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Abstract

We consider cocycles de.ned on two-dimensional symbolic subshifts, and develop a new
approach to proving that every cocycle is trivial. Introducing the notion of semi-safe subshifts,
we prove that every locally constant cocycle with values in a locally (residually .nite) group is
trivial, and that the corresponding transfer function is itself locally constant. c© 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

There are many striking di5erences between higher-dimensional subshifts and the
more familiar one-dimensional subshifts. In this paper we will consider two-dimensional
subshifts, that is, a collection of decorations of the integer lattice Z2 which is invariant
under both horizontal and vertical translation, and is topologically closed. Each such
subshift can be identi.ed with a set of tilings of the plane, where our tile set consists
of .nitely many square blocks of unit size, and there are various restrictions on the
allowed adjacencies. If these restrictions are given by forbidding a .nite number of
.nite size con.gurations, then the tiling is said to be of +nite type.
An early indication of the di9culties faced in two dimensions goes back to the work

of Wang [24] and Berger [1], who considered a particular class of .nite type tilings
(now called Wang tiles). Wang conjectured that there existed a .nite time algorithm
which, for any given tile set, would determine whether it was possible to tile the
whole plane. His proposed algorithm was based on a further conjecture, namely that
if a tile set can tile the whole plane, then it can do so periodically. Berger showed
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that, in contrast to the one-dimensional case, this problem is in general undecidable.
Durand [5] recently proved, however, that provided a tile set can tile the whole plane,
then it can do so quasiperiodically (see Chapter 11 of [7] for more details on these
problems).
Several fundamental problems regarding periodicity properties remain unsolved, in

particular the relation with the complexity of the subshift (see [2, 4, 6, 16, 19, 23]).
Recent work has focused on certain remarkable properties of cocycles. For two-

dimensional subshifts, a cocycle is given by a pair of functions (f; g) (taking values
in some group G) satisfying the cocycle equation g(x)f(�x)= g(�x)f(x) for every x
in the subshift, where �; � denote horizontal and vertical translation, respectively. This
equation can be interpreted as an edge relation, ensuring that if we traverse any closed
path in Z2, evaluating f when we move horizontally, and g when we move vertically,
then the product of these values is always equal to 1∈G.
For one-dimensional subshifts, the collection of cocycles is large, and di9cult to

study. By contrast, recent work of Kammeyer [9–11], Parry [14], and Schmidt [20–22],
reveals that for certain two-dimensional subshifts, the set of cocycles can be very small.
The most extreme case is when, for every cocycle (f; g), the above edge relation is
satis.ed for the trivial reason that there exists some function h (called a transfer func-
tion), and constants cf; cg, such that f(x)= h(�x)cfh(x)−1 and g(x)= h(�x)cgh(x)−1.
In this case we say that (f; g) is trivial. Cocycle triviality tends to be associated (see
Proposition 4) with positive entropy (i.e. exponential growth of complexity), though
note (see [20]) that it also occurs in various zero entropy cases de.ned algebraically
(generalisations of Ledrappier’s cellular automaton example [13]).
As well as helping to reveal combinatorial and geometric structure of a subshift, the

study of cocycles is important for classi.cation problems. If all cocycles of a given
subshift are trivial, it implies that all skew product extensions are conjugate to the
original subshift (see [9–11]).
In this article we give a su9cient condition to ensure the triviality of locally constant

cocycles on a Z2 subshift X . We prove as well, that the corresponding transfer function
must itself be locally constant (this contrasts with the one-dimensional situation, where
unless the subshift is of .nite type, the transfer function of a trivial locally constant
cocycle is not necessarily locally constant). Our condition is that the alphabet of the
subshift contains some semi-safe symbol. Roughly speaking, a symbol is semi-safe if
it can be placed next to any other symbol in at least one horizontal direction and at
least one vertical direction. Examples of such subshifts are the full shift, the golden
mean shift, and the nearest-neighbour subshifts considered by Burton and Steif [3]. We
do not assume that X is of .nite type. Our condition does not force the homoclinic
equivalence relation of the subshift to have the n-speci.cation condition required in
[20], nor does it force the subshift to be mixing, even in the relatively benign case
where X is of .nite type. Our condition on the group where the cocycles take their
values is a very general algebraic one, namely that it is locally (residually .nite). This
class includes all .nite groups, abelian groups, metabelian groups, linear groups, free
groups, and many other interesting classes of groups.
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Our method is combinatorial, and emphasizes the way in which cocycle triviality
depends on the +tting together of allowed blocks. Heuristically, the more ‘overlap’
there is between blocks (i.e. distinct blocks coinciding on sub-blocks), the more likely
it is that all cocycles will be trivial. For a cocycle constant on cylinder sets of a given
size, we derive a system of cocycle equations, where the variables in the equations are
the values of the cocycle on these cylinder sets. The overlap between blocks allows
us to express all variables in terms of a su9ciently small number of basis variables,
forcing the cocycle to be trivial. The semi-safe hypothesis on X ensures we can make
a canonical choice of basis variables as the size of the cylinder sets increases. In fact
our method of reducing equations will work for any subshift for which all locally
constant cocycles are trivial, though in general the canonical choice of basis variables
may be less apparent.
The structure of this article is as follows. After some preliminary de.nitions and

notation in Section 2, we introduce semi-safe subshifts in Section 3, and give several
examples. In Section 4 we brieLy discuss the dynamical properties of semi-safe symbol
subshifts. In Section 5 we introduce cocycles, and in Section 6 go over some relevant
group theory. In Section 7 we discuss the system of cocycle equations at the heart of
our method. Section 8 is the key section. Here we show (Proposition 10) that a cocycle
is completely determined by its values on a su9ciently small number of cylinder sets,
and this leads to our main results, Theorems A and B. In Section 9 we illustrate our
method with a worked example.

2. Preliminaries

De�nition 1. Given an alphabet A= {0; : : : ; k − 1}, k¿2, with the discrete topology,
we de.ne the full shift AZ

2
on A to be the set of all maps x :Z2 →A. We often write

x=(x(m;n))= (x(m;n))(m;n)∈Z2 .
AZ

2
is compact in the Tychonov product topology, which is induced by the metric

� given by

�(x; y) =
{
0 if x = y;
2−min{|m|+|n|:x(m; n) �=y(m; n)} otherwise:

The horizontal and vertical shift maps �; � :AZ
2 →AZ2

are de.ned by

(�(x))(m; n) = x(m+1; n); (�(x))(m; n) = x(m; n+1):

A non-empty closed subset X ⊆AZ2
is called a subshift if �(X )=X and �(X )=X .

De�nition 2. For M;N ∈N and (m0; n0)∈Z2 we de.ne the rectangle

R(m0 ; n0)(M;N ) = {m0; : : : ; m0 +M − 1} × {n0; : : : ; n0 + N − 1}:
If the basepoint (m0; n0) is unimportant, we simply write R(M;N ).
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For N ∈N we de.ne

SN = {1− N; : : : ; N − 1} × {1− N; : : : ; N − 1};

TN = {1− N; : : : ; N} × {1− N; : : : ; N};

FN = {1− N; : : : ; N} × {1− N; : : : ; N − 1};

GN = {1− N; : : : ; N − 1} × {1− N; : : : ; N}:
For F ⊆F ′ ⊆Z2 we de.ne �F :AF

′ →AF to be the projection map which restricts
each element of AF

′
to the set F . Often we choose F ′ =Z2.

Given F ⊆Z2, we say an element of AF is a decoration of F . A decoration B of a
rectangle R⊂Z2 is called a block. Such a block B is globally allowed by a subshift X
if there exists some x∈X with �R(x)=B. In this case we also say that B extends to a
point of X , that x is an extension of B, and that B appears in x. The shift invariance of
X means that a block B is globally allowed if and only if the corresponding decoration
of all translated rectangles is also allowed.
No generality is lost by making the following assumption about all subshifts X ,

which just ensures the corresponding alphabet A is of minimal size.

Assumption. Every symbol a∈A extends to a point of X .
Given a subshift X ⊆AZ2

and a globally allowed block B∈AR, where R=R(m0 ; n0)

(M;N ), we de.ne

[B] = [B](m0 ; n0) = {x∈X : �R(x) = B}:
We say [B] is a cylinder set of size R. If we want to make explicit the block B we
will write

[B] =



B(m0 ; n0+N−1) : : : B(m0+M−1; n0+N−1)
...

...
B(m0 ; n0) : : : B(m0+M−1; n0)



(m0 ; n0)

: (1)

Sometimes the basepoint (m0; n0) will be clear from the context, in which case we
omit the subscript from the right-hand square bracket. For a .xed rectangle the corre-
sponding family of cylinder sets (all non-empty by de.nition) gives a .nite partition
of X .

De�nition 3. If F ⊆Z2 is .nite, and P⊆AF , then
X =X(F; P) = {x∈AZ2

: �F(�m�n(x))∈P ∀(m; n)∈Z2} (2)

is called the subshift of +nite type de.ned by F and P. We call P the set of locally
allowed decorations of F .

If XF; P is a subshift of .nite type, we say a block B∈AR is locally allowed if
�F′∩R(B)∈ �F′∩R(P) for each translation F ′ =F+(i; j) which intersects the rectangle R.
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Every globally allowed block is locally allowed, but the converse is not necessarily
true. Moreover, and in contrast to the case for one-dimensional subshifts of .nite type,
in general there exists no .nite time algorithm for determining whether a given locally
allowed block is globally allowed. Consequently there exists no .nite time algorithm
for determining whether a given subshift of .nite type is the empty set or not. Further
discussion of these ‘extension’ and ‘emptiness’ problems can be found in Berger [1],
Kitchens and Schmidt [12], Robinson [17] and Wang [24].

De�nition 4. Let A= {0; : : : ; k−1}, and suppose MH ; MV are k×k zero-one matrices.
We de.ne the matrix subshift X ⊆AZ2

by

X = {x∈AZ2
: MH (x(m; n); x(m+1; n)) = 1; MV (x(m; n); x(m; n+1)) = 1 ∀(m; n)∈Z2}:

3. Semi-safe symbol subshifts

De�nition 5. For a subshift X ⊆AZ2
, a symbol a∈A is called a safe symbol if ev-

ery globally allowed block can be extended to a point of X by decorating the rest
of Z2 with the symbol a. If such a symbol exists then X is called a safe symbol
subshift.

There are several possible weaker de.nitions of a safe symbol, where we only require
that the symbol extends globally allowed blocks in two directions (one horizontal
direction and one vertical direction). First we introduce some notation to describe
certain semi-in.nite regions of Z2.

De�nition 6. Let R= {M−; : : : ; M+} × {N−; : : : ; N+}⊂Z2 be a rectangle. We de.ne
the following regions relative to R.

{(m; n)∈Z2 :m¡M− and N−6n6N+} is the West strip of R.

{(m; n)∈Z2 :m¿M+ and N−6n6N+} is the East strip of R.

{(m; n)∈Z2 : n¡N− and M−6m6M+} is the South strip of R.

{(m; n)∈Z2 : n¿N+ and M−6m6M+} is the North strip of R.

{(m; n)∈Z2 :m6M+ and n6N+} is the SouthWest quadrant of R.

{(m; n)∈Z2 :m¿M− and n6N+} is the SouthEast quadrant of R.

{(m; n)∈Z2 :m¿M− and n¿N−} is the NorthEast quadrant of R.

{(m; n)∈Z2 :m6M+ and n¿N−} is the NorthWest quadrant of R.

Note that R is not a subset of any of its strips, but is a subset of each of its
quadrants.
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Lemma 1. Let X ⊆AZ2
be a subshift; and let a∈A. Fix ‘Vert’ to mean either ‘North’

or ‘South’. Fix ‘Horiz’ to mean either ‘East’ or ‘West’. The following three conditions
are equivalent.
(a) For any rectangle R= {M−; : : : ; M+} × {N−; : : : ; N+}⊂Z2; and any globally

allowed block B∈AR; there exists x∈X which is an extension of B and which deco-
rates the Horiz strip of R with all a’s; and there exists y∈X which is an extension
of B and which decorates the Vert strip of R with all a’s.
(b) For any rectangle R= {M−; : : : ; M+} × {N−; : : : ; N+}⊂Z2; and any globally

allowed block B∈AR; there exists x∈X which decorates the rest (i.e. all except R)
of the VertHoriz quadrant of R with all a’s.
(c) For any rectangle R= {M−; : : : ; M+} × {N−; : : : ; N+}⊂Z2; and any globally

allowed block B∈AR; there exists y∈X which decorates all of Z2 except the quadrant
diagonally opposite the VertHoriz quadrant of R with all a’s.

Proof. Throughout the proof we will assume, without loss of generality, that the ver-
tical direction is South, and the horizontal direction is West.
(a)⇒ (b) Let B be a globally allowed block with corresponding rectangle R=

{M−; : : : ; M+} × {N−; : : : ; N+}. Let x∈X be an extension of B which decorates the
West strip of R with all a’s. For each M ∈N, de.ne the rectangle RM = {M− −
M; : : : ; M+} × {N−; : : : ; N+}, and the block BM = �RM (x). Let yM ∈X be an extension
of BM which decorates the South strip of RM with all a’s. So yM decorates the region

CM = {(m; n)∈Z2: M− −M6m6M+; n6N+}\R

with all a’s. Now the union of all the CM ’s is the whole of the SouthWest quadrant
except R. So compactness of X means we can choose a convergent subsequence yMi
whose limit y decorates all of the SouthWest quadrant (except R) with a’s.
(b)⇒ (c) Let B be a globally allowed block with corresponding rectangle R=

{M−; : : : ; M+} × {N−; : : : ; N+}. Let x∈X be any extension of B. For each M ∈N,
de.ne the rectangle RM = {M−; : : : ; M+ +M} × {N−; : : : ; N+ +M}, and the (globally
allowed) block BM = �RM (x). Let yM be an extension of BM which decorates the rest
(i.e. all except RM ) of the SouthWest quadrant of RM with all a’s. We note that the
union (over all M) of such regions is the complement of the NorthEast quadrant of R.
Compactness of X means we can choose a convergent subsequence yMi whose limit y
decorates all of Z2, except the NorthEast quadrant of R, with a’s.
(c)⇒ (a) Immediate.

De�nition 7. A symbol a∈A is called a semi-safe symbol for a subshift X ⊆AZ2
if it

satis.es the equivalent conditions in Lemma 1. We say it is of direction VertHoriz,
where ‘Vert’= ‘North’ or ‘South’, and ‘Horiz’= ‘East’ or ‘West’. If such a symbol
exists, we say X is a semi-safe symbol subshift.

Clearly a safe symbol subshift is semi-safe in all directions.
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Lemma 2. Let X ⊆AZ2
be a semi-safe symbol subshift; with semi-safe symbol a.

De+ne the +xed point a∈AZ2
by a(m;n) = a for all (m; n) ∈ Z2. Then a∈X .

Proof. Since the symbol a is allowed, and X is semi-safe, then there exists y∈X
which decorates some quadrant (the SouthWest, say) with all a’s. But X is closed and
shift invariant, so that a= limn→∞ (��)n(y)∈X .

Examples. 1. The full shift AZ
2
on any .nite alphabet A is a safe symbol subshift,

with every a∈A a safe symbol. Here every block is globally allowed. In particular, the
horizontal language (i.e. the set of blocks of unit height) consists of all words on the
alphabet A. Similarly for the vertical language (i.e. the set of blocks of unit width).
2. The matrix subshift X ⊂{0; 1}Z2

de.ned by

MH = MV =
(
1 1
1 0

)

is a safe symbol subshift, with safe symbol 0. This is known as the golden mean
subshift. The horizontal language consists of all words on the alphabet {0; 1} which
do not contain 11 as a subword. Similarly for the vertical language.
3. The matrix subshift X ⊂{0; 1}Z2

de.ned by

MH = MV =
(
1 1
0 1

)

is not a safe symbol subshift, but is a semi-safe symbol subshift. The symbol 0 is a
semi-safe symbol, of type SouthWest. The symbol 1 is also a semi-safe symbol, of
type NorthEast. The horizontal language consists of all words on the alphabet {0; 1}
which do not contain 10 as a subword. Similarly for the vertical language.
4. The matrix subshift X ⊂{0; 1; 2; 3}Z2

de.ned by

MH = MV =




1 1 1 1
0 1 1 0
0 0 1 1
1 0 0 1




is not a safe symbol subshift, but is a semi-safe symbol subshift. The symbol 0 is a
semi-safe symbol of type SouthWest. The horizontal language consists of all words on
the alphabet {0; 1; 2; 3} which do not contain any of the subwords 10; 13; 20; 21; 31; 32.
Similarly for the vertical language.

4. Dynamical properties

De�nition 8. Let X ⊆AZ2
be a subshift. Given an element x∈X , we de.ne its basin

of attraction B(x) to be the set of all y∈X for which there exists (M;N )∈Z2 and a
sequence ni→∞ such that (�M�N )ni(y)→ x as i→∞. We say that x is attractive if
B(x) is dense in X . If such an x∈X exists we say the subshift X is attractive.
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Lemma 3. Suppose X ⊆AZ2
is a semi-safe symbol subshift. Then X is attractive.

Proof. Without loss of generality let us assume that the semi-safe symbol a is of
direction SouthWest. By Lemma 2 we know the .xed point a∈X . We will show that
a is attractive.
Suppose y∈X . For any N¿1, de.ne the block BN = �SN (y). By condition (b) of

Lemma 1 there exists yN ∈X which decorates the rest (i.e. all except SN ) of the
SouthWest quadrant of SN with all a’s. Then each yN ∈B(a), since (�−1�−1)n(yN )→ a
as n→∞. But yN →y as N→∞. Therefore B(a) is dense in X .

De�nition 9. Let X ⊆AZ2
be a subshift. The topological entropy of X is de.ned by

h(X ) = lim
N→∞

1
|TN | log |�TN (X )|;

where | · | denotes the cardinality of a set.

Proposition 4. Every safe symbol subshift of +nite type X ⊆AZ2
has positive topo-

logical entropy.

Proof. If X =XF;P then (by a recoding if necessary) we may assume that F = {0; 1}2.
Let a∈A be a safe symbol. For all b∈A the following blocks begin to P:

a a
a a

;
a a
a b

;
a a
b a

;
a b
a a

;
b a
a a

:

Given the 2N × 2N square TN , we want to estimate |�TN (X )|, the number of
globally allowed decorations of TN . Let us assume that N =3M for some M ∈
N. Then we can divide TN into 4M 2 squares of size 3 × 3, in the obvious way.
We can decorate the central coordinate of each 3 × 3 square arbitrarily, and then
decorate the rest of TN with the safe symbol a, to obtain a block B. By deco-
rating the rest of Z2 with the safe symbol a, we obtain a point x∈AZ2

. We see
that in fact x∈X , since each �F(�m�n(x)) is in the form of one of the above .ve
blocks.
So each such decoration gives an element of �TN (X ). But there are |A|4M 2

such
decorations. Therefore,

h(X ) = lim
M→∞

1
|T3M | log |�T3M (X )|

¿ lim
M→∞

1
(36M 2)

log |A|4M 2
=

1
9
log |A|¿ 0:
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5. Cocycles

De�nition 10. Given a subshift X ⊆AZ2
and a group G we say f :X →G is locally

constant if there exists some .nite subset E⊂Z2 such that

�E(x) = �E(y) ⇒ f(x) = f(y): (3)

Any such E is called a set of active coordinates for f.

De�nition 11. Let G be a group, and X ⊆AZ2
a subshift. For locally constant f; g :

X →G we say the pair (f; g) is a (G-valued) cocycle on X if for all x∈X ,

f(�x)g(x) = g(�x)f(x): (4)

This cocycle is called trivial if there exist cf; cg ∈G and a continuous function h :
X →G (called the transfer function) such that for all x∈X ,

f(x) = h(�x)cfh(x)−1 and g(x) = h(�x)cgh(x)−1: (5)

Remark. If X is a semi-safe symbol subshift, then it contains a .xed point a (see
Lemma 2). If (f; g) is a G-valued cocycle on X then (4) implies that f(a) and g(a)
commute. Moreover, if (f; g) is trivial, then (5) implies that the constants cf; cg also
commute.

De�nition 12. For a given semi-safe symbol subshift X , let V denote the set of all (lo-
cally constant) cocycles. Let V ′ ⊂V be the subset consisting of those trivial cocycles
whose transfer function is locally constant. A cocycle (f; g) is said to be of degree N
if the active coordinates of f lie in FN and the active coordinates of g lie in GN . Let
VN =VN (X ) denote the set of cocycles of degree N . Let V ′

N =V
′
N (X ) be the subset

of VN consisting of trivial cocycles with locally constant transfer function. Note that
such a transfer function must necessarily have active coordinates in SN . If a∈X is the
.xed point decorated solely by the semi-safe symbol, and i; j∈G satisfy ij= ji, then
de.ne

VN (i; j) = {(f; g)∈VN : f(a) = i; g(a) = j};

V ′
N (i; j) = {(f; g)∈V ′

N : f(a) = i; g(a) = j}:

Note that

∪
N
VN = V; ∪

N
V ′
N = V ′; ∪

ij=ji
VN (i; j) = VN ; ∪

ij=ji
V ′
N (i; j) = V

′
N ;

and that all these sets are subsets of the group H =G|�FN (X )|×G|�GN (X )|. If G is abelian
then the various sets are in fact subgroups of H , while if G is (the additive group
of) a .eld then they are vector subspaces of H .
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Lemma 5. Let X be a semi-safe symbol subshift; and suppose that (f; g)∈V ′ is a
trivial locally constant G-valued cocycle on X; for some group G. Suppose h; h′ :X →G
are both locally constant transfer functions for (f; g). Then there exists b∈G such
that h(z)= h′(z)b for all z ∈X .

Proof. We may assume the semi-safe symbol is of direction SouthWest. Since h; h′

are both locally constant, we may assume their active coordinates both lie in the
square SN for some N¿1. If a∈X is the .xed point decorated solely by the semi-safe
symbol, then there is a dense subset B⊂X of points z such that (�−1�−1)i(z)→ a as
i→∞. So for each z ∈B there exists Mz ∈N such that if i¿Mz then the square block
�SN ((�

−1�−1)i(z)) is decorated solely by the semi-safe symbol. It follows that

h((�−1�−1)i(z)) = h(a) and h′((�−1�−1)i(z)) = h′(a) for all i¿Mz: (6)

Now since (f; g) is trivial, there are commuting pairs of constants cf; cg and df; dg
such that

f(z) = h(�z)cfh(z)−1; g(z) = h(�z)cgh(z)−1;

f(z) = h′(�z)dfh′(z)−1; g(z) = h′(�z)dgh′(z)−1:

This implies that

h(�m�nz)cmf c
n
g h(z)

−1 = h′(�m�nz)dmf d
n
g h

′(z)−1 for all (m; n) ∈ Z2: (7)

Setting m= n= −Mz, and writing *= cfcg, �=dfdg, we obtain

h(a)*−Mzh(z)−1 = h′(a)�−Mzh′(z)−1:

Rearranging this equation gives

h′(z)−1h(z) = �Mzh′(a)−1h(a)*−Mz : (8)

In Eq. (7) we can also set m= n= − (Mz + 1), and by the same process we obtain

h′(z)−1h(z) = �Mz+1h′(a)−1h(a)*−(Mz+1): (9)

Equating (8) and (9), then left-multiplying by �−Mz and right-multiplying by *Mz ,
gives us

�h′(a)−1h(a)*−1 = h′(a)−1h(a)

and by induction we deduce

�jh′(a)−1h(a)*−j = h′(a)−1h(a) for all j¿0:

In particular, for all z ∈ B we have

�Mzh′(a)−1h(a)*−Mz = h′(a)−1h(a): (10)
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Substituting (10) into (8) gives

h′(z)−1h(z) = h′(a)−1h(a) for all z ∈B:

So the continuous function z �→ h′(z)−1h(z) is constant on the dense set B, and is
therefore constant on all of X . The result follows.

6. The algebraic argument

In this section we develop the algebraic machinery underpinning our combinatorial
technique, introducing those classes of groups to which our main Theorems A and B
apply.
Fix a free group Fm of rank m. Let x1; : : : ; xm be a basis for Fm. Let w=(w1; : : : ; wn)

be an n-tuple of elements (words) of Fm, such that w1; : : : ; wn generate
Fm (so n¿m).
For any group , we de.ne w∗ : ,m→,n by

w∗(g1; : : : ; gm) = (w1(g1; : : : ; gm); : : : ; wn(g1; : : : ; gm)):

Let S(w; ,)= S(m;w; ,) denote Image(w∗)⊂,n.
We now de.ne a notion of dimension for certain subsets of ,n, and a class of groups

which behave well with respect to this notion.

De�nition 13. Suppose A⊂,n is equal to S(m;w; ,) for free group Fm and n-tuple w
as above. We say A has dimension m over , if such an equality cannot hold for any
number smaller than m.

De�nition 14. A group , is called +eld-like if for all m; n∈N, n¿m, and for all
m-dimensional subsets S; S ′ ⊂,n, S ⊂ S ′ if and only if S ′ ⊂ S.

De�nition 15. Suppose X is some property of groups. We say a group , is residually
X if for all 1 �= g∈, there exists a normal subgroup Ng such that g =∈Ng and ,=Ng
satis.es X.

De�nition 16. Suppose X is some property of groups. We say a group , is locally
(residually X) if all of its .nitely generated subgroups are residually X.

Proposition 6. Every locally (residually +nite) group is +eld-like.

Proof. First we characterise the class of .eld-like groups. As above we let x1; : : : ; xm
be a basis for the free group Fm of rank of m, and w=(w1; : : : ; wn) be an n-tuple of
words of Fm which generate Fm.
Since w1; : : : ; wn generate Fm, there are words ŵ1; : : : ; ŵm on n symbols such that

ŵi(w)= xi for each i∈{1; : : : ; m}.
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De.ne ŵ : ,n→,m by

ŵ(g1; : : : ; gn) = (ŵ1(g1; : : : ; gn); : : : ; ŵm(g1; : : : ; gn)):

Note that ŵ ◦w∗ : ,m→,m is the identity map, where w∗ is as above. In particular,
w∗ is injective.
If we choose another n-tuple v=(v1; : : : ; vn) of generators of F , then the set S(v; ,)

and the maps v∗, v̂ can be de.ned similarly.
Now S(w; ,) is contained in S(v; ,) if and only if w∗= v∗ ◦ v̂ ◦w∗. This is because if
g∈,m satis.es w∗(g)= v∗(h) for some h∈,m, then h= v̂ ◦ v∗(h)= v̂ ◦w∗(g). Apply-
ing v∗ to both sides gives v∗(h)= v∗ ◦ v̂ ◦w∗(g), which implies w∗(g)= v∗ ◦ v̂ ◦w∗(g).
So for .xed n-tuples w and v, the class Y (w; v) of groups , for which S(w; ,) is

contained in S(v; ,) is de.ned by a set of equations between values of words. Thus,
Y (w; v) is a variety of groups (see Robinson [18, p. 56]). Let Z(w; v) be the class of
groups , such that S(w; ,) is contained in S(v; ,) if and only if the reverse inclusion
holds. If Z denotes the intersection of Z(w; v) over all possible n-tuples w, v then Z
is precisely the class of .eld-like groups.
Now if , is a .nite group then we have |S(w; ,)|= |S(v; ,)|= |,|m. Thus S(w; ,)⊂
S(v; ,) if and only if S(v; ,)⊂ S(w; ,). So any .nite group belongs to the class Z(w; v).
Now since Y (w; v) and Y (v; w) are both varieties, it follows that any group which

is locally (residually in Z(w; v)) is itself in Z(w; v) (see Robinson [18, p. 57]). So any
group which is locally (residually .nite) belongs to Z(w; v). Since w, v were arbitrary,
the result follows.

The class of locally (residually .nite) groups is discussed in Chapter 9 of Robinson.
The following classes of groups are all locally (residually .nite).
(a) All .nite groups.
(b) All abelian groups.
(c) All metabelian groups (i.e. those soluble groups of derived length at most two).

This class includes all abelian groups.
(d) All locally (polycyclic-by-.nite) groups. This class contains all metabelian

groups. A group , is polycyclic if there is a chain of normal subgroups 1=,0 /
,1 / · · · / ,n=, such that each quotient ,i+1=,i is cyclic. A group is polycyclic-
by-+nite if it has a polycyclic normal subgroup of .nite index. A group is locally
(polycyclic-by-+nite) if all its .nitely generated subgroups are polycyclic-by-.nite.
The fact that this class of groups is locally (residually .nite) is a consequence of
the Jategaonkar–Roseblade Theorem (see Theorem 6:6 in Passman [15]).

(e) All groups of matrices over .nitely generated integral domains are residually .nite,
and hence locally (residually .nite) (see Chapter 4 of Wehrfritz [25]).

(f ) All free groups (see Robinson [18, p. 158]).

Proposition 7. If F is a +eld; then any matrix group M (F) over F is locally (resi-
dually +nite). Thus in particular any linear Lie group is locally (residually +nite).
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Proof. Suppose H is a .nitely generated subgroup of M (F). Choose a .nite set B of
generators of H , and let C be the set of all elements of F that appear as entries of
elements of B. Let R be the subring of F generated by C. Then H can be regarded
as a group of matrices over the .nitely generated integral domain R, and is therefore
residually .nite by (d) above. Thus M (F) is locally (residually .nite).

7. The system of cocycle equations

For a .xed rectangle R=R(m0 ; n0), the family of non-empty cylinder sets [B] deter-
mines a .nite partition of the subshift X . It follows that if some function ’ : X →R is
locally constant, with active coordinates lying in R, then ’ is completely determined
by its values on the (.nite number of ) cylinder sets of size R. The value of ’ on such
a cylinder set [B] of size R is called the variable (or ’-variable) corresponding to [B],
and will be denoted by

’[B] = {B}’ =




B(m0 ; n0+N−1) : : : B(m0+M−1; n0+N−1)

...
...

B(m0 ; n0) : : : B(m0+M−1; n0)



’

: (11)

This notation will only ever be used in the context of a cocycle (f; g) and transfer
function h. Since the size of the active coordinates rectangle is di?erent for each of
these functions, we will sometimes omit the subscript from the right-hand bracket in
(11) without causing any ambiguity.
Note the di5erence between the notation in (1) and in (11). Square brackets will

denote the cylinder set itself, and curly brackets will denote the value of a function on
the cylinder set.

Lemma 8. Suppose (f; g)∈VN (X ); where X ⊆AZ2
is a subshift. The |�FN (X )| f-

variables and |�GN (X )| g-variables satisfy a system of |�TN (X )| equations. In each
equation there are two f-variables and two g-variables.

Proof. Since (f; g) is of degree N , each of the four functions in the cocycle equation
has active coordinates in the square TN . Let the block

C =

C1−N; N : : : : : : CN; N
...

...
...

...
C1−N; 1−N : : : : : : CN; 1−N

be a globally allowed decoration of TN , and let [C] be the corresponding cylinder set.
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We now consider the cocycle equation f�:g= g�:f, restricted to the set [C], which
can be written explicitly as



C1−N; N : : : : : : CN; N

...
...

C1−N; 2−N : : : : : : CN; 2−N



f




C1−N; N : : : CN−1; N
...

...
...

...
C1−N; 1−N : : : CN−1; 1−N



g

=




C2−N; N : : : CN; N
...

...
...

...
C2−N; 1−N : : : CN; 1−N



g



C1−N; N−1 : : : : : : CN; N−1

...
...

C1−N; 1−N : : : : : : CN; 1−N



f

:

Example. Let X = {0; 1}Z2
be the full shift on two symbols, and suppose (f; g)∈

V2(X ). So the cocycle equation gives a system of 216 = 65536 equations in 212 +
212 = 8192 variables. For example the block

C =

0 1 1 0
1 1 1 0
1 0 1 1
0 1 0 0

gives rise to the equation




0 1 1 0
1 1 1 0
1 0 1 1







0 1 1
1 1 1
1 0 1
0 1 0




=




1 1 0
1 1 0
0 1 1
1 0 0







1 1 1 0
1 0 1 1
0 1 0 0


 :

8. The dynamic argument

Proposition 9. Let G be a group; and X ⊆AZ2
a semi-safe symbol subshift. For any

i; j∈G satisfying ij= ji; the set V ′
N (i; j) has dimension |�SN (X )| − 1 over G.

Proof. The transfer function h of a cocycle in V ′
N (i; j) is only unique up to a constant

(see Lemma 5). Once we have speci.ed h(a), where a∈X is the .xed point decorated
solely by the semi-safe symbol, Eq. (5) gives us the constants cf; cg ∈G in terms of
i; j, and h(a). Since i; j commute, then so do cf; cg. We have complete freedom in
the choice of the remaining |�SN (X )| − 1 h-variables, and now we have completely
speci.ed our trivial cocycle.

Proposition 10. Let G be a group; and X ⊆{0; 1}Z2
a semi-safe symbol subshift. For

any i; j∈G satisfying ij= ji; the set VN (i; j) has dimension |�SN (X )| − 1 over G.
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Proof. By Proposition 9 we know the dimension of VN (i; j) is at least |�SN (X )|−1. We
now show that a judicious choice of |�SN (X )| − 1 variables is su9cient to parametrise
VN (i; j).
Without loss of generality let us assume that 0 is the semi-safe symbol, and is of

direction SouthWest.
Suppose (f; g)∈VN (i; j). We immediately deduce that the value of f (resp. g) on

the cylinder set containing the .xed point 0 is i (resp. j). These will be the .rst of
our basis variables. We will .x |�SN (X )| − 1 more basis variables, and then show that
the values of all variables can be deduced from the |�SN (X )|+ 1 basis variables.
We choose the extra basis variables to be all f-variables of the form




0 ? : : : ?
...

...
...

0 ? : : : ?



f

(i.e. the values of f on all those cylinder sets of size FN whose left-hand column
is decorated by the semi-safe symbol 0). Since the block consisting of all zeros was
already in the basis, this indeed gives us |�SN (X )| − 1 new basis variables. This is
because (by shift invariance) there are |�SN (X )| globally allowed ways of decorating
the translated square SN + (1; 0) (i.e. of .lling in the asterisks in the above diagram).
Since 0 is a SouthWest safe symbol, we can decorate the left-hand column of FN with
all 0’s, and the resulting block will correspond to a non-empty cylinder set.
Our method of proof is as follows. By Lemma 8 we know that each globally allowed

block C of size TN gives an equation in four variables. Starting with our basis variables
(the ‘known’ variables) we choose an appropriate block C (i.e. one for which exactly
3 of the variables f([C]); f�([C]), g([C]), g�([C]) are known). Using the cocycle
equation on [C] we obtain an expression for the previously unknown variable in terms
of the known variables. We now include this variable in the set of known variables.
We repeat the process. As the number of known variables increases, it becomes

easier to .nd appropriate blocks C.
The above discussion is valid for any .nite alphabet A. From now on, however,

we use the fact that A= {0; 1}. In the proof of Proposition 11 we indicate the minor
modi.cations necessary for larger alphabets.
For A= {0; 1} we claim that the following statement P(r) is true for all r¿0.

All variables whose decorations contain r 1’s can be expressed in terms of those
basis variables whose decorations contain 6r 1’s.

Clearly if P(r) is true for all r¿0 then all variables are expressible in terms
of the |�SN (X )| + 1 basis variables (since every variable contains r 1’s, for some
06r62N (2N − 1)), and we will have proved the proposition.
We will prove the statement P(r) by induction on r.
Clearly P(0) is true, since the f-variable consisting of all 0’s and the g-variable

consisting of all 0’s are both basis variables.
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Let our inductive hypothesis be that P(j) is true for j=0; 1; : : : ; r−1. We will show
this implies that P(r) is true.
Suppose we know all the basis variables with 6r 1’s. By the inductive hypothesis

this implies we know all variables with j 1’s, for j=0; 1; : : : ; r − 1. So in total the
known variables are:
1. All variables with strictly less than r 1’s.
2. All basis variables with r 1’s.
First we will deduce those g-variables with r 1’s. Let B be the (2N −1)×2N block

corresponding to an arbitrary g-variable {B} with r 1’s. Let J be the largest rectangular
sub-block of B which has at least one 1 in its right-hand column (so possibly J =B).
Note that J also has r 1’s.
Consider the block J on its own, and then add columns of zeros to its left (possible

since 0 is a semi-safe symbol of type SouthWest) until we have a block of size
(2N − 1)× 2N . Call this block B0. Note that B0 has r 1’s as well.

0 0 0
0 0 0
0 0 0
0 0 0

J 0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

The Block B

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0 J
0 0 0
0 0 0
0 0 0
0 0 0

The Block B0

Now add one further column of zeros to the left of B0 to make a 2N × 2N square
block C0. Let B′0 denote the (2N −1)× 2N block obtained by removing the right-hand
column of C0. Since J has at least one 1 in its right-hand column then B′0 contains
strictly less than r 1’s.

0
0
0
0
0 B0
0
0
0
0

The Block C0

B′0

The Block C0

Now consider the cocycle equation on the cylinder set [C0].



O. Jenkinson / Theoretical Computer Science 262 (2001) 191–213 207

Both f-variables have their left-hand column full of 0’s, thus they are basis variables.
Moreover, they both have 6r 1’s. Therefore, they are known variables.
The g-variable {B′0} contains strictly less than r 1’s, and therefore is a known

variable (by the inductive hypothesis).
Thus the only unknown variable is the g-variable {B0}. The cocycle equation there-

fore allows us to deduce {B0}, which we now consider a known variable.
If B0 =B then we are done. Otherwise we can remove a column of zeros from the

left of B0, and add a column of zeros to the right, to obtain a (2N − 1) × 2N block
B1.

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0 J
0 0 0
0 0 0
0 0 0
0 0 0

The Block B0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 J 0
0 0 0
0 0 0
0 0 0
0 0 0

The Block B1

Let C1 denote the 2N × 2N square block obtained by adding a column of 0’s to the
left of B1. Note that the (2N − 1) × 2N block obtained by removing the right-hand
column of C1 is precisely B0.

0
0
0
0
0 B1
0
0
0
0

The Block C1

B0

The Block C1

Now consider the cocycle equation on the cylinder set [C1]. Both f-variables have
their left-hand column full of 0’s, thus they are basis variables. Moreover, they both
have 6r 1’s. Therefore, they are known variables. The g-variable {B0} is also now
a known variable. The cocycle equation therefore allows us to deduce the previously
unknown g-variable {B1}.
In the same way we can continue to de.ne (2N − 1)× 2N blocks B2; B3; B4 : : : and

2N × 2N square blocks C2; C3; C4 : : : : The cocycle equation on [Ci] always allows us
to deduce the variable {Bi}, since {Bi−1} is known, and the two f-variables are also
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known. Eventually some Bi is equal to our original block B, so we have deduced the
g-variable {B}. Since {B} was an arbitrary g-variable with r 1’s, we can consider all
such variables to now be known.
Now in a similar way we will deduce all f-variables with r 1’s. Let {D} be an

unknown f-variable with r 1’s, and with corresponding 2N × (2N − 1) block D (so
the left-hand column of D does not consist solely of zeros). Let K be the largest
rectangular sub-block of D which has at least one 1 in its top row (so possibly K =D).
Note that K also has r 1’s.
Consider the block K on its own, and then add rows of zeros to its bottom until we

have a block of size 2N ×(2N −1). Call this block D0. Note that D0 has r 1’s as well.
Now add one further row of zeros to the bottom of D0 to make a 2N × 2N square

block E0. Let D′
0 denote the 2N × (2N −1) block obtained by removing the top row of

E0. Since K has at least one 1 in its top row then D′
0 contains strictly less than r 1’s.

Now consider the cocycle equation on the cylinder set [E0]. Both g-variables are
known, by our previous discussion in this proof. The f-variable {D′

0} is also known,
since it contains strictly less than r 1’s. Thus the cocycle equation allows us to
deduce the previously unknown variable {D0}, which we now consider a known
variable.
If D0 =D then we are done. Otherwise we can remove a row of zeros from the

bottom of D0 and add a row of zeros to the top, to obtain a 2N × (2N − 1) block
D1. Let E1 denote the 2N × 2N square block obtained by adding a row of 0’s to the
bottom of D1. Note that the 2N × (2N − 1) block obtained by removing the top row
of E1 is precisely D0.
Now consider the cocycle equation on the cylinder set [E1]. Both g-variables are

known, and the f-variable {D0} is also now a known variable. The cocycle equation
therefore allows us to deduce the previously unknown f-variable {D1}.

In the same way we can continue to de.ne 2N × (2N − 1) blocks D2; D3; D4 : : : and
2N × 2N square blocks E2; E3; E4 : : : : The cocycle equation on [Ei] always allows us
to deduce the variable {Di}, since {Di−1} is known, and the two g-variables are also
known. Eventually some Di is equal to our original block D, so we have deduced the
f-variable {D}. Since {D} was an arbitrary (non-basis) f-variable with r 1’s, we can
consider all such variables to now be known.
Therefore, all variables (both f-variables and g-variables) with r 1’s can be

deduced from those basis variables with 6r 1’s. This completes the induction, and
the proposition is proved.

We now generalise Proposition 10 to semi-safe symbol subshifts with larger alpha-
bets.

Proposition 11. Let G be a group; and X ⊆AZ2
a semi-safe symbol subshift. For any

i; j∈G satisfying ij= ji; the set VN (i; j) has dimension |�SN (X )| − 1 over G.

Proof. Suppose A= {0; : : : ; k−1}. As in Proposition 10, let us assume that the symbol
0 is the semi-safe symbol, and that it is of direction SouthWest.
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The case k =2 was dealt with in Proposition 10. The method of proof for the
general case is almost the same. The only di5erence is that we must use induction
more carefully on the number of symbols of each type appearing in a variable.
As before, we deduce all variables consisting of 0’s and 1’s from those basis vari-

ables consisting of 0’s and 1’s. The method is to use induction on the number of 1’s
in each variable. Now we introduce the symbol 2. That is, we consider variables con-
taining only the symbols 0, 1 and 2. Using induction on the number of 2’s appearing
in such variables, we eventually deduce all variables containing only 0, 1 and 2. We
continue in this manner, introducing one new symbol at a time, until eventually we
are able to deduce all variables, thus completing the proof.
(We remark that this proof amounts to putting a lexicographic ordering on the set of
k-tuples r=(r0; r1; : : : ; rk−1), where ri is the number of times the symbol i occurs in a
variable. We formulate a statement P(r) analogous to the statement P(r) in Proposition
10, then prove it using induction on r).

Theorem A. Let G be a +eld-like group; and X ⊆AZ2
a semi-safe symbol subshift.

Then every locally constant cocycle (f; g) on X is a trivial cocycle. The corresponding
transfer function is itself locally constant.

Proof. By Propositions 9 and 11 we know that V ′
N (i; j) and VN (i; j) have the same

dimension, for all i; j∈G with ij= ji, and for all N ∈N. Moreover, V ′
N (i; j) is a subset

of VN (i; j), so since G is .eld-like then in fact V ′
N (i; j)=VN (i; j). Taking the union over

all pairs of commuting elements i; j gives that every cocycle of degree N is trivial,
and that the corresponding transfer function has active coordinates in SN . Taking the
union over all N ∈N gives the result.

Since every locally (residually .nite) group is .eld-like we immediately deduce the
following result.

Theorem B. Let G be a locally (residually +nite) group; and X ⊆AZ2
a semi-safe

symbol subshift. Then every locally constant cocycle (f; g) on X is a trivial cocycle.
The corresponding transfer function is itself locally constant.

9. An example: the full shift

Let X = {0; 1}Z2
be the full shift on two symbols. Both 0 and 1 are safe symbols,

but for this example we will use 0 as our safe symbol. In particular, we will consider 0
as a semi-safe symbol of direction SouthWest. Let (f; g) be a locally constant cocycle
on X , where the active coordinates of f and g lie in the rectangles {0; 1; 2} × {0; 1}
and {0; 1} × {0; 1; 2}, respectively. Note that these rectangles are not of the form FN
or GN , but are of a convenient size to illustrate the proof of Proposition 10, without
introducing unnecessary computation. (F1 and G1 are too small to show why we need
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the rectangles J and K , whereas if we use F2 and G2 then we already have 29 = 512
basis variables). Suppose also that f (resp. g) takes the value i (resp. j) on the cylinder
set containing the .xed point 0, where i; j commute.
If (f; g) were a trivial cocycle, its transfer function h would have active coordinates

in the square {0; 1}2 ⊂Z2. Since there are 24 globally allowed decorations of {0; 1}2,
the set of such transfer functions is 24 + 1=17 dimensional. However, the choice of
the commuting elements i; j∈G determines the value of the constants cf, cg, so the set
of trivial cocycles of this size, and with the prescribed values on the .xed point 0, is
of dimension 15.
Therefore, to prove the cocycle triviality of X (for cocycles with active coordinates in

the above rectangles), we will .x 15 basis variables, combine them with the two basis
variables corresponding to the .xed point 0, and deduce all other f- and g-variables
from these.
The total list of 17 basis variables is as follows (grouped according to the number

of times the symbol 1 occurs in them).

{
0 0 0
0 0 0

}
;




0 0
0 0
0 0


 ;

{
0 0 0
0 0 1

}
;

{
0 0 0
0 1 0

}
;

{
0 0 1
0 0 0

}
;
{
0 1 0
0 0 0

}
;

{
0 0 0
0 1 1

}
;

{
0 0 1
0 0 1

}
;

{
0 1 0
0 0 1

}
;

{
0 0 1
0 1 0

}
;

{
0 1 0
0 1 0

}
;

{
0 1 1
0 0 0

}
;
{
0 0 1
0 1 1

}
;

{
0 1 0
0 1 1

}
;

{
0 1 1
0 0 1

}
;

{
0 1 1
0 1 0

}
;

{
0 1 1
0 1 1

}
:

As in Proposition 10, we start by deducing all g-variables with one 1. To do this
we only need use those basis variables with one 1 or no 1’s.
For example, suppose we want to deduce the variable

{B} =




0 0
1 0
0 0


 :

We .rst de.ne the blocks

B0 =
0 0
0 1
0 0

and C0 =
0 0 0
0 0 1
0 0 0

:
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The cocycle equation on the cylinder set [C0] is

{
0 0 0
0 0 1

}


0 0
0 0
0 0


 =




0 0
0 1
0 0




{
0 0 1
0 0 0

}
:

Since three of these variables are in the basis, we may deduce the unknown variable
{B0}. Now de.ne the block

C1 =
0 0 0
0 1 0
0 0 0

:

The cocycle equation on the cylinder set [C1] is

{
0 0 0
0 1 0

}
{B0} = {B}

{
0 1 0
0 0 0

}
:

The two f-variables are in the basis, and we have just deduced the variable {B0}.
Therefore, we can deduce the variable {B}, as required.
In a similar way we can deduce all those g-variables containing one 1. Having done

that, we can then deduce all the f-variables with one 1 (there are only two of these
to deduce, since the four others are basis variables).
For example the variable

{
1 0 0
0 0 0

}

is deduced by considering the cocycle equation on the cylinder set corresponding to
the block

1 0 0
0 0 0
0 0 0

:

So now all variables containing at most 1 are considered to be ‘known’. These
known variables, together with the basis variables containing two 1’s, are su9cient
to deduce all variables containing two 1’s. Continuing in this way we can deduce all
variables containing at most four 1’s. The remaining variables (i.e. those containing
either .ve or six 1’s) can then be deduced immediately.
For example the f-variable

{
1 1 1
1 0 1

}
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is deduced by considering the cocycle equation on the cylinder set corresponding to
the block

1 1 1
1 0 1
0 0 0

;

since the other 3 variables all contain at most four 1’s.
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