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Abstract

We consider a priority queue of unbounded capacity whose input is the sequence 1; 2; : : : ; n
where each i is given a binary priority. We prove a previously conjectured recurrence for the
number of allowable input–output pairs achievable by such a queue with z items of priority
0; the proof provides a new application of inseparable permutations. We then give upper and
lower bounds for this and deduce that for 3xed z the growth rate is 5(n!logz(n)). We also study
the total number of allowable input–output pairs where the number of items of priority 0 is
not 3xed and provide very tight upper and lower bounds which imply that the growth rate is
5(nn!log(n)). c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Certain aspects of the combinatorics of abstract data types were studied by Knuth
[10], Tarjan [13] and Pratt [12]. Priority queues have long been studied by queuing
theorists, e.g., by Jaiswal [8], and King [9]. In such studies it is natural to consider the
special case of two priorities, see [8] or Leemans [11] (where a two-priority, two-server
model is considered). The study of combinatorial aspects of priority queues has received
attention more recently, e.g., see Atkinson and Thiyagarajah [1], where a priority queue
processing elements with distinct priorities is considered and Atkinson [2] where a
priority queue processing binary elements is considered. Tulley [14] considers several
abstract data types, including priority queues, of both bounded and unbounded capacity
with a variety of input types, including binary and distinct. Work initially inspired
from other areas has also led to the study of priority queues (e.g., [5]). In many cases
links to other combinatorial objects are revealed (e.g., [6, 3]). The discovery of these
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correspondences such as with labelled trees in [6] and ordered trees in [3] is both
pleasing and gives insight into the structure behind the subject. This paper augments
these with the provision of a correspondence between inseparable permutations and
binary priority queues.
We consider a priority queue of unbounded capacity whose input is the sequence

1; 2; : : : ; n where each i is given binary priority �i (with 0 having higher precedence
than 1). If � is a possible output of the queue then we say that (�; �) is allowable (where
� denotes the sequence of priorities of the input items). We consider the cardinality
of the set of input–output pairs that are allowable over all priority assignments, i.e.,

|{(�; �) | � is a binary priority; � is an output sequence and

(�; �) is allowable}|:
This problem has been studied by Tulley [14]. As in [14] we focus on the situation in
which z of the n inputs have priority 0 and denote the number of allowable permutations
by xn; z. We use a notation that switches attention to priorities; the input is viewed as a
word in the alphabet {01; 02; : : : ; 0z ; 11; 12; : : : ; 1n−z} in which the subscripts of the ones
occur in increasing order and, for notational convenience in Section 2, those of the
zeros occur in decreasing order. Thus 1103021201 denotes a sequence of 3ve distinct
elements, the 3rst and fourth of which have priority 1 while the others have priority
0. One possible outcome from this sequence is 1102010312. The sequence 0211031201
is not possible since the queue must contain both 11 and 03 before it can read in the
02 to output it, in which case it cannot output 11 before 03. We use this convention
of indexing zeros from the right to associate a permutation with any rearrangement of
0i ; 0i−1; : : : ; 01, e.g., the rearrangement 010203 of 030201 de3nes the permutation 321.
If 	 is an input word and � is a possible output, we call (	; �) an allowable pair; thus
xn; z is the number of such pairs.
Tulley [14] gives exact formulae and recurrences for xn; z provided z63. It follows

from these that (with z 3xed and n varying)

xn;z = 5(n! logz n)

for z63 and it is conjectured, with further supporting evidence, that the estimate holds
for all z. We establish this conjecture by showing that

n!
z!

logz(n + 1)6xn;z6n!(1 + logz n)

for all n¿z¿0. In fact, the evidence provided in [14] was used to conjecture a recur-
rence for xn; z and we prove the correctness of this in Section 2. Bounds on xn; z are
obtained in Section 3. In Section 4 we study the quantity

sn =
n∑

z=0

xn;z

and provide bounds for it which are much tighter than those for xn; z. In particular
the bounds imply that the growth rate of sn is 5(nn! log(n)). Finally, in Section 5
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we describe brieKy an open question relating to the behaviour of xn; z for 3xed n and
varying z.

2. A recurrence for xn; z

Let �= �1; �2; : : : ; �n be a permutation of 1; 2; : : : ; n. We say that � is inseparable if
for each i, with 16i¡n, the pre3x �1; �2; : : : ; �i of � is not a permutation of 1; 2; : : : ; i.
We denote the number of such permutations by an. A simple argument shows that

a1 = 1;

an = n!−
n−1∑
i=1

i!an−i for n ¿ 1;

e.g., see [4] or [7]. We de3ne the inseparability index of � to be the largest j, with
16j6n, such that �1; �2; : : : ; �j is an inseparable permutation of 1; 2; : : : ; j.

Lemma 1. Let (	; �) be an allowable pair. Then either � ends with some 1r or an
inseparable permutation associated with 0i ; 0i−1; : : : ; 01 for some i.

Proof. Suppose that � does not end with an element of priority 1 and let 0j be in the
sequence of 0’s forming the tail of �. Any elements of priority 1 which follow 0j in
	 must follow 0j in � and so 	 must have the form 	′0j0j−1 : : : 01 since no elements
of priority 1 follow 0j in �. Further, any element of priority 0 that follows 0j in 	
must be in the same block of 0’s as 0j in �. Therefore 0j; 0j−1; : : : ; 01 must all be
in the sequence forming the tail of �. Consequently, the tail of � is a permutation of
0k ; 0k−1; : : : ; 01 for some k¿j and we simply take i to be the index of inseparability
of this permutation.

Lemma 2. Suppose that n¿z. There are nxn−1; z allowable pairs of the form (	; �1i)
for some i.

Proof. Let (	; �) be an allowable pair where 	 has n − 1 symbols, z of which have
priority 0. Then (	; �) can be converted to an allowable pair of the stated form by
inserting a priority 1 element into any of the n possible positions in 	, relabelling any
subsequent priority 1 elements in 	 and �, and appending the new priority 1 element
at the end of �. This is still an allowable pair since the new priority 1 element can be
inserted into the priority queue during the computation of � from 	 and output once
the computation of � has been completed.
On the other hand, any allowable pair of the form (	; �1i), for some i, can be

converted to an allowable pair (	′; �) by removing the 1i from 	 and relabelling each
1j by 1j−1 for all j¿i. It is easily seen that the new pair is allowable.
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Lemma 3. There are aixn−i; z−i allowable pairs of the form (	; ��) where � is an
inseparable permutation of 0i ; 0i−1; : : : ; 01 where 16i6z.

Proof. Let (	; �) be an allowable pair where 	 consists of n− i symbols, z− i of which
have priority 0. Then (	; �) can be converted to a pair of the above form by appending
0i ; 0i−1; : : : ; 01 to 	, relabelling each 0j in 	 by 0j+i and appending any inseparable
permutation of 0i ; 0i−1; : : : ; 01 to �.
Conversely any allowable pair of the above form can be converted to an allowable

pair (	′; �) where 	′ consists of n−i symbols, z−i of which have priority 0, by remov-
ing � from the output sequence, removing the members of � from 	 and relabelling
the remaining elements of priority 0 as appropriate.

Theorem 4. For all n¿z¿0 we have

xn;0 = n!;

xn;n = n!;

xn;z = nxn−1;z +
z∑

i=1

aixn−i;z−i for n ¿ z ¿ 0:

Proof. The 3rst two cases are clear. The 3nal case follows from Lemmas 2 and 3 by
summing over all possible lengths of the inseparable permutation that terminates the
output.

Lemma 5. For all n¿z¿0 we have xn; z6nxn−1; z + zxn−1; z−1.

Proof. It follows from Lemma 2 that it suMces to prove that there are at most zxn−1; z−1

allowable pairs of the form (	; �0i) for some i. According to the proof of Lemma 1,
in any such pair the 0i must be in a block of 0’s at the tail of 	, thus there are at
most z positions that 0i can occupy in 	. If we delete 0i and relabel the remaining 0’s
appropriately we obtain an allowable pair with n − 1 symbols, z − 1 of which have
priority 0.

3. Bounds on xn; z

Throughout we interpret log0(n) as 1 for all n. We shall use the following bounds,
for all n¿2:

log(n − 1) +
1
n

¡ log n ¡ log(n − 1) +
1

n − 1
: (1)
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These follow from

log
(

n
n − 1

)
= log

(
1

1− 1=n

)

=
1
n
+

1
2n2

+
1
3n3

+ · · · :

Lemma 6. The following upper bounds hold:

xn;0 = n!;

xn;n = n!;

xn;16 n!(1 + log n);

xn; z 6 n! logz(n) for n¿6 and z¿2:

Proof. The 3rst two bounds are immediate. The third bound follows by induction on
n. The base case is immediate while for the induction step we have

xn;1 = nxn−1;1 + xn−1;0

6 n!(1 + log(n − 1)) + (n − 1)!

= n!
(
1 + log(n − 1) +

1
n

)

6 n!(1 + log n);

where the last inequality follows from the lower bound in (1).
We prove the 3nal inequality of the lemma by induction on n as well. The base

cases (i.e., n=6 and z=2; 3; 4; 5; 6) follow by direct calculation. The case z= n is also
immediate. Assume now that n¿z¿2 with n¿6. Then

xn;z 6 nxn−1; z + zxn−1; z−1 by Lemma 5

6 n! logz(n − 1) + z(n − 1)! logz−1(n − 1) by induction:

It therefore suMces to prove that

logz n¿ logz(n − 1) +
z
n
logz−1(n − 1)

for all n¿z¿0. Now, using the lower bound in (1), we have

logz(n)¿ logz(n − 1)
(
1 +

1
n log(n − 1)

)z

¿ logz(n − 1)
(
1 +

z
n log(n − 1)

)
:
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Lemma 7. xn; z6n!(1 + logz n).

Proof. The claim follows from Lemma 6 for all values of n; z except for 1¡z¡n¡6
and these cases can be checked by direct calculation.

Lemma 8. i!=26ai6(i − 1)(i − 1)! for all i¿2.

Proof. For the lower bound consider a separable permutation � of 1; 2; : : : ; i with in-
separability index j. We can turn � into an inseparable permutation by swapping i with
�j. It is easy to see that this map is invertible and so ai¿i!=2 as claimed.

For the upper bound we have

ai = i!−
i−1∑
j=1

j!ai−j

6 i!− 1
2

i−1∑
j=1

j!(i − j)!

6 i!− (i − 1)!:

Lemma 9. xn; z6n!(n − z + 1).

Proof. The claim is clearly true for the cases n=0, z= n and z=0 since xn; n = xn;0 = n!.
Otherwise we use induction on n. By Theorem 4 and the induction hypothesis we have

xn; z6n!(n − z) + (n − z + 1)
z∑

i=1

ai(n − i)!:

It therefore suMces to prove that

n!
n − z + 1

¿
z∑

i=1

ai(n − i)!

for 16z6n− 1. We use induction on z. The base case is immediate since a1 = 1. For
the induction step we have

z∑
i=1

ai(n − i)! =
z−1∑
i=1

ai(n − i)! + az(n − z)!

6
n!

n − z + 2
+ (z − 1)(z − 1)!(n − z)!

by the induction hypothesis and Lemma 8. Finally it suMces to show that

n!
n − z + 1

¿
n!

n − z + 2
+ (z − 1)(z − 1)!(n − z)!

which is equivalent to

n!¿(n − z + 2)(z − 1)(z − 1)!(n − z + 1)!:
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This can be rewritten as(
n

z − 1

)
¿(n − z + 2)(z − 1):

This inequality can be veri3ed directly for z= n − 1. For 16z6n − 2 we prove the
inequality by producing (n− z + 2)(z − 1) distinct subsets of {1; 2; : : : ; n} each of size
z−1. For i=1; 2; : : : ; n−z+1 we consider the set Si = {i; i+1; : : : ; i+z−2}. From each Si

we can build a further z−2 distinct sets of size z−1 by replacing each element greater
than i by i+z−1 in turn. All the sets obtained in this way are clearly distinct (consider
minimal elements for sets built from distinct Si; Sj) and so far we have a total of
(n−z+1)(z−1) sets. Finally we consider the set Sn−z+2 = {n−z+2; n−z+3; : : : ; n} and
build a further z−2 sets by replacing each element other than n−z+2 with 1. The sets
built from Sn−z+2 are clearly distinct from any of the sets built from S2; S3; : : : ; Sn−z+1.
In fact, the sets are also distinct from those built from S1 since the maximal element of
each of the latter is z−1 or z while the maximal element of each set built from Sn−z+2

is n− 1 or n and z6n− 2. This brings the total number of sets to (n− z + 2)(z − 1)
as required.

Theorem 10. xn; z6n! min(1 + logz(n); n − z + 1).

Proof. The claim follows from Lemmas 7 and 9.

Theorem 11. xn; z¿(n!=z!) logz(n + 1).

Proof. The claim is trivially true for z=0 and also holds for z= n since n!¿ logn(n+
1); for 16n64 the inequality can be checked directly while for n¿5 it follows from
the fact that n!¿(n=e)n. We now use induction on n; the base case n=0 being imme-
diate. For the induction step we assume that n¿z¿0 and then

xn;z = nxn−1;z +
z∑

i=1

aixn−i;z−i

¿
n!
z!

logz(n) +
z∑

i=1

ai
(n − i)!
(z − i)!

logz−i(n − i + 1):

We show that the 3nal expression is at least as large as (n!=z!) logz(n+1). Now, using
the upper bound of (1), we have

logz(n + 1)6
(
log(n) +

1
n

)z

= logz(n) +
z∑

i=1

(
z
i

)
1
ni logz−i(n):
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It is therefore suMcient to prove that

ai
(n − i)!
(z − i)!

logz−i(n − i + 1)¿
n!
z!

(
z
i

)
1
ni logz−i(n)

for 16i6z. However, the inequality is equivalent to

ai ¿
n!

i!(n − i)!ni

(
log n

log(n − i + 1)

)z−i

=
(n − i + 1)(n − i + 2) · · · n

i!ni

(
log n

log(n − i + 1)

)z−i

:

It therefore suMces to prove that

ai¿
1
i!

(
log n

log(n − i + 1)

)n−i−1

:

Consider n to be 3xed and denote the right-hand side by f(i) where i is a natural
number in the range 16i6n − 2. The proof will be complete provided we show that
f(i) is a non-increasing function of i since f(1)= 1 and of course ai¿1 for all i.
Now

f(i)− f(i + 1) = ((i + 1)! logn−i−1(n − i + 1))−1
(

log(n)
log(n − i)

)n−i−2

((i + 1) log(n) logn−i−2(n − i)− logn−i−1(n − i + 1)):

It therefore suMces to show that the last factor on the right-hand side is non-negative.
In fact, we consider the function

g(n; m) = (n − m + 1) log(n) logm−2(m)− logm−1(m + 1)

for 26m¡n and show that g(n; m)¿0; the required result will then follow by setting
m= n − i. Since g(n; m) is an increasing function of n we simply need to show that
g(m + 1; m)¿0 which is equivalent to(

log(m + 1)
logm

)m−2

62:

Now using the upper bound of (1) we have(
log(m + 1)

logm

)m−2

6
(
1 +

1
m logm

)m−2

=
(
1 +

m − 2
(m − 2)m logm

)m−2

6 e(m−2)=m logm:

To 3nish the proof we show that

m − 2
m logm

6 log 2:
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The derivative of the left-hand side is

1
m logm

(
2
m

− m − 2
m logm

)
;

so that there is a unique turning point when (m − 2)=m logm=2=m which must be a
maximum since (m − 2)=m logm is non-negative for m¿2 and is zero at m=2. Thus
we must show that �¿2= log 2 where � is the root of m − 2 logm − 2. We note that
the last expression is an increasing function of m (bearing in mind that m¿2). First
of all �¿3 since 3− 2 log 3− 2¡0. Now we can use the series

log y = 2

(
y − 1
y + 1

+
1
3

(
y − 1
y + 1

)2

+ · · ·
)

to deduce that log 2¿ 2
3 so that 2= log 2¡3 and thus �¿2= log 2. This completes the

proof.

Corollary 12. For �xed z we have xn; z =5(n! logz n).

Proof. The claim follows from Lemma 7 and Theorem 11.

4. Bounds for sn

Recall that sn =
∑n

z=0 xn; z. Using Theorem 4 it is easy to see that

s0 = 1;

sn = n! + nsn−1 +
n−1∑
i=1

ai(sn−i − (n − i)!) for n ¿ 0:

We set

tn =
sn − n!

n!
;

so that

t0 = 0;

tn = 1 + tn−1 +
1
n!

n−1∑
i=1

ai(n − i)!tn−i for n ¿ 0:

Lemma 13. (1=n!)
∑n−1

i=2 ai(n − i)!tn−i60:531.

Proof. For n698 the claim follows by direct calculation. For n¿99 we proceed as
follows. First note that by Lemma 9

tn6

(
n∑

z=0

n − z + 1

)
− 1 =

1
2
n(n + 3):
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Thus, using this and Lemma 8,

1
n!

n−1∑
i=2

ai(n − i)!tn−i 6
a2(n − 2)!

n!
tn−2 +

a3(n − 3)!
n!

tn−3 +
a4(n − 4)!

n!
tn−4

+
an−2

n!
t2 +

an−1

n!
t1 +

n−3∑
i=5

ai(n − i)!
n!

tn−i

6
1
2
+

3
2n

+
13

2n(n − 1)
+

5(n − 3)
2n(n − 1)(n − 2)

+
n − 2

n(n − 1)

+
n−3∑
i=5

(i − 1)(i − 1)!(n − i)!
2n!

(n − i)(n + 3− i):

We claim that(
m
j

)
¿(m + 1)j(m − j)(m + 3− j)

for m¿98 and 46j6m−4. We prove this by induction on m. For m=98 we can check
by direct calculation. Suppose now that m¿98. If j=4 then the claim is equivalent
to m(m − 1)(m − 2)(m − 3)=24¿4(m + 1)(m − 4)(m − 1), so that it suMces to have
m2 − 98m − 96¿0 and this holds for all m¿49 +

√
2497. For j¿4 we have(

m
j

)
=

m
j

(
m − 1
j − 1

)

¿
m
j
m(j − 1)(m − j)(m + 3− j):

It therefore suMces to show that

m2

m + 1
¿

j2

j − 1
:

The right-hand side is an increasing function of j for j¿2 and so we need only ensure
that the inequality holds for j=m− 4. This is equivalent to 2(m2 − 4m− 8)¿0 which
holds for m¿2 + 2

√
3. This establishes the claim.

Now, using the inequality of the claim with m= n − 1 and j= i − 1 in the bound
preceding the claim, we have

1
n!

n−1∑
i=2

ai(n − i)!tn−i 6
1
2
+

3
2n

+
13

2n(n − 1)
+

5(n − 3)
2n(n − 1)(n − 2)

+
n − 2

n(n − 1)
+

n − 7
2n2

:

This is a decreasing function of n and so its maximum for n¿99 is attained at n=99
which is less than 0:531.
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Theorem 14. (n+ 1)(Hn+1 − 1)6tn61:531(n+ 1)(Hn+1 − 1) where Hm =
∑m

i=1 1=i is
the mth Harmonic number.

Proof. For the lower bound we have t0 = 0=H1 − 1 and, for n¿0,

tn¿ 1 + tn−1 +
a1(n − 1)!

n!
tn−1

= 1 +
n + 1

n
tn−1:

Setting hn = tn=(n + 1) we have h0 = 0 and

hn6
1

n + 1
+ hn−1:

Clearly hn6Hn+1 − 1 and the lower bound for tn follows.
The upper bound clearly holds for n=0 while for n¿0 we have, by Lemma 13

tn61:531 +
n + 1

n
tn−1

and the claim follows by the same argument as for the lower bound.

Corollary 15. (n + 1)(log(n + 1)− 0:5)6tn61:531(n + 1)(log(n + 1)− 0:4).

Proof. The result follows from the preceding theorem and the estimate

Hn = log(n) + � +
1
2n

− 1
12n2

+
1

120n4
−  ; 0 ¡  ¡

1
252n6

;

where �=0:57721 : : : is Euler’s constant (see [10]). The upper bound must be veri3ed
by direct calculation for n621.

It is worth noting here that it seems quite hard to improve on the constants involved
in the preceding corollary. Finally, from the corollary and the de3nition of tn we see
that sn =5(nn! log(n)).

5. Concluding remarks

We have obtained reasonable estimates of xn; z for 3xed n and varying z as well as
very close estimates for sn. The situation where we 3x n and vary z is very intriguing.
Experiments show that xn; z has a unique maximum (for n¿2) and this occurs very
early on. The upper bound of Theorem 10 and the lower bound of Theorem 11 both
exhibit this type of behaviour but they are too far apart to imply this for xn; z. Proving
that xn; z has a unique maximum seems diMcult.



144 K. Kalorkoti, D.H. Tulley / Theoretical Computer Science 262 (2001) 133–144

Acknowledgements

We are grateful to Mike Atkinson for introducing us to this area and for fruitful
discussions. We also thank an anonymous referee whose comments led to a revision
of the paper.

References

[1] M.D. Atkinson, M. Thiyagarajah, The permutational power of a priority queue, BIT 33 (1993) 2–6.
[2] M.D. Atkinson, Transforming binary sequences with priority queues, Order 10 (1993) 31–36.
[3] M.D. Atkinson, D.H. Tulley, Bounded capacity priority queues, Theoret. Comput. Sci. 205 (1997)

145–157.
[4] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, Holland, 1974.
[5] J.D. Gilbey, L.H. Kalikow, Parking functions, valet functions and priority queues, Discrete Math.

197=198 (1999) 351–373.
[6] M. Golin, S. Zaks, Labelled trees and input–output permutations in priority queues, Theoret. Comput.

Sci. 205 (1997) 99–114.
[7] I.P. Goulden, D.M. Jackson, Combinatorial Enumeration, Wiley, New York, 1983.
[8] N.K. Jaiswal, Priority Queues, Academic Press, London, 1968.
[9] P.J.B. King, Computer and Communication Systems Performance Modelling, Prentice-Hall, New York,

1990.
[10] D.E. Knuth, Fundamental Algorithms, The Art of Computer Programming vol. 1, 1 ed., Addison-Wesley,

Reading, MA, 1968 (see also 2nd ed., 1973).
[11] H. Leemans, Queue lengths and waiting times in the two-class two-server queue with nonpreemptive

heterogeneous priority structures, 14th UK Computer and Telecommunications Performance Engineering
Workshop, Department of Computer Science, The University of Edinburgh, 1998, pp. 150–165.

[12] V.R. Pratt, Computing permutations with double-ended queues, 5th ACM Symp. on Theory of
Computing, 1973, pp. 268–277.

[13] R.E. Tarjan, Sorting using networks of queues and stacks, J. Assoc. Comput. Mach. 19 (1972) 341–346.
[14] D.H. Tulley, The combinatorics of abstract container data types, Ph.D. Thesis, School of Mathematical

and Computational Sciences, University of St. Andrews, Scotland, 1996.


