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Abstract

In this paper we show that the component hierarchy of chain-free distributed regular tree
grammars cooperating with terminal strategy is in3nite with respect to tree language generating
capacity. More exactly, we prove that cf-CD-RTG�(n)⊂ cf-CD-RTG�(2(n − 1)2 + 3), where
n¿1 and cf-CD-RTG�(n) denotes the class of tree languages generated by chain-free distributed
regular tree grammars of at most n components cooperating with terminal strategy. c© 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Cooperating distributed grammar systems were introduced in [2] as a grammatical
counterpart of the blackboard model of problem solving [9]. Broadly speaking, here the
agents (called also components) are Chomsky grammars and the problem to be solved
is to generate a terminal string from a common initial nonterminal. Hence the current
state of the solution is a sentential form, which is written on the blackboard. The agent
grammars can contribute to obtaining the solution by applying some derivation steps to
the sentential form. The cooperation strategy prescribes which agent becomes active,
then when it becomes inactive, and the number of the derivation steps an active agent
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can perform. The research of the topic became popular in a short time and yielded a
lot of results of which a good summary and literature can be found in [3, 10].

Recently in [6], it was realized that the principle of distribution and cooperation
can also be applied to tree grammars, tree automata, and tree transducers. (For notions
concerning tree automata the reader is referred to [1, 4, 13], information on tree trans-
ducers can be found in [5, 11–13]) . Most recently, cooperating distributed hyperedge
replacement systems were considered in [8].

In this paper we consider cooperating distributed regular tree grammars (or cd-rtg’s).
A cd-rtg diEers from a cooperating distributed (string) grammar in that it generates
trees over a ranked alphabet (instead of strings). As far as the cooperating strategy of
the components is concerned, here we consider only the so-called terminal cooperating
strategy (called t-mode in the literature of cooperating distributed grammar systems).
This means that an agent must be active as far as it can make a derivation step on the
sentential form.

Now we turn to discussing the results of this paper. We start with showing the
concept of the cooperating distributed regular tree grammar.

A cd-rtg is a system G= (A; 
;P; S), where A is a 3nite set, called the set of
nonterminal symbols, 
 is a ranked alphabet, called the terminal ranked alphabet,
P= {P1; : : : ; Pn} is a 3nite set of components, and S ⊆A is the set of start symbols. A
component Pi consists of a 3nite number of rules having the form a→ t, where a∈A
and t ∈T
(A) with T
(A) being the set of trees over 
 indexed by A. A sentential
form is also an element of T
(A) and a terminal sentential form is a tree in T
, which
is the set of trees over 
. We describe the cooperating strategy of components in terms
of relations over sentential forms. For an i, where 16i6n, let us de3ne the relation
⇒i over sentential forms such that for every u; v∈T
(A), u⇒i v if v can be obtained
from u by applying a derivation step by a rule in Pi to u, and let ⇒∗i the reIexive,
transitive closure of ⇒i. Moreover, de3ne u⇒�

i v if u⇒∗i v and there is no v′ ∈T
(A)
such that v⇒i v′. The terminal cooperating strategy can be described by the relations
⇒�
i with 16i6n, because the expression u⇒�

i v can be interpreted as follows. The
actual state of the solution (sentential form) was u, then the component Pi became
active, it worked on the solution (by applying its rules to it) as far as it could and the
state of the solution became v. Thus, the tree language generated by G with terminal
cooperating strategy, denoted by L�(G), consists of all trees v∈T
 for which there is
a derivation

s = u0 ⇒�
G; i1 u1 ⇒�

G; i2 u2 : : : ul−1 ⇒�
G; il ul = v;

for some s∈ S, l¿1, 16i1; : : : ; il6n, and u0; : : : ; ul ∈T
(A).
Next, we discuss the role of the so-called chain rules appearing in the components.

A rule is called a chain rule if it has the form a→ b, where a; b∈A. There may be two
kinds of chain rules in a component Pi, viz. inner chain rules and terminal chain rules.
We call a chain rule a→ b inner if there is a rule b→ t in Pi. Since there is a standard
construction to eliminate inner chain rules of components (in fact, it is adopted from
Chomsky grammars), we can assume, without loss of generality, that there are no such
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chain rules in the components. A chain rule a→ b∈Pi is a terminal chain rule if there
is no rule of the form b→ t in Pi. The application of a terminal chain rule a→ b∈Pi
to an occurrence of a in a sentential form u∈T
(A) can be interpreted as follows. The
component Pi does not contribute to the sentential form u by extending that occurrence
of a in it, rather it activates a component Pj to do so in which there is a rule of the
form b→ t.

Nevertheless, terminal chain rules play an important role in the discussion of cooper-
ating distributed systems. For instance, the proof of the following fundamental result is
based on terminal chain rules. Let us denote by CD-RTG�(n) the class of tree languages
generated by cd-rtg’s of at most n components, where n¿1, and by CD-RTG� the class
of tree languages generated by all cd-rtg’s, in both cases with terminal cooperation strat-
egy. Obviously, CD-RTG�(n)⊆CD-RTG�(n+1) and CD-RTG� =

⋃∞
n=1 CD-RTG�(n).

It was shown that CD-RTG� =CD-RTG�(3), which says that three components coop-
erating with terminal strategy are enough to generate all tree languages in CD-RTG�.
(The proof of the corresponding celebrated result for cooperating distributed gram-
mar systems, see e.g. [10] for this proof, was adopted to trees in [6].) We can see
that terminal chain rules are used intensively in the proof, in fact, two of the three
components consists of merely terminal chain rules. Hence, the natural question arises
whether the result CD-RTG� =CD-RTG�(3) remains valid for cd-rtg’s in which there
are no terminal chain rules.

In this paper, we prove that the same statement does not hold if we do not allow
the presence of terminal chain rules in the components, i.e., if every rule contributes to
the solution by at least one terminal symbol. We call such cd-rtg’s chain-free cd-rtg’s
and prove that, for every n¿1, cf -CD-RTG�(n)⊂ cf -CD-RTG�(2(n− 1)2 + 3), where
the pre3x cf means chain-free. Hence, the component hierarchy of chain-free cd-rtg’s
does not collapse, i.e., there is no 3nite number of chain-free components which would
be suMcient to generate all tree languages in cf -CD-RTG�.

2. De�nitions

If → is a binary relation over a set H , then we write a→ b for (a; b)∈→. We
denote by →+ and by →∗ the transitive and the reIexive, transitive closure of →,
respectively. Moreover, for two elements a; b∈H , we de3ne a→� b if and only if
a→∗ b and there is no c∈H such that b→ c.

By a ranked alphabet we mean a 3nite, nonempty set 
 in which every symbol �
has a unique rank in the set of nonnegative integers. A symbol of rank m is called an
m-ary symbol. For each m¿0, the set of m-ary symbols in 
 is denoted by 
m.

Let 
 be a ranked alphabet and A be an arbitrary set disjoint with 
. The set of
terms (or rather trees) over 
 indexed by A is denoted by T
(A) and de3ned to be
the smallest set U satisfying the following two conditions:
(i) A ∪ 
0⊆U .
(ii) If n¿1, �∈
n and t1; : : : ; tn ∈U , then the term �(t1; : : : ; tn) is also in U .
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The set T
(∅) is written as T
 and is called the set of trees over 
. A tree language
L over 
 is a subset of T
.

The height of a tree t ∈T
 is denoted by height(t) and is de3ned as follows.
If t ∈A ∪ 
0, then height(t) = 0, otherwise, if t= �(t1; : : : ; tn), then height(t) = 1 +
max{height(ti) | 16i6n}.

Let A be a 3nite set and let us 3x an order a1; : : : ; am of the elements of A. Moreover,
let t ∈T
(A) and L= (L1; : : : ; Lm) be a tuple of subsets of T
(A). We de3ne the tree
language t · L as follows:
(i) For every �∈
0, � · L= {�}.
(ii) For every 16i6m, ai · L=Li.
(iii) If t= �(t1; : : : ; tn) for some n¿1; �∈
n and t1; : : : ; tn ∈T
(A), then t·L=

{�(u1; : : : ; un) | ui ∈ ti · L; for every 16i6n}.
Informally, t · L consists of all trees that are obtained by substituting, for every

16i6m, elements of Li for ai in t such that diEerent occurrences of ai can be substi-
tuted by diEerent elements of Li.

For a tree language K ⊆T
(A), we de3ne K · L=
⋃
t∈K t · L. Moreover, for a tuple

K = (K1; : : : ; Km), we put K ·L= (K1L; : : : ; KmL). It is easy to check that · is associative,
i.e., (K · L) ·M =K · (L ·M), for every K ;L, and M .

A cd-rtg, cf. [6], is a tuple G= (A; 
;P; S), where
• A is a 3nite set, called the set of nonterminal symbols,
• 
 is a ranked alphabet with A∩
= ∅,
• P is a 3nite set of rule sets P1; : : : ; Pn, where each rule set Pi ∈P is a 3nite set of

rules of the form a→ r with a∈A and r ∈T
(A), and
• S ⊆A is the set of start symbols.
The set Pi is called the ith component of G. We put dom(Pi) = {a∈A | a→ r ∈Pi for
some r ∈T
(A)}. Moreover, a rule of the form a→ b, where a; b∈A, is called a chain
rule. A cd-rtg with no chain rules is called chain-free and the expression chain-free
cd-rtg is abbreviated to cf-cd-rtg.

We de3ne the tree language generated by G with terminal cooperating strategy
(cf. t-mode in [2, 3, 10].

First, for every i with 16i6n, the relation ⇒i ⊆T
(A)×T
(A) is de3ned in the
following way. For any two trees t; u∈T
(A), we have t ⇒i u, if and only if there is
a rule a→ r ∈Pi and u is obtained from t by substituting r for an occurrence of a in t.

The tree language generated by G with terminal cooperating strategy (or �-strategy)
is denoted by L�(G) and consists of all trees t ∈T
 for which there is a derivation

s = u0 ⇒�
i1 u1 ⇒�

i2 u2 : : : ul−1 ⇒�
il ul = t;

for some s∈ S, l¿1,16i1; : : : ; il6n, and u0; : : : ; ul ∈T
(A).
The class of all tree languages generated by cd-rtg’s of at most n components

with �-cooperation strategy will be denoted by CD-RTG�(n), where n¿1. Moreover,
CD-RTG� =

⋃∞
n=1 CD-RTG�(n). The corresponding classes generated by chain-free cd-

rtg’s are denoted by cf -CD-RTG�(n) and cf -CD-RTG�.
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A cd-rtg with one component is called a regular tree grammar and is written as
G= (A; 
; P; S) where P=P1. Moreover, we write ⇒ for ⇒1 and L(G) for L�(G).
Then it is easy to see that L(G) = {t ∈T
 | s⇒∗ t for some s∈ S}. A tree language
generated by a regular tree grammar is called a regular tree language.

There is a very close connection between regular tree languages and sets of derivation
trees of context-free grammars. Hence there is a counterpart of Bar–Hillel’s pumping
lemma for regular tree languages.

Lemma 2.1 (cf. Lemma II. 10.1 of Gecseg, Steinby [7]). Let L⊆T
 be a regular
tree language; then there exists an integer N¿0; depending on L; which satis;es
the following conditions. For every t ∈L; if height(t)¿N; then there are trees t1; t2 ∈
T
({∗}) and t3 ∈T
; where ∗ =∈
; t2 �= ∗; and ∗ occurs exactly once both in t1 and t2;
such that t= t1

∗← t2 ∗← t3 and; for every n¿0; the tree t1(
∗← t2)n ∗← t3 is also in L.

(Here t1
∗← t2 is the tree obtained by substituting t2 for the only occurrence of ∗ in

t1. Moreover, we de3ne t1(
∗← t2)0 = t1 and t1(

∗← t2)i= t1 ∗← t2( ∗← t2)i−1, for every i¿1.
Notice that t1(

∗← t2)1 = t1
∗← t2.)

3. The hierarchy theorem

In this section we show that the set {cf -CD-RTG�(n) | n¿1} contains in3nite proper
hierarchy with respect to the inclusion. This means that, broadly speaking, the more
components a cf-cd-rtg has, the higher its generating power is.

We prove our result in the following way. First, for each k¿1, we de3ne a tree
language L(k) and we show that it can be generated by a cf-cd-rtg of 2k+1 components.
Next, we prove that, for arbitrarily given k; n¿1, if L(k) can be generated by a cf-cd-rtg
of n components, then (n− 1)2¿k must hold. (Actually, this is the key lemma to the
proof of the in3niteness of the hierarchy.)

The hierarchy theorem comes from these results immediately as follows. On the
one hand, for every k; n¿1, if k ¿ (n − 1)2, then L(k) cannot be generated by
a cf-cd-rtg of n components, i.e., L((n−1)2+1) =∈ cf -CD-RTG�(n). On the other hand,
L((n−1)2+1) ∈ cf -CD-RTG�(2((n − 1)2 + 1) + 1). Hence we obtain cf -CD-RTG�(n)⊂
cf -CD-RTG�((2(n− 1)2 + 3)).

Before the formal proof, we need some preparations. Let G= (A; 
;P; S) be a cd-rtg
with P= {P1; : : : ; Pn} in the sequel.

A tree u∈T
(A) is a sentential form of G, if there are s∈ S, l¿1, 16i1; : : : ; il6n,
and u0; : : : ; ul ∈T
(A), such that

s = u0 ⇒�
i1 u1 ⇒�

i2 u2 : : : ul−1 ⇒∗
il ul = u:

The sentential form u is called component closing, if, in addition, ul−1⇒�
il ul= u holds.

In what follows, we abbreviate the expression component closing just to closing. We
call u ;rst closing sentential form, if it is a closing sentential form with l= 1. Finally,
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Fig. 1. The tree #($i1 (: : : $il (#) : : :); $i1 (: : : $il (#) : : :)) in L(k).

a closing sentential form u is said to be useful, if there are k¿0, 16j1; : : : ; jk6n,
v0; : : : ; vk ∈T
(A), and t ∈T
, such that

u = v0 ⇒�
j1 v1 ⇒�

j2 v2 : : : vk−1 ⇒�
jk vk = t;

i.e., a terminal sentential form can be derived from u.
Let a1; : : : ; am be a 3xed order of elements of A, i.e., the set of nonterminal symbols

of G. For every i with 16i6n, we de3ne the tuple K (i) = (K (i)
1 ; : : : ; K

(i)
m ), such that, for

every j with 16j6m, K (i)
j = {t ∈T
(A) | aj ⇒�

i t}. We call K (i) the �-tuple generated

by Pi. Note that, if aj =∈ dom(Pi), then K (i)
j = {aj}, otherwise, K (i)

j ⊆T
(A − dom(Pi))

implying aj =∈K (i)
j . Moreover, if aj ∈ dom(Pi), then K (i)

j is a regular tree language gen-

erated by the regular tree grammar G(i)
j = (dom(Pi); 
 ∪ (A − dom(Pi)); Pi; {aj}), i.e.,

K (i)
j =L(G(i)

j ). Then L�(G) can also be expressed as

L�(G) = ∪(a · K (i1) · · · · · K (il) ∩ T
 | a∈ S; l¿1; 16i1; : : : ; il6n):

Now we are ready to prove the result of this section. First, for each k¿1, we de3ne
the language L(k).

De�nition 3.1. Let k¿1. We put 
(k) = {$1; : : : ; $k ; #}, where the rank of $1; : : : ; $k is
1 and the rank of # is 0. Moreover, let # =∈
(k) with rank 2. The tree language L(k) is
de3ned as

L(k) = {#(t; t) | t ∈T
(k)};

i.e., L(k) is the set of trees of the form #($i1 (: : : $il(#) : : :); $i1 (: : : $il(#) : : :)), where l¿0
and 16i1; : : : ; il6k (see Fig. 1).
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Now we make two simple, but important observations. The 3rst one gives a lower
bound of the number of trees in L(k), which are not higher than a given h¿1.

Observation 3.2. Let h¿1, then the number of the trees of height h in L(k) is kh−1.
Hence, kh−1 is also a lower bound of the number of the trees in L(k) of height at
most h.

The second observation shows that L(k) can be generated by a cf-cd-rtg of 2k + 1
components. (We note we guess that L(k) cannot be generated by a cf-cd-rtg of less
than 2k + 1 components, however, we cannot prove this yet.)

Observation 3.3. For every k¿1, L(k) ∈ cf -CD-RTG�(2k + 1) holds.

Proof. It is easy to check that the following cf-cd-rtg of 2k + 1 components generates
L(k):

R1 : a0→ #(a1; a1); a2→ $1(a1)
R2 : a1→ $1(a2)

...
Rk+1 : a1→ $k(a2)
Rk+2 : a2→ $2(a1)

...
R2k : a2→ $k(a1)
R2k+1 : a1→ #; a2→ #

Now, we are ready to prove the key statement of this section. The following lemma
gives a lower bound of the number of components of such cf-cd-rtg’s, which generate
L(k).

Lemma 3.4. Let n; k¿1 be arbitrarily ;xed integers. If a cf-cd-rtg of n components
generates L(k), then (n− 1)2¿k holds.

Proof. Suppose that a cf-cd-rtg G= (A; 
;P; S) generates L(k), i.e., L�(G) =L(k).
Clearly, we can assume that 
=
(k) ∪{#}.

Let a1; : : : ; am and P1; : : : ; Pn be arbitrarily 3xed orders of the elements of A and P,
respectively. Denote by K (1); : : : ;K (n) the �-tuples generated by the components of G,
respectively, to the 3xed order.

Let us investigate, how G derives a tree in L(k). By de3nition, a derivation begins
with a start symbol a∈ S. Then a component Pi of G is chosen with a∈ dom(Pi) and
this will be the 3rst active component. By applying rules of Pi under �-strategy, a 3rst
closing sentential form #(t1; t2)∈T
(A) is derived from a, such that a⇒�

i #(t1; t2). In
fact, #(t1; t2)∈K (i)

j , where j is de3ned by a= aj.
Hence, each tree t ∈L�(G) can be associated with an expression of the form

{#(t1; t2)} · K (i1) · · · · · K (il);
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where l¿0 and #(t1; t2)∈T
(A) is a useful 3rst closing sentential form and t∈{#(t1; t2)}·
K (i1) · · · · ·K (il). If this inclusion holds, then we also say that the expression {#(t1; t2)} ·
K (i1) · · · · · K (il) generates t.

Observation 3.5. There is only a ;nite number of useful ;rst closing sentential forms.

Proof. We prove by contradiction. Let us assume that the opposite of the statement
holds. This, by the above reasoning, means that there are Pi and aj, such that aj ∈ S
and K (i)

j contains an in3nite number of useful 3rst closing sentential forms. (Note that

all elements of K (i)
j are 3rst closing sentential forms, but there can also be not useful

ones in it.)
Since K (i)

j is a regular tree language, there is an integer N satisfying the condi-
tions described in Lemma 2.1. Moreover, since there are in3nite number of useful
3rst closing sentential forms in K (i)

j , there must be a useful 3rst closing sentential

form #(t1; t2)∈K (i)
j with t1; t2 ∈T
(k) (A), such that height(#(t1; t2))¿N . Since #(t1; t2)

is useful, there is a sequence K (i1); : : : ;K (il), such that

{#(t1; t2)} · K (i1) · · ·K (il) ∩ T
 �= ∅:
Moreover, at least one of t1 and t2 can be pumped (cf. Lemma 2.1), such that the
resulted trees are all useful 3rst closing sentential forms.

Assume that t1 can be pumped in the sequel. (The proof for t2 can be performed
in the same way.) This means that there are trees u1; u2 ∈T
(k) ({∗}) with u2 �= ∗ and

u3∈T
(k) (A), such that t1 =u1
∗← u2 ∗← u3 and, for every j¿0, the tree #(u1(

∗← u2)j ∗← u3;
t2) is a useful 3rst closing sentential form. This implies that, for any j¿1, there are
asymmetric trees in {#(u1( ∗← u2)j ∗← u3; t2)}·K (i1) · · ·K (il)∩T
 and hence in L�(G), see
Fig. 2. On the other hand, we assumed L�(G) =L(k). This is a contradiction because
L(k) consists of only symmetric trees.

Let us denote the number of useful 3rst closing sentential forms by p. Notice that
p is determined by G.

Observation 3.6. For every useful ;rst closing sentential form #(t1; t2) and expression
of the form {#(t1; t2)} · K (i1) · · · · · K (il); there is at most one t ∈L�(G); such that
t ∈{#(t1; t2)}·K (i1) ·· · ··K (il); i.e., every such expression generates at most one element
of L(k).

Proof. This can also be proved by contradiction as follows. Let us assume that there
are t; t′ ∈L�(G), such that t �= t′ and t; t′ ∈{#(t1; t2)} · K (i1) · · · · · K (il). Then there are
nonterminals b1; b2 ∈A and trees u1; u2; u′1; u

′
2 ∈T
, such that t and t′ can be written in

the form t= #(t1
b1← u1; t2 b2← u2) and t′ = #(t1

b1← u′1; t2 b2← u′2), respectively. (Note that the
trees u1 and u′1 are in the component of K (i1) · · · · ·K (il) belonging to b1, and similarly,
u2 and u′2 are in the component of K (i1) · · · · · K (il) belonging to b2.) Since t �= t′, at
least one of u1 �= u′1 and u2 �= u′2 holds. Suppose that u1 �= u′1. (The proof for u2 �= u′2



G. D,anyi, Z. F.ul.op / Theoretical Computer Science 262 (2001) 229–240 237

Fig. 2. Pumping u2 in t1 = u1
∗← u2 ∗← u3.

Fig. 3. Replacing u1 by u′1.

is similar.) Then the asymmetric tree #(t1
b1← u′1; t2 b2← u2) is also in L�(G) (see Fig. 3),

which again contradicts L�(G) =L(k).

By Observation 3:6, we obtain that diEerent trees in L�(G) are generated by diEerent
expressions.

Now let t ∈L�(G) and let {#(t1; t2)}·K (i1)·· · ··K (il) be an expression, which generates
t. We say that {#(t1; t2)}·K (i1)·· · ··K (il) is optimal for t, if there is no 16j6l, such that
{#(t1; t2)} ·K (i1) · · · · ·K (ij−1) ·K (ij+1) · · · · ·K (il) also generates t. Moreover, an expression
is optimal, if it is optimal for some t ∈L�(G). (Notice that, by Observation 3:6, an
optimal expression generates exactly one tree in L�(G). However, a tree t ∈L�(G) can
be generated by more optimal expressions.)



238 G. D,anyi, Z. F.ul.op / Theoretical Computer Science 262 (2001) 229–240

Observation 3.7. If {#(t1; t2)} · K (i1) · · · · · K (il) is an optimal expressions; then there
is no 16j¡l such that ij = ij+1.

Proof. Let {#(t1; t2)} · K (i1) · · · · · K (il) be an optimal expression for a tree t ∈L�(G).
If, for some 16j¡l, the equality ij = ij+1 holds, then, since we work with �-strategy,
K (ij+1)( =K (ij)) cannot contribute to t. Hence it can be omitted and thus the expression
is not optimal.

Observation 3.8. Let h¿1. Then p(n − 1)2h is an upper bound for the number of
trees in L�(G) of height at most h.

Proof. Since every such tree is generated by an optimal expression, moreover, an
expression generates at most one tree, it is suMcient to give an upper bound for the
number of optimal expressions generating trees of height at most h.

Therefore, let t ∈L�(G), such that height(t)6h, and let {#(t1; t2)} · K (i1) · · · · · K (il)

be an optimal expression with t ∈{#(t1; t2)} · K (i1) · · · · · K (il). Since the expression is
optimal, moreover, G is chain-free, each K (ij) in that expression must add at least one
symbol to the generated tree. Moreover, since a tree of height h consists of 2h + 1
symbols and # appears already in the 3rst closing sentential form, we obtain that l62h
must hold.

Next, we observe that every optimal expression of the above form, generating a tree
t ∈L�(G) with height(t)6h, can be extended to an (not necessarily optimal) expression
of the form {#(t1; t2)} · K (i1) · · · · · K (i2h), such that
(i) the extended expression has the property described in Observation 3:7 (i.e. there

are no identical K (ij)’s after each other in it) and
(ii) it generates t.
(Notice that the components K (il+1); : : : ;K (i2h) do not contribute to t.)

Next we determine the number of the extended expressions generating trees of height
at most h. Since there are no identical neighbours in the subexpression K (i1) · · · · ·K (i2h),
every element K (ij) can be chosen in n − 1 diEerent ways and thus the number of
subexpressions K (i1) · · · · ·K (i2h) obtained by extension is (n− 1)2h. Hence the number
of extended expressions generating trees of height at most h is p(n− 1)2h.

This is surely an upper bound of the number of trees generated by G of height at
most h, too.

Now we can 3nish the proof of the lemma. Recall that L(G)� =L(k). Then, for every
h¿1, G also generates all trees in L(k) of height at most h. Comparing the upper bound
of the number of such trees generated by G with the lower bound of the number of
the ones in L(k), we obtain that, for every h¿1,

p(n− 1)2h¿kh−1

must hold (cf. Observations 3:8 and 3:2).



G. D,anyi, Z. F.ul.op / Theoretical Computer Science 262 (2001) 229–240 239

Since k, n − 1, and p are positive integers, we can equivalently present the above
inequality as

ln p+ h ln(n− 1)2¿h ln k − ln k:

Rearranging the components, we get

ln p+ ln k¿h(ln k − ln (n− 1)2):

Observe that the left-hand side is a positive constant value for the given G and L(k),
meanwhile h can be an arbitrarily big positive integer. Hence, the inequality holds for
each h¿1, if and only if ln k − ln(n− 1)260, that is,

(n− 1)2¿k:

With this we complete the proof of the lemma.

The above lemma implies that, for instance, L(5) cannot be generated by a cf-cd-rtg
of three components, L(10) cannot be generated by a cf-cd-rtg of four components, etc.
On the other hand, by Observation 3:3, L(5) and L(10) can be generated by cf-cd-rtg’s
of 11 and 21 components, respectively. Thus L(11)−L(3) �= ∅ and L(21)−L(4) �= ∅ hold.

The main result of this paper is an immediate consequence of Lemma 3.4.

Theorem 3.9. The component hierarchy of cf-cd-rtg′s with �-strategy is in;nite. In
fact; cf -CD-RTG�(n)⊂ cf -CD-RTG�(2(n− 1)2 + 3); where n¿1.

Proof. It is enough to show that

cf − CD − RTG�(2(n− 1)2 + 3)− cf − CD − RTG�(n) �= ∅
holds for every n¿1.

Let n¿1 be arbitrarily 3xed and let k=(n− 1)2 + 1. By Lemma 3.4, L(k) �∈ cf -CD
− RTG�(n), because k ¿ (n− 1)2. Moreover, by Observation 3:3, L(k) ∈ cf -CD-RTG�
(2k + 1) = cf -CD-RTG�(2(n− 1)2 + 3).

4. Conclusion

In this paper we showed that the component hierarchy of chain-free distributed
regular tree grammars cooperating with terminal strategy is in3nite with respect to
tree language generating capacity. More exactly, we proved that, for every n¿1,
cf -CD-RTG�(n)⊂ cf -CD-RTG�(2(n− 1)2 + 3). This is despite the fact that the same
hierarchy for unrestricted distributed regular tree grammars collapses at n= 3.

However, we could not prove that
(i) whether the inclusion CD-RTG�(n)⊆CD-RTG�(n + 1) is strict for every n¿1,

and
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(ii) whether CD-RTG� = cf -CD-RTG�, i.e., whether chain-free cd-rtg’s are as power
ful as (unrestricted) cd-rtg’s with respect to tree language generating capacity.

These questions remain open.
Moreover, it is still also open, if the component hierarchy of chain free cooper-

ating distributed (string) grammar systems is also in3nite or not. The investigation of
this problem seems to require a technique, which is diEerent from the one applied in
this paper. The main reason of this is that a context-free string grammar can write
terminals in any part of a sentential form, while a regular tree grammar can extend the
sentential form only at its leaves.
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