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a b s t r a c t

The shrinking generator is a simple keystream generator with applications in stream
ciphers, which is still considered as a secure generator. This work shows that, in order
to cryptanalyze it, fewer intercepted bits than indicated by the linear complexity are
necessary. Indeed, whereas the linear complexity of shrunken sequences is between A ·
2(S−2) and A · 2(S−1), we claim that the initial states of both component registers are
easily computed with fewer than A · S shrunken bits located at particular positions. Such a
result is proven thanks to the definition of shrunken sequences as interleaved sequences.
Consequently, it is conjectured that this statement can be extended to all interleaved
sequences. Furthermore, this paper confirms that certain bits of the interleaved sequences
have a greater strategic importance than others, which must be considered as a proof of
weakness of interleaved generators.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, stream ciphers are the fastest among the encryption procedures so they are implemented in many practical
applications e.g. the algorithms A5 in GSM communications [10], the encryption system E0 in Bluetooth specifications [2]
or the algorithm RC4 [15] used in Microsoft Word and Excel. From a short secret key (known only by the two interested
parties) and a public algorithm (the sequence generator), stream cipher procedures consist in generating a long sequence
of seemingly random bits. Such a sequence is called the keystream sequence. For encryption, the sender realizes the bit-
wise (Exclusive-OR) XOR operation among the bits of the original message or plaintext and the keystream sequence. The
result is the ciphertext to be sent. For decryption, the receiver generates the same keystream, realizes the same bit-wise
XOR operation between the received ciphertext and the keystream sequence and obtains again the original message.
Most keystream generators are based on Linear Feedback Shift Registers (LFSRs) [8]. They are linear structures

characterized by their length (the number of memory cells), their characteristic polynomial (the feedback function) and
their initial state (the seed or key of the cryptosystem). If the characteristic polynomial is a primitive polynomial [14],
then LFSRs generate Pseudo-Noise sequences (PN-sequences) with good characteristics of pseudorandomness. For a survey
on recurring sequences, primitive LFSRs, and PN-sequences, the interested reader is referred to [8]. In stream cipher
procedures, the PN-sequences are combined by means of nonlinear functions in order to produce keystream sequences of
cryptographic application. Combinational generators, nonlinear filters, clock-controlled generators, irregularly decimated
generators etc, are just some of the most popular nonlinear sequence generators. All of them produce keystreams with high
linear complexity, long period and good statistical properties (see [6,3]).
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Most cryptanalysis on stream ciphers are performed under a known plaintext hypothesis, that is to say, it is assumed
that the attacker has direct access to a portion of the keystream sequence (intercepted sequence). From the intercepted bits,
the attacker has to deduce the cryptosystem key. Once the key is known, as the sequence generator is public, the whole
keystream sequence can be reconstructed. The complexity of this attack is always compared with that of the key exhaustive
search. If the former complexity is lesser, then the cryptosystem is said to be broken.
This work focuses on a particular kind of stream ciphers based on LFSRs: the class of shrinking generators. They are made

out of two LFSRs and an irregular decimation. Shrinking generators have been thoroughly analyzed in several papers such
as [17,13,4]. Nevertheless, we present a new and efficient cryptanalytic attack requiring very little amount of intercepted
bits compared with that of the previous attacks. The basic idea of this cryptanalysis consists in defining the output sequence
of a shrinking generator as an interleaved sequence (see [9,12]). The characteristics of the interleaved sequences reveal
weaknesses that lead to practical attacks. In addition,we conjecture that theseweaknesses can be extended to all interleaved
sequence generators with application in cryptography.
The paper is organized as follows: in section 2, the description and characteristics of the shrinking generator are

introduced. Interleaved configuration and related results are developed in section 3. A cryptanalytic attack against the
shrinking generator that exploits the condition of interleaved sequence is presented in section 4, while the generalization
of this technique to other cryptographic interleaved generators appears in section 5. Finally, conclusions in section 6 end
the paper.

2. The shrinking generator

The Shrinking Generator is a pseudorandom number generator based on a nonlinear combination of the recurring
sequences produced by two LFSRs. It was first introduced by Coppersmith, Krawczyk andMansour, see [5]. This construction
uses two sources of pseudorandom bits to create a third source of potentially better quality than the original ones. Here
quality means difficulty of predicting a pseudorandom sequence. We denote by SRA and SRS the first and second LFSR,
respectively. The first register SRA has length A, characteristic polynomial PA(x) ∈ GF(2)[x] and its output sequence is
denoted by {ai} (i ≥ 0) with ai ∈ GF(2). The selector register SRS has length S, characteristic polynomial PS(x) ∈ GF(2)[x]
and its output sequence is denoted by {si} (i ≥ 0) with si ∈ GF(2). In addition, the lengths of both registers A, S are
relatively prime (A, S) = 1, the characteristic polynomials PA(x), PS(x) are primitive polynomials in GF(2)[x] and the output
sequences {ai}, {si} are PN-sequences of period (2A − 1) and (2S − 1), respectively. The output sequence of the shrinking
generator, the so-called shrunken sequence denoted by {zj} (j ≥ 0) with zj ∈ GF(2), is a sub-sequence of {ai} whose terms
are chosen according to the positions of ’1’ bits in the sequence {si}. More precisely, the decimation rule is defined such as
follows:

(1) If si = 1 =⇒ zj = ai
(2) If si = 0 =⇒ ai is discarded.

As different pairs of SRA/SRS initial states can generate the same shrunken sequence, in the sequel we assume that the
first term of the sequence {si} equals 1, that is s0 = 1.
According to [5], the period of the shrunken sequence is:
T = (2A − 1) · 2(S−1), (1)

its linear complexity, notated LC , satisfies the following inequality:
A · 2(S−2) < LC ≤ A · 2(S−1), (2)

and its characteristic polynomial is of the form:
Pss(x) = P(x)p (3)

where P(x) is an A-degree primitive polynomial in GF(2)[x] and p is an integer in the interval 2(S−2) < p ≤ 2(S−1). Moreover,
it can be proved [16] that the shrunken sequence has also good distributional statistics. Therefore, this scheme has been
traditionally used as keystream sequence generator with application in secret-key cryptography.

3. Interleaved configuration

The (2A− 1) · 2(S−1) bits of a period of any shrunken sequence {zj} can be arranged into a (2A− 1) · 2(S−1) matrix that we
will call interleaved configuration and will denote by IC . In fact,

IC =


z0 z1 z2 . . . z2(S−1)−1
z2(S−1) z2(S−1)+1 z2(S−1)+2 . . . z2·2(S−1)−1
z2·2(S−1) z2·2(S−1)+1 z2·2(S−1)+2 . . . z3·2(S−1)−1
z3·2(S−1) z3·2(S−1)+1 z3·2(S−1)+2 . . . z4·2(S−1)−1
. . . . . . . . . . . . . . .

z(2A−2)·2(S−1) z(2A−2)·2(S−1)+1 z(2A−2)·2(S−1)+2 . . . z(2A−1)·2(S−1)−1

 .

Now the following result allows one to identify each element of the matrix IC with the corresponding term of the
sequence {ai}.
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Theorem 3.1. The interleaved configurationmatrix IC can bewritten in terms of the elements of the sequence {ai} such as follows:
IC = 

ao0 ao1 ao2 . . . ao(2(S−1)−1)
a(2S−1)+o0 a(2S−1)+o1 a(2S−1)+o2 . . . a(2S−1)+o(2(S−1)−1)
a2·(2S−1)+o0 a2·(2S−1)+o1 a2· (2S−1)+o2 . . . a2· (2S−1)+o(2(S−1)−1)
a3·(2S−1)+o0 a3·(2S−1)+o1 a3·(2S−1)+o2 . . . a3· (2S−1)+o(2(S−1)−1)

. . . . . . . . . . . . . . .
a(2A−2)·(2S−1)+o0 a(2A−2)·(2S−1)+o1 a(2A−2)·(2S−1)+o2 . . . a(2A−2)·(2S−1)+o(2(S−1)−1)


where the additive sub-indices oj (j = 0, 1, . . . , 2(S−1)−1) depend on the bits of the sequence {si} in the following way: if si = 1,
then the corresponding sub-index oj equals the sub-index i, oj = i. All the sub-indices are takenmod 2A − 1, which is the period
of the sequence {ai}.

Proof. Since the period of the PN-sequence {si} is (2S − 1), the number of bits with value ‘1’ in a period is exactly 2(S−1),
and all the elements of any column of IC come from the same term si = 1 of the PN-sequence, the above expression for the
matrix IC in terms of the elements of {ai} is obtained. �

Note that according to the assumption s0 = 1, the sub-index o0 = 0. Next, the following result analyzes the
characteristics of the columns of the matrix IC .

Theorem 3.2. The sequences {dj} = {ak+oj : k = 0, (2S − 1), 2 · (2S − 1), . . . , (2A − 2) · (2S − 1)} (j = 0, 1, . . . , 2(S−1) − 1)
corresponding to the columns of the matrix IC are shifted versions of a unique PN-sequence whose characteristic polynomial is
given by:

PD(x) = (x+ αN)(x+ α2·N)(x+ α2
2
·N) . . . (x+ α2

(A−1)
·N),

where N is an integer defined as N = 20 + 21 + · · · + 2(S−1) and α ∈ GF(2A) a root of the primitive polynomial PA(x).

Proof. Every sequence {d j} corresponding to the j-th column of IC is a regular decimation of the PN-sequence {ai}. More
precisely, such a sequence is obtained by taking one out of (2S − 1) terms in {ai}. The primality of A and S guarantees the
primality of (2A − 1) and (2S − 1). Thus, the decimated sequence {d j} is also a PN-sequence. In addition, as every {d j} has
been obtained from {ai}with a decimation ratio of value (2S − 1), then its characteristic polynomial PD(x) is the polynomial
of the cyclotomic coset (2S−1) in the Galois FieldGF(2A) generated by the roots of the polynomial PA(x), see [4]. The starting
point of each {d j} is given by the corresponding sub-index oj. �

4. Cryptanalytic attack on the shrinking generator

The cryptanalytic attack consists in the computation of the initial states of both registers SRA and SRS. From some known
bits of the shrunken sequence we have to determine the first A bits (a0, a1, . . . , aA−1) of the sequence {ai} (initial state of
SRA) as well as the first S bits (s0, s1, . . . , sS−1) of the sequence {si} (initial state of SRS). The number of bits needed for the
cryptanalysis is at most (A × S) bits, what means a minimum amount of shrunken sequence compared with the value of
its linear complexity given by the equation (2). Nevertheless, these bits must be located at very particular positions inside
the shrunken sequence. In fact, the needed bits are exclusively those ones located at the top-left corner (A× S) sub-matrix
of IC . Remark that the bits required for the cryptanalysis are not all consecutive, since between two successive rows of the
sub-matrix there are a great number of shrunken sequence bits (as many as (2(S−1) − S)) whose knowledge is useless. The
generation of the needed bits is related with the register state succession. Indeed, each row of this sub-matrix is a portion
of the shrunken sequence starting at the following register states:

• The same initial state of SRS.
• An initial state of SRA shifted 2S − 1 states from that one that generated the previous row of the sub-matrix.

The procedure is repeated systematically for every rowof the sub-matrix. Clearly, the first rowof the sub-matrix is generated
from the initial states of SRA and SRS. After these considerations, this cryptanalytic attack can be divided into two different
steps. In the first one, the computation of the initial state of SRA is carried out. In the second step and based on the SRA initial
state, we determine the corresponding initial state of the register SRS.

4.1. Computation of the SRA initial state

Previously to the computation of the initial state, the following result is introduced.

Lemma 4.1. Given A bits of the shrunken sequence corresponding to A successive elements of any column of IC, the remaining
bits of such a column can be determined.

Proof. Theorem 3.2 defines PD(x), that is the characteristic polynomial of the PN-sequence corresponding to every column
of IC . Thus, knowing A successive bits of any column and its characteristic polynomial, the linear recurrence relationship
allows one to compute any of the remaining bits of such a PN-sequence. �
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Now the computation of the SRA initial state is described in the next result.

Theorem 4.2. Given A bits of the shrunken sequence corresponding to A successive elements of the first column of IC, the bits of
the initial state of the register SRA can be determined.

Proof. Lemma 4.1 shows that the knowledge of: i) A successive elements of the first column of IC and ii) its linear recurrence
relationship, allows one to generate any other bit of such a column. On the other hand, from Theorem 3.1 we know that the
(n + 1)-th element of the first column of IC corresponds to an· (2S−1), that is to say the (n · (2

S
− 1) + 1)-th term of the

PN-sequence generated by the register SRA. Consequently, we first solve the following system of modular equations in the
unknowns ni

ni · (2S − 1) ≡ i mod (2A − 1) (i = 0, 1, . . . , (A− 1)),

and then,making use of the linear recurrence relationship, we compute the elements of the first column of IC at the positions
(ni + 1)-th (i = 0, 1, . . . , (A− 1)). Such elements correspond to a0, a1, . . . , aA−1, respectively. �

4.2. Computation of the SRS initial state

The computation of the SRS initial state is described in the next result.

Theorem 4.3. Given A · S bits of the shrunken sequence corresponding to the top-left corner (A× S) sub-matrix of IC, the bits of
the initial state of the register SRS can be determined.

Proof. Firstly, from the linear recurrence relationship and Theorem 4.2, we can compute (A − 1) blocks of A consecutive
bits, Bi (i = 1, 2, . . . , (A− 1)), starting each of them at the (ni + 1)-th (i = 1, 2, . . . , (A− 1)) bit of the first column of IC ,
respectively.

SUBIC =


a0 ao1 . . . ao(S−1)
a2S−1 a(2S−1)+o1 . . . a(2S−1)+o(S−1)
a2· (2S−1) a2·(2S−1)+o1 . . . a2·(2S−1)+o(S−1)
a3·(2S−1) a3·(2S−1)+o1 . . . a3·(2S−1)+o(S−1)
. . . . . . . . . . . .

a(A−1)·(2S−1) a(A−1)·(2S−1)+o1 . . . a(A−1)·(2S−1)+o(S−1)

 .

Secondly, since the sequence in every column of IC is exactly the same but starting at different points given by aoj, we
compare each block Bi with the corresponding column of the sub-matrix of IC . As soon as a coincidence is found the sub-
index oj is univocally determined, that is oj = i. In addition, each sub-index oj indicates the position of the (j + 1)-th 1 in
the initial state of SRS while the intermediate bits are 0’s. Thus, the above procedure can be repeated for j = 1, 2, . . . till we
get oj ≥ (S − 1). In this way, the initial state of the register SRS is thoroughly determined. �

4.3. An illustrative example

Let us consider a shrinking generator characterized by:

(1) SRAwith length A = 5, characteristic polynomial PA(x) = x5 + x4 + x3 + x2 + 1 and output sequence {ai}.
(2) SRS with length S = 4, characteristic polynomial PS(x) = x4 + x3 + 1 and output sequence {si}.
(3) The characteristic polynomial of the shrunken sequence is Pss(x) = PD(x)p = (x5 + x3 + x2 + x+ 1)8.

Given 20 bits of the shrunken sequence corresponding to a (5× 4) sub-matrix of IC

SUBIC =


1 0 1 1
1 0 0 1
0 1 0 1
0 1 1 1
0 0 0 1

 ,

we can launch a cryptanalytic attack against the shrinking generator in order to obtain the initial states of both LFSRs. Table 1
shows the calculations carried out for cryptanalyzing the above described generator. The most left column represents the
indices ni numbered (0, 1, . . . , 2A−2 = 30). Next column shows fromTheorem3.1 the position of the terms (a0, a1, . . . , a4)
of the sequence {ai} regarding the first column {d0} of the matrix IC . The following columns of the Table 1 represent the
matrix IC: in boldface the left-corner (5×4) sub-matrixwith the knownbits, the remaining bits of {d0} are the bits computed
to determine the initial states of SRA and SRS, and the symbol − corresponds to unknown bits of the shrunken sequence
that do not need to be computed for the cryptanalysis.
Computation of the SRA initial state: According to Theorem 4.2, we compute the positions of the (ni + 1)-th elements of

the first column of IC by solving the equation system

ni · 15 ≡ i mod 31 (i = 0, 1, . . . , 4),
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Table 1
Matrix IC corresponding to the described shrinking generator
ni {ai} d0 d1 d2 d3 d4 d5 d6 d7

0 a0 1 0 1 1 – – – –
1 1 0 0 1 – – – –
2 0 1 0 1 – – – –
3 0 1 1 1 – – – –
4 0 0 0 1 – – – –
5 – – – – – – – –
6 – – – – – – – –
7 – – – – – – – –
8 – – – – – – – –
9 – – – – – – – –
10 – – – – – – – –
11 – – – – – – – –
12 – – – – – – – –
13 – – – – – – – –
14 – – – – – – – –
15 – – – – – – – –
16 – – – – – – – –
17 – – – – – – – –
18 – – – – – – – –
19 – – – – – – – –
20 – – – – – – – –
21 – – – – – – – –
22 – – – – – – – –
23 a4 1 – – – – – – –
24 – – – – – – – –
25 a3 1 – – – – – – –
26 0 – – – – – – –
27 a2 0 – – – – – – –
28 1 – – – – – – –
29 a1 0 – – – – – – –
30 0 – – – – – – –

that is, n0 = 0, n1 = 29, n2 = 27, n3 = 25, n4 = 23. Then, by means of the characteristic polynomial PD(x) we determine
the values of the (ni + 1)-th (i = 0, 1, . . . , 4) elements of the first column {d0} of IC . This is just a backward application of
the linear recurrence relationship to the first column of the sub-matrix of IC , that is an+5 = an+3 + an+2 + an+1 + an with
n ≥ 30. In fact, we get, a0 = 1, a1 = 0, a2 = 0, a3 = 1, a4 = 1, see Table 1. Therefore, the initial state of the register SRA
(1, 0, 0, 1, 1) has been determined.
Computation of the SRS initial state: According to Theorem 4.3, we compute the relative shifts between consecutive

columns in the matrix IC:

- Computation of o1:We know a1 at the (29+ 1)-th position of the first column {d0} and compute its S− 1 = 4 successive
bits. We compare this block of 5 bits B1 = (0, 0, 1, 1, 0) with the second column {d1} of the sub-matrix (0, 0, 1, 1, 0)′,
see Table 1 . There is coincidence, thus o1 = 1.
- Computation of o2:We know a2 at the (27+1)-th position of the {d0} and compute its 4 successive bits. We compare this
block of 5 bits B2 = (0, 1, 0, 0, 1) with the third column {d2} of the sub-matrix (1, 0, 0, 1, 0)′. There is no coincidence,
thus we analyze the following bit a3. We know a3 at the (25+1)-th position of {d0} and compute its 4 successive bits.We
compare this block of 5 bits B3 = (1, 0, 0, 1, 0)with the third column {d2} of the sub-matrix (1, 0, 0, 1, 0)′, see Table 1.
There is coincidence, thus o2 = 3.

Since o2 = 3 ≥ S − 1, we have determined the initial state of SRS. In fact, s0 = 1, o1 = 1 implies s1 = 1, o2 = 3 implies
s2 = 0 and s3 = 1. Therefore, the SRS initial state is (s0, s1, s2, s3) = (1, 1, 0, 1). Remark that only the knowledge of three
columns of the sub-matrix has been necessary to identify the initial state of SRS. Indeed, the number of columns needed
equals the number of ‘1’ bits in the initial state of the selector register. The maximum number of known bits corresponds to
SRS initial state with all bits ‘1’. In the remaining cases, less bits are sufficient.
Once the initial states of both register are determined, the whole shrunken sequence that is the keystream sequence can

be computed.

5. Generalization of this technique to interleaved sequences

First of all, we introduce the general definition of interleaved sequence [12].

Definition 5.1. Let f (x) be a polynomial over GF(q) of degree r and let m be a positive integer. For any sequence {uk} over
GF(q), we write k = i · m + j with (i = 0, 1, . . . ) and (j = 0, . . . , m − 1). If every sub-sequence {uj} of {uk} defined as
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Table 2
Interleaved sequence
with 4 shifted versions of
the same PN-sequence
u0 u1 u2 u3

1 1 1 1
1 0 1 0
0 0 1 1
0 1 0 1
1 0 0 1
0 1 1 0
1 1 0 0

{ui ·m+j} is generated by f (x), then the sequence {uk} is called an interleaved sequence over GF(q) of sizem associated with
the polynomial f (x).

Table 2 shows the interleaved sequence {uk} over GF(2) associated with the 3-degree characteristic polynomial f (x) =
x3 + x + 1 over GF(2) and size m = 4. Reading by rows, the interleaved sequence is {uk} = {1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1,
1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0} while by columns the sequence is made out of {uj} (j = 0, . . . , 3) four shifted
versions of the PN-sequence generated by f (x).
Interleaved sequences are currently used as keystream sequences with application in cryptography. See the introduction

of [9] and the types of keystream sequences enumerated there. They can be generated in different ways:

(1) By a LFSR controlled by another LFSR (which may be the same one) e.g. multiplexed sequences [11], clock-controlled
sequences [1], cascaded sequences [7], shrinking generator sequences [5] etc.

(2) By one or more than one LFSR and a feed-forward nonlinear function e.g. Gold-sequence family, Kasami (small and large
set) sequence families, GMW sequences, Klapper sequences, No sequences etc. See [9] and the references cited therein.

In brief, a large number of well-known cryptographic sequences are included in the class of interleaved sequences. Next,
the link between interleaved sequences and shrunken sequences is expressed in the following result.

Theorem 5.2. Shrunken sequences are interleaved sequences of size 2(S−1).

Proof. Let {zk} be a shrunken sequencewith characteristic polynomial P(x)pwhere P(x) is an A-degree primitive polynomial
and p is an integer in the interval 2(S−2) < p ≤ 2(S−1). According to the interleaved configuration IC , we may express {zk}
in terms of m sequences {z j} where {z j} = {zi ·m+j} with i ≥ 0, m = 2(S−1) and (j = 0, . . . , m − 1). Since by Theorem 3.2
the sequences {z j} are generated by the same characteristic polynomial PD(x), we get that the shrunken sequence {zk} is an
interleaved sequence of size 2(S−1) associated with the polynomial PD(x). �

The previous theorem proves that shrunken sequences are interleaved sequences. Moreover, Section 4 shows that the
knowledge of a number of bits of the shrunken sequence allows one to mount a cryptanalytic attack against the shrinking
generator. As many cryptographic sequence generators produce interleaved sequences, then the previous considerations
take us into the following conjecture:

Conjecture 5.3. Given a number of bits corresponding to an initial sub-matrix of the interleaved configuration IC of an interleaved
sequence, it is possible to obtain the whole interleaved sequence.

The confirmation of this conjecture would prove the weakness of interleaved generators for cryptographic purposes.

6. Conclusions

In this work, a new cryptanalytic attack against the class of shrinking generators has been proposed. The amount of
intercepted bits necessary to realize such an attack is much lesser than that of other standard cryptanalysis. The basic
idea consists in defining the shrunken sequence as an interleaved sequence. Hence the weaknesses inherent to interleaved
sequences can be advantageously used in the practical attack. A direct consequence of this technique is its generalization to
other interleaved sequence generators of cryptographic purpose. In this way, the security of this kind of generators must be
carefully checked.

References

[1] T. Beth, F. Piper, The stop-and-go generator, in: Proceedings of EUROCRYPT’84, in: Lecture Notes in Computer Science, vol. 228, Springer Verlag, 1985,
pp. 228–238.

[2] Bluetooth, Specifications of the Bluetooth system, Version 1.1, February 2001. http://www.bluetooth.com/.
[3] P. Caballero-Gil, A. Fúster-Sabater, A wide family of nonlinear filter functions with a large linear span, Inform. Sci. 164 (2004) 197–207.
[4] P. Caballero-Gil, A. Fúster-Sabater, Using linear hybrid cellular automata to attack the shrinking generator, IEICE Trans. Fundam. Electron. Commun.
Comput. E89-A (2006) 1166–1172.



536 A. Fúster-Sabater, P. Caballero-Gil / Theoretical Computer Science 409 (2008) 530–536

[5] D. Coppersmith, H. Krawczyk, H. Mansour, The shrinking generator, in: Proceedings of CRYPTO’93, in: Lecture Notes in Computer Science, vol. 773,
Springer-Verlag, 1994, pp. 22–39.

[6] A. Fúster-Sabater, Run distribution in nonlinear binary generators, Appl. Math. Lett. 17 (2004) 1427–1432.
[7] D. Gollmann, W.G. Chambers, Clock-controlled shift register, IEEE J. Sel. Areas Commun. 7 (1989) 525–533.
[8] S. Golomb, Shift-Register Sequences, Aegean Park Press, Laguna Hill, CA, 1982.
[9] G. Gong, Theory and applications of q-ary interleaved sequences, IEEE Trans. Inf. Theory 41 (2) (1995) 400–411.
[10] GSM, Global Systems for Mobile Communications. Available at: http://cryptome.org/gsm-a512.htm.
[11] S.M. Jennings, Multiplexed sequences: Some properties, in: Proceedings of EUROCRYPT’83, in: Lecture Notes in Computer Science, vol. 149, Springer

Verlag, 1983, pp. 210–221.
[12] S. Jiang, Z. Dai, G. Gong, On interleaved sequences over finite fields, Discrete Math. 252 (2002) 161–178.
[13] A. Kanso, Clock-Controlled Shrinking Generator of Feedback Shift Registers, in: Lecture Notes in Computer Science, vol. 2727, Springer Verlag, 2003,

pp. 443–451.
[14] R. Lidl, H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge University Press, Cambridge, England, 1986.
[15] R.L. Rivest, RSA Data Security, Inc., March 12, 1998.
[16] I. Shparlinski, On some properties of the shrinking generator, Des. Codes Cryptogr. 23 (2001) 147–156.
[17] L. Simpsom, J. Golic, E. Dawson, A probabilistic correlation attack on the shrinking generator, in: Proceedings of EUROCRYPT’98, in: Lecture Notes in

Computer Science, vol. 1438, Springer Verlag, 1998, pp. 147–158.


	Strategic attack on the shrinking generator
	Introduction
	The shrinking generator
	Interleaved configuration
	Cryptanalytic attack on the shrinking generator
	Computation of the SRA initial state
	Computation of the SRS initial state
	An illustrative example

	Generalization of this technique to interleaved sequences
	Conclusions
	References


