)
−1V ′B only contains the empty word which is not in V

′

A. The
same holds for V ′BψL(L)

−1. �

4. Removing constraints

In order to conclude the construction the constraints sets VA and VB must be removed. This part is the core of the proof.
The construction proceeds in two steps : first we remove VA through checking, then we remove VB through flooding.

4.1. Checking

To remove VA means to remove constraints on the positions at the end of a move from the player B. To ensure that the
set of winning strategies of the player B does not grow, the idea is to allow the player A to challenge the player B if he plays
outside of VA by checking the validity of the move.

Proposition 8. Let ({a} , {b} , X, X, VA, VB) be a cutenation game over the alphabetΣ with associated languageL. Let c be a new
letter not inΣ , let X ′ = X ∪ cV ?A ∪ V

?
A c and V

′

B = VB ∪ cVB ∪ VBc. Let
(
{a} , {b} , X ′, X ′, (Σ ∪ {c})? , V ′B

)
be the cutenation game

over the alphabetΣ ∪{c}with associated languageL′. If the four sets X−1X−1VB, VBX−1X−1,
((
X−1 (VAX ∩ VB)

)
\ VA

)
∩V ?A , and((

(XVA ∩ VB) X−1
)
\ VA

)
∩ V ?A are empty and both inclusions X

−1VB ⊆ VB and VBX−1 ⊆ VB hold thenL is equal toL′ ∩Σ?.

Proof. We prove that the player B has a winning strategy in the original game if and only if the player B has a winning
strategy in the new game.
If the player B had a winning strategy in the original game starting from a given position then he keeps playing according

to his original strategy as long as the player A keeps using moves that were valid in the original game. If the player A uses a
new move from a position x ∈ VA then there are two possibilities:

• Either he catenates a word of X , leading to a new position in V ′B \VB; this is impossible as all the new valid positions must
contain the new letter c which does not appear in X;
• Or he catenates a word of X ′ \ X containing the new letter c , leading to a new valid position y which must be either in
cVB or in VBc; as x ∈ VA and as X ′ \ X = cV ?A ∪ V

?
A c , necessarily y ∈ cV

?
A ∪ V

?
A c and thus y ∈ X

′.

A winning strategy for the player B starting from a position y ∈ X ′ is simply to cut y completely thus leading to the empty
word position. The empty word position is winning for the player B: when the player A catenates a word z, the player B just
cuts z, coming back to the empty word. Therefore, the player B still has a winning strategy in the new game.
If the player A had a winning strategy in the original game starting from a given position then he keeps playing according

to his original strategy as long as the player B keeps using moves that were valid in the original game. If the player B uses a
new move from a position x ∈ VB then there are two possibilities:

• Either he cuts a word of X ′ \ X containing the new letter c; this is impossible as the new letter c does not appear in VB;
• Or he cuts a word of X , leading to a new valid position inΣ?

\ VA, more precisely in((
X−1 (VAX ∩ VB)

)
∪
(
(XVA ∩ VB) X−1

))
\ VA.

A winning strategy for the player A starting from a position y in the language
(
X−1 (VAX ∩ VB)

)
\ VA is simply to catenate

the word c on the right, leading to the valid position yc in VBc . As y 6∈ V ?A and X
−1X−1VB = ∅ the player B has no valid move

starting from yc , thus the player A wins. By a symmetrical argument, the player A has a winning strategy starting from a
position in

(
(XVA ∩ VB) X−1

)
\ VA. Therefore, the player A still has a winning strategy in the game. �

4.2. Flooding

To remove VB means to remove constraints on the positions at the end of a move from the player A. To ensure that the
set of winning strategies of the player A does not grow, the idea is to force every position outside of VB to admit a winning
strategy for the player B by flooding the language X with all words outside of VB.

Proposition 9. Let ({a} , {b} , X, X,Σ?, VB) be a cutenation game over the alphabetΣ with associated languageL. If VB is closed
under subword then the centralizer C(X ∪Σ?

\ VB) is equal toL.

564 E. Jeandel, N. Ollinger / Theoretical Computer Science 409 (2008) 557–564

Proof. We prove that the player B has a winning strategy in the cutenation game if and only if the player B has a winning
strategy in the commutation game of X ∪Σ?

\ VB.
If the player A had a winning strategy in the original game starting from a given position then he keeps playing according

to his original strategy. As VB is closed under subword, starting from a word in VB the player B cannot use a transition in
Σ?
\ VB to cut: the player B has exactly the same possible moves as in the original game. Therefore, the player A still has a

winning strategy in the new game.
If the player B had a winning strategy in the original game starting from a given position then he keeps playing according

to its original strategy as long as the player A keeps using moves that were valid in the original game. If the player A uses a
newmove then, as VB is closed under subword, just after this move the new position is a word inΣ?

\VB. A winning strategy
for the player B starting from a word x inΣ?

\ VB is simply to cut x completely thus accessing to the empty word position.
The empty word position is winning for the player B: when the player A catenates a word y, the player B just cuts y, coming
back to the empty word. Therefore, the player B still has a winning strategy in the new game. �

To combine both checking and flooding to remove the constraints on a game it is sufficient to ensure that the original
constraints VB are closed under subword.

Lemma 10. Let ({a} , {b} , X, X, VA, VB) be a cutenation game over the alphabet Σ with associated language L such that VB is
closed under subword. Let c be a new letter not inΣ , let X ′ = X ∪ cV ?A ∪V

?
A c and V

′

B = VB ∪ cVB ∪VBc. If the four sets X
−1X−1VB,

VBX−1X−1,
((
X−1 (VAX ∩ VB)

)
\ VA

)
∩ V ?A , and

((
(XVA ∩ VB) X−1

)
\ VA

)
∩ V ?A are empty thenL is equal to

C
(
X ∪ cV ?A ∪ V

?
A c ∪ (Σ ∪ {c})

?
\ (VB ∪ cVB ∪ VBc)

)
∩Σ?.

Proof. If VB is closed under subword, so is V ′B = VB ∪ cVB ∪ VBc. To conclude, combine both Propositions 8 and 9. �

5. Gluing all together

We can now conclude the proof of the main statement by combining the three parts of the construction together.

Theorem 11. There exists a rational language X whose centralizer C(X) is complete for co-recursively enumerable languages.

Proof. Let P be a Post tag system, whose language is complete for recursively enumerable languages. Let
(A,B, L, R, VA,Σ?) be the unfair rooted oriented cutenation game obtained by Proposition 4 and such that for some
a ∈ A the equality L(a) = Σ?

\ LP holds. Let
(
{a} , {b} , X, X, V ′A, V

′

B

)
be the cutenation game with language L obtained

by Proposition 5 and Lemma 7 such that the equation L ∩ {〈s, x, t〉 , x ∈ Σ?} = {〈s, x, t〉 , x ∈ Σ?
\ LP } holds for some

(s, t) ∈ A. To combine this cutenation game with Lemma 10, as V ′B is closed under subword it is sufficient to show that
the hypotheses of Proposition 8 are satisfied. More precisely, it is sufficient to show that the four sets X−1X−1V ′B, V

′

BX
−1X−1,((

X−1
(
V ′AX ∩ V

′

B

))
\ V ′A

)
∩V ′?A , and

(((
XV ′A ∩ V

′

B

)
X−1

)
\ V ′A

)
∩V ′?A are empty and both inclusions X

−1V ′B ⊆ V
′

B and V
′

BX
−1
⊆ V ′B

hold. Both inclusions hold because V ′B is closed under subword.
The set X−1X−1V ′B is empty because first ψR(R)

−1V ′B only contains the empty word and X does not contain the empty
word, secondly because ψL(L)−1V ′B contains only the empty word and words which begin with a letter in Γ

−

L ∪ {o} and
words in X never begin with such a letter. Symmetrically, the set V ′BX

−1X−1 is empty.
The set

((
X−1

(
V ′AX ∩ V

′

B

))
\ V ′A

)
∩ V ′?A is empty because all words in the language X

−1
(
V ′AX ∩ V

′

B

)
contain exactly one

occurrence of a letter from Γ +L ∪ Γ
+

R . Symmetrically, the set
(((
XV ′A ∩ V

′

B

)
X−1

)
\ V ′A

)
∩ V ′?A is empty.

Therefore, Lemma 10 can be applied and Σ?
\ LP can be recursively computed from the centralizer of the rational set

X ∪ cV ′?A ∪ V
′?
A c ∪

(
Σ ′ ∪ {c}

)?
\
(
V ′B ∪ cV

′

B ∪ V
′

Bc
)
. As a consequence, the centralizer of this rational language is complete for

co-recursively enumerable languages. �

References

[1] C. Choffrut, J. Karhumäki, N. Ollinger, The commutation of finite sets: A challenging problem, Theoret. Comput. Sci. 273 (2002) 69–79.
[2] J.H. Conway, Regular Algebra and Finite Machines, Chapman Hall, 1971.
[3] B. Ratoandramanana, Codes et motifs, RAIRO Theor. Inform. 23 (1989) 425–444.
[4] J. Karhumäki, M. Latteux, I. Petre, The commutation with codes and ternary sets of words, Theoret. Comput. Sci. 340 (2005) 322–333.
[5] J. Karhumäki, I. Petre, Conway’s problem for three-word sets, Theoret. Comput. Sci. 289 (2002) 705–725.
[6] A. Okhotin, Decision problems for language equationswith boolean operations, in: Proc. of ICALP 2003, in: LNCS, vol. 2719, Springer, 2003, pp. 239–251.
[7] J. Karhumäki, Challenges of commutation: An advertisement, in: Proc. of FCT 2001, in: LNCS, vol. 2138, Springer, 2001, pp. 15–23.
[8] T. Harju, O. Ibarra, J. Karhumäki, A. Salomaa, Decision questions in semilinearity and commutation, J. Comput. System. Sci. 65 (2002) 278–294.
[9] I. Petre, Commutation problems on sets of words and formal power series, Ph.D. thesis, University of Turku, 2002.
[10] J. Karhumäki, I. Petre, Two problems on commutation of languages, in: G. Rozenberg, A. Salomaa (Eds.), Current Trends in Theoretical Computer

Science, World Scientific, 2004.
[11] M. Kunc, Regular solutions of language inequalities and well quasi-orders, in: Proc. of ICALP 2004, in: LNCS, vol. 3142, Springer, 2004, pp. 870–881.
[12] M. Kunc, The power of commuting with finite sets of words, in: Proc. of STACS 2005, in: LNCS, vol. 3404, Springer, 2005, pp. 569–580.
[13] M. Kunc, The power of commuting with finite sets of words, Theory Comput. Syst. 40 (4) (2007) 521–551.
[14] M. Minsky, Computation: Finite and Infinite Machines, Prentice Hall, 1967.

	Playing with Conway's problem
	Cutenation games
	Definition
	Languages and centralizers

	Encoding post tag systems
	Restraining cutenation games
	Post tag systems

	Removing states
	Encoding states
	Enforcing symmetry

	Removing constraints
	Checking
	Flooding

	Gluing all together
	References

