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a b s t r a c t

Recently the second two authors characterized quasiperiodic Sturmian words, proving that
a Sturmian word is non-quasiperiodic if and only if, it is an infinite Lyndon word. Here we
extend this study to episturmian words (a natural generalization of Sturmian words) by
describing all the quasiperiods of an episturmian word, which yields a characterization
of quasiperiodic episturmian words in terms of their directive words. Even further, we
establish a complete characterization of all episturmian words that are Lyndon words.
Our main results show that, unlike the Sturmian case, there is a much wider class of
episturmian words that are non-quasiperiodic, besides those that are infinite Lyndon
words. Our key tools aremorphisms and directive words, in particular normalized directive
words, which we introduced in an earlier paper. Also of importance is the use of return
words to characterize quasiperiodic episturmian words, since such a method could be
useful in other contexts.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Sturmian words are a fascinating family of infinite words defined on a 2-letter alphabet which has been extensively
studied since the pioneering work of Morse and Hedlund in 1940 (see [36]). Over the years, these infinite words have
been shown to have numerous equivalent definitions and characterizations, and their beautiful properties are related to
many fields such as Number Theory, Geometry, Dynamical Systems, and Combinatorics onWords (see [1,31,38,6] for recent
surveys).
Many recent works have been devoted to generalizations of Sturmian words to arbitrary finite alphabets. An especially

interesting generalization is the family of episturmian words, introduced by Droubay, Justin, and Pirillo in 2001 [12] (see
also [23,25] for example). Episturmian words include not only the Sturmian words, but also the well-known Arnoux–
Rauzy sequences (e.g., see [5,24,38,46]). More precisely, the family of episturmian words is composed of the Arnoux–Rauzy
sequences, images of the Arnoux–Rauzy sequences by episturmian morphisms, and certain periodic infinite words. In the
binary case, Arnoux–Rauzy sequences are exactly the Sturmian words whereas episturmian words include all recurrent
balancedwords, that is, periodic balanced words and Sturmian words (see [18,37,44] for recent results relating episturmian
words to the balanced property). See also [17] for a recent survey on episturmian theory.

I This work combines and extends two conference papers, one by the first author [A. Glen, Order and quasiperiodicity in episturmian words, in:
Proceedings of the 6th International Conference onWords,Marseille, France, September 17–21, 2007, pp. 144–158] and the other by the second two authors
[F. Levé, G. Richomme, Quasiperiodic episturmianwords, in: Proceedings of the 6th International Conference onWords,Marseille, France, September 17–21,
2007, pp. 201–211] presented at the Sixth International Conference on Words, Marseille, France, September 17–21, 2007.
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Episturmian morphisms play a central role in the study of episturmian words (Section 2.3 recalls the definition of these
morphisms). Introduced first as a generalization of Sturmianmorphisms, Justin and Pirillo [23] showed that they are exactly
the morphisms that preserve the aperiodic episturmian words. They also proved that any episturmian word is the image of
another episturmianword by some so-called pure episturmianmorphism. Evenmore, any episturmianword can be infinitely
decomposed over the set of pure episturmian morphisms. This last property allows an episturmian word to be defined by
one of its morphic decompositions or, equivalently, by a certain directive word, which is an infinite sequence of rules for
decomposing the given episturmian word by morphisms. In consequence, many properties of episturmian words can be
deduced from properties of episturmian morphisms. This approach is used for instance in [7,16,27,43,44,46] and, of course,
in the papers of Justin et al.
Morphic decompositions of Sturmian words have been used in [29] to characterize quasiperiodic Sturmian words.

Quasiperiodicity of finite words was first introduced by Apostolico and Ehrenfeucht [3] in the following way: ‘‘a word w
is quasiperiodic if there exists a second word u 6= w such that every position of w falls within some occurrence of u in w’’.
The word u is then called a quasiperiod ofw. In the last fifteen years, quasiperiodicity and covering of finite words has been
extensively studied (see [2,21] for some surveys). In [33], Marcus extended this notion to infinite words and opened some
questions, particularly concerning quasiperiodicity of Sturmian words. After a brief answer to some of these questions in
[27], the Sturmian case was fully studied in [29] where it was proved that a Sturmian word is non-quasiperiodic if and only
if, it is an infinite Lyndon word. Here we extend this study to episturmian words.
In Sections 2 and 3, we recall useful results on episturmianwords and their directive words. A particularly important tool

is the normalization ofwords directing the same episturmianword,whichwe recently introduced in [28,19]. This idea allows
an episturmian word to be defined uniquely by its so-called normalized directive word, defined by some factor avoidance.
It can be seen as a generalization of a previous result by Berthé, Holton, and Zamboni [7], which was used in [29] to show
that the directive word of a non-quasiperiodic Sturmian word can take only two possible (similar) forms. For non-binary
episturmian words, even those defined on a ternary alphabet, this simplicity does not hold since a combinatorial explosion
of the number of cases occurs. In particular there exist ternary non-quasiperiodic episturmian words that have infinitely
many directive words. As such, the method we use to characterize quasiperiodic episturmian words greatly differs from the
one in the Sturmian case.
In Section 4, we characterize quasiperiodic episturmian words. To prove it, we introduce a new way to tackle

quasiperiodicity by stating an equivalent definition that is related to the notion of return words. From this, we show that
any standard episturmian word (or epistandard word) is quasiperiodic; in particular, sufficiently long palindromic prefixes
of an epistandardword are quasiperiods of it.We then extend this result by describing the quasiperiods of any (quasiperiodic)
episturmian word (see Theorem 4.19). This yields a characterization of quasiperiodic episturmian words in terms of their
directive words (Theorem 4.28). Note that the set of quasiperiods of an episturmian word was previously described only
for the Fibonacci word [27]. (In [29] this set was not described for quasiperiodic Sturmian words). At the end of Section 4,
using the normalization aspect, we give a second characterization of quasiperiodic episturmian words which itself provides
an effective way to decide whether or not a given episturmian word is quasiperiodic (see Theorem 4.29).
Section 5 is concerned with the study of the action of episturmian morphisms in relation to quasiperiodicity. This study

leads to non-trivial extensions of results in [29]. Using this approach, we provide a completely different proof of our main
characterization of quasiperiodic episturmianwords.We also characterize episturmianmorphisms that map anyword onto
a quasiperiodic one (see Section 5.4). This result naturally allows us to consider quasiperiodicity of words defined using
episturmian morphisms.
Lastly, in Section 6, we characterize episturmian Lyndon words in terms of their directive words. This result shows that,

unlike the Sturmian case, there exist non-quasiperiodic episturmian words that are not infinite Lyndon words.

2. Episturmian words and morphisms

Weassume the reader is familiarwith combinatorics onwords andmorphisms (e.g., see [30,31]). In this section, we recall
some basic definitions and properties relating to episturmian words which are needed throughout the paper. For the most
part, we follow the notation and terminology of [12,23,25,18].

2.1. Notation and terminology

Let A denote a finite non-empty alphabet. A finite word over A is a finite sequence of letters from A. The empty word
ε is the empty sequence. Under the operation of concatenation, the set A∗ of all finite words over A is a free monoid with
identity element ε and set of generatorsA. The set of non-emptywords overA is the free semigroupA+ = A∗ \ {ε}.
Given a finite wordw = x1x2 · · · xm ∈ A+ with each xi ∈ A, the length ofw, denoted by |w|, is equal tom. By convention,

the empty word is the unique word of length 0. We denote by |w|a the number of occurrences of the letter a in the wordw.
If |w|a = 0, thenw is said to be a-free. The reversal ofw, denoted by w̃, is its mirror image: w̃ = xmxm−1 · · · x1, and ifw = w̃,
thenw is called a palindrome.
A (right) infinite word (or simply sequence) x is a sequence indexed by N+ with values in A, i.e., x = x1x2x3 · · · with

each xi ∈ A. The set of all infinite words over A is denoted by Aω . An ultimately periodic infinite word can be written as
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uvω = uvvv · · · , for some u, v ∈ A∗, v 6= ε. If u = ε, then such a word is (purely) periodic. An infinite word that is
not ultimately periodic is said to be aperiodic. For easier reading, infinite words are hereafter typically typed in boldface to
distinguish them from finite words.
Given a setX of finitewords,X∗ (resp.Xω) is the set of all finite (resp. infinite)words that can be obtained by concatenating

words of X . The empty word ε belongs to X∗.
A finite wordw is a factor of a finite or infinite word z if z = uwv for somewords u, v (where v is infinite iff, z is infinite).

In the special case u = ε (resp. v = ε), we callw a prefix (resp. suffix) of z. We use the notation p−1w (resp.ws−1) to indicate
the removal of a prefix p (resp. suffix s) of the word w. An infinite word x ∈ Aω is called a suffix of z ∈ Aω if there exists
a word w ∈ A∗ such that z = wx. That is, x is a shift of z, given by x = T|w|(z) = w−1z, where T denotes the shift map:
T((xn)n≥1) = (xn+1)n≥1. Note that a prefix or suffix u of a finite or infinite word w is said to be proper if u 6= w. For finite
wordsw ∈ A∗, the shift map T acts circularly, i.e., ifw = xv where x ∈ A, then T(w) = vx.
The alphabet of a finite or infinite wordw, denoted by Alph(w) is the set of letters occurring inw, and ifw is infinite, we

denote by Ult(w) the set of all letters occurring infinitely often inw.
A factor of an infinite word x is recurrent in x if it occurs infinitely often in x, and x itself is said to be recurrent if all of

its factors are recurrent in it. Furthermore, x is uniformly recurrent if for each n there exists a positive integer K(n) such that
any factor of x of length at least K(n) contains all factors of x of length n. Equivalently, x is uniformly recurrent if any factor
of x occurs infinitely many times in xwith bounded gaps [9].

2.2. Episturmian words

In this paper, our vision of episturmian words will be the characteristic property stated in Theorem 2.1. However, we
first give one of their equivalent definitions to aid in understanding. For this, we recall that a factor u of a finite or infinite
wordw ∈ A∞ is right (resp. left) special if ua, ub (resp. au, bu) are factors ofw for some letters a, b ∈ A, a 6= b.
An infinite word t ∈ Aω is episturmian if its set of factors is closed under reversal and t has at most one right (or

equivalently left) special factor of each length. Moreover, an episturmian word is standard if all of its left special factors
are prefixes of it.
In the initiating paper [12], episturmian words were defined as an extension of standard episturmian words, which

were themselves first introduced and studied as a generalization of standard Sturmian words using palindromic closure
(see Theorem 4.5). Specifically, an infinite word was said to be episturmian if it has exactly the same set of factors as some
standard episturmian word [12]. This definition is equivalent to the aforementioned one by Theorem 5 in [12]. Moreover,
it was proved in [12] that episturmian words are uniformly recurrent. Hence ultimately periodic episturmian words are
(purely) periodic.

Note. Hereafter, we refer to a standard episturmian word as an epistandard word, for simplicity.

To study episturmianwords, Justin and Pirillo [23] introduced episturmianmorphisms. In particular they proved that these
morphisms, which we recall below, are precisely the morphisms that preserve the set of aperiodic episturmian words.

2.3. Episturmian morphisms

Let us recall that given an alphabet A, a morphism f on A is a map from A∗ to A∗ such that f (uv) = f (u)f (v) for any
words u, v over A. A morphism on A is entirely defined by the images of letters in A. All morphisms considered in this
paper will be non-erasing: the image of any non-empty word is never empty. Hence the action of a morphism f onA∗ can
be naturally extended to infinite words; that is, if x = x1x2x3 · · · ∈ Aω , then f (x) = f (x1)f (x2)f (x3) · · · .
In what follows, we will denote the composition of morphisms by juxtaposition as for concatenation of words.
Episturmianmorphisms are the compositions of the permutationmorphisms (i.e., themorphisms f such that f (A) = A)

and the morphisms La and Ra where, for all a ∈ A:

La :
{
a 7→ a
b 7→ ab , Ra :

{
a 7→ a
b 7→ ba for all b 6= a inA.

Here, we will work only on pure episturmian morphisms, i.e., morphisms obtained by composition of elements of the sets:

LA = {La | a ∈ A} and RA = {Ra | a ∈ A}.

Note. In [23], themorphism La (resp. Ra) is denoted byψa (resp. ψ̄a). We adopt the current notation to emphasize the action
of La (resp. Ra) when applied to a word, which consists of placing an occurrence of the letter a on the left (resp. right) of each
occurrence of any letter different from a.

Epistandard morphisms (resp. pure episturmian morphisms, pure epistandard morphisms) are the morphisms obtained by
concatenation ofmorphisms inLA and permutations onA (resp. inLA∪RA, inLA). Note that the episturmianmorphisms
are exactly the Sturmian morphismswhenA is a 2-letter alphabet.



A. Glen et al. / Theoretical Computer Science 409 (2008) 578–600 581

2.4. Morphic decomposition of episturmian words

Justin and Pirillo [23] proved the following insightful characterizations of epistandard and episturmian words (see
Theorem 2.1), which show that any episturmian word can be infinitely decomposed over the set of pure episturmian
morphisms.
The statement of Theorem 2.1 needs some extra definitions and notation. First, we define the following new alphabet,

Ā = {x̄ | x ∈ A}. A letter x̄ is considered to be xwith spin R, whilst x itself has spin L. A finite or infinite word overA ∪ Ā is
called a spinnedword. To ease the reading, we sometimes call a letterwith spin L (resp. spin R) an L-spinned (resp. R-spinned)
letter. By extension, an L-spinned (resp. R-spinned) word is a word having only letters with spin L (resp. spin R).
The opposite w̄ of a finite or infinite spinned word w is obtained from w by exchanging all spins in w. For instance, if

v = abā, then v̄ = āb̄a. When v ∈ A+, then its opposite v̄ ∈ Ā+ is an R-spinned word and we set ε̄ = ε. Note that, given a
finite or infinite word w = w1w2 · · · overA, we sometimes denote w̆ = w̆1w̆2 · · · any spinned word such that w̆i = wi if
w̆i has spin L and w̆i = w̄i if w̆i has spin R. Such a word w̆ is called a spinned version ofw.

Note. In Justin and Pirillo’s original papers, spins are 0 and 1 instead of L and R. It is convenient here to change this vision
of the spins because of the relationship with episturmian morphisms, which we now recall.

For a ∈ A, let µa = La and µā = Ra. This operator µ can be naturally extended (as done in [23]) to a morphism
mapping any word over (A ∪ Ā) into a pure episturmian morphism: for a spinned finite word w̆ = w̆1 · · · w̆n overA ∪ Ā,
µw̆ = µw̆1 · · ·µw̆n (µε is the identity morphism). We will say that the wordw directs or is a directive word of the morphism
µw . The following result extends the notion of directive words to infinite episturmian words.

Theorem 2.1 ([23]). (i) An infinite word s ∈ Aω is epistandard if and only if, there exists an infinite word∆ = x1x2x3 · · · over
A and an infinite sequence (s(n))n≥0 of infinite words such that s(0) = s and for all n ≥ 1, s(n−1) = µxn(s(n)) (=Lxn(s(n))).

(ii) An infinite word t ∈ Aω is episturmian if and only if, there exists a spinned infinite word ∆̆ = x̆1x̆2x̆3 · · · overA ∪ Ā and
an infinite sequence (t(n))n≥0 of recurrent infinite words such that t(0) = t and for all n ≥ 1, t(n−1) = µx̆n(t(n)).

For any epistandard word (resp. episturmian word) t and L-spinned (resp. spinned) infinite word ∆ (resp. ∆̆) satisfying
the conditions of the above theorem, we say that ∆ (resp. ∆̆) is a (spinned) directive word for t or that t is directed by ∆
(resp. ∆̆).

Remark 2.2. It follows immediately from Theorem 2.1 that if t is an episturmian word directed by a spinned infinite word
∆̆, then each t(n) (as defined in part (ii)) is an episturmian word directed by Tn(∆̆) = x̆n+1x̆n+2x̆n+3 · · · .

By Theorem 1 in [12] (see also Theorem 4.5), any epistandard word has a unique L-spinned directive word, but also has
infinitely many other directive words (see [23,25,19]). For example, the Tribonacci word (or Rauzy word [39]) is directed by
(abc)ω and also by (abc)nāb̄c̄(ab̄c̄)ω for each n ≥ 0, as well as infinitely many other spinned words. More generally, by
Proposition 3.11 in [23], any spinned infinite word ∆̆ having infinitely many L-spinned letters directs a unique episturmian
word t beginning with the left-most L-spinned letter in ∆̆. Moreover, by one of the main results in [19] (see Theorem 3.2), t
has infinitely many other directive words.
The following important fact links the two parts of Theorem 2.1.

Fact 2.3 ([23]). If t is an episturmian word directed by a spinned version ∆̆ of an L-spinned infinite word ∆, then t has
exactly the same set of factors as the (unique) epistandard word s directed by∆.

Moreover,with the samenotation as in the above remark, the episturmianword t is periodic if and only if, the epistandard
word s is periodic, and this holds if and only if |Ult(∆)| = 1 (see [23, Prop. 2.9]). More precisely, a periodic episturmianword
takes the form (µw̆(x))ω for some finite spinned word w̆ and letter x.

Note. Sturmian words are precisely the aperiodic episturmian words on a 2-letter alphabet.

When an episturmian word is aperiodic, we have the following fundamental link between the words (t(n))n≥0 and the
spinned infinite word ∆̆ occurring in Theorem 2.1: if an is the first letter of t(n), then µx̆1···x̆n(an) is a prefix of t and the
sequence (µx̆1···x̆n(an))n≥1 is not ultimately constant (since ∆̆ is not ultimately constant), then t = limn→∞ µx̆1···x̆n(an). This
fact is a slight generalization of a result of Risley and Zamboni [46, Prop. III.7] on S-adic representations for characteristic
Arnoux–Rauzy sequences. See also the recent paper [7] for S-adic representations of Sturmian words. Note that S-adic
dynamical systemswere introducedby Ferenczi [14] asminimal dynamical systems (e.g., see [38]) generated by a finite number
of substitutions. In the case of episturmianwords, the notion itself is actually a reformulation of the well-known Rauzy rules,
as studied in [40]. In fact, it is well-known that the subshift of an aperiodic episturmianword t (i.e., the topological closure of
the shift orbit of t) is aminimal dynamical system, i.e., it consists of all the episturmianwordswith the same set of factors as t.
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3. Useful results on directive words

Notions concerning directive words of episturmian words and morphisms have been recalled in the previous section.
Two natural questions concerning these words are: when do two distinct finite spinned words direct the same episturmian
morphism?When do two distinct spinned infinite words direct the same unique episturmianword? In this sectionwe recall
existing answers to these questions.We also present away to uniquely define any episturmianword through a normalization
of its directive words. This powerful tool was recently introduced in our papers [19,28].

3.1. Presentation versus block-equivalence

Generalizing a study of themonoid of Sturmianmorphisms by Séébold [47], the third author [41] answered the question:
‘‘When do two distinct finite spinnedwords direct the same episturmianmorphism?’’ by giving a presentation of themonoid
of episturmian morphisms. This result was reformulated in [42] using another set of generators and it was independently
and differently treated in [25]. As a direct consequence, one can see that the monoid of pure epistandard morphisms is a
free monoid and one can obtain the following presentation of the monoid of pure episturmian morphisms:

Theorem 3.1 (Direct Consequence of [42, Prop. 6.5]; Reformulation of [25, Th. 2.2]). Themonoid of pure episturmianmorphisms
with {Lα, Rα | α ∈ A} as a set of generators has the following presentation:

Ra1Ra2 · · · RakLa1 = La1La2 · · · LakRa1
where k ≥ 1 is an integer and a1, . . . , ak ∈ A with a1 6= ai for all i, 2 ≤ i ≤ k.

This result means that two different compositions of morphisms inLA∪RA yield the same pure episturmianmorphism
if and only if, one composition can be deduced from the other in a rewriting system, called the block-equivalence in [25].
Although Theorem 3.1 allows us to show that many properties of episturmian words are linked to properties of episturmian
morphisms, it will be convenient for us to have in mind the block-equivalence that we now recall.
A word of the form xvx, where x ∈ A and v ∈ (A \ {x})∗, is called a (x-based) block. A (x-based) block-transformation

is the replacement in a spinned word of an occurrence of xvx̄ (where xvx is a block) by x̄v̄x or vice-versa. Two finite
spinned words w, w′ are said to be block-equivalent if we can pass from one to the other by a (possibly empty) chain of
block-transformations, in which case we write w ≡ w′. For example, b̄ābc̄bāc̄ and babcb̄āc̄ are block-equivalent because
b̄ābc̄bāc̄ → bab̄c̄bāc̄ → babcb̄āc̄ and vice-versa. The block-equivalence is an equivalence relation over spinned words, and
moreover one can observe that ifw ≡ w′ thenw andw′ are spinned versions of the same word overA.
Theorem 3.1 can be reformulated in terms of block-equivalence:

Theorem 3.1. Letw,w′ be two spinned words overA ∪ Ā. Then µw = µw′ if and only ifw ≡ w′.

3.2. Words directing the same episturmian word

Using the block-equivalence notion, the question: ‘‘When do two distinct spinned infinite words direct the same
unique episturmian word?’’ was almost completely solved by Justin and Pirillo in [25] for bi-infinite episturmian words,
i.e., episturmian words with letters indexed by Z (and not by N as we consider here). More recently, in [19], we showed
that Justin and Pirillo’s results on directive words of bi-infinite episturmian words are still valid for words directing (right-
infinite) episturmian words. We also established the following complete characterization of pairs of spinned infinite words
directing the same unique episturmian word. Not only does our characterization provide the relative forms of two spinned
infinitewords directing the same episturmianword, but it also fully solves the periodic case, whichwas only partially solved
in [25].

Theorem 3.2 ([19]). Given two spinned infinite words∆1 and∆2, the following assertions are equivalent.

(i) ∆1 and∆2 direct the same right-infinite episturmian word;
(ii) ∆1 and∆2 direct the same bi-infinite episturmian word;
(iii) One of the following cases holds for some i, j such that {i, j} = {1, 2}:

1. ∆i =
∏
n≥1 vn,∆j =

∏
n≥1 zn where (vn)n≥1, (zn)n≥1 are spinned words such that µvn = µzn for all n ≥ 1;

2. ∆i = wx
∏
n≥1 vnx̆n,∆j = w

′x̄
∏
n≥1 v̄nx̂n wherew,w

′ are spinned words such that µw = µw′ , x is an L-spinned letter,
(vn)n≥1 is a sequence of non-empty x-free L-spinned words, and (x̆n)n≥1, (x̂n)n≥1 are sequences of non-empty spinned
words over {x, x̄} such that, for all n ≥ 1, |x̆n| = |x̂n| and |x̆n|x = |x̂n|x;

3. ∆1 = wx and ∆2 = w′y where w, w′ are spinned words and x ∈ {x, x̄}ω , y ∈ {y, ȳ}ω are spinned infinite words for
some letters x, y such that µw(x) = µw′(y).

In items1 and2of Theorem3.2, the two considered directivewords are spinned versions of the same L-spinnedword. This
does not hold in item 3, which concerns only periodic episturmian words. In particular, wemake the following observation:

Fact 3.3. If an aperiodic episturmianword is directed by two spinnedwords∆1 and∆2, then∆1 and∆2 are spinned versions
of the same L-spinned word∆.
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As an example of item 3, one can consider the periodic episturmian word (bcba)ω which is directed by both bcaω and
bācω . Note also that (bcba)ω is epistandard and has the same set of factors as the epistandardword (babc)ω directed by bacω .
Actually, in view of Fact 2.3, we observe the following:

Fact 3.4. The subshift of any aperiodic episturmian word contains a unique (aperiodic) epistandard word, whereas the
subshift of a periodic episturmian word contains exactly two (periodic) epistandard words, except if this word is aω with a
a letter.

3.3. Normalized directive word of an episturmian word

Items 2 and 3 of Theorem 3.2 show that any episturmian word is directed by a spinned word having infinitely many
L-spinned letters, but also by a spinned infinite word having both infinitely many L-spinned letters and infinitely many R-
spinned letters. To emphasize the importance of these facts, let us recall from Proposition 3.11 in [23] that if ∆̆ is a spinned
infinite word overA ∪ Āwith infinitely many L-spinned letters, then there exists a unique episturmian word t directed by
∆̆. Uniqueness comes from the fact that the first letter of t is fixed by the first L-spinned letter in ∆̆.
To work on Sturmianwords, Berthé, Holton and Zamboni [7] proved that any Sturmianword has a unique directive word

over {a, b, ā, b̄} containing infinitely many L-spinned letters but no factor of the form āb̄na or b̄ānbwith n an integer. Using
Theorems 3.1 and 3.2, we recently generalized this result to episturmian words:

Theorem 3.5 ([19,28]). Any episturmian word t has a spinned directive word containing infinitely many L-spinned letters, but
no factor in

⋃
a∈AāĀ

∗a. Such a directive word is unique if t is aperiodic.

Note that uniqueness does not necessarily hold for periodic episturmian words. For example, the periodic episturmian
word (ab)ω = La(bω) = Rb(aω) is directed both by abω and by b̄aω (La(b) = ab = Rb(a)).
A directive word of an aperiodic episturmian word twith the above property is called the normalized directive word of t.

We extend this definition to morphisms: a finite spinned word w is said to be a normalized directive word of the morphism
µw ifw has no factor in

⋃
a∈AāĀ

∗a.
One can observe fromTheorem3.1 that for anymorphism in LaL∗ARa, we can find another decomposition of themorphism

in the set RaR∗ALa. Equivalently, for any spinned word in aA
∗ā, there exists a wordw′ in āĀ∗a such thatµw = µw′ . This was

the main idea used in the proof of Theorem 3.5.

Example 3.6. Let f be the pure episturmian morphism with directive word āb̄cb̄ab̄āc̄b̄āc̄a. By Theorem 3.1, µāc̄b̄āc̄a =
µāc̄b̄acā = µacbācā and hence f = µāb̄cb̄ab̄āc̄b̄āc̄a = µāb̄cb̄ab̄acbācā and āb̄cb̄ab̄acbācā is the normalized directive word of f .

3.4. Episturmian words having a unique directive word

Using our characterization of pairs of words directing the same episturmian word (Theorem 3.2) together with
normalization (Theorem 3.5), we recently characterized episturmian words having a unique directive word.

Theorem 3.7 ([19]). An episturmian word has a unique directive word if and only if its (normalized) directive word contains 1)
infinitely many L-spinned letters, 2) infinitely many R-spinned letters, 3) no factor in

⋃
a∈AāĀ

∗a, 4) no factor in
⋃
a∈AaA

∗ā. Such
an episturmian word is necessarily aperiodic.

As an example, a particular family of episturmian words having unique directive words consists of those directed by
regular wavy words, i.e., spinned infinite words having both infinitely many L-spinned letters and infinitely many R-spinned
letters such that each letter occurs with the same spin everywhere in the directiveword. More formally, a spinned version w̆
of a finite or infinite wordw is said to be regular if, for each letter x ∈ Alph(w), all occurrences of x̆ in w̆ have the same spin
(L or R). For example, ab̄aac̄b̄ and (ab̄c)ω are regular, whereas ab̄aāc̄b and (ab̄ā)ω are not regular. In [25], a spinned infinite
word is said to be wavy if it contains infinitely many L-spinned letters and infinitely many R-spinned letters. For example,
the two preceding infinite words are wavy.
In the Sturmian case, we have:

Proposition 3.8 ([19]). Any Sturmian word has a unique spinned directive word or infinitely many spinned directive words.
Moreover, a Sturmian word has a unique directive word if and only if its (normalized) directive word is regular wavy.

In the next section, we shall see that any episturmian word having a unique directive word is necessarily
non-quasiperiodic. This will follow from Theorem 3.7 and our characterizations of quasiperiodic episturmian words
(Theorems 4.19, 4.28 and 4.29).
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4. Quasiperiodicity of episturmian words

4.1. Quasiperiodicity

Recall (from [4,21,33]) that a finite or infinite word w is quasiperiodic if it can be constructed by concatenations and
superpositions of one of its proper factors u, which is called a quasiperiod ofw (or the smallest quasiperiod ofw when it is of
minimal length).We also say that u coversw or thatw is u-quasiperiodic. For example, thewordw = abaababaabaababaaba
has aba, abaaba, abaababaaba as quasiperiods, and the smallest quasiperiod of w is aba. Words that are not quasiperiodic
are naturally called non-quasiperiodicwords.
When defining infinite quasiperiodic words, for convenience, we consider the words preceding the occurrences of a

quasiperiod: an infinite wordw is quasiperiodic if and only if, there exist a finite word u and words (pn)n≥0 such that p0 = ε,
|pn| < |pn+1| ≤ |pnu|, and pnu is a prefix ofw for all n ≥ 0. Then u is a quasiperiod ofw andwe say that the sequence (pnu)n≥0
is a covering sequence of prefixes of the wordw. Necessarily, any quasiperiod of a quasiperiodic word must be a prefix of it.
Readers will find several examples of infinite quasiperiodic words in [27,32,33]. Let us mention for instance that the

Fibonacci word, directed by (ab)ω , is aba-quasiperiodic (see [27]).
Let us now recall a simple, yet important, fact about quasiperiodic words.

Fact 4.1. Ifw is a (finite or infinite) u-quasiperiodic word and f is a non-erasing morphism, then f (w) is f (u)-quasiperiodic.

Note that the converse of this fact is not true. For example, let f = Ra and w = abω , then Ra(w) = a(ba)ω . The word
Ra(w) is covered by Ra(ab), butw is not covered by ab.

4.2. Return words and quasiperiodicity

We now use the notion of a ‘return word’ to give an equivalent definition of quasiperiodicity (see Lemma 4.3), which
proves to be a useful tool for studying quasiperiodicity in episturmian words.
Return words were introduced independently by Durand [13] and by Holton and Zamboni [20] when studying primitive

substitutive sequences. Such words can be defined in the following way.

Definition 4.2. Let v be a recurrent factor of an infinite word w = w1w2w3 · · · , starting at positions n1 < n2 < n3 · · · in
w. Then each word ri = wniwni+1 · · ·wni+1−1 is called a return to v inw.

That is, a return to v inw is a non-empty factor ofw beginning at an occurrence of v and ending exactly before the next
occurrence of v inw. Thus, if r is a return to v inw, then rv is a factor ofw that contains exactly two occurrences of v, one as
a prefix and one as a suffix. As any episturmian word t is uniformly recurrent [12], each factor of t has only a finite number
of different returns (for more details see Theorem 4.7).

Note. A return to v inw always has v as a prefix or is a prefix of v. In particular,we observe that a return to v is not necessarily
longer than v, in which case v has overlapping occurrences in w (i.e., vz−1v is a factor of w for some non-empty word z).
We say that v has adjacent occurrences inw if vv is a factor ofw. In this case, if v is primitive (i.e., not an integer power of a
shorter word), then v is a return to itself; otherwise, the corresponding return to v is the primitive root of v.

In terms of return words, we have the following equivalent definition of a quasiperiodic infinite word.

Lemma 4.3. A finite word v is a quasiperiod of an infinite wordw if and only if, v is a recurrent prefix ofw such that any return
to v inw has length at most |v|.

Proof. If v is a quasiperiod ofw, then v is a prefix ofw and its occurrences entirely coverw. That is, v is recurrent inw and
successive occurrences of v inw are either adjacent or overlap, and hence any return to v has length at most |v|. Conversely,
if v is a recurrent prefix ofw such that any return to v has length at most |v|, then successive occurrences of v inw are either
adjacent or overlap, and hence entirely coverw. Thusw is v-quasiperiodic. �

Immediately:

Corollary 4.4. An infinite word w is quasiperiodic if and only if, there exists a recurrent prefix v of w such that any return to v
inw has length at most |v|, in which case v is a quasiperiod ofw. Moreover, the shortest such prefix v is the smallest quasiperiod
ofw.

A noteworthy fact is that a quasiperiodic infinite word is not necessarily recurrent [33], although it must have a prefix
that is recurrent in it.
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4.3. Return words and palindromic closure in episturmian words

In this section, we recall a characterization of return words in episturmian words, given by Justin and Vuillon in [26]. For
this, we first recall the construction of epistandard words using palindromic right-closure as well as some related properties
from [12,23] that will be used throughout Section 4.4–5.4.
The palindromic right-closurew(+) of a finite wordw is the (unique) shortest palindrome havingw as a prefix (see [11]).

That is,w(+) = wv−1w̃where v is the longest palindromic suffix ofw. The iterated palindromic closure function [22], denoted
by Pal, is defined recursively as follows. Set Pal(ε) = ε and, for any wordw and letter x, define Pal(wx) = (Pal(w)x)(+). For
instance, Pal(abc) = (Pal(ab)c)(+) = (abac)(+) = abacaba.
Generalizing a construction given in [11] for standard Sturmianwords, Droubay, Justin and Pirillo established the following

characterization of epistandard words.

Theorem 4.5 ([12]). An infinite word s ∈ Aω is epistandard if and only if, there exists an infinite word∆ = x1x2x3 · · · (xi ∈ A)
such that s = limn→∞ Pal(x1 · · · xn).

Note that the palindromes Pal(x1 · · · xn) are very often denoted by un+1 in the literature.
In [23], Justin and Pirillo showed that the word∆ is exactly the directive word of s as it occurs in Theorem 2.1. Moreover,

by construction,∆ uniquely determines the epistandardword s. Notice also that by construction, thewords (Pal(x1 · · · xi))i≥0
are exactly the palindromic prefixes of s.
There exist many relations between palindromes and episturmian morphisms. The following ones will be useful in the

next few sections. First recall from [22,23] that we have

Pal(wv) = µw(Pal(v))Pal(w) for any wordsw, v. (4.1)

In particular, for any x a letter, Pal(xv) = Lx(Pal(v))x and Pal(wx) = µw(x)Pal(w).
For letters (xj)1≤j≤i, formula (4.1) inductively leads to:

Pal(x1 · · · xi) = µx1···xi−1(xi) · · ·µx1(x2)x1 =
∏
1≤j≤i

µx1···xj−1(xj). (4.2)

Note that by convention, x1 · · · x0 = ε in the above product.
Now let w̆ = x̆1x̆2 · · · x̆n be a spinned version of w = x1x2 · · · xn (viewed as a prefix of a spinned version ∆̆ of ∆). Then,

for any finite word v, we have

µw̆(v) = S−1w̆ µw(v)Sw̆ where Sw̆ =
∏
i=n,...,1
|x̆i=x̄i

µx1···xi−1(xi). (4.3)

The word Sw̆ is called the shifting factor of µw̆ [25]. Observe that Sw̆ is a prefix of Pal(w); in particular Sw̄ = Pal(w) by
equation (4.2). Note also that µw̆(v) = T|Sw̆ |(µw(v)).
For example, for w̆ = ab̄cā, we have Sw̆ = µabc(a)µa(b) = abacabaab. Thus, since µabca(ca) = abacabaab.acabacaba,

µab̄cā(ca) = T
9(µabca(ca)) = acabacaba.abacabaab.

Likewise, for any infinite word y ∈ Aω ,

µw̆(y) = S−1w̆ µw(y). (4.4)

This formula used with w̆ = w̄ shows that:

Fact 4.6. Any word of the form µw(y)with y infinite begins with Pal(w).

Amongst the numerous interests of the palindromes (Pal(x1 · · · xn))n≥0, we have the following explicit characterization
of the returns to any factor of an epistandard word.

Theorem 4.7. [26] Suppose s is an epistandard word directed by ∆ = x1x2x3 · · · with xi ∈ A, and consider any factor v of s.
If the word un+1 = Pal(x1 · · · xn) is the shortest palindromic prefix of s containing v with un+1 = f vg, then the returns to v are
given by f −1µx1···xn(x)f where x ∈ Alph(xn+1xn+2 · · · ).

Because of the uniform recurrence of episturmian words, the following simple but important fact about return words
holds.

Lemma 4.8. Suppose s is an epistandard word and let t be any episturmian word in the subshift of s. Then, for any factor v of s,
r is a return to v in s if and only if, r is a return to v in t.

That is, the returns to any factor v of an epistandard word s are the same as the returns to v as a factor of any episturmian
word twith the same set of factors as s. Hereafter, we often use the above result without reference to it.
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The following result is particularly useful in Sections 4.3–4.6.
Proposition 4.9. Suppose s is an epistandard word directed by ∆ = x1x2x3 · · · with xi ∈ A, and let t be an episturmian word
directed by a spinned version of∆. Then, t begins with Pal(x1 · · · xn) for some non-negative integer n if and only if t has a directive
word of the form ∆̆ = x1 · · · xnx̆n+1x̆n+2 · · · where the prefix x1 · · · xn is L-spinned.

Proof. When t is directed by a spinned version of∆ of the form ∆̆ = x1x2 · · · xnx̆n+1x̆n+2 · · · where the prefix x1x2 · · · xn is
L-spinned, t begins with Pal(x1 · · · xn) by Fact 4.6.
Conversely, suppose Pal(x1 · · · xn) is a prefix of t, and suppose that t is directed by ∆̆ = (x̆i)i≥1 (a spinned version of

∆ = (xi)i≥1). From Theorem 3.2 we can suppose that ∆̆ contains infinitely many L-spinned letters. If n = 0, there is nothing
to prove. Else let x1 = a. Assume first that x̆1 = ā. Let k be the smallest positive integer such that x̆k ∈ A. Since t begins
with the letter a (which is the first letter of Pal(x1 · · · xn)), we have xk = a. Then ∆̆ = āx̄2 · · · x̄k−1ax̆k+1 · · · , and hence
by Theorem 3.1 t is also directed by the spinned infinite word beginning with ax2 · · · xj−1ā, with j ≤ k. Therefore, we may
assume fromnowon that x̆1 = a. Let t′ be the episturmianword directed by T(∆̆) = (x̆i)i≥2. It is easily seen from the equality
Pal(x1 · · · xn) = La(Pal(x2 · · · xn))a that Pal(x2 · · · xn) is a prefix of t′. Hence by induction t′ is directed by a spinned version
of T(∆) with x2 · · · xn as a prefix. And so t is directed by a spinned version of ∆ of the form x1x2 · · · xnx̆nx̆n+1 · · · where the
prefix x1x2 · · · xn is L-spinned. �

4.4. All epistandard words are quasiperiodic

A first consequence of Theorem 4.7 is that any epistandard word is quasiperiodic. More precisely:
Theorem 4.10. Suppose s is an epistandard word with directive word ∆ = x1x2x3 · · · with xi ∈ A, and let m be the smallest
positive integer such that Alph(x1x2 · · · xm) = Alph(s). Then, for all n ≥ m, Pal(x1 · · · xn) is a quasiperiod of s.
Proof of Theorem 4.10. We suppose that s is an epistandardwordwith directive word∆ = x1x2x3 · · · , xi ∈ A. Letm be the
smallest positive integer such that Alph(x1x2 · · · xm) = Alph(s). Clearly, for n < m, Pal(x1 · · · xn) cannot be a quasiperiod of
s since it does not contain all of the letters in Alph(s).
Now let n ≥ m. We know that Pal(x1 · · · xn) is a prefix of s. Suppose that for some k ≥ n, Pal(x1 · · · xk) is covered by

Pal(x1 · · · xn). Since by choice ofm, xk+1 belongs to {x1, · · · , xk}, we have |(Pal(x1 · · · xk)xk+1)(+)| ≤ 2|Pal(x1 · · · xk)|. Hence,
since Pal(x1 · · · xk) is a palindrome, Pal(x1 · · · xk+1) is covered by Pal(x1 · · · xk), and so by Pal(x1 · · · xn). The result follows
from Theorem 4.5 by induction. �

Example 4.11. Recall the Tribonacci word:
r = abacabaabacababacabaabacabacabaabaca · · · ,

which is the epistandard word directed by (abc)ω . Observe that Pal(abc) = abacaba is the shortest palindromic prefix of
r such that Alph(Pal(abc)) = Alph(r) = {a, b, c}. By Theorem 4.7, the returns to Pal(abc) in r are: µabc(a) = abacaba,
µabc(b) = abacab, µabc(c) = abac , none of which are longer than Pal(abc). Hence r is abacaba-quasiperiodic; in fact
Pal(abc) = µabc(a) = abacaba is the smallest quasiperiod of r since its prefixes abac , abaca, abacab have returns longer
than themselves. This latter fact is also evident from our description of quasiperiods of a (quasiperiodic) episturmian word
(Theorem 4.19, to follow).
More generally, the k-bonacci word, which is directed by (a1a2 · · · ak)ω , is quasiperiodic with smallest quasiperiod

Pal(x1 · · · xk). This fact was also observed in [27] by noting that the k-bonacci word is generated by the morphism ϕk on
{a1, a2, . . . , ak} defined by ϕk(ai) = a1ai+1 for all i 6= k, and ϕk(ak) = a1.
Remark 4.12. From Fact 4.1 and Theorem 4.10, we immediately deduce that ϕ(s) is a quasiperiodic infinite word for any
epistandard word s. Moreover, if ϕ is a pure episturmian morphism, then ϕ(s) is a quasiperiodic episturmian word. More
precisely, µw̆(s) is a quasiperiodic episturmian word for any epistandard word s and spinned word w̆. Such an episturmian
word is directed by a spinned infinite word of the form w̆∆ where ∆ is the L-spinned directive word of s. Hence, if an
episturmian word t is directed by a spinned infinite word with all spins ultimately L, then t is quasiperiodic.
More generally, we have the following consequence of Theorem 4.10 (a converse of this result is stated in Theorem 4.19,

and a generalization is provided by Theorem 5.1).
Corollary 4.13. If an episturmian word t is directed by ∆̆ = w̆vy̆ for some spinned words w̆, y̆ and L-spinned word v such that
Alph(v) = Alph(vy), then t is quasiperiodic.
Moreover, any word of the form µw̆(Pal(v))p with p a prefix of S−1w̆ Pal(w) is a quasiperiod of t.

Proof. Let (t(n))n≥0 be the infinite sequence of episturmian words associated to t and ∆̆ in Theorem 2.1. Then by
Proposition 4.9, the episturmian word t(|w|), which is directed by vy̆, begins with the palindromic prefix Pal(v) of the
epistandardword s(|w|) directed by the L-spinned version of vy̆. Moreover, since Alph(v) = Alph(vy), Pal(v) is a quasiperiod
of s(|w|) by Theorem 4.10. By Fact 2.3, s(|w|) is in the subshift of t(|w|). It follows from Lemma 4.8 that Pal(v) has the same
returns in t(|w|) as it does in s(|w|), and since it is a prefix of t(|w|), it is also a quasiperiod of t(|w|). Therefore by Fact 4.1
t = µw̆(t(|w|)) is quasiperiodic and µw̆(Pal(v)) is a quasiperiod of t.
Now by formula (4.4) and by Fact 4.6, each occurrence of µw̆(Pal(v)) is followed by S−1w̆ Pal(w) in t, and so is followed by

p for any prefix p of S−1
w̆
Pal(w). This shows that µw̆(Pal(v))p is a quasiperiod of t. �
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4.5. Ultimate quasiperiods

Theorem 4.10 shows that long enough palindromic prefixes of an epistandard word s are quasiperiods of s. Our next goal
is to extend Theorem 4.10 by describing all the quasiperiods of any (quasiperiodic) episturmian word. Several lemmas are
required, using the notion of ultimate quasiperiods that we now define.
A factor v of an infinite wordw is said to be an ultimate quasiperiod ofw if it is a quasiperiod of a suffix ofw. In particular,

when w is a uniformly recurrent word (which is the case for episturmian words), a recurrent factor v in w is an ultimate
quasiperiod ofw if any return to v inw has length at most |v|.
Clearly, if an ultimate quasiperiod is a prefix of w, then w is quasiperiodic by Lemma 4.3. Also note that the set of

quasiperiods of a (quasiperiodic) infinite wordw consists of all its ultimate quasiperiods that are prefixes of it.
Remark that we have

Proposition 4.14. All episturmian words are ultimately quasiperiodic.

Proof. From Theorem 4.10, all epistandard words are quasiperiodic. Let s be an epistandard word and let q be a quasiperiod
of s. Then any episturmian word t in the subshift of s has a suffix t′ beginning with q. Since t has the same set of factors
than s, we can find infinitely many prefixes of t′ which are covered by q, i.e., t′ is quasiperiodic. Hence t is ultimately
quasiperiodic. �

Now,we recall some insight about palindromic closure that will be useful later. As previously, let s denote an epistandard
word with directive word ∆ = x1x2x3 · · · with xi ∈ A. For n ≥ 0 let un+1 = Pal(x1 · · · xn). Note in particular, that u1 = ε
and by Theorem 4.5, s = limn→∞ un.
As in [26,23], let us define P(i) = sup{j < i | xj = xi} if this number exists, undefined otherwise. That is, if xi = a, then

P(i) is the position of the right-most occurrence of the letter a in the prefix x1x2 · · · xi−1 of the directiveword∆. For instance,
if∆ = (abc)ω , P(i) = i− 3 for any i ≥ 4 and P(1), P(2), and P(3) are undefined.
From the definitions of palindromic closure and the palindromes (ui)i≥1, it follows that, for all i ≥ 1,

ui+1 =
{
uixiui if xi /∈ Alph(ui),
uiu−1P(i)ui otherwise.

(4.5)

Therefore, using Theorem 4.7 with f = g = ε, we deduce that for n ≥ 0, the length of the longest return rn+1 to un+1 in
s satisfies

|rn+1| =
{
|un+1| + 1 if some x ∈ Alph(s) does not occur in un+1,
|un+1| − |upn | otherwise,

where pn = inf{P(i) | i ≥ n+ 1} (see also [26, Lem. 5.6]).
In other words, pn = sup{i ≤ n | Alph(xi · · · xn) = Alph(xi · · · xn · · · )}. For instance, if∆ = (abc)ω , then p4 = 1.
The next lemma gives the set of all ultimate quasiperiods of any episturmian word t. It simply amounts to determining

all of the factors of t that have no returns longer than themselves.

Notation. Hereafter, we denote by F(w) the set of factors of a finite or infinite wordw.

Lemma 4.15. Suppose s is an epistandard word directed by∆ = x1x2x3 · · · , xi ∈ A. Let m be the smallest positive integer such
that Alph(x1x2 · · · xm) = Alph(s) and let un+1 = Pal(x1 · · · xn) for all n ≥ 0. Then, the set of all ultimate quasiperiods of any
episturmian word t in the subshift of s is given by

Q =
⋃
n≥m

Qn withQn = {q ∈ F(un+1) | |q| ≥ |un+1| − |upn |},

where pn = sup{i ≤ n | Alph(xi · · · xn) = Alph(xi · · · xn · · · )}.

Proof. First observe that the number pn exists for all n ≥ m. Indeed, the set {i ≤ n | Alph(xi · · · xn) = Alph(xi · · · xn · · · )} is
not empty, as by the definition ofm it contains i = 1.
Clearly, if n < m, then no factor of un+1 can be an ultimate quasiperiod of t since un+1 does not contain all of the letters

in Alph(t) = Alph(∆). So let us now fix n ≥ m. For any q ∈ Qn, |q| ≥ |un+1| − |upn | > |un|. Indeed from formula (4.5),
if n = m then un+1 = unxnun, and if n ≥ m + 1, then un+1 = unu−1P(n)un where P(n) ≥ pn. Hence q ∈ F(un+1) \ F(un),
i.e., un+1 is the shortest palindromic prefix of s containing q. Therefore, by Theorem 4.7, the returns to q ∈ Qn are a certain
circular shift of the returns to un+1 and the longest of these return words has length |un+1| − |upn |. Thus, any return to q has
length at most |q|; whence q is an ultimate quasiperiod of t. It remains to show that any other factor w ∈ F(un+1) \ F(un)
with |w| < |un+1| − |upn | is not an ultimate quasiperiod. This is clearly true since the longest return to any such w has
length |un+1| − |upn | > |w|. That is, at least one of the returns tow is longer than it, which implies thatw is not an ultimate
quasiperiod of t. �



588 A. Glen et al. / Theoretical Computer Science 409 (2008) 578–600

Example 4.16. Let us consider the Fibonacci case. As observed in [10], |un| = Fn+1 − 2 for all n ≥ 1 where Fk is the k-th
Fibonacci number (F1 = 1, F2 = 2, Fk = Fk−1 + Fk−2 for k ≥ 2). Since for n ≥ 2, pn = n − 1 and |un+1| − |upn | = Fn+1,
the ultimate quasiperiods of the Fibonacci word are the factors of uk of length between Fk and Fk+1 − 2 for all k ≥ 3. The
first few ultimate quasiperiods of the Fibonacci word (in order of increasing length) are: aba (u3), abaab, baaba, abaaba (u4),
abaababa, baababaa, aababaab, ababaaba, abaababaa, baababaab, aababaaba, abaababaab, baababaaba, abaababaaba (u5), . . ..

Lemma 4.15 yields the following trivial characterization of quasiperiodic episturmian words.

Corollary 4.17. Suppose s is an epistandard word with set of ultimate quasiperiodsQ. Then an episturmian word t in the subshift
of s is quasiperiodic if and only if some v ∈ Q is a prefix of t.

Moreover, Lemma 4.15 can be reformulated (more nicely) using episturmian morphisms, together with the iterated
palindromic closure function.

Lemma 4.18. Suppose s is an epistandard word directed by ∆ ∈ Aω . Then the set of ultimate quasiperiods of any episturmian
word t in the subshift of s is the set of all words

q ∈ F(Pal(wv)), with |q| ≥ |µw(Pal(v))|,

wherew, v are words such that∆ = wvy with Alph(v) = Alph(vy).

Proof. Let ∆ = x1x2x3 · · · and let m be the smallest positive integer such that Alph(x1x2 · · · xm) = Alph(s). Then, by
Lemma 4.15, the set of all ultimate quasiperiods of s (and hence of t) is given byQ =

⋃
n≥mQn with

Qn = {q ∈ F(un+1) | |q| ≥ |un+1| − |upn |},

where pn = sup{i ≤ n | Alph(xi · · · xn) = Alph(xi · · · xn · · · )}. So, for fixed n ≥ m, ∆ can be written as ∆ = wvy
where w = x1 · · · xpn−1, v = xpn · · · xn, y = xn+1xn+2 · · · , and Alph(v) = Alph(vy) (by the definition of pn). Then
un+1 = Pal(x1 · · · xn) = Pal(wv) and upn = Pal(x1 · · · xpn) = Pal(w). So now, using formula (4.1), we have Pal(wv) =
µw(Pal(v))Pal(w); in particular, |un+1| − |upn | = |Pal(wv)| − |Pal(w)| = |µw(Pal(v))|. Thus, Lemma 4.15 tells us that for
q ∈ Qn, there exist wordsw, v such that q ∈ F(Pal(wv)) and |q| ≥ |µw(Pal(v))|.
Conversely, assume ∆ = wvy with Alph(v) = Alph(vy). Let v1, v2 be such that v = v1v2 with v2 the smallest suffix

of v such that Alph(v2) = Alph(v2y). Let n = |wv|. It follows from the choice of v2 that pn = |wv1|+1. By Theorem 4.10,
Pal(v2) is a quasiperiod of the epistandard word directed by v2y. By Fact 4.1 µwv1(Pal(v2)) is a quasiperiod of s. Since any
occurrence of µwv1(Pal(v2)) in s is followed by Pal(wv1), we deduce that any factor of µwv1(Pal(v2))Pal(wv1) of length
greater than |µwv1(Pal(v2))| is an ultimate quasiperiod of t. Using formula (4.1), we see that Pal(wv1) = µw(Pal(v1))Pal(w)
so thatµwv1(Pal(v2)) = µw(µv1(Pal(v2))Pal(v1)) = µw(Pal(v1v2)) = µw(Pal(v)). Hence, any factor ofµw(Pal(v))Pal(w) =
Pal(wv) of length greater than |µw(Pal(v))| (≥ |µwv1(Pal(v2))|) is an ultimate quasiperiod of t. �

4.6. Quasiperiods of episturmian words

We are now ready to state the main theorem of this section, which describes all of the quasiperiods of an episturmian
word.

Theorem 4.19. The set of quasiperiods of an episturmian word t is the set of all words

µw̆(Pal(v))p, with p a prefix of S−1
w̆
Pal(w), (4.6)

wherew, v are L-spinned words such that t is directed by w̆vy̆ for some spinned version w̆ ofw and some spinned version y̆ of an
L-spinned infinite word y with Alph(v) = Alph(vy).
Moreover, the smallest quasiperiod of t is the word µw̆(Pal(v)) where wv is of minimal length for the property Alph(wv) =

Alph(wvy), and amongst all decompositions of wv into w and v, the word v is the shortest suffix of wv such that Alph(v) =
Alph(vy).

The above theorem shows that if there do not exist words w̆, y, y̆, and v (as defined above) such that t is directed by
w̆vy̆ with Alph(v) = Alph(vy), then t does not have any quasiperiods, and hence t is non-quasiperiodic. For instance, any
regular wavyword ∆̆ (recall the definition from Section 3.4) clearly directs an episturmianwordwith no quasiperiods since
∆̆ is the only directive word for t and it does not contain an L-spinned factor v containing all letters that follow it in ∆̆. For
example, (ab̄c)ω directs a non-quasiperiodic episturmian word in the subshift of the Tribonacci word.
Let us now illustrate the last part of the theorem. For the epistandard word directed by ∆ = ca(ab)ω , i.e., the image

of the Fibonacci word by the morphism LcLa, the shortest word wv such that ∆ = wvy for some infinite word y with
Alph(wv) = Alph(wvy) is the word caab. There are three ways to decompose this word caab into wv: (1) w = ε and
v = caab; (2) w = c and v = aab; (3) w = ca and v = ab. The corresponding quasiperiods of the form µw(Pal(v)) are
respectively: (1) Pal(caab) = cacacbcacac; (2) µc(Pal(aab)) = cacacbcaca; (3) µca(Pal(ab)) = cacacbca.
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Proof of Theorem 4.19. Corollary 4.13 proves that any word of the form (4.6) is a quasiperiod of t.
Now suppose that q is a quasiperiod of t. We show that t has at least one directive word of the form w̆vy̆where w̆, y̆ are

spinned versions of some L-spinnedwordsw, y, andwhere v is an L-spinnedword such that Alph(v) = Alph(vy). Moreover,
we show that q = µw̆(Pal(v))p for some prefix p of S−1w̆ Pal(w).
Let s be an epistandard word with L-spinned directive word ∆ such that t is directed by a spinned version of ∆. The

quasiperiod q is an ultimate quasiperiod of t that occurs as a prefix of t. So, by Lemma 4.18,
q ∈ F(Pal(wv)), with |q| ≥ |µw(Pal(v))|,

for some L-spinned words w, v, and y such that ∆ = wvy with Alph(v) = Alph(vy). In particular, we have Pal(wv) = fqg
for some words f , g with |f | + |g| ≤ |Pal(w)|, where Pal(wv) = µw(Pal(v))Pal(w). By definition of the Pal function, Pal(w)
is a prefix of Pal(wv). Consequently f is a prefix of Pal(w).
Note that

q = f −1µw(Pal(v))Pal(w)g−1. (4.7)

Thus q = (f −1µw(Pal(v))f )pwith p := f −1Pal(w)g−1 a prefix of f −1Pal(w).
The following result shows that f = Sw̆ for some spinned version w̆ ofw.

Lemma 4.20. Given a wordw and a prefix f of Pal(w), there exists a spinned version w̆ ofw such that f = Sw̆ .
Proof. The proof proceeds by induction on |w|. The lemma is clearly true for |w| = 0 since in this case f is a prefix of
Pal(w) = Pal(ε) = ε, and hence f = ε = Sε .
Now suppose |w| ≥ 1 and let uswritew = xw′where x is a letter. Since f is a prefix of Pal(w) = Pal(xw′) = µx(Pal(w′))x

(see formula (4.1)), we have f = µx(f ′) or f = µx(f ′)x for some prefix f ′ of Pal(w′). Moreover, by the induction hypothesis,
f ′ = Sw̆′ for some spinned version w̆′ of w′. Hence, using formula (4.3), we have f = µx(Sw̆′) = Sxw̆′ or f = µx(Sw̆′)x =
Sx̄w̆′ . That is, f = Sw̆ for some spinned version w̆ ofw = xw′. �

Now we have to prove that t is directed by a spinned infinite word beginning with w̆v. For this we need some further
intermediate results, as follows.

Lemma 4.21. For any word u containing at least two different letters and for any other wordw, there exists a word uw containing
at least two different letters such that µw(u) = Pal(w)uw .

Proof. The proof proceeds by induction on |w|. The lemma is trivially true for |w| = 0. Now suppose |w| ≥ 1 and let uswrite
w = xw′ where x is a letter. Thenµw(u) = µxw′(u) = µx(µw′(u))where, by the induction hypothesis,µw′(u) = Pal(w′)uw′
for some word uw′ containing at least two different letters. Hence, µw(u) = µx(Pal(w′)uw′) = µx(Pal(w′))µx(uw′), and
therefore by formula (4.1) we haveµw(u) = Pal(xw′)x−1µx(uw′)where the word x−1µx(uw′) contains at least two different
letters. This completes the proof of the lemma. �

Corollary 4.22. For any letter x and for any words v,w such that v contains at least one letter different from x,
|µw(Pal(vx))| ≥ |Pal(wv)| + 2. (4.8)

Proof. We distinguish two cases: x 6∈ Alph(v), x ∈ Alph(v). If x 6∈ Alph(v), then Pal(vx) = Pal(v)xPal(v) and the word
u = xPal(v) contains at least two different letters. On the other hand, if x ∈ Alph(v), then v = v1xv2 where v2 is x-free,
in which case Pal(vx) = Pal(v)Pal(v1)−1Pal(v) and the word u = Pal(v1)−1Pal(v) contains at least two different letters.
Hence, in either case, Pal(vx) = Pal(v)u where u is a word containing at least two different letters. Thus, it follows from
Lemma 4.21 that µw(Pal(vx)) = µw(Pal(v))Pal(w)uw for some word uw containing at least two different letters. Since
Pal(wv) = µw(Pal(v))Pal(w) and |uw| ≥ 2, the proof is thus complete. �

Note. Inequality (4.8) is not true in general. For instance, when v = ε and w = xx, we have µw(Pal(vx)) = x and
Pal(wv) = xx.

Let us come back to our proof of Theorem 4.19. Writing v = v′x, we have |q| ≥ |µw(Pal(v))| > |Pal(wv′)|. Hence, as an
immediate consequence of Corollary 4.22, when v contains at least two different letters, Pal(wv) is the smallest palindromic
prefix of s of which q is a factor. Therefore, by Theorem 4.7 and Lemma 4.8, the returns to q in t are the words f −1µwv(α)f
where α ∈ Alph(y). Consequently, each occurrence of q is preceded by the word f . Thus, the set of factors of f t is exactly the
same as the set of factors of t; whence, the infinite word f t (which is clearly recurrent) is episturmian. Moreover, returns
to fq in f t are of the form µwv(α)f for letters α ∈ Alph(y). Hence, we deduce that there exists an infinite word t′ such that
f t = µwv(t′). Moreover, we deduce from the following lemma that t′ is episturmian.
Lemma 4.23. For any letter α, an infinite wordw is episturmian if and only if µα(w) is episturmian.
Proof. (⇒): Immediately follows from Theorem 2.1 (see also Corollary 3.12 in [23] which shows more generally that if w
is episturmian and ϕ is an episturmian morphism, then ϕ(w) is episturmian).

(⇐): Conversely, suppose z := µα(w) is an episturmian word. Then, z begins with the letter α. Hence, by Proposition 4.9, z
is directed by a spinned infinite word ∆̆ beginning with α, say ∆̆ = αy̆ for some spinned infinite word y̆. So by Theorem 2.1
and Remark 2.2, z = µα(z′) where z′ is an episturmian word directed by y̆. By the injectivity of µα , z′ = w; whence w is
episturmian. �
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Now, since f = Sw̆ , we have t = µw̆v(t′) by formula (4.4), and so t is directed by a spinned infinite word beginning with
w̆v.
It remains to consider the case when v is a power of a letter x. In this case, the condition Alph(v) = Alph(vy) implies

that y = xω; thus s (and hence t) is periodic. More precisely, s = (µw(x))ω and q = f −1µw(x)f . Since f = Sw̆ , it follows
from formula (4.3) that q = µw̆(x) and t = qω showing that t is directed by w̆xω .
The proof of Theorem 4.19 is thus complete, except for the last part concerning the smallest quasiperiod which we prove

below.
As previously, let s be an epistandard word such that t belongs to the subshift of s and let ∆ be the L-spinned directive

word of s. First of all, we observe that the smallest quasiperiod of t is of the form q := µw̆(Pal(v)), where w̆ is a spinned
version of a word w such that ∆ = wvy and Alph(v) = Alph(vy). Assume first that v has a proper suffix s such that
Alph(s) = Alph(sy), so that writing v = ps for a non-empty word p, µw̆p(Pal(s)) is also a quasiperiod of t. By formula (4.1),
µp(Pal(s)) is a proper prefix of Pal(ps) = Pal(v). Thus µw̆p(Pal(s)) is a proper prefix of µw̆(Pal(v)) showing that the second
of these words is not the smallest quasiperiod of t.
From now on, we consider L-spinned words w1, w2, v1, v2, spinned versions w̆1 and w̆2 of w1 and w2 respectively,

spinned words y1 and y2 such that µw̆1(Pal(v1)) and µw̆2(Pal(v2)) are quasiperiods of t, ∆ = w1v1y1 = w2v2y2,
Alph(v1) = Alph(v1y1), and Alph(v2) = Alph(v2y2). Moreover we assume that v1 and v2 verify the following hypothesis:

(H) for i = 1, 2, vi has no proper suffix si with Alph(si) = Alph(siyi)

Note that |µw̆1(Pal(v1))| = |µw1(Pal(v1))| and |µw̆2(Pal(v2))| = |µw2(Pal(v2))|, so that to determine whether
µw̆1(Pal(v1)) or µw̆2(Pal(v2)) is the smallest quasiperiod, we just have to determine which of the two words µw1(Pal(v1))
and µw2(Pal(v2)) is the shortest word. But, then we can use the fact that w1v1 and w2v2 are both prefixes of ∆. When
|w1| = |w2|, Hypothesis (H) implies thatw1 = w2 and v1 = v2.
Before considering the case where |w1v1| < |w2v2|, let us recall that if α is a letter and if x is an α-free word, then

µx(α) = Pal(x)α (see formula (4.1)). Moreover, we observe that for any word x and distinct letters α and β , Pal(xα) is
a prefix of µx(Pal(αβ)). Indeed, µx(Pal(αβ)) = µx(µα(β)α) = µxα(βα) and this word contains Pal(xα) as a prefix by
Lemma 4.21.
Assume |w1v1| < |w2v2| (the case |w1v1| > |w2v2| is symmetric) and let us show that |µw̆1(Pal(v1))| is less than (or

equal to) |µw̆2(Pal(v2))|. In this casew1v1 is a proper prefix ofw2v2. Let x be the non-empty word such thatw1v1x = w2v2.
Hypothesis (H) implies that v1 cannot be a factor of v2 except as a prefix. Thus, there exists a possibly empty word y such
that v1x = yv2. Assume x has length at least 2 and is a suffix of v2. Then Hypothesis (H) implies that the two last letters of v2
and so of x are different. Let α and β be the two last letters of x, and let x′ be the word such that x = x′αβ . Then Pal(v1) is a
prefix of Pal(v1x′)which is a prefix ofµv1x′(αβ) by Lemma 4.21. Finally we can see thatµv1x′(αβ) is a prefix ofµy(Pal(v2)).
This shows that Pal(v1) is a proper prefix of µy(Pal(v2)) and so µw̆1(Pal(v1)) is a shorter quasiperiod than µw̆2(Pal(v2)).
Now consider |x| = 1 and |v2| ≥ 2. Let α be the last letter of v1 and let v′1 and v

′

2 be the words such that v1 = v
′

1α, and
v2 = v

′

2αx. Then Pal(v1) = Pal(v
′

1α) is a proper prefix ofµv′1(Pal(αx)) = µyv′2(Pal(αx)) (see the paragraph before last, taking
αβ = αx), which is a prefix of µy(Pal(v2)). So again we find that µw̆1(Pal(v1)) is a shorter quasiperiod than µw̆2(Pal(v2)).
Nowwe come to the case when v2 = α for a letter α. If x contains a letter different from α, then Pal(v1) is a proper prefix

of µv1(µx(α)) = µy(α) = µy(Pal(v2)). We still conclude as previously.
Lastly, assume that x is a power of α. Hypothesis (H) implies that α is the first letter of v1 and more precisely v1 = αv′1

with v′1 an α-free word. Thus Pal(v1) = µα(Pal(v
′

1))α = µα(Pal(v
′

1)α) = µα(µv′1
(α)) = µαv′1

(α) = µv1(x) = µy(v2). So in
this particular case µw̆1(Pal(v1)) = µw̆2(Pal(v2)), and once again µw̆1(Pal(v1)) is the smallest quasiperiod. �

Remark 4.24. Theorem 4.19 shows in particular that if an episturmianword t is directed by a spinnedword ∆̆with all spins
ultimately L, then t has infinitely many quasiperiods since there are infinitely many factorizations of ∆̆ into the given form
(i.e., any positive shift of an epistandard word is quasiperiodic).

Let us demonstrate Theorem 4.19 with some examples. First, we provide an example of an episturmian word having
infinitely many quasiperiods, but which is not epistandard and all of its directive words are wavy (recall that a wavy word
is a spinned infinite word containing infinitely many L-spinned letters and infinitely many R-spinned letters).

Example 4.25. Consider the episturmian word t with normalized directive word ∆̆ = abc(b̄a)ω . From Theorem 3.2, we
observe that t has infinitely many directive words:

∆̆ = abc(b̄a)ω and ∆̆i = ab̄c̄(b̄ā)iba(b̄a)ω for each i ≥ 0,

all of which are wavy. Hence, by Theorem 4.19, the set of quasiperiods of t consists of Pal(abc) = abacaba and, for each
i ≥ 0, the words:

µw̆(bab) and µw̆(bab)a where w̆ = ab̄c̄(b̄ā)i.

Note that Pal(ba) = bab and S−1
w̆
Pal(w) = (Pal(w)a−1)−1Pal(w) = a.

Next we give some examples of quasiperiodic episturmian words having only finitely many quasiperiods.
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Example 4.26. Consider the quasiperiodic episturmian word µadbcd̄(ar) where r is the Tribonacci word; it has only two
directive words: adbcd̄(ab̄c̄)ω and ad̄b̄c̄d(ab̄c̄)ω (the first one being its normalized directive word). So we see that t has
only one quasiperiod, namely Pal(adbc) = adabadacadabada. Similarly, the episturmian word µcbaa(cr), which is directed
by exactly three different spinned infinite words (cbaa(āb̄c)ω , cbaāa(b̄cā)ω , and cbāaa(b̄cā)ω), has only two quasiperiods:
Pal(cba) = cbcacbc and Pal(cbaa) = cbcacbcacbc.

We can also construct episturmian words having exactly k quasiperiods for any fixed integer k ≥ 1, as shown by the
following example.

Example 4.27. Consider the episturmian word with normalized directive word ∆̆ = abcā(bc̄ā)ω . By Theorem 3.2, t has
exactly two directive words: ∆̆ and āb̄c̄a(bc̄ā)ω . Hence, by Theorem 4.19, t has only one quasiperiod, namely Pal(abc). Now,
to construct an episturmian word having exactly k quasiperiods for a fixed integer k ≥ 1, we consider w̆∆̆ = w̆abcā(bc̄ā)ω
where w̆ is a spinned version of any L-spinned word w with Alph(w) ∩ {a, b, c} = ∅ and |Pal(w)| = k − 1. Then, by
Theorem 4.19, the set of quasiperiods of the episturmian word directed by w̆∆̆ consists of the kwords:

µw̆(Pal(abc))p where p is a prefix of Pal(w).

For example, dk−1∆̆ = dk−1abcā(bc̄ā)ω directs an episturmian word with exactly k quasiperiods: µk−1d (Pal(abc))p =
dk−1adk−1bdk−1adk−1cdk−1adk−1bdk−1apwhere p is a prefix of dk−1.

4.7. Characterizations of quasiperiodic episturmian words

From Theorem 4.19, we immediately obtain the following characterization of quasiperiodic episturmian words.

Theorem 4.28. An episturmian word is quasiperiodic if and only if, there exists a spinned word w̆, an L-spinned word v and a
spinned version y̆ of an L-spinned word y such that t is directed by w̆vy̆ with Alph(v) = Alph(vy).

The above characterization is clearly not useful when one wants to decide whether or not a given episturmian word is
quasiperiodic. In this regard, our normalized directive word plays an important role as it provides a more effective way to
decide.

Theorem 4.29. An episturmian word t is quasiperiodic if and only if, the (unique) normalized directive word of t takes the form
w̆av1āv2ā · · · vkāvy̆ for some L-spinned letter a, spinned word w̆, a-free L-spinned words v, v1, . . . , vk (k ≥ 0), and a spinned
version y̆ of an L-spinned word y such that Alph(av) = Alph(avy).
Proof. First, assume that an episturmian word t is directed by w̆av1āv2ā · · · vkāvy̆ (as in the hypotheses). Then, by
Theorem 3.1, t is also directed by w̆āv̄1āv̄2ā · · · v̄kavy̆. By Theorem 4.28, t is quasiperiodic.
Now, assume that t is quasiperiodic. By Theorem 4.28, one of its directive words is w̆1v′y̆ for spinned words w̆1, y̆ and an

L-spinned word v′ with Alph(v′) = Alph(v′y). If v′ contains only one letter a, y̆ = aω and the normalized directive word of
t ends with aaω , then the condition is verified.
Now, assume that v′ contains at least two (different) letters: let us write v′ = av. Without loss of generality, we can

assume that y̆ and w̆1 are normalized. If w̆1 has no suffix in āĀ∗, then
w̆1avy is normalized and of the required form (with k = 0). Otherwise w̆1 = w̆āv̄1āv̄2ā · · · v̄k for some spinned words w̆,

y̆ and some a-free L-spinned words v1, . . . , vk (k ≥ 0) such that w̆ has no suffix in āĀ∗. Then the normalized directive word
of t is w̆av1āv2ā · · · vkāvy̆. �

Example 4.30. The episturmian words with directive words (ab̄c̄)ω , (ab̄cābc̄)ω or (ab̄ācaāb̄cbcb̄)ω are not quasiperiodic
whereas the one with normalized directive word abābcc̄(ābc)ω is quasiperiodic (it is also directed by āb̄abcc̄(ābc)ω).

Remark 4.31. It follows from Theorem 4.28 that any quasiperiodic episturmian word has at least two directive words.
Indeed, if t is a quasiperiodic episturmian word, then t has a directive word of the form ∆̆ = w̆vy̆where the words w̆, y̆ are
spinned versions of some L-spinnedwordsw, y and v is an L-spinnedword such that Alph(v) = Alph(vy). If y̆ (and hence ∆̆)
has all spins ultimately L, then item 2 in part iii) of Theorem 3.2 shows that t also has a wavy directive word. Now, suppose
y̆ does not have all spins ultimately L. Then y̆must be wavy, and hence contains infinitely many R-spinned letters. Choose x
to be the left-most R-spinned letter in y̆. Then, y̆ begins with ux̄ for some L-spinned word u (possibly empty). Hence, since x
occurs in v, we see that ∆̆ = w̆vy̆ contains the factor vux̄ = v′xv′′ux̄. Thus, ∆̆ does not satisfy the conditions of Theorem 3.7
as it contains a factor in xA∗x̄, and therefore t does not have a unique directive word. Moreover, we easily deduce from
Theorems 4.28 and 3.7 that any episturmian word having a unique directive word is necessarily non-quasiperiodic.

In view of the above remark, one might suspect that an episturmian word is non-quasiperiodic if and only if, it has a
unique directive word. But this is not true. For example, both ba(b̄cā)ω and b̄āb(cāb̄)ω direct the same non-quasiperiodic
episturmian word t by Theorems 3.2 and 4.28. These two spinned infinite words are the only directive words for t,
which might lead one to guess that an episturmian word is non-quasiperiodic if and only if, it has finitely many directive
words. But again, this is not true. For example, as stated in Example 4.26, adbcd̄(ab̄c̄)ω and ad̄b̄c̄d(ab̄c̄)ω are the only two
directive words of the quasiperiodic episturmian wordµadbcd̄(ar)where r is the Tribonacci word. Moreover, there exist non-
quasiperiodic episturmian words, such as the one directed by (abb̄c̄)ω , that have infinitely many directive words (the words
(abb̄c̄)nab̄c̄(abb̄c̄)ω are pairwise different directive words).
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Nevertheless, in the Sturmian case we have:

Proposition 4.32. A Sturmian word is non-quasiperiodic if and only if it has a unique directive word.

Proof. First, let us suppose by way of contradiction that t is a non-quasiperiodic Sturmian word, but has more than one
directive word. Then, by Proposition 3.8, t has infinitelymany directive words. Moreover, as t is aperiodic, all of the directive
words of t are spinned versions of the same∆ ∈ {a, b}ω \ (A∗aω ∪A∗bω) by Fact 3.3 and none of these directive words are
regular wavy. Hence, the normalized directive word of s contains ab or ba. But then t is quasiperiodic by Theorem 4.28, a
contradiction.
Conversely, by Proposition 3.8, if a Sturmian word t has a unique directive word, then its (normalized) directive word is

regular wavy. Such a word clearly does not fulfill Theorem 4.28 and so t is not quasiperiodic. �

Let us recall that a Sturmian word is non-quasiperiodic if and only if, it is a Lyndon word [27]. The generalization of this
aspect will be discussed in Section 6.

5. Quasiperiodicity and episturmian morphisms

In this section, we draw connections between the results of the previous section and strongly quasiperiodicmorphisms.
As in [29], a morphism f onA is called strongly quasiperiodic (onA) if for any (possibly non-quasiperiodic) infinite wordw,
f (w) is quasiperiodic.

5.1. Strongly quasiperiodic epistandard morphisms

Quasiperiodicity of epistandard words can also be explained by the strong quasiperiodicity of epistandard morphisms.

Theorem 5.1. Let v be a word over an alphabet A containing at least two letters. The epistandard morphism µv is strongly
quasiperiodic if and only if Alph(v) = A. Moreover Pal(v) is a quasiperiod of µv(w) for any infinite wordw.

To prove this result, which is a direct consequence of Lemma 5.2, we need to consider infinite words covered by several
words. We say that a set X of words covers an infinite wordw if and only if, there exist two sequences of words (pn)n≥0 and
(zn)n≥0 such that, for all n ≥ 0, pnzn is a prefix of w, zn ∈ X , p0 = ε and |pn| < |pn+1| ≤ |pnzn|. The last inequalities mean
that pn is a prefix of pn+1 which is a prefix of pnzn, itself a prefix ofw. Once again, the sequence (pnzn)n≥0 is called a covering
sequence of prefixes of the wordw. Observe that a word is covered by X if and only if, it is covered by X ∪ {ε}.

Lemma 5.2. Forw an infinite word overA, y a letter, X a subset ofA and u a word, ifw is covered by {u} ∪ {ux | x ∈ X ∪ {y}}
then Ly(w) is covered by {Ly(u)y} ∪ {Ly(u)yx | x ∈ X \ {y}}.

Proof. If y ∈ X , then Ly(w) is covered by {Ly(u)}∪{Ly(u)y}∪{Ly(u)yx | x ∈ X \{y}}, and each occurrence of Ly(u) is followed
by the letter y. So Ly(w) is covered by {Ly(u)y} ∪ {Ly(u)yx | x ∈ X \ {y}}. If y 6∈ X , thus X = X \ {y} and then Ly(w) is covered
by {Ly(u)} ∪ {Ly(u)yx | x ∈ X}, and similarly each occurrence of Ly(u) is followed by the letter y. So Ly(w) is covered by
{Ly(u)y} ∪ {Ly(u)yx | x ∈ X}. �

Proof of Theorem 5.1. Let v = v1 · · · v|w| be a word (with each vi a letter) such that Alph(v) = A. Let u|v| = ε and, for any
i from |v| to 1, let ui−1 = Lvi(ui)vi: observe that ui−1 = Pal(vi · · · v|v|). It is immediate that any infinite wordw is covered by
the setA, which can be expressed asA = {ε} ∪ {εx | x ∈ A} = {u|v|} ∪ {u|v|x | x ∈ A}.
By induction using Lemma 5.2, we can state that, for 1 ≤ i ≤ |v|, µvi···v|v|(w) is covered by {ui−1} ∪ {ui−1x | x ∈

A \ {vi, . . . , v|v|}}. So, since u0 = Pal(v), µv(w) is covered by {Pal(v)} ∪ {Pal(v)x | x ∈ A \ {v1, . . . , v|v|}}. Therefore, since
Alph(v) = A, µv(w) is covered by Pal(v), that is,w is Pal(v)-quasiperiodic. Hence µv is strongly quasiperiodic.
Now let us consider the case where Alph(v) 6= A. First suppose that v = ε. Then, since A contains at least two

letters (and so there exists at least one non-quasiperiodic word over A), the morphism µv , which is the identity, is not
strongly quasiperiodic. Assume now that v 6= ε. Let a be a letter in A \ Alph(v) and let b be a letter in Alph(v). The word
µv(abω) contains only one occurrence of the letter a, and so it is non-quasiperiodic. Thus the morphism µv is not strongly
quasiperiodic. �

Remark 5.3. Note that any infinite word ∆ can be written ∆ = vy with Alph(v) = Alph(vy). So if t (resp. t′) is the
epistandardword directed by∆ (resp. y), then t = µv(t′) and t is quasiperiodic by Theorem5.1. The same approach allows us
to show that if an episturmianword is directed by a spinned infinite wordwith all spins ultimately L, then it is quasiperiodic,
as deduced previously (see Remark 4.12). Note also that Corollary 4.13 is a direct consequence of Theorem 5.1.
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5.2. Useful lemmas

Wenow introduce usefulmaterial for a second proof of Theorem 4.19 usingmorphisms (see Section 5.3). The next results
(that maybe some readers will read when necessary to understand the proof of Theorem 4.19) show how to obtain some
quasiperiods (or a covering set) of a word of the form Lx(w) or Rx(w) for an infinite wordw (not necessarily episturmian).

Lemma 5.4 (Converse of Lemma 5.2). For an infinite wordw overA, y a letter, X a subset ofA and u a word, if Ly(w) is covered
by {Ly(u)y} ∪ {Ly(u)yx | x ∈ X \ {y}}, thenw is covered by {u} ∪ {ux | x ∈ X ∪ {y}}.

Proof. By hypothesis, there exist (pn)n≥0, (un)n≥0 such that p0 = ε, un ∈ {Ly(u)y} ∪ {Ly(u)yx | x ∈ X \ {y}} and for all n ≥ 0,
both |pn| < |pn+1| ≤ |pnun| and pnun is a prefix ofw.
For all n ≥ 0, pnLy(u)y is a prefix of Ly(w) so there exists p′n such that pn = Ly(p

′
n).

We consider the following two complementary cases:

1. Case un = Ly(u)y.
The word pnLy(u)y = Ly(p′nu)y is a prefix of Ly(w) so p

′
n is a prefix of w. For the prefixes pn+1 and pnun of w, we have

|pn+1| ≤ |pnun|, thus pn+1 is a prefix of pnun.
If |pn+1| < |pnun|, let u′n = u: pn+1 = Ly(p

′

n+1) is a prefix of pnLy(u) = Ly(p
′
nu). Moreover, pn+1y and pnLy(u)y are

prefixes of Ly(w). So p′n+1 is a prefix of p
′
nuwhich itself is a prefix ofw.

If |pn+1| = |pnun|, then pn+1 = pnun and from pn+1un+1 prefix of w, we know that pn+1y is a prefix of w, hence
p′nuy = p

′

n+1 is a prefix ofw. In this case, let u
′
n = uy.

2. Case un = Ly(u)yx for some x ∈ X \ {y}. In this case (as previously), we can see that with u′n = ux, p
′

n+1 is a prefix of p
′
nu
′
n

itself a prefix ofw.

We have proved that the sequence (p′nu
′
n)n≥0 is a covering sequence of prefixes of w. Thus, the word w is covered by

{u} ∪ {ux | x ∈ X ∪ {y}}. �

Lemma 5.5 (Generalization of [29, Lem. 5.5]). Let w be an infinite word starting with a letter x. For any letter y 6= x, the word
Ry(w) is quasiperiodic if and only if,w is quasiperiodic.
Moreover, if q is a quasiperiod of Ry(w) then two cases are possible:

1. q = Ry(q′) with q′ a quasiperiod ofw;
2. qy = Ry(q′z) with z 6= a a letter such that both q′ and q′z are quasiperiods ofw.

Proof. Assume first that w is quasiperiodic. By Fact 4.1, Ry(w) is quasiperiodic. More precisely, if v is a quasiperiod of w,
then Ry(v) is a quasiperiod of Ry(w).
Assume now that Ry(w) is quasiperiodic and let q be one of its quasiperiods. By hypothesis, we know that q starts with x

(asw).
A first case is that q = Ry(v) (for a word v) which is equivalent to the fact that q ends with the letter y. Let (pn)n≥0 be

a sequence of words such that (pnq)n≥0 is a covering sequence of prefixes of Ry(w). Let n ≥ 0. From the fact that q starts
with x, we deduce that there exists a word p′n such that pn = Ry(p

′
n). Then we can see that p

′
nv is a prefix ofw. Moreover the

inequality |pn| < |pn+1| ≤ |pnq| implies |p′n| < |p
′

n+1| ≤ |p
′
nv|. So (p

′
nv)n≥0 is a covering sequence of prefixes of w: v is a

quasiperiod ofw.
Now assume that q endswith a letter z different from y. Then q = Ry(v)z for aword v and each occurrence of q is followed

by the letter y. Let (pn)n≥0 be a sequence of words such that (pnq)n≥0 is a covering sequence of prefixes of Ry(w). Let n ≥ 0.
From the fact that q starts with x, we deduce that there exists a word p′n such that pn = Ry(p

′
n). Then, we can see that p

′
nv is a

prefix ofw. Now since q does not end with y, the inequality |pn| < |pn+1| ≤ |pnq| is actually |pn| < |pn+1| ≤ |pnRy(v)|. And
so (p′nv)n≥0 is a covering sequence of prefixes ofw; thus v is a quasiperiod ofw. Since each occurrence of Ry(v) is followed
by y, (p′nvz)n≥0 is also a covering sequence of prefixes ofw; whence vz is also a quasiperiod ofw. �

Lemma 5.6. Let x, y be two different letters, letw be an infiniteword, and let u be a finiteword such that Lx(w) is uy-quasiperiodic.
Then there exists a word v such thatw is vy-quasiperiodic, uy = Lx(vy), and |uy| > |vy|.

Proof. Let x, y, u,w be as in the lemma. Since uy is a prefix of Lx(w) and since x 6= y, there exists a word v such that
uy = Lx(vy). We have |uy| > |vy|.
Let (pn)n≥0 be such that (pnuy)n≥0 is a covering sequence of prefixes of Lx(w). Sinceuy is a prefix of Lx(w), x is the first letter

of u, and so from pnx prefix of Lx(w), there exists for any n ≥ 0 a word p′n such that pn = Lx(p
′
n). From the prefix Lx(p

′
nvy) of

Lx(w), we deduce that p′nvy is a prefix ofw. The inequality |pn| < |pn+1| ≤ |pnuy|, that is |Lx(p
′
n)| < |Lx(p

′

n+1)| ≤ |Lx(p
′
nvy)|,

implies that |p′n| < |p
′

n+1| ≤ |p
′
nvy|. Hence vy coversw. �

Remark 5.7. Lemmas 5.5 and 5.6 are not true when x = y. For instance abω is not quasiperiodic whereas Ra(abω) = a(ba)ω
is quasiperiodic. Moreover the word La(bω) = (ab)ω is aba-quasiperiodic whereas bω has no quasiperiod ending with a.

Lemma 5.8. Suppose t is an episturmian word starting with a letter z. Let x be a letter different from z and let u be a non-empty
word. Then there exists a setB of letters such that the word Rx(t) is covered by {u} ∪ {u}B if and only if, this word is covered by
{u, ux}.
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Proof. The if part is immediate. Assume that Rx(t) is covered by {u} ∪ {u}B. There is nothing to prove ifB ⊆ {x}; hence we
assume thatB contains a letter y different from x. Since t starts with z and z 6= x, the word Rx(t) and its prefix u start with z.
If the word uy is a factor of Rx(t), the word u ends with the letter x. Let (pn)n≥0 and (un)n≥0 such that (pnun)n≥0 is a covering
sequence of prefixes of Rx(t) and for all n ≥ 0, un ∈ {u}∪{u}B. Let n be any integer such that un = uy. Since y 6= x and z 6= x,
the word yz is not a factor of Rx(t). Since |pn+1| ≤ |pnun|, since pn+1 and pnun are prefixes of Rx(t), and since un+1 starts with
z, necessarily |pn+1| < |pnun| = |pnuy|. We deduce from what precedes that Rx(t) is covered by {x} ∪ {u}(B \ {y}). Hence,
considering successively all letters ofB different from x, it follows that Rx(t) is covered by {u, ux}. �

Lemma 5.9. Let t be an episturmian word starting with a letter z. Let x be a letter different from z and let q be a word. If the word
Rx(t) is covered by {q, qx} then Lx(t) is covered by xq.

Proof. If q is empty, the result is immediate since in this case t = xω . If q ends with a letter different from x, then each
occurrence of q is followed by an x and so Rx(t) is covered by qx. Hence, we can assume, without loss of generality, that q
ends with x. Then q = Rx(v) and qx = Rx(vx) for some word v. By the same technique used in the proof of Lemma 5.5,
we can see that t is covered by {v, vx}. This implies that Lx(t) is covered by {Lx(v), Lx(v)x}with all the occurrences of Lx(v)
followed by an x. So Lx(t) is covered by Lx(v)x. It is well-known that Lx(v)x = xRx(v) = xq. �

Lemma 5.10. Suppose t is an infinite word (not necessarily episturmian) covered by the set {q, qa} and by the set {q, qc} for some
word q and two different letters a and c. Then t is q-quasiperiodic.

Proof. Let (pn)n≥0 be prefixes of t and (qn)n≥0 be words belonging to {q, qc} such that (pnqn)n≥0 is a covering sequence of
t. Moreover, let us assume that there is no word p except the elements of (pn)n≥0 such that pq is a prefix of t. Let n be any
integer such that qn = qc . Since t is also covered by {q, qa} and since all the words p such that pq is a prefix of t belong to
{pn | n ≥ 0}, we necessarily have |pn+1| ≤ |pq| (that is |pn+1| 6= |pnqc|). The sequence (pnq) is a covering sequence of t;
hence t is q-quasiperiodic. �

5.3. A second proof of Theorem 4.19

Wenowgive a secondproof of Theorem4.19which provides further insight into the connection betweenquasiperiodicity
and morphisms.
For any spinnedword w̆, let us denote by qw̆ the word S−1w̆ Pal(w) appearing in Theorem 4.19. Then, for any spinnedword

v̆ and letter a, we have:

• qε = ε;
• qav̆ = La(qv̆)a;
• qāv̆ = Ra(qv̆).

Indeed by formula (4.3), we have Sav̆ = La(Sv̆) and Sāv̆ = La(Sv̆)a = aRa(Sv̆). Hence qav̆ = S−1av̆ La(Pal(v))a =
(La(Sv̆))−1La(Pal(v))a = La(S−1v̆ Pal(v))a = La(qv̆)a and, since La(Pal(v))a = aRa(Pal(v)), qāv̆ = S−1āv̆ (aRa(Pal(v))) =
(aRa(Sv̆))−1(aRa(Pal(v̆))) = Ra(S−1v̆ (Pal(v̆)).
These formulae, which define recursively the word qw̆ , will be helpful in the following proof.
First, assume that t is an episturmian word directed by w̆vy̆ where w̆ is a spinned word, y̆ is a spinned version of an

L-spinned infinite word y and v is an L-spinned word such that Alph(v) = Alph(vy). Then, by Theorem 5.1, Pal(v) is a
quasiperiod of µv(t′) where t′ is the episturmian word directed by y̆. Now we prove by induction on |w̆| that µw̆(Pal(v))p
is a quasiperiod of t for any prefix p of qw̆ . More precisely, we prove that µw̆(Pal(v)) is a quasiperiod of t = µw̆(µv(t′))
(this is also a consequence of Fact 4.1) and each occurrence of µw̆(Pal(v)) in t is followed by the word qw̆ (which is a
direct consequence of the above inductive formulae). Observe that the previous fact obviously holds if w̆ = ε. When
it holds, let (pn)n≥0 be a sequence of prefixes such that |pn| ≤ |pn+1| ≤ |pnµw̆(Pal(v))| and pnµw̆(Pal(v))qw̆ is a
prefix of t. Then La(pnµw̆(Pal(v))qw̆) = La(pn)µaw̆(Pal(v))La(qw̆) and is followed as a prefix of La(t) by a. Note that the
word La(pn)µaw̆(Pal(v))La(qw̆)a = La(pn)µaw̆(Pal(v))qaw̆ is a prefix of La(t). Moreover, we can verify that |La(pn)| ≤
|La(pn+1)| ≤ |La(pn)µaw̆(Pal(v))| since pn is a prefix of pn+1 itself a prefix of pnµw̆(Pal(v)). Similarly, Ra(pnµw̆(Pal(v))qw̆) =
Ra(pn)µāw̆(Pal(v))Ra(qw̆) = Ra(pn)µāw̆(Pal(v))qāw̆ is a prefix of Ra(t) and |Ra(pn)| ≤ |Ra(pn+1)| ≤ |Ra(pn)µāw̆(Pal(v))|.
To end the proof of Theorem 4.19, we prove by induction on |q| that if q is the quasiperiod of an episturmian word t then

(at least) one directive word of t can be written∆ = w̆vy̆where w̆ is a spinned word, y̆ is a spinned version of an L-spinned
infinite word y and v is an L-spinned word such that Alph(v) = Alph(vy). Moreover we have q = µw̆(Pal(v))p with p a
prefix of qw̆ = S−1w̆ Pal(w).
We observe that |q| ≥ 1 since q covers the infinite word t.
When |q| = 1, for a letter a, q = a and the word t = aω is directed by aω which is of the form w̆vaω with w̆ = ε and

v = a. Then qw̆ = ε, and taking p = ε, q = µw̆(Pal(v))p.
Assume from now on that |q| ≥ 2. Without loss of generality, we assume that ∆ = x̆1x̆2 · · · is the normalized directive

word of t, and let (t(n))n≥0 be the infinite sequence of episturmian words associated with t and∆ in Theorem 2.1.

Let us first consider:
Case t = La(t(1)) (that is, x̆1 = a for a letter a).
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Assume that q does not end with the letter a. By Lemma 5.6, q = La(q1) for a quasiperiod q1 of t(1) such that |q1| < |q|.
By the induction hypothesis, t(1) has a directive word of the form w̆vy̆with w̆, v, y̆ as in the theorem, and q1 = µw̆(Pal(v))p
for a prefix p of qw̆ . We have q = La(µw̆(Pal(v))p) = µaw̆(Pal(v))La(p). Observing that t is directed by (aw̆)vy̆ and that La(p)
is a prefix of La(qw̆)a = qaw̆ , we get the result for q and t.
Now assume that q ends with the letter a, that is q = La(q1)a for a word q1. By Lemma 5.4, t(1) is covered by the set

{q1, q1a}.
Possibly q1a is a quasiperiod of t(1). In this case, q = La(q1a). Observe that |q| = |La(q1a)| ≥ |q1a|. The equality holds

only when a is the only letter occurring in q1 so in q. In this case, taking w̆ = a|q|−1 and v = a, the word t is directed by
w̆vaω and we have q = aa|q|−1 = Pal(a)qa|q|−1 = µa|q|−1(Pal(a))qw̆ = µw̆(Pal(v))qw̆: the induction result holds here. When
|q| = |La(q1a)| > |q1a|, the proof ends, using the induction hypothesis, as in the previous case where q did not end by a (the
only difference is that q ends with the word La(p)a but La(p)a is still a prefix of qaw̆).
It is also possible that q1 is a quasiperiod of t(1), but in this casewe can once again conclude using the induction hypothesis.
Now we assume that neither q1 nor q1a is a quasiperiod of t(1). This implies in particular that t(1) has a factor q1b for a

letter b different from a. So the following property holds for n = 1 (and a1 = a):

Prop(n): t = La1La2 · · · Lan(t
(n)) (that is, x̆i = ai, for 1 ≤ i ≤ n), t(n) is covered by the set {qn} ∪ {qnai | i = 1, . . . , n}

with q0 = q, and for i = 1, . . . , n, qi−1 = Lai(qi)ai. Moreover qna and qnb are both factors of t
(n).

Let us assume that Property Prop(n) holds for some n ≥ 1 with qn 6= ε and t(n) = Lan+1(t
(n+1)) (that is x̆n+1 = an+1).

From a 6= b (so a 6= an+1 or b 6= an+1), we deduce that qnc is a factor of t(n) for a letter c 6= an+1 and so qn must
end with the letter an+1, that is, qn = Lan+1(qn+1)an+1 for some word qn+1. By Lemma 5.4, qn+1 is covered by the set
{qn+1} ∪ {qn+1ai | i = 1, . . . , n, n + 1}. Moreover, it is quite immediate that qn+1a and qn+1b are both factors of t(n+1).
Hence Prop(n+ 1) holds.
Observing that for any i ≥ 1 we have |qi+1| < |qi|, we deduce that one of the two following cases holds:

1. There exists an integer n ≥ 1 such that Property Prop(n) holds with qn = ε. In this case, we verify that q = Pal(a1 · · · an).
Let w̆ = ε, v = a1 · · · an and let y̆ be any directive word of the episturmian word t(n). Then, t is directed by w̆vy̆ and
q = µw̆(Pal(v)). Since t(n) is covered by the letters of v, we deduce that Alph(v) = Alph(vy). Hence, the induction result
holds.

2. There exists an integer n ≥ 1 and a letter c such that Property Prop(n) holds with qn 6= ε and t(n) = Rc(t(n+1)) (that
is x̆n+1 = c̄). By Theorem 3.5, since ∆ is normalized, the word t(n+1) does not start with the letter c (otherwise the
infinite word x̆n+1x̆n+2 · · · starts with a factor in c̄Āc). Hence, the first letter of qn is not c whereas its last letter is
c since a 6= b and both qna and qnb are factors of Rc(t(n+1)). By Lemma 5.8, we deduce that Rc(t(n+1)) is covered by
{qn, qnc}. Since for i = 1, . . . , n, qi−1 = Lai(qi)ai, we can inductively verify that the words t

(i) (i = n, . . . , 1) are
covered by {qi, qic}. In particular t(1) is covered by {q1, q1c}. By Lemma 5.10, since we have assumed that t(1) is not q1-
quasiperiodic, we have c = a. So Ra(t(n+1)) is covered by {qn, qna}. By Lemma 5.9, La(t(n+1)) is aqn-quasiperiodic. Observe
that t = La1La2 · · · LanRa1(t

(n+1)) = Ra1Ra2 · · · RanLa(t
(n+1)), and that |qn| < |q|. By induction hypothesis, La(t(n+1)) is

directed by a word w̆′vy̆ for a finite spinned word w̆′, a finite L-spinned word v and a spinned version y̆ of an infinite
L-spinned word y such that Alph(v) = Alph(vy), and aqn = µw̆′(Pal(v))p′ with p′ a prefix of qw̆′ . Thus, we have proved
that the word t is directed by w̆vy̆where w̆ = ā1ā2 · · · ānw̆′, and µā1 ā2···ān(qan) = µw̆(Pal(v))p

′. To end the proof of the
current case we have to prove that q = µw̆(Pal(v))p′. First, assume that ai = a for some i between 2 and n. We know that
theword t(i) is covered by {qi, qia} and t(i−1) = Lai(t

(i)) = La(t(i)). Hence, by Lemma5.2, t(i−1) is covered by La(qi)a = qi−1.
Using Fact 4.1, we can deduce that t(1) is q1a-quasiperiodic, a contradiction. Hence for i = 2, . . . , n, ai 6= a. By induction
we can prove that µāi āi+1···ān(aqn) = aqi−1 for i = n + 1, . . . , 2. Indeed if µāi+1···ān(aqn) = aqi then µāi āi+1···ān(aqn) =
µāi(aqi) = Rai(aqi) = aaiRai(qi) = aLai(qi)ai = aqi−1. Now µā1 ā2···ān(aqn) = Ra1(aq1) = aRa(q1) = La(q1)a = q.

Now we come to:
Case t = Ra(t(1)). By Theorem 3.5, since∆ is the normalized directive word of t, the word t does not start with the letter a.
By Lemma 5.5, the word t(1) is quasiperiodic and more precisely there exists a quasiperiod q1 of t(1) such that q = Ra(q1)
or q = Ra(q1)z with z 6= a: in this last case, q1z is also a quasiperiod of t(1). Since q does not start with a, |q1| < |q|. By
induction hypothesis, t(1) has a directed word of the form w̆vy̆ with w̆, v, y̆ as in the theorem, and q1 = µw̆(Pal(v))p for a
prefix p of qw̆ . When q = Ra(q1), since Ra(µw̆) = µāw̆ and Ra(p) is a prefix of Ra(qw̆) = qāw̆ , q = µāw̆(Pal(v))Ra(p) and t
(which is directed by āw̆vy̆) verify the induction result. When q = Ra(q1)z with z 6= a, since q1z is also a quasiperiod of t(1),
we deduce that pz is a prefix of qw̆ and so Ra(p)z is a prefix of Ra(p)za a prefix of qāw̆ , which allows us to conclude once again
that q = µāw̆(Pal(v))Ra(p)z and t (which is directed by āw̆vy̆) verify the induction result.
This ends the second proof of Theorem 4.19.

5.4. Strongly quasiperiodic episturmian morphisms

The aim of this section is to characterize all the episturmian morphisms that are strongly quasiperiodic, i.e., the
episturmian morphisms that map any infinite word onto a quasiperiodic word. Our characterization (Theorem 5.14)
generalizes Theorem 5.1 to all episturmian morphisms.
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Looking at Theorems 5.1 and 4.19, one might guess that an episturmian morphism µŭ is strongly quasiperiodic if and
only if, ŭ has an L-spinned factor v. We will see that it is not the case. In particular, there exist R-spinned words ŭ such that
µŭ is strongly quasiperiodic, as shown by the following result.

Lemma 5.11. Let ŭ be a finite spinned word overA∪Ā and let a be a letter inA. If there exist L-spinned words v, y and a spinned
word w̆ such that ŭ = w̆āv̄ȳ and Alph(v) = A \ {a}, then for any infinite word t, µŭ(at) is quasiperiodic.

Let us mention that for instance the word āb̄c̄āb̄ verifies the condition of the previous lemma for each of the letters a, b
and c , so that µāb̄c̄āb̄ is strongly quasiperiodic over {a, b, c}.
Lemma 5.11 is a consequence of the following one.

Lemma 5.12. Suppose a is an L-spinned letter, x is an L-spinned word, v is an a-free L-spinned word, and w is an infinite word
overA. Then the words µav(xa), µāv̄(ax), and µāv̄(aw) are Pal(av)-quasiperiodic.

Proof. (1) By Theorem 5.1, the word µav(xaω) is Pal(av)-quasiperiodic where Pal(av) = µav(a) since Pal(ava) =
µav(a)Pal(av) = Pal(av)Pal(av) by formulae (4.1) and (4.5). Consequently, sinceµav(xa) ends withµav(a), it is Pal(av)-
quasiperiodic.

(2) By formulae (4.3) and (4.2), µāv̄(xa) = S−1āv̄ µav(xa)Sāv̄ and Sāv̄ = Pal(av). So Pal(av)µāv̄(ax) = µav(ax)µav(a) =
µav(axa) = µav(a)µav(xa) = Pal(av)µav(xa), that is µāv̄(ax) = µav(xa). It follows from (1) that µāv̄(ax) is Pal(av)-
quasiperiodic.

(3) From (2), we deduce that µāv̄(aw) has infinitely many quasiperiodic prefixes with quasiperiod Pal(av). Hence µāv̄(aw)
is Pal(av)-quasiperiodic. �

Proof of Lemma 5.11. Let ŭ, a, w̆, v, y be as in the hypotheses of Lemma 5.11. Let t be an infinite word over A. The word
µȳ(at) starts with a. By Lemma 5.12, µāv̄(µȳ(t)) is quasiperiodic and so µŭ(at) = µw̆āv̄ȳ(at) is quasiperiodic. �

The following remark will be useful several times (see the proof of Theorem 4.29 for more details):

Remark 5.13. An infinite word overA∪ Ā has a decomposition w̆vy̆with Alph(v) = Alph(vy̆) if and only if, its normalized
decomposition can be written in the form w̆′av1āv2 · · · āvky̆′ with Alph(avi) = Alph(aviavi+1 · · · avky̆′) for some 1 ≤ i ≤ k.

Now we state our characterization of strongly quasiperiodic episturmian morphisms.

Theorem 5.14. Let A be an alphabet containing at least three letters. An episturmian morphism is strongly quasiperiodic on A
if and only if, its normalized directive word ŭ verifies one of the following three conditions:

(i) ŭ = w̆av1āv2ā · · · vkāvy̆ where a is a letter of A (with spin L), w̆, y̆ are spinned words, v1, . . . , vk (k ≥ 0) are a-free
L-spinned words, and v is an L-spinned word such that Alph(av) = Alph(avy̆).

(ii) For any letter a inA, ŭ = w̆āv̄ȳ for some spinned word w̆ and L-spinned words v, y such that Alph(v) = A \ {a}.
(iii) ŭ verifies case (ii) for all letters in A except for one letter a ∈ A such that ŭ = w̆vāȳ where v and y are L-spinned words

verifying Alph(v) = A \ {a}.

Before proving this theorem, let us observe that we do not include in this result the Sturmian case. Indeed, Theorem 5.14
is no longer validwhen n ≤ 2. For instance themorphismµāb̄ (a 7→ aba, b 7→ ba) is strongly quasiperiodic but its normalized
directive word fulfills none of the above conditions. A complete description of strongly quasiperiodic Sturmian morphisms
is provided in [29].

Proof. Let ŭ be the normalized directive word (of the morphism µŭ).
If ŭ verifies (i), then by Theorem 3.1, av1āv2ā · · · vkāv ≡ āv̄1āv̄2ā · · · v̄kav. Moreover, from Theorem 5.1, the epistandard

morphism µav is strongly quasiperiodic. Thus µŭ is strongly quasiperiodic onA.
If ŭ verifies (ii), then by Lemma 5.11, µŭ is strongly quasiperiodic overA.
If ŭ verifies (iii), then Lemma 5.11, µŭ(t) is quasiperiodic for any word t that does not start with a.
Let us decompose y = y0ay1 · · · ayk where k is the number of occurrences of a in y. In the proof of Lemma 5.12, we have

seen thatµāȳk(ax) = µayk(xa) for any finiteword x. This formula naturally extends to any infiniteword t,µāȳk(at) = µayk(t).
Hence, µŭ(at) = µw̆vāȳ0 āȳ1···ȳk−1ayk(t). By Theorem 3.1, µāȳia = µayi ā for each i, so that µŭ(at) = µw̆vay0 āȳ1 ā···yk−1 āyk(t). From
Theorem 5.1, the epistandard morphism µva is strongly quasiperiodic. Thus µŭ(at) is quasiperiodic. Consequently, µŭ is
strongly quasiperiodic onA.
To end, we prove that if ŭ verifies none of the conditions (i)–(iii), then there exists (at least) one word t such that µŭ(t)

is not quasiperiodic (and so µŭ is not strongly quasiperiodic). This is immediate if ŭ = ε.

• Let us first consider the case where ŭ ends with an L-spinned letter a, that is ŭ = w̆a for some spinned word w̆. Since
|A| ≥ 2, there exist m ≥ 2 pairwise different letters a1 = a, a2, . . . , am such that A = {a1, a2, . . . , am}. Let t be
the episturmian word with normalized directive word (ā2 · · · āma)ω . Since w̆a is normalized, w̆a(ā2 · · · āma)ω is also
normalized. Moreover, since ŭ does not verify condition (i), the word w̆a(ā2 · · · āma)ω cannot be decomposed into the
form w̆′bv1b̄v2 · · · b̄vky̆′ · · · where b is an L-spinned letter, w̆′ is a spinned word, y̆′ is a spinned version of an L-spinned
word y′, and v1, . . . , vk (k ≥ 0) are b-free L-spinned words such that Alph(bv′) = Alph(bv′y′). By Remark 5.13 and
Theorem 4.29, the word µŭ(t) is not quasiperiodic.
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• Now, we consider the case when ŭ ends with an R-spinned letter, that is ŭ = w̆v̄ for a non-empty L-spinned word v and
a spinned word w̆ such that w̆ = ε or w̆ ends with an L-spinned letter. Two cases can hold:
Case 1: A 6= Alph(v).

Let a be a letter in A \ Alph(v), and let b be any other letter (remember |A| ≥ 2). Let t be the episturmian word
with normalized directive word (ab̄)ω and let t′ = µŭ(t). Then, t′ is directed by ŭ′ = w̆v̄(ab̄)ω and, since w̆v̄ is
normalized and ā 6∈ Alph(v̄), ŭ′ is normalized. Moreover, since w̆v̄ does not verify (i), ŭ′ cannot be decomposed into
the form w̆′cv1c̄v2 · · · c̄vky̆′ · · · with an L-spinned letter c , a spinned word w̆′, a spinned version y̆′ of an L-spinned
word y′ and some c-free L-spinned words v1, . . . , vk (k ≥ 0) such that Alph(cvk) = Alph(cvky′). By Remark 5.13 and
Theorem 4.29, the word µŭ(t) is not quasiperiodic.

Case 2: A = Alph(v).
Since ŭ does not verify (ii), there exists a letter a and a-free L-spinned words v0, . . . , vk ∈ A∗ such that ŭ =

w̆v̄0āv̄1 · · · āv̄k and for all i, 1 ≤ i ≤ k, Alph(vi) 6= A\{a}. Moreover, since ŭ does not verify (iii), then either v0 6= ε, or
w̆ cannot bewritten in the form w̆ = w̆′v′ for a spinnedword w̆ and an L-spinnedword v′ such that Alph(v′) = A\{a}.
Since A contains at least three letters, there exist m ≥ 3 pairwise different letters a1 = a, a2, . . . , am such that

A = {a1, a2, . . . , am}.
Let t be the episturmianwordwith normalized directiveword (aa2ā3 · · · ām)ω and let t′ = µŭ(t). Then t′ is directed

by w̆v̄0āv̄1 · · · āv̄kaa2ā3 · · · ām(aa2 · · · ām)ω ≡ w̆v̄0av1ā · · · āvkāa2ā3 · · · ām(aa2ā3 · · · ām)ω . Since w̆ ends with an L-
spinned letter and each vi (0 ≤ i ≤ k) is a-free, this word is normalized.
Since w̆v̄ does not verify (i) and from the previous observations, theword w̆v̄0av1ā · · · āvkāa2ā3 · · · ām(aa2 · · · ām)ω

cannot be decomposed into the form w̆′bv′1b̄v
′

2 · · · b̄v
′

ky̆
′
· · · with an L-spinned letter b, a spinned word w̆′, a spinned

version y̆′ of an L-spinned word y′ and some b-free L-spinned words v′1, . . . , v
′

k (k ≥ 0) such that with Alph(bv
′

k) =
Alph(bv′ky̆

′). By Remark 5.13 and Theorem 4.29, the word µŭ(t) is not quasiperiodic. �

6. Episturmian Lyndon words

Theorem 4.28 provides a characterization of quasiperiodic episturmian words. In the binary case, it was proved in [29]
that a Sturmian word is quasiperiodic if and only if, it is not an infinite Lyndonword. A natural question to ask is then: ‘‘does
this result still hold for episturmian words on a larger alphabet?’’ By a result in [29], one can see that any infinite Lyndon
word is non-quasiperiodic. In this section, we show that there is a much wider class of episturmian words that are non-
quasiperiodic, besides those that are infinite Lyndon words. This follows from our characterization of episturmian Lyndon
words (Theorem 6.1, to follow).
Let us first recall the notion of lexicographic order and the definition of Lyndon words (see [30] for instance).
Suppose the alphabet A is totally ordered by the relation <. Then we can totally order A∗ by the lexicographic order ≤

defined as follows. Given twowords u, v ∈ A+, we have u ≤ v if and only if either u is a prefix of v or u = xau′ and v = xbv′,
for some x, u′, v′ ∈ A∗ and letters a, bwith a < b. This is the usual alphabetic ordering in a dictionary. Wewrite u < v when
u ≤ v and u 6= v, in which case we say that u is (strictly) lexicographically smaller than v. The notion of lexicographic order
naturally extends to infinite words inAω . We denote by min(A) the smallest letter with respect to the lexicographic order.
A non-empty finite wordw overA is a Lyndon word if it is lexicographically smaller than all of its proper suffixes for the

given order< onA. Equivalently,w is the lexicographically smallest primitive word in its conjugacy class; that is,w < vu
for all non-empty words u, v such thatw = uv. The first of these definitions extends to infinite words: an infinite word over
A is an infinite Lyndon word if and only if it is (strictly) lexicographically smaller than all of its proper suffixes for the given
order onA. That is, a finite or infinite wordw is a Lyndon word if and only ifw < Ti(w) for all i > 0.
In this section, we assume that |A| > 1 since on a 1-letter alphabet there are no infinite Lyndon words. Also note

that an infinite Lyndon word cannot be periodic. Therefore we consider only aperiodic episturmian words (i.e., those with
|Ult(∆)| > 1).

6.1. A complete characterization

In this section, generalizing previous results in [29] (Sturmian case) and [15] (Arnoux–Rauzy sequences or strict
episturmian words), we prove:

Theorem 6.1. LetA = {a1, . . . , am} be an alphabet ordered by a1 < a2 < · · · < am and, for 1 ≤ i ≤ m, letBi = {ai, . . . , am}.
An episturmian word w is an infinite Lyndon word if and only if, there exists an integer j such that 1 ≤ j < m and the

(normalized) directive word ofw belongs to:

(B̄∗2a1)
∗
· · · (B̄∗j aj−1)

∗(B̄∗j+1aj)
∗(B̄+j+1{aj}

+)ω.

Note. In the above theorem,wehave put thewordnormalizedbetweenbrackets since one can easily verify fromTheorem3.7
that a spinned infinite word of the given form is the unique directive word of exactly one episturmian word.

Example 6.2. Let A = {a, b, c, d}. Then, the word (b̄c̄a)(d̄c̄b)2(d̄cc)ω directs a Lyndon episturmian word, so does aa(d̄c)ω ,
but c̄ab̄ad̄cdω does not (this spinned word directs a periodic word).
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Remark 6.3. The ‘‘if and only if’’ condition can be reformulated as follows:
The (normalized) directive word ofw takes the form v1 · · · vjy where:
• for 1 ≤ k ≤ j, vk is a spinned word in (B̄∗k+1ak)

∗;
• y is a spinned infinite word belonging to (B̄+j+1{aj}

+)ω .
Remark 6.4. Theorems 3.7 and 6.1 show that any episturmian Lyndon word has a unique spinned directive word, but the
converse is not true. Certainly, there exist episturmian words with a unique directive word which are not infinite Lyndon
words. For example, the regular wavy word (ab̄c)ω is the unique directive word of the strict episturmian word:

lim
n→∞

µnab̄c(a) = acabaabacabacabaabaca · · ·

which is clearly not an infinite Lyndon word by Theorem 6.1 and also by the fact that acabaaw is not a Lyndon word for any
order on {a, b, c} and for any wordw.
In order to prove the Theorem 6.1, we recall two useful results and state a new one (Lemma 6.7).

Lemma 6.5. [34] An infinite word is a Lyndon word if and only if it has infinitely many different Lyndon words as prefixes.
Amorphism f is said to preserve finite (resp. infinite) Lyndonwords if for each finite (resp. infinite) Lyndonwordw, f (w)

is a finite (resp. infinite) Lyndon word. For episturmian morphisms, we have:
Proposition 6.6 ([42,45]). LetA = {a1, . . . , am} be an alphabet ordered by a1 < a2 < · · · < am. Then the following assertions
are equivalent for an episturmian morphism:

• f preserves finite Lyndon words;
• f preserves infinite Lyndon words;
• f ∈ (R∗

{a2,...,am}
La1)
∗
{Ram}

∗.

Now we prove a lemma concerning the action of morphisms inLA ∪RA on infinite Lyndon words.
Lemma 6.7. Supposew is an infinite word over an ordered alphabetA and let a, b ∈ Awith a < b. Then, the following properties
hold.

(i) LbfLa(w) is not an infinite Lyndon word for any non-erasing morphism f .
(ii) RafLb(w) is not an infinite Lyndon word for any morphism f inR∗A.
(iii) Ifw is recurrent, then RxfLx(w) is not an infinite Lyndon word for any letter x and morphism f inR∗A.

Proof. (i) The infinite word LbfLa(w) starts with b and contains an occurrence of the letter a; thus, since a < b, it cannot be
an infinite Lyndon word.

(ii) As f ∈ R∗A, the infinite word RafLb(w) starts with b and contains an occurrence of the letter a; thus, since a < b, it cannot
be an infinite Lyndon word.

(iii) To be an infinite Lyndonword, RxfLx(w)must be aperiodic, inwhich case a letter different from x occurs in it; in particular
this letter occurs in fLx(w). Moreover, as f ∈ R∗A, the infinite word fLx(w) begins with x and hence with a prefix x

ny for some
integer n ≥ 1 and a letter y 6= x. The recurrence of the infinite word w implies the recurrence of fLx(w), and so fLx(w)
contains a factor zxn+ry for some letter z 6= x and integer r ≥ 0. Now RxfLx(w) begins with xny and contains zxn+r+1y, and
so contains xn+1. To be an infinite Lyndon word, it needs x = min(Alph(RxfLx(w))), but then xn+1 < xny. Thus RxfLx(w) is
not an infinite Lyndon word. �

Last, we need an important easy fact:
Fact 6.8 ([45]). Any morphism f in LA ∪RA preserves the lexicographic order for infinite words. More precisely, for any
infinite wordsw andw′,w < w′ if and only if f (w) < f (w′).
A consequence of the above fact is that for any word w and for any morphism f in LA ∪ RA, if f (w) is a Lyndon word

then necessarilyw is also a Lyndon word.
Proof of Theorem 6.1. Assume that ∆ is the normalized directive word of a Lyndon episturmian word. Then ∆ contains
no factor of the form x̄v̄x for any letter x and v ∈ A∗. By Lemma 6.7, it does not contain any factor of the form bva or āv̄b
with v ∈ A∗ and a < b. Thus, ∆ takes the form given in the statement of the theorem. Indeed, by item (i) of Lemma 6.7
and by Fact 6.8, only one letter (namely aj) can have all spins ultimately L. Since a Lyndon word is not periodic, at least one
other letter inA should occur infinitely often. By items (ii)–(iii) of Lemma 6.7, such a letter should belong to B̄j+1. Moreover,
the sequence of letters with spin Lmust be order-increasing and items (ii)–(iii) of Lemma 6.7 determine the conditions on
letters with spin R.
Conversely, suppose that the (normalized) directive word ∆ of the episturmian word w takes the form given in the

statement of the theorem. Write ∆ = v1 · · · vjy where, for 1 ≤ k ≤ j, vk is a spinned word in (B̄∗k+1ak)
∗ and y is a spinned

infinite word belonging to (B̄+j+1{aj}
+)ω . Then, because of the recurrence of the letter aj and of at least one other letter in

Bj+1 in y, there exists a sequence of spinned words (vn)n≥j, with each vn in B̄+j+1{aj}
+, such that y =

∏
n≥j vn. Now, for each

k ≥ 1, µvk is a Lyndon morphism on Bk by Proposition 6.6. Hence, for each k ≥ 1, the word µv1···vk(aj) is a Lyndon word.
Fromw = limk→∞ µv1···vk(aj), we deduce from Lemma 6.5 that the episturmian wordw is an infinite Lyndon word. �
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6.2. Strict episturmian Lyndon words

Let us recall from [23] that an epistandard word s, or any episturmian word in the subshift of s, is said to be A-strict if
its L-spinned directive word∆ verifies Ult(∆) = A. For these words, also called Arnoux–Rauzy sequences [5], Theorem 6.1
gives:

Corollary 6.9. Let A = {a1, . . . , am} be an alphabet ordered by a1 < a2 < · · · < am. An A-strict episturmian word w is an
infinite Lyndon word if and only if the (normalized) directive word ofw belongs to {a1, ā2, . . . , ām}ω.

This can be reformulated as a generalization of Proposition 6.4 in [29]:

Corollary 6.10 ([15]). An A-strict episturmian word t is an infinite Lyndon word if and only if, it can be infinitely decomposed
over the set of morphisms {La, Rx | x ∈ A \ {a}} where a = min(A) for the given order onA.

The above result also follows from the following generalization of a result on Sturmianwords givenbyBorel and Laubie [8]
(see also [43]).

Theorem 6.11. AnA-strict episturmian word t is an infinite Lyndon word if and only if, t = aswhere a = min(A) for the given
order onA and s is an (aperiodic)A-strict epistandard word. Moreover, if ∆ is the L-spinned directive word of s, then t = as is
the unique episturmian word in the subshift of s directed by the spinned version of∆ having all spins R, except when xi = a.

The proof of the above theorem requires the following result that is essentially Theorem 3.17 from [23], apart from the
fact that as is in the subshift of s, which follows from Fact 2.3.

Theorem 6.12. Suppose s is an epistandard word directed by ∆ = x1x2x3 · · · and let a be a letter. Then, as is an episturmian
word if and only if, a ∈ Ult(∆), in which case as is the unique episturmian word in the subshift of s directed by the spinned version
of∆ having all spins R, except when xi = a.

Proof of Theorem 6.11. LetA = {a1, a2, . . . , am}with a1 < a2 < · · · < am. By Corollary 6.9, anA-strict episturmian word
t is an infinite Lyndonword if and only if, the (normalized) directive word ∆̆ of t belongs to {a1, ā2, . . . , ām}ω , i.e., if and only
if, t = a1swhere s is the unique epistandard word directed by the L-spinned version of ∆̆, by Theorem 6.12. �

Note. If s is an epistandard word overA, then as is an infinite Lyndon word for any order such that a = min(A).

Let us point out that completely different proofs of Corollary 6.9 and Theorem 6.11, using a characterization of
episturmian words via lexicographic orderings, were given in [15] by the first author. A refinement of one of the main
results in [18] is also given in [15].
To end, let us observe that, contrary to the fact that there exists |A|! possible orders of a finite alphabetA, Theorem 6.11

shows that there exist exactly |A| infinite Lyndonwords in the subshift of a givenA-strict epistandardword s, when |A| > 1
(since there are no Lyndonwords when |A| = 1). That is, for any order withmin(A) = a, the subshift of s contains a unique
infinite Lyndon word beginning with a, namely as.

Example 6.13. With∆ = (abcd)ω , the spinned versions (ab̄c̄d̄)ω , (ābc̄d̄)ω , (āb̄cd̄)ω , (āb̄c̄d)ω , (āb̄cd)ω , (ābc̄d)ω , (ābcd̄)ω and
their opposites direct non-quasiperiodic episturmian words in the subshift of the 4-bonacci word z. Only the first four of
these words direct Lyndon episturmian words: az, bz, cz, dz, respectively.

7. Concluding remarks

In [35], Monteil proved that any Sturmian subshift contains amulti-scale quasiperiodic word, i.e., an infinite word having
infinitely many quasiperiods. A shorter proof of this fact was provided in [29]. This can be easily extended to episturmian
words. Certainly, by Fact 3.4, any episturmian subshift contains at most two epistandard words (one in the aperiodic case
and two in the periodic case) and any epistandard word has infinitely many quasiperiods (by Theorem 4.10).
Actually, the characterization of quasiperiodic Sturmianwords in [29] shows that in any Sturmian subshift there are only

two non-quasiperiodic Sturmian words and all other (Sturmian) words in the subshift have infinitely many quasiperiods. It
is easy to see that the same result does not hold for episturmian words defined over an alphabet containing more than two
letters. For instance, any episturmian word having a spinned directive word in {abc̄, ab̄c̄}ω is non-quasiperiodic: all of these
non-quasiperiodic episturmianwords belong to the subshift of the Tribonacci word r, directed by (abc)ω . Moreover, one can
verify (using Theorem 3.2) that the quasiperiodic episturmian word t directed by (abc)n(abc̄)(ab̄c̄)ω for some n ≥ 1 (which
is in the subshift of r) has exactly n+ 1 directive words:

(abc)iabc̄(āb̄c)n−i(ab̄c̄)ω, 0 ≤ i ≤ n.

Hence, it is clear from Theorem 4.19 that t has only finitely many quasiperiods. (See also Examples 4.25–4.27.)
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