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Abstract

The problem of online multiprocessor scheduling with rejection was introduced by Bartal
et al. (SIAM J. Discrete Math. 13(1) (2000) 64–78). They show that for this problem the
competitive ratio is 1 + � ≈ 2:61803, where � is the golden ratio. A modi6ed model of
multiprocessor scheduling with rejection is presented where preemption is allowed. For this
model, it is shown that better performance is possible. An online algorithm which is (4 +√
10)=3¡ 2:38743-competitive is presented. We prove that the competitive ratio of any online

algorithm is at least 2.12457. We say that an algorithm schedules obliviously if the accepted
jobs are scheduled without knowledge of the rejection penalties. We also show a lower bound
of 2.33246 on the competitive ratio of any online algorithm which schedules obliviously. As a
subroutine in our algorithm, we use a new optimal online algorithm for preemptive scheduling
without rejection. This algorithm never achieves a larger makespan than that of the previously
known algorithm of Chen et al. (Oper. Res. Lett. 18(3) (1995) 127–131), and achieves a smaller
makespan for some inputs. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider the following problem: we have m machines. Jobs arrive periodically and
are scheduled or rejected at a given penalty. The processing time (size) of each job
is known when it arrives, and each job is performed equally well on any machine.
Scheduling occurs online; each job is irrevocably assigned to a machine or rejected
before the next job arrives. By the load of a machine, we mean the sum of the sizes
of the jobs assigned to that machine. The makespan is the maximum machine load.
The cost of a schedule is the makespan plus the sum of the penalties for rejected jobs.
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Competitive analysis is a type of worst-case analysis where the performance of an
online algorithm is compared to that of the optimal oFine algorithm. This approach to
analyzing online problems was initiated by Sleator and Tarjan, who used it to analyze
the List Update problem [16]. The term competitive analysis originated in [12]. For a
given job sequence � let costA(�) be the cost incurred by an algorithm A on �. Let
cost(�) be the cost of the optimal oFine schedule for �. A scheduling algorithm A is
c-competitive if

costA(�)6c cost(�);

for all job sequences �. The in6mum over all c such A is c-competitive is called the
competitive ratio of A. The goal is to 6nd an algorithm with minimal competitive ratio.
We call this problem Multiprocessor Scheduling with Rejection or MSR for short [4].

We also consider the situation where the accepted jobs are preemptively scheduled.
With preemption, a job may be scheduled on multiple machines. A time slot is a non-
empty real interval (t; u] where t¿0. When each job arrives it is rejected or assigned
time slots on one or more machines. The sum of the sizes of these time slots must equal
the size of the job. Further, if a job is assigned to time slots (t1; u1]; (t2; u2]; : : : ; (ti; ui],
then uj6tj+1 for j = 1; : : : ; i− 1. No two jobs may have overlapping time slots on the
same machine. The makespan is the last 6nishing time of any job. Again, the cost of a
schedule is the makespan plus the sum of the penalties for rejected jobs. We call this
problem Preemptive Multiprocessor Scheduling with Rejection or PMSR for short.
The study of multiprocessor online scheduling was initiated by Graham who showed

an algorithm called LIST which is (2−1=m)-competitive. Since Graham’s seminal work,
many researchers have investigated this problem [1–3, 5, 6, 9–11, 14, 15]. The compet-
itive ratio is known to lie in the interval [1:852; 1:923] for large m [1].

Preemptive multiprocessor online scheduling was introduced by Chen et al. [7]. They
present a �(m)-competitive algorithm and a matching lower bound where

�(m) =
�m

�m − 1
; � =

m
m− 1

:

Note that �(m) converges to e=(e− 1) ≈ 1:58197 as m goes to in6nity.
MSR was 6rst studied by Bartal et al. [4]. For m=2, they show a �-competitive

algorithm, called REJECT PENALTY, where �=(1+
√
5)=2 ≈ 1:61803 is the golden ratio.

For m¿2, they present an algorithm, called REJECT TOTAL PENALTY, which achieves a
competitive ratio of

1 +
1− 2

m +
√
5− 8

m + 4
m2

2
: (1)

This approaches 1 + � as m goes to in6nity. Bartal et al. [4] further show a lower
bound of c for MSR where c is a solution of

cm−1 + · · ·+ c0 = cm: (2)
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Table 1
Upper bound results

m � � c

2 1 � − 1 �
3 27=38 29=38 2
4 0.696772 0.751091 2.09948
5 0.689232 0.744497 2.15804
6 0.684465 0.740337 2.19665
7 0.681178 0.737473 2.22403
8 0.678774 0.735381 2.24446
9 0.676939 0.733785 2.26029
10 0.675492 0.732528 2.27292
∞ 2=3 (

√
10− 1)=3 (4 +

√
10)=3

This lower bound also applies to PMSR. For m=2 this implies that the competitive
ratio is at least �; REJECT PENALTY is optimal for m=2 with or without preemption.
As m grows, the solution to (2) approaches 2. Thus a lower bound of 2 holds for
PMSR. Bartal et al. [4] further show a lower bound which approaches 1 + � as m
grows. However, this lower bound does not carry over to the preemptive case.
OFine scheduling with rejection has been studied Bartal et al. [4] and Engels et al.

[8].
The algorithms of Bartal et al. [4] consist of two parts, a rejection scheme, which

decides which jobs are rejected, and a scheduling algorithm, which assigns accepted
jobs to a machine. In [4] the given rejection schemes are combined with Graham’s
LIST algorithm. In fact, the rejection schemes given there can be combined with any
scheduling algorithm. By combining them with algorithms for diLerent scheduling mod-
els, we get new algorithms for scheduling with rejection. We do this for the preemptive
scheduling model. However, the technique we use is general and potentially could be
used in many diLerent scheduling models.
The rejection scheme that we present is a generalization of the REJECT TOTAL PENALTY

scheme of [4]. We combine this scheme with a new preemptive scheduling algorithm,
based on that of Chen et al. [7]. What results is a family of algorithms with two
real parameters, � and �. We show that for a speci6c choice of � and �, we get an
algorithm which is (4 +

√
10)=3¡2:38743-competitive for all m¿2. For small m, we

derive values of � and � which result in better bounds, summarized in Table 1. Further,
we show that for this family of algorithms a lower bound of 2:38518 holds. Therefore,
our algorithm achieves a competitive ratio within 3× 10−3 of the best possible bound
achievable within this family.
We show that the competitive ratio of any online PMSR algorithm is at least 2.12457.

We also show a lower bound for an interesting class of PMSR algorithms: We say that
an algorithm schedules obliviously if the accepted jobs are scheduled without knowledge
of the rejection penalties. We show a lower bound of 2.33246 on the competitive ratio
of any such algorithm. The optimal online algorithm for MSR schedules obliviously
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[4]. It would, therefore, be curious if some algorithm which beats this lower bound
exists.
Finally, we note that our preemptive algorithm is of independent interest. It achieves

the same competitive ratio as that of Chen et al. [7], but outperforms their algorithm
on certain inputs. In fact, we show an example were the makespan of their algorithm
is 10% more than that of our algorithm. The makespan of our algorithm is never larger
than that of theirs.

2. A rejection scheme

Let pj and qj be the processing time and rejection penalty for job j.
A generalization of the REJECT TOTAL PENALTY scheme of Bartal et al. [4] is presented

in Fig. 1. Our scheme is diLerent from that of Bartal et al. [4] in that they 6x �=1.
Combining this scheme with a preemptive algorithm presented in the next section we
get the 6rst algorithm for PMSR.
For 36m610, we use the values of � and � given in Table 1. These values ap-

proximate the solution to the system of equations:

c=
�(m)
�

= 1 + �+
m− 2
m

�;

(3)

�=
�(2− m) +

√
(m− 2)2�2 − 4�m+ 4m2

2m
:

As we shall see in Section 5, this choice of parameters is the best possible one for
our algorithm.
For general m, we would like to use the values given by (3), however the general

form of the solution is too unwieldy. We therefore choose

� =
2
3
; � =

2− m+
√
10m2 − 10m+ 4
3m

: (4)

Fig. 1. A slight variation on the REJECT TOTAL PENALTY scheme.
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We show that this yields a competitive ratio of

max
{
3�(m)

2
; 1 + �+

m− 2
m

�
}
6

4 +
√
10

3
¡ 2:38743;

for all m¿2

3. A new preemptive algorithm

We consider a slightly modi6ed version of the PREEMPTIVE algorithm of Chen et al.
[7].
First we need a few de6nitions. Let J be the set of all jobs in the input. For any

I ⊂ J de6ne

PI =
∑
j∈I

pj; QI =
∑
j∈I

qj; MI =
{
0; if I = ∅;
maxj∈I pj; otherwise:

At any point in the schedule, let the loads on the machines be L16L26 · · ·6Lm.
De6ne

f(x; y) =

{ �(m)
m x; if 1

mx¿y;
m−�(m)
m−1 y + �(m)−1

m−1 x; otherwise:

Note that f is continuous and non-decreasing in both its parameters.
The algorithm, which we call MODIFIED PREEMPTIVE, schedules each job maintaining

the invariants

Lm6f(PJ ;MJ ); (5)

‘∑
i=1

Li6
�‘ − 1
�m − 1

PJ for 16‘6m: (6)

Our invariants diLer from those of [7] in that Chen et al. only require that

Lm6�(m) max
{

1
mPJ ;MJ

}
:

Clearly, if the algorithm is well de6ned, if it can really maintain these invariants, then
the following lemma holds:

Lemma 1. MODIFIED PREEMPTIVE has makespan at most f(PJ ;MJ ) for any sequence
with job set J .

We show that the algorithm is well de6ned in the appendix. As a corollary, note
that this demonstrates that the algorithm is �(m)-competitive since

f(PJ ;MJ )6�(m) max
{

1
mPJ ;MJ

}
6�(m) cost(�);

for all 06MJ6PJ . We explain how each job is scheduled. Essentially, this is un-
changed from [7], but we recapitulate for the reader’s convenience. When a new job
arrives, it is given a time slot on each machine. On the most loaded machine this time
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slot is (Lm; f(PJ ;MJ )]. On each other machine i¡m the slot is (Li; Li+1]. The job is
allotted to time slots greedily, starting with the slot on Lm, next using the slot on Lm−1,
etc. We de6ne k to be the index of the least loaded machine on which some portion
of the job is scheduled. The time slots on machines L1; : : : ; Lk−1 are unused. Possibly,
the slot on machine k is partially used. The slots on Lk+1; : : : ; Lm are fully used.
Although PREEMPTIVE is optimal in terms of the competitive ratio, MODIFIED PREEMP-

TIVE sometimes achieves a better makespan. Essentially, PREEMPTIVE maintains Lm as
large as possible, given the restriction of �(m)-competitiveness. MODIFIED PREEMPTIVE

does the opposite.
This can be seen in the following example for m=2: Consider two jobs of size 3

followed by a job of size 18. After the 6rst two jobs, both algorithms have L2 = 4
and L1 = 2. However, PREEMPTIVE puts the entire third job on the more heavily loaded
machine as it maintains L26�(2) max{18; 24=2}= 4

318=24. Therefore its makespan
is 22. MODIFIED PREEMPTIVE, on the other hand, eLectively puts the entire third job on
the least loaded machine since f(24; 18)=20. Its makespan is 20. PREEMPTIVE is 10%
worse than MODIFIED PREEMPTIVE.
We further show that MODIFIED PREEMPTIVE is never outperformed by PREEMPTIVE:

Theorem 2. There is no input for which the makespan of MODIFIED PREEMPTIVE is
more than the makespan of PREEMPTIVE.

Proof. Let � be any job sequence. We show by induction that the theorem is true after
each job is scheduled. Clearly it holds when no jobs have been scheduled. Let Ji be
the set consisting of the 6rst i jobs in �. After i jobs are scheduled, let the loads in
MODIFIED PREEMPTIVE’s schedule be Ai

16Ai
26 · · ·6Ai

m while the loads in PREEMPTIVE’s
are Bi

16Bi
26 · · ·6Bi

m. Consider the scheduling of the ith job. By the inductive hy-
pothesis we have Bi−1

m ¿Ai−1
m . If Bi

m = �(m) max{(1=m)PJi ; MJi} then

Ai
m6f(PJi ; MJi)6�(m)max

{
1
mPJi ; MJi

}
= Bi

m:

If Bi
m¡�(m) max{(1=m)PJi ; MJi} then the ith job is scheduled entirely on the most

loaded machine by PREEMPTIVE. I.e. Bi
m =Bi−1

m + pi¿Ai−1
m + pi¿Ai

m.

4. An upper bound for REJECT TOTAL PENALTY

Let Ropt be the set of jobs rejected by the optimal oFine algorithm. Let R0 be the
set of jobs with qj6�pj=m. Let R1 be the set of jobs rejected by the algorithm. Note
that by the de6nition of the algorithm we have R0 ⊂R1. We partition J into six subsets
as follows:

X = J − (Ropt ∪ R1); Y = Ropt − R1;

Z = Ropt ∩ (R1 − R0); U = Ropt ∩ R0;

V = R0 − Ropt ; W = (R1 − R0)− Ropt :
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Fig. 2. Relationships among J , U , V , W , X , Y and Z .

The relationships among these sets are illustrated in Fig. 2. Abusing notation, de6ne
M1 =MJ−R1 and Mopt = MJ−Ropt . By Lemma 1, the algorithm’s cost is at most

f(PJ−R1 ; MJ−R1 ) + QR1 = f(PX + PY ;M1) + QW + QZ + QV + QU : (7)

Note that we have encapsulated all important information about our scheduling algo-
rithm in the function f. If we were to change scheduling algorithms or models we
need merely change f. Thus our analysis is quite general.
Since the makespan of any preemptive schedule is at least the average load, and

also at least the size of the largest job, the optimal oFine cost is at least

max
{

1
mPJ−Ropt ; MJ−Ropt

}
+ QRopt = o+ QU + QZ + QY ;

where o is subject to

o¿ 1
m (PW + PX + PV ); o¿Mopt : (8)

Without loss of generality, we assume that the optimal cost is 1, i.e.

o+ QU + QZ + QY = 1: (9)

From the preceding de6nitions and the de6nition of the algorithm we get

PW¿MW ; PY¿MY ; PX¿MX ;

QW¿
�
mPW ; QZ¿

�
mPZ ; QY¿

�
mPY ;

QU6
�
mPU ; QV6

�
mPV ;

Mopt¿MX ; Mopt¿MW :

(10)

We show further constraints on the values of our variables in the following two lemmas:

Lemma 3. For all job sets J;

QW6�MW : (11)
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Proof. Let j be the last job in W to be rejected. At the time it was rejected

T + qj6�pj

held. Since it was the last job in W to be rejected we have QW6T + qj. Certainly we
have pj6MW .

Lemma 4. For all job sets J;

QZ + QW + QY¿�MY : (12)

Proof. There exists a job j∈Y with pj =MY . At the time j was accepted

T + qj¿�pj = �MY

held. Note that QZ + QW¿T and that QY¿qj.

To complete the analysis, we split into 3 cases, based on the relative values of M1,
MX and MY . The 6rst is

M1¿ 1
m (PX + PY );

M1 = MX : (13)

The second is

M1¿ 1
m (PX + PY );

M1 = MY : (14)

The third and 6nal case is

M1 ¡ 1
m (PX + PY ): (15)

The analysis of each case involves bounding the value of a linear program. If we
show that all three linear programs have value at most c, then we have shown that the
algorithm is c-competitive. In each linear program, we seek to maximize (7) subject to
(8)–(12) and the conditions of the case. I.e. either (13), (14) or (15). We call these
three linear programs L1, L2 and L3, respectively. For any 6xed m, we can bound the
values of L1, L2 and L3 by way of a computer program. Using the values of � and
� given in Table 1 we have done exactly that for 36m610. This method of analysis
has proven to be quite useful in that it allowed the author to conjecture the general
form of the solution for large m.
For large m, we need a diLerent approach. We 6x a value � and show that it works

well for all m. The analysis is completed by showing the following three lemmas:

Lemma 5. For � and � as de9ned by (4) L1 has value at most (1=3m)(4m − 2 +√
10m2 − 10m+ 4) for all m¿2.
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Lemma 6. For � and � as de9ned by (4) L2 has value at most (1=3m)(4m − 2 +√
10m2 − 10m+ 4) for all m¿2.

Lemma 7. For � and � as de9ned by (4) L3 has value at most 3�(m)=2 for all m¿2.

The proofs are purely algebraic, and are given in the appendix.

5. A lower bound for REJECT TOTAL PENALTY

We show that the preceding analysis of REJECT TOTAL PENALTY is tight, and that
�=2=3 is a good choice for large m.

Lemma 8. If REJECT TOTAL PENALTY is c-competitive then

c¿1 + max
{
�;

�
m

}
+

m− 2
m

�:

Proof. Consider the sequence consisting of m − 2 jobs of size 1 with penalty �=m,
followed by a job of size 1 with penalty max{�; �=m} and a job of size 1 and in6nite
penalty. REJECT TOTAL PENALTY rejects the 6rst m − 1 jobs and schedules the last. It
pays 1 +max{�; �=m}+ (m− 2)�=m. The adversary schedules all jobs by placing each
on a machine, and so his cost is 1.

Lemma 9. For �6�=m if REJECT TOTAL PENALTY is c-competitive then

c¿(1 +
√
4m− 3)=2:

Proof. Obviously, if �6�=m then m=� is a lower bound on the competitive ratio. From
the previous lemma, so is 1+(m−1)�=m. The minimum of the two bounds is achieved
by picking � to satisfy 1 + (m− 1)�=m=m=�, from which the stated bound follows.

Lemma 10. For � ¿ �=m if REJECT TOTAL PENALTY is c-competitive then

c¿(m− �+ m�)=m�:

Proof. Consider a sequence consisting of two jobs, the 6rst of size 1 with penalty
�=m+ * the second of size x with penalty x�=m+ *, where

x = �=(m�− �):

Note that the choice of x implies that

�
m + �

mx + 2* ¿ �x:
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Therefore, REJECT TOTAL PENALTY rejects the 6rst job and accepts the second. REJECT

TOTAL PENALTY pays �=m+*+x. The adversary rejects both jobs and pays �=m+x�=m+2*.
We have

�=m+ *+ x
�=m+ x�=m+ 2*

=
m�− �2 + m��+ *m(�m− �)

m��+ 2*m(�m− �)
;

which can be made arbitrarily close to the desired bound by choosing suNciently
small *.

Lemma 11. On a sequence of k¿m jobs of size 1; MODIFIED PREEMPTIVE achieves a
makespan of f(k; 1)

The proof is given in the appendix.

Lemma 12. If REJECT TOTAL PENALTY is c-competitive then

c¿�(m)=�:

Proof. Consider a sequence consisting of n jobs of size 1 with penalty �=m+ * where
0 ¡ * ¡ �− �=m. We de6ne

i =
⌊

�
�=m+ *

⌋
:

We have k(�=m + *)¿� for all k¿i. And so the 6rst i jobs are rejected, while the
remaining n− i jobs are accepted. We pick n and * so that n− i¿m. By Lemma 11 the
makespan achieved by MODIFIED PREEMPTIVE is f(n − i; 1). The cost to REJECT TOTAL

PENALTY is therefore i(�=m + *) + f(n − i; 1). The adversary rejects all jobs and pays
n(�=m+ *). Note that

i(�=m+ *) + f(n− i; 1)
n(�=m+ *)

=
i�+ im*+ mf(n− i; 1)

n�+ nm*

=
i�+ im*+ (n− i)�(m)

n�+ nm*

can be made arbitrarily close to �(m)=� by choosing a large enough value for n and
small enough value for *.

Theorem 13. For m¿3; if REJECT TOTAL PENALTY is c-competitive then

c¿min
�

max

{
�(m)
�

;
(m− 2)�+ 2m+

√
(m− 2)2�2 − 4�m+ 4m2

2m

}
:

Proof. First we consider �¿�=m. From Lemma 12 we have c¿�(m)=�. From
Lemmas 8 and 10 we have c¿max{1 + � + (m − 2)�=m, (m − � + m�)=(m�)}. The
6rst lower bound increases with �, while the second decreases for �¡m. Clearly, the
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algorithm is m-competitive for �¿m. For m¿3 the minimum of this expression over
�¿0 is achieved at

� =
�(2− m) +

√
(m− 2)2�2 − 4�m+ 4m2

2m
:

Substituting this value for � gives the bound in the hypothesis of the theorem.
Now consider �6�=m. One can easily verify that the bound in Lemma 9 is greater

than the bound in the hypothesis for m¿3.

Note that this implies that the competitive ratio of REJECT TOTAL PENALTY for arbi-
trarily large m is at least

min
�

max

{
1 +

�+
√

4 + �2

2
;

e
�(e− 1)

}
¿ 2:38518:

The correct choice of � can be found by setting the two expressions in the above
maximum equal, and solving the resulting equation. By picking �=2=3 we achieve a
competitive ratio which exceeds the best possible by less than 3× 10−3 for large m.

6. General lower bounds

In this section, we show lower bounds on the PMSR problem in general. We prove
a lower bound of 2.12457 for the competitive ratio of any online algorithm.
We are able to a show a stronger lower bound for a broad class of PMSR algorithms.

We say that an algorithm schedules obliviously if the accepted jobs are scheduled
without knowledge of the rejection part of the problem. I.e. for each job, the algorithm
6rst decides whether it is accepted or rejected. If the job is accepted, it is given to an
online scheduling algorithm, which learns only the sizes of the jobs given.
Any algorithm which is to beat this lower bound must somehow integrate the rejec-

tion and scheduling processes. The existence of such an algorithm would be somewhat
surprising since no such interaction is required in the MSR problem; in that case the
optimal online algorithm schedules obliviously [4].
It mostly likely is still not intuitively clear to the reader why choosing �¡1 helps

our algorithm. As our 6nal result, we show that �¡1 is in fact necessary for the
improved performance of REJECT TOTAL PENALTY.

The following two lemmas from the literature will prove useful:

Lemma 14 (McNaughton [13]). The optimal o=ine preemptive makespan for any set
of jobs J is exactly max{(1=m)PJ ;Mj}.

Lemma 15 (Chen et al. [7]). For any preemptive online scheduling algorithm A; there
exists a sequence � such that costA(�)¿�(m)cost(�).

We also need the following lemma, which is adapted from [4]:
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Lemma 16. On a sequence beginning with k jobs of penalties x=c; x=c2; : : : ; x=ck all of
size x; any online algorithm which accepts one of the 9rst k jobs is no better than
c-competitive.

Proof. Suppose the algorithm accepts one of the 6rst k jobs. Let i be the index of the
6rst such job. The adversary rejects the 6rst i jobs and the competitive ratio is at least

(
x +

i−1∑
j=1

x
cj

)/
i∑

j=1

x
cj

= c:

In all of the proofs that follow, m is a power of 2 and lg m= log2 m. The main
result of this section is:

Theorem 17. If an algorithm for PMSR is c-competitive for all m then c¿,¿
2:12457 where , is the solution to

, =
(2,+ 1)(,− 1)
2(,2 − ,− 1)

:

Proof. De6ne

x =
2,(,− 2)
,− 1

≈ 0:47068:

Consider the following input sequence:
(1) lg m jobs with penalties 1=,, 1=,2; : : : ; 1=,lg m,
(2) k =m− lg m− 1 jobs with penalty x=k, and
(3) k jobs with in6nite penalty.
All jobs have size 1. If the algorithm accepts one of the 6rst lg m jobs then its

competitive ratio is at least , by Lemma 16. So suppose the 6rst lg m jobs are all
rejected. Suppose that the algorithm rejects yk of the jobs with penalty x=k. If y¿ 1

2
then only one of the in6nite penalty jobs is given. The algorithm’s cost is at least

1 +
x
2
+

lgm∑
j=1

1
,j

= 1 +
x
2
+

1
,− 1

− 1
(,− 1),lgm

¿ 1 +
x
2
+

1
,− 1

− 1
m

= ,− 1
m
:

The adversary schedules all jobs and pays 1 and therefore the competitive ratio is
,− o(1).
If y¡ 1

2 then the algorithm is given the in6nite penalty jobs, one at a time. These
jobs cannot be rejected. If all jobs are given, a total of (1− y)k + k =(2− y)k jobs
are accepted.
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Let ui be the completion time in the algorithm’s schedule for the ith in6nite penalty
job. Let u0 be the maximum completion time over the set of accepted x=k penalty jobs.
De6ne Ui = max06j6i uj. Note that U16U26 · · ·6Uk . We have

k∑
i=1

Ui¿(2− y)m− O(lgm);

which can be seen as follows: For 16i6k, after time Uk−i, at most i jobs remain
and so at most i machines are busy at any point in (Uk−i ; Uk−i+1]. Let T be the total
amount of processing that is completed by the algorithm. The desired inequality now
follows:

(2− y)k6 T

6
k−1∑
i=1

i(Uk−i+1 − Uk−i) + mU1

=
k∑

i=1
Ui + (m− k)U1

=
k∑

i=1
Ui +O(lgm):

We consider the competitive ratio achieved by the algorithm after each of the in6nite
penalty jobs is scheduled. The adversary’s solution when i of the in6nite penalty jobs
are given is to reject i − 1 of the jobs with penalty x=k, and schedule all others.
Since the total number of jobs is m + i − 1, the adversary schedules m jobs and has
makespan 1. Therefore, for all 16i6m we must have

Ui + xy +
lgm∑
j=1

1
,j
6c

(
1 +

x(i − 1)
k

)
:

Summing both sides we get

k∑
i=1

(
Ui + xy +

lgm∑
j=1

1
,j

)
6

k∑
i=1

c
(
1 +

x(i − 1)
k

)
6c

(
k +

xk
2

)
:

We also have

k∑
i=1

(
Ui + xy +

lgm∑
j=1

1
,j

)
=

k∑
i=1

Ui + kxy + k
lgm∑
j=1

1
,j

¿
k∑

i=1
Ui + kxy +

k
,− 1

− k
m

= k(2− y) + kxy +
k

,− 1
− O(lgm)

= 2k − ky(1− x) +
k

,− 1
− O(lgm)

¿
k(3 + x)

2
+

k
,− 1

− O(lgm):
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Combining these facts, we 6nd that

c¿
3
2 +

x
2 +

1
,−1 − O(lgm)=k

1 + x
2

¿
3
2 +

x
2 +

1
,−1

1 + x
2

− O
(
lgm
m

)

=
(2,+ 1)(,− 1)
2(,2 − ,− 1)

− O
(
lgm
m

)

= ,− O
(
lgm
m

)
:

We now consider algorithms which schedule obliviously:

Theorem 18. If an algorithm which schedules obliviously is c-competitive for all m
then

c¿- =
2e− 1 +

√
4e2 − 8e + 5

2(e− 1)
¿ 2:33246:

Proof. Note that -=1=(-−1)+e=(e−1). Suppose the algorithm uses online preemptive
scheduling algorithm A to schedule jobs. By Lemma 15, the exists a sequence � such
that makespan of A on � is at least �(m)cost(�). Further, we assume without loss of
generality that cost(�)= 1 since any sequence can be re-scaled. Consider the follow-
ing input sequence: lg m jobs with penalties y=-; y=-2; : : : ; y=-lg m all of size y=
m=(m − lg m) followed the jobs in � which are all given in6nite penalty. If the al-
gorithm accepts one of the 6rst lg m jobs then its competitive ratio is at least - by
Lemma 16. Suppose the 6rst lg m jobs are all rejected. The algorithm must schedule
the remaining jobs. By de6nition of �, the makespan of the algorithm on these jobs is
at least �(m). The total cost to the algorithm is

�(m) +
lgm∑
j=1

1
-j = �(m) +

1
- − 1

− 1
(- − 1)-lgm¿�(m) +

1
- − 1

− 1
m
:

Using the fact that �m−16e we 6nd that

�(m) = 1 +
1

�m − 1
¿1 +

1
e�− 1

=
e

e− 1

(
1− 1

(e− 1)m+ 1

)

¿
e

e− 1
− 1

m
:

Therefore, the algorithm’s cost is at least

e
e− 1

+
1

- − 1
− 2

m
= - − 2

m
:
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On the other hand, the adversary schedules all jobs and by Theorem 18 pays at most y,
since the largest job is of size y and the total load is at most m + y lgm=my. The
competitive ratio is at least

m− lgm
m

(
- − 2

m

)
¿- − - lgm+ 2

m
= - − O

(
lgm
m

)
:

We say that an algorithm A has absolute threshold x if A rejects all jobs with
qj6(x=m)pj. REJECT TOTAL PENALTY has absolute threshold �. The following theorem
shows that any algorithm with absolute threshold x¿1 has competitive ratio at least
1 + �. The theorem is applicable to almost any imaginable model of scheduling with
rejection. The only fact used about the scheduling problem is that the makespan is at
least the largest processing time.

Theorem 19. If algorithm A has absolute threshold x and is c-competitive for all m
then

c¿ = 1 +
x +

√
4 + x2

2
:

Proof. Note that  =1+x+1=( −1). Consider the following input sequence: lgm jobs
with penalties 1= , 1= 2; : : : ; 1= lg m followed 1 job with in6nite penalty and k =m−
lg m− 1 jobs with penalty x=m. All jobs have size 1. If the algorithm accepts one of
the 6rst lg m jobs then its competitive ratio is at least  by Lemma 16. So suppose
the 6rst lg m jobs are all rejected. The algorithm must schedule the job with in6nite
penalty, and reject the remaining jobs since it has absolute threshold x. The adversary
schedules all jobs and pays 1. The competitive ratio is

1 +
k
m
x +

lgm∑
j=1

1
 j = 1 + x +

1
 − 1

− lgm+ 1
m

x − 1
( − 1) lgm

¿ 1 + x +
1

 − 1
− lgm+ 1

m
x − 1

m

=  − O
(
lgm
m

)
:

7. Conclusions

We have shown how rejection can be incorporated into preemptive multiprocessor
scheduling. Our results imply that an online algorithm can improve its performance
by using preemption. Our algorithm is the natural generalization of the algorithm of
Bartal et al. [4] for non-preemptive scheduling, which has been shown to optimal.
We have also shown a general lower bound of 2.12457 and a lower bound of

2.33246 for any algorithm which schedules obliviously. There are two possibilities,
both of which would be of interest:
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(1) The optimal algorithm schedules obliviously. In that case our algorithm is reason-
ably close to optimal.

(2) The optimal algorithm integrates scheduling and rejection. This would be in sharp
contrast with the situation for MSR.

We have also presented a new optimal online algorithm for preemptive scheduling.
This algorithm outperforms the previously known optimal algorithm on certain inputs
where the worst-case competitive ratio is not achieved.
When rejection is not allowed, scheduling with preemption is much easier and more

well understood than scheduling without preemption. Our surprising conclusion is that
the opposite situation seem to hold when rejection is introduced.
The obvious problem which remains is to improve either the lower or upper bounds

given here. It would seem that the lower bound of 2.12457 for PMSR is weak, but we
have been unable to improve it.
Another open problem is to consider online scheduling with rejection in other models,

perhaps online versions of some of the problems studied in [8].

Appendix A

A.1. Proofs of Lemmas 1 and 11

We now prove that (5) and (6) are maintained when each job is scheduled. The
proof is by induction.
Recall that �=m=(m− 1) and �(m)= �m=(�m − 1).
Certainly (5) and (6) hold before any jobs arrive, and so the basis holds.
For the inductive step, we consider the arrival of a new job j of size s. We assume

without loss of generality that the sum of the sizes of previous jobs is 1. Let x be the
size of the largest of the previous jobs. De6ne x′ =max{x; s}.

Essentially, the following lemma is a modi6cation of Lemma 2 of [7].

Lemma A.1. Job j can be accommodated by the allocated time slots.

Proof. Note that the union of the allocated time slots is (L1; f(PJ ;MJ )]. So we need to
show that L1+s6f(PJ ;MJ )=f(1+s; x′). We have two cases. In the 6rst (1+s)=m¿x′

and we must show

L1 + s6
�(m)
m

(1 + s);

which is true if and only if �(m)−mL1− (m−�(m))s¿0. By the inductive hypothesis
we have L16(�−1)=(�m−1)= (�(m)−1)=(m−1). Further note that (1+ s)=m¿x′¿s
implies s61=(m− 1). We therefore have

�(m)− m(�(m)− 1)
m− 1

− (m− �(m))
m− 1

= 0:
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In the second case we show that

L1 + s6
m− �(m)
m− 1

x′ +
�(m)− 1
m− 1

(1 + s);

which is equivalent to

06
�(m)− m
m− 1

(x′ − s) +
�(m)− 1
m− 1

− L1:

By the inductive hypothesis we have L16(� − 1)=(�m − 1)= (�(m)− 1)=(m− 1) and
so it is suNcient to show that

06
m− �(m)
m− 1

(x′ − s):

Noting that m¿2¿�(m) and x′¿s we are done.

The next lemma is an adaptation of Lemma 3 of [7]:

Lemma A.2. Invariants (5) and (6) hold after job j is scheduled.

Proof. Let Li be the load of machine i before the job, and L′
i be the load after. First

note that L′
m6f(1 + s; x′). Second, note that the load of a machine i¡k does not

increase. Therefore

‘∑
i=1

L′
i =

‘∑
i=1

Li6
�‘ − 1
�m − 1

6
�‘ − 1
�m − 1

(1 + s);

for ‘¡k. We now show that

m∑
i=‘+1

L′
i¿

�m − �‘

�m − 1
(1 + s);

for k6‘6m, which is equivalent to what we want to show. When ‘=m this obviously
holds. For ‘¡m we note that

m∑
i=‘+1

L′
i =

m−1∑
i=‘+1

Li+1 + f(1 + s; x′) =
m∑

i=‘+2
Li + f(1 + s; x′)

¿
�m − �‘+1

�m − 1
+ f(1 + s; x′);

where the last step is by the inductive hypothesis. To 6nish, we show

�m − �‘+1

�m − 1
+ f(1 + s; x′)− �m − �‘

�m − 1
(1 + s)¿0:
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First consider the case where (1 + s)=m¿x′. We have

�m − �‘+1

�m − 1
+ f(1 + s; x′)− �m − �‘

�m − 1
(1 + s)

=
�m − �‘+1

�m − 1
+

�m

m(�m − 1)
(1 + s)− �m − �‘

�m − 1
(1 + s)

=
(1 + s− ms)�m + (m+ ms− �m)�‘

�m − 1

=
(1 + s− ms)�m + (ms− �)�‘

�m − 1
:

Note that (1 + s)=m¿x′¿s implies s61=(m − 1) and therefore ms − �60. Therefore
it is suNcient to show that

(1 + s− ms)�m + (ms− �)�m−1

�m − 1
¿0:

Replacing � with m=(m − 1) in the left-hand side above yields zero exactly. Now
consider the case where (1 + s)=m¡x′. We have

�m − �‘+1

�m − 1
+ f(1 + s; x′)− �m − �‘

�m − 1
(1 + s)

¿
�m − �‘+1

�m − 1
+ f(1 + s; (1 + s)=m)− �m − �‘

�m − 1
(1 + s)

=
�m − �‘+1

�m − 1
+

�m

m(�m − 1)
(1 + s)− �m − �‘

�m − 1
(1 + s);

which is the same as in the 6rst case. The second step above follows from the fact
that f(1 + s; x′) is increasing in x′.

The preceding lemma completes the induction.
To prove Lemma 11, note that Lm6f(PJ ;MJ )=f(k; 1)= k�(m)=m since k¿m. Fur-

ther we have

m−1∑
i=1

Li6
�m−1 − 1
�m − 1

PJ =
�m−1 − 1
�m − 1

k:

Since

�(m)
m

k +
�m−1 − 1
�m − 1

k =
(

�m

m(�m − 1)
+

�m−1 − 1
�m − 1

)
k = k;

and
∑m

i=1 Li = k we must have Lm =f(k; 1).
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A.2. Proofs of Lemmas 5, 6 and 7

First we need the following bounds:

Lemma A.3. For �= 2
3 with � as de9ned by (3) we have

�¿
�
m
; (A.1)

�61; (A.2)

0¿m+ �− �m− �m; (A.3)

0 = �− 2��− m+ �2m+ ��m; (A.4)

0¿�− m+ �(m)m− �m; (A.5)

0¿��m+ �(m)m2 + 2�2m− ��m2 − �2m2 − m2 − �2; (A.6)

0¿��m+ ��(m)m− �(m)m− ��(m); (A.7)

for all m¿2.

Proof. Bounds (A.1)–(A.4) can all be shown algebraically. Relation (A.5) is ver-
i6ed directly for m=2; : : : ; 7. Using the fact that �(m)6 e =(e−1) we verify (A.5)
for m¿7. Relation (A.6) is veri6ed directly for m=2; 3. For m¿4 we again use
�(m)6 e =(e−1) to show (A.6) holds algebraically. Relation (A.7) is veri6ed di-
rectly for m=2; : : : ; 5. For m¿6 we have �(m)¿3=2. Using this fact we verify (A.7)
algebraically.

Proof of Lemma 5. De6ne x=QU +QZ . We bound the objective function above thus:

f(PX + PY ;MX ) + QW + QZ + QV + QU

6f(PX + mQY =�;MX ) + QW + x +
�
m
PV

=
�(m)− 1
m− 1

PX +
m(�(m)− 1)
�(m− 1)

QY +
m− �(m)
m− 1

MX + QW + x +
�
m
PV :

Now note that o=1 − x − QY¿(1=m)(PX + PW + PV )¿(1=m)(PX + QW =� + PV ) and
thus PV6m− mx − mQY − PX − QW =�. Thus the objective function is at most

m− �(m)
m− 1

MX +
�m− �
�m

QW +
�2 − m+ �(m)m− �2m

�(m− 1)
QY

+
�− m+ �(m)m− �m

(m− 1)m
PX + (1− �)x + �:
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Note that by (A.1) we have �m− �¿0 and that o=1− x−QY¿MW¿QW =� implies
QW6�− �x − �QY . Therefore, we get

m− �(m)
m− 1

MX +
��m+ 2�2m− m2 + �(m)m2 − ��m2 − �2m2 − �2

�(m− 1)m
QY

+
�− m+ �(m)m− �m

(m− 1)m
PX +

�+ m− �m− �m
m

x + �+
�(m− 1)

m
:

By (A.5) we have � − m + �(m)m − �m60. Also PX¿MX and we therefore get the
bound

m− �
m

MX +
��m+ 2�2m− m2 + �(m)m2 − ��m2 − �2m2 − �2

�(m− 1)m
QY

+
�+ m− �m− �m

m
x + �+

�(m− 1)
m

:

By Lemma A.3, the coeNcient of MX is positive, while those of QY and x are neg-
ative. We note that o=1 − x − QY¿MX . The objective function is maximized when
MX =1; x=0 and QY =0. The maximum value achieved is

1 + �+
�(m− 2)

m
=

4m− 2 +
√
10m2 − 10m+ 4
3m

:

Proof of Lemma 6. We bound the objective function above thus:

f(PX + PY ;MY ) + QW + QZ + QV + QU

6f(PX + mQY =�;MY ) + QZ + QU + �MW +
�
m
PV

=
�(m)− 1
m− 1

PX +
m(�(m)− 1)
�(m− 1)

QY +
m− �(m)
m− 1

MY + QZ + QU

+ �MW +
�
m
PV :

Now note that o=1−QU −QZ −QY¿(1=m)(PX + PW + PV )¿(1=m)(PX +MW + PV )
and thus PV6m− mQU − mQZ − mQY − PX −MW . Thus the objective function is at
most

�m− �
m

MW +
m− �(m)
m− 1

MY +
�2 − m+ �(m)m− �2m

�(m− 1)
QY

+(1− �)QU + (1− �)QZ +
�− m+ �(m)m− �m

(m− 1)m
PX + �:

Note that 1−�¿0 and that o=1−QZ−QY −QU¿MW implies QU61−QZ−QY −MW .
So we bound the objective function by

�m+ �m− �− m
m

MW +
m− �(m)
m− 1

MY +
�− m+ �(m)m− �m

�(m− 1)
QY

+
�− m+ �(m)m− �m

(m− 1)m
PX + 1:
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By (A.5) we have � − m + �(m)m − �m60. We also have PX¿0 and QY¿�PY =m¿
�MY =m. Therefore it suNces to bound

m− �
m

MY +
�m+ �m− �− m

m
MW + 1:

Now note that (A.3) implies �m + �m − � − m¿0. We have 1 − QZ − QY¿1 −
QZ − QY − QU = o¿MW which implies that 1 − QZ − MW¿QY . From (12) we
have QZ + QW + QY¿�MY which implies QY¿�MY − QZ − QW . We therefore have
1−QZ −MW¿�MY −QZ −QW or equivalently 1−�MY¿MW −QW . Further, we have
QW6�MW and therefore MW6(1− �MY )=(1− �). The objective function is at most

�− 2��− m+ �2m+ ��m
(�− 1)m

MY +
�(m− 1)
(1− �)m

:

Finally, note by (A.4) the objective function is at most

�(m− 1)
(1− �)m

=
4m− 2 +

√
10m2 − 10m+ 4
3m

:

Proof of Lemma 7. Again de6ne x=QU +QZ . We bound the objective function above
thus:

f(PX + PY ;M1) + QW + QZ + QV + QU

6f(PX + PY ;M1) + x + QW +
�
m
PV

=
�(m)
m

PX +
�(m)
m

PY + x + QW +
�
m
PV :

Now note that 1 − x − �PY =m¿1 − x − QY = o¿(1=m)(PX + PW + PV )¿(1=m)(PX +
mQW =�+ PV ) and thus PV6m−mx− �PY − PX −mQW =�. Thus the objective function
is at most

�+
�m− �
�m

QW +
�(m)− �

m
PX +

�(m)− �2

m
PY + (1− �)x:

Note that �(m)− �= �(m)− 2=3¿0. We have 06PV6m− mx − �PY − PX − mQW =�
and so PX6m−mx− �PY −mQW =�. This allows us to bound the objective function by

�(m)(1− �)
m

PY +
�m− �(m)

�m
QW + (1− �(m))x + �(m):

Now note that �(m)(1− �)= �(m)=3 and 1− x− �PY =m¿1− x−QY = o¿MW¿QW =�
implies that PY6m=�− mx=�− mQW =(��). The objective function is at most

��m+ ��(m)m− �(m)m− ��(m)
��m

QW +
�− �(m)

�
x +

�(m)
�

:

Note that � − �(m)= 2=3 − �(m)60 and that by (A.7) the coeNcient of QW is not
positive. Therefore the objective function is at most

�(m)=� = 3�(m)=2:
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