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a b s t r a c t

We introduce a new lattice structure Bn on binary trees of size n. We exhibit efficient
algorithms for computing meet and join of two binary trees and give several properties
of this lattice. More precisely, we prove that the length of a longest (resp. shortest) path
between 0 and 1 in Bn equals to the Eulerian numbers 2n− (n+1) (resp. (n−1)2) and that
the number of coverings is

(
2n
n−1

)
. Finally, we exhibit a matching in a constructive way.

Then we propose some open problems about this new structure.
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

This paper introduces a new operation on rooted, ordered, binary trees called the pruning-grafting transformation. We
show that this transformation endows the set of binary trees with a new lattice structure. This is a new attempt to define a
lattice structure on a Catalan set, i.e. a set of combinatorial objects enumerated by Catalan numbers.
The set Bn of binary treeswith n internal nodes related by rotations is a lattice, the so-called n-th Tamari lattice [24]. These

lattices have been extensively studied for algebraic and combinatorial purposes. A number of references on this subject are
available in [28]. Like rotation, our pruning-grafting transformation is a simple and natural operation on binary trees. But as
for rotation, the characterization of this transformation is unfortunately rather complex.
The idea developed in this paper is both similar to, and different from the tool introduced by Parker and Ram in [30].

Similar because our pruning-grafting operation resembles their balancing exchange. But different because binary trees used
in [30] for constructing Huffman codes are unordered, whereas the binary trees in our paper are ordered.
Ordered binary trees of Bn are enumerated by the well-known n-th Catalan number

(2n
n

)
/(n + 1). A large number of

various classes of combinatorial objects are Catalan sets. It is the case, among others, of ballot sequences, planar trees, Young
tableaux, nonassociative products, stack sortable permutations, and so on. A list of over 60 types of such combinatorial
classes of independent interest has been compiled by Stanley [39, p. 219]. A certain number of explicit bijections between
these Catalan classes can also be found in the literature.
Of much of interest are the following lattices. First the uppermentioned Tamari lattices can be obtained equivalently

in two other ways. The coverings correspond to reparenthesizations of letters products [14] and to diagonal flips in
triangulations [4,19,37]. Then the lattice of noncrossing partitions, the so-called Kreweras lattice, is equipped with the
refinement order [21]. See [11,12,31,35] and numerous references in the exhaustive survey [36]. Also, Dyck words [3,17]
have been endowed by lattice structures. In [1,13] the authors studied the Stanley lattices in term of Dyck paths.
Thepaper is organized as follows. Firstwe recall some classical definitions onbinary trees. Thenwe show thatBn equipped

with the pruning-grafting transformation is a lattice. We exhibit an efficient algorithm for computing the meet and join of
two binary trees. We study some properties of this lattice and conclude by some open problems.
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2. Distribution sequences of binary trees

A binary tree is a rooted, ordered, unlabeled tree in which every node is either a leaf (i.e. a node without child) or
an internal node © having two children. We denote by Bn the set of binary trees with n internal nodes (and thus with
n + 1 leaves). It is well-known that card(Bn) = |Bn| equals the Catalan number

(2n
n

)
/(n + 1). The set B of binary trees

is recursively defined by B = + ©BB in Polish or linear notation. It is well known that a sequence with n circles and
(n + 1) squares corresponds to the Polish notation of a tree of Bn iff in every proper prefix of this sequence, the number of
circles is greater or equal to the number of squares, the last one being a square. Let TL and TR be the left and right subtrees
of T ∈ Bn. Thus, we can write T = ©TLTR. The leaves of a binary tree T are numbered by a preorder traversal (i.e. from
left to right). The order of leaves is significant. The feasible sequence of T (also called path-length sequence) is the integer
sequence `T = (`T (1), `T (2), . . . , `T (n + 1)) where `T (i) is the level number of the i-th leaf, i.e. the length of unique path
between the i-th leaf and the root [34]. Let also ¯̀ be the mirror sequence ¯̀ = (`T (n + 1), `T (n), . . . , `T (1)) which is the
feasible sequence of the mirror tree T̄ recursively defined by T̄ = ©T̄RT̄L and ¯ = . For example the tree defined in
Polish notation by © © © © © © © has the feasible sequence (1, 3, 4, 5, 5, 4, 4, 3). Its mirror is
©©© © ©©© and has the feasible sequence (3, 4, 4, 5, 5, 4, 3, 1). Now let us consider a sequence
(a(1), a(2), . . . , a(n + 1)) with an integer k ∈ [2, n + 1] such that a(k − 1) = a(k) = q. The process of replacing the pair
(a(k− 1), a(k)) = (q, q) by q− 1 in order to get the new sequence (a(1), a(2), . . . , a(k− 2), q− 1, a(k+ 1), . . . , a(n+ 1))
is called a reduction. Ruskey and Hu [34] give the following necessary and sufficient condition so that an (n + 1)-length
sequence represents a binary tree of Bn. A sequence (a(1), a(2), . . . , a(n+ 1)) is feasible iff a series of n reductions from the
left or right (in any order) reduce the original sequence to the single integer 0.
Moreover, the feasible sequence of a binary tree obeys what we call Kraft equality, a special case of the Kraft inequality

of noiseless coding theory (see [15], p. 45). A necessary condition [20, p. 404, ex. 3] for a sequence (a(1), a(2), . . . , a(n+1))
to be feasible is that:

n+1∑
i=1

2−a(i) = 1.

Lemma 1 ([20, p. 404, ex. 3]). Let `T = (`T (1), `T (2), . . . , `T (n + 1)) be a feasible sequence of a binary tree T and let T ′ be
a subtree of T where the root of T ′ is at level k in T . If m1 < m2 and (`T (m1), `T (m1 + 1), . . . , `T (m2 − 1), `T (m2)) is the
subsequence of `T corresponding to the leaves of T ′ then

m2∑
i=m1

2−`T (i) = 2−k.

The sequence 2−`T = (2−`T (1), 2−`T (2), . . . , 2−`T (n+1)) is called the density sequence of the binary tree (the sum of its entries
is one). So we define its associated distribution sequence as the ascending sequence:

LT =

(
2−`T (1), 2−`T (1) + 2−`T (2), . . . ,

i∑
j=1

2−`T (j), . . . , 1

)
.

In the sequel of this paper, the feasible sequences are denoted by lowercase letters (` for instance) and their distribution
sequences by uppercase letters (L). We assume that ≤ is the usual ordering on two n-length sequences, i.e. if ` =
(`(1), . . . , `(n+ 1)) and `′ = (`′(1), . . . , `′(n+ 1)), we say that ` ≤ `′ if `(i) ≤ `′(i) for all i ∈ [1, n+ 1].

3. The pruning-grafting transformation

In this section, we define a new transformation on binary trees which can be characterized using distribution sequences.
This induces a new structure lattice on Bn.

Definition 1. The pruning-grafting transformation→ on Bnwith n ≥ 2 is defined by the covering T → T ′ if there exist k ≥ 1,
τ1 ∈ ©{©, }

∗ and τ2 ∈ {©, }∗ such that T = τ1 ©k τ2 and T ′ = τ1© ©
k−1 τ2. Let

∗
→ be the reflexive

transitive closure of→ on Bn.

The pruning-grafting transformation prunes by replacing a ‘‘little’’ subtree T1 = © of T by a leaf and grafts this
subtree T1 = © instead of the leaf just before T1 in the Polish notation of T . See Fig. 1 for instance.

Proposition 1. Let T , T ′ ∈ Bn and `T , `T ′ be their corresponding feasible sequences. Then we have T → T ′ iff there exist p ≥ 1,
q ≥ 2 and 2 ≤ i ≤ n such that

`T = (`T (1), `T (2), . . . , `T (i− 2) , p , q , q , `T (i+ 2), . . . , `T (n+ 1)) and
`T ′ = (`T (1), `T (2), . . . , `T (i− 2) , p+ 1 , p+ 1 , q− 1 , `T (i+ 2), . . . , `T (n+ 1)).
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Fig. 1. Three pruning-grafting transformations in B7 .

Proof. One can easily prove that the condition is necessary. Conversely, let us assume that the feasible sequences of T and T ′
are `T = (`T (1), `T (2), . . . , `T (i−2), p, q, q, `T (i+2), . . . , `T (n+1)) and `T ′ = (`T (1), `T (2), . . . , `T (i−2), p+1, p+1,
q− 1, `T (i+ 2), . . . , `T (n+ 1)).
We distinguish between two cases.
(1) The i-th leaf of T is a left leaf. Since the i-th and (i+ 1)-th leaves have the same level number q, the Polish notation of

T is τ ©
k

i-th(i+1)-th
. . .where τ ∈ ©{©, }∗ and k ≥ 1. Thus, T ′ is obtained from T by a pruning-grafting transformation.

(2) Assume that the i-th leaf of T is a right leaf. Since the i-th and (i+1)-th leaves have the same level number q, T can be
written T = τ

i-th
©
k

(i+1)-th
. . .where τ ∈ ©{©, }∗ and k ≥ 1. Since the (i− 1)-th and i-th leaves of T ′ have level p+ 1,

T ′ is of the form τ ©
i-th
. . .. Moreover, the (i+ 1)-th leaf of T ′ is attached to a node of τ that also is the parent of the i-th

leaf in T . This would mean that the level number of the (i+1)-th leaf of T ′ is at least qwhich contradicts the hypothesis. �

Corollary 1. Let T , T ′ ∈ Bn and LT , LT ′ their distribution sequences. Then we have T → T ′ iff there exist p ≥ 1, q ≥ 2
and 2 ≤ i ≤ n such that LT = (LT (1), . . . , LT (i − 2), LT (i − 2) + 2−p, LT (i − 2) + 2−p + 2−q, LT (i + 1), . . . , 1) and
LT ′ = (LT (1), . . . , LT (i− 2), LT (i− 2)+ 2−(p+1), LT (i− 2)+ 2−p, LT (i+ 1), . . . , 1).

Definition 2. Let T and T ′ be two different trees of Bn. Let σ1 ∈ ©{©, }∗ be the longest common prefix of T and T ′ in
their Polish notation. Let us assume that

T = σ1σ2 ©j©︸ ︷︷ ︸
τ

σ3

where

- j ≥ 0, and
- σ2 is the empty word or σ2 ∈ {©, }∗ and σ2 does not contain any occurrence of τ = © (i.e. τ = © is the
leftmost occurrence of© in T after σ1), and
- σ3 ∈ {©, }∗.

Then we necessarily have T ′ = σ1σ ′2 with σ
′

2 ∈ ©{©, }
∗.

We define the tree U(T , T ′) ∈ Bn (U for up) such that T → U(T , T ′) and

U(T , T ′) = σ1σ2©︸ ︷︷ ︸
τ

©
j σ3.

Moreover, we set U(T , T ) = T .

For example, if:

T = ©© © ©© ©©

T ′ = ©© ©© © ©©

then σ1 = ©© © σ2 = ©©, σ3 = and j = 1. We obtain U(T , T ′) = ©© © ©©© © .

Lemma 2. Let T and T ′ be two trees in Bn such that their distribution sequences LT and LT ′ verify LT > LT ′ . Thus, U(T , T ′) exists
and its distribution sequence LU(T ,T ′) verifies LT > LU(T ,T ′) ≥ LT ′ .

Proof. Via Definition 2, U(T , T ′) exists since LT > LT ′ implies T = σ ν and T ′ = σ © ν ′ with σ ∈ ©{©, }∗ and
ν, ν ′ ∈ {©, }∗. Let us prove the inequality LU ≥ LT ′ where LU = LU(T ,T ′). Let r = min{i ≥ 1|LT (i) > LT ′(i)} and let t be the
smallest i > r such that T is of the form T = . . .©

i-th(i+1)-th
. . .. Let T0 be the smallest subtree in T containing the r-th and

t-th leaves. In Polish notation let T0 = ©T1T2. The r-th leaf belongs to T1 and the t-th belongs to T2. The rightmost leaf of T1
is numbered by s ≥ r in T . With these hypotheses, we necessarily have the following properties:
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(a) `T (r) ≥ `T (r + 1) and `T (i) > `T (i+ 1) for r + 1 ≤ i ≤ s− 1;
(b) `T (i) < `T (i+ 1) for s+ 1 ≤ i ≤ t − 1.

As `T and `T ′ have the same entries for i ≤ r − 1, we have LT (r − 1) = LT ′(r − 1). Moreover, LT (r) > LT ′(r) implies that
`T (r) < `T ′(r) and Lemma 1 shows that there exists r0, r0 ≥ r+1, such that LT (r−1)+2−`T (r) = LT (r−1)+

∑r0
i=r 2

−`T ′ (i),
i.e. LT (r) = LT ′(r0).
In the case where r verifies r+ 1 ≤ s, then the (r+ 1)-th leaf of T is attached to a node of the common prefix of T and T ′.

Thus, we necessarily have `T (r + 1) ≤ `T ′(r0+ 1). Therefore, there exists r1 with r < r0 < r1, such that LT (r + 1) = LT ′(r1).
By repeating this process until reaching the s-th leaf, we prove that there exists s′ ≥ s+ 1 such that LT (s) = LT ′(s′).
Now we first want to show that there exists s′ ≥ t such that LT ′(s′) = LT (s) and s ≤ t − 1.
If s′ < t , the hypothesis gives us LT ′(s′ + 1) ≤ LT (s′ + 1). This means that 2−`T ′ (s

′
+1)
≤ 2−`T (s+1) + · · · + 2−`T (s

′
+1).

Since s + 1 ≤ s′ < t , the inequalities follow `T (s + 1) < `T (s + 2) < · · · < `T (s′ + 1) and we obtain 2−`T ′ (s
′
+1)
≤

2−`T (s+1)+2−`T (s+2)−1 < 2−`T (s+1)+1. Thus, `T ′(s′+1) ≥ `T (s+1) and there exists s′′ ≥ s′+1 such that LT ′(s′′) = LT (s+1).
If s′′ ≤ t − 1, we repeat this process for the index s+ 2 and so on, and we stop it when s′′ holds s′′ ≥ t .
So, we have obtain s′ such that s ≤ t − 1 and s′ ≥ t with LT ′(s′) = LT (s). Notice that if s = t − 1, then we necessarily

have LT (t − 2) = LT ′(s).
Since LT ′(i) ≤ LT (i) for all i, we obtain LT ′(i) ≤ LT (i) = LU(i) for i ≤ t − 2 and i ≥ t + 1.
In the case where i = t − 1, we obtain

LU(t − 1)− LT ′(t − 1)= LT (t − 1)− 2−`T (t−1)+1 − LT ′(t − 1)
= LT (t − 1)− LT (t − 2)+ LT (t − 2)− 2−`T (t−1)+1 − LT ′(t − 1)
= 2−`T (t−1)+1 + LT (t − 2)− LT ′(t − 1)
≥ 2−`T (t−1)+1 + LT (s)− LT ′(t − 1)
≥ 2−`T (t−1)+1 + LT (s)− LT ′(s′) ≥ 2−`T (t−1)+1.

If i = t , we have

LU(t)− LT ′(t)= LT (t − 1)− LT ′(t)
≥ LT (s)− LT ′(t)
≥ LT (s)− LT ′(s′) ≥ 0. �

Definition 3. Let T and T ′ be two different trees of Bn with n ≥ 2. Let σ1 ∈ ©{©, }∗ be their longest common prefix in
their Polish notation. Let us assume that T = σ1 σ2 with σ2 ∈ {©, }∗. Then we necessarily have

T ′ = σ1σ ′2©︸ ︷︷ ︸
τ

©
j σ ′3

where

- j ≥ 0, and
- σ ′2 is the empty word or σ

′

2 ∈ ©{©, }
∗ such that σ ′2 does not contain any occurrence τ = © (i.e. τ is the leftmost

occurrence of© in T ′ after σ1), and
- σ ′3 ∈ {©, }

∗.

We define the tree D(T , T ′) ∈ Bn (D for down) such that D(T , T ′)→ T ′ and

D(T , T ′) = σ1σ ′2 ©
j
©︸ ︷︷ ︸

τ

σ ′3.

Moreover, we set D(T , T ) = T .

For example, if:

T = ©© © © ©© ©

T ′ = ©© ©© © © ©

then σ1 = ©© ©, σ ′2 = © , σ ′3 = © and j = 1. We obtain D(T , T ′) = ©© ©© ©© © .

Lemma 3. Let T and T ′ be two trees in Bn such that their distribution sequences LT and LT ′ verify LT > LT ′ . Thus, D(T , T ′) exists
and its distribution sequence LD(T ,T ′) verifies LT ≥ LD(T ,T ′) > LT ′ .

Proof. Via Definition 3, D(T , T ′) exists since LT > LT ′ implies T = σ ν and T ′ = σ © ν ′ with σ ∈ ©{©, }∗ and
ν, ν ′ ∈ {©, }+. Let us prove the inequality LD ≤ LT where LD = LD(T ,T ′). Let r = min{i ≥ 1|LT (i) > LT ′(i)} and let s
be the smallest i ≥ r such that T ′ is of the form T ′ = σ © . . .©

i-th(i+1)-th
. . . where σ is the common prefix of T and

T ′. Since LD differs from LT ′ at indices s and s + 1, the inequality LD(i) = LT ′(i) ≤ LT (i) holds for i /∈ {s, s + 1}. Now
let us examine LD(i) − LT (i) for i ∈ {s, s + 1}. Using Lemma 1, we deduce easily that LT (r) ≥ LT ′(s + 1). This provides
LD(s)− LT (s) = LT ′(s+ 1)− LT (s) ≤ LT (r)− LT (s) ≤ 0.
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For the index s+ 1, LD(s+ 1)− LT (s+ 1) = LT ′(s+ 2)− LT (s+ 1)− 2−(`T ′ (s+2)+1). We distinguish two cases:
(1) if there exists k ≤ s+ 1 such that LT ′(s+ 2) ≤ LT (k) then we clearly have LD(s+ 1)− LT (s+ 1) ≤ 0;
(2) otherwise (i.e. k ≥ s + 2), LT ′(s + 2) > LT (s + 1). Thus, 2−`T ′ (s+2) >

∑s+1
i=r+1 2

−`T (i) and ∀ i ∈ [r + 1, s + 1],
2−`T (i) < 2−`T ′ (s+2) which means `T (i) ≥ `T ′(s + 2) + 1, ∀ i ∈ [r + 1, s + 1]. This implies that there exists k ≥ r + 1
such that LT (k) = LT ′(s + 2). The hypothesis LT ′ < LT induces k ≤ s + 2 and with k ≥ s + 2 we obtain k = s + 2, i.e.
LT ′(s+ 2) = LT (s+ 2).
Therefore, LT ′(s + 1) + 2−`T ′ (s+2) = LT (s + 1) + 2−`T (s+2) and since LT ′(s + 1) ≤ LT (r) ≤ LT (s) < LT (s + 1), we obtain

2−`T (s+2) < 2−`T ′ (s+2) (i.e. `T (s+ 2) ≥ `T ′(s+ 2)+ 1). Thus,
LD(s+ 1)− LT (s+ 1)= LT ′(s+ 2)− LT (s+ 1)− 2−(`T ′ (s+2)+1)

= LT (s+ 2)− LT (s+ 1)− 2−(`T ′ (s+2)+1)

= 2−`T (s+2) − 2−(`T ′ (s+2)+1) ≤ 0. �

Theorem 1. Giving T and T ′ ∈ Bn. Let LT and LT ′ be their distribution sequences. Then we have T
∗
→ T ′ iff LT ≥ LT ′ .

Proof. Let us assume that T ∗
→ T ′, i.e. there exists a path T = T0 → T1 → T2 → · · · → Tk = T ′ (k ≥ 1). Via Corollary 1,

the distribution sequences LTi of Ti verify: LT ≥ LT1 ≥ LT2 ≥ · · · ≥ LTk−1 ≥ LT ′ . Thus, we obtain LT ≥ LT ′ .
Conversely, assume that LT and LT ′ verify LT ≥ LT ′ with T 6= T ′. Let i0 ≥ 1 be the smallest integer i such that LT (i) > LT ′(i).

There are two cases to consider:
(1) there doesn’t exist any internal node© after the i0-th leaf in T . Since `T (i) = `T ′(i) for i < i0 and `T (i0) < `T ′(i0), the

Polish notation of T and T ′ can be written as T = σ k for k ≥ 1, σ ∈ ©{©, }∗ and T ′ = σ © . . .where σ is the longest
common prefix of T and T ′. Thus, the number of nodes of T ′ is greater than those of T which is a contradiction
(2) there exists an internal node© after the i0-th leaf in T . This means that there exists an occurrence of© after the

i0-th leaf in T . Via Lemma 2, we have T → U(T , T ′) and if LU is the distribution sequence of U(T , T ′) then LT > LU ≥ LT ′ .
By iterating this process, we obtain T

∗
→ T ′. �

Theorem 2. For all n, the poset (Bn,
∗
→) is a lattice.

Proof. It suffices to show that any two elements of Bn have a least upper bound. The existence of greatest lower bound then
follows automatically since Bn is finite with as least element 0 and as greatest element 1 defined by `0 = (1, 2, . . . , n− 1,
n, n) and `1 = (n, n, n − 1, . . . , 2, 1). Let T and T ′ be two different trees in Bn and LT and LT ′ their distribution sequences.
In this proof, we construct a tree S ∈ Bn that is candidate to be the join element of T and T ′ and we show that this element
is really the join.
Given τ and τ ′ in Bn, we define the following function join(τ ,τ ′):

Function join(τ ,τ ′)
begin

while τ 6= τ ′ do
i0 := min{i ∈ [1, n]|Lτ (i) 6= Lτ ′(i)}
if Lτ (i0) < Lτ ′(i0) then
ν ′ := U(τ ′, τ ) (thus τ ′ → ν ′)
τ ′ := ν ′

else
ν := U(τ , τ ′) (thus τ → ν)
τ := ν

endif
enddo
return τ

end

For example, if we perform this function for τ = (2, 2, 3, 3, 3, 3) and τ ′ = (1, 5, 5, 4, 3, 2) (i.e. Lτ =
1
32 (8, 16, 20, 24, 28, 32) and Lτ ′ =

1
32 (16, 17, 18, 20, 24, 32)), then i0 = 1 and Lτ (1) < Lτ ′(1); we replace τ

′ by U(τ ′, τ ) =
(2, 2, 4, 4, 3, 2) that have the distribution sequence 1

32 (8, 16, 18, 20, 24, 32); i0 = 3 and Lτ (3) > Lτ ′(3), we replace τ by
U(τ , τ ′) = (2, 2, 3, 4, 4, 2) whose distribution sequence is 132 (8, 16, 20, 22, 24, 32). Yet, i0 = 3, and Lτ (3) > Lτ ′(3), we
replace τ by U(τ , τ ′) = (2, 2, 4, 4, 3, 2)which implies that τ = τ ′. The function returns τ = (2, 2, 4, 4, 3, 2).
In order to construct the tree S = T ∨ T ′, we apply the function join(τ ,τ ′) with τ = T and τ ′ = T ′. At the end of this

process, τ and τ ′ are the same tree: we obtain τ = τ ′ = S. So we have constructed a path P between T and S such that
P : T → τ1 → · · · → τk = S and a path P ′ between T ′ and S such that P ′ : T ′ → τ ′1 → · · · → τ ′k′ = S. Moreover, if LS is
the distribution sequence of S, we obviously have LS(i) = LT (i) = LT ′(i) for i < i0 and LS(i0) = min (LT (i0), LT ′(i0)).
Now, we show that the tree S is really the least upper bound of T and T ′. For this, let T ′′ be a tree in Bn such that T

∗
→ T ′′

and T ′
∗
→ T ′′ and prove us that S

∗
→ T ′′ or equivalently LT ′′ ≤ LS in term of distribution sequences.

In the case where there exists i1 ∈ [1, i0[ such that LT ′′(i) = LS(i) for 1 ≤ i < i1 and LT ′′(i1) 6= LS(i1), we necessarily have
LT ′′(i1) < LT (i1) = LT ′(i1). Using Lemma 3, there exists S(1) = D(T ′′, T ) = D(T ′′, T ′) ∈ Bn such that S(1) → T ′′, T

∗
→ S(1) and
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T ′
∗
→ S(1). If we denote by LS(1) the distribution sequence of S

(1) then we have LS(1) ≤ LT and LS(1) ≤ LT ′ . By repeating this
process with S(1), we obtain a path S(0) = T ′′ ← S(1) ← · · · ← S(m) such that T

∗
→ S(m), T ′

∗
→ S(m) and the distribution

sequence LS(m) of S
(m) verifies LS(m)(i) = LS(i) = LT (i) = LT ′(i) for 1 ≤ i < i0. Thus, LS(m) ≤ LT and LS(m) ≤ LT ′ .

Moreover, if we have LT (i0) < LT ′(i0) (resp. LT (i0) > LT ′(i0)) then, via Lemma 2, τ1
∗
→ S(m) (resp. τ ′1

∗
→ S(m)).

We repeat all this process as follows: if LT (i0) < LT ′(i0), we replace T by τ1 and T ′′ by S(m); or, if LT (i0) > LT ′(i0), we
replace T ′ by τ ′1 and T

′′ by S(m), and so on.

At the end of this process, S
∗
→ S(m) which proves that S corresponds to the least upper bound of T and T ′. �

Fig. 2. The pruning-grafting lattice B4 . Each tree is encoded with its feasible and distribution sequences.

Notice that some relations do exist between the already known Catalan lattices. Indeed, recall that if T and T ′ are two
elements in the Kreweras lattice such that T ≤ T ′, then T ≤ T ′ occurs in the Tamari lattice. If T ≤ T ′ in the Tamari lattice,
then T ≤ T ′ occurs in the Stanley lattice. If T ≤ T ′ in the phagocyte lattice defined in [3], then T ≤ T ′ occurs in the
Kreweras lattice. The covering set of the phagocyte lattice is included in the covering set of Kreweras lattice. However, the
pruning-grafting lattice does not appear to have some similar relations with these lattices, see Figs. 2 and 3.

4. Some properties of (Bn,
∗
→)

The lattice (Bn,
∗
→) has a greatest 1 and a least element 0 and their feasible sequences are respectively, `1 = (n, n,

n − 1, . . . , 2, 1) and `0 = (1, 2, . . . , n − 1, n, n). (Bn,
∗
→) is symmetric because T

∗
→ T ′ iff T̄ ′

∗
→ T̄ . The lattice (Bn,

∗
→) is

not modular since it contains pentagons (see Figs. 2 and 3).
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Fig. 3. The pruning-grafting lattice B5 . Each tree is encoded with its feasible and distribution sequences.

Proposition 2. Let T and T ′ be two trees of Bn such that T
∗
→ T ′, then

(i) U(T̄ , T̄ ′)→ T ′,

(ii) T → D(T̄ , T̄ ′),

(iii) the path T ′ ← D(T , T ′)← D(T ,D(T , T ′))← D(T ,D(T ,D(T , T ′)))← · · · ← T is a longest path between T and T ′,

(iv) the path T → U(T , T ′)→ U(U(T , T ′), T ′)→ U(U(U(T , T ′), T ′), T ′)→ · · · → T ′ is a shortest path between T and T ′.

Proof. The two first items are deduced from the symmetry of the lattice.
Let us prove (iii). First, notice that if T ′ is obtained from T by one pruning-grafting transformation, T ′ cannot be obtained

from T by two or more consecutive pruning-grafting transformations (we call this remark R1).
We proceed by induction on the length of a longest path between T and T ′. The property holds when the length of the

longest path is two. Indeed, let T → T1 → T ′ be a longest path between T and T ′. If T ′ has not two lower covers then
T1 = D(T , T ′) and we obtain directly the result. Otherwise, T ′ has at least two lower covers, T1 and T2 and assume that
T1 6= D(T , T ′). As the longest length between T and T ′ is two, we easily see that there exists a two length path between T
and T ′ such that T → D(T , T ′) → T ′ which gives the results. This is true because we do not have T = D(T , T ′) with the
remark R1. Now, let us assume that the property holds when the length of the longest path between T and T ′ is ` ≥ 2 and
let us examine the case for a longest path of length ` + 1. Let also T = T0 → T1 → · · · → T`+1 = T ′ be a longest path of
length `+ 1 between T and T ′.
If T` = D(T , T ′) and using the recurrence hypothesis for the path T → · · · → T` we conclude directly.
Now, we assume that T` 6= D(T , T ′). This induces that T ′ has at least two lower covers T` and D(T , T ′). We apply the

recurrence hypothesis for the path between T and T`. This means that the path can be of the form T → T1 → · · · → T`−1 =
D(T , T`)→ T` → T ′.
Moreover, the remark R1 allows us to prove that D(T , T ′) 6= T`−1. Then we distinguish two cases: (I) D(T ,D(T , T ′)) =

T`−1, (II) D(T ,D(T , T ′)) 6= T`−1 and we will prove that the second case does not occur.
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Case (I). In this case, we can conclude directly that there exists a longest path of the form T → T1 → · · · → T`−1 →
D(T , T ′)→ T ′. See the following diagram for an illustration of this case.

T ′

D(T , T ′)

::vvvvvvvvv
T`

aaBBBBBBBB

T`−1

ddHHHHHHHHH

>>||||||||

with

T ′= σ1© ©
r σ2© ©

s σ3
D(T , T ′)= σ1 ©r+1 σ2© ©

s σ3
T`= σ1© ©

r σ2 ©
s+1 σ3

T`−1= σ1 ©r+1 σ2 ©
s+1 σ3

where r, s ≥ 0, σ1 ∈ ©{ ,©}∗ and σ2, σ3 ∈ { ,©}∗.

Case (II). This induces the following diagram which gives a contradiction with the hypothesis that T → T1 → · · · →
T`−1 → T` → T ′ is a longest path between T and T ′.

T ′

D(T , T ′)

::vvvvvvvvv
T`

aaBBBBBBBB

S

OO

T`−1

ddIIIIIIIIII

FF















with

T ′= σ1© ©
r

©
s σ2

D(T , T ′)= σ1 ©r+1 ©
s σ2

S= σ1 ©r © ©
s σ2

T`= σ1© ©
r−1

©
s+1 σ2

T`−1= σ1 ©r ©
s+1 σ2

where r ≥ 1, s ≥ 0, σ1 ∈ ©{ ,©}∗ and σ2 ∈ { ,©}∗.

This case does not occur since this would mean that the path T → T1 → · · · → T`−1 → T` → T ′ is not a longest path
between T and T ′.
In conclusion, only the first case appears and we have constructed a path of length (` + 1) between T and T ′ such that

T → · · · → D(T , T`)→ D(T , T ′)→ T ′ which proves the results by induction.
The item (iv) is obtainedmutatis mutandis. Indeed, we also proceed by induction on the length of the path between T and

T ′. With the remark R1, the result holds when the length of the shortest path is less or equal than two. Let us assume that
the property holds when the length of the shortest path between T and T ′ is less or equal than ` ≥ 2 and let us examine
the case for a shortest path of length ` + 1. Let also T = T0 → T1 → · · · → T`+1 = T ′ be a shortest path of length ` + 1
between T and T ′.
If T1 = U(T , T ′) and using the recurrence hypothesis for the path T1 → · · · → T` → T ′, we conclude directly.
Now, let us assume that T1 6= U(T , T ′). This induces that T has at least two upper covers T1 and U(T , T ′). We apply the

recurrence hypothesis for the path between T1 and T ′. This means that the path can be of the form T → T1 → U(T1, T ′) =
T2 → · · · → T ′.
Thus, we distinguish two cases: (I) T2 = U(U(T , T ′), T ′), (II) T2 6= U(U(T , T ′), T ′) and we will prove that the second case

does not occur.
Case (I). T2 = U(U(T , T ′), T ′); as previously, we can conclude directly that there exists a shortest path of the form
T → U(T , T ′)→ U(T1, T ′) = T2 → · · · → T ′.
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Case (II). T2 6= U(U(T , T ′), T ′); we have the following diagram:

T3

U(T , T ′)

;;xxxxxxxxx
T2

__???????

T1

OO

T

ZZ444444444444444

??~~~~~~~~

with
T = σ1 ©r ©

s σ2
T1= σ1 ©r © ©

s−1 σ2
T2= σ1 ©r+1 ©

s−1 σ2
T3= σ1© ©

r
©
s−1 σ2

U(T , T ′)= σ1© ©
r−1

©
s σ2

where r, s ≥ 1 σ1 ∈ ©{ ,©}∗ and σ2 ∈ { ,©}∗. This case produces a contradiction with the hypothesis that the path
T → T1 → T2 → · · · → T ′ is a shortest path between T and T ′. Thus, only the case (I) occurs and there is a shortest path
between T and T ′ of the form T → U(T , T ′)→ · · · → T ′ which gives the result by induction. �

Corollary 2. Let C be the path defined by:

1← D(0, 1)← D(0,D(0, 1))← D(0,D(0,D(0, 1)))← · · · ← 0.

T belongs toC if and only if T verifies the condition (A) defined by: T has either a unique occurrence of© , or two occurrences
of© such that there does not exist any leaf between them in the Polish notation of T . Moreover, if T and T ′ belong to the path
C and verify T → T ′, then T ′ is obtained from T by a pruning-grafting transformation of the rightmost occurrence of© in T .

Proof. 1has only one occurrence of© thus1 verifies condition (A). Assume that T ′ ∈ C verifies (A).Weput T = D(0, T ′)
(thus T ′ ← T ). If T ′ has only one occurrence of © then T = D(0, T ′) has at most two occurrences of © , and
there does not exist any leaf between them. Thus, T ′ is necessarily obtained from T by a pruning-grafting of the rightmost
occurrence of© . If T ′ has exactly two occurrences of© such that there does not exist any leaf between them. Then
T = D(0, T ′) has either a unique occurrence of© or two occurrences such that there does not exist any leaf between
them. By induction all trees T ∈ C hold (A). Conversely, let T be a tree verifying (A). It is straightforward to obtain T from 0
by successive pruning-grafting transformations of rightmost occurrences of© . �

Corollary 3. Let C ′ be the path defined by:

0→ U(0, 1)→ U(U(0, 1), 1)→ U(U(U(0, 1), 1), 1)→ · · · → 1.

If T → T ′ is on the path C ′ then T ′ is obtained from T by the leftmost possible pruning-grafting transformation in T .

Proof. Indeed, if T and T ′ belong toC ′ such that T → T ′, then T ′ = U(T , 1) and T ′ is clearly obtained from T by the leftmost
possible pruning-grafting transformation on T . �

Remark 1. Via Corollary 2, the longest path between 0 and 1 has length 2n − (n + 1). These are the Eulerian numbers
given by the sequence A000295 of [38]. Indeed, if T → T ′ belongs to this path then T ′ is obtained from T by a pruning-
grafting transformation of the rightmost occurrence© in T . Let us denote by `(n) the length of the longest path in Bn
between 1 and 0. Then there are `(n − 1) pruning-grafting transformations between 0 and T1 with the feasible sequence
(1, n, n, n − 1, . . . , 2); there are n transformations between T1 and T2 with feasible sequence (2, 3, 4, . . . , n − 1, n, n, 1);
there are `(n − 1) transformations between T2 and 1. This means that `(n) verifies the recurrence relation `(n) =
2 · `(n− 1)+ nwith `(2) = 1, which implies that `(n) = 2n − (n+ 1).

On the other hand, the shortest path has the length (n − 1)2. Indeed, with Corollary 3 we obtain the successor (in the
shortest path) of a tree T by the leftmost possible pruning-grafting transformation in T . Thus, there are (n − 1) pruning-
grafting transformations between 0 and the tree T1 with feasible sequence (2, 2, 2, 3, 4, . . . , n − 2, n − 1, n − 1). After
iterating this process (n− 1) times from T1, we obtain directly that `(n) = (n− 1)2.
This result allows us to compute the complexity of the above join algorithm for computing the least upper bound T ∨ T ′

of two binary trees T , T ′ ∈ Bn. The while loop is performed at most twice the length of a shortest path between 0 and 1, i.e.
2(n− 1)2. A loop iteration takes O(n) time. Thus, the time complexity is O(n3) in the worst case.
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Now, we prove that the join (resp. meet) irreducible elements in Bn are enumerated by the Eulerian numbers. Recall that
x ∈ Bn is a join (resp. meet)-irreducible element if x = a ∨ b (resp. x = a ∧ b) implies x = a or x = b. In other words, join
(resp. meet)-irreducible elements are the elements that have a unique lower (resp. upper) cover.

Theorem 3. The number of join (resp. meet)-irreducible elements in the pruning-grafting lattice (Bn,
∗
→) is given by the Eulerian

number 2n − (n+ 1).

Proof. A join-irreducible element T (T 6= 0) of Bn can be characterized as follows: (1) it contains exactly one node having
two leaves as children and these leaves are not the last two of the tree; or (2) it contains exactly two nodes with two leaves
as children and one of these nodes is the parent of the two last leaf of T . There exists a one-to-one map between theses
elements and the Dyck paths of semi-length n having exactly one long descent (i.e. descent of length at least two). Indeed,
we associatewith the Polish notation of T the Dyck path defined as follows: a© is replaced byU = (1, 1) and a is replaced
by D = (1,−1) except the last leaf which is not considered. For example, if n = 4, the Dyck path associated with the join-
irreducible element© ©© © is UDUUDDUD. If T 6= 0 verifies (1), then its Polish notation verifies σ© k

where k ≥ 1 and σ ∈ ©{©, }∗ does not contain any occurrence of© . Thus, its corresponding Dyck path has a unique
long descent (i.e. a unique maximal sequence D . . .D of length at least two). If T verifies (2), then its Polish notation verifies
σ © σ ′© where σ , σ ′ ∈ ©{©, }∗ do not contain any occurrence of© . Thus, its corresponding Dyck path
also has a unique long descent. Conversely, a Dyck path with a unique long descent can be associated with a Polish notation
of a tree verifying (1) or (2). Thus, this map induces a one-to-one map between join-irreducible elements of Bn and Dyck
paths of semi-length n having exactly one long descent. These elements are enumerated by the Eulerian numbers [20,33].
Using the symmetry of the lattice, we deduce the same result for the meet-irreducible elements. �

Theorem 4. The number cov(n) of coverings in Bn is equal to
( 2n
n−1

)
.

Proof. Recall that a covering of Bn corresponds to an edge of Bn, i.e. a pruning-grafting transformation in Bn. Thus, there
exists a bijection between the covering set of Bn and the long descents (i.e. descents of length at least two) in all Dyck paths
of semilength n. Indeed, we associate with the Polish notation of a tree T ∈ Bn a Dyck pathP as follows: each© is replaced
by U = (1, 1) and each is replaced by D = (1,−1) except the last which is not considered. Thus, the number of
possible pruning-grafting transformations from T is equal to the number of occurrences© that are not on the left of T .
By symmetry, if T ′ = T , it is also the number of occurrences© that are not on the right of T ′. Thus, this corresponds
to the number of long descents of the Dyck path P . Then cov(n) is the number of long descents in all Dyck paths of semi-
length n. Deutsch [9,38] proved that this number is

( 2n
n−1

)
. We obtain the sequence A001791 of [38]. For example, cov(3) = 4

because in the five Dyck paths of semilength 3, namelyUDUDUD,UDUUDD,UUDDUD,UUDUDD, andUUUDDD, we have four
long descents (shown in bold-face). �

Let J(Bn) (resp. M(Bn)) denote the set of nonzero join-irreducible (resp. nonunit meet-irreducible) elements of Bn. We
say that Bn has a matching g if g is a map of J(Bn) ∪ {0} toM(Bn) ∪ {1} which is one-to-one and verifies τ ≤ g(τ ) for each
join-irreducible τ [2,10,22,32]. Kung [22] has proved that every consistent lattice has a matching. In the sequel, we build a
matching of Bn in a constructiveway.

Theorem 5. For all n, there exists a matching in (Bn,
∗
→).

Proof. Let C be the particular maximal chain defined as follows: T0 = 1 and Ti = D(0, Ti−1). Following Remark 1, we have
T2n−(n+1) = 0. By Corollary 2, a tree on the path C verifies: T ∈ C iff in the Polish notation of T we have: (a) there are at
most two occurrences of© , and (b) there does not exist any leaf between two different occurrences© .
We will build an one-to-one map f betweenM(Bn) ∪ {1} and C such that σ ≥ f (σ ) for σ ∈ M(Bn) ∪ {1}. The symmetry

of the lattice induces a one-to-one map f between J(Bn)∪ {0} and C such that τ ≤ f (τ ) for τ ∈ J(Bn)∪ {0}. Using these two
bijections, we obtain a matching.
Recall that (cf. proof of Theorem 3) an element σ belongs to M(Bn) ∪ {1} if and only if (1) it contains exactly one node

having two leaves as children; or (2) it contains exactly two nodes with two leaves as children and one of these nodes is
the parent of the two first leaf of T . Let M1 (resp. M2) be the set of meet-irreducible in the case (1) (resp. (2)). We have
M(Bn) ∪ {1} = M1 ∪M2 and we define the map f as follows:

• if σ ∈ M1, f (σ ) = σ ;
• if σ ∈ M2, σ can be written in terms of feasible sequences:

σ = (σ2, σ2, σ3, . . . , σk−1, σk, σk, σk+2, . . . , σn, σn+1)with k ≥ 3 where there exists r , 2 ≤ r ≤ k − 1, such that σi ≥ σi+1
for i ≤ r − 1 and σi ≤ σi+1 for r ≤ i ≤ k. Thus, if k ≥ 4, we set f (σ ) = (σr − 1, σr+1, . . . , σk−2, σk−1 + 1, . . . , σk−1 +
r − 2, σk−1 + r − 1, σk−1 + r − 1, σk, σk, σk+2, . . . , σn, σn+1); if k = 3 then σ ∈ C and we set f (σ ) = σ . For example, if
σ = (4, 4, 3, 2, 3, 4, 7, 7, 6, 5, 2) then k = 7, r = 4 and f (σ ) = (1, 3, 5, 6, 7, 7, 7, 7, 6, 5, 2).
Obviously f (σ ) ∈ C, f (σ ) ≤ σ and by construction f (σ ) = f (σ ′) implies σ = σ ′. Notice that f (σ ) is the smallest

element of C such that σ ≥ f (σ ). Via the symmetry of Bn, we obtain a bijection f from J(Bn) ∪ {0} to C defined by: for
τ ∈ J(Bn) ∪ {0}, f (τ ) = f (τ ), and such that τ ≤ f (τ ). Therefore, the composition g = f −1 ◦ f is a matching of Bn since g is
a map from J(Bn) ∪ {0} toM(Bn) ∪ {1}which is one-to-one and verifies τ ≤ g(τ ) for every τ ∈ J(Bn) ∪ {0}. �
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5. Conclusion and open problems

In this paper, a new lattice structure has been defined on the Catalan sets of binary trees via a natural transformation.
The simple and natural definition of the pruning-grafting transformation is unfortunately at odds with the rather complex
theorem which characterizes this transformation.
Some problems remain to be solved.
Is there an efficient and nonrecursive algorithm to compute the Möbius function of the pruning-grafting lattice of binary

trees as in [26]? We conjecture that this Möbius function takes its values in {−1, 0,+1}.
Is there a polynomial time algorithm to compute the minimal path length distance between two binary trees in the

pruning-grafting lattice [23]? If so, a new shortest-path-type metric could be obtained, and could be added to the existing
metrics on Catalan sets [17,25,27,29,37]. Let us recall that we still do not know if the rotation distance on binary trees can
be computed in polynomial time.
Let us define the integer-valued function v on (Bn,

∗
→) by v(T ) be the length of a longest path between T and 1. We

conjecture that v is an anti-monotone supervaluation, i.e. v verifies for all T and T ′: v(T )+ v(T ′) ≤ v(T ∨ T ′)+ v(T ∧ T ′)
and T < T ′ =⇒ v(T ) > v(T ′). Were it the case, therefore d(T , T ′) = v(T ) + v(T ′) − 2v(T ∨ T ′) would be a metric on
(Bn,

∗
→) [5,7].
Guttmann, Krattenthaler andViennot [18] enumerate the k-chains in the Stanley lattices, i.e, the number of k-noncrossing

Dyckpaths. Kreweras [21] enumerates the k-chains in the lattices of noncrossing partitions.More generally, Chapotonproves
in [8] that the sequenceA000260 of [38] enumerates the number of intervals in the Tamari lattices, i.e. the number of ordered
pairs (T , T ′) such that T ≤ T ′: see also [16, p. 27]. Bernardi and Bonichon [6] construct bijections between the set of intervals
of these lattices and the realizers of triangulations. Here, we obtain experimentally the numbers of intervals for the pruning-
grafting lattices for small sizes:

1, 3, 15, 101, 818, 7486, 74648, 793005, 8843056, 102464586, ...

This sequence does not appear in [38]. Is it possible to obtain the generating function of this sequence?
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