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Abstract

This paper gives an answer to Weihrauch’s (Computability, Springer, Berlin, 1987) question
whether and, if not always, when an e6ective map between the computable elements of two
represented sets can be extended to a (partial) computable map between the represented sets.
Examples are known showing that this is not possible in general. A condition is introduced and
for countably based topological T0-spaces it is shown that exactly the (partial) e6ective maps
meeting the requirement are extendable. For total e6ective maps the extra condition is satis<ed in
the standard cases of e6ectively given separable metric spaces and continuous directed-complete
partial orders, in which the extendability is already known. In the <rst case a similar result holds
also for partial e6ective maps, but not in the second. c© 2001 Elsevier Science B.V. All rights
reserved.
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0. Introduction

In a series of papers Weihrauch has developed a general approach to study con-
structivity in analytical mathematics (cf. e.g. [32]). The essential insight was that all
sets studied there are equipped with some notion of approximation and that in impor-
tant cases their elements can be represented as limits of certain sequences of points
or (open) subsets approximating them. Moreover, in these cases the elements of the
sequences can be coded by natural numbers in an easy way. Thus, every element of
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the space can be named by an arithmetic function, namely the one which generates
the approximating sequence. The appropriate morphisms of such spaces are those maps
which are de<ned by a computable transformation of the approximating sequences, i.e.,
by a recursive operator on the name space. They are called computable.

Elements that can be approximated by a computable sequence, i.e., which can be
named by a total recursive function, are considered as computable. By coding the pro-
grams that compute the sequences (functions) one obtains a canonical indexing of the
computable points. Indexed sets have been studied in great depth by Mal’cev [18] and
ErFsov [10–12]. The canonical morphisms of such sets are those maps which are de<ned
by a recursive function on the indices. In our case this means that they are de<ned
by operations which e6ectively transform the programs generating the approximating
sequences. These morphisms are called e6ective.

As it is easy to see, the restriction of a computable map to the subspace of all
computable points is e6ective. For certain special cases such as e6ectively given sepa-
rable metric spaces and continuous directed-complete partial orders it is known that the
converse of this implication is also true, i.e., every (total) e6ective map on the com-
putable elements can be extended to a (partial) computable map. In [32] Weihrauch
asks whether and, if not always, when such an extension result holds in general.

From the literature, examples are known which show that in general e6ective maps
are not extendable to a computable map (cf. [13, 15, 17, 22, 35, 36]). Thus, the com-
putability notion for mappings between represented spaces is stronger than the com-
putability notion for maps between indexed spaces. The reason is that in the <rst case
computability involves continuity, which is not true, in general, in the second case.

As a consequence of a general result in [28] it follows under a fairly general and
natural assumption that exactly those total e6ective maps between the subspaces of
all computable elements of a countably based T0-space, which contains an e6ectively
presented dense subset and satis<es some further condition, and another countably based
T0-space have a partial computable extension that possess a witness for noninclusion,
which means: if some basic open set in the domain is not mapped into some basic open
set in the codomain, then we must be able to e6ectively <nd a witness for this, that
is, an element of the basic open set in the domain which is mapped outside the basic
open set in the codomain. The additional condition on the domain space requires that
the identity map on the subspace of computable points has a witness for noninclusion.
We say in this case that the space has a realizer for noninclusion.

By slightly modifying the notion of having a witness for noninclusion given in
[28], the present paper extends this result to the case of partial maps, thus improving
results in the preliminary version [27]. As is shown in [30, 28], total e6ective maps
always have a witness for noninclusion, if their domain of de<nition is domain-like, or
their codomain is an e6ectively given separable metric space and the domain contains
an e6ectively presented dense subset. By this way, the before mentioned extension
theorems follow as special cases. In the case of e6ective maps with an e6ectively
given separable metric space as codomain, the result remains true, if we allow the
maps to be only partially de<ned. The domain space has to satisfy a suitable separability
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condition, then. Moreover, the recursive function realizing the e6ective map must not
produce inconsistent information outside the domain of de<nition of the e6ective map.
But, as follows from an example by Friedberg [13], it does not hold for partial e6ective
maps the domain space of which is domain-like.

In [32] the theory of representations has been developed in great generality. Nev-
ertheless, considering only countably based T0-spaces is not a real restriction. Such
spaces appear quite naturally in computer science. Scott [24] and Smyth [25] pointed
out that data types can be thought of as T0-spaces the basic open sets of which are the
<nitely describable properties of the data objects. Most structures considered in pro-
gramming language semantics are equipped with a canonical topology. Prominent ex-
amples are metric spaces, Scott domains, and A- and f-spaces [7–9, 11]. As is shown by
Stoltenberg–Hansen and Tucker [31], many algebraic structures, e.g., all term algebras
over a <nite signature, can be canonically embedded in complete ultrametric spaces as
well as in Scott domains.

This paper is organized as follows: Section 1 contains basic de<nitions and facts
from computability, numeration, and representation theory.

In Section 2, countably based T0-spaces that satisfy some very general e6ectiv-
ity assumption and various representations with their derived numberings are studied.
Moreover, some important, standard examples such as e6ectively given separable metric
spaces, continuous directed-complete partial orders, A-, and f-spaces are considered.
As a <rst step towards our <nal result, it is shown that every computable map be-
tween two countably based T0-spaces is e6ectively continuous and, conversely, every
e6ectively continuous map between the subspaces of their computable elements can be
extended to a partial computable map between the spaces.

In Section 3, we present an example of Friedberg. This will provide us with the
necessary counterexamples for the investigations in Sections 4 and 5.

In Section 4, the above noted modi<cation of the notion of a witness for noninclusion
is introduced and for maps between the subspaces of all computable elements of a
countably based T0-space, which contains an e6ectively presented dense subset and
has a realizer for noninclusion, and another countably based T0-space the statement
is derived that exactly the (partial) e6ective maps having a witness for noninclusion
are e6ectively continuous. From these two results the before mentioned answer to
Weihrauch’s question follows.

In Section 5, the results obtained in the preceding sections are applied to the standard
examples introduced in Section 2 and the problem is studied when e6ective maps have
a witness for noninclusion in these cases. Some <nal remarks appear in Section 6.

1. Basic de�nitions and properties

In what follows, let 〈 ; 〉 :!2 →! be a recursive pairing function. Moreover, let
P(n) (R(n)) denote the set of all n-ary partial (total) recursive functions, and let Wi

be the domain of the ith partial recursive function ’i with respect to some GIodel
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numbering ’. We let ’i(a) ↓ mean that the computation of ’i(a) stops, ’i(a)↓∈A
that it stops with value in A, and ’i(a) ↓n that it stops within n steps. In the opposite
case we write ’i(a) ↑ and ’i(a) ↑n respectively. If A⊆! is not empty and (relatively)
recursively enumerable (r.e.), As is the <nite subset of A which can be enumerated
in s steps with respect to some <xed (relatively) computable enumeration of A, i.e.,
As = {f(0); : : : ; f(s − 1)}, where f is the <xed enumeration function. The cardinality
of a set A is denoted by |A|. If F is a partial map from a set X into a set Y this is
written as F :X *Y .

Let S be a nonempty set. A (partial) numbering � of S is a partial map � :!*S
(onto) with domain dom(�). The value of � at n∈ dom(�) is denoted, interchangeably,
by �n and �(n).

De�nition 1. Let � and � be numberings of the set S.
(1) �6m�, read � is many-one reducible to �, if there is a function g∈P(1) such that

dom(�)⊆ dom(g); g(dom(�))⊆ dom(�), and �m = �g(n), for all n∈ dom(�).
(2) � is many-one equivalent to �, if �6m� and �6m �.

A subset X of S is completely enumerable, if there is an r.e. set Wn such that �i ∈X
if and only if i∈Wn, for all i∈ dom(�). Set Cn =X , for any such n and X , and let
Cn be unde<ned, otherwise. Then C is a numbering of the class of all completely
enumerable subsets of S. If Wn is recursive, X is said to be completely recursive. X
is enumerable, if there is an r.e. set A⊆ dom(�) such that X = {�i | i∈A}. A relation
R⊆ S × S is completely enumerable, if there is an r.e. set A such that (�i; �j)∈R if
and only if 〈i; j〉 ∈A, for all i; j∈ dom(�).

Numbered sets form a category [10]. Morphisms are the e6ective maps, where for
two nonempty sets S and S ′ with numberings � and �′, respectively, a map F : S *S ′ is
called e8ective, if there is a function f∈P(1) such that for all n∈ �−1(dom(F)); f(n) ↓
∈ dom(�′) and F(�n) = �′f(n). We say in this case that f realizes F or that f is a realizer
of F .

Obviously, only countable sets have numberings. In order to study the computability
of mappings between sets which may have the cardinality of the continuum, Weihrauch
considered sets the elements of which are no longer represented by numbers, but by
arithmetic functions.

Let B be the set of all functions p :!→!, and let T be a nonempty set. A repre-
sentation � of T is a partial map � :B*T (onto) with domain dom(�). As in the case
of numberings the value of � at p∈ dom(�) is denoted by �p and=or �(p).

De�nition 2. Let � and � be representations of the set T .
(1) �6c �, read � is (computably) reducible to �, if there is a recursive operator [23]

� such that for all p∈ dom(�); �(p)∈ dom(�), and �p = ��(p).
(2) �≡c �, read � is (computably) equivalent to �, if �6c� and �6c�.

For p∈B de<ne Mp to be the set of all numbers i with i + 1∈ range(p). Then M
is a representation of the powerset of !.
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Let T ′ be a further nonempty set and �′ be a representation of T ′. A map F :T *T ′

is called computable, if there is a recursive operator � with �(p)∈ dom(�′) and
F(�p) = �′�(p), for all p∈ �−1(dom(F)).

There is a natural way to introduce computability on a represented set. An element z
of T is said to be computable, if there is some p∈R(1) with z = �p. Let Tc be the set of
all computable elements of T . Obviously, the computability of an element is invariant
under the equivalence of representations. Associated with each representation � of T is
a canonical numbering �� of the corresponding set Tc of computable elements, called
the derived numbering: ��i = �(’i), if ’i ∈ dom(�); otherwise ��i is unde<ned. As is easy
to see, the derived numberings of two equivalent representations of T are many-one
equivalent.

Lemma 3. Let � and �′; respectively; be representations of the sets T and T ′.
Moreover; let F :T *T ′ be computable. Then F(Tc)⊆T ′

c and the restriction of F
to Tc is e8ective with respect to the derived numberings.

The proof of this lemma is given in [32], where Weihrauch also asks when the
converse is true, i.e.:

Given an e8ective map F :Tc →T ′
c , is there a computable map MF :T *T ′ which

extends F ?

As follows from examples in the literature, there is no such extension in general.
In Section 4 we present a condition, which in the case of countably based separable
topological T0-spaces and certain natural representations characterizes the e6ective maps
that have a computable extension.

2. Topological spaces and standard representations

Let T= (T;  ) be a topological T0-space with a countable basis B. For any subset
X of T; int (X ); cl (X ) and ext (X ), respectively, are the interior, the closure and the
exterior of X .

Let B :!→B(onto) be a total numbering of B. In the applications we have in
mind the basic open sets can be described in some <nite way. The indexing B is then
obtained by an encoding of the <nite descriptions. Moreover, in these cases there is
a canonical relation between the (code numbers of the) descriptions which is stronger
than the usual set inclusion between the described sets. This relation is r.e., which, in
general, is not true for set inclusion. One has to use this stronger relation in order to
derive the result we talked about in the introduction.

De�nition 4. Let ≺B be a transitive binary relation on !. We say that
(1) ≺B is a strong inclusion, if for all m; n∈! from m≺B n it follows that Bm ⊆Bn.
(2) B is a strong basis, if ≺B is a strong inclusion and for all z ∈T and m; n∈! with

z ∈Bm ∩Bn there is a number a∈! such that z ∈Ba; a≺B m and a≺B n.
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Example 5. Let S be a nonempty set with a family {Vn | n∈!} of nonempty (basic)
predicates. Moreover, let D be a standard coding of all <nite sets of natural numbers.
De<ne

MVn =
⋂

{Va | a ∈ Dn}:

Then { MVn | n∈!} is basis of a topology on S. Set

m ≺ MV n ⇔ Dn ⊆Dm:

Obviously, ≺ MV is an r.e. strong inclusion and { MVn | n∈!} is a strong basis.

If one follows Smyth [25] and thinks of open sets as properties of data objects, then
strong inclusion relations can be considered as ‘de<nite re<nement’ relations. For what
follows we assume that ≺B is an r.e. strong inclusion with respect to which B is a
strong basis.

Since in a T0-space every point y is uniquely determined by (a base of) its neigh-
bourhood <lter N(y), there is a canonical way to de<ne representations of such spaces.

De�nition 6. Let H be a <lter. A nonempty subset F of H is said to be a strong
base of H if the following two conditions hold:
(1) (∀m; n∈!)[Bm; Bn ∈F⇒ (∃a∈!)Ba ∈F∧ a≺B m ∧ a≺B n].
(2) (∀m∈!)[Bm ∈H⇒ (∃a∈!)Ba ∈F∧ a≺B m].

De�nition 7. For p∈B let
(1) %p be the unique point y∈T such that B(Mp) is a strong base of N(y),
(2) &p be the unique point z ∈T such that Mp is the set of all numbers n with z ∈Bn,

if there are such points, and let %p and &p be unde<ned, otherwise. The map % is called
standard representation of T .

Lemma 8. &≡c %.

Proof. As B is a strong basis, we have for every point z ∈T that the set of all Bn

with z ∈Bn is a strong base of N(z). Thus, the identity on B witnesses that &6c%.
In order to show that %6c&, let p∈B and consider the set

A[p] = {n ∈ ! | (∃a ∈Mp)a ≺B n}:

Obviously, A[p] is r.e. in p. Hence, there is some recursive operator ' with M'(p) =
A[p]. Assume that p∈ dom(%) and let n∈A[p]. Then %p ∈Bn. Now, to the contrary,
let the number m be so that %p ∈Bm. Since B(Mp) is a strong base of N(%p), there
is a number a∈Mp with a≺B m. It follows that m∈A[p]. This shows that %p ∈Be if
and only if e∈A[p]. Thus %p = &'(p).
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A representation ) of T with )≡c % is called admissible. For the remainder of this
paper we assume that the spaces under consideration are admissibly represented. More-
over, the computability of a point is always meant with respect to such a representation.

Observe that the notions of a standard representation and of admissibility used in
this paper di6er slightly from Weihrauch’s: In [32] <lter bases are not required to be
strong.

Let us now introduce some well known examples of T0-spaces with a strong basis.
We <rst give the de<nition of the space and then discuss properties of their admissible
representations and the corresponding derived numberings.

Example 9 (E8ective metric spaces). Let M= (M; d) be a separable metric space with
dense subset M0. For the purposes of this paper it is suPcient to impose only rather
weak e6ectively requirements on the space (cf. [32, 16]). M is said to be weakly e8ec-
tive, if there exists a total indexing , of M0 such that the set {〈i; j; a〉 |d(,i; ,j)¡�Qa }
is r.e. Here �Q is a canonical indexing of the rational number set. If, in addition, also
{〈i; j; a〉 |d(,i; ,j)¿�Qa } is r.e., M is called e8ective. Since the less-than relation on the
computable real numbers is completely enumerable [19], both conditions are satis<ed
if the restriction of the distance function d to M0 has only computable values and is
e6ective. (Here, computability is understood with respect to the standard representation
of the real number set R, and Rc is enumerated by the corresponding derived num-
bering. As basis of the usual topology on R the set of all open intervals with rational
end points is taken, enumerated in a canonical way.)

As is well known, the collection of all sets B〈i;m〉 = {y∈M |d(,i; y)¡2−m}(i; m∈!)
is a basis of the canonical Hausdor6 topology / on M . De<ne

〈i; m〉 ≺B 〈j; n〉 ⇔ d(,i; ,j) + 2−m ¡ 2−n:

Using the triangular inequation it is easily veri<ed that ≺B is a strong inclusion and
the collection of all B〈i;m〉 is a strong basis. If M is weakly e6ective, we moreover
have that ≺B is also r.e.

Another widely known fact is that each element of M is the limit of a normed
Cauchy sequence of elements of the dense subset M0, where a sequence (ya)a∈! of
elements of M0 is said to be normed if d(ym; yn)¡2−m for all m; n∈! with m6n. For
p∈B de<ne 0p to be the limit of the sequence (,p(a))a∈!, if this sequence is normed
and the limit exists. In any other case let 0p be unde<ned. The map 0 is called Cauchy
representation of M .

Lemma 10. Let M be weakly e8ective. Then the Cauchy representation is admissible.

Proof. For p∈B let

A[p] = {〈a; m; n〉 | a ∈Mp ∧ a ≺B m ∧ a ≺B p(n) − 1}:
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Obviously, A[p] is r.e. in p. Hence, there is some recursive operator 1 with M1(p) =
A[p]. De<ne the operator 2 :B*B by

2(p)(0) = p(0);

2(p)(n + 1) = 1 + 33
1(1(p)(4e : 33

2(1(p)(e) − 1) = 2(p)(n) − 1

∧33
3(1(p)(e) − 1) = n + 1) − 1):

Clearly, 2 is recursive.
Now, assume that p∈ dom(%). Then B(Mp) is a strong base of N(%p). There-

fore it follows by induction that 2(p)(n) is de<ned, for all n∈!. By the de<nition
of 2 we moreover have that M2(p) ⊆Mp and 2(p)(n+ 1)− 1≺B 2(p)(n)− 1. Set
2̂(p)(n) = 31(2(p)(n)−1). Then we obtain from the de<nition of ≺B that (,2̂(p)(n))n∈!

is a normed Cauchy sequence of elements of the dense subset M0 which converges to
%p. Thus %p = 02̂(p). This shows that %6c0.

For the proof that also 06c% let

5(p)(n) = 1 + 〈p(n + 1); n〉:
Then 5 is recursive. Moreover, we have for p∈ dom(0) and n∈! that

d(,31(5(p)(n+1)−1); ,31(5(p)(n)−1)) + 2−32(5(p)(n+1)−1)

= d(,p(n+2); ,p(n+1)) + 2−(n+1)

¡ 2−(n−1) + 2−(n+1)

= 2−32(5(p)(n)−1):

Thus 5(p)(n+ 1)− 1≺B 5(p)(n)− 1, for all n∈!. In order to obtain that B(M5(p))
is a strong base of N(0p) it remains to show that for each Bm ∈N(0p) there is some
a∈! with 5(p)(a) − 1≺B m.

Let 0p ∈Bm and let a be the smallest number n with 21−n62−32(m) − d(0p; ,31(m)).
Since (,p(n))n∈! is normed and converges to 0p, we have that

d(,31(5(p)(a)−1); ,31(m)) + 2−32(5(p)(a)−1)

= d(,p(a+1); ,31(m)) + 2−a

6d(,p(a+1); 0p) + d(0p; ,31(m)) + 2−a

¡ 2−(a+1) + 2−a + d(0p; ,31(m))

¡ 2−32(m):

It follows that 0p = %5(p), i.e., 06c%.

Note that an analogous result has been shown by Weihrauch [32] for separable
metric spaces without isolated points. But as has already been mentioned his notion of
a standard representation is slightly di6erent from ours.
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A standard example of an e6ective metric space is Baire space, that is, the set B
of all total arithmetic functions with the metric

dB(p; q) =
{

0 if p = q;
2−4a:p(a)�=q(a) otherwise:

The functions that are eventually zero form a dense subset. Let 7 be a canonical
encoding of these functions (cf. e.g. [32, p. 399]). The indexing of the basic open
balls considered above is denoted by H in this case. With the help of Lemma 10 it is
readily veri<ed that the identity mapping on B is an admissible representation. Thus,
the computable elements are exactly the total recursive functions.

Example 11 (E8ective continuous directed-complete partial orders). Let Q= (Q;�)
be a partial order with smallest element ⊥. A nonempty subset S of Q is directed
if for all y1; y2 ∈ S there is some u∈ S with y1; y2 � u. Q is a directed-complete partial
order (dcpo) if every directed subset S of Q has a least upper bound sup S in Q. Let
� denote the way-below relation on Q, i.e., let y1�y2 if for directed subsets S of Q
the relation y2 � sup S always implies the existence of a u∈ S with y1 � u.

A subset Z of Q is a basis of Q, if for any y∈Q the set Zy = {z ∈Z | z�y} is
directed and y = supZy. A dcpo that has a basis is called continuous. As is well
known, on each dcpo there is a canonical T0 topology: the Scott topology. A subset
X of Q is open if X is upwards closed with respect to � and with each u∈X there
is some y∈X with y�u. If Q is continuous, this topology is generated by the sets
Oz = {y∈Q | z�y} with z ∈Z . Moreover, Z is dense in Q.

Let Q be continuous, then it is called e8ective, if there exists a total indexing , of
Z such that the restriction of the way-below relation to Z is completely enumerable.
Set Bn =O,(n) and de<ne

m ≺B n ⇔ ,n � ,m:

Then ≺B is an r.e. strong inclusion and the collection of all Bn is a strong basis.

A widely known example of an e6ective continuous dcpo is the space of all partial
arithmetic functions ordered by graph inclusion. The nowhere de<ned function is the
smallest element and the subspace of all functions with <nite domain is a basis. With
respect to a canonical indexing of this basis (cf. e.g. [32, p. 444]) the computable
elements are just the partial recursive functions in this case.

As is well known, on T0-spaces there is a canonical partial order, the specialization
order, which we denote by 6 .

De�nition 12. Let T= (T;  ) be a T0-space, and y; z ∈T . y6 z if N(y)⊆N(z).

Note that in the case of a dcpo with the Scott topology the specialization order
coincides with the partial order.
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Example 13 (E8ective A-spaces). A- and f-spaces have been introduced by ErFsov
[7–9, 11] as a more topologically oriented approach to domain theory. They are not
required to be complete. An example of an f-space which is not directed-complete
can be found in [14].

Let Y= (Y; =) be a topological T0-space. For a subset X of Y; int(X ) is its interior.
Moreover, for y; z ∈Y de<ne y�z if z ∈ int({u∈Y |y6=u}). Then Y is an A-space
if there is a subset Y0 of Y satisfying the following three properties:
(1) Any two elements of Y0 which are bounded in Y with respect to the specialization

order have a least upper bound in Y0.
(2) The collection of sets int({u∈Y |y6=u}), for y∈Y0, is a basis of topology =.
(3) For any y∈Y0 and u∈Y with y�u there is some z ∈Y0 such that y�z and z�u.
Any subset Y0 of Y with these properties is called basic subspace.

The A-space Y with basic subspace Y0 is e8ective, if there is a total indexing ,
of Y0 such that the restriction of the relation � to Y0 is completely enumerable. For
m; n∈! set Bn = int({u∈Y | ,n6&u}) and de<ne

m ≺B n ⇔ ,n � ,m:

Then ≺B is an r.e. strong inclusion. Moreover, the collection of all Bn is a strong basis.

Example 14 (E8ective f-spaces). Let Y= (Y; =) be again an arbitrary topological
T0-space. An open set V is an f-set, if V is nonempty and there is a some ele-
ment zV ∈V such that V = {y∈Y | zV6=y}. The uniquely determined element zV is
called f-element. Y is an f-space, if the following two conditions hold:
(1) If U and V are f-sets with nonempty intersection, then U ∩V is also an f-set.
(2) The collection of all f-sets is a basis of topology =.
An f-space is e8ective, if the set of all f-elements has a total numbering , such
that the restriction of the specialization order to this set and the boundedness of two
f-elements are completely recursive and there is a function su∈R(2) such that in the
case that ,n and ,m are bounded, ,su(n;m) is their least upper bound.

Obviously, every f-space is an A-space with basic subspace the set of all f elements.
Moreover, for y; z ∈Y such that y or z is an f-element, y�z if and only if y6=z.

A common property of the above examples is that the spaces contain a dense indexed
subset such that for each basis open set Bn one can e6ectively and uniformly generate
all dense points included in it.

De�nition 15. A T0-space T= (T;  ) with a countable basis B and a total indexing
B of B is e8ectively separable, if there exists a dense subset T0 of T and a total
numbering , of T0 such that {〈i; n〉 | ,i ∈Bn} is r.e.

A further property of the spaces in Examples 11, 13 and 14 is that their canonical
topology has a basis with every basic open set being an upper set which has a lower
bound in a certain neighbourhood of it.
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De�nition 16. We say that T is pointed, if there is a subset Pt of T and a numbering
@ of Pt such that for all n∈! with Bn �= ∅; n∈ dom(@); @n6 z, for all z ∈Bn, and
@n ∈Bm if and only if n≺B m, for all m∈!.

Let hln(Bn) =
⋂{Bm | n≺B m}. Then @n ∈ hln(Bn). Note that

Bn ⊆{z ∈ T | @n6 z}⊆ hln(Bn):

As it is readily veri<ed, Pt is dense in T. Since strong inclusion is assumed to be
r.e., we obtain that if T is pointed then it is also e6ectively separable.

Obviously, every e6ective continuous dcpo with the Scott topology, every e6ective
A-space and every e6ective f-space is pointed.

For pointed spaces it can be shown that every element y is the least upper bound
of all @n with y∈Bn, where the least upper bound is taken with respect to the spe-
cialization order [26]. Thus, we have for the representation & that &p = sup @(Mp)
(p∈ dom(&)).

Let us now return to the general case of a topological T0-space T with a countable
strong basis B. For every point z ∈T the set of all indices n with z ∈Bn is a <lter
with respect to ≺B.

De�nition 17. A nonempty set I of natural numbers is a =lter with respect to ≺B if
the following two conditions hold:
(1) (∀m; n∈ I) (∃a∈ I)a≺B m∧ a≺B m.
(2) (∀n∈!) (∀m∈ I) [m≺B n⇒ n∈ I ].

If only the <rst stipulation is ful<lled, I is called =ltered with respect to ≺B.
For an important class of spaces every such <lter is generated by the neighbourhood

<lter of a point.

De�nition 18. An enumeration (Bf(a))a∈! with f :!→! such that

range(f)⊆ dom(B)

is said to be normed if f is decreasing with respect to ≺B. If f is recursive, it is also
called recursive and any GIodel number of f is said to be an index of it.

In case (Bf(a)) enumerates a strong base of the neighbourhood <lter of some point,
we say it converges to that point.

De�nition 19. A T0-space T= (T;  ) with countable strong basis B is strongly com-
plete, if each normed enumeration of nonempty basic open sets converges.

In the case of a weakly e6ective metric space, it follows from the proof of Lemma 10
that the space is strongly complete if and only if every normed sequence of elements
of the dense subset converges.
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Lemma 20. Let T be strongly complete. Then for every =lter I with respect to ≺B

such that Bn is nonempty; for each n∈ I; there is some point z ∈T so that I is the
set of all indices n with z ∈Bn.

Proof. Since I is a <lter, a sequence (ai)i∈! of elements of I can be constructed which
is decreasing with respect to ≺B such that for every m∈ I there is some index i with
ai ≺B m. Then, by the strong completeness of T, there is a point z ∈T so that the
set of all Bai (i∈!) is a strong base of the neighbourhood <lter of z. It follows that
for each n with z ∈Bn there is some index i with ai ≺B n, from which we obtain that
n∈ I , as ai ∈ I . The converse property that z ∈Bn, for every n∈ I , is obvious from the
construction of the ai.

Every T0-space with a countable strong basis is embeddable in a strongly complete
space.

Proposition 21. There is a strongly complete T0-space T̂= (T̂ ;  ̂) and a computable
embedding B :T → T̂ such that for every other strongly complete T0-space T̂= (T̃ ;  ̃)
and any computable map F :T * T̃ there is a computable map G : T̂ * T̃ with
F =G ◦ B. If; in addition; ∅ =∈B then range(B) is dense in T̂.

Proof. Let T̂ be the set of all <lters with respect to ≺B, and for m; n∈! de<ne B̂n to
be the collection of all <lters in T̂ that contain n and set

m ≺B̂ n ⇔ m ≺B n:

Then ≺B̂ is a strong inclusion relation and the collection B̂ of all sets B̂n is a strong
basis of a topology  ̂ on T̂ . Moreover, we have for the representation &̂ of T̂ that
&̂p =Mp, if Mp is a <lter with respect to ≺B. Otherwise &̂ is unde<ned.

For the veri<cation that T̂ is strongly complete let (ai)i∈! be a sequence of indices
which is decreasing with respect to ≺B̂ such that B̂ai is not empty, for each i∈!. Then
the sequence is also decreasing with respect to ≺B. Hence, the set I of all m∈! with
ai ≺B m, for some index i, is a <lter with respect to ≺B. Obviously, I ∈ B̂ai , for all i∈!.
It remains to show that the collection of all B̂ai is a strong base of the neighbourhood
<lter of I . The <rst condition in De<nition 6 holds since I is <ltered. For the second re-
quirement let n∈! with I ∈ B̂n. Then n∈ I , which implies that for some index i, ai ≺B n.

For z ∈T let B(z) be the set of all indices n with z ∈Bn. Then B(z) is a <lter with
respect to ≺B. Since T is T0, the map B is one-to-one. Moreover B ◦ &= &̂, which shows
that it is computable.

Now, assume that the empty set is not basic open and let n∈!. Then there is some
point z ∈Bn. Hence n∈ B(z), which implies that B(z)∈ B̂n. Thus, B(T ) is dense in T̂ .

Let T̃= (T̃ ;  ̃) be a further strongly complete topological T0-space with a strong
basis B̃ and F :T * T̃ be a computable map. For I ∈ B(dom(F)), say I = B(z), de<ne
G(I) =F(z). Then for p∈B with &p ∈ dom(F) we have that G(&̂p) =G(B(&p)) =
F(&p), which shows that computability of G.
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As is well known, (the restriction of) each recursive operator (to Baire space) is
e6ectively continuous. The same can be shown for computable maps. We shall see that
both notions coincide. To this end we show that the representation & is both e6ectively
continuous and e6ectively open.

De�nition 22. Let T= (T;  ) and T′ = (T ′;  ′), respectively, be T0-spaces with count-
able bases B and B′ and total numberings B and B′ of B and B′. A map F :T *T ′

is called
(1) E8ectively continuous, if there is a function h∈R(1) such that for all n∈!,

F−1(B′
n) =

⋃{Ba ∩ dom(F) | a∈Wh(n)}.
(2) E8ectively open, if there is a function g∈R(1) such that for all n∈!, F(Bn) =⋃{B′

a ∩ range(F) | a∈Wg(n)}.

Assume that F is e6ectively continuous and let this be witnessed by h∈R(1). For
disjoint basic open sets B′

m and B′
n one always has that F−1(B′

m) and F−1(B′
n) are

disjoint as well. But this does not necessarily mean that also
⋃{Ba | a∈Wh(m)} and⋃{Ba | a∈Wh(n)} are disjoint. We call h consistent if for all m; n∈!

B′
m ∩ B′

n = ∅ ⇒
⋃

{Ba | a ∈ Wh(m)} ∩
⋃

{Ba | a ∈ Wh(n)} = ∅:

Lemma 23. The representation & is e8ectively continuous.

Proof. For p∈ dom(&) and n∈! we have

&p ∈ Bn ⇔ n + 1 ∈ range(p)

⇔ (∃i; j; a ∈ !)p ∈ H〈i;a〉 ∧ j6a ∧ 7i(j) = n + 1:

Let the function h∈R(1) be such that Wh(n) = {m | (∃j632(m))731(m)( j) = n+ 1}. Then
it witnesses the e6ective continuity of &.

It follows that all admissible representations of T are e6ectively continuous.

Lemma 24. The representation & is e8ectively open.

Proof. Let z ∈T and i; n∈!. Then we have

z ∈ &(H〈i;n〉) ⇔ (∀a6n) [7i(a)¿0 ⇒ z ∈ B7i(a)−1]

⇔ (∃m ∈ !)z ∈ Bm ∧ (∀a6n) [7i(a)¿0 ⇒ m ≺B 7i(a) − 1]:

The last equation holds as B is a strong basis. It follows that & is e6ectively open.

Now, let T′ = (T ′;  ′) be a further T0-space with countable basis B′ and a total
numbering B′ of B′.
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Proposition 25. Let F :T *T ′. Then the following statements hold:
(1) If F is computable then it is e8ectively continuous.
(2) If F is e8ectively continuous; then a computable map MF :T *T ′ can be con-

structed which extends F .

Proof. Without restriction we assume that T and T ′, respectively, are represented by
& and &′.

(1) Let the recursive operator � witness the computability of F . Then F ◦ &= &′ ◦�
on &−1(dom(F)). As a consequence we have for n∈! that F−1(B′

n) = &(�−1(&′−1

(B′
n)))∩ dom(F), which implies the e6ective continuity of F .
(2) Suppose that the function h∈R(1) witnesses the e6ective continuity of F . For

p∈B set A[p] = {a∈! |Wh(a) ∩Mp �= ∅}. Then A[p] is r.e. in p. Hence, there is some
recursive operator � with M�(p) =A[p]. Obviously, for p; q∈B with Mp =Mq we
have that M�(p) =M�(q). It follows for p; q∈ dom(&)∩�−1(dom(&′)) with &p = &q

that &′
�(p) = &′

�(q).
For y∈T set MF(y) = &′

�(p), for some p∈ &−1(y)∩�−1(dom(&′)), if this set is not
empty, and let MF(y) be unde<ned, otherwise. Then MF is computable.

It remains to show that on dom(F), MF coincides with F . Let to this end p∈ &−1

(dom(F)). Then a∈A[p] if and only if F(&p)∈B′
a. Hence �(p)∈ dom(&′) and MF(&p)

= &′
�(p) =F(&p).

As is widely known, the set R(1) of all unary total recursive functions is dense
in Baire space. It follows that, if it is also dense in the domain of an admissible
representation (with respect to the induced topology), then the subset of all computable
points is dense in T .

The next result displays an important case in which the extension MF constructed in
the above proposition is total. Moreover, it is uniquely determined in this case.

Lemma 26. Let T be pointed and T′ be strongly complete. Moreover; let F :T *T ′

be e8ectively continuous with Pt⊆ dom(F). Then the computable extension MF of F
constructed in Proposition 25 is total and uniquely determined.

Proof. Let y∈T and p∈ &−1(y). We <rst show that A[p] is a <lter with respect
to ≺B′ .

Let to this end a; c∈A[p]. Then there are m∈Wh(a) and n∈Wh(c) such that y∈Bm ∩
Bn. Since B is a strong basis, there is some i∈! with y∈Bi, i≺B m and i≺B n. It fol-
lows that @i6 y and @i ∈Bm ∩Bn. Hence F(@i)∈B′

a ∩B′
c . As B′ is also a strong basis,

this implies that there exists an index e such that F(@i)∈B′
e; e≺B′ a and e≺B′ c. Thus

@i ∈Bb, for some b∈Wh(e). Since open sets are upwards closed under the specialization
order, we obtain that y∈Bb too, i.e., e∈A[p].

Next, assume that a∈A[p] and c∈! with a≺B′ c. Then there is some m∈Wh(a)

such that y∈Bm. By the strongness of B we obtain some index i with y∈Bi and
i≺B m. It follows that @i6 y and @i ∈Bm. Thus F(@i)∈B′

a. But B′
a ⊆B′

c , which implies
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that @i ∈Bn, for some n∈Wh(c). As a consequence we have that also y∈Bn. Hence
c∈A[p].

As we have just seen, all basic open sets Bc with c∈A[p] are nonempty. By
Lemma 20 we therefore obtain that there is a point z ∈T ′ such that A[p] is the set of
all indices a with z ∈B′

a. Thus �(p)∈ dom(&′), which shows that MF(y) is de<ned, for
every y∈T .

It remains to show that MF is uniquely determined. As has already been mentioned,
it is shown in [26] that for every y∈T; y = sup {@n |y∈Bn}. In a similar way it can
be proved for continuous maps G :T →T ′ that G(y) = sup {G(@n) |y∈Bn}. With this
it follows that F has at most one computable extension.

In [28] T0-spaces consisting only of computable elements are considered and a
condition is presented forcing e6ective maps between such spaces to be e6ectively
continuous. We shall generalize this result in our study when e6ective maps between
the subspaces of computable elements of two admissibly represented T0-spaces have
a computable extension. The numberings of the spaces in that paper are assumed to
satisfy very natural conditions relating topology with e6ectivity. As we shall see next,
for numberings which are derived from admissible representations these conditions are
provable.

De�nition 27. Let x be a numbering of Tc. We say that:
(1) x is computable if there is some r.e. set L such that for all i∈ dom(x) and

n∈!; 〈i; n〉 ∈L if and only if xi ∈Bn.
(2) x allows e8ective limit passing if there is a function pt ∈P(1) such that, if ’m is

decreasing with respect to ≺B and the set of all B(’m(a)) (a∈!) is a strong
base of the neighbourhood <lter of some point y∈Tc, then pt(m) ↓∈ dom(x)
and xpt(m) =y.

(3) x is acceptable if it allows e6ective limit passing and is computable.

Lemma 28. Let the numbering x of Tc be derived from an admissible representation
of T . Then x is acceptable.

Proof. As it is easily veri<ed, computability and the property of allowing e6ective limit
passing are both invariant under many-one equivalence. Therefore, we can assume that
x is derived from the representation & and=or the standard representation. In the <rst
case it is obvious that x is computable, in the second that x allows e6ective limit
passing.

In the sequel we always assume that x is a numbering of Tc which is derived from
an admissible representation of T , similarly for x′ and T ′. Then it follows for every
basic open set that one can e6ectively list all its computable elements. In general there
is no way to do the same with respect to its exterior. An exception are e6ective metric
spaces and e6ective f-spaces, respectively, since

xa ∈ ext/(B〈i;m〉) ⇔ (∃〈j; n〉 ∈M(’a))d(,i; ,j) ¿ 2−m + 2−n
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and

xa ∈ ext=(Bm) ⇔ (∃n ∈M(’a))¬(∃c),m; ,n6=,c:

As follows from the de<nition of admissible representations, for each computable
point one can e6ectively enumerate a strong base of basic open sets of its neighbour-
hood <lter. The next result, which is proved in [28], shows that this can be done in a
normed way.

Lemma 29. There are functions q∈R(1) and p∈R(2) such that for all i∈ dom(x) and
all n∈! with xi ∈Bn; q(i) and p(i; n) are indices of normed recursive enumerations
of basic open sets which converge to xi. Moreover; ’p(i; n)(0)≺B n.

Let us now assume that T is e6ectively separable with dense subset T0 and total
numbering , of T0. Moreover, without restriction, suppose that the numbering x is
derived from the representation &. Then the function g∈R(1) with M(’g(i)) = {n | ,i ∈
Bn} witnesses that ,6m x.

In [28] a countably based countable T0-space T̂= (T̂ ;  ̂) with numberings x̂ and B̂,
respectively, of T̂ and the topological basis B̂ such that for some function g∈R(1) with
range(g)⊆ dom(x̂) the set x̂(range(g)) is dense in T̂ is called recursively separable.
Moreover, T̂ is said to be e8ectively pointed, if there is a function pd∈P(1) such
that for all n∈ dom(B̂) with B̂n �= ∅; pd(n) ↓∈ dom(x̂); x̂pd(n) ∈ hln(B̂n) and x̂pd(n)6 ̂ z,
for all z ∈ B̂n.

Let  c be the induced topology on Tc. Then it follows that Tc = (Tc;  c) is recursively
separable, if T is e6ectively separable. Moreover, Tc is e6ectively pointed, if T is
pointed.

As is well known, each function f∈P(1) de<nes a partial e6ective map Ff :Tc *T ′
c

with Ff(xi) = x′f(i), if f behaves extensional on xi, which means that for all j∈ dom(x)
one has

xj = xi ⇒ f(j) ↓∈ dom(x′) ∧ x′f(j) = x′f(i):

In any other case, Ff is unde<ned. Observe that, if F :Tc *T ′
c is an e6ective map

with realizer f∈P(1), then the e6ective map Ff de<ned by f is an extension of F .
For the following de<nition as well as the remainder of this paper we assume that

the spaces under consideration are represented by & and that x is the corresponding
derived numbering. Note that in this case we can always presume that an e6ective map
is realized by a total recursive function.

De�nition 30. Let f∈R(1). Then the set
(1) WE(f) = {z ∈Tc | (∀i; j∈ x−1({z}))’f(i) ∈R(1) ∧M(’f(i)) =M(’f( j))} is called

the weak extensionality domain of f.
(2) SE(f) = {xi ∈WE(f) |M(’f(i)) is a <lter with respect to ≺B′ ∧∅ =∈B′(M(’f(i)))}

is called the strong extensionality domain of f.
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Obviously, dom(F)⊆SE(f)⊆WE(f).
If M(’f(i)) is a <lter with respect to ≺B′ and B′(M(’f(i))) does not contain the

empty set, then there are no disjoint pairs of basic open sets in B′(M(’f(i))). We say
that f is correct if for all i∈ x−1(WE(f)) and m; n∈M(’f(i)); B′

m intersects B′
n.

Lemma 31. Let f∈R(1) and F :Tc *T ′
c be the corresponding e8ective map. If T is

strongly complete then SE(f) = dom(F).

Proof. Let xi ∈SE(f). Then M(’f(i)) is a <lter with respect to ≺B′ , which means
that it is both <ltered and upwards closed with respect to ≺B′ . Because of the <rst
property a sequence (am)m∈! of elements of M(’f(i)) can be constructed, which is
decreasing with respect to ≺B′ , such that for every c∈M(’f(i)) there is some index m
with am ≺B′ c. All B′

am are nonempty. By the strong completeness of T′ we therefore
obtain that there is some point y∈T ′ so that B′(M(’f(i))) is a strong base of N′(y).
Since M(’f(i)) is upwards closed with respect to ≺B′ , it follows that M(’f(i)) is the
set of all numbers n with y∈B′

n. Thus y = &′(’f(i)) = x′f(i), i.e., xi ∈ dom(F).

Because of Proposition 21 this means that the sets SE(f) are the natural (maximal)
domains of e6ective maps.

Since dom(F)⊆WE(f), we can also consider F as a partial map from WE(f) into
T ′. With respect to the induced topology  f the space Tf = (WE(f);  f) also satis<es
the general assumptions made in this paper. Set Bf

n =Bn ∩WE(f) and let m≺Bf n,
if m≺B n. Then ≺Bf is an r.e. strong inclusion with respect to which the set of all
Bf
n is a strong basis. Moreover, the restriction of representation & to WE(f) is the

representation &f of set WE(f), correspondingly for the derived numberings.

3. A counterexample

By Proposition 25 it suPces to study the problem whether a (partial) e6ective map is
e6ectively continuous. The following example of Friedberg [13], which was originally
stated in a slightly di6erent way, shows that even for total maps this is not the case,
in general.

Proposition 32. There is an e8ective metric space M; an e8ective continuous directed-
complete partial order S; and a map F :Mc → Sc which is e8ective; but not continuous.

Proof. Let M= (M; d) be Baire space and S= (S;�) be Sierpinski space, i.e., S = {⊥;
�} with ⊥��. S is a basis of itself. Number its elements by ,′

0 =⊥ and ,′
n =�, for

n¿1. Then S is an e6ective continuous dcpo, and we have that B′
0 = S and B′

n = {�},
for n¿1.

Obviously, all elements of S are computable. Moreover, Mc =R(1). As is readily
veri<ed, the restriction of the GIodel numbering ’ to R(1) is acceptable. Note that
all acceptable numberings of Mc are many-one equivalent [28]. Thus, ’ is many-one
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equivalent to the derived numbering x of the representation & of M . It follows that
there is some function k ∈P(1) such that k(i) ↓ and xi =’k(i), for i∈ dom(x).

De<ne

1 = {i ∈ ! | [(∀a6i)’i(a) = 0] ∧ (∃c)[’i(c) �= 0

∧(∀a ¡ c)’i(a) = 0 ∧ (∃j ¡ c)(∀b6c)’i(b) = ’j(b)]}:

Then 1 is r.e. and for all i; j∈’−1(R(1)) with ’i =’j we have that i∈1 if and only
if j∈1. Moreover, let f∈R(1d) with

’f(i)(n) =
{

2 if k(i) ∈ 1n;
1 otherwise:

For the representation &′ of S we then obtain that &′(’f(i)) =�, if k(i)∈1, and
&′(’f(i)) =⊥. otherwise. Set F(xi) = x′f(i). The numbering x′ is derived from &′.

Now, assume that F is continuous. Since F(Jn:0) =� and {�} is open in the Scott
topology on S, by the de<nition of the Baire metric there is some m¿0 such that
for all g∈R(1) with g(a) = 0, for a¡m, we have that F(g) =�. Set n= max{’i(m) +
1 | i¡m∧’i(m) ↓}, if the set is not empty, and let n= 1, otherwise. Furthermore, de<ne

ĝ(a) =
{

0 if a �= m;
n otherwise:

Then ĝ∈R(1). Since ĝ(a) = 0, for all a¡m, we have that F(ĝ) =�. On the other hand,
since ĝ(m) �= 0 and for every GIodel number j¡m, ’j(m) �= ĝ(m), it follows from the
de<nition of F that F(ĝ) �=�. Thus, F cannot be continuous.

Because of Proposition 25 it follows that the map F cannot be extended to a com-
putable map. This shows that the converse of Lemma 3 is not true, in general, and
hence that working with computable elements only and maps which are computed
by transforming the programs that compute the approximations of the points results
in a more general computability notion than working with maps which are computed
by transforming the approximations itself. From the literature also other examples of
e6ective maps that are not e6ectively continuous are known [15, 17, 22, 35, 36]. The
importance of Friedberg’s example lies in the fact that it provides an example of a
total, e6ective, and discontinuous map on a natural space.

Since the metric topology on Baire space is induced by the Scott topology on the
e6ective continuous dcpo of all partial arithmetic functions, we have the following
consequence.

Corollary 33. There are e8ective continuous directed-complete partial orders Q and
S; and a partial map F :Qc *Sc which is e8ective; but not continuous. In addition;
the subspace dom(F) is recursively separable.
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As is well known, all total e6ective maps between the subspaces of computable
elements of two e6ective continuous dcpo’s are e6ectively continuous, and vice versa
[6, 34]. The above result shows that this is no longer true in the case of partial maps.

4. Enforcing continuity

In this section we present a condition which forces a (partial) e6ective map between
the subspaces of computable elements of two countably based T0-spaces to be e6ectively
continuous, and hence, to be extendable to a computable map. As we shall see on the
contrary, this requirement is satis<ed by every e6ectively continuous map between such
spaces. The only extra stipulation in this case is that the domain space is e6ectively
separable and the requirement is already met by the identity map on the subspace of
its computable points.

The problem of when a total e6ective map is e6ectively continuous has been studied
by the author in [30, 28], where it is shown that e6ective continuity is always enforced,
if the e6ective map has a witness for noninclusion and its domain is recursively sepa-
rable. The following de<nition di6ers from that given in [28] in that now the second
requirement is independent of the <rst and is thus of a more global nature.

De�nition 34. A partial map F :Tc *T ′
c has a (global) witness for noninclusion, if

there exist functions s∈R(2) and r ∈P(3) such that range(s)⊆ dom(C) and for all
i; m; n∈! the following hold:
(1) If i∈ x−1(dom(F)) with F(xi)∈B′

m, then xi ∈Cs(i;m) ∩ dom(F)⊆F−1(B′
m).

(2) If Ws(i;m) �= ∅ and F(Bn)*B′
m, then r(i; n; m) ↓∈ dom(x) and xr(i; n;m) ∈ hln(Bn) \

Cs(i;m).
The pair of functions (s; r) is called witness for noninclusion of F .

Note that such a condition appears quite naturally. As follows from [1–4], the e6ec-
tive continuity of e6ective maps can only be proved indirectly. But assuming that a map
is not continuous means assuming that there is some basic open set in the codomain
into which no basic open set in the domain is mapped. And since in most cases only
the elements of a basic open set, but not of its complement are e6ectively listable, a
witness for this not being mapped into cannot be found e6ectively, in general, if the
map is only e6ective.

In applications often not the map F :Tc *T ′
c , but its restriction to a subspace T̂ of

T with dom(F)⊆ T̂c has a witness for noninclusion. We say in this case that F has a
witness for noninclusion with respect to T̂.

Proposition 35. Let F :Tc *T ′
c be e8ective with a realizer f∈R(1) and let it have a

witness for noninclusion with respect to Tf. Then F must be e8ectively continuous.

Proof. Without restriction assume that T = WE(f). Let the functions s∈R(2) and
r ∈P(3) be a witness for noninclusion of F; p∈R(2) and q∈R(1) be as in Lemma 29,
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and pt ∈P(1) witness that the indexing x allows e6ective limit passing. Then there is
some r.e. set Wb such that for i∈ x−1(dom(F)) and m∈!, as well as any index n of a
converging normed recursive enumeration of basic open sets, 〈n; i; m〉 ∈Wb if and only
if F(xi)∈B′

m and xpt(n) ∈Cs(i;m), namely

Wb = {〈n; i; m〉 |m ∈M(’f(i)) ∧ pt(n) ∈ Ws(i;m)}:
Set ĝ(n; i; m) = 4c :’b(〈n; i; m〉) ↓c and let h∈R(3) be such that

’h(n;i;m)(a) =
{

’q(i)(a) if’b(〈n; i; m〉) ↑a;
’p(r(i;’q(i)(ĝ(n;i;m));m);’q(i)(ĝ(n;i;m)−1))(a− ĝ(n; i; m)) otherwise:

By the recursion theorem there is then a function d∈R(2) with

’h(d(i;m);i;m) = ’d(i;m):

Let g(i; m) = ĝ(d(i; m); i; m), and suppose that g(i; m)↑, for some i; m∈! so that F(xi)
is de<ned and F(xi)∈B′

m. Then d(i; m) is an index of a normed recursive enumer-
ation of basic open sets converging to xi. By the acceptability of x it follows that
pt(d(i; m)) ↓∈ dom(x) and xpt(d(i;m)) = xi. Moreover, since xi ∈ dom(F) and F(xi)∈B′

m,
we have that xi ∈Cs(i;m). Thus xpt(d(i;m)) ∈Cs(i;m), which implies that g(i; m) ↓. This con-
tradicts our assumption. Therefore g(i; m) ↓, for all i∈ x−1(dom(F)) and m∈! with
F(xi)∈B′

m.
Assume next that F(B(’q(i)(g(i; m))))*B′

m, for some i; m∈! such that g(i; m) ↓ and
for all a1¡a26g(i; m), ’q(i)(a1) ↓, ’q(i)(a2) ↓ as well as

’q(i)(a2) ≺B ’q(i)(a1):

Then Ws(i;m) is nonempty and hence r(i; ’q(i)(g(i; m)); m) ↓∈ dom(x). Moreover,

xr(i;’q(i)(g(i;m)); m) ∈ hl’q(i)(g(i;m))(B’q(i)(g(i;m)))\Cs(i;m)

⊆ B’q(i)(g(i;m)−1))\Cs(i;m):
(1)

The last inclusion holds, since ’q(i)(g(i; m))≺B ’q(i)(g(i; m)−1). According to
Lemma 29, p(r(i; ’q(i)(g(i; m)); m), ’q(i)(g(i; m)−1)) is an index of a normed recursive
enumeration of basic open sets which converges to xr(i;’q(i)(g(i;m)); m). In addition

’p(r(i;’q(i)(g(i;m));’q(i)(g(i;m)−1))(0) ≺B ’q(i)(g(i; m) − 1);

which implies that d(i; m) is also an index of a normed recursive enumeration of
basic open sets converging to x(r(i; ’q(i)(g(i; m)); m)). Therefore pt(d(i; m)) ↓∈ dom(x)
and x(pt(d(i; m))) = x(r(i; ’q(i)(g(i; m)); m)). Because of (1) it follows that xpt(d(i;m)) =∈
Cs(i;m). Hence g(i; m)↑, which contradicts our assumption. Thus

F(B’q(i)(g(i;m)))⊆B′
m;

for all i; m∈! such that g(i; m)↓ and for all a1¡a26g(i; m), ’q(i)(a1)↓, ’q(i)(a2)↓ as
well as ’q(i)(a2) ≺B ’q(i)(a1).
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For the next step let v∈R(2) such that

Wv(m) = {i | g(i; m) ↓ ∧(∀a1; a2)[a1¡a26g(i; m)

⇒ ’q(i)(a1) ↓ ∧’q(i)(a2) ↓ ∧’q(i)(a2) ≺B ’q(i)(a1)]}:

We want to prove that for all m∈!

F−1(B′
m) = dom(F) ∩

⋃
{B’q(i)(g(i;m)) | i ∈ Wv(m)};

which shows that F is e6ectively continuous.
Let i∈ x−1(dom(F)) such that F(xi)∈B′

m. As we have seen above, g(i; m) ↓ in
this case. Moreover, i∈Wv(m) and xi ∈ dom(F)∩B(’q(i)(g(i; m))). For the veri<cation
of the converse inclusion let i; m∈! with i∈Wv(m). Then it follows from the second
assertion shown above that F(B(’q(i)(g(i; m))))⊆B′

m, i.e., dom(F)∩B(’q(i)(g(i; m)))⊆
F−1(B′

m).

It has already been noted that in order to derive the analogous result for total e6ective
maps, in [28] we had to assume that the domain space is recursively separable. Here,
we did not need this extra supposition, which shows the modi<ed notion of a witness
for noninclusion is stronger than that used in [28].

As follows from Proposition 25 and Lemma 3, e6ectively continuous maps between
the subspaces of computable elements of two countably based T0-spaces are e6ec-
tive. Let us see next, whether they can be realized in such a way that the additional
requirement in the above proposition holds. To verify this we need that the identity
map on Tc has a witness for noninclusion.

De�nition 36. Let MT= ( MT ; M ) be a countable T0-space with countable basis MB, and
let Mx and MB be numberings of MT and MB, respectively. A pair of functions (s; r) with
s∈R(2) and r ∈P(3) is a realizer for noninclusion of MT, if range(s) ⊆ dom(C) and for
all i; m; n∈! the following hold:
(1) If i∈ dom(Mx) with Mxi ∈ MBm, then Mxi ∈Cs(i;m) ⊆ MBm.
(2) If Ws(i;m) �= ∅ and MBn* MBm, then r(i; n; m) ↓ ∈ dom(Mx) and Mxr(i; n;m) ∈ hln( MBn)\Cs(i;m).

In the case that MT is the subspace of computable points of a T0-space T; we also
say that T has a realizer for noninclusion if MT has one.

Proposition 37. Let T be e8ectively separable. Then every e8ectively continuous map
F :Tc *T ′

c is e8ective with a realizer f∈R(1) so that the following hold:
(1) WE(f) contains an enumerable subset X with dom(F)⊆ cl (X ).
(2) If the e8ective continuity of F is witnessed by a consistent function; then f is

correct.
(3) If; in addition; T has a realizer for noninclusion; then F also has a witness for

noninclusion with respect to Tf.
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Proof. Let h∈R(1) witness that F is e6ectively continuous and be k ∈R(1) with

’k(i)(a) =
{

0 if M(’i) intersects Wh(a);
unde<ned otherwise:

Then we have for i; j∈! with M(’i) =M(’j) that dom(’k(i)) = dom(’k( j)). Let
v∈R(1) such that ’v(i) ∈R(1) and M(’v(i)) = dom(’i) and set f = v ◦ k. Obviously,
f realizes F . Moreover, WE(f) =Tc. Since T is e6ectively separable, Tc contains an
enumerable dense subset X . It follows that dom(F)⊆ cl (X ). As is readily veri<ed, f
is correct if the function h is consistent.

Now, let A⊆!; Ms∈R(2) and Mr ∈P(3), respectively, witness that X is enumerable
and T has a realizer for noninclusion. Moreover, for i; m∈! let 〈M–; Mm; Mn〉 be the
<rst element enumerated in {〈i′; m′; n′〉 | n′ ∈Wh(m′) ∩M(’i′)} with M–= i and Mm=m. Set
t(i; m) = Mn. Then there is some function s∈R(2) such that Ws(i;m) =WMs(i; t(i;m)). Obviously
range(s)⊆ dom(C).

In order to see whether the <rst condition in De<nition 34 holds, let m∈! and
i∈ x−1(dom(F)) with F(xi)∈B′

m. Then we have that Wh(m) intersects M(’i). Hence
t(i; m) ↓∈M(’i), which means that xi ∈Bt(i;m). It follows that xi ∈Cs(i;m) ∩ dom(F). By
construction t(i; m)∈Wh(m). Therefore Cs(i;m) ∩ dom(F)⊆F−1(B′

m).
It remains to verify the second requirement. Set r(i; n; m) = Mr(i; n; t(i; m)). Then we

have for i; m; n∈! such that Ws(i;m) is not empty and F(Bn)*B′
m that t(i; m)↓ and

Bn*Bt(i;m), which implies that Mr(i; n; t(i; m)) ↓∈ dom(x) and x Mr(i; n; t(i;m)) ∈ hln(Bn)\
CMs(i; t(i;m)).

Note that T has a realizer for noninclusion if T is e6ectively separable, the topol-
ogy  is semi-regular, i.e., Bn = int (cl (Bn)), for all n∈!, and the sets ext (Bn) are
completely enumerable, uniformly in n.

To see this, let X be the dense subset of Tc and let A⊆! witness its enumer-
ability. Moreover, let ML⊆! be such that for i∈ dom(x) and m∈!; 〈i; m〉 ∈ ML exactly
if xi ∈ ext (Bm). Since the numbering x is computable, B6mC. Let this be witnessed by
g∈R(1). Set s(i; m) = g(m). Then range(s)⊆ dom(C). The <rst condition in
De<nition 36 is obviously satis<ed. For the second requirement let 〈 Mn; Mm; Ma〉 be the
<rst element enumerated in

{〈n′; m′; a′〉 | a′ ∈ E ∧ n′ ∈M(’a′) ∧ 〈a′; m′〉 ∈ ML}
with Mn= n and Mm=m, where n; m∈!, and de<ne r(i; n; m) = Ma.

If Bn*Bm, we have that Bn intersects the complement of Bm, which implies that
it intersects its exterior, since  is semi-regular. Hence, we can <nd a point xa of the
dense subset X in Bn ∩ ext (Bm). Thus r(i; n; m) ↓∈ dom(x) and xr(i; n;m) ∈Bn\Bm, i.e.,
xr(i; n;m) ∈ hln(Bn)\Cs(i;m).

As we have already seen, for every e6ective metric space and every e6ective f-space
the exterior of Bn is completely enumerable, uniformly in n. The canonical topology
of every metric space is semi-regular. In [29] it is shown that the class of f-spaces
with a semi-regular topology contains important subclasses.
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Now, combining the above two results we obtain the characterization we were look-
ing for.

Theorem 38. Let T be e8ectively separable and have a realizer for noninclusion.
Then a map F :Tc *T ′

c is e8ectively continuous; if and only if it is e8ective with a
realizer f∈R(1) so that F has a witness for noninclusion with respect to Tf.

For total maps F; WE(f) coincides with Tc. By this way we obtain the ensuing
special case.

Corollary 39. Let T be e8ectively separable and have a realizer for noninclusion.
Then a map F :Tc →T ′

c is e8ectively continuous; if and only if it is e8ective and has
a witness for noninclusion.

A similar result has been derived in [28]. (Note that the semi-regularity require-
ment made there can be replaced by the assumption that topology  has a realizer for
noninclusion with respect to itself.)

If we put the above characterization together with Proposition 25, we have the
following rather general answer to Weihrauch’s problem.

Theorem 40. Let T be e8ectively separable and have a realizer for noninclusion.
Then exactly those e8ective maps F :Tc *T ′

c have a computable extension MF :T *T ′

which are realized by a function f∈R(1) so that F has a witness for noninclusion
with respect to Tf.

5. Special cases

There are important special cases in which total e6ective maps have a witness for
noninclusion. As follows from [30, 28] this holds if the domain of F is the subset of all
computable elements of a pointed space, or the codomain is the subset of all computable
elements of an e6ective metric space and the domain is recursively separable. We shall
now investigate whether similar results can be obtained for partial e6ective maps.

Lemma 41. Let M′ be an e8ective metric space. Then every e8ective map F :Tc *
M ′

c with a correct realizer f∈R(1) such that WE(f) contains an enumerable subset
X with dom(F)⊆ cl (X ) has a witness for noninclusion with respect to Tf.

Proof. Without restriction, let T = WE(f). Moreover, for i; m∈!, let 〈M–; Mm; Ma〉 be the
<rst element enumerated in

{〈i′; m′; a′〉 | a′ ≺B′ m′ ∧ a′ ∈M(’f(i′))}
with M–= i and Mm=m. Set t(i; m) = Ma. Then there is some function s∈R(2) such that
Ws(i;m) = {j | t(i; m)∈M(’f(j))}. By the de<nition of WE(f) we have that Ws(i;m) is an
index set with respect to the numbering x of Tc. Thus range(s)⊆ dom(C).
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Now, suppose that i∈ x−1(dom(F)) and m∈! with F(xi)∈B′
m. Since the collec-

tion of all B′
n is a strong basis of the canonical topology /′ on M ′, there is then

some index a such that a≺B′ m and F(xi)∈B′
a . Thus t(i; m) ↓ and F(xi)∈B′

t(i;m), which
implies that xi ∈Cs(i;m) ∩ dom(F). In addition, we have for z ∈Cs(i;m) ∩ dom(F) that
F(z)∈B′

t(i;m) ⊆B′
m.

Next, we de<ne the function r. As has already been mentioned, Tc contains an
enumerable dense subset. Let this be witnessed by the set E⊆!. Moreover, let

A = {〈〈i; m〉; 〈j; n〉〉 | �(,i; ,j) ¿ 2−m + 2−n}:

Then Bc and Bc′ are disjoint, for any pair 〈c; c′〉 ∈A. Now, for i; m; n∈!, be 〈M–; Mn; Mm; Ma〉
the <rst element enumerated in

{〈i′; n′; m′; a′〉 | a′ ∈ E ∧ n′ ∈M(’a′) ∧ (∃c ∈M(’f(a′)))〈c; t(i′; m′)〉 ∈ A}

with M–= i; Mn= n as well as Mm=m. De<ne r(i; n; m) = Ma.
If i; n; m∈! such that Ws(i;m) is not empty and F(Bn)*B′

m, then t(i; m) ↓ and
by the de<nition of the strong inclusion for e6ective metric spaces we have that
cl/′(B′

t(i;m))⊆B′
m. Hence F(Bn)* cl/′(B′

t(i;m)). Thus, there is some point y∈Bn ∩
dom(F) with F(y)∈ ext/′(B′

t(i;m)), meaning that there exists some basic open set B′
c

which is disjoint with B′
t(i;m) and contains F(y). Let Z be the set of all points xj

for which c is enumerated in M(’f( j)). Then Z is completely enumerable. More-
over, it intersects Bn and since the realizer f is correct, it is also disjoint with
Cs(i;m). With [28, Lemma 6:9] it therefore follows that Z also intersects Bn ∩X . Thus
r(i; n; m) ↓∈ dom(x) and xr(i; n;m) ∈Bn\Cs(i;m).

As follows from an example of Myhill [17, p. 293, Remark 2] and=or Pour-El [22],
the above theorem is false without the extra condition on WE(f) (see also [21, p. 211,
Proposition II.4.9]). (Since the Myhill=Pour-El map is not continuous, it follows from
Proposition 35 that the map is only realizable by a recursive function f so that it has
no witness for noninclusion with respect to Tf:)

We have already seen that every e6ective metric space has a realizer for noninclusion.
By de<nition, these spaces are e6ectively separable. From results in [33] it moreover
follows for e6ectively continuous maps between e6ective metric spaces that the e6ective
continuity can always be witnessed by a consistent recursive function. With Propositions
25, 35 and 37 we therefore obtain a characterization which tells us exactly which
(partial) e6ective maps between e6ectively given metric spaces are extendable to a
computable map.

Theorem 42. Let M and M′ be e8ective metric spaces. Then exactly those e8ec-
tive maps F :Mc *M ′

c have a computable extension MF :M *M ′ which are realized
by a correct function f∈R(1) so that WE(f) has an enumerable subset X with
dom(F)⊆ cl/(X ).
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A similar result has been obtained by Hertling [16] with respect to the Cauchy
representation. Both results improve that of Weihrauch [32] and hence the well-known
theorems by Moschovakis [20] and CeTUtin [5], which all give only a suPcient condition
for an e6ective map to have a computable extension: the subspace dom(F) is required
to have an enumerable dense subset.

In [23, p. 370, Ex. 15–30(b),(c)] an e6ective map F :R(1) →! is given which is
not the restriction of a total computable map between the e6ective metric spaces B
and !. This shows that the above theorem as well as Theorem 40 cannot be improved,
in the sense that even if F is total, we cannot expect, in general, that the computable
extension MF is a total map.

Let us now consider the case that the domain of a given e6ective map is a subset of
computable elements of a pointed space. As we have previously seen, pointed spaces
T are e6ectively separable with dense base Pt. Moreover Pt⊆Tc. From Corollary 33
we know that, in general, we cannot expect a partial e6ective map between pointed
spaces to be continuous, even if the domain of the map is recursively separable. The
situation is di6erent, however, if the domain of the map is itself e6ectively pointed,
which means that without restriction we can consider the map to be a total map on the
computable elements of a pointed space. In this case it has a witness for noninclusion.

Lemma 43. Let T be pointed. Then every total e8ective map F :Tc →T ′
c has a wit-

ness for noninclusion.

Proof. As T is pointed, we have that Tc is e6ectively pointed. Let this be witnessed
by the function pd ∈P(1). Then, for i; n; m∈!, set r(i; n; m) = pd(n) and let s∈R(2)

with Ws(i;m) = {j |m∈M(’f( j))}, where f∈R(1) realizes F . Since F is total, Ws(i;m) is
a index set with respect to the numbering x of Tc. Thus range(s)⊆ dom(C). Obviously,
Cs(i;m) = {z ∈Tc |F(z)∈B′

m}. As follows from [28, Lemma 6:4], F is monotone with
respect to the specialization order. With both properties it is now readily veri<ed that
(s; r) is a witness for noninclusion of F .

As a consequence we have that every pointed space has a realizer for noninclu-
sion. Therefore, by applying Theorem 40 and Lemma 26, we obtain the following
coincidence of e6ective and computable maps between pointed spaces.

Theorem 44. Let T and T′ be pointed. Then every total e8ective map F :Tc →T ′
c has

a (possibly partial) computable extension MF :T *T ′ and; conversely; the restriction
of each computable map G :T *T ′ to the computable elements of T is e8ective. If; in
addition; T′ is strongly complete; the every such extension MF is uniquely determined
by F and total.

Obviously, every e6ective continuous dcpo is strongly complete. As a special case we
thus obtain the well-known Myhill=Shepherdson Theorem (cf. [32, 34]). But the result
also holds for maps between e6ective A- and f-spaces. In addition, as a consequence
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of Lemma 26, Theorem 40 and Lemma 43, we gain that the total e6ective maps
between the subspaces of all computable elements of a pointed space and a complete
weakly e6ective metric space are exactly the extensions of uniquely determined total
computable maps between these spaces.

6. Conclusion

In this paper we have given an answer to Weihrauch’s question whether and, if not
always, when an e6ective map between subspaces of computable elements of two rep-
resented sets is extendable to a computable map, in the context of e6ectively presented
topological T0-spaces. Considering topological spaces is not a restriction in dealing
with this problem, as any representation induces a topology on the represented set. In
the case of the representations considered here this topology is equivalent to the given
one.

We characterized the e6ective maps that have a computable extension. The addi-
tional requirement that is satis<ed by the extendable maps allows the generation of
negative information. In the context of e6ectively given topological spaces, one can, in
general, only list the (computable) elements of basic open sets, but not those of their
complements. Such information is necessary in order to force an e6ective map to have
a computable extension. In special cases, such as e6ective metric spaces, in which this
information can always be obtained, the extra condition can be veri<ed.
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