
Theoretical Computer Science 262 (2001) 583–632
www.elsevier.com/locate/tcs

Termination and derivational complexity of con$uent
one-rule string-rewriting systems

Yuji Kobayashia ;∗, Masashi Katsurab, Kayoko Shikishima-Tsujic

aDepartment of Information Science, Faculty of Science, Toho University, Funabashi 274, Japan
bDepartment of Mathematics, Kyoto Sangyo University, Kyoto 603, Japan

cFaculty of Liberal Arts, Tenri University, Tenri 632, Japan

Received 15 May 1997; revised 15 May 2000; accepted 7 August 2000
Communicated by G. Rozenberg

Abstract

It is not known whether the termination problem is decidable for one-rule string-rewriting
systems, though the con$uence of such systems is decidable by Wrathall (in: Word Equations and
Related Topics, Lecture Notes in Computer Science, vol. 572, 1992, pp. 237–246). In this paper
we develop techniques to attack the termination and complexity problems of con$uent one-rule
string-rewriting systems. With given such a system we associate another rewriting system over
another alphabet. The behaviour of the two systems is closely related and the termination problem
for the new system is sometimes easier than for the original system. We apply our method to
systems of the special type {apbq → t}, where t is an arbitrary word over {a; b}, and give a
complete characterization for termination. We also give a complete analysis of the derivational
complexity for the system {apbq → bnam}. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Termination problem; String rewriting system; Derivational complexity

1. Introduction

String-rewriting systems (semi-Thue systems) are special term-rewriting systems
where all the function symbols are of arity one. One-rule string-rewriting systems are
thus considered to be the most simple example of rewriting systems. Even for these
simplest systems two fundamental problems still remains unsolved, the word problem
and the termination problem.
It is undecidable whether given a Anite string-rewriting system is terminating [2]. Ac-

tually, termination is undecidable for three-rule string-rewriting systems [4]. However, it

∗ Corresponding author.
E-mail address: kobayasi@is.sci.toho-u.ac.jp (Y. Kobayashi).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00367 -4

584 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

is not known whether the termination problem is decidable for one-rule string-rewriting
systems, though the con$uence of such systems is decidable [3, 12]. In our previous
paper [9], we showed that the termination of con$uent one-rule string-rewriting sys-
tems is reduced to that of one-rule systems {s→ t} such that s is self-overlap-free
(sof), that is, the set OVL(s; s)= {
 | s′
=
s′′ = s;
 �=1;
 �= s} of self-overlaps of
s is empty. In this paper we develop some techniques to attack the termination and
complexity problems of such systems.
Let R= {s→ t} be a one-rule system over an alphabet � such that s is sof. With

a derivation sequence D : x1→R x2→R · · · →R xn→ · · ·, we associate another sequence
�(D) :!1→!2→ · · · →!n→ · · ·, called the trace of D, which traces the seams cre-
ated by applications of the rule s→ t in D. If x= x′sx′′ is rewritten to y= x′tx′′, two po-
sitions (x′; tx′′) and (x′t; x′′) of y are the seams of y created by the step x′sx′′→R x′tx′′,
and all the seams of x inside the subword s are destroyed or patched. For each seam �
of x we give a label �(�) which is a letter in a certain alphabet diJerent from � (the de-
tails will be given in Section 6). The trace �(x) of x is a word �(�1) · · ·�(�k) spelling
the labels of seams of x from left to right. If by a step x→R y, seams �i; : : : ; �j are
patched and a pair of seams �1 and �2 are created, then the trace �(x)=�(�1) · · ·�(�k)
of x is transformed (rewritten) to the trace �(�1) · · ·�(�i−1)�(�1)�(�2)�(�j+1) · · ·�(�k)
of y. Through this mechanism we associate another rewriting system over another al-
phabet with the original system R. The point is that the behaviour of these two systems
is closely related. The new system is not any more a one-rule system and looks com-
plex, but analysis of termination for it is sometimes easier than for the original system.
To demonstrate that our method is powerful we apply it to systems of the special

type {apbq→ t}, where t is an arbitrary word over {a; b}. It was proved by SLenizergues
[8] that termination of these systems is decidable. In this paper we give a complete
characterization for the systems to terminate. We also give a complete analysis of the
derivational complexity for the system {apbq→ bnam}, for which a complete charac-
terization of termination was given by Zantema and Geser [13].
In Section 2 we give basic deAnitions and some simple observations on derivation se-

quences. From Section 3 we concentrate on a one-rule system {s→ t} such that s is sof.
The notion of seam is introduced in Section 3. In a step x= x′sx′′→R y= x′tx′′ of R-
derivation, a left seam (x′; tx′′) and a right seam (x′t; x′′) of y are created and a seam in-
side of s in x, if exists, is patched. A seam of x that is not patched is inherited by a seam
of y in the step. In this way a derivation sequence induces a seamed word whose seams
are created in some steps of the sequence and are inherited afterwards. In Section 4
we discuss simple derivation (an application of the rule is simple if it patches at most
one seam). We introduce a certain system SR over A∪B which simulates simple R-
derivation, where the sets A=OVL(t; s) and B=OVL(s; t) of overlappings of s and t
are considered to be alphabets. We prove that there is no inAnite sequence of simple
R-derivation if and only if SR terminates. In Section 5 we discuss gentle derivation
and tame derivation which are more general than simple derivation. An application of
the rule is gentle if it is simple or it patches a pair of a right seam and a left seam.
Set �=A∪B∪A# ∪B# and O�=�∪{�c; $}, where A# and B# are sets bijective to A

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 585

and B, respectively, and �c and $ are symbols outside �. In Section 6 we give a label
�(�)∈ O� to every seam � in some natural way. For a word x with seams �1; : : : ; �m
from left to right, we have a word �(x)=�(�1) · · ·�(�m) over O�, which is called
the trace of x. For a derivation sequence D : x1→R x2→R · · · →R xn, the trace �(D)
of D is the sequence �(x1)→�(x2)→ · · · →�(xn) of traces. In Section 7 using this
correspondence between R-derivation sequences and traces, we construct a system GR

over the alphabet �, which simulates gentle R-derivation. We prove that there is no
inAnite sequence of gentle R-derivation if and only if GR terminates. We also give
a result on complexity of gentle derivation in terms of GR. Section 8 is devoted to
prove some technical lemmas on termination of Anite (not necessarily one-rule) rewrit-
ing systems. In Section 9 we give a complete result on the complexity for the system
{apbq→ bnam}, and in Section 10 we give a complete characterization for termination
of systems of the type {apbq→ t}, where t is an arbitrary word over {a; b}.

2. Preliminaries

Let � be a (Anite) alphabet and �∗ be the free monoid generated by �. We set
�+ =�∗ − {1}, where 1 is the empty word. The length of a word x∈�∗ is denoted
by |x|. A string-rewriting system R is a subset of �+×�∗. An element (s; t) of
R is called a rule and written as s→ t. We have a one-step derivation x→R y if
x= x′sx′′; y= x′tx′′ for some rule s→ t ∈R. If there is no y such that x→R y; x is
irreducible, otherwise, it is reducible. Let Irr(R) denote the set of irreducible words.
We have

Irr(R) = �∗ − �∗ · Left(R) · �∗;

where Left(R)= {s | s→ t ∈R}. A system R is terminating (or noetherian), if there is
no inAnite sequence of derivation:

x1 →R x2 →R · · · →R xn →R · · · :

If there is a derivation sequence of length n from x to y, we write as x→n
R y. In

particular, →0
R is the identity relation. By →∗

R we denote the re$exive transitive clo-
sure of the relation →R, that is, →∗

R =
⋃∞

n=0 →n
R. Moreover, we set →+

R =
⋃∞

n=1 →n
R.

If x→∗
R y; x is called an ancestor of y and y is called a descendant of x. R is con-

5uent if any x and y have a common descendant as far as they have a common
ancestor.
Let X be a subset of �∗. R is terminating on X if there is no inAnite sequence of

derivation starting with an element of X . R is weakly terminating on X if every word
of X has an irreducible descendant. For a word x∈�∗, R is (weakly) terminating on x
if it is so on the set {x}. The maximal length of a derivation sequence starting with x
is denoted by �(x)= �R, that is, m6�(x) for any sequence x= x0→R x1→R · · · →R xm.
For x on which R is not terminating, we set �(x)=∞. The function dR deAned by

dR(n) = max {�(x) | x ∈ �n}

586 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

is the derivational complexity of R, where �n is the set of words over � of length n.
R has linear (resp. polynomial) complexity, if there is a constant C (resp. polynomial
P) such that

dR(n)6C · n (resp: dR(n)6P(n))

for all suPciently large n∈N. R has exponential complexity, if there are positive
constants C1 and C2 such that

Cn
16dR(n)6Cn

2

for all suPciently large n∈N.
For two functions f and g from N to N, we write f4g if there are positive constants

C1 and C2 such that

f(n)6C1 · g(C2 · n)
holds for all suPciently large n∈N. With the usual O-notation it can be rephrased as
f(n)6O(g(O(n)). We say that f and g are equivalent, if both f4 g and g4f hold.
For two systems R1 and R2, if dR1 and dR2 are equivalent, we say that the systems have
equivalent complexity. By deAnition, R has exponential complexity if and only if dR is
equivalent to an exponential function, and R has linear (resp. polynomial) complexity,
if and only if dR 4f for a linear (resp. polynomial) function f.

A word x∈�∗ is minimal right (resp. left) reducible, if x is reducible but every
proper suPx (resp. preAx) of x is irreducible. We denote by RZ (resp. ZR) the set of
all minimal left (resp. right) reducible words; RZ =Left(R) · �∗ − �+ · Left(R) · �∗.
The following result is given in [9].

Lemma 2.1. A length-increasing con5uent system R is terminating; if and only if it
weakly terminates on RZ (or ZR).

A position of a word x∈�∗ is a pair (x′; x′′) of a preAx x′ and a suPx x′′ of x such
that x= x′x′′. By the mth position of x we mean the position (x′; x′′) such that |x′|=m.
The 0th position is the left-most position, the |x|th position is the right-most position,
and the other positions are inner positions of x. If y is a subword of x; x=y′yy′′,
then a position (y1; y2) of y is naturally identiAed with the position (y′y1; y2y′′) of
x, and is called a position of y in x, that is, the kth position of y corresponds to the
(|y′|+ k)th position of x.
Let us consider a one-step derivation x→R y with x; y∈�∗, that is, x= x′sx′′ and

y= x′tx′′ for s→ t ∈R. A position in x that occurs as an inner position of s is covered,
and a position of y that occurs as an inner position of t is created through this step.
A position of x which is not covered is inherited by the corresponding position in
y through this step. Thus, if 06n6|x′| (resp. |x′s|6n6|x|), the nth position of x is
inherited by the nth (resp. (n+ |t|− |s|)th) position of y. Similarly, a letter in x which
appears in the subword s of x is covered, and a letter outside s is inherited by the
corresponding letter in y through the above step.

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 587

Let

D : x1 →R x2 →R · · · →R xn (2.1)

be a sequence of derivation with respect to R (a sequence of R-derivation for short).
A letter in x1 or a position of x1 is inherited by the corresponding letter in xn or the
corresponding position of xn through D, if it is inherited through every step of D. It is
covered through D if it is inherited upto some step and covered in the next step in D.
All the letters and the positions in the initial word x1 are raw. A letter or a position in
xn is raw, if it inherits a letter or a position in the original x1. A nonempty subword
of xn is raw if all its letters are raw. An application of a rule is raw, if it covers at
least one raw letter or one raw position. It is totally raw if all the letters it covers are
raw.
Let x; y∈�∗. If x= x′x1x′′ and y= x′xnx′′ with x′, x′′ ∈�∗ and there is a derivation

sequence D as (2.1), then there is a derivation sequence from x to y which is equal
to D on x1 but leaves x′ and x′′ untouched. We denote this sequence by x′Dx′′ and
sometimes write it as x→D y.
The following simple observation is useful.

Lemma 2.2. A system R is terminating if it is terminating on any word x that is
induced by some derivation D such that neither a position nor a letter in x is raw
through D.

For two derivation sequences D1 from x1 to x2 and D2 from x2 to x3, the sequence
from x1 to x3 composing D1 and D2 at x2 is denoted by D1 ◦D2. For two derivation
sequences D from x to y and D′ from x′ to y′, we have two sequences D · x′ ◦y · D′

and x · D′ ◦D · y′ from xx′ to yy′. They have the same length and the position (x; x′)
in xx′ is inherited by the position (y; y′) in yy′ through them. From this observation
we have

Lemma 2.3. If a position (x′1; x
′′
1) (x1 = x′1x

′′
1) of x1 is inherited by a position (x′n; x

′′
n)

(xn = x′nx
′′
n) of xn untouched by a sequence D in (2:1); then there are derivation se-

quences D′ from x′1 to x′n and D′′ from x′′1 to x′′n such that D′x′′1 ◦ x′nD′′ and x′1D
′′ ◦D′x′′n

are derivation sequences from x1 to xn with the same length as D.

Let x; y∈�∗. We say x overlaps with y on the left (or y overlaps with x on
the right), if there is u �=1 such that x= x′u and y= uy′ with x′; y′ ∈�∗, x′y′ �=1.
Let OVL(x; y) be the set of such words u. In particular, x overlaps with y on the
left if x is a proper preAx of y. The set OVL(x; x) is simply denoted by OVL(x). If
OVL(x)= ∅; x is called self-overlap-free (sof for short). To include the perfect overlap,
we set

OVL(x; y) =

{
OVL(x; y) if x �= y;

OVL(x; y) ∪ {x} if x = y:

588 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

In our previous paper [9] we showed that the termination problem for a con$uent
one-rule rewriting system is reduced to the same problem for a one-rule system {s→ t}
such that s is sof. In this paper we mainly concentrate on systems with a single rule
whose left-hand side is sof, though some of the results hold for more general systems.
In the subsequent sections, R= {s→ t} is always a string rewriting system consisting

of a single rule s→ t such that s is sof. In order to exclude trivial cases we assume
s is not a subword of t, otherwise R is nonterminating, and |s|¡|t|, otherwise R is
terminating. Also we assume |s|¿2, because the case |s|=1 is not interesting.

3. Standard decompositions and seamed words

Let R be a one-rule system stated in the last paragraph. Set A=OVL(t; s) and
B=OVL(s; t): These two sets play a very important role for termination of R. For
example, R is terminating if A= ∅ or B= ∅ (Kurth’s Criterion D in [3]). So, we assume
that both A and B are nonempty. Since s is not a subword of t, s is not contained in
A nor in B, and since s is sof, A∩B= ∅. For
∈A and %∈B, s
, t
, s% and t% are the
words determined by s=
 · s
 = s% · % and t= t
 ·
= % · t%.

Lemma 3.1. We have

OVL(%;
) = OVL(s
′ ;
) = OVL(%; s%′) = OVL(s
; s%) = ∅

for any
;
′ ∈A and %; %′ ∈B.

Proof. If one of the sets is nonempty and contains an element &, then &∈OVL(s), and
hence, s cannot be sof.

Lemma 3.2. For
;
′ ∈A (resp. %; %′ ∈B); if |
′|¡|
| (resp. |%′|¡|%|); then
′ ∈
OVL(
) (resp. %′ ∈OVL(%)).

Proof. Suppose
;
′ ∈A and |
′|¡|
|. Since both
 and
′ are preAxes of s;
′ is a
proper preAx of
. Similarly,
′ is a proper suPx of
, and hence,
′ ∈OVL(
).

Set SA = {s
 |
∈A} and SB = {s% | %∈B}. A subset X of �∗ is called a pre:x (resp.
su;x) code, if no element of X is a preAx (resp. suPx) of another element of X .
A preAx (suPx) code forms a code (see [1]).

Lemma 3.3. SA is a pre:x code and SB is a su;x code.

Proof. If s
 is a preAx of s
′ for diJerent
;
′ ∈A, then
′ · s
 is a proper preAx
of
′ · s
′ = s. Since
′ is a proper suPx of
 by Lemma 3.2,
′ · s
 is a proper suPx
of
 · s
 = s. This is impossible because s is sof. Thus, SA is a preAx code, and similarly
SB is a suPx code.

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 589

Since SB is a suPx code, for any
∈A; t
 is uniquely decomposed as

t
 = w
s%k · · · s%2s%1 (3.1)

with k¿0; %i ∈B, and w
 ∈�∗−�∗SB. Similarly, for %∈B, t% is uniquely decomposed
as

t% = s
1s
2 · · · s
‘w% (3.2)

with ‘¿0;
i ∈A, and w% ∈�∗ − SA�∗.
We consider A and B to be (new) alphabets. For a word �=
1 · · ·
n ∈A∗ over A,

we deAne words s� and t� over � by

s� = s
1 · · · s
n ; t� = t
1 · · · t
n :
Similarly, words s� and t� over � are deAned for �∈B∗ (bold greek letters are used
for words over A∪B).
Let �(
) and �(%) denote the words %k · · · %2%1 and
1
2 · · ·
‘ over B and A deter-

mined above in (3.1) and (3.2) for
∈A and %∈B, respectively.

Lemma 3.4. For any
∈A and %∈B; t is decomposed uniquely as

t = % · s�(%) · w%
 · s�(
) ·
 (3.3)

with w%
 ∈�∗ − (SA�∗ ∪�∗SB).

Proof. By (3.1) and (3.2), t is decomposed as

t = % · s�(%) · w% = w
 · s�(
) ·
: (3.4)

As easily seen, OVL(x1x2 · · · xm; y1y2 · · ·yn)= ∅ for any words x1; : : : ; xm; y1; : : : ; yn

such that OVL(xi; yj)= ∅ for all i=1; : : : ; m and j=1; : : : ; n. Hence, by Lemma 3.1,
% · s�(%) does not overlap with s�(
) ·
 on the left. Thus, |w%|¿|s�(
) ·
| and (3.3)
follows from (3.4).

Decomposition (3.3) is called the standard decomposition of t with respect to
∈A
and %∈B. Since t= % · s�(%) ·w% =w
 · s�(
) ·
, we have

w
 = % · s�(%) · w%
; w% = w%
 · s�(
) ·
 (3.5)

for any
∈A and %∈B. Let ‘1 = max{|% · s�(%)| | %∈B} and ‘2 = max{|s�(
) ·
| |
∈A},
and let t‘ be the preAx of t of length ‘1 and tr be the suPx of t of length ‘2. Since
% · s�(%) does not overlap with s�(
) ·
, t is written as

t = t‘ · tm · tr
with some tm ∈�∗, where tm is a subword of w%
 and t‘ (resp. tr) has % · s�(%) (resp.
s�(
) ·
) as preAx (resp. suPx) for %∈B (resp.
∈A);

t‘ = % · s�(%) · t′‘; tr = t′r · s�(
) ·
:

590 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

Example 3.5. Let R= {s= aabb→ t= bbbaaa}. Then we have

A = {a; aa}; B = {b; bb};

and

SA = {sa = abb; saa = bb}; SB = {sb = aab; sbb = aa}:

Since

t = b · saa · aaa = bbb · sbb · a;

we see

�(b) = aa; �(bb) = 1; �(a) = bb; �(aa) = 1;

and we have four standard decompositions of t:

t = b · saa · sbb · a = b · saa · a · aa = bb · b · sbb · a = bb · ba · aa:

Moreover,

t‘ = bbb = b · saa; tr = aaa = sbb · a; tm = 1:

Now, let us take a close look at the position of a word where the rule applied. Let
x= x′sx′′→R y= x′tx′′ with x′; y′ ∈�∗ and s→ t ∈R. The left-most (resp. right-most)
position of t in y is the left (resp. right) seam of y created by this derivation step.
A left (resp. right) seam is graphically denoted by the symbol [(resp.]). Thus, the
above derivation is displayed as

x = x′sx′′ →R y = x′[t]x′′

(see (3.7) below). Let

D : x1 →R x2 →R · · · →R xn → · · · (3.6)

be a (possibly inAnite) derivation sequence. Suppose that the step xn−1→R xn is given
as xn−1 = x′sx′′ and xn = x′tx′′ with s→ t ∈R. No position of the initial word x1 is a
seam for D. For n¿2, a position of xn is a (left) seam of xn with respect to D, if
either it is the (left) seam created by the step xn−1→R xn or it inherits a (left) seam of
xn−1. A seam of xn−1 which is not located at a position of the subword s is inherited
in the step. A seam at the left-most (resp. right-most) position of s in xn−1 is inherited
if it is a right (resp. left) seam, but is not inherited if it is a left (resp. right) seam.
So, a position can be a left and right seam at the same time, which inherits a left seam
when it is created as a right seam or inherits a right seam when it is created as a left
seam. Such a seam is called a double seam and is counted twice. If a seam of xn−1 is
not inherited by any seam of xn in D, it is patched in the derivation step xn−1→R xn.
So, every seam of xn−1 inside the subword s is patched in the step.

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 591

For example, let us consider the system R= {ab→ baa} over {a; b}. We have a
derivation sequence

abab→ [baa]ab→ [baa][baa]→ [ba
◦
[baa

◦
] aa]→ [b[baa

◦
] aa

◦
] aa]: (3.7)

The brackets [and] denote a left seam and a right seam, respectively. The underlines
show the places where the rule is applied. The marking ◦ will be explained later in
Section 6. The pair][of seams in the third term is a double seam, which is patched
by the third step. The Arst three steps are raw but the last one is not.
A subword u consisting of letters between two adjacent seams of x is a piece of

x. If x has a double seam, then the empty word 1 is a piece as a subword between
the right seam and the left seam that overlap. If � is the left-most (resp. right-most)
seam of x at position (x′; x′′); x= x′x′′, with x′ �=1 (resp. x′′ �=1), then x′ (resp. x′′)
is called the edge piece of x. A seamed piece is a piece accompanied with seams on
the both sides (on one side if it is an edge piece). The fourth term in (3.7) contains
three pieces ba; baa and aa, and corresponding seamed pieces [ba[, [baa] and]aa].
A left (resp. right) seam with pieces u, v on the both sides are sometimes displayed
as u[v (resp. u]v).
A word x in which some positions are designated as seams is a seamed word.

A seamed word is expressed by a word over �∪{[;]} as in (3.7). If it is seamed
through a derivation sequence D from some raw word, it is called a seamed word
induced by D. If moreover neither a letter nor an inner position of x is raw through
D, x is fully seamed. In sequence (3.7), the last two terms are fully seamed but
the Arst three are not (in the third no letter is raw but the third position (baa; baa)
is raw).
For two seams � and �′ of a seamed word x, if � is left to �′ we write �¡�′.

If � is a right seam and �′ is a left seam at the same position (that is, they form a
double seam), we also write �¡�′. The seams of x are thus linearly ordered form left
to right.
By Lemmas 2.1 and 2.2 we have

Lemma 3.6. R is terminating if and only if it is weakly terminating on every fully
seamed word which descends from a minimal left (or right) reducible word.

The following lemma describes the forms of nonraw seamed pieces appearing in a
derivation sequence.

Lemma 3.7. Let u be a piece of a seamed word induced by a derivation sequence.
If the seamed piece corresponding to u is of the form [u]; then u= t. If it is of the
form [u[; then u is a pre:x of t
 for some
∈A containing t‘ as pre:x. If it is of
the form]u]; then u is a su;x of t% for some %∈B containing tr as su;x. If it is
of the form]u[and u is not raw; then u is a subword of s�(%)w%
s�(
) for some
∈A
and %∈B containing a subword of tm as subword.

592 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

Proof. We prove the assertion by induction. The seamed piece [t] is created in each
step of derivation. Suppose that a nonempty suPx of the piece t is covered in the next
step. Then, the suPx of t that is a preAx of s is an element
 of A=OVL(t; s). Thus,
the new piece t
 between the old left seam [and the new left seam [created is born;

· · · [t] · · · = · · · [t
 ·
]s
 · · · →R · · · [t
[t] · · · :

In general, suppose that the step covers a right part of a seamed piece y which is
of the asserted form by induction hypothesis. The step yields a new piece u′ on the
left of the created left seam. If y=]u] with a suPx u of t% = s�(%)w%
s�(
)
 containing
tr = t′rs�(
)
 as suPx, then the new piece u′ between the seam] of y and the left seam
created is a suPx of s�(%)w%
s�(
) for some
∈A containing tr;

· · ·]u] · · · = · · ·] · · · s�(
)
]s
 · · · →R · · ·] · · · s�(
)[t] · · · :

If y= [u[with preAx u of t
 containing t‘ as preAx, then the new piece u′ is of the
same form as u because t‘ does not overlap with s on the left. Finally, if y=]u[with
a subword u of s�(%)w%
s�(
) containing a subword of tm as subword, then again u′ is
of the same form as u.
The dual argument will work in the case where a left part of y is covered in the

step. We leave the proof to the reader.

4. s-open seams and simple derivation

The derivation sequences in the following lemma are standard.

Lemma 4.1. (1) For �=
1 · · ·
n ∈A+ we have

1 · s� →n
R t�′ · t;

where �′ =
2 · · ·
n.
(2) For �= %n · · · %1 ∈B+ we have

s� · %1 →n
R t · t�′ ;

where �′ = %n · · · %2.

Proof. If n=1, we have

1 · s
1 = s→R t:

If n¿1, by induction we may assume that
2 · s�′→n−1
R t�′′ · t, where �′′ =
3 · · ·
n.

Thus, We have a derivation sequence

D(�) :
1 · s� = s · s�′ →R t · s�′ = t
2 ·
2s�′ →n−1
R t
2 · t�′′ · t = t�′ · t:

This shows (1). The derivation in (2) is given by

D(�) : s� · %1 →R s�′ · t = s�′ · %2 · t%2 →n−1
R t · t�′ :

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 593

Example 4.2. Let R= {s= aabb→ t= bbbaaa} be the system in Example 3.5. We
have a (seamed) derivation sequence:

a · sa · saa · sa = aabbbbabb→ [bbbaaa]bbabb

→ [bbba[bbbaaa]abb→ [bbba[bbbaa[bbbaaa] = [taa[ta[t]:

As one can observe from the above example, in any step of the sequence D(�) in
Lemma 4.1, at most one seam is patched. Actually just one left seam is patched except
for the Arst step (the Arst step is raw). In the sequence D(�) just one right seam is
patched except for the Arst step. In general, a derivation step is called simple if it
patches at most one seam. A derivation sequence is simple if all the steps in it are
simple. Thus, the sequences D(�) and D(�) are simple. In sequence (3.7), the third
step is not simple (because it patches a double seam), but the other steps are simple.
As far as R is Axed, →R is abbreviated as →, and if a step x→y is simple, we

write as x→(s) y. We say that R is s-terminating if there is no inAnite sequence of
simple derivation, otherwise R is s-nonterminating. A seamed word is s-reducible if
a simple application of the rule is possible, otherwise it is s-irreducible. If y is a
subword of w such that x→n w (resp. x→n

(s) w), we write as x .n y (resp. x .n
(s) y): If

x .n y (resp. x .n
(s) y) for some n¿0, we just write as x . y (resp. x .(s) y): If x .n x

(resp. x .n
(s) x), we say that R has an n-loop (resp. a simple n-loop). Clearly, . and .(s)

are transitive relations, and if R has a loop (resp. simple loop), it is nonterminating
(resp. s-nonterminating).
Let x∈�∗ be a seamed word and � be a seam with the left-hand piece u and the

right-hand piece v (u and v may be edge pieces). First, suppose that � is a left seam;
�= u[v. If an application of the rule to x is simple and patches �, then s= s1s2 and s1
is a suPx of u and s2 is a preAx of v. Since v is a preAx of t containing t‘ as preAx
by Lemma 3.7, we see s2 = %∈B and s1 = s%; �= · · · s%[% · · ·. On the other hand if �
is a right seam, then
 is a suPx of u and s
 is a preAx of v; �= · · ·
]s
 · · ·. Clearly,
a simple application patching a seam is possible in only these situations. Now, we say
that the left (resp. right) seam � is s-open, if % (resp. s
) is a preAx of v and s% (resp.

) is a suPx of u for some %∈B (resp.
∈A), otherwise, � is s-closed. From our
argument above we have the following two lemmas.

Lemma 4.3. A left seam u[v is s-open if and only if u has a su;x from SB. A right
seam u]v is s-open if and only if v has a pre:x from SA.

Lemma 4.4. A seamed word x has an s-open seam if and only if a simple application
that is not totally raw to x is possible.

Corollary 4.5. A fully seamed word is s-reducible if and only if it has an s-open
seam.

The following also depends on the assumption that s is sof.

594 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

Lemma 4.6. The relations →; and →(s); are con5uent. More precisely; if x→m y
(resp. x→m

(s) y) and x→n z (resp. x→n
(s) z); then there is w such that y→n′ w (resp.

y→n′
(s) w) and z→m′

w (resp. z→m′
(s) w) with m+ n′ = n+ m′.

Proof. Any diJerent applications x→y (resp. x→(s) y) and x→ z (resp. x→(s) z) of
the rule to x are disjoint, because s is sof. Therefore, we have a word w such that
y→w (resp. y→(s) w) and z→w (resp. z→(s) w). From this observation the assertion
can be easily proved.

Corollary 4.7. If → (resp. →(s)) is terminating on x; x has a unique irreducible (resp.
s-irreducible) descendant by → (resp. →(s)).

Lemma 4.6 also tells us that the length of a derivation sequence from x to y does
not depend on the choice of sequences. But this fact is straightly seen as follows. An
application of the rule increases the length of a word by |t| − |s|, and so the length of
a sequence from x to y is equal to (|y| − |x|)=(|t| − |s|).
The unique irreducible (resp. s-irreducible) descendant of x in Corollary 4.7 is called

the canonical (resp. s-canonical) form of x.
We deAne �(s)(x) to be the length of sequences of simple derivation from x to its

canonical form. For an s-terminating system R, its s-complexity is the function d(s)

deAned by

d(s)(n) = max {�(s)(x) | x ∈ �n}:

A minimal left reducible word x is written as x= s ·y with y∈ Irr(R). Since SA is
a preAx code, y is uniquely decomposed as y= s� · x′ for �∈A∗ and x′ ∈�∗ − SA�∗.
By Lemma 4.1 we have a sequence of simple derivation

x = s · s� · x′ → t · s� · x′ = t
1 ·
1 · s� · x′ →D(�) t� · t · x′:

The right-most right seam t]x′ of t�tx′ is s-closed because x′ has no preAx from SA.
So, it will never be patched by a simple application of the rule and x′ will be left
untouched. A similar fact holds for a minimal right reducible word. Thus we have

Lemma 4.8. A minimal left (resp. right) irreducible word x is decomposed uniquely
as x= s · s� · x′ (resp. x′ · s� · s) for �∈A∗ (resp. �∈B∗) and x′ ∈�∗ − SA�∗ (resp.
�∗−�∗SB); and the subword x′ remains raw in any simple derivation starting with x.

Since →(s) is con$uent, Lemmas 3.6 and 4.8 give

Corollary 4.9. R is s-terminating if and only if it weakly terminates on the seamed
words of the form

[t
1 [t
2 [· · · [t
n [t] (4.1)

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 595

with
1
2 · · ·
n ∈A+; or the seamed words of the form

[t]t%n]t%n−1] · · ·]t%1] (4.2)

with %n%n−1 · · · %1 ∈B+.

We set

A(s) = {
 ∈ A | �(
) �= 1}; B(s) = {% ∈ B | �(%) �= 1}:
An s-open left seam u[v is standard if s�(
) is a suPx of u for some
∈A(s). If x has
a standard s-open left seam · · · s�(
)[v with �(
)= %n · · · %1, then by Lemma 4.1 we
have a sequence of derivation

x = · · · s�(
)[%1v′ · · · →D(�(
)) · · · [t]t%n] · · ·]t%2]v′ · · · ; (4.3)

because v= %1v′ with v′ ∈�∗ by Lemma 3.7. Dually an s-open right seam u]v is
standard if v has a preAx s�(%) for some %∈B(s). If �(%)=
1 · · ·
n, because u has
1
as suPx, we have a sequence

x = · · · u′
1]s�(%) · · · →D(�(%)) · · · u′[t
2 · · · [t
n [t] · · · : (4.4)

A sequence of simple derivation is called standard if it is a composition of sequences
of type (4.3) or (4.4).

Lemma 4.10. A standard s-open seam remains standard by a derivation step that
does not patch it.

Proof. Let �= · · · s�(
)[v be a standard s-open seam and suppose that it is not patched
by a step. Then any part of s�(
) never be covered by the step, because OVL(s; s�(
))= ∅.
Therefore, the piece on the left of � still has s�(
) as suPx, and thus � remains standard.

A sequence of type (4.3) or (4.4) does not create a nonstandard s-open seam be-
cause the pieces t%n ; : : : ; t%2 and v′ have preAxes s�(%n); : : : ; s�(%2) and s�(%1), respectively.
Combining this fact and Lemma 4.10, we have

Corollary 4.11. Let y be a seamed word obtained from a seamed word x through a
standard sequence of simple derivation. If every s-open seam of x is standard; every
s-open seam of y is also standard.

Let y be the seamed word in (4.1). Since the seam [between t
i and t
i+1 of y is
s-open if and only if �(
i) �=1, every s-open seam of y is standard. If the seam t
i [t
i+1

is s-open and if �= �(
i)= %m%m−1 · · · %1 �=1, we can apply the standard derivation
D(�) patching this seam;

y = · · · [t
i [t
i+1 [· · · = · · · [w
i s�[%1t′%1 · · · [· · ·

→D(�) y2 = · · · [w
i [t]t%m]t%m−1 · · ·]t%2]t′%1 · · · [· · · :

596 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

By Corollary 4.11, every s-open seam in y2 is standard. As far as y2 has an s-open
seam, we can apply the standard derivation. In this way we have a standard sequence
of simple derivation

y = y1 →D1 y2 →D2 · · · →Dk yk →Dk+1 · · · ; (4.5)

where Di is a sequence of the form D(�(
)) or D(�(%)).
With the seamed words y1 and y2 we associate the word !1 =
1
2 · · ·
n and

!2 =
1 · · ·
i−1%m · · · %1
i+1 · · ·
n over A∪B, respectively. The word !2 is obtained
from !1 by applying the rule
i→ %m · · · %1 on it. Now, we deAne a new system SR

over the alphabet A∪B as

SR = {
→ �(
); %→ �(%) |
 ∈ A(s); % ∈ B(s)}:

Continuing the above argument inductively, with sequence (4.5) we can associate a
sequence of words over A∪B of SR-derivation

!1 →SR !2 →SR · · · →SR !k →SR · · · (4.6)

so that the following holds for each k. To every left (resp. right) s-open seam � of yk

corresponds uniquely an occurrence of a letter
∈A(s) (resp. %∈B(s)) in !k , and vice
versa. A derivation of the form D(�(%)) (resp. D(�(
))) is applied on yk patching the
seam � in the kth step of (4.5), if and only if the rule
→ �(
) (resp. %→ �(%)) is
applied on the corresponding letter
 (resp. %) in !k in the kth step of (4.6).

Theorem 4.12. R is s-terminating; if and only if SR is terminating.

Proof. If R is s-nonterminating, then by Corollary 4.9, there is an inAnite standard
sequence (4.5) of simple derivation starting with the seamed word y in (4.1). Corre-
sponding to it we have an inAnite sequence (4.6) of SR-derivation, and SR is nonter-
minating.
Conversely, suppose that there is an inAnite sequence (4.6) of SR-derivation. We

may assume that !1 =
∈A(s). Let y1 = t
[t] be a seamed word. We can construct a
inAnite sequence (4.5) of seamed words so that !k corresponds to yk for each k.

The termination problem of the system SR is easily solved by looking at the following
bipartite digraph 0s(R): The set of vertices of 0s(R) is A∪B. For
∈A and %∈B, there
is an edge from
 to % if and only if % appears in �(
), and there is an edge form %
to
 if and only if
 appears in �(%):
Because the left-hand side of a rule in SR is a single letter, we see that SR is nonter-

minating, if only if 0s has no nontrivial cycle, that is, 0s is a forest (a union of trees).
If 0s has a nontrivial cycle
→+
 with
∈A(s) (resp. %→+ % with %∈B(s)), then
corresponding to it there is a simple loop s�(
)%1 .(s) s�(
)%1 (resp.
1s�(%) .(s)
1s�(%)).
Thus, we have

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 597

Theorem 4.13. The following statements are equivalent:
(1) R is s-terminating.
(2) R has no simple loop.
(3) 0s is acyclic.

Remark 4.14. Simple derivation has been studied by McNaughton [6]. By Lemma 3.7
a nonraw piece is a subword of t. Any nonraw piece of a word in a simple sequence has
tm as subword and it is not touched in the sequence. By inserting a dummy symbol
1 outside � into t at a position of tm, we have McNaughton’s inhibition system T
associated with R. There is a one-to-one correspondence between simple derivation and
T -derivation. Thus, our simple derivation is nothing but McNaughton’s well-behaved
derivation, and Theorem 4.13 is essentially due to him.

Next, we study the complexity of s-terminating systems. To this end we need a
simple fact on raw derivation.

Lemma 4.15. In any derivation sequence the number of raw steps starting with a
raw word x∈�∗ is bounded by |x|.

Proof. (1) A totally raw application consumes at least two raw letters of x (because
|s|¿2) and creates two raw seams. (2) A raw application that creates one nonraw seam
consumes at least one raw letter and patches one raw seam. (3) A raw application that
creates two nonraw seams patches two raw seams. Let n1, n2 and n3 be the numbers
of raw applications of type (1), (2) and (3) above, respectively. Since a nonraw step
does not consume a raw letter nor creates a raw seam, we see that 2n1 + n26|x| and
n36n1. Thus the total number n1 + n2 + n3 of raw applications is bounded by |x|.

Theorem 4.16. If R is s-terminating; then →(s) has linear derivational complexity;
that is; d(s) is a linear function.

Proof. If R is s-terminating, then 0s is acyclic. Let L be the length of the longest
directed path in 0s and let M be the maximal positive degree of vertices of 0s;

M = max {|�(
)|; |�(%)| |
 ∈ A(s); % ∈ B(s)}:

Starting with
∈A or %∈B, the length of a sequence of SR-derivation is bounded
by ML.
Let x∈�+ be a raw word and D0 be a sequence of raw and simple derivation from

x to the word y on which a raw and simple application is impossible. We claim that
every s-open seam of y is standard. In fact, an s-open seam of y is nonraw, because
a raw and simple application is impossible to y. So, it is created by a step patching
a raw seam. If the step patches a raw left seam u[v, then u is raw and v is a preAx
of t having t‘ as preAx by Lemma 3.7. Hence, u= · · · s% and v= % · s�(%) · · ·, and the

598 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

new nonraw seam created is in the form t]s�(%) · · · and is standard. The case the step
patches a right seam is similar.
By Lemma 4.15 the length of D0 is less than or equal to |x|. Since a raw and simple

step creates at most one nonraw s-open seam, y has at most |x| s-open seams, which
are standard. We have a word ! over A(s) ∪B(s) such that an occurrence of a letter in
! corresponds to an s-open seam of y. If y has an s-open left seam � = · · · s�(
)[v
with
∈A(s) for example, the derivation sequence D(
) can be applied to y, and
correspondingly the rule
→ �(
) can be applied to !. Starting with y apply such
derivation sequences as much as possible, then we will reach an s-irreducible word z
in at most ML · |x| applications of the sequences due to our correspondence between
sequences (4.5) and (4.6). Since the length of each sequence D(�(
)) (resp. D(�(%)))
with
∈A(s) (resp. %∈B(s)) is less than or equal to M , we get z from y making at
most ML+1 · |x| applications of the rule. Hence, �(s)(x)6(ML+1 + 1) · |x|.

A system R is simple, if to any fully seamed word only a simple application of a
rule is possible. A condition for R to be simple will be given in the next section.

Corollary 4.17. If R is simple; then it terminates if and only if 0s is acyclic. If it
terminates; it has linear derivational complexity.

Proof. In a derivation sequence starting with x∈�+, the number of raw applications is
at most |x|. The number of nonraw s-open seams created by raw applications in total is
at most |x|. Starting with one s-open seam, the length of simple sequence of derivation
is bounded by ML+1 as we have seen in the proof of Theorem 4.16. It follows that
�(x)6(ML+1 + 1) · |x|.

Example 4.18. Let �= {a; b}. We consider two systems over �:
(1) Let R1 = {ababbb→ babbbab}. We have A= {ab}, B= {b; babbb}, sab = abbb,

sb = ababb, sbabbb = a, and the standard decompositions

babbbab = b · sab · ab = babbb · ab:

R1 is a simple system but the reason for it will be given in the next section. The graph
01 associated with R1 is shown as

ab ◦ ← ◦ b
◦ babbb:

Since 01 is acyclic, R1 is terminating.
(2) Let R2 = {abb→ bbbaba}. Then, A= {a}; B= {b; bb}; sa = bb; sb = ab; sbb = a

and we have the standard decompositions

bbbaba = b · sa · sb · a = bb · b · sb · a:

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 599

The graph 02 is

a ◦ � ◦ b
◦ bb:

Since 02 has a cycle a → b→ a, R2 is nonterminating. In fact, we have a simple 2-loop
abbbb . abbbb; abbbb→ [bbbaba]bb→ [bbbab[bbbaba].

5. Gentle systems and tame systems

In this section we consider nonsimple applications of the rule and discuss systems
more general than simple systems. We start with the following basic lemma.

Lemma 5.1. Let x be a seamed word induced by a derivation sequence. Suppose that
�1¡ · · ·¡�n are the seams of x patched by an application of the rule to x. Then; there
is a number m with 06m6n such that �1; : : : ; �m are right seams and �m+1; : : : ; �n are
left seams.

Proof. If there is no such m, then there is i with 16i¡n such that �i is a left seam
and �i+1 is a right seam. The seamed piece of x between �i and �i+1 is of the form
[t] by Lemma 3.7. This implies that t is contained in the left-hand side s of the rule.
This contradiction proves our assertion.

Suppose that �1¡ · · ·¡�n are the seams patched by a derivation step. If n=1, the
step is simple. If n¿2 and �1 is a right seam and �n is a left seam, the step is called
purely tame. A step which is simple or purely tame is called tame, otherwise it is wild.
So, a wild step patches seams �1¡ · · ·¡�n (n¿2) which are either all left seams or
all right seams. A tame step such that n=2 is called purely gentle. So, a purely gentle
step patches only one left seam and only one right seam (or just one double seam).
A step is gentle if it is simple or purely gentle. A step which is not gentle is rude.
The system R is g-terminating (resp. t-terminating), if there is no inAnite se-

quence of gentle (resp. tame) derivation, otherwise we say R is g-nonterminating
(resp. t-nonterminating). We write →(g) (resp. →(t)) for a one-step of gentle (resp.
tame) derivation. A seamed word x is called g-reducible (resp. t-reducible), if there
is a word y such that x→(g) y (resp. x→(t) y). A word that is not g-reducible (resp.
t-reducible) is g-irreducible (resp. t-irreducible). A gentle n-loop x .n

(g) x and a tame
n-loop x .n

(t) x are deAned in the same way as before.

Example 5.2. Let �= {a; b}:
(1) Let R1 = {ababb→ babbba}. We have a sequence of R1-derivation:

aaababbbabb→ aa[babbba]babb→ a[babbba]ba]babb→

[babbba]ba]ba]babb→ [babbba]ba]b[babbba]→ [babbb[babbba]abbba]: (5.1)

600 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

The Arst four steps above are simple, but the last step is tame but not gentle because
it patches two right seams and one left seam.
(2) Let R2 = {ababb→ bbabbab}. We have a sequence of R2-derivation:

abaababababb→ abaabab[bbabbab]→ aba[bbabbab]babbab]→

[bbabbab]abbab]babbab]→ [bbabb[bbabbab]ab]babbab]→

[bbabb[bbabb[bbabbab]abbab]: (5.2)

The Arst four steps above are simple, but the last step is wild because it patches two
right seams only.

The following is an elaboration of Lemma 3.7 for tame derivation. Recall decom-
positions (3.1)–(3.3) and (3.5) in Section 3.

Lemma 5.3. Let x be a seamed word induced by a sequence of tame derivation steps
and let v be a seamed piece of x. If v is of the form]u] (resp. [u[) with u∈�∗; then
u= s�′w% (resp. u=w
s�′) for some %∈B (resp.
∈A); and if y is nonraw and of
the form]u[; then u= s�′w%
s�′ for some % and
∈A; where �′ (resp. �′) is a su;x
of �(%) (resp. pre:x of �(
)).

Proof. Let y be a seamed word satisfying the condition on pieces in the lemma and
let x be obtained from y by a tame application of the rule. It suPces to prove that x
also satisAes the condition on pieces. First assume that the step is simple, patches a
seam � of y and creates new seams �1 and �2 (�1¡�2). Moreover we suppose that �
is a left seam (the case � is a right seam is similar). Let v1 (resp. v2) be the seamed
piece of y on the left (resp. right) of �. We have to consider four cases; v1 is of the
form [u1[or]u1[; v2 is of the form [u2[or [u2]. If v1 is of the form [u1[, and v2 is
of the form [u2[then, u1 =w
s�′ and u2 =w
′s�′′ by assumption, where
;
′ ∈A, �′

is a preAx of �(
), and �′′ is a preAx of �(
′). Since � is s-open, �′ is nonempty and
�′ = �†% with �† ∈B∗ and %∈B. Since � is patched, the seamed word

y = · · · [u1[u2[· · · = · · · [!
s�†s%[%s�(%)w%
′s�′′ [· · ·

is transformed to

x = · · · [w
s�†[t]s�(%)w%
′s�′′ [· · ·

by the step, and the seamed piece of x on the left of �1 is [w
s�†[and the seamed
piece on the right of �2 is]s�(%)w%
′s�′′ [. This implies that x also satisAes the condition
on pieces. The other three cases are similar and we omit them.
Next, suppose that the step is purely tame. Let �1¡ · · ·¡�k be the seams patched

by the step. Since the step is purely tame, �1 is a right seam and �k is a left seam. Let

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 601

v1 (resp. v2) be the seamed piece of y on the left of �1 (resp. right of �k) and let w
be the subword of y between �1 and �k . Again there are four cases to be considered,
but here we only treat the case where v1 is of the form]u1] and v2 is of the form [u2].
Then, u1 = s�′w% for some %∈A and a suPx �′ of �(%) by assumption, and u2 = t by
Lemma 3.7. Since �1; : : : ; �k are patched by the step, we see that s=
w% for some

∈A and %∈B, and

y = · · ·]s�′w%]w[t] · · · = · · ·]s�′w%
s�(
)
]w[%t%] · · ·

is transformed to

x = · · ·]s�′w%
s�(
)[t]t%] · · · :

The piece of x on the left of �1 is s�′w%
s�(
) and the piece on the right of �2 is
t% = s�(%)w%. This implies x satisAes the condition on pieces.

A system R is gentle (resp. tame), if to any fully seamed word no rude (resp. wild)
application of a rule is possible. R is very gentle, if to any seamed (not necessarily
fully seamed) word induced by a derivation sequence no rude application of a rule
is possible. In the following we give a condition for a system to be tame, gentle or
simple.

Lemma 5.4. (1) R is tame if s is not written either as

s =
w%1 · · ·w%kw; (5.3)

where k¿1;
∈A; %1; : : : ; %k ∈B and w is a nonempty pre:x of w%′
′ for some
′ ∈A
and %′ ∈B; nor as

s = ww
1 · · ·w
‘%; (5.4)

where ‘¿1; %∈B;
1; : : : ;
‘ ∈A and w is a nonempty su;x of w%′
′ for some
′ ∈A
and %′ ∈B.
(2) R is gentle if R is tame and s is not written as

s =
w%1 · · ·w%kw%′
′w
1 · · ·w
‘%; (5.5)

where k¿1 or ‘¿1; and
;
′;
1; : : : ;
‘ ∈A and %; %′; %1; : : : ; %k ∈B.
(3) R is simple if and only if R is gentle and s is not written as

s =
′w%
%′; (5.6)

where
;
′ ∈A and %; %′ ∈B.

Proof. (1) Suppose that R is not tame. Let x be a fully seamed word to which a wild
application can be made. We suppose that this is the Arst nonraw wild application, that
is, no nonraw wild application was made before the seamed word x is induced. Suppose

602 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

moreover that the right seams �1¡ · · ·¡�k+1 (k¿1) are patched by this application
and a left seam � is created. Let �0 (resp. �k+2) be the neighbour seam of �1 (resp.
�k+1) on the left (resp. right) in x and let ui be the piece between �i and �i+1 for
i=0; 1; : : : ; k + 1;

x = · · · u0]u1] · · ·]uk]uk+1 · · · :

By Lemma 3.7, u0 is a suPx of t containing tr as suPx, and by Lemma 5.3, ui = s�′i w%i

for some %i ∈B, where �′i is a suPx of �(%i) for i=1; : : : ; k and uk+1 is a pre-
Ax of s�′k+1

w%k+1 for some %k+1 ∈B, where �′k+1 is a preAx of �(%k+1). Thus s=
 ·
s�′1w%1 · · · s�′k w%kw, where
 is a nonempty suPx of u0 (hence,
∈A) and w is a
nonempty preAx of uk+1. If s�′1 = s
′′ · · · is not empty, then u0s
′′ has s as suPx be-
cause u0 has the suPx
′′. On the other hand, because s=
u1 · · · and |s
′′ |¡|u1|, we
see |
′′|¿|
| and
s
′′ ∈OVL(s), but this is impossible because s is sof. Hence, �′1 is
empty. Similarly �′i is empty for each i=2; : : : ; k, otherwise w%i−1s�′k contains s. Letting
%′ = %k+1, we see that w is a preAx of w%′ . Moreover, w is a preAx of w%′
′ , because s
(and w) does not overlaps with s�(
′)
′ for any
′ ∈A. Finally we And that s is written
as (5.3). Similarly, if the left seams are patched, s is written as (5.4).
The proof of (2) and the ‘if’ part of (3) is similar. We shall prove the ‘only if’

part of (3). Suppose that s is written as (5.6). Decompose t as t= %s�w%
s�
, where
�= �(%)=
1 · · ·
k and �= �(
)= %‘ · · · %1, and let x= s% · s · s
. Then, we have a
derivation sequence:

x → s%ts
 = s%%s�w%
s�
s
 →2 ts�w%
s�t = t
1
1s�w%
s�%1t%1

→D(�) t�tw%
s�%1t%1 →D(�) t�tw%
tt� = t�t
′st%′ t�

→ t�t
′ tt%′ t�:

The last step is purely gentle taken on the fully seamed word t�tw%
tt�, and hence R
is not simple.

For very gentle systems we have the following characterization.

Lemma 5.5. R is very gentle; if and only if neither of the following holds:
(1)
w% is a pre:x of s for some
∈A and %∈B.
(2) w
% is a su;x of s for some
∈A and %∈B.

Proof. Assume (1) holds; s=
w%s′ with s′ ∈�∗. Let �= �(%)=
1 · · ·
‘. Then, we
have a derivation sequence:

s%ss′ → s%ts′ = st%s′ → tt%s′ = t
1
1s�w%s′

→D(�) t�tw%s′ = t�t

w%s′ → t�t
t:

The last step t�t

w%s′→ t�t
t is rude (actually wild) because it patches two right seams
t]w% and w%]s′.

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 603

Conversely, we suppose that R is not very gentle. Let x be a seamed word to which
a rude application can be made. We suppose that this is the Arst rude application and
no rude application was made before x is induced. Suppose moreover that by this rude
application �1¡ · · ·¡�k are the seams patched. By Lemma 5.1, �1; : : : ; �j are right
seams and �j+1; : : : ; �k are left seams for some 06j6k. Since they are patched by a
rude application, we see that j¿2 or j6k − 2. If j¿2, then the piece of x between
�1 and �2 is s�′w% for some %∈B by Lemma 5.3, where �′ is a suPx of �(%). We
can show that s�′ =1 in the same way as the proof of (1) of Lemma 5.4. Because
�1; : : : ; �k are patched by the step, s=
w% · · · for
∈A. When j6k − 2, similarly we
can show that s has a suPx of the form w
% with
∈A and %∈B.

If (1) (resp. (2)) in Lemma 5.5 does not hold, we say that R is left (resp. right)
very gentle.
The system {ab→ baa} is very gentle but not simple (sequence (3.7) is not simple).

The system R1 in (1) of Example 4.18 is simple (a fortiori, gentle) because s= ababbb
can not be written as (5.3), (5.4) or (5.5) in Lemma 5.4. However, it is not left very
gentle because s satisAes condition (1) of Lemma 5.5, in fact, we have the sequence

aababbbbb→ a[babbbab]bb→ [babbbab]ab]bb→ [babbb[babbbab]:

The last step above is wild (though it is raw). It seems that there is no system that
is neither left very gentle nor right very gentle, though we do not have a proof of
it at hand. The system R1 in Example 5.2 is tame but not gentle. The system R2 in
Example 5.2 is not even tame.
For the same reason as in the proof of Lemma 4.6 we have

Lemma 5.6. The relations →(g) and →(t) are con5uent. If x→m
(g) y (resp. x→m

(t) y)

and x→n
(g) z (resp. x→n

(t) z); then there is w such that y→n′
(g) w (resp. y→n′

(t) w) and
z→m′

(g) w (resp. z→m′
(t) w) with m+ n′ = n+ m′.

Due to Lemma 5.6, if →(g) (resp. →(t)) is terminating on x; x has a unique g-
irreducible (resp. t-irreducible) descendant by →(g) (resp. →(t)), which are called the
g-canonical (resp. t-canonical) form of x. For x∈�∗ we deAne �(g)(x) (resp. �(t)(x))
to be the maximal length of sequences of gentle (resp. tame) derivation steps start-
ing with x. It is equal to the length of a sequence from x to the g-canonical (resp.
t-canonical) form of x. The g-complexity and t-complexity of R are the functions d(g)

and d(t) deAned by

d(g)(n) = max{�(g)(x) | x ∈ �n};
d(t)(n) = max{�(t)(x) | x ∈ �n};

respectively. Clearly, we have

d(s)(n)6d(g)(n)6d(t)(n)6dR(n):

604 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

We see that for a minimal left reducible word x= s · s� · x′ (or a minimal right
reducible word x= x′ · s� · s) in Lemma 4.8, the subword x′ remains raw not only in
any simple derivation but also in any tame derivation starting with x. Thus we have

Lemma 5.7. R is g-terminating (resp. t-terminating) if and only if it is weakly
g-terminating (resp. t-terminating) on the seamed words t� · t (or t · t�) induced by the
sequence

s · s� → t · s� = t
1 ·
1 · s� →D(�) t� · t

(or s� · s→ s� · t →D(�) t · t�);
where �∈A∗ (or �∈B∗).

In the rest of section we discuss some more properties of the system which are
useful to study termination.
We say R is left (resp. right) s-barren if for any
∈A and %∈B; s
 (resp. s%) is

not a preAx (resp. suPx) of t% (resp. t
), in other words, B(s) = ∅ (resp. A(s) = ∅).

Proposition 5.8. A left or right s-barren system is t-terminating.

Proof. If R is left s-barren, then any seamed word t · t� in Lemma 5.7 is t-irreducible.
In fact, no simple application to t · t� is possible, because R is left s-barren, and no
nonsimple tame application is possible either, because, t · t� has only right seams which
are inner.

Corollary 5.9. A left or right s-barren tame system is terminating.

The notion of left s-barren was introduced by McNaughton [5] as ‘left barren’. He
gave without proof a theorem [5, Theorem 2:8] that a left barren system is terminating.
Later in [7], he announced that he could not prove the theorem and modiAed the
deAnition of ‘left barren’.

R is left barren if for any
∈A and %1 · · · %n ∈B+, s
 is not a preAx of t%1 · · · t%n .
Dually, R is right barren, if for any %∈B and
1 · · ·
n ∈B+, s% is not a suPx of
t
1 · · · t
n . In particular, R is left and right barren if A= ∅ or B= ∅. Clearly, if R is left
(resp. right) barren, then it is left (resp. right) s-barren.

Proposition 5.10 (McNaughton [7]). A left or right barren system is terminating.

Proof. Suppose that R is left-barren. Let x= x′s�s∈�∗ be the decomposition of a
minimal right reducible word x in Lemma 4.8, where �∈B∗. By Lemma 4.1, x→+ x′ ·
t · t�, and the last word is reducible if and only if t · t� contains s as subword, but it
never happens because R is left-barren. By Lemma 3.6, R is terminating.

It is an open problem whether a left (right) s-barren system is terminating.

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 605

Lemma 5.11. R is left (resp. right) barren if and only if it is left (resp. right) s-barren
and s is not written as (5:3) (resp. (5:4)).

Proof. Suppose that R is left s-barren but it is not left barren. Then, s
 is a preAx of
t%1 · · · t%n for some
∈A and %1; : : : ; %n ∈B, and s
 cannot be a preAx of t%1 . Hence,
s=
s
 =
t%1 · · · t%mw for 16m¡n and w is a nonempty preAx of t%m+1 . Since s does
not overlap with s�(
′) for
′ ∈A, w is a preAx of w%′
′ , where %′ = %m+1. Since R is
left s-barren, we see t%i =w%i for all i, and s is written as (5.3). Thus, the ‘if ’ part is
proved. The proof of the ‘only if’ part is also easy.

Because s is not written as (5.3) (resp. (5.4)) for a left (resp. right) very gentle
system R, we have

Corollary 5.12. R is left (resp. right) barren; if it is left (resp. right) s-barren and
left (resp. right) very gentle.

6. Traces and virtually seamed words

In Section 4 we introduced the system SR over the alphabet A∪B associated with
R, and established the correspondence between sequences of simple R-derivation and
sequences of SR-derivation. In this section we generalize this transformation method to
general (not necessarily simple) derivation. To this end the following notion of open
seam is important.
Suppose that when a left (resp. right) seam � is created in a derivation sequence,

it patches seams �1¡ · · ·¡�n. If the left-most (resp. right-most) patched seam �= �1
(resp. �= �n) is a right (resp. left) seam, then � is called an open seam, otherwise, � is
a closed seam. Let � be an open seam created by an application which patches a right
seam � of a seamed word x as the left-most patched seam (so � is a left seam). Let u
be the piece on the left of �; x= x′u]x′′. By Lemma 3.7, u is a suPx of t containing
tr as preAx. Hence, u= u′
, x′′ = s
x† for some
∈A, and

x′u′
]s
x† → x′u′[t]x†

is the step patching �= u] · · · and creating �= u′[t. We associate the symbol
 to
the seam � and call it the label of �. On the other hand, if � is a open right seam
created by an application which patches a left seam � as the right-most patched seam.
The piece u on the right is a preAx of t containing t‘ as preAx; x= x′[ux′′. Then,
u= %u′; x′ = x†s% for some % and

x†s%[%u′x′′ → x†[t]u′x′′

is the step. We associate % to � and call it the label of �. If the open seam � is
inherited in the next step, it remains open and retains the label.

606 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

In sequence (3.7) in Section 3, the seams marked with ◦ are open and the others
are closed. The labels of the open seams are a; b; b and a, correspondingly from left
to right.

Lemma 6.1. A totally raw step creates two closed seams. A raw (resp. nonraw) seam
created by a raw step is closed (resp. open). A purely tame step creates two open
seams. A simple step or a wild step creates one open seam and one closed seam.

Proof. Immediate from the deAnitions.

The following is another elaboration of Lemma 3.7 (cf. Lemma 5.3). The reasoning
of it can be found in the argument above of the labelling method of open seams.

Lemma 6.2. Let x be a seamed word induced by a derivation sequence and let v= �u�
be a seamed piece of x with seams � and �. If � is an open seam with label %∈B (so;
� is a right seam); then u is a pre:x of t%. If moreover � is a right seam (v=]u]);
then u= t%. On the other hand; if � is an open seam with label
 (so; � is a left
seam); then u is a su;x of t
. If moreover � is a left seam (v= [u[); then u= t
. In
particular; if � and � are both open seams with labels % and
; respectively (v=]u[);
then u= s�(%)w%
s�(
).

We introduce new sets A# = {
|
∈A} and B# = {%# | %∈B} bijective to A=
OVL(t; s) and B=OVL(s; t), respectively. We consider A; B; A# and B# to be mutu-
ally disjoint sets of symbols. Set �=A∪B∪A# ∪B#, and with extra symbols �c and $
outside � set O�=�∪{�c; $}.
Let xn be a seamed word induced by a derivation sequence

x1 → x2 → · · · → xn:

We give a label �(�)∈ O� to each seam � of xn by induction on n. When n=1; x1
is seamless and there is nothing to do. Let n¿1. For a seam � of xn which inherits a
seam �′ of xn−1, let �(�)=�(�′). Now, let (�; �) be a pair of seams of xn created by
the step xn−1→ xn. If the application does not patch any seam (so it is totally raw), we
deAne �(�)= �c and �(�)= $. Suppose that it patches some seams and among them
�′ is the left-most seam and �′ is the right-most seam. Suppose Arst that �′ is a right
seam, that is, � is open. Then �(�) is the label
∈A of � already deAned above before
Lemma 6.1.
If �′ is a left seam, that is, � is closed, we deAne �(�) according to the label of �′

as follows:

�(�) =

{

if �(�′) =
 or
with
 ∈ A;

�c if �(�′) =�c:

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 607

If �′ is a left seam, that is, � is an open, �(�) is the label %∈B of � deAned above.
If �′ is a right seam, that is � is closed, then deAne �(�) by

�(�) =

{
%# if �(�′) = % or %# with % ∈ B;

$ if �(�′) = $:

Let � be a seam of a seamed word x induced by a derivation sequence. By deAnition
we easily have
(1) If � is an open left (resp. right) seam, then �(�)∈A (resp. B),
(2) If � is a nonraw closed left (resp. right) seam, then �(�)∈A# (resp. B#),
(3) If � is a raw left (resp. right) seam, then �(�)= �c (resp. $).
Now, we are ready to introduce a notion of trace which will play a central role in

the rest of this paper.
For a seamed word x induced by a derivation sequence with seams �1¡�2¡ · · ·¡�m;

�(x) is deAned to be the word �(�1)�(�2) · · ·�(�m) over O�. We call �(x) the trace
of x. For a sequence D of derivation (3.6) we have a corresponding sequence

�(D) : 1 = �(x1)→ �(x2)→ · · · → �(xn)→ · · ·
of traces, which is called the trace of D.
Here, we give the traces of some of the sequences which we considered before.
For the system R= {ab→ baa} we have A= {a} and B= {b}. The trace correspond-

ing to sequence (3.7) is

1→�c$→�c$ �c$→�cab$→�ca#bb$:
For the system R1 in Example 5.2, A= {
= a}; B= {%1 = b; %2 = babb} and the trace
of sequence (5.1) is

1→�c$→�c%2$→�c%2%2$→�c%2%2
$→�c
%1$:

For the system R2 in the same example, A= {
= ab}; B= {%1 = b; %2 = bb} and the
trace of sequence (5.2) is

1→�c$→�c%1$→�c%2%1$→�c
%#
2%1$→�c

%#

1$:

Next, we reformulate the results on simple derivation in terms of traces. First note
that the trace of the seamed word (4.1) and (4.2) in Corollary 4.9 are �c
1 · · ·
m$
and �c%n · · · %1$, respectively. Let x be a seamed word with standard s-open left seam
· · · s�[%1 · · · with label
∈A(s), where �= �(
)= %n · · · %1 ∈B+. Then, we have the
standard sequence x →D� y of simple derivation in (4.3). The trace of this sequence
is given by

→
#%1 →
#%2%1 → · · · →
#%n · · · %2%1:

If x has a standard s-open right seam · · ·
1]s� · · · with label %∈B(s), where �= �(%)=

1 · · ·
m ∈A+, then we have the standard sequence x →D� y in (4.4). The trace of

608 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

the sequence is

%→
1%# →
1
2%# → · · · →
1
2 · · ·
m%#:

Now, we deAne a system SR over � by

SR = {
→
#�(
); %→ �(%)%# |
 ∈ A(s); % ∈ B(s)}:
The system is diJerent from the system SR deAned in Section 4, but the symbols

and %# added only play a role of stopper (dummy), and thus the new system is
terminating if and only if the old one is terminating. We use the same symbol SR for
the new system as for the old one.
The following is a reformulation of the correspondence between sequences (4.5) and

(4.6) in Section 4.

Lemma 6.3. Let x1 be a fully seamed word with trace !1. There is a one-to-one
correspondence between standard simple sequences of R-derivation

x1 →D1 x2 →D2 · · · →Dn−1 xn

and sequences of SR-derivation

!1 → !2 → · · · → !n

such that �(xi)=!i for i=1; : : : ; n; and Di is either D(�(
)) or D(�(%)) according
as the step !i→!i+1 is by a rule
→
#�(
) or by %→ �(%)%# for i=1; : : : ; n− 1.

If x is a fully seamed word, then the Arst and the last positions are the only raw
seams. Hence we see that �(x)∈�c�∗$ for a fully seamed word x. On the other hand,
a fully seamed word does not necessarily exist with given trace !∈�c�∗$. To All this
gap, we need to introduce a notion of virtually seamed word.
Let !=!0!1 · · ·!n be a word over O� such that !0 =�c, !n =$, !1 · · ·!n−1 ∈�∗.

A virtually seamed word corresponding to ! is a seamed word x∈�∗ whose n + 1
positions are (formally) designated as seams as follows. Let �0¡�1¡ · · ·¡�n be the
seams of x and ui be the piece between �i−1 and �i for i=1; : : : ; n. The edge pieces
of x are empty (x= u1 · · · un) and the ith piece ui is equal to the (!i−1; !i)-entry in
the following table:

′ %′
′# %′# $

 t
′ t w
′ t t
% s�(%)w%
′s�(
′) t% s�(%)w%
′ t% t%

t
′ t w
′ t t
%# w%
′s�(
′) w% w%
′ w% w%

�c t
′ t w
′ t t

where
;
′ ∈A and %; %′ ∈B. For example, if !i−1 = %∈A and !i =
∈A#, then
ui = s�(%)w%
.

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 609

For the virtually seamed word x above, !i is the label of the seam �i and ! is
the trace of x. The seam �i is open (resp. closed) if the label !i is in A∪B (resp.
A# ∪B# ∪{�c; $}).
Remark that a virtually seamed word is not necessarily a seamed word induced by

a derivation sequence starting with a raw word. By the deAnition of virtually seamed
word we have

Lemma 6.4. In a virtually seamed word; a closed seam is s-closed. An open seam is
s-open if and only if it is a standard s-open if and only if the label is in A(s) ∪B(s).

Lemma 6.5. For any !∈ �c�∗$; there exists a unique virtually seamed word x∈�∗
with trace !.

Proof. We can build x by joining up appropriate pieces as indicated in the above
table.

The virtually seamed word uniquely determined by ! in Lemma 6.5 will be denoted
by (!).

7. Gentle termination

In this section we introduce a system GR over � which simulates gentle R-derivation.
Let
∈A and %∈B, then t= %s�(%)w%
s�(
)
. If s=
′w%
%′ for some
′ ∈A and

%′ ∈B, then we say that % and
 are linked. Let �= �(%)=
1 · · ·
j and �= �(
)=
%k · · · %1. If the trace ! of a virtually seamed word x contains a subword %
 with
linked % and
, then x contains a subword tr ·s�(%)w%
s�(
) · t‘. If �(%) �=1 and �(
) �=1,
that is %∈B(s) and
∈A(s), then x contains a subword
1s�(%)w%
s�(
)%1 and we have
a derivation

D(%
) :
1s�w%
s�%1 →D(�) t�† · t · w%
 · s�%1

→D(�) t�† · t · w%
 · t · t�† = t�† · t
′ ·
′w%
%′ · t%′ · t�†

→D′(%
) t�† · t
′ · t · t%′ · t�† ;

where �† =
2 · · ·
j and �† = %k · · · %2. The last step D′(%
) above is purely gentle.
Correspondingly, the trace goes as follows:

%
→∗ �%#
→∗ �%#
#�→ �
′%′�:

If
∈A(s) but % �∈B(s), then x contains a subword
1s�w%
%′ and we have a derivation

D(%
) :
1s�w%
%′ →D(�) t�† · t · w%
 · %′ = t�† · t
′ ·
′w%
%′ →D′(%
) t�† · t
′ · t;

610 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

and the corresponding trace goes as

%
→ �%#
→ �
′%′:

The case
 �∈A(s); %∈B(s) is dual.
Finally, if
 �∈A(s) and % =∈B(s), then x contains
′w%
%′ and we have a derivation

D(%
) = D′(%
) :
′w%
%′ → t

and the corresponding trace is

%
→
′%′:

Lemma 7.1. Let x be a virtually seamed word with trace !.
(1) ! contains
∈A(s) (resp. %∈A(s)); if and only if the derivation D(�(
)) (resp.

D(�(%))) is applicable to x patching the seam corresponding to
 (resp. %). If !′ is
obtained by replacing the
 (resp. %) by
#�(
) (resp. �(%)%#) and x′ is obtained by
the application of D(�(
)) (resp. D(�(%))) to x; then x′ is a virtually seamed word
with trace !′.
(2) If ! contains a subword %
 for linked % and
; then the derivation D(%
)

is applicable to x patching the seams with the labels % and
. If !′ is obtained by
replacing the above subword %
 by �(%)
′%′�(
) (s=
′w%
%′) to ! and x′ is obtained
by the application of D(%
) to x; then x′ is a virtually seamed word with trace !′.

Proof. (1) The Arst half of the assertion follows from Lemma 6.4. Suppose that
D(�(
)) is applied on a seam � of x with label
∈A(s). Let a seam �′ (resp. �′′) be the
left (resp. right) neighbour of � and u (resp. v) be the piece between �′ and � (resp.
� and �′′) in x. We have to check all the cases corresponding to the labels of �′ and
�′′. Here we only check the case where �(�′)∈A and �(�′′)∈B, and leave the other
cases to the reader. In this case, u= t
; v= t. Let �(
)= %n · · · %1, then t
 =w
s�(
) and
t= %1t%1 . Applying the derivation D(�(
)) to x= · · · uv · · · = · · ·w
s�(
)%1t%1 · · ·, we
have x′ = · · ·w
 · t · t�(
) · · ·. On the other hand, replacing
 by
#�(
) in != · · ·
 · · ·,
we get !′ = · · ·
#�(
) · · ·. It is easy to see that x′ is a virtually seamed word with the
trace !′.
(2) Let adjacent pieces � and � (�¡�) be labelled as % and
; respectively. The piece

between them is s�(%)w%
s�(
). Let �(%)=
1 · · ·
j and �(
)= %k · · · %1 and suppose
j; k¿1 (the other cases can be treated similarly). The piece of x on the left of �
(resp. right of �) has
1 as suPx (resp. %1 as preAx). Applying the derivation D(%
) on
x= · · ·
1s�(%)w%
s�(
)%1 · · ·, we have x′ = · · · t�† t
′ tt%′ t�† · · ·, where �† =
2 · · ·
j and
�† = %k · · · %2. On the other hand, replacing the %
 by �(%)
′%′�(
) in != · · · %
 · · ·,
we get !′ = · · · �(%)
′%′�(
) · · ·. It is easy to see that x′ is a virtually seamed word
with the trace !′.

Now, for a linked pair (%;
) with s=
′w%
%′, we consider the rule %
→ �(%)
′%′

�(
) over �, and let G′
R be the system of all such rules. By Lemma 5.4, (3), R

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 611

is simple if and only if R is gentle and there is no linked pair, that is, G′
R = ∅. Now,

we set

G = GR = SR ∪G′
R:

Example 7.2. Let R= {abb → bbaba}, then A= {
= a}, B= {%1 = b; %2 = bb}. R is
very gentle by Lemma 5.5. The pairs (%1;
) and (%2;
) are linked, and the system GR

consists of the following rules:

→
#%1; %1
→
%1%1; %2
→
%2%1: (7.1)

The following is immediate from Lemma 7.1.

Corollary 7.3. Let

D : !1 → !2 → · · · → !n → · · ·
be a (:nite or in:nite) sequence of G-derivation with !n ∈�∗ for n¿1 and let x1 =
 (�c!1$) be the virtually seamed word with trace �c!1$. Then; there is a corresponding
gentle sequence of R-derivation

 (D) : x1 →+ x2 →+ · · · →+ xn →+ · · · ;
where xi = (�c!i$); and each step xi→+ xi+1 is D(�(
)); D(�(%)) or D(%
) ac-
cording as the rule applied in the step !i→!i+1 is
→
#�(
); %→ �(%)%# or
%
→ �(%)
′%′�(
).

The following is a key for the proof of our main theorems on gentle derivation
(Theorems 7.5 and 7.8).

Lemma 7.4. Let !1 ∈ (A∪B)∗ and

D : !1 → !2 → · · · → !n

be a sequence of G-derivation. If xn = (�c!n$) is g-reducible; then there is another
sequence of G-derivation

D′ : !′
1 → !′

2 → · · · → !′
m

such that !′
1 =!1 and the sequence (D′) induced by D′ is longer than the sequence

 (D) induced by D.

Proof. If xn is s-reducible, then xn has an s-open seam. Hence the trace !n contains
a letter from A(s) ∪B(s) by Lemma 6.4. If !n contains
∈A(s) (resp. %∈B(s)), then
rule
→
#�(
) (resp. %→ �(%)%#) is applicable to !n and D can be prolonged to
D′ :!1→D !n→G !n+1 by Lemma 7.1, (1). The sequence (D′) is longer than (D).
Next, suppose that xn is g-reducible but s-irreducible. Then, a purely gentle ap-

plication of the rule on xn is possible. Let (7; 8) be a pair of the labels of the

612 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

seams patched by the application. The piece between the seams must be w%
, and
there are four possibilities: (7; 8)= (%#,
#) with %∈B(s),
∈A(s), (7; 8)= (%#,
) with
%∈B(s),
∈A−A(s), (7; 8)= (%;
#) with %∈B−B(s);
∈A(s), and (7; 8)= (%;
) with
%∈B − B(s),
∈A − A(s). Here, we only treat the Arst case where (7; 8)= (%#,
#)
with %∈B(s),
∈A(s). Since !1 has no letter from A# ∪B#, in some place in D ap-
plications of the rules %→ �(%)%# and
→
#�(
) create %# and
respectively, and
they are not touched afterward. Suppose that the application of the rule %→ �(%)%#

comes Arst and the application of the rule
→
#�(
) comes later, thus,

D=D1 ◦D%V1 ◦D2 ◦ �′2D
 ◦D3;

where D1 (resp. D2, D3) is a derivation sequence from !1 to �1V1 (resp. �2V1 to �′2V′1,
�′2V′2 to !n), and D% (resp. D
) is a one-step derivation from �1 to �2 (resp. V′1 to V′2)
by applying the rule %→ �(%)%# (resp.
→
#�(%)) to the % (resp.
) at the right-most
(resp. left-most) position of �1 (resp. V′1). The position (�2, V1) of �2V1 is inherited in
D2 untouched, because the %# created by D% is untouched. Applying Lemma 2.3 we
have a derivation sequence

D′′ = D1 ◦D%V1 ◦ �2D′
2 ◦D′′

2 V′1 ◦ �′2D
 ◦D3

from !1 to !n with the same length as D, where D′
2 (resp. D

′
2) is a derivation sequence

from V1 to V′1 (resp. �2 to �′2). Again by Lemma 2.3 we have a sequence

D† = D1 ◦ �1D′
2 ◦D%V′1 ◦ �2D
 ◦D′′

2 V′2 ◦D3

from !1 to !n. Since the subword %#
created by D%V′1 ◦ �2D
 is not touched in
D′′

2 V′2 ◦D3, we can replace D%V′1 ◦ �2D
 in D† by the derivation D%
 that is caused by
an application of the rule %
→ �(%)
′%′�(
) on the subword %
 of �1V′1, and we get
a new sequence

D′ = D1 ◦ �1D′
2 ◦D%
 ◦D4

starting from !1, where D4 is the derivation obtained from D′′
2 V′2 ◦ D3 by replacing

the untouched subword %#
by
′%′ throughout. The sequence (D′) induced by D′

is longer than (D) by 1.

Theorem 7.5. A system R is g-terminating if and only if the system G is terminating.

Proof. Suppose that G is not terminating and

D : !1 → !2 → · · · → !n → · · ·
be an inAnite sequence of G-derivation, where !n ∈�∗. By Lemma 6.1, there is a
virtually seamed word x with trace �c!1$. By Corollary 7.3 there is an inAnite sequence
D= (D) of gentle derivation starting with x. If we forget the (formally given) seams
of x and consider x to be raw, D is an inAnite sequence of gentle derivation starting
from a raw word. Thus R is g-nonterminating.

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 613

Conversely, assume that R is not g-terminating. Then, by Lemma 5.7, there is an
element x∈�∗ of the form t� · t with trace �c�$, where �∈A∗ such that x has no
g-irreducible descendant by gentle derivation. Using Lemma 7.4 repeatedly, we can
construct a derivation sequence D : �→∗ ! of G-derivation such that the sequence
 (D) is arbitrarily long. This implies that we can make D arbitrarily long too. Hence,
G is not terminating.

Corollary 7.6. A gentle system R is terminating if and only if the system G is ter-
minating.

Proof. A gentle system is terminating if only if it is g-terminating on the set of fully
seamed word by Lemma 2.2. Thus the result follows from Theorem 7.5.

We also see that if G is nonterminating and has a loop, then R has a gentle loop.
Now, before getting into the complexity problem of gentle derivation we need the
following lemma.

Lemma 7.7. Let x be the seamed word induced by a sequence of raw and gentle
derivation. Suppose that a raw and gentle application is impossible on x. Then x
is decomposed as x′0 x1x

′
1 · · · xkx′k ; where x′0; x

′
1; : : : ; x

′
k are raw and xi is a virtually

seamed word with �(xi)∈�c(A∪B)∗$ for i=1; : : : ; k. Moreover; any sequence of gentle
derivation starting from x leaves every x′i untouched.

Proof. Clearly x is decomposed as x′0 x1x
′
1 · · · xkx′k , where x′0; x

′
1; : : : ; x

′
k are raw and

x1; : : : ; xk are fully seamed. Due to Lemma 6.1 every nonraw seams of x is open, and
hence �(xi)∈�c(A∪B)∗$. By Lemma 6.2 we And that xi is a virtually seamed word.
Assume that there is a sequence D from x of gentle derivation that touches some x′i .
Consider the Arst raw application in D. If the application is simple, it patches one
raw seam with label $ or � c. If it is purely gentle, it patches two raw seams � and �
labelled as $ and �c, respectively, and the piece between � and � is x′i for some i. In
either case it is possible to make this application to x, but this contradicts the assump-
tion on x.

Theorem 7.8. The g-complexity d(g) of R is equivalent to the complexity of G pro-
vided G �= ∅.

Proof. First suppose that →(g) is terminating with complexity function f. Let

D : !0 → !1 → · · · → !n

with !n ∈�∗ be a sequence of G-derivation. By Corollary 7.3 we have the gentle
sequence of R-derivation

 (D) : x0 →+ x1 →+ · · · →+ xn;

614 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

where xi is virtually seamed word with trace �c!i$. Since x0 consists of |!0|+1 pieces
and every piece is a subword of t, we have |x0|6|t| · (|!0|+ 1). Thus,

n6f(|x0|)6f(C · |!0|);
where C =2 · |t|. It follows that G is also terminating with complexity 4f.
Conversely, suppose that G is terminating with complexity function g. Let x∈�∗ be

any raw word. Let x0 be a seamed word induced by a raw and gentle sequence D0 from
x, and suppose that a raw and gentle application on x0 is impossible. By Lemma 4.15
the length of D0 is bounded by |x|. In virtue of Lemma 7.7 we may suppose that x0 is
a virtually seamed word whose trace is in �c(A∪B)∗$; �(x0)=�c!0$; !0 ∈ (A∪B)∗.
By a similar argument to the latter part of the proof of Theorem 7.5 using Lemma 7.4,
we have a derivation sequence of G-derivation D :!0→!1→ · · · →!n such that
xn = (� c!n$) is a g-irreducible element in �∗. By assumption n6g(|!0|). Since the
number of open seams of x0 is bounded by |x|, we have |!0|6|x|, and thus n6g(|x|).
Let L be the maximum of the lengths of the sequences D(
) for
∈A(s); D(%) for
%∈B(s) and D(%
) for linked pairs of
∈A and %∈B. Then the length of the sequence
 (D) is bounded by L · n6L · g(|x|). Since xn is a g-canonical form of x, we have

�(g)(x)6|x|+ L · g(|x|):
Therefore, if G �= ∅, then g is at least a linear function, and �(g)(x)6L′ · g(|x|) for a
constant L′. Thus, →(g) and G has equivalent complexity.

Remark that if G= ∅, then →(g) always has linear complexity.

Corollary 7.9. A very gentle system R that is terminating has complexity equivalent
to G; provide G �= ∅.

Proof. If R is very gentle, then → =→(g). Hence the result follows from Theorem 7.8.

We conjecture that any terminating gentle system (even if it is not very gentle) has
complexity equivalent to G provided G �= ∅.
Since the left-hand side of any rule from G does not contain a letter from A# ∪B#,

every letter from A# ∪B# only plays a role of stopper for G. So reducing them into
one dummy symbol #, we get a simpliAed systems over A∪B∪{#} which we denote
by the same symbols SR and G as before:

SR = {
→ #�(
); %→ �(%)# |
 ∈ A(s); % ∈ B(s)};
G = SR ∪G′

R:

Theorems 4.12, 7.5 and 7.8 are remain valid for these simpliAed systems.
It is easy to see that system (7.1) in Example 7.2 is terminating, and thus R= {abb
→ bbaba} is terminating by Theorem 7:6. This also directly follows from Corollary
5.9, because R is a right s-barren gentle system.

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 615

In Sections 9 and 10 we mobilize our theorems obtained in these sections to analyse
systems of the type {apbq→ t}.

8. Some technical lemmas

In this section we give some technical lemmas about termination and complexity of
Anite string-rewriting systems (not necessarily one-rule systems), which will be used
in the subsequent two sections.
A (nonnegative) weight function on �∗ is a morphism f :�∗→R from the monoid

�∗ to the additive group R of real numbers such that f(x)¿0. A weight function f is
determined by the values f(a) for a∈�. A rewriting system S is f-nonincreasing (resp.
f-decreasing), if f(s)¿f(t) (resp. f(s)¿f(t)) for every s→ t ∈R. Let f =(f1; : : : ; fu)
be a sequence of weight functions on �∗. For a word x∈�∗; f(x) means the vector
(f1(x); : : : ; fu(x))∈Ru. Let ¡ be the lexicographic order on Ru, that is, (r1; : : : ; ru)¡
(r′1 ; : : : ; r

′
u) if and only if there is v such that 16v6u, r1 = r′1 ; : : : ; rv−1 = r′v−1 and

rv¡r′v . A system R is f-nonincreasing (resp. f-decreasing), if f(s)¿f(t) (resp. f(s)¿
f(t)) for every s→ t ∈R. For an f-nonincreasing system R, set

S = Stabf(R) = {s→ t | f(s) = f(t)}:

Clearly, R− S is f-decreasing.

Lemma 8.1. Let f =(f1; : : : ; fu) be a sequence of weight functions and let R be a
:nite system that is f-nonincreasing. Let S =Stabf(R) and R′ =R− S. Then; there is
a constant C such that for any x∈�∗ and for any sequence of R-derivation starting
with x; the number of steps by rules from R′ is bounded by C · |x|.

Proof. We proceed by induction on u. If u=1, then R′ is f1-decreasing. Let F1 =max
{f1(a) | a∈�} and m1 =min{f1(s) − f1(t) | s→ t ∈R′}. Then, as easily seen, every
R-derivation sequence starting with x∈�∗ contains at most F1=m1·|x| steps of derivation
by rules from R′.
Suppose that u¿1. Let f ′ =(f1; : : : ; fu−1) and S ′ =Stab′f(R). Then S ′⊃ S and S ′−S

is fu-decreasing. Set R1 =R − S ′ and R2 = S ′ − S. Then, R′ =R1 ∪R2 and R1 is
f ′-decreasing. Let x= x0→ x1→ · · · → xn be a sequence of derivation by R. By in-
duction hypothesis there is a constant C1 such that there exist at most C1 · |x| steps
of derivations by R1. Let F = max{fu(a) | a∈�}, m=min{fu(s) − fu(t) | s→ t ∈R2}
and M = max{fu(t) − fu(s) | s→ t ∈R1}. Then, fu(xj+1) − fu(xj)6M if xj→R1 xj+1,
fu(xj+1) − fu(xj)6 − m if xj→R2 xj+1, and fu(xj+1) − fu(xj)= 0 otherwise.
It follows that the number of steps of derivation by R2 in the sequence is
bounded by

fu(x) + C1|x| ·M
m

6
F + C1 ·M

m
· |x|:

616 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

Consequently, the number of steps of derivation by R′ is bounded by

F + C1 · (M + m)
m

· |x|:

Corollary 8.2. A :nite system that decreases a sequence f of weight functions ter-
minates and has linear derivational complexity.

Let �1 be another alphabet and let : :�∗→�∗1 be a morphism. For a rewriting
system R over �; :(R)= {:(s)→:(t) | s→ t ∈R} is a system over �1.

Lemma 8.3. Let R be a rewriting system over � and : :�∗→�∗1 be a morphism. If
the system :(R) over �1 is terminating; then so is R.

Proof. If there is an inAnite sequence x1→R x2→R · · · of derivation by R, we have an
inAnite sequence :(x1)→:(R) :(x2)→:(R) · · · of derivation by :(R).

The following less trivial lemma (already used in [11]) is also useful.

Lemma 8.4. Let R be a rewriting system over � and : :�∗→�∗1 be a morphism.
Suppose that R=R1 ∪R2; R1 ∩R2 = ∅; and :(s)=:(t) for all s→ t ∈R2. If both the
systems R2 and :(R1) is terminating; then so is R.

Proof. If there is an inAnite sequence D : x1→R x2→ R · · ·, we have an inAnite sequence
:(D) ::(x1)→:(R) :(x2)→:(R) · · ·. Since R2 is terminating, an inAnite number of steps
of D are applications of rules from R1. If a step xi→R xi+1 is an application of a rule
from R2, then :(xi)=:(xi+1) by assumption, and we can shorten the sequence :(D) at
this place. After shortening every such step, we have an inAnite sequence of derivation
by rules from :(R1).

Let �1 be a subset of �. For x∈�∗; |x|�1 denotes the number of occurrences in x
of letters from �1: |:|�1 is a typical weight function. When �1 = {a} we write |:|a for
|:|�1 .
Let a∈� and f be a weight function on �∗1 , where �1 =�−{a}. For a real number

;¿1 we deAne a function fa;; on �∗ by

fa;;(x) = f(u0) + f(u1);+ · · ·+ f(um);m (8.1)

for x∈�∗ that is uniquely written as

x = u0au1a · · · aum;

where m= |x|a and ui ∈�∗1 for i=0; 1; : : : ; m. With this function we deAne a relation
4 on �∗ as follows: for x; y∈�∗; x 4y if and only if
(1) |x|a¡|y|a, or
(2) |x|a = |y|a and fa;;(x)6fa;;(y).

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 617

Lemma 8.5. 4 is a compatible quasi-order on �∗.

Proof. The proof is easy and left to the reader.

Lemma 8.6. Let R be a :nite system such that s � t for all s→ t ∈R. Then; R is
terminating and has at most exponential derivational complexity.

Proof. F = max {f(b) | b∈�1}, then fa;;(x)6F ·|x|·;|x|a for x∈�∗. Let S={s→ t∈R |
|s|a¿|t|a} and set M = max{fa;;(t)−fa;;(s) | s→ t ∈ S}. First, the number of applica-
tions of rules from S in any R-derivation sequence D starting from x is bounded by
|x|a. Moreover, for s→ t ∈ S and for any y; z ∈�∗ we have

fa;;(ytz)− fa;;(ysz) = ;|y|a(fa;;(t)− fa;;(s)) + ;|y|a(;|t|a − ;|s|a)fa;;(z)

6;|y|a ·M:

Since a rule from R − S decreases the value of fa;;, by at most m= min{fa;;(s) −
fa;;(t) | s→ t ∈R−S}; the number of applications of rules from R−S in D is bounded
by (fa;;(x) + ;|x|a ·M · |x|a)=m. Thus the total number of steps in D is bounded by

|x|a + fa; ;(x) + ;|x|a ·M · |x|a
m

6
F +M + 1

m
· |x|;|x|6;2|x|

for a long enough x∈�∗. Therefore, R has at most exponential complexity.

Using a function f′
a; ; dual to (8.1) deAned by

f′
a; ;(x) = f(u0);m + f(u1);m−1 + · · ·+ f(um)

for x= u0au1a · · · aum ∈�∗ with ui ∈�1 for i=0; 1; : : : ; m, we can deAne a quasi-order
4′ in a similar manner. With this 4′, a similar result to Lemma 8.6 can be obtained.

Finally, we give a type of nonterminating systems which will haunt the next two
sections.

Lemma 8.7. Let � be an alphabet containing letters
1; : : : ;
r (r¿1) and %. We
consider a system S over an alphabet � consisting of the rules:

i → x(i)% (i = 1; : : : ; m);

%→
ky; (8.2)

%
i → u(i)% (i = 1; : : : ; r);

where 16m6r; 16k6r; x(1); : : : ; x(m); y∈�∗ and u(1); : : : ; u(r)∈{
1; : : : ;
r}∗.
Suppose that u(i) contains a letter
j such that j¡i if i¿m. Then; S has a loop and
nonterminating.

618 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

Proof. If k6m, then

%→
ky → x(k)%y

and we have a loop % . %. Henceforth we assume that k¿m. DeAne a mapping h :
{1; : : : ; r}→{1; : : : ; r} as follows. For i¿m, let h(i)= j, where
j is the leftest letter
in u(i) such that j¡i, and for i6m, let h(i)= i. Set �1 = {
1; : : : ;
r}. For any u; v∈�∗1
and i¿m, we have

%u
iv→∗ u′
h(i)v′% (8.3)

for some u′; v′ ∈�∗1 . Let g be the least number such that

hg(k) = h ◦ · · · ◦ h︸ ︷︷ ︸
g

(k) 6 m:

Set ji = hi(k) for i=0; 1; : : : ; g, then k = j0¿j1¿j2¿ · · ·¿jg, and jg6m. Now, using
(8.3), we have a derivation sequence

%g+1 → %g
ky →∗ u′
jgu
′′%gy

for some u′; u′′ ∈�∗1 . Applying the rule
jg→ x(jg)% to the last term we get

u′x(jg)%u′′%gy;

which is further written to

u′x(jg)u†%g+1y;

where u† ∈�∗1 . Thus, we have a loop %g+1 . %g+1.

9. The system {apbq → bnam}

Let us consider a one-rule system R= {s= apbq→ t= bnam} over �= {a; b}. We
shall discuss the termination problem and the derivational complexity of R.
First, if m¡p or n¡q; then R decreases the weight |:|a or |:|b, and so it is terminating

and has linear complexity.
If m=p and n= q; then �R(anpbnq)= n2 as easily seen, and thus R has quadratic

complexity.
Next suppose m=p and n¿q. Let ;¿ p

√
n=q and deAne a function f on �∗ as

follows.

f(x) = n0 + n1;+ · · ·+ nr;r

for x= bn0abn1 · · · abnr ∈�∗ with |x|a = r. We see that an application of the rule does
not change the number of occurrences of the letter a and decreases the value of the
function f. Hence, by Lemma 8.6, R has at most exponential complexity.

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 619

On the other hand, let r be the least integer not smaller than q=(n − q). Then,
rn¿(r + 1)q and for any ‘¿0 we have a sequence

a‘rpbrq →r a(‘r−1)pbrnap = a(‘r−1)pb(r+1)q · · ·
→r+1 a(‘r−2)pb(r+2)q · · · →∗ a(‘−1)rpb2rq · · ·
→∗ a(‘−2)rpb4rq · · · →∗ b2

‘rq · · · :

Thus,

�(a‘rpbrq)¿
rq

n− q
(2‘ − 1):

Therefore, R has exponential complexity. Similarly if m¿p and n= q; then R has
exponential complexity.
These complexity results were given by Zantema and Geser [13], but we have given

a proof for completeness.
Now, let m¿p and n¿q.
We have

A = OVL(t; s) = {a; : : : ; ap};
B = OVL(s; t) = {b; : : : ; bq};
SA = {ap−1bq; : : : ; abq; bq};
SB = {apbq−1; : : : ; apb; ap}:

We set
i = ai for i=1; : : : ; p and %j = bj for j=1; : : : ; q. We have

�(
i) = %8i
q ; �(%j) =
�j

p ;

where 8i = [(m−i)=p]; the greatest integer not exceeding (m−i)=p, and �j = [(n−j)=q].
Let m′′ = min {p;m−p} and n′′ = min {q; n−q}, then we have the (simpliAed) system

SR = {
i → #%8i
q ; %j →
�j

p # | i = 1; : : : ; m′′; j = 1; : : : ; n′′}
over �=A∪B∪{#}. Thus, in the graph 0s associated with SR;
i→ %q (i=1; : : : ; m′′)
and %j→
p (i=1; : : : ; n′′) are all the edges in 0s. Hence, there is the edge
p→ %q if
and only if m¿2p; and there is the edge %q→
p if and only if n¿2q. This implies
that 0s is acyclic if and only if m¡2p or n¡2q. In particular, R is s-nonterminating,
if and only if m¿2p and n¿2q by Theorem 4.12.
It is easy to see that R is very gentle. We have

t = bj · b�jq · b j̃aĩ · a8ip · ai;

where ĩ≡m− i (modp), j̃≡ n− j (mod q), 06ĩ¡p and 06j̃¡q. Thus, %j and
i are
linked if and only if i≡m (modp) or j≡ n (mod q). If i≡m (modp); then w%j
i = b ˜j

and s= ap ·w%j
i ·bq− ˜j. On the other hand, if j≡ n (mod q); then w%j
i = aĩ and s= ap−ĩ ·

620 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

w%j
i · bq. Let m= 8 ·p+m′ with 0¡m′6p and n= �q+ n′ with 0¡n′6q. Then, the
system corresponding to purely gentle derivation is

G′
R = {%j
m′ →
�j+1

p %q−j̃%
8
q ; %n′
i →
�

p
p−ĩ%
8i+1
q | i = 1; : : : ; m′′; j = 1; : : : ; n′′}:

Now we suppose p¡m¡2p and q¡n. Then 8=1 and m′ =m− p: We claim that
G=SR ∪G′

R is nonterminating if and only if n≡ 0 (mod q). The system G consists of
the following rules:

i → #%q (i = 1; : : : ; m′);

%j →
�
p# (j = 1; : : : ; n′);

%j →
�−1
p # (j = n′ + 1; : : : ; q) if �¿2;

%j
m′ →
�+1
p %q−j̃%q (j = 1; : : : ; n′);

%j
m′ →
�
p%q−j̃%q (j = n′ + 1; : : : ; q);

%n′
i →
�
p
p−ĩ%

2
q (i = 1; : : : ; m′);

%n′
i →
�
p
p−ĩ%q (i = m′ + 1; : : : ; p): (9.1)

First, suppose that n′ = q; equivalently, n≡ 0 (mod q), and let %= %q. The system G
contains the rules:

i → #% (i = 1; : : : ; m′);

%→
�
p#;

%
i →
�
p
p−ĩ%

2 (i = 1; : : : ; m′);

%
i →
�
p
p−ĩ% (i = m′ + 1; : : : ; p):

Here, if m′¡i6p; then p−ĩ= i−(m−p)¡i. Thus, the system G satisAes the condition
on the system S in Lemma 8.7. Hence, G has a loop and is nonterminating.
Now, suppose that n �≡ 0 (mod q); that is, n′ �= q. Of course, m′ �=p. Consider the

weight function f1 :�∗→N deAned by

f1(w) = |w|(A∪B−{
p;%q}); w ∈ �∗:

It is easy to see that all the rules in (9.1) do not increase the value of f1. Among the
rules only the following rules keep the value:

%q →
�−1
p # if �¿2;

%q
m′ →
�
p%q−n′%q;

%n′
p →
�
p
p−m′%q: (9.2)

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 621

Consider another function f2 :�∗→N deAned by

f2(w) = |w|{
m′ ; %n′}; w ∈ �∗:

All the rules in (9.2) (actually all the rules in (9.1)) do not increase the value of the
function f2.
Here, suppose that m′ �=p−m′; that is m �= 3

2p; then the third rule in (9.2) decreases
f2. Now consider the third function f3 :�∗→N deAned by

f3(w) = |w|{
m′ ; %q}; w ∈ �∗:

The other two rules in (9.2) decrease f3; and thus we see that G is (f1; f2; f3)-
decreasing. By Corollary 8.2, G terminates and has linear complexity. If n′ �= q − n′;
we can similarly see that G terminates and has linear complexity.
Now, the only case remains is when m= 3

2p and n= � · q + q=2 (�¿1); that is,
m≡p=2 (modp) and n≡ q=2 (mod q). If we set
=
p; %= %q; O
=
m′ and O%= %n′ ;
system (9.2) becomes

%→
�−1 if 8¿2;

% O
→
� O%%;

O%
→
� O
%: (9.3)

Recall that all the rules in (9.1) which do not appear in (9.3) decrease the value of
f1, and note that the Arst rule in (9.3) and the rules in (9.1) which do not appear in
(9.3) never produce the letter O
 nor the letter O%. Let

D : x = x0 →G x1 →G · · · →G xk →G · · ·
be a (Anite or inAnite) sequence of G-derivation, where x0; x1; : : : ; xk ; : : : ∈�∗.
Here we Arst treat the case �=1; that is, n= 3

2q. Then (9.3) becomes

% O
→
 O%%;

O%
→
 O
%: (9.4)

A letter O
 or O% in xk is active, if the rule % O
→
 O%% or O%
→
 O
% is applied on it later
in the sequence D, otherwise it is passive. If O
 is preceded by &
 with &∈�−{ O
; O%} in
xk ; then this O
 is passive. In fact, the & cannot be changed to O% and hence the
 cannot
be changed to % later in D; and thus the rule % O
→
 O%% cannot be applied to the O
.
Similarly, If O% is followed by %& with &∈�− { O
; O%} in xk ; then the O% is passive. If O

is active in xk ; then later the rule % O
→
 O%% is applied on the O
. If the O% thus created
is still active, then later the letter % behind the O% must be changed to
 and then the
rule O%
→
 O
% is applied. The O
 thus created is preceded by &
 with &∈� − { O
; O%};
and becomes passive. A similar fact holds for an active O%. Brie$y speaking, a letter O

or O% appearing in D becomes passive if the rules in (9.4) are applied at most twice.

622 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

Therefore, the number of steps by rules (9.4) in D is bounded by 2|x|{ O
; O%}. Since the
number of steps by rules in (9.1) other than (9.4) is linearly bounded by Lemma 8.1,
the length of D is linearly bounded.
Next suppose that �¿2. Again O
 in xk is passive if it is preceded by &
 with

&∈�−{ O
; O%}. Thus, if O% is active, then the rule O%
→
� O
% is applied and the created
O
 becomes passive. If O
 is active, it is changed to O% by the rule % O
→
� O%%, and this O%
is still active, it is further changed to O
 by the rule O%
→
� O
%, and becomes passive.
Therefore, the number of steps by the last two rules in (9.3) in D is bounded by
2 · |x| O
 + |x| O%, and the number of steps in D by the rules other than the Arst rule in
(9.3) is linearly bounded, say, by C|x| for some constant C. One such step increases
the number of % contained in the word by at most 2. The Arst rule in (9.3) erases one
%, and hence the number of steps by this rule is at most 2C · |x| + |x|%. Finally, we
And that the length of D is bounded by 4C · |x|.
When q¡n¡2q and p¡m; we can get a corresponding result by a similar argument.
Summarizing we see that if m¿p and n¿q; G is terminating if and only if

p ¡ m ¡ 2p; n �≡ 0 (mod q)

or

q ¡ n ¡ 2q; m �≡ 0 (modp);

Moreover, in this case, G has linear derivational complexity. Therefore R is terminating
by Corollary 7:5 and has linear derivational complexity by Corollary 7:8.

Theorem 9.1 (Zantema and Geser [11]). The system R= {apbq→ bnam} is terminat-
ing if and only if one of the following holds:
(1) m6p or n6q;
(2) p¡m¡2p; n �≡ 0 (mod q);
(3) q¡n¡2q; m �≡ 0 (modp).

Theorem 9.2. (1) R has linear complexity if and only if one of the following holds:
(1:1) m¡p;
(1:2) n¡q;
(1:3) p¡m¡2p; n �≡ 0 (mod q);
(1:4) q¡n¡2q; m �≡ 0 (modp).
(2) R has quadratic complexity if and only if m=p; n= q.
(3) R has exponential complexity if and only if

(3:1) m=p; n¿q; or
(3:2) m¿p; n= q.

These complexity results except for Cases (1.3) and (1.4) are given in [13]. Tahhan-
Battar [10] showed that the system {aabb→ bbbaaa} which belongs to Case (1.3) (and
Case (1.4) too) has linear complexity.

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 623

10. The system {apbq → t}

Let p; q¿1; �= {a; b} and t be an arbitrary word over �. Let us consider a one-
rule system R= {apbq→ t}. We shall give a complete characterization for termination
of R. We suppose that t does not contain apbq as subword, otherwise R is nontermi-
nating. Moreover, we suppose that t contains both the letters a and b; otherwise, R is
terminating:
(1) The case where t ∈ b�∗a; that is, t= bnvam with v=1 or v∈ a�∗b; m; n¿0. If

v=1; this case was treated in the previous section, so we may assume that v �=1.
(1:1) Subcase m6p; n6q: We have

A = {a; : : : ; am}; B = {b; : : : ; bn};
SA = {ap−1bq; ap−2bq; : : : ; ap−mbq};
SB = {apbq−1; apbq−2; : : : ; apbq−n}:

The word t is decomposed as

t = bn(ap−p1bq) : : : (ap−pk bq)w(apbq−q‘) : : : (apbq−q1)am;

where 16p16min{m;p− 1}; 16pi6m for i=2; : : : ; k; 16q16min{n; q− 1}; 16
qj6n for j=2; : : : ; ‘ and w has neither a preAx of the form ap′

bq with 16p′6p−m
nor a suPx of the form apbq′ with 16q′6q− n.
Let
i = ai; %j = bj for i=1; : : : ; m and j=1; : : : ; n, then

s
i = ap−ibq; s%j = apbq−j;

t
i = bn(ap−p1bq) · · · (ap−pk bq)w(apbq−q‘) · · · (apbq−q1)am−i ;

t%j = bn−j(ap−p1bq) · · · (ap−pk bq)w(apbq−q‘) · · · (apbq−q1)am:

Thus,

�(
i) = �(%j) = 1

for i=1; : : : ; m− 1 and j=1; : : : ; n− 1;

�(
m) = %q‘ · · · %q1

and

�(%n) =
p1 · · ·
pk ;

(1:1:1) If k = ‘=0; then w �=1 and R is left and right s-barren. Since w%j = bn−jwam

and w∈ a�∗b; the word aiw%j cannot be a preAx of s= apbq for any i; j. This implies
that R is left very gentle by Lemma 5.5, and R is left barren by Corollary 5.12 and is
terminating by Proposition 5.10.
If k =0; ‘¿0; then R is left barren again, and thus it is terminating. Similarly, if

k¿0, ‘=0, then R is right barren, and it is terminating.

624 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

(1:1:2) Suppose k; ‘¿0; then R is very gentle. We have the system

SR = {
m → #%q‘ · · · %q1 ; %n →
p1 · · ·
pk#}
over �=A∪B∪{#}. Easily we see
(a) SR is nonterminating if and only if pi =m for some i with 16i6k and qi = n

for some i with 16i6‘.
By Lemma 5.4 we also see that R is not simple if and only if w= arbs with

p − m6r¡p; q − n6s¡q. In this case, (%n;
m) is a unique linked pair, and we
have the systems

G′
R = {%n
m →
p1 · · ·
pk
p−r%q−s%q‘ · · · %q1}

and

G = SR ∪G′
R:

We claim that if (a) is not the case, not only SR is terminating but also G is
terminating. To prove this we may suppose by symmetry that pi¡m for all i=1; : : : ; k.
(1:1:2:1) If r �=p− m, then consider the weight f :�∗→N given by

f(
m) = ‘ + 1; f(%n) = 1; f(
i) = f(%j) = f(#) = 0

for i �=m and j �= n. Then all the rules from G decrease the weight, and G is terminating.
(1:1:2:2) If r=p−m; then let
=
m; %= %n; �1 = {
; %} and = :�∗→�∗1 be the

projection, that is = is the morphism deAned by =(x)= x for x∈�1 and =(x)= 1 for
x∈� − �1. Projecting G with =; we have the system

G1 = =(G) = {
→ %7; %→ 1; %
→
%7+>};
where 0676‘ and 06>61. Then this G1 is terminating because with the weight
function |:|% and ;= 7+ >+1; the rules of G1 decreases the quasi-order 4′ deAned by
the function

f′

; ;(x) = |u0|;? + |u1|;?−1 + · · ·+ |u?|

for x= u0
u1
 · · ·
u? with ui ∈ %∗ (recall the remark after Lemma 8.6). Hence G is
terminating by Lemma 8.3.
Summarizing, in Case (1:1), R is nonterminating, if and only if G is nonterminating,

if and only if k¿0; ‘¿0 and there are i and j such that 16i6k; pi =m, 16j6‘
and qj = n.
(1:2) Subcase m¿p; n¡q: We have

A = {a; : : : ; ap}; B = {b; : : : ; bn};
SA = {ap−1bq; ap−2bq; : : : ; bq};
SB = {apbq−1; apbq−2 : : : ; apbq−n}:

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 625

The word t is uniquely decomposed as

t = bn(ap−p1bq) · · · (ap−pk bq)wam;

where 16p16p−1; 16pi6p for i=2; : : : ; k; and w has neither a preAx of the form
ap′

bq with 06p′6p− 1 nor the suPx a.
In this situation it is easy to see that R is right barren, and thus it is terminating.
(1:2′) Subcase m¡p; n¿q: Similarly to Subcase (1:2), R is left barren, and termi-

nating.
(1:3) Subcase m¿p; n¿q: Then, R is very gentle because w
 contains bn and w%

contains am. We have

A = {a; : : : ; ap}; B = {b; : : : ; bq};

Let
i = ai and %j = bj for i=1; : : : ; p and j=1; : : : ; q as before. Moreover, we have

SA = {ap−1bq; ap−2bq : : : ; bq}; SB = {apbq−1; apbq−2 : : : ; ap};

and t is uniquely decomposed as

t = bn(ap−p1bq) · · · (ap−pk bq)w(apbq−q‘) · · · (apbq−q1)am;

where 16p16p−1; 16pi6p for i=2; : : : ; k; 16q16q−1; 16qj6q for j=2; : : : ; ‘
and w has neither a preAx of the form ap′

bq with 06p′6p − 1 nor a suPx of the
form apbq′ with 16q′6q− 1. Let m= 8p+m′ and n= �q+ n′; where 16m′6p and
16n′6q. We have

�(%n′) =
�
p
p1 · · ·
pk ; �(
m′) = %q‘ · · · %q1%

8
q

and

�(
i) = %8i
q ; �(%j) =
�j

p

for i �=m′ and for j �= n′, where 8i = [(m− i)=p] and �j = [(n− j)=q]. Thus, we have

SR = {
i → #%8i
q ;
m′ → #%q‘ · · · %q1%

8
q ; %j →
�j

p #; %n′ →
�
p
p1 · · ·
pk#

| i = 1; : : : ; p; i �= m′; 8i �= 0; j = 1; : : : ; q; j �= n′; �j �= 0}:

(1:3:1) If m¿2p; n¿2q; then R is s-nonterminating. In fact, 8p = [(m−p)=p]¿1 and
�q = [(n−q)=q]¿1; and SR contains the rules
p→ #%8p

q if m �=m′ (or
p→ #%q‘ · · · %q1

%8
q if p=m′) and %q→
�q

p # if q �= n′ (or %q→
�
p
p1 · · ·
pk# if q= n′). Therefore, SR

is nonterminating.
(1:3:2) Case p6m¡2p: Then,

8 =

{
0 if m = p;

1 otherwise;

626 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

8i =1 for i=1; : : : ; m′− 1 and �j¿0 if j6n− q. Hence, the system SR consists of the
following rules:

i → #%q (i = 1; : : : ; m′ − 1) if m �= p;

m′ → #%q‘ · · · %q1%
8
q ;

%j →
�j
p # (j = 1; : : : ;min{q; n− q}; j �= n′);

%n′ →
�
p
p1 · · ·
pk#: (10.1)

It is easy to see that SR is nonterminating if and only if one of the following three
conditions is satisAed (the case m=p and q= n is excluded because it is contained in
Case (1:1)):
(i) m′ =p (i.e. m=p), and there is j such that qj6n− q;
(ii) m′ �=p (i.e. p¡m¡2p), n′ = q (i.e. n≡ 0 (mod q)); and there is i such that

pi6m′;
(iii) m′ �=p and n′ �= q; and there are i; j such that pi =m′; qj = n′.
To consider the possibility of g-nonterminating, we Arst treat the following two

cases:
(1:3:2:1) k = ‘=0: In this case w �=1.
(1:3:2:2) k �=0; ‘ �=0:
In the above two cases, R is not simple, that is, G′

R �= ∅, if and only if w= a&b�; 06&
¡p; 06�¡q. If w= a&b�; then we have

G′
R = {%n′
m′ →
�

p
p1 · · ·
pk
p−&%q−�%q‘ · · · %q1%
8
q}:

We claim that G=SR ∪G′
R is terminating, if any of conditions (i)–(iii) is not satis-

Aed. Set
=
m′ and %= %n′ . We prove the claim separately in the cases corresponding
to (i)–(iii).
(i) m′ =p (i.e. m=p): We assume that qj¿n−q for all j=1; : : : ; ‘. Let �1 = {
; %j |

16j6min{q; n− q}}; = :�∗→�∗1 be the projection and G1 ==(G). Then,

G1 = {
→ 1; %j →
�j ; %→
�+@; %
→
�+@+>%>′ | 16j6min{q; n− q}; j �= n′};

where @¡k and > and >′ are 0 or 1. Applying the dual result of Lemma 8.6, we can
show that G1 is terminating.

(ii) m′ �=p and n′ = q: We assume pi¿m′ for all i=1; : : : ; ‘. Let �1 = {
; %} and
deAne a morphism : :�∗→�∗1 by

:(
i) =

{

 for i = 1; : : : ; m′

1 for i = m′ + 1; : : : ; p;

:(%j) = % for j = 1; : : : ; q;

:(#) = 1:

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 627

Then,

:(G) = {
→ %;
→ %‘+1; %→ 1; %
→
>%‘+2}

is terminating by Lemma 8.6. Thus G is also terminating.
(iii) m′ �=p and n′ �= q: We assume pi �=m′ for all i or qj �= n′ for all j. Set

�1 = {
; %}; �2 =� − �1 and let = :�∗→�∗1 be the projection. Let

G2 = {
i → #%q; %j →
�j
p # | i = 1; : : : ; m′ − 1; j = 1; : : : ; q; q �= n′; �j �=0}

and G1 =G−G2. Clearly, G2 is terminating and =(A)==()= 1 for all A→ ∈G2.
If pi �=m′ for all i; then

=(G1) = {
→ %7; %→ 1; %
→
>%7+>′};

where 0676‘ and 06>; >′61. On the other hand if qj �= n′ for all j; then

=(G1) = {
→ 1; %→
@; %
→
@+>%>′};

where 06@6k and 06>; >′61. In either case by using Lemma 8.6 and its dual form
we see that =(G1) is terminating. By Lemma 8.4, G is terminating.
We have proved the claim. Therefore, in case (1:3:2:1) R is always terminating, and

in case (1:3:2:2) R is nonterminating if and only if it is s-nonterminating if and only
if one of the conditions (i)–(iii) is satisAed.
(1:3:2:3) k �=0; ‘=0: If m=p; then R is right barren and terminating. Otherwise,

the system SR is given by

i → #%q (i = 1; : : : ; m′);

%j →
�j
p # (j = 1; : : : ;min{q; n− q}; j �= n′);

%n′ →
�
p
p1 · · ·
pk#: (10.2)

On the other hand, the system G′
R can be nonempty only if w is written as w= a&b�;

06&¡p; 06�¡q: If w �=1; then

G′
R = {%n′
m′ →
�

p
p1 · · ·
pk
p−&%q−�%q}

and we can show in a similar way to Cases (1.3.2.1) and (1.3.2.2) above that G=SR ∪
G′

R is nonterminating, if and only if SR is nonterminating, if and only if condition (ii)
above holds.
So we only discuss the case when w=1: In this case the system G′

R consists of the
following rules:

%n′
i →
�
p
p1 · · ·
pk
2p−m+i%2

q (i = 1; : : : ; m′);

%n′
i →
�
p
p1 · · ·
pk
p−m+i%q (i = m′ + 1; : : : ; p): (10.3)

628 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

(1.3.2.3.1) If n′ �= q; that is n �≡ 0 (mod q); then G is terminating. In fact, consider
the weight function f :�∗→N deAned by

f(
i) = 2 for i = 1; : : : ; p− 1;

f(
p) = f(#) = 0;

f(%j) = 1 for j = 1; : : : ; q; j �= n′;

f(%n′) = 2(k + 2):

Then G is f-decreasing and terminating.
(1.3.2.3.2) n′ = q; that is, n≡ 0 (mod q): We claim that G is not terminating. In fact,

letting %= %q the system G contains the rules:

i → #% (i = 1; : : : ; m′);

%→
�
p
p1 · · ·
pk#;

%
i →
p
p1 · · ·
pk
2p−m+i%2 (i = 1; : : : ; m′);

%
i →
p
p1 · · ·
pk
p−m+i% (i = m′ + 1; : : : ; p): (10.4)

Since p− m+ i= i − (m− p)¡i; the system G satisAes the condition on the system
S in Lemma 8:7. Hence G admits a loop and is nonterminating.
(1.3.2.4) k =0; ‘ �=0: If n= q; R is left barren and terminating, otherwise, the system

SR is given by

i → #%q (i = 1; : : : ; m′ − 1);

m′ → #%q‘ · · · %q1%
8
q ;

%j →
�j
p # (j=1; : : : ;min{q; n− q});

where 8=0 if m=p and 8=1 otherwise. As in Case (1.3.2.3), the system G′
R

can be nonempty only if w= a&b�; 06&¡p; 06�¡q: Again if w �=1; G=SR;
⋃
G′

R

is terminating, if and only if SR is terminating. Thus, R is nonterminating if and only
if the previously given condition (i) holds.
When w=1; the system G′

R consists of the following rules:

%j
m′ →
�j+1
p %q−j̃%q‘ · · · %q1%

8
q (j = 1; : : : ;min{q; n− q});

where j̃≡ j − n (mod q); 06j̃¡q.
(1.3.2.4.1) If m′ �=p; that is m �=p; G is terminating as in (1.3.2.3.1).
(1.3.2.4.2) If m=p (and if n¿q); then G is not terminating as in (1.3.2.3.2)
(1.3.3) Case q6n¡2q: dual to Case (1.3.2).
(2) The case where t ∈ a�∗a; that is, t= anvam; m; n¿0; v∈�+ − (a�∗ ∪�∗a):

If n¿p or v =∈ bq�∗; then B=OVL(s; t)= ∅; and R is terminating. Otherwise, t is

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 629

decomposed as

t = ap0bq(ap−p1bq) · · · (ap−pk bq)wam;

where 0¡p0¡p; 0¡pi6min{m;p} for i=1; : : : ; k and w∈�∗ has neither a preAx
of the form ap−p′

bq; 06p′6min {m;p} nor the suPx a: We have

A = {a; a2; : : : ; am′′}; B = {ap0bq};

SA = {ap−1bq; ap−2bq; : : : ; ap−m′′
bq}; SB = {ap−p0};

where m′′ = min{m;p}.
We see that R is right very gentle. Set
i = ai; for i=1; : : : ; m′′; and %= ap0bq: Let

8i = [(m− i)=(p− p0)]; then

�(
i) = %8i ; �(%) =
p1 · · ·
pk :

Thus, we And

SR = {
i → #%8i ; %→
p1 · · ·
pk# | i = 1; : : : ;min{p;m− p+ p0}}:

(2.1) Case w �=1: Then, w∈�∗b and it is easily checked that R is left very gentle
and has no linked pair, and hence, R is simple. Thus R is nonterminating if and only
if SR is nonterminating if and only if there is i such that 16i6k and pi6m−p+p0.
(2.2) Case w=1.
(2.2.1) Case k =0; i.e. R is left s-barren: If m6p − p0; then R is right s-barren.

Hence, R is right barren and is terminating. On the other hand if m¿p; then R is left
very gentle and so left barren, and is terminating.
So, we treat the case p − p0¡m¡p: Then, R is gentle. In fact, if not, s= apbq

must be written as ai · (am) j · ap0bq with i; j¿0 by Lemma 5:4; but this is impossible.
Now, we have

SR = {
i → #%8i | i = 1; : : : ;min{p;m− p+ p0}}

and

G′
R = {%
i →
j%8i+1 | i = 1; : : : ; m};

where, m − i= 8i(p − p0) + ?i; 06?i¡p − p0 and j=p − p0 − ?i. Easily (again
by the dual of Lemma 8:6) we see that G=SR ∪G′

R is terminating. Hence, R is also
terminating.
(2.2.2) Case k¿0: If m6p − p0; then R is right barren and is terminating. If

m¿2p − p0; then pi6m − p + p0 for any i: Hence SR is nonterminating, and R is
s-nonterminating.
So, suppose that p− p0¡m¡2p− p0: We have

SR = {
i → #%8i ; %→
p1 · · ·
pk# | i = 1; : : : ; m− (p− p0)}:

630 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

If there is i such that 16i6k; pi6m− (p−p0); then SR is nonterminating. Now,
suppose that there is no such i; that is, pi¿m−p+p0 for all i=1; : : : ; k: We see that
R is gentle as in (2.2.1). We have

G′
R = {%
i →
p1 · · ·
pk
j%8i+1 | i = 1; : : : ; m};

where m− i= 8i(p− p0) + ?i; 06?i¡p− p0 and j=p− p0 − ?i:
Note that ?i =m− i and j=p−p0− (m− i)= i− (m−p+p0)¡i if i¿m−p+p0.

Hence by Lemma 8:7 we see that G=SR ∪G′
R admits a loop and is nonterminating.

Thus, in Case (2.2) R is nonterminating if and only if k¿0 and m¿p− p0:
(3) The case where t ∈ b�∗b; that is, t= bnvbm; m; n¿0; v∈�+−(b�∗ ∪�∗b): This

case is dual to (2).
(4) The case where t ∈ a�∗b; that is, t= anvbm; m; n¿0; v∈�∗ − (b�∗ ∪�∗a): If

m¿p or n¿q; then A or B is empty, and R is terminating. Suppose m¡p and n¡q:
Since t does not contain s and |s|¡|t|; v cannot be empty. Hence, v= bgwaf with
g; f¿0; w∈�∗ − (b�∗ ∪�∗a): If g¡q or f¡p; then again A or B is empty, and R
is terminating. Otherwise,

t = (anbq)bg−qwaf−p(apbm):

Thus, both A and B are singletons;

A = {apbm}; B = {anbq}:

By Shikishima-Tsuji et al. [9, Theorem 2] R is nonterminating if and only if g− q+
m= q and f − p+ n=p; that is,

t = anb2q−mwa2p−nbm; w ∈ �∗ − (b�∗ ∪ �∗a):

Moreover, in this case R is s-nonterminating.
We can sum up the above case study into the following list of nonterminating

systems.

Theorem 10.1. The system {apbq→ t} over {a; b} is nonterminating; if and only if
(0) t contains apbq as subword;

or t is one of the following forms:
(1) t= bn(ap−p1bq) · · · (ap−pk bq)w(apbq−q‘) · · · (apbq−q1)am;

where n; m¿1; 0¡p1¡p; 0¡pi6p for i=2; : : : ; k; 0¡q16q; 0¡qj6q for j=2;
: : : ; ‘; w∈�∗; and one of the following holds:
(1:1) m¿2p and n¿2q;
(1:2) there are i and j such that 16i6k; 16j6‘; pi≡m (modp) and qj ≡ n

(mod q);
(1:3) m≡ 0 (modp) and
(1:3:1) there is j such that 16j6‘ and qj6n− q; or
(1:3:2) k =0; w=1; n¿q; and ‘¿0 or m¿p;

Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632 631

(1:4) n≡ 0 (mod q) and
(1:4:1) there is i such that 16i6k and pi6m− p; or
(1:4:2) ‘=0; w=1; m¿p; and k¿0 or n¿q:
(2) t=(ap−p0bq)(ap−p1bq) · · · (ap−pk bq)wam;

where m¿0; 0¡p0¡p; 0¡pi6min{m;p} for i=1; : : : ; k; w∈�∗; and one of the
following holds:
(2:1) there is i such that 16i6k and pi6m− p0;
(2:2) k¿0; w=1 and m¿p0.
(3) t= bnw(apbq−q‘) · · · (apbq−q1)(apbq−q0);

where n¿0; 0¡q0¡q; 0¡qj6min{n; q} for i=1; : : : ; ‘ and w∈�∗; and one of the
following holds:
(3:1) there is j such that 16j6‘ and qj6n− q0;
(3:2) ‘¿0; w=1 and n¿q0:
(4) t= amb2q−nwa2p−mbn with 0¡m¡p; 0¡n¡q and w∈�∗.

Here we point out the fact known from our proof that the system R= {apbq→ t}
is nonterminating if only if it is g-nonterminating if and only if it has a gentle loop.
This supports McNaughton’s conjecture that every nonterminating one-rule system has
a loop.

Acknowledgements

The authors express their hearty thanks to the referee for his or her valuable com-
ments and suggestions.

References

[1] J. Berstel, D. Perron, Theorey of Codes, Academic Press, New York, 1985.
[2] G. Huet, D. Lankford, On the uniform halting problem for term rewriting systems, Tech. Report 283,

INRIA, 1978.
[3] W. Kurth, Termination und Kon$uenz von Semi-Thue-systemen mit nur einer Regel, Dissertation,

Technischen Univ. Clausthal, 1990.
[4] Y. Matiyasevich, G. SLenizergues, Decision problems for semi-Thue systems with a few rules, Proc.

LICS ’96 IEEE, 1996, pp. 523–531.
[5] R. McNaughton, The uniform halting problems for one-rule semi-Thue systems, Rensselaer Polytechnic

Institute Report 94-18, 1994.
[6] R. McNaughton, Well behaved derivations in one-rule Semi-Thue systems, Rensselaer Polytechnic

Institute Report 95-15, 1995.
[7] R. McNaughton, Correction to “The uniform halting problems for one-rule semi-Thue systems”, personal

communication, 1996.
[8] G. SLenizergues, On the termination-problem for one-rule semi-Thue systems, Proc. RTA ’96, Lecture

Notes in Computer Science, vol. 1103, Springer, Berlin, 1996, pp. 302–316.
[9] K. Shikishima-Tsuji, M. Katsura, Y. Kobayashi, On termination of con$uent one-rule string-rewriting

systems, Inform. Process. Lett. 61 (1997) 91–96.
[10] E. Tahhan-Bittar, ComplexitLe linLeaire du problXeme de Zantema, C.R. Acad. Sci. Paris, Imform. ThLeor.

323 (1996) 1201–1206.

632 Y. Kobayashi et al. / Theoretical Computer Science 262 (2001) 583–632

[11] H.R. Walters, H. Zantema, Rewrite Systems for Integer Arithematic, Lecture Notes in Computer Science,
vol. 914, Springer, Berlin, 1995, pp. 324–338.

[12] C. Wrathall, Con$uence of one-rule Thue systems, in: K.V. Schulz (Ed.), Word Equations and Related
Topics, Lecture Notes in Computer Science, vol. 572, Springer, Berlin, 1992, pp. 237–246.

[13] H. Zantema, A. Geser, A Complete Characterization of Termination of 0p1q → 1r0s, Lecture Notes in
Computer Science, vol. 914, Springer, Berlin, 1995, pp. 41–55.

