
Theoretical Computer Science 262 (2001) 269–284
www.elsevier.com/locate/tcs

Recurrence and periodicity in in#nite words
from local periods

J.-P. Duvala ; ∗, F. Mignosib, A. Restivob

aLIFAR-ABISS, Facult des Sciences, Universit de Rouen, F-76821 Mont-Saint-Aignan Cedex, France
bDipartemento di Mathematica ed Applicazioni, Universit di Palermo via Archira', 34, Palermo, Italy

Received October 1999; revised April 2000; accepted May 2000
Communicated by D. Perrin

Abstract

We study recurrence and periodicity in in#nite words by using local conditions. In particular,
we give a characterization of recurrent, periodic and eventually periodic in#nite words in terms
of local periods. c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

The study of periodicity is a central topic in the combinatorics on words and presents
some important applications in algebra, in formal language theory and in string search-
ing algorithms.
M.P. Schutzenberger wrote in [12]: “Periodicity is an important property of words

that is often used in applications of combinatorics on words. The main result concerning
it are the theorem of Fine and Wilf and the Critical Factorization Theorem: : :”.
The Critical Factorization Theorem is a theorem that relates local periods to the

global period of a #nite word.
Among the applications of the Critical Factorization Theorem we just recall a famous

string matching algorithm (cf. [2]).
The search for connections between “local” and “global” regularities of some objects

is present in several #elds of Mathematics, Physics and Computer Science (cf. for
instance [1, 17, 19, 20, 12, Chapter 8; 4–7, 13, Chapter 8, 11]).
In this paper we characterize recurrent, periodic and eventually periodic in#nite words

in terms of local periods, where the de#nition of local period is the same as that of
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the one used in the Critical Factorization Theorem. Indeed the Critical Factorization
Theorem will be one of the main tools used to acheive this result.
A similar characterization has been given in [16] settling an open question of

J. Shallit, by using a diEerent de#nition of local periodicity.
The paper is organized as follows: In the next section we introduce some notations

and some basic results. In Section 3 we give the de#nition of local periods and we give
a new proof of the Critical Factorization Theorem. The main results of the paper are
given in Section 4. In Section 5 we give a new characterization of eventually periodic
on-sided in#nite words.

2. Preliminaries

Let us start with some basic de#nitions.
Let w= a1a2 · · · an be a word of length n over the alphabet A. Any word of the

form ai · · · aj with 16i6j6n is said to be a factor or a block of w.
A positive integer p is a period of w if for any integer i; 16i6n−p ai+p= ai. It is

easy to see that p is a period of w if and only if for any integers i; j; 16i; j6n i≡ j
(modp) implies ai= aj. The smallest period p of w is called the period of w and it
is denoted by p(w).
From the de#nition it follows that, if v is a factor of w, then p(v)6p(w).
The positive rational number |w|=p(w) is called the order of w and it is denoted

by ord(w). If u is the pre#x of length p(w) of w, we can write w= u� where
�= ord(w), and we say that w is a rational power of u. Remark that a rational power
u� is de#ned only if |u|� is an integer. For instance, p(abaaba)= 3; ord(abaaba)= 2
and the word abaaba can be uniquely written abaaba=(aba)2. As another example,
p(ababaaba)= 5; ord(ababaaba)= 1:6 and the word ababaaba can be written in a
unique way as ababaaba=(ababa)1:6.
A word v that is both a pre#x and a suIx of another word w, with v �=w, is called

a border of w. It is easy to see that |w| − |v| is a period of w and, conversely, if
p6|w| is a period of w then the pre#x v of w of length |w| − p is a border of w.
The empty string � is a border of any string w. If there exists a nonempty border v of
w then w is called bordered otherwise it is called unbordered.
It is easy to verify that a word is unbordered if and only if ord(w)= 1, or, equiva-

lently, if and only if |w|=p(w).
We now state three lemmas that will be often used in the sequel.

Lemma 1. Let w be a word having two periods p and q; with q¡p6|w|. Then the
su:x and the pre'x of w of length |w| − q have both period p− q.

Proof. We prove only that the pre#x of w of length |w| − q has period p − q, the
proof for the suIx beeing analogous.
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Since |w| − q¿p− q, we have to prove that

ai+p−q = ai; i = 1; : : : ; n− p:

Let i be such that, 16i6n − p. Thus, 16i + p − q6n − q. Since w has period p,
one has that ai= ai+p. Since w has period q and 16i + p − q6n − q, one has that
ai+p−q= ai+p.

Lemma 2. Let u; v; w be words such that uv and vw have period p and |v|¿p. Then
the word uvw has period p.

Proof. Let uvw= a1 · · · an; u= a1 · · · al; v= al+1 · · · aj; w= aj+1 · · · an. By hypoth-
esis j − l¿p. Let i be an integer 16i6n − p. We have to prove that ai= ai+p.
If i6j − p, since uv has period p, ai= ai+p. If i¿j − p, since j − l¿p; i¿l + 1.
Since vw has period p; ai= ai+p.

Lemma 3. Suppose that w has period q and that there exists a factor v of w with
|v|¿q that has period r; where r divides q. Then w has period r.

Proof. Let w= a1 · · · an and let v= ah · · · ak with i6h¡k6n and k − h+ 1¿q.
Let us suppose that i≡ j (mod r). We have to prove that ai= aj. Since, by hypothesis

k−h+1¿q, for any integers i; j there exist i′; j′ with h6i′; j′6k such that i≡ i′ (mod q)
and j≡ j′ (mod q).
Since i≡ j (mod r) and since r divides q; i′ ≡ j′ (mod r).
Word w has period q and, so, ai= ai′ and aj = aj′ . Word v has period r and, so,

ai′ = aj′ and the lemma is proved.

An important result on periodicity, which will be used in the sequel, is the Theorem
of Fine and Wilf (cf. [9],[10]).

Theorem 1 (Fine and Wilf [19]). Let w be a word having periods p and q; with
q6p. If |w|¿p+ q− gcd(p; q); then w has also period gcd(p; q).

3. Local versus global periodicities

In this section we introduce a notion of local period in terms of repetitions. In the
general case, cf. [13, Chapter 8], the order of a repetition occurring in a word w can
be an arbitrary rational number �. Moreover the repetition is in general referred to
as “point” of the word w and it is important to consider the relative positions of the
repetitions and that of the point of the word w at which the repetition is detected.
The main results of this paper refer to central repetitions of order 2. Similar results,

which take into account repetitions that are not central and have order diEerent from 2,
can be found in [16] (cf. also [13, Chapter 8]).
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In order to give the formal de#nitions, we #rst introduce the notion of pointed word.
This is the appropriate notion to de#ne local properties of a word.
Let w= a1a2 · · · an be a word over the alphabet A. A pointed word is a pair (a1 · · · ai;

ai+1 · · · an); 16i¡n. The pointed word is also denoted by (w; i) and we refer to (w; i)
as the word w at the point (or the position) i.
Let (x; y) be a pair of words. The pair (x; y) matches the pointed word (w; i), or

simply matches the word w at the point i, if

A∗x ∩ A∗a1 · · · ai �= ∅
and

yA∗ ∩ ai+1 · · · anA∗ �= ∅:
Remark that the word z= xy is not in general a factor of the word w and that the pair
(x; y) speci#es the relative position of the word z and the point i.
A word w contains a repetition of order � having as center the point (or position)

i, or shortly a central repetition of order � at the point i, if there exists a non empty
word z of order ord(z)= � and a factorization z= xy, with |x|= |y|, such that the pair
(x; y) matches w at the point i. This means that the point i is central with respect to
the repetition z. The word z is called a central repetition of (w; i) and must have even
length. This central repetition is proper (or internal) if x is a suIx of a1 · · · ai and y
is a pre#x of ai+1 · · · an. It is left external if a1 · · · ai is a proper suIx of x. It is right
external if ai+1 · · · an is a proper pre#x of y.
Central repetitions of order 2 play an important role in this theory. By de#nition, a

central repetition of order 2 at the point i of w is a word z of the form z= x2 such
that the pair (x; x) matches w at the point i. We say that w has a square having its
center in the position i.

Example 1. Given the word

w = abaababaabaaba

the pointed word (w; 8) is the pair

(abaababa; abaaba):

The pair (aba; aba) matches the pointed word (w; 8) and, so, the word abaaba is a
central repetition of w at the point 8. It has order 2 and period 3. In the point 8 of w
there is another central repetition of order 2, or a square having its center in it. It is
the word aa and it has period 1. Both these repetitions are proper. The pointed word
(w; 7) is the pair

(abaabab; aabaaba):

The word aabaababaabaabab is a central repetition of (w; 7) of order 2 and period 8.
It is both left and right external. Since the pair (abab; aaba) matches w at the point 7,
the word ababaaba is a proper central repetition of (w; 7) of order 1:6 and period 5.



J.-P. Duval et al. / Theoretical Computer Science 262 (2001) 269–284 273

As shown in the previous example a word can have at a given point diEerent central
repetitions of same order. We are interested, for a given order, to detect the central
repetition of minimal period. This leads to the notion of minimal central repetition and
of central local period.
For any real �¿1; c�(w; i) denotes the central local period (of order �) of the

pointed word (w; i), de#ned by

c�(w; i)= min{p(z) | z is a central repetition of (w; i) of order ¿�}:
The central repetition z of (w; i) such that p(z)= c�(w; i) is called the minimal central
repetition (of order �) of w at the point i.
It is immediate to verify that, if �¡�, then c�(w; i)6c�(w; i) and that for any � and

any i¿1; c�(w; i)6p(w).
In the special case �=2 one has that

c2(w; i)= min{|x| | x �= � and x2 is a square having its center in the position i}:

Example 2.

w= abaababaabaaba

a b a a b a b a a b a a b a
i 1 2 3 4 5 6 7 8 9 10 11 12 13
c2(w; i) 2 3 1 5 2 2 8 1 3 3 1 3 2
c1:6(w; i) 2 3 1 5 2 2 5 1 3 3 1 3 2

We denote by P�(w) the maximum of the central local periods (of order �) of w:

P�(w) = max{c�(w; i) | 16i ¡ |w|}:
A point (or position) i is critical if c�(w; i)=P�(w). We denote by C�(w) the set of
critical points of w:

C�(w) = {i | 16i ¡ |w| and c�(w; i) = P�(w)}:
We denote further by Z�(w) and S�(w) the minimum and the maximum, respectively,
of the critical, points:

Z�(w) = minC�(w);

S�(w) = maxC�(w):

Example 2 (continued). For w= abaababaabaaba,
P2(w)= 8; C2(w)= {7}; Z2(w)= S2(w)= 7,
P1:6(w)= 5; C1:6(w)= {4; 7}; Z1:6(w)= 4; S1:6(w)= 7.

Remark that the notion of critical point introduced in this paper slightly diEers from
that used in the literature (cf. [12]), where a critical point i usually denotes a position
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where the local period of order 2, c2(w; i), is equal to the global period p(w). The
diEerence is motivated by the fact that we here take in account also repetitions of an
arbitrary order �¿1.
It is easy to verify that c�(w; i)6p(w) for �¿1 and i=1; : : : ; |w|−1, i.e. the central

local periods are smaller than or equal to the period. On the other hand, if � is
suIciently large, i.e. �¿2|w|, it is possible to prove that c�(w; i)=p(w) for all i, as
stated in particular in next proposition.

Proposition 1. Let k = 
�=2�. If the period of w is smaller than or equal to k then
in every position i, one has c�(w; i)=p(w). Hence; if �¿2|w| then every position is
critical of order �.

Proof. Let i; 16i¡|w| be a position in w. If the central repetition of order � at
the point i is both left and right external then c�(w; i) is also a period of w and,
consequently, p(w)6c�(w; i) and, by previous remark, the thesis follows.
Suppose now that the central repetition of order � at the point i is either left or right

internal or both. Suppose that it is left internal. We claim that c�(w; i) divides p(w).
Indeed if c�(w; i)= 1 there is nothing to prove. Suppose that c�(w; i)¿1. In this case the
part v of the central repetition of order � at the point i that is at the left of point i has
length, by hypothesis, ¿2p(w). Factor v has period p(w) and c�(w; i). We can apply
the Theorem of Fine and Wilf and obtain that it has period d=gcd(p(w); c�(w; i)). But
d cannot properly divide c�(w; i)) by the minimality of c�(w; i)). Hence d= c�(w; i))
and the claim is proved. We can now apply Lemma 3 and obtain that c�(w; i) is also
a period of w and, consequently, p(w)6c�(w; i) and, by previous remark, the thesis
follows.

The Critical Factorization Theorem in particular states that for �=2 there exists at
least a point such that the central local period detected at this point coincides with
the (global) period of the word, i.e. there exists an integer j; 16j¡|w|, such that
c2(w; j)=p(w).
An important step in the proof of the Critical Factorization Theorem is the following

proposition.

Proposition 2. If z= x2 is the square of minimal length having its center in position
j of w; 16j¡|w|; then x is unbordered.

Proof. If there exists a nonempty border t of x, i.e. t is both pre#x and suIx of x,
then t2 is a square having its center in the position j of w that is shorter than x2,
contradicting the de#nition of x.

Theorem 2 (Critical Factorization Theorem). Let w be a word having length |w|¿2.
In every sequence of l¿max(1; p(w)− 1) consecutive positions there is a critical

one and; moreover; P2(w)=p(w).
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Proof. The proof is by induction on P2(w).
Suppose that P2(w)= 1. Since for all natural number i; 16i¡|w|; c2(w; i)= 1, then

ai= ai+1. If a= a1 and n= |w|, then w is of the form w= an; p(w)= 1=P2(w) and
all positions are critical.
Let us suppose that the statement of the proposition holds true for all words w′ such

that P2(w′)6k − 1; k¿1.
Let w be a word having P2(w)= k
We prove the following properties:

(i) If j is a critical position and j+ 1; : : : ; j+ l are not critical then P2(w)¿l+ 1.
(ii) If j is a critical position and j− l; : : : ; j− 1 are not critical then P2(w)¿l+ 1.
(iii) Every sequence of at least P2(w) − 1 consecutive positions contains a critical

one.
(iv) p(w)=P2(w).

In order to prove (i) let us consider the word u= aj+1 · · · aj+laj+l+1. Since any central
repetition at point j + i of w is a repetition having its center at point i of u one has

c2(u; i)6c2(w; j + i) i = 1; : : : ; l:

Since no position j + i of w, with i=1; : : : ; l, is a critical position, one has that

c2(u; j + i)¡ k i = 1; : : : ; l:

As a consequence, c2(u; i)¡k for i=1; : : : ; l, and then P2(u)¡k. By inductive hypoth-
esis p(u)=P2(u)¡k.
Let z= x2 be the square of minimal length having its center at position j of w. Since

by hypothesis position j is critical, one has that c2(w; j)=P2(w)= k, and |x|= k.
By Proposition 2 the word x is unbordered. If x is a pre#x of the word u=aj+1· · ·

aj+laj+l+1 then p(x)6p(u)¡k, that is a contradiction. Hence, u is a proper pre#x of
x and, consequently, P2(w)= k = |x|¿|u|= l+ 1.
The proof of (ii) is analogous by taking u= aj−l · · · aj−1.
Property (iii) is an immediate consequence of properties (i) and (ii).
Let us now prove property (iv).
Let us recall that for any position j of w one has c2(w; j)6p(w), and, so, P2(w)

6p(w).
Let i be a position such that 16i¡i + P2(w)6|w|. By property (iii) there exists a

critical position j in the set {i; : : : ; i+P2(w)−1}. There exists then a square x2 having
its center at position j with |x|=P2(w). Note that ai · · · ai+P2(w) is a factor of x2, and,
consequently, ai= ai+P2(w). Therefore, P2(w) is a period of w and then P2(w)¿p(w).
It follows that P2(w)=p(w).
The statement of the theorem is a consequence of previous properties.

Corollary 1. Let w be a word of length |w|¿2 and p(w)¿1. We have that Z2(w)¡
P2(w); i.e.; the central repetition at point Z2(w) is left external. We have also that
|w| − P2(w)¡S2(w); i.e.; the central repetition at point S2(w) is right external.
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Corollary 2. Let w= a1 · · · an; be a word of length n. Given i; j; 16i¡j¡n, if
c2(w; h)¡c2(w; j) for any h such that i6h¡j; then c2(w; j)¿j − i + 1.

Proof. Let v= ai · · · aj; c2(v; h)6c2(w; h)¡c2(w; j) for i6h¡j. According to
Theorem 2 we have that p(v)¡c2(w; j).
Let u2 be the square of length 2c2(w; j) having its center at position j of w.

According to Proposition 2, u is an unbordered word. Hence u cannot be a suIx
of v longer than p(v). Therefore v is a proper suIx of u and |u|= c2(w; j)¿j− i+1.

In Example 2, P2(w) is, according to the theorem, exactly the period of w. More-
over, the unique critical point of w is 7 and it satis#es the conditions of Theorem 2.
The same example shows that the theorem does not hold true for �=1:6. Indeed
P1:6(w)= 5 �=p(w)= 8. The following example shows that the value �=2 is tight.

Example 3. For any real number �¿0, consider the word ym= bam−1bamb, with m
a positive integer such that 2m=(m + 1)¿2 − �. The unique critical point of order
2 is the point m + 1, corresponding to the pair (bam−1b; amb). The minimal central
repetition of order 2 at such a point is the word ambam−1bambam−1b, which has period
2m+1, according to the Critical Factorization Theorem. However, the minimal central
repetition of order 2 − � at the same point is the word u= am−1bam. Indeed, u has
period m + 1 and order 2m=(m + 1)¿2 − �. It is easy to verify that such a point is
also a critical point of order 2− �, and then

P2−�(bam−1bamb) = m+ 1 �= p(bam−1bamb) = 2m+ 1:

Indeed, the word ambambam; m¿1, has period m+1 and exactly four critical points,
m;m + 1; 2m + 1 and 2m + 2, corresponding to the pairs (am; bambam), (amb; ambam),
(ambam; bam) and (ambamb; am), respectively.

4. Recurrent and periodic in#nite words

In this section we will consider applications of the results of previous section to the
case of one-sided and two-sided in#nite words.
One-sided in#nite words are written as x= x0x1; : : : ; xi ∈A, where the index of the

#rst letter of x is zero.
Two-sided in#nite words are written as x= · · · x−1x0x1; : : : ; xi ∈A, and non positive

positions naturally occurs in this case.
In the sequel, for “in#nite words” without specifying, we will mean one-sided in#nite

word.
A one-sided in#nite word x= x0x1 · · ·, is periodic if there exists a positive integer p

such that xi= xi+p, for all i∈N. The smallest p satisfying previous condition is called
the period of x.
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A one-sided in#nite word x= x0x1; : : : ; is eventually periodic if there exist two pos-
itive integers k, p such that xi= xi+p, for all i¿k. An in#nite word is aperiodic if it
is not eventually periodic.
A one-sided in#nite word x is recurrent if any factor occurring in x has an in#nite

number of occurrences.
Remark that a one-sided in#nite word is periodic if and only if it is recurrent and

eventually periodic.
A two-sided in#nite word x= · · · x−1x0x1 · · · is periodic if there exists a positive

integer p such that xi= xi+p, for all i∈Z. The smallest p satisfying previous condition
is called the period of x.
Concerning the notion of local period, the de#nitions of previous sections extend to

one-sided and two-sided in#nite words but there are some natural diEerences.
In the case of one-sided in#nite words, for any order �, there could exist integers j

such that there are no central repetitions of order � at position j. In this case the value
of c�(x; j) is +∞.
Remark further that any central repetition cannot be right external.
As an example consider the one-sided word x= x0x1x2x3 · · · with xi ∈{a; b} de#ned

by x0 = a and for any i¿1, xi= b (i.e. x= abbbbbbbb · · ·). At the position 0 of x, for
any �¿1 there exists no central repetition of order �, and, consequently, c�(x; 0)=+∞.
A more sophisticated example is the following one.

Example 4. Let f be the in#nite word of Fibonacci, that is the limit of the se-
quence fn, n¿0, n∈N, of Fibonacci words de#ned inductively as f1 = a, f2 = ab
and fn+1 =fnfn−1 for n¿2. One has

f = abaababaabaababaababaabaababaabaababaababaabaababaababa · · · :

For any position j, c2(f; j) is #nite and the square of minimal length having its center
in position j is external if and only if j=Fn − 2 for some Fibonacci number Fn as
proved in next proposition.

Proposition 3. In the in'nite word of Fibonacci f; there exists a square having its
center in any position and the square of minimal length having its center in position
j is external if and only if j=Fn−2 for some Fibonacci number Fn. Moreover; when
j=Fn − 2; the minimal length c2(f; j) of a square having its center in position j
is Fn.

Proof. Recall that if Fn, n∈N, is the sequence of Fibonacci numbers de#ned by F0 = 1,
F1 = 1, Fn+1 =Fn + Fn−1 for n¿1, one has that |fn|=Fn for any n¿0.
We will prove that for any n¿2 and for any position j6Fn − 2 one has that there

exists a square having its center in j and the square of minimal length having its center
in position j is external if and only if j=Fk − 2 for some Fibonacci number Fk , k6n.
Moreover, when j=Fk − 2, the value of c2(f; j) is Fk .
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The proof of this is by the induction on n. The base of the induction is easily veri#ed
for n=2; 3.
Let us suppose previous statement is true for n¿3 and let us prove it for n+1. By

inductive hypothesis the statement is true for any j up to Fn − 2.
We have that fn+1fn+1 is a pre#x of f and fn+1 =fnfn−1 =fn−1fn−2fn−2fn−3.

Hence, fn−2; fn−2 matches position Fn−1. Moreover, since fn−2 is a pre#x of fn−3fn+1,
then in any position j, Fn− 16j6Fn+Fn−2 one has that there is a repetition of order
2 of length 2Fn−2 centred in position j, i.e. c2(f; j)6Fn−2.
Let us consider now j such that Fn+Fn−26j6Fn+Fn−1−2=Fn+1−2. These positions

belong to the occurrence of fn−1 of the pre#x fn+1fn+1 =fnfn−1fn+1 of f. Since
fn−1fn−1 is also a pre#x of f and fnfn−1fn−1 a pre#x of fnfn−1fn+1, the inductive
hypothesis give us the information that in any position j with Fn + Fn−26j6Fn+1 − 2
there exists an internal square having its center in j, with the exceptions of the position
j=Fn + Fn−1 − 2=Fn+1 − 2. Moreover, again by inductive hypothesis, we know that
in both positions there is “almost” a square centred in it. More precisely there would
be a square if the (j + 1)th letter of f, would be equal to the (j − Fn−1 + 1)th letter
of f. And it is not diIcult to prove that it is false. By inductive hypothesis there is
no centred square in j of length 62Fn−1. If there was an internal centred square, by a
result in [18], it must have as length a #bonacci number, i.e Fn, because Fn+1¿j + 1.
But again it is not diIcult to prove that the (j + 1)th letter of f is diEerent from
the (j − Fn + 1)th letter of f, and, so, in j=Fn+1 − 2 there are no internal centred
squares. But, since fn+1fn+1 is a pre#x of f, it is easy to see that c2(f; j)=Fn+1, and
this concludes the proof.

Also in the case of two-sided in#nite words, “a fortiori” there could exist integers j
such that there are no central repetitions of order � at position j, i.e. c�(x; j)=+∞.
However, in the case of two-sided in#nite words all the central repetitions at every
position j such that c�(x; j) is #nite, are internal. As an example consider the two-
sided in#nite word y= · · ·y−2y−1y0y1y2y3 · · · with yi ∈{a; b} de#ned by y0 = a and
for any i �= 0, yi= b (i.e. y= · · · bbbbabbbb · · · ). At the position 0 and at the position
−1 of y, for any �¿1 there exist no central repetition of order � and for all other
position there exists a square having its center in it.
The following proposition is an easy consequence of Lemma 3 and its proof is left

to the reader.

Proposition 4. Suppose that w is an in'nite word that has period q and that there
exists a factor v of w with |v|¿q that has period d; where d divides q. Then w has
period d.

The periodicity of an in#nite word x strongly depends on the fact that the sequence
c�(x; j) of local periods is bounded or not. Let

M�(x) = sup{c�(x; j) | j ∈ N}:
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The following theorem is a consequence of the Critical Factorization Theorem.

Theorem 3. An in'nite word x is periodic if and only if M2(x) is 'nite. Moreover;
the period of x is equal to M2(x).

Proof. If x is periodic then trivially in any position there exists a square having its
center in it and the sequence of local periods (c2(x; i))i∈N is bounded by the period
P of x, i.e. M2(x)6P. If M2(x)¡P then take a factor v of length 2P of x. Clearly,
P is a period of v and P2(v)6M2(x)¡P. By the Critical Factorization Theorem P2(v)
is a period of v and P2(v)¡P. By the Theorem of Fine and Wilf v has also period
d=gcd(P; P2(v))¡P. Since d divides P, by Proposition 4, d is also a period of x,
contradicting the minimality of P.
Let us prove the “if” part of the proposition. Let Z be a position where the se-

quence (c2(x; i))i∈N reach its maximum M2(x). We have to prove that for any i∈N
xi= xi+M2(x). Take the factor v= xr · · · xs of x where

r = min{i; Z −M2(x)} and s= max{i +M2(x); Z +M2(x)}:

In previous de#nition, in the case of one-sided in#nite words, if r¡0 we consider v
de#ned as v= x0 · · · xs.
It is easy to see that position Z is also a critical position for v and its central

local period is again M2(x). This implies that M2(x)=P2(v). Hence, by the Critical
Factorization Theorem, p(v)=P2(v)=M2(x) and, so, xi= xi+M2(x).

The proof of the following theorem is analogous to the proof of Theorem 3 and it
is left to the reader.

Theorem 4. A two-sided in'nite word x is periodic if and only if M2(x) is 'nite.
Moreover; the period of x is equal to M2(x).

In the Theorem 3 the constant 2 is tight. Indeed, for any �¿0, we can construct one-
and two-sided in#nite words that are nonperiodic and in any position have a central
repetition of order 2− �, as shown in the next example.

Example 5. For any �¿0 let m be a positive integer such that for any n¿m, �¿2=n.
Let vn be the #nite word de#ned by vn= an

2
bn, and let ym the in#nite word obtained

concatenating vm; vm+1; vm+2; : : : :

In any position of ym there is a central repetition of order 2−�. Indeed, if the square
aa or the square bb are not central in position j then either j is a position between
the concatenation of vn and vn+1 for some n or j is the position between the sequence
of a’s and b’s inside a word vn for some n.
In the #rst case the pair (an

2−nbn; an
2
) matches position j and in the second case the

pair (bn−1an
2
; bnan

2−1) matches position j. Both an
2−nbnan

2
and bn−1an

2
bnan

2−1 have
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period n2 +n. The #rst has length 2n2 and the second 2n2 +2n−2¿2n2. In both cases
the order � of this repetition is greater than or equal to

2n2

n2 + n
=

2n
n+ 1

=2− 2
n+ 1

¿2− �:

One can de#ne a two-sided in#nite word xm= · · · x−1x0x1 · · · starting from the pre-
viously de#ned one-sided in#nite word ym=y0y1 · · · by the rule xi=y|i|. It is easy to
check that also in any position of x there is a central repetition of order 2− �.
Recall that a one-sided in#nite word x is said to be recurrent if any factor occurring

in x has an in#nite number of occurrences. We have that x is recurrent if and only if
any pre#x of x has a second occurrence in x.

Theorem 5. Let x be a one-sided in'nite word. If x is recurrent then in any position
there is a central repetition of order �; for any � such that 1¡�62. Conversely;
for any �¿2; if in any position there is a central repetition of order �; then x is
recurrent. In particular; x is recurrent if and only if in any position there is a central
repetition of order 2.

Proof. Let us suppose that x is recurrent. If we prove that in every position j there
exists a square having its center in it then, a fortiori, there is a central repetition of
order � for any �¡2. Let k¿0 be the position where the pre#x x0 · · · xj occurs for the
second time, i.e. x0 · · · xj = xk · · · xk+j. If we set v= xj+1 · · · xk+j then it is not diIcult
to see that (v; v) matches position j and, so, z= v2 is a square having its center in
position j.
Suppose now that in every position of x there exists a central repetition of order

�¿2. In particular, in every position of x there exists a square having its center in it.
If the sequence of central local periods is bounded then, by Theorem 3, x is periodic
and, so, recurrent. If the sequence of central local periods is not bounded then there
exists a sequence (ji)i∈N of positions such that for any i, c2(x; ji)¿c2(x; h) for any
h¡ji. For any i consider the #nite word v= x0 · · · xji+c2(x;ji). It is not diIcult to prove
that position ji is the least critical position for v and its central local period is again
c2(x; ji), i.e. ji=Z2(v) and c2(x; ji)= c2(v; ji). By Corollary 1 the minimal square z= u2

having its center in ji is left external in v. This means that the pre#x x0 · · · xji is a
suIx of u and then it is also suIx of x0 · · · xji+c2(x;ji), i.e. the pre#x x0 · · · xji occurs a
second time in x. Since the sequence (ji)i∈N of positions is an increasing sequence, we
found a sequence of pre#xes of x of increasing length that have a second occurrence
in x. This fact easily implies that any pre#x of x has a second occurrence, i.e. x is
recurrent.

The number 2 is tight in both directions of previous proposition. For any �¿0 it
is known that there exists a one-sided recurrent in#nite word x that is (1 + �)-power
free (cf. [16, 3]). For �¿2+2�, the word x has no central repetition of order � in any
position.
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Conversely, for #xed m, the word y= ambaaaaa · · ·, i.e. the word y=y0y1 · · · with
yi= a if i �= m and ym= b has in every position a central repetition of order 2− (1=m)
and it is not recurrent.
For two-way in#nite words there are no similar characterizations. Any recurrent

two-sided square-free in#nite word has obviously no square having its center in any
position. Notice that in a square-free recurrent one-sided in#nite word, in any position
the minimal central repetition of order 2 exists (according to Theorem 5) and it must
be left external.

5. Eventually periodic in#nite words

In this section we give a new characterization of eventually periodic one-sided in#nite
words.
This characterization property is similar to the characterization property of one-

sided recurrent in#nite words described in Theorem 5. Now we require something less
(at any “large enough” position j there is a central repetition of order 2) and something
more (the minimal central repetition of order 2 at position j is internal if j is “large
enough”).
Remark further that here we do not explicitly require, as in Theorem 3, that the

sequence c2(x; j); j∈N, is bounded. This condition is actually obtained (cf. Lemma 4
below) as a consequence of the existence of an internal repetition for any large enough
position j.

Theorem 6. A one-sided in'nite word x= x0x1x2 · · · is eventually periodic if and only
if there exists a number k such that for any j¿k there exists a su:x of x0 · · · xj that
is also a pre'x xj+1xj+2 · · · ; i.e. at any position j¿k there exists a proper central
repetition of order 2.

The proof of this theorem is based on the following lemma.

Lemma 4. If there exists a number k such that in any position j¿k there exists a
proper central repetition of order 2; then the sequence of local periods (c2(x; j))j¿k
is bounded.

Proof. The proof is by contradiction. Let us suppose that the sequence of central local
periods at positions j¿k is not bounded. By hypothesis (j−c2(x; j))¿0 for any j¿k.
Let j1 be such that (j1− c2(x; j1)) assumes the minimal value between all j¿k and

let j2 be the least position greater than j1 such that c2(x; j2)¿c2(x; j1).
Consider the word v= xj1−c2(x; j1)+1xj1−c2(x−j1)+2 · · · xj2+c2(x−j2).
In the sequel of this proof, for simplicity, with abuse of notation, we will denote

by t the position t − (j1 − c2(x; j1)) of v.
It is easy to verify that c2(x; j1)= c2(v; j1).
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Remark also that the minimal square having its center in position j2 of v is not right
external.
This square cannot be left external by the minimality of j1 and the fact that, for any

position t of v, c2(x; t)¿c2(v; t).
Since this square is not left external then c2(v; j2)= c2(x; j2)¿c2(x; j1)¿c2(v; j1).
Since for any position t of v, c2(x; t)¿c2(v; t), and since j2 is the least position

greater than j1 such that c2(x; j2)¿c2(x; j1)= c2(v; j1), one has that for any position t
of v with j16t¡j2, c2(v; t)6c2(v; j1). If j1 − c2(x; j1) + 16t¡j1, we also have, by
construction of v, that c2(v; t)6c2(v; j1).
By Corollary 2, c2(v; j2)¿j2−(j1−c2(x; j1)+1)+1, i.e. j2−c2(v; j2)¡j1−c2(x; j1),

contradicting the minimality of j1.

Proof of Theorem 6. If x is eventually periodic then we can write x=wy, where y is
a one-sided in#nite word that is periodic with period P. Hence, if we set k = |w|+ P,
it is easy to check that at any position j¿k of x there exists a central repetition of
order 2 that is internal.
Let us prove the “if” part. Let us write x= uy, where |u|= k. Let us consider a

position i of y and the corresponding position i + k of x. Since y is a suIx of
x one has that in any position i¿0 there exists a central repetition of order 2 and
c2(y; i)6c2(x; i + k). Hence, by Lemma 4 the sequence of local periods (c2(y; i))i∈N
is bounded and, by Theorem 3, y is periodic.

By the fact that an in#nite word is periodic if and only if it is recurrent and eventually
periodic, and by Theorem 5, one has

Corollary 3. A one-sided in'nite word x is periodic if and only if at any position
there is a central repetition of order 2 and this repetition is external only for 'nitely
many positions.

Remark 1. Notice that, in previous theorem; one cannot bound the period of y as
function of k; as shown by the one-sided in#nite word yn= banbanban · · · where n is
any positive natural number. In this word the number k is 2 and this word has period n.

Example 5 (continued). The word y1 previously de#ned with m=1 shows that the
number 2 is tight in Lemma 4. Indeed for any � it is easy to see that there exists a
constant k(�) such that at any position j¿k(�) there exists a central repetition of order
2− �, but the sequence of local periods at positions j¿k(�) is not bounded.
Same word y1 show also that the constant 2 is tight in Theorem 6, because y1 is

not eventually periodic.
A more sophisticated example, showing that the constant 2 is tight in Theorem 6,

is given by the in#nite word of Fibonacci f de#ned in Example 4. The word f
is not eventually periodic but it is possible to prove, with same techniques used in
Proposition 3, that for any � there exists a constant k(�) such that at any position
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j¿k(�) there exists a central repetition of order 2− �, and that the sequence of local
periods at positions j¿k(�) is bounded.

An analogous of Theorem 6 does not hold for two-sided in#nite words, as shown
by the next example.

Example 6. For any �¿1 one can construct a non periodic two-sided in#nite word
x�= · · · x−1x0x1 · · · such that at any position there exists a central repetition of order �.
Let us consider the sequence of all integer numbers
0;−1; 1;−2; 2;−3; 3; : : :− i; i; : : : :
Our construction inductively determines letters in the word x� in order to have a

central repetition at position nj, where nj =(−1)j
(j=2)� is the jth element of previous
sequence.
Firstly let k = 
(�=2)� be the smallest integer greater than or equal to �=2 and set

x−k = x−k+1 = · · · = x0 = x1 = · · · = xk−1 = a and xk = b.
By construction at position 0 there is a central repetition of order �.
Suppose that we have #xed letters from position sj up to position tj such that at

all positions n0; : : : nj there exists a central repetition of order � that is internal to the
word xsj · · · xtj . Since position nj+1 is adjacent to position nj−1 then sj6nj+16tj.
Let us denote u= xsj xsj+1 · · · xnj+1 and v= xnj+1+1 · · · xtj .
Let us suppose that w= uv has period P and that a is the letter such that wa has

period strictly greater than P. Set xtj+1 = a.
Let us now assign letters from the position sj+1 = nj+1 − k|vau| to the position

tj+1 = nj+1 + 1 + k|vau| so that

(vau)k = xsj+1xsj+1+1 · · · xnj+1 and (vau)k = xnj+1+1 · · · xtj+1 :

Notice that this assigment is compatible with the previous assigment and that at
position nj+1 there exists a central repetition of order �. Notice further that, since
xsj+1xsj+1+1 · · · xtj+1 has wa as factor, its period is strictly greater than the period P
of w. Using this property it is not diIcult to prove that the in#nite word x� is non
periodic.

References

[1] D. Breslauer, T. Jiang, Z. Jiang, Rotations of periodic strings and short superstring, J. Algorithms 24
(2) (1997) 340–353.

[2] C. Crochemore, D. Perrin, Two-way string-matching, J. ACM 38 (3) (1991) 651–675.
[3] J.D. Currie, R.O. Shelton, Cantor sets and Dejean’s conjecture, J. Automata, Languages and

Combinatorics I 1996 (2) 113–127.
[4] N. Dolbilin, J. Lagarias, M. Senechal, Multiregular point systems, Discrete Comput. Geom. 4 (1998)

477–498.
[5] J.P. Duval, PPeriodes et rPepPetitions des mots du monoQRde libre, Theoret. Comput. Sci. 9 (1979) 17–26.
[6] J.P. Duval, Une caractPerisation des fonctions pPeriodiques, C.R. Acad Sci. Paris 289 (1979) 185–187.
[7] J.P. Duval, Contribution Sa la combinatoire du monoQRde libre. These d’Etat, UniversitPe de Rouen, 1980.



284 J.-P. Duval et al. / Theoretical Computer Science 262 (2001) 269–284

[8] J.P. Duval, PPeriodes locales et propagation de pPeriodes dans un mot, Theoret. Comput. Sci. 204 (1–2)
(1998) 87–98.

[9] N.J. Fine, H.S. Wilf, Uniqueness theorem for periodic functions, Proc. Amer. Math. Soc. 16 (1965)
109–114.

[10] R. Giancarlo, F. Mignosi, Generalizations of the Periodicity Theorem of Fine and Wilf. CAAP94,
Lecture Notes in Computer Science, vol. 787, Springer, Berlin, 1994, pp. 130–141.

[11] A. Lepisto, Relations between local and global periodicity of words, in: J. Wiedermann, P. vam Emde
Boas, M. Nielsen (Eds.), Proc. ICALP’99, Lecture Notes in Computer Science, vol. 1644, Springer,
Berlin, 1999, pp. 534–543.

[12] M. Lothaire, in: Combinatorics on Words, Encyclopedia of Mathematics and its Applications, vol. 17,
Addison-Wesley, Reading, MA, 1883.

[13] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, Cambridge, to
appear. A preliminary version is actually available at URL http:==www-igm.univ-mlv.fr= ∼ berstel=
Lothaire=index.html.

[14] R.C. Lyndon, P.E. Schupp, Combinatorial Group Theory, Springer, Berlin, 1977.
[15] R.C. Lyndon, M.P. Schutzenberger, The equation am = bncp in a free group, Michigan Math. J. 9 (4)

(1962) 289–298.
[16] F. Mignosi, A. Restivo, S. Salemi, Periodicity and the golden ratio, Theoret. Comput. Sci. 204 (1–2)

(1998) 87–98.
[17] C. Radin, Global order from local sources, Bull. Amer. Math. Soc. 25 (2) (1991) 335–364.
[18] P. SPePebold, propriPetPes combinatoires des mots in#nis engendrPes par certains morphismes, ThSese de

doctorat, Technical Report L.I.T.P., 1985, pp. 85–14.
[19] M. Senechal, Quasicrystals and Geometry, Cambridge University Press, Cambridge, 1995.
[20] L. Vuillon, Local con#gurations in a discrete plane, Bull. Belg. Math. Soc. 6 (1999) 625–636.


