
Theoretical Computer Science 262 (2001) 669–697
www.elsevier.com/locate/tcs

Topological properties of omega context-free languages

Olivier Finkel
Equipe de Logique Math�ematique, CNRS URA 753 et Universit�e Paris 7, UFR de Math�ematiques,

2 Place Jussieu 75251 Paris cedex 05, France

Received March 2000; revised October 2000; accepted October 2000
Communicated by M. Nivat

Abstract

This paper is a study of topological properties of omega context-free languages (!-CFL).
We .rst extend some decidability results for the deterministic ones (!-DCFL), proving that one
can decide whether an !-DCFL is in a given Borel class, or in the Wadge class of a given
!-regular language. We prove that !-CFL exhaust the hierarchy of Borel sets of .nite rank,
and that one cannot decide the borel class of an !-CFL, giving an answer to a question of
Lescow and Thomas (A Decade of Concurrency, Springer Lecture Notes in Computer Science,
vol. 803, Springer, Berlin, 1994, pp. 583–621). We give also a (partial) answer to a question
of Simmonet (Automates et th9eorie descriptive, Ph.D. Thesis, Universit9e Paris 7, March 1992)
about omega powers of .nitary languages. We show that B<uchi–Landweber’s Theorem cannot
be extended to even closed !-CFL: in a Gale–Stewart game with a (closed) !-CFL winning set,
one cannot decide which player has a winning strategy. From the proof of topological properties
we derive some arithmetical properties of !-CFL. c© 2001 Elsevier Science B.V. All rights
reserved.

Keywords: Omega context-free languages; Topological properties; Wadge class; Borel class;
Decide the Borel class; Omega powers; Gale–Stewart game; Arithmetical properties

1. Introduction

Since B<uchi studied the !-languages recognized by .nite automata to prove the
decidability of the monadic second order theory of one successor over the integers [5]
the so-called !-regular languages have been intensively studied. See [44, 37] for much
results and references.

E-mail address: .nkel@logique.jussieu.fr (O. Finkel).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00405 -9

670 O. Finkel / Theoretical Computer Science 262 (2001) 669–697

As Pushdown automata are a natural extension of .nite automata, Cohen and Gold
[9, 10] and Linna [30] studied the !-languages accepted by omega pushdown automata,
considering various acceptance conditions for omega words. It turned out that the
omega languages accepted by omega pushdown automata were also those generated by
context-free grammars where in.nite derivations are considered, also studied by Ni-
vat [34, 35] and Boasson and Nivat [4]. These languages were then called the omega
context-free languages (!-CFL). See also Staiger’s paper [41] for a survey of gen-
eral theory of !-languages, including more powerful accepting devices, like Turing
machines.

MacNaughton’s Theorem implies that !-regular languages are boolean combination
of G� sets [32]. Topological properties of !-regular languages were .rst studied by
Landweber in [28] where he showed that one can decide whether a given !-regular
language is in a given Borel class.

The hierarchy induced on !-regular languages by the Borel Hierarchy was re.ned in
[2, 26] but Wagner had found the most re.ned one, now called the Wagner hierarchy
and which is the hierarchy induced on !-regular languages by the Wadge Hierarchy
of Borel sets [47].

This paper is mainly a study of similar results for !-context free languages.
In Sections 2 and 3, we .rst review some above de.nitions and results about !-

regular, !-context free languages, and topology.
In Section 4, we study the !-languages accepted by deterministic omega push-

down automata, called the omega deterministic context-free languages (!-DCFL).
Walukiewicz proved in [48] that in a Gale–Stewart game with an !-DCFL as winning
set, one can decide which player has a winning strategy. We give a new proof, based
on this result, that one can decide whether an !-DCFL is in a given Borel class, which
leads to a much stronger result: one can decide whether an eJectively given !-DCFL
is in the Wadge class of an eJectively given !-regular language.

In Sections 5–7, we next study the class of !-CFL. We .rst restate some previous
undecidability results. Then we prove that there are !-CFL in each Borel class of .nite
order. And that, for any class �0

n or �0
n , n being an integer, one cannot decide whether

an !-CFL is in �0
n or �0

n . Our proofs rely on the recent work of Duparc about the
Wadge hierarchy of Borel sets [15]. We use the Wadge game [46], and the operation
of exponentiation of sets de.ned by Duparc [15].

These results give partial answers to questions of Thomas and Lescow [29].
In Section 8, we study !-powers of .nitary languages. The !-power of a language

W ⊆X? is a fundamental operation over .nitary languages which leads to !-languages.
Whenever W is a regular language (respectively a context-free language), then W! is
an !-regular language, (respectively an !-CFL). Then the question of the topological
complexity of W! naturally arises and it is posed in [36, 39, 41, 42]. When W is a
regular language, W! is a boolean combination of G� sets because it is an !-regular set.
We prove results on omega powers of .nitary context-free languages, giving examples
of context free languages (Ln) such that (Ln)! is a Borel set of .nite rank n for every
integer n¿1.

O. Finkel / Theoretical Computer Science 262 (2001) 669–697 671

In Section 9, we consider Gale–Stewart games and we prove that B<uchi–Landweber
Theorem cannot extend to !-CFL: in Gale–Stewart games with closed !-CFL winning
set, one cannot decide which player has a winning stategy.

In Section 10, we derive some arithmetical properties of omega context free lan-
guages from the preceding topological properties. We prove that one cannot decide
whether an !-CFL is in the arithmetical class �n or
n, for an integer n¿1. Then we
show that one cannot decide whether an !-CFL is accepted by a deterministic Turing
machine (or more generally by a deterministic X-automaton as de.ned in [19]) with
B<uchi (respectively Muller) acceptance condition.

2. !-regular and !-context-free languages

We assume the reader to be familiar with the theory of formal languages and of
!-regular languages, see for example [25, 44]. We .rst recall some of the de.nitions
and results concerning !-regular and !-context-free languages and omega pushdown
automata as presented in [44, 9, 10].

When � is a .nite alphabet, a .nite string (word) over � is any sequence x= x1: : : xk ,
where xi ∈� for i= 1; : : : ; k, and k is an integer ¿1. The length of x is k, denoted by
|x|.

If |x|= 0; x is the empty word denoted by �.
We write x(i) = xi and x[i] = x(1) : : : x(i) for i6k and x[0] = �.
�? is the set of .nite words over �.
The .rst in.nite ordinal is !.
An !-word over � is an !-sequence a1 : : : an : : : ; where ai ∈�; ∀i¿1.
When � is an !-word over �, we write �= �(1)�(2) : : : �(n) : : :
and �[n] = �(1)�(2) : : : �(n) the .nite word of length n, pre.x of �.
The set of !-words over the alphabet � is denoted by �!.
An !-language over an alphabet � is a subset of �!.

The usual concatenation product of two .nite words u and v is denoted u:v (and
sometimes just uv). This product is extended to the product of a .nite word u and an
!-word v: the in.nite word u:v is then the !-word such that:

(u:v)(k) = u(k) if k6|u|;
and

(u:v)(k) = v(k − |u|) if k ¿ |u|:
For V ⊆�?, V! = {�= u1 : : : un : : : ∈�!=ui ∈ V; ∀i¿1} is the !-power of V .
For V ⊆�?, the complement of V (in �?) is �? − V denoted V−.
For a subset A⊆�!, the complement of A is �! − A denoted A−.
The pre.x relation is denoted �: the .nite word u is a pre.x of the .nite word v

(denoted u� v) if and only if there exists a (.nite) word w such that v= u:w.

672 O. Finkel / Theoretical Computer Science 262 (2001) 669–697

This de.nition is extended to .nite words which are pre.xes of !-words:
the .nite word u is a pre.x of the !-word v (denoted u� v) iJ there exists an

!-word w such that v= u:w.

De�nition 2.1. A .nite state machine (FSM) is a quadruple M = (K; �; �; q0), where
K is a .nite set of states, � is a .nite input alphabet, q0 ∈K is the initial state
and � is a mapping from K ×� into 2K . A FSM is called deterministic (DFSM) iJ:
� :K ×�→K .

A B<uchi automaton (BA) is a 5-tuple M = (K; �; �; q0; F) where M ′ = (K; �; �; q0) is
a .nite state machine and F ⊆K is the set of .nal states. A Muller automaton (MA)
is a 5-tuple M = (K; �; �; q0; F) where M ′ = (K; �; �; q0) is a FSM and F ⊆ 2K is the
collection of designated state sets. A B<uchi or Muller automaton is said deterministic
if the associated FSM is deterministic.

Let �= a1a2 : : : an : : : be an !-word over �.
A sequence of states r = q1q2 : : : qn : : : is called an (in.nite) run of M = (K; �; �; q0)

on �, starting in state p, iJ: (1) q1 =p and (2) for each i¿1, qi+1 ∈ �(qi; ai).
In case a run r of M on � starts in state q0, we call it simply “a run of M on �”.
For every (in.nite) run r = q1q2 : : : qn : : : of M , In(r) is the set of states in K entered

by M in.nitely many times during run r:
In(r) = {q∈K={i¿1=qi = q} is in.nite}.
For M = (K; �; �; q0; F) a BA, the !-language accepted by M is L(M) = {�∈�!=there

exists a run r of M on � such that In(r)∩F �= ∅}.
For M = (K; �; �; q0; F) a MA, the !-language accepted by M is L(M) = {�∈�!=

there exists a run r of M on � such that In(r)∈F}.

The classical result of MacNaughton [32] established that the expressive power of
deterministic MA (DMA) is equal to the expressive power of non-deterministic MA
(NDMA) which is also equal to the expressive power of non-deterministic BA (NDBA).

There is also a characterization of the languages accepted by MA by means of the
“!-Kleene closure” which we give now the de.nition:

De�nition 2.2. For any family L of .nitary languages over the alphabet �, the !-
Kleene closure of L, is

!-KC(L) =
{

n⋃
i=1

Ui:V!
i =Ui; Vi ∈ L;∀i ∈ [1; n]

}
:

Theorem 2.3. For any !-language L; the following conditions are equivalent:
(1) L belongs to !-KC(REG); where REG is the class of (9nitary) regular languages.
(2) There exists a DMA that accepts L.
(3) There exists a MA that accepts L.
(4) There exists a BA that accepts L.
An !-language L satisfying one of the conditions of the above theorem is called

an !-regular language. The class of !-regular languages will be denoted by REG!.

O. Finkel / Theoretical Computer Science 262 (2001) 669–697 673

We now de.ne the pushdown machines and the classes of !-context-free
languages.

De�nition 2.4. A pushdown machine (PDM) is a 6-tuple M = (K; �; *; �; q0; Z0), where
K is a .nite set of states, � is a .nite input alphabet, * is a .nite pushdown alpha-
bet, q0 ∈K is the initial state, Z0 ∈* is the start symbol, and � is a mapping from
K × (�∪{�})×* to .nite subsets of K ×*?.

If ,∈*+ describes the pushdown store content, the leftmost symbol will be assumed
to be on “top” of the store. A con.guration of a PDM is a pair (q; ,) where q∈K and
,∈*?.

For a∈�∪{�}, ,; -∈*? and Z ∈*, if (p; -) is in �(q; a; Z), then we write a : (q; Z,)
�→M (p; -,).
�→?

M is the transitive and rePexive closure of �→M . (The subscript M will be omitted
whenever the meaning remains clear).

Let �= a1a2 : : : an : : : be an !-word over �. An in.nite sequence of con.gurations
r = (qi; ,i)i¿1 is called a run of M on �, starting in con.guration (p; ,), iJ:
(1) (q1; ,1) = (p; ,).
(2) For each i¿1, there exists bi ∈�∪{�} satisfying bi : (qi; ,i) �→M (qi+1; ,i+1) such

that either a1a2 : : : an : : : = b1b2 : : : bn : : : or b1b2 : : : bn : : : is a .nite pre.x of
a1a2 : : : an : : :

The run r is said to be complete when a1a2 : : : an : : : = b1b2 : : : bn : : :
As for FSM , for every such run, In(r) is the set of all states entered in.nitely often

during run r.
A complete run r of M on �, starting in con.guration (q0; Z0), will be simply called

“a run of M on �”.

De�nition 2.5. A B<uchi pushdown automaton (BPDA) is a 7-tuple M = (K; �; *; �; q0;
Z0; F) where M ′ = (K; �; *; �; q0; Z0) is a PDM and F ⊆K is the set of .nal states.

The !-language accepted by M is L(M) = {�∈�!=there exists a complete run r of
M on � such that In(r)∩F �= ∅}.

De�nition 2.6. A Muller pushdown automaton (MPDA) is a 7-tuple M = (K; �; *; �; q0;
Z0; F) where M ′ = (K; �; *; �; q0; Z0) is a PDM and F ⊆ 2K is the collection of desig-
nated state sets.

The !-language accepted by M is L(M) = {�∈�!=there exists a complete run r of
M on � such that In(r)∈F}.

Remark 2.7. We consider here two acceptance conditions for !-words, the B<uchi and
the Muller acceptance conditions, respectively, denoted 2-acceptance and 3-acceptance
in [28] and in [10] and (inf ;�) and (inf ;=) in [41].

Cohen and Gold, and independently Linna, established a characterization theorem
for !-CFL:

674 O. Finkel / Theoretical Computer Science 262 (2001) 669–697

Theorem 2.8. Let CFL be the class of context-free (9nitary) languages. Then for
any !-language L the following three conditions are equivalent:
(1) L∈!-KC(CFL).
(2) There exists a BPDA that accepts L.
(3) There exists a MPDA that accepts L.

In [9] are also studied the !-languages generated by !-context free grammars and it
is shown that each of the conditions (1)–(3) of the above theorem is also equivalent
to: (4) L is generated by a context free grammar G by leftmost derivations. These
grammars are also studied in [34, 35].

Then we can let the following de.nition:

De�nition 2.9. An !-language is an !-context free language (!-CFL) iJ it satis.es
one of the conditions of the above theorem.

Unlike the case of .nite automata, deterministic MPDA do not de.ne the same class
of !-languages as non deterministic MPDA. Let us now de.ne deterministic pushdown
machines.

De�nition 2.10. A PDM M = (K; �; *; �; q0; Z0) is said deterministic (DPDM) iJ for
each q∈K; Z ∈*, and a∈�:
1. �(q; a; Z) contains at most one element,
2. �(q; �; Z) contains at most one element, and
3. if �(q; �; Z) is non-empty, then �(q; a; Z) is empty for all a∈�.

It turned out that the class of !-languages accepted by deterministic BPDA is strictly
included into the class of !-languages accepted by deterministic MPDA. Let us denote
DCFL! this latest class, the class of omega deterministic context free languages (!-
DCFL), and DCFL the class of deterministic context free (.nitary) languages. Then
recall the following:

Proposition 2.11. 1: DCFL! is closed under complementation; but not under union;
neither under intersection.

2: DCFL! (!-KC(DCFL)(CFL! (these inclusions are strict).

Remark 2.12. If M is a deterministic pushdown machine, then for every �∈�!, there
exists at most one run r of M on � determined by the starting con.guration. The
DPDM has the continuity property iJ for every �∈�!, there exists a unique run of M
on � and this run is complete. It is shown in [10] that each !-language accepted by a
DBPDA (respectively DMPDA) can be accepted by a DBPDA (respectively DMPDA)
with the continuity property. So we shall assume now that all DPDA have the continuity
property.

O. Finkel / Theoretical Computer Science 262 (2001) 669–697 675

3. Topology

We assume the reader to be familiar with basic notions of topology which may be
found in [29, 27].

Topology is an important tool for the study of !-languages, and leads to character-
ization of several classes of !-languages.

For a .nite alphabet X , we consider X! as a topological space with the Cantor
topology. The open sets of X! are the sets in the form W:X!, where W ⊆X?. A set
L⊆X! is a closed set iJ its complement X! − L is an open set. The class of open
sets of X! will be denoted by G or by �0

1 . The class of closed sets will be denoted
by F or by �0

1 . Closed sets are characterized by the following:

Proposition 3.1. A set L⊆X! is a closed set of X! i< for every �∈X!; [∀n¿1;
∃u∈X! such that �(1) : : : �(n):u∈L] implies that �∈L.

De.ne now the next classes of the Borel Hierarchy:

De�nition 3.2. The classes �0
n and �0

n of the Borel Hierarchy on the topological space
X! are de.ned as follows:
�0

1 is the class of open sets of X!.
�0

1 is the class of closed sets of X!.
�0

2 or G� is the class of countable intersections of open sets of X!.
�0

2 or F� is the class of countable unions of closed sets of X!.
�0

3 or G�� is the class of countable unions of �0
2 -subsets of X!.

�0
3 or F�� is the class of countable intersections of �0

2 subsets of X!.
And for any integer n¿1:
�0
n+1 is the class of countable unions of �0

n -subsets of X!.
�0

n+1 is the class of countable intersections of �0
n -subsets of X!.

Recall some basic results about these classes:

Proposition 3.3 (Moschovakis [33]). (a) �0
n ∪�0

n (�0
n+1 ∩�0

n+1; for each integer n¿1.
(b) A set W ⊆X! is in the class �0

n if and only if its complement W− is in the
class �0

n .
(c) �0

n −�0
n �= ∅ and �0

n − �0
n �= ∅ hold for each integer n¿1.

We shall say that a subset of X! is a Borel set of rank 1 iJ it is in �0
1 ∪�0

1 and
that it is a Borel set of rank n¿2 iJ it is in �0

n ∪�0
n but not in �0

n−1 ∪�0
n−1.

Remark 3.4. The hierarchy de.ned above is the hierarchy of Borel sets of .nite rank.
The Borel Hierarchy is also de.ned for trans.nite levels but this will not be useful in
the sequel. It may be found in [33, 29].

There is a nice characterization of �0
2-subsets of X!. First de.ne the notion of W�:

676 O. Finkel / Theoretical Computer Science 262 (2001) 669–697

De�nition 3.5. For W ⊆X?, let: W� = {�∈X!=∃!i such that �[i]∈W}. (�∈W� iJ
� has in.nitely many pre.xes in W).

Then we can state the following proposition:

Proposition 3.6. A subset L of X! is a �0
2 -subset of X

! i< there exists a set W ⊆X?

such that L=W�.

Landweber studied .rst the topological properties of !-regular languages. He proved
that every !-regular language is a boolean combination of G�-sets and he also charac-
terized the !-regular languages in each of the Borel classes F;G;F�;G�, and showed
that one can decide, for an eJectively given !-regular language L, whether L is in
F;G;F�, or G�.

It turned out that an !-regular language is in the class G� iJ it is accepted by a
DBA.

Introduce now the Wadge Hierarchy:

De�nition 3.7. For E⊆X! and F ⊆Y!, E is said Wadge reducible to F (E6WF) iJ
there exists a continuous function f : X! →Y!, such that E =f−1(F).
E and F are Wadge equivalent iJ E6WF and F6WE. This will be denoted by

E ≡W F . And we shall say that E¡WF iJ E6WF but not F6WE.

The relation 6W is rePexive and transitive, and ≡W is an equivalence relation.
The equivalence classes of ≡W are called wadge degrees.
WH is the class of Borel subsets of .nite rank of a set X!, where X is a .nite set,

equipped with 6W and with ≡W .
For E⊆X! and F ⊆Y!, if E6WF and E =f−1(F) where f is a continuous func-

tion from X! into Y!, then f is called a continuous reduction of E to F . Intuitively it
means that E is less complicated than F because to check whether x∈E it suQces to
check whether f(x)∈F where f is a continuous function. Hence the Wadge degree of
an !-language, which will be precisely de.ned below, is a measure of its topological
complexity.

Remark 3.8. In the above de.nition, we consider that a subset E⊆X! is given to-
gether with the alphabet X .

Then, we can de.ne the Wadge class of a set F :

De�nition 3.9. Let F be a subset of X!. The wadge class of F is [F] de.ned by:
[F] = {E=E⊆Y! for a .nite alphabet Y and E6WF}.

Recall that each Borel class �0
n and �0

n is a Wadge class.
And that a set F ⊆X! is a �0

n (respectively �0
n)-complete set iJ for any set E⊆Y!,

E is in �0
n (respectively �0

n) iJ E6WF .

O. Finkel / Theoretical Computer Science 262 (2001) 669–697 677

�0
n (respectively �0

n)-complete sets are thoroughly characterized in [40].
There is a close relationship between Wadge reducibility and games which we now

introduce. De.ne .rst the Wadge game W (A; B) for A⊆X!
A and B⊆X!

B :

De�nition 3.10. The Wadge game W (A; B) is a game with perfect information between
two players, player 1 who is in charge of A and player 2 who is in charge of B.

Player 1 .rst writes a letter a1 ∈XA, then player 2 writes a letter b1 ∈XB, then player
1 writes a letter a2 ∈XA, and so on : : :

The two players alternatively write letters an of XA for player 1 and bn of XB for
player 2.

After ! steps, the player 1 has written an !-word a∈X!
A and player 2 has written

an !-word b∈X!
B .

Player 2 is allowed to skip, even in.nitely often, provided he really write an !-word
in ! steps.

The player 2 wins the play iJ [a∈A↔ b∈B], i.e. iJ [(a∈A and b∈B) or (a =∈A
and b =∈B and b is in9nite)].

Recall that a strategy for player 1 is a function � : (XB ∪{s})? →XA. And a strategy
for player 2 is a function f : X+

A →XB ∪{s}.
� is a winning strategy (w.s.) for player 1 iJ he always wins a play when he uses

the strategy �, i.e. when the nth letter he writes is given by an = �(b1 : : : bn−1), where
bi is the letter written by player 2 at step i and bi = s if player 2 skips at step i.

A winning strategy for player 2 is de.ned in a similar manner.
Martin’s Theorem states that every Gale–Stewart Game G(X) (see Section 9 below

for more details), with X a borel set, is determined and this implies the following:

Theorem 3.11 (Wadge). Let A⊆X!
A and B⊆X!

B be two Borel sets; where XA and XB

are at most countable alphabets. Then the Wadge game W (A; B) is determined: one
of the two players has a winning strategy. And A6WB i< the player 2 has a winning
strategy in the game W (A; B).

Recall that a set X is well ordered by a binary relation ¡ iJ ¡ is a linear order
on X and there is not any strictly decreasing (for ¡) in.nite sequence of elements
in X .

Theorem 3.12 (Wadge). Up to the complement and ≡W ; the class of Borel subsets
of 9nite rank of X!; for X a 9nite alphabet; is a well ordered hierarchy. There is
an ordinal |WH |; called the length of the hierarchy; and a map d0

W from WH onto
|WH |; such that for all A; B∈WH :

d0
WA¡d0

WB↔A¡WB

and

d0
WA=d0

WB↔ [A ≡W B or A ≡W B−]:

678 O. Finkel / Theoretical Computer Science 262 (2001) 669–697

Remark 3.13. We do not give here the ordinal |WH |. Details may be found in [15].

It is natural to ask for the restriction of the Wadge Hierarchy to !-regular languages.
In fact there is an eJective version of the Wadge Hierarchy restricted to !-regular
languages:

Theorem 3.14 (Corollary of B<uchi–Landweber’s Theorem [7]). For A and B some !-
regular sets; one can e<ectively decide which player has a w.s. in the game W (A; B)
and the winner has a w.s. given by a transducer.

The hierarchy obtained on !-regular languages is now called the Wagner hierarchy
and has length !!. Wagner [47] gave an automata structure characterization, based on
notion of chain and superchain, for an automaton to be in a given class. And one can
also compute the Wadge degree of any !-regular language. Wilke and Yoo proved in
[49] that this can be done in polynomial time. The Wagner hierarchy is also recently
studied in [11, 12, 38].

4. Deterministic omega context-free languages

We now study topological properties of the languages in DCFL!. These are boolean
combination of G� sets. Cohen and Gold proved that one can decide whether an ef-
fectively given !-DCFL in an open or a closed set [9]. Linna characterized the !-
languages accepted by DBPDA as the G� languages in DCFL! and proved in [31]
that one can decide whether an eJectively given !-DCFL is a G� or a F� set.

We give an essentially diJerent proof of these results, which is heavily based on a
recent result of Walukiewicz [48], and which leads to a much .ner result:

Not only one can decide whether an eJectively given !-DCFL A (given by a
DMPDA accepting A) is in the Borel class F;G;G� or F�, but one can decide whether
A is in the wadge class of any !-regular language B.

Let A⊆X!
A be an !-DCFL given by a DMPDA A= (QA; XA; *A; �A; qA;0; ZA;0; FA)

and B⊆X!
B be an !-regular language accepted by a DMA B= (QB; XB; �B; qB;0; FB).

We de.ne the set C ⊆ (XA ∪XB ∪{s})! by:
For �= a1b1a2b2a3b3 : : : ∈ (XA ∪XB ∪{s})!, let a= a1a2a3 : : : and b= b1b2b3 : : : and

(b=s) = b where letters s are removed.
Then �∈C iJ [(a =∈A or (b=s) =∈B) and (a∈A or (b=s) is a .nite word or (b=s)∈B)].
And � =∈C iJ [(a∈A and (b=s)∈B) or (a =∈A and (b=s) is an in.nite word and

(b=s) =∈B)].
The Gale–Stewart game G(C) is de.ned as followed:
Player 1 writes a letter a1 ∈XA, then player 2 writes a letter b1 ∈XB ∪{s} (s for

skip), then player 1 writes a letter a2 ∈XA, and player 2 writes a letter b2 ∈XB ∪{s}: : :
After ! steps, the two players have composed an in.nite word:
�∈ (XA ∪XB ∪{s})!, and player 2 wins the play iJ � =∈C.

O. Finkel / Theoretical Computer Science 262 (2001) 669–697 679

We easily see that player 2 has a w.s. in the Wadge game W (A; B) iJ he has a w.s.
in the game G(C).

It is now easy to show that C is accepted by a deterministic Muller pushdown
automaton C: C is essentially the product of the two machines A and B, where
suitable accepting conditions are chosen. (The exact de.nition of these conditions is
left to the reader).

In a recent paper, Walukiewicz proved that in a pushdown game, one of the two
players has a w.s., given by a pushdown transducer which is eJectively constructible
[48]. He considered pushdown games where each of the two players alternatively plays
a move in the graph of con.gurations of a deterministic pushdown automaton.

This result implies that in our game G(C), one of the two players has a w.s. and
this strategy is eJectively constructible.

So we can decide which player has a w.s. in the game W (A; B), i.e. whether A6WB.
With a similar construction, we see that one can decide whether B6W A.
When this result is applied with B a �0

2 complete !-regular set, for example,
B= {�∈{0; 1}!= there are in.nitely many letters 1 in �} [40], one can decide whether
an eJectively given !-DCFL is a G� set.

The same result holds for the classes F;G;F�, because there are some �0
1 (respec-

tively �0
1;�

0
2)-complete !-regular sets [40].

But when we apply this result to an !-regular set B, we can decide whether A is
in the wadge class of B. And we can decide whether B≡W A, because we can decide
whether A6WB and B6WA.

5. Decision problems for !-CFL

We shall say that an !-CFL A is eJectively given when a MPDA accepting A is
given.

We shall say that an !-DCFL A is eJectively given when a DMPDA accepting A
is given.

We now state some undecidability results. Remark that some of these results are not
new, but we shall reprove them in order to rely on this proof in the sequel.

Theorem 5.1. Let � be an alphabet having at least two letters. It is undecidable; for
some e<ectively given !-context-free languages A and B in �!; whether:
(1) A ∩ B is empty.
(2) A ∩ B is in9nite.
(3) A ∩ B has the continuum power.
(4) A− is in9nite.
(5) A− has the continuum power.
(6) A=�!.

Proof. Let us .rst return to the Post correspondence Theorem:

680 O. Finkel / Theoretical Computer Science 262 (2001) 669–697

Theorem 5.2. Let * be an alphabet having at least two elements. Then it is unde-
cidable to determine; for arbitrary n-tuples (x1; : : : ; xn) and (y1; : : : ; yn) of non-empty
words in *?; whether there exists a non-empty sequence of indices i1; : : : ; ik such that
xi1 : : : xik =yi1 : : : yik .

Let then *= {a; b} and x; y some n-tuples of non-empty words of *?.
Let L(x): c=LX = {baik : : : bai1cxi1 : : : xik c=k¿1; 16ij6n for j∈ [1; k]}, where c =∈*

and �=*∪{c}.
It is well known that L(x) is a deterministic context free language [24], and so is

LX . Then L!X is an !-CFL, and L!Y is also an !-CFL.
Remark that L!X is a G�-subset of �!, because L!X =

⋂
n¿1 L

n
X :�

!.
L!X ∩L!Y is non-empty iJ [∃i1; : : : ; ik ; with k¿1, such that xi1 : : : xik =yi1 : : : yik] iJ

[L!X ∩L!Y is in.nite] iJ [L!X ∩L!Y has the continuum power].
These assertions are undecidable, because of the Post Theorem.
Let : be the morphism {a; b; c}? →{a; b}? de.ned by: a→ bab, b→ ba2b, c→ ba3b.
: transforms L!X into an !-CFL :(L!X) = [:(LX)]!, because the family CFL is closed

under morphism.
:(L!X) codes with two letters the language L!X . And the same holds for L!Y . Then (1)

–(3) of the theorem are proved.
To prove (4), now consider the !-language �! − (L!X ∩L!Y) = (L!X)− ∪ (L!Y)−. We

shall .rst prove that (L!X)− =�! − (L!X) is an !-CFL. For that prove the
following:

Lemma 5.3 (Ginsburg [24]). With the above notations L=L(x)−∩{a; b}?c{a; b}? is
a context free language.

This language L is the union of L1 and L2, where L1 =L′1: c:{a; b}?, L′1 being the
complement in {a; b}? of {baik : : : bai1 =k¿1; 16ij6n}.

This set is rational, therefore L′1 is also rational and by concatenation product, L1 is
also rational.

Now de.ne L2, following [24]:
For each non-empty word w∈{a; b}?, we de.ne:
D(w) = {u �= �=u∈{a; b}?; |u|¡|w|}, and
J (w) = {u �= �=u∈{a; b}?; u �=w and |u|= |w|}
Then for each n-tuple w= (w1; : : : ; wn) of non-empty words, we let:
M (w) = c{a; b}?{a; b} ∪ b{a; b}?c ∪ ⋃

16i6n

⋃
u∈D(wi)(ba

icu ∪ baib{a; b}? cu) ∪⋃
16i6n

⋃
u∈J (wi)(ba

ic{a; b}?u∪ baib{a; b}?c{a; b}?u).
M (x) is a rational language, because each set D(wi) and J (wi) is .nite.
Let the substitution h : {a; b; c}? →P({a; b; c}?) de.ned by a→{a}, b→{b}, and
c→M (x), and let L2 = h(L(x)).
The class CFL being closed under substitution, L(x) and M (x), (and also
{a} and {b}) being CFL, the language L2 is context free.

O. Finkel / Theoretical Computer Science 262 (2001) 669–697 681

L2 contains {baik : : : bai1cw=w �= xi1 : : : xik ; w∈{a; b}?}, and L2 ⊆L(x)− ∩{a; b}?
c{a; b}?. Then L1 ∪L2 =L(x)− ∩{a; b}?c{a; b}?, and this language, union of two
CFL, is a CFL.

Now consider (L!X)− = [L(x): c]?:L:c:�! ∪C.n, where C.n = {�∈�!=� contains only
a .nite number of c}.
C.n is an !-regular language then it is an !-CFL.
[L(x): c]?:L:c is a context-free language because the class CFL is closed under

star operation and concatenation product, so [L(x): c]?:L:c:�! is an !-CFL. The class
CFL! is closed under union [9], then (L!X)− is an !-CFL, and so is (L!Y)−.

Therefore the union (L!X)− ∪ (L!Y)− = (L!X ∩ L!Y)− is also an !-CFL. Denote it by
LX;Y . Then it holds that

(LX;Y)− = (L!X ∩ L!Y):

But we have proved that one cannot decide whether (L!X ∩L!Y) is empty, in.nite, or
has the continuum power. Hence, one cannot decide whether the !-language (LX;Y)−

is empty (i.e. LX;Y =�!), in.nite or has the continuum power. Then (4)–(6) of the
theorem are proved for an alphabet having three letters.

To prove these results for an alphabet having two letters, consider the above mor-
phism :. Then

{a; b}! − (:[L!X] ∩ :[L!Y]) = ({a; b}! − :({a; b; c}!))

∪(:({a; b; c}!) − (:[L!X] ∩ :[L!Y])):

But {a; b}! − :({a; b; c}!) is an !-regular language therefore it is an !-CFL. And
:({a; b; c}!) − (:[L!X]∩ :[L!Y]) = :[{a; b; c}! − (L!X ∩L!Y)] = :[LX;Y]. Then, it is also an
!-CFL because the family CFL! is closed under �-free morphism [9]. Then, the union
{a; b}! − (:[L!X]∩ :[L!Y]) is an !-CFL. Denote

TX;Y = {a; b}! − (:[L!X] ∩ :[L!Y]):

Items (4)–(6) of the theorem then follow from (1)–(3) already proved, because
(TX;Y)− = (:[L!X]∩ :[L!Y]) and then one cannot decide whether the complement of the
!-CFL TX;Y over the alphabet {a; b} is empty (i.e. TX;Y = {a; b}!), in.nite or has the
continuum power.

Remark 5.4. We have de.ned LX;Y = (L!X ∩L!Y)−. This !-language is an !-CFL.
And one cannot decide whether LX;Y =�!. Two cases may happen. In the .rst case
LX;Y =�! and then it is an open and closed set. In the second case, we shall prove
in Section 7 that LX;Y is neither open nor closed in �! and we shall deduce fur-
ther undecidability results about the topological complexity of omega context-free
languages.

682 O. Finkel / Theoretical Computer Science 262 (2001) 669–697

6. Operation “exponentiation of sets”

Wadge gave .rst a description of the Wadge hierarchy of Borel sets [46]. Duparc
recently got a new proof of Wadge’s results and he gave a normal form of Borel sets,
i.e. an inductive construction of a Borel set of every given degree [13, 15]. His proof
relies on set theoretic operations which are the counterpart of arithmetical operations
over ordinals needed to compute the Wadge degrees.

In fact, Duparc studied the Wadge hierarchy via the study of the conciliating hierar-
chy. He introduced in [13, 15] conciliating sets which are sets of .nite or in.nite words
over an alphabet X , i.e. subsets of X? ∪X! =X6!. It turned out that the conciliating
hierarchy is isomorphic to the Wadge hierarchy of non-self dual Borel sets, via the
following correspondence:

For A⊆X6!
A and d a letter not in XA, de.ne

Ad = {x ∈ (XA ∪ {d})!=x(=d) ∈ A};

where x(=d) is the sequence obtained from x when removing every occurrence of the
letter d.

The set theoretic operations are then de.ned over concilating sets. We shall only
need in this paper the operation of exponentiation. We .rst recall the following:

De�nition 6.1. Let XA be a .nite alphabet and � =∈XA, let X =XA ∪{�}. Let x be
a .nite or in.nite word over the alphabet X =XA ∪{�}.

Then x� is inductively de.ned by
�� = �,
For a .nite word u∈ (XA ∪{�})?:
(u:a)� = u�:a, if a∈XA,
(u:�)� = u� with its last letter removed if |u�|¿0,
(u:�)� = � if |u�|= 0,
and for u in.nite:
(u)� = limn∈! (u[n])�, where, given -n and u in X?

A ,
u � limn∈! -n ↔∃n∀p¿n -p[|u|] = u.

Remark 6.2. For x∈X!; x� denotes the string x, once every � occurring in x has
been “evaluated” to the back space operation (the one familiar to your computer!),
proceeding from left to right inside x. In other words, x� = x from which every interval
of the form “a�” (a∈XA) is removed.

For example, if u= (a�)n, for n¿1, u= (a�)! or u= (a��)! then (u)� = �,
if u= (ab�)! then (u)� = a!,
if u= bb(� a)! then (u)� = b.

We can now de.ne the operation A→A∼ of exponentiation of conciliating sets:

O. Finkel / Theoretical Computer Science 262 (2001) 669–697 683

De�nition 6.3. For A⊆X6!
A and � =∈XA, let X =XA ∪{�} and A∼ =

{x∈ (XA ∪{�})6!=x� ∈A}.

The operation ∼ is monotone with regard to the Wadge ordering and produce some
sets of higher complexity, in the following sense:

Theorem 6.4 (Duparc [15]). (a) For A⊆X6!
A and B⊆X6!

B ; Ad and Bd borel sets;
Ad6WBd ↔ (A∼)d6W (B∼)d.

(b) If Ad ⊆ (XA ∪{d})! is a �0
n-complete (respectively �0

n -complete) set (for an
integer n¿1); then (A∼)d is a �0

n+1-complete (respectively �0
n+1-complete) set.

(c) If A⊆X!
A is a �0

n-complete set (for an integer n¿2); then (A∼) is a �0
n+1-

complete set.

Remark 6.5. (c) of preceding theorem follows (b) because whenever A⊆X!
A is a

�0
n -complete set (for an integer n¿2); then Ad is also a �0

n -complete set.
And because whenever, for A⊆X!

A ; Ad ⊆ (XA ∪{d})! is a �0
n-complete set (for an

integer n¿3); then A is also a �0
n -complete set.

This property will be useful only in Section 8 when we study the !-powers of
.nitary languages.

We now prove that the class CFL! is closed under this operation ∼.

Theorem 6.6. Whenever A⊆X!
A is an !-CFL; then A∼ ⊆ (XA ∪{�})! is an !-CFL.

Proof. An !-word �∈A∼ may be considered as an !-word �� ∈A to which we
possibly add, before the .rst letter ��(1) of �� (respectively between two consecutive
letters ��(n) and ��(n + 1) of ��), a .nite word v1 (respectively vn+1) where:
vn+1 belongs to the context free (.nitary) language L3 generated by the context free

grammar with the following production rules:
S→ aS � S with a∈XA,
S→ a� S with a∈XA,
S→ � (� being the empty word).
this language L3 corresponds to words where every letter of XA has been removed

after using the back space operation.
And v1 belongs to the .nitary language L4 = (�)?:(L3:(�)?)?. This language cor-

responds to words where every letter of XA has been removed after using the back
space operation and this operation maybe has been used also when there was not any
letter to erase. L4 is a context-free language because the class CFL is closed under star
operation and concatenation product.

Remark 6.7. Recall that a one counter automaton is a pushdown automaton with a
pushdown alphabet in the form *= {Z0; z} where Z0 is the bottom symbol and always
remains at the bottom of the pushdown store. And a one counter language is a (.nitary)
language which is accepted by a one counter automaton by .nal states. It is easy to

684 O. Finkel / Theoretical Computer Science 262 (2001) 669–697

see that in fact L3 and L4 are deterministic one-counter languages, i.e. L3 and L4 are
accepted by deterministic one-counter automata. And for a∈XA, the language L3:a is
also accepted by a deterministic one-counter automaton.

Then, we can state the following:

Lemma 6.8. Whenever A⊆X!
A ; the !-language A∼ ⊆ (XA ∪{�})! is obtained by

substituting in A the language L3:a for each letter a∈XA; where L3 is the CFL
de9ned above; and then making a left concatenation by the language L4.

Let now A be an !-CFL given by A=
⋃n

i = 1 Ui:V!
i where Ui and Vi are context

free languages. Then A∼ =
⋃n

i=1(L4:U ′
i):V

′!
i , where U ′

i (respectively V ′
i) is obtained

by substituting the language L3:a to each letter a∈XA in Ui (respectively Vi).
The class CFL is closed under substitution, so U ′

i and V ′
i are CFL, and so is the

language (L4:U ′
i) by concatenation product. Hence the !-language A∼ is an !-CFL

because !-KC(CFL)⊆CFL!.

Proposition 6.9. From a MPDA accepting the !-language A⊆X!
A ; one can e<ectively

construct a MPDA which accepts the !-language A∼ ⊆ (XA ∪{�})!.

Proof. Let A be an !-CFL which is accepted by a Muller pushdown automaton
M = (K; XA; *; �; q0; Z0; F). The !-language accepted by M is L(M) =A= {�∈X!

A =there
exists a complete run r of M on � such that In(r)∈F}.

We shall construct another MPDA M∼ which accepts the !-language A∼ over the
alphabet X =XA ∪{�}.

Describe .rst informally the behaviour of the machine M∼ when it reads an !-
word �∈A∼. Recall that this word may be considered as an !-word �� ∈A to which
we possibly add, before the .rst letter ��(1) of �� (respectively between two con-
secutive letters ��(n) and ��(n + 1) of ��), a .nite word v1 (respectively vn+1)
where v1 belongs to the context-free language L4 and vn+1 belongs to the context-free
language L3.
M∼ starts the reading as a pushdown automaton accepting the language L4. Then

M∼ begins to read as M , but at any moment of the computation it may guess (using
the non-determinism) that it reads a .nite segment v of L3 which will be erased (using
the eraser �). It reads v using an additional stack letter E which permits to simulate
a one counter automaton at the top of the stack while keeping the memory of the
stack of M . Then, after the reading of v, M∼ simulates again the machine M and
so on.

More formally, M∼ = (K∼; XA ∪{�}; *∪{E}; �∼; q′0; Z0; F∼), where

K∼ = K ∪ {q′0} ∪ {q1=q ∈ K}

q′0 is a new state not in K

O. Finkel / Theoretical Computer Science 262 (2001) 669–697 685

E is a new letter not in *

F∼ = {P⊆K∼=P ∩ K ∈ F}

and the transition relation �∼ is de.ned by the following cases (where the transition
rules (a)–(d) are used to simulate a pushdown automaton accepting L4 and the MPDA
M∼ enters in a state q1, for q∈K , when it simulates a one counter automaton accepting
L3):

(a) �∼(q′0;�; Z0) = (q′0; Z0).
(b) (q′0; EZ0)∈ �∼(q′0; a; Z0) for each a∈XA.
(c) �∼(q′0;�; E) = (q′0; �).
(d) �∼(q′0; a; E) = (q′0; EE) for each a∈XA.
(e) (q; ?)∈ �∼(q′0; a; Z0) iJ (q; ?)∈ �(q0; a; Z0) for each a∈XA ∪{�} and ?∈*? and

q∈K .
(f) (q′; ?)∈ �∼(q; a; ,) iJ (q′; ?)∈ �(q; a; ,) for each a∈XA ∪{�} and ,∈* and ?∈*?

and q; q′ ∈K .
(g) (q1; E,)∈ �∼(q; a; ,) for each a∈XA and ,∈* and q∈K .
(h) �∼(q1; a; E) = (q1; EE) for each a∈XA and q∈K .
(i) �∼(q1;�; E) = (q1; �).
(j) (q′; ?)∈ �∼(q1; a; ,) iJ (q′; ?)∈ �(q; a; ,) for each a∈XA and ,∈* and ?∈*?

and q; q′ ∈K .
(k) (q1; E,)∈ �∼(q1; a; ,) for each a∈XA and ,∈* and q∈K .

Consider now subsets of X6! in the form A∪B, where A is a .nitary context free
language and B is an !-CFL. Remark that A and B should not be accepted by the
same pushdown automaton (but it may be). Prove then the following.

Proposition 6.10. If C =A∪B; where A is a 9nitary context free language and B is
an !-CFL over the same alphabet XA =XB; then C∼ is also the union of a 9nitary
context free language and an !-CFL over the alphabet XA ∪{�}.

Proof. It is easy to see from the de.nition of the operation of exponentiation of sets
that if C =A∪B then: C∼ =A∼ ∪B∼.

But if B is an !-CFL over XB =XA, then by Theorem 6.6 B∼ is an !-CFL D1.

Consider now the set A∼: This subset of (XA ∪{�})6! is constituted of .nite and
in.nite words. Let h be the substitution: X →P((XA ∪{�})?) de.ned by a→ a:L3

where L3 is the context free language de.ned above. Then it is easy to see that the
.nite words are obtained by substituting in A the language a:L3 for each letter a∈XA

and concatenating on the left by the language L4.
But CFL is closed under substitution and concatenation [3], then this language is a

context-free .nitary language D2.
The in.nite words in A∼ constitutes the !-language
D2:(L3 − {�})! if � =∈A, and

686 O. Finkel / Theoretical Computer Science 262 (2001) 669–697

D2:(L3 − {�})! ∪ (L4 − {�})! if �∈A,
The languages L4 −{�} and L3 −{�} are context free, thus the set of in.nite words

in A∼ is an !-CFL D3 because !-KC(CFL)⊆CFL! by Theorem 2.8. Then:

A∼ = D1 ∪ D2 ∪ D3:

But CFL! is closed under union hence D1 ∪D3 is an !-CFL. This ends the proof.

Proposition 6.11. (a) If A⊆�? is a context free language; then Ad is an !-CFL.
(b) If A⊆�! is an !-CFL; then Ad is an !-CFL.
(c) If A is the union of a 9nitary context free language and of an !-CFL over the

same alphabet �; then Ad is an !-CFL over the alphabet �∪{d}.

Proof of (a). Let A⊆�? be a .nitary context-free language. Substitute .rst the lan-
guage (d?):a for each letter a∈�. In such a way we obtain another .nitary context-free
language A′ because CFL is closed under substitution and the languages (d?):a are
context free. Indeed Ad =A′:d! hence Ad is an !-CFL because !-KC(CFL)⊆CFL!
by Theorem 2.8.

Proof of (b). Let A⊆�! be an !-CFL. The !-language Ad is obtained from A by
substituting the language (d?):a for each letter a∈� in the words of A. But the class
CFL! is closed under �-free context-free substitution [9], hence Ad is an !-CFL.

Proof of (c). Let A and B be subsets of �6! for a .nite alphabet �. Then, we easily
see that if C =A∪B; Cd =Ad ∪Bd holds. (c) is now an easy consequence of (a) and
(b) because CFL! is closed under union.

7. Topological properties of !-CFL

From preceding theorems we .rst deduce that the !-CFL exhaust the hierarchy of
Borel sets of .nite rank.

Theorem 7.1. For each non-negative integer n¿1; there exist �0
n -complete !-CFL An

and �0
n -complete !-CFL Bn.

Proof. For n= 1 consider the �0
1-complete !-regular language

A1 = {@∈{0; 1}!=∃i @(i) = 1}
and the �0

1 -complete !-regular language
B1 = {@∈{0; 1}!=∀i @(i) = 0}.
These languages are omega context-free languages because REG! ⊆CFL!.
Now consider the �0

2-complete !-regular language
A2 = {@∈{0; 1}!=∃¡!i @(i) = 1}
and the �0

2 -complete !-regular language
B2 = {@∈{0; 1}!=∃!i @(i) = 0},

O. Finkel / Theoretical Computer Science 262 (2001) 669–697 687

where ∃¡!i means: “there exist only .nitely many i such that : : :”, and
∃!i means: “there exist in.nitely many i such that : : :”.
A2 and B2 are omega context-free languages because they are !-regular languages.

To obtain omega context-free languages further in the Borel hierarchy, consider now
O1 (respectively C1) subsets of {0; 1}6! such that (O1)d (respectively (C1)d) are
�0

1-complete (respectively �0
1 -complete).

For example O1 = {x∈{0; 1}6!=∃i x(i) = 1} and C1 = {�}.
We shall have to apply n¿1 times the operation of exponentiation of sets.
More precisely, we de.ne, for a set A⊆X6!

A :
A∼:0 =A
A∼:1 =A∼ and
A∼: (n+1) = (A∼: n)∼.

Now apply n times (for an integer n¿1) the operation ∼ (with diJerent new letters
�1; �2; �3; : : : ;�n) to O1 and C1.

By Theorem 6.4, it holds that for an integer n¿1:
(O∼: n

1)d is a �0
n+1-complete subset of {0; 1;�1; : : : ;�n; d}!.

(C∼: n
1)d is a �0

n+1-complete subset of {0; 1;�1; : : : ;�n; d}!
and it is easy to see that O1 and C1 are in the form E ∪F where E is a .nitary

context-free language and F is an omega context-free language. Then it follows from
Propositions 6.10 and 6.11 that the !-languages (O∼: n

1)d and (C∼: n
1)d are context-

free. Hence the class CFL! exhausts the hierarchy of Borel sets of .nite rank: we
obtain the omega context-free languages An = (O∼: (n−1)

1)d and Bn = (C∼: (n−1)
1)d, for

n¿3.

This gives a partial answer to questions of Thomas and Lescow [29] about the
hierarchy of !-CFL: This hierarchy exhausts the hierarchy of Borel sets of .nite
rank.

A natural question now arises: Do the results of [28] extend to !-CFL? Unfortu-
nately, the answer is no. Cohen and Gold proved that one cannot decide whether an
!-CFL is in the class F;G; or G�. We extend this result to all classes �0

n and �0
n , for

n an integer ¿1.

Theorem 7.2. Let n be an integer ¿1. Then it is undecidable whether an e<ectively
given !-CFL is in the class �0

n (respectively �0
n).

Proof. Recall that, by Theorem 5.1, it is undecidable, for an eJectively given !-CFL
A over the alphabet �, whether A=�!.

More precisely, one cannot decide whether LX;Y = (L!X ∩L!Y)− is equal to �!.
Whenever LX;Y =�!, LX;Y is an open and closed subset of �!. We shall prove the

following:

688 O. Finkel / Theoretical Computer Science 262 (2001) 669–697

Lemma 7.3. Whenever LX;Y �= �!; LX;Y is neither open nor closed in �!.

Proof. Suppose LX;Y �= �!. Then (L!X ∩L!Y) = (LX ∩LY)! is non-empty, so there exists
a non-empty sequence of indices i1; : : : ; ik such that xi1 : : : xik =yi1 : : : yik , and (baik : : : bai1

cxi1 : : : xik c)
! ∈ (LX ∩LY)!.

Then each sequence (i1 : : : ik)n, where n is an integer ¿1, gives another solution of
Post correspondence problem. For each n¿1, (baik : : : bai1)n is a pre.x of an !-word
of (L!X ∩L!Y).

So if (L!X ∩L!Y) was closed, the in.nite word (baik : : : bai1)! should be in (L!X ∩L!Y).
This cannot happen because every word in (L!X ∩L!Y) contains an in.nite number of
letters “c”.

Therefore (L!X ∩L!Y) is not a closed set and LX;Y = (L!X ∩L!Y)− is not an open set.
Let us now prove that (L!X ∩L!Y) is not an open subset of �!. Otherwise, this set

should be V:�!, for a set V ⊆�?.

(L!X ∩L!Y) is supposed to be non-empty, so V �= ∅, and for v∈V , the word v:a!

should be in (L!X ∩L!Y). This is again not possible because every word in (L!X ∩L!Y)
contains an in.nite number of letters “c”.

Then (L!X ∩L!Y) is not open and LX;Y = (L!X ∩L!Y)− is not closed.

In order to apply precisely the results of Duparc, we have here to consider con-
ciliating sets, i.e. subsets of �6!, for some alphabet �. Then, we shall prove the
following:

Lemma 7.4. (a) For each integer n¿1; the language ((LX;Y ∪�?)∼: n)d is an omega
context free language.

(b) Whenever LX;Y �=�!; the language (LX;Y ∪�?)d is neither open nor closed in
(�∪{d})!.

(c) Whenever LX;Y =�!; it holds that (LX;Y ∪�?)d = (�∪{d})!.

Proof of (a). The !-language LX;Y is context free (see the proof of Theorem 5.1) and
�? is also a context-free language. Then (a) follows from the Propositions 6.10 and
6.11.

Proof of (b). To prove that whenever LX;Y �=�!, the language (LX;Y ∪�?)d is neither
open nor closed in (�∪{d})!, we use a similar method as for Lemma 7.3 with minor
modi.cations.

Proof of (c). LX;Y =�! implies (LX;Y ∪�?)d = (�∪{d})! because of the de.nition
of A→Ad and then (LX;Y ∪�?)d is open and closed in (�∪{d})!.

Consider now as above O1 (respectively C1) subsets of {0; 1}6! such that (O1)d

(respectively (C1)d) are �0
1-complete (respectively �0

1 -complete):
For example, O1 = {x∈{0; 1}6!=∃i x(i) = 1} and C1 = {�}.
We denote (LX;Y ∪�?) =AX;Y .

O. Finkel / Theoretical Computer Science 262 (2001) 669–697 689

We cannot decide whether (AX;Y)d6W (O1)d neither whether (AX;Y)d6W (C1)d, be-
cause we cannot decide whether (AX;Y)d is open neither whether (AX;Y)d is closed.

Now apply the operation ∼; n times, to the sets AX;Y and O1 and C1.
Then by Theorem 6.4:

(a) (A∼: n
X; Y)d6W (O∼: n

1)d ↔ (AX;Y)d6W (O1)d.
(b) (A∼: n

X; Y)d6W (C∼: n
1)d ↔ (AX;Y)d6W (C1)d.

(c) (O∼: n
1)d is �0

n+1-complete.
(d) (C∼: n

1)d is �0
n+1-complete.

Therefore, for each n¿0, one cannot decide whether:

(a) (A∼: n
X; Y)d6W (O∼: n

1)d i.e. (A∼: n
X; Y)d is in the class �0

n+1.
(b) (A∼: n

X; Y)d6W (C∼: n
1)d i.e. (A∼: n

X; Y)d is in the class �0
n+1.

Remark 7.5. We can use standard construction methods to .nd a (non-deterministic)
Muller pushdown automaton An

X; Y which accepts the language (A∼: n
X; Y)d, because from a

MPDA which accepts an !-language A, we can eJectively construct a MPDA which
accepts A∼.

And it is clear from the proof of Proposition 6.10 that if C =A∪B where A is
a .nitary language accepted by a pushdown automaton A and B is an !-language
accepted by a MPDA B, then we can construct a pushdown automaton A′ accepting
.nite words and a MPDA B′ such that C∼ =L(A′)∪L(B′). And the operation A→Ad

is also eJective in the same manner from the proof of Proposition 6.11.

From the above proof, we can deduce that one cannot decide whether the intersection
of the two deterministic !-CFL L!X and L!Y is open (respectively closed):

Theorem 7.6. One cannot decide whether the intersection of two !-DCFL is open
(respectively closed).

Remark 7.7. The languages L!X and L!Y are in fact accepted by B<uchi deterministic
PDA.

In terms of [41], we can write the above result as:
It is undecidable whether the intersection of two eJectively given !-languages in

DPDA(inf;�) is in DPDA(ran;�) (respectively DPDA(ran;⊆)).

8. !-powers of �nitary languages

The !-power of a language W ⊆X? is a fundamental operation over .nitary lan-
guages which leads to !-languages.

Whenever W is a regular language (respectively a CFL), then W! is an !-regular
language, (respectively an !-CFL).

The question of the topological complexity of W! naturally arises.

690 O. Finkel / Theoretical Computer Science 262 (2001) 669–697

When W is a regular language, W! is a boolean combination of G� sets because it
is an !-regular set.

In order to study the topological complexity of W!, when W is a context free
language, we .rst introduce a variant of the de.nition of A∼:

De�nition 8.1. For A⊆X6!
A and � =∈ XA, let X =XA ∪{�} and

A≈ = {x∈ (XA ∪{�})6!=x� ∈A},
where x� is inductively de.ned by
�� = �.
For a .nite word u∈ (XA ∪{�})?:
(u:a)� = u�:a, if a∈XA,
(u:�)� = u� with its last letter removed if |u�|¿0,
(u:�)� is unde.ned if |u�|= 0,
and for u in.nite:
(u)� = limn∈! (u[n])�, where, given -n and u in X?

A ,
u � limn∈! -n ↔∃n∀p¿n -p[|u|] = u.

The only diJerence is that here: (u:�)� is unde.ned if |u�|= 0. It is easy to see
(from Duparc’s proof [15]) that if A⊆X!

A is a Borel set such that A �=X!
A , i.e. A− �= ∅,

then A≈ is wadge equivalent to A∼ because:

(a) In the Wadge game W (A∼; A≈) the player in charge of A≈ has clearly a winning
strategy which consists in copying the play of the other player except if player 1
writes the eraser � but he has nothing to erase. In this case player 2 writes for
example a letter a∈XA and the eraser � at the next step of the play. Now if, in
! steps, player 1 has written the !-word @ and player 2 has written the !-word
-, it is easy to see that [@� = -�] and then @∈A∼ iJ -∈A≈. Thus, player 2 has
a winning strategy in the Wadge game W (A∼; A≈).

(b) Consider now the Wadge game W (A≈; A∼). The only extra possibility for the
player in charge of A≈ is to get out of the set A≈ by writing the eraser � when
in fact there is not any letter of his previous play to erase. But then his .nal play
is surely outside A≈.
If A �=X!

A , i.e. A− �= ∅, then the player in charge of the set A∼ may write a word
in (A∼)−, (by playing the letter � to erase his previous play and then writing a
word in A−) then player 2 has a winning strategy in the Wadge game W (A≈; A∼).

Lemma 8.2. Whenever A⊆X!
A is an !-power of a language LA; i.e. A=L!A ; then A≈

is also an !-power; i.e. there exists a (9nitary) language EA such that A≈ =E!
A .

Proof. Let h be the substitution: XA →P((XA ∪{�})?) de.ned by a→L3:a where
L3 is the context-free language de.ned above. Then it is easy to see that now A≈

is obtained by substituting in A the language L3:a for each letter a∈XA. (We have
not here to consider the language L4 which appeared in the expression of A∼). Then
EA = h(LA).

O. Finkel / Theoretical Computer Science 262 (2001) 669–697 691

Recall now the de.nition of one counter automata and one counter (and iterated
counter) languages: A one counter automaton is a pushdown automaton with a push-
down alphabet in the form *= {Z0; z} where Z0 is the bottom symbol and always
remains at the bottom of the pushdown store. A one counter language is a (.nitary)
language which is accepted by a one counter automaton by .nal states. Let OCL be
the family of one counter languages. The family ICL of iterated counter languages
is the closure under substitution of the family OCL. It is also the class of (.nitary)
languages which are accepted by a pushdown automaton such that, during any com-
putation, the words in the pushdown store remain in a bounded language in the form
(zk)?; : : : ; (z2)?(z1)?Z0, where {Z0; z1; : : : ; zk} is the pushdown alphabet, [1]. We can
now state the following:

Theorem 8.3. For each integer n¿1; there exists a context free language Pn such
that P!

n is a �0
n -complete set.

In fact there is such a language in the subclass of iterated counter languages.

Proof. Let B1 = {�∈{0; 1}!=∀i¿1 �(i) = 0}= {0!}.
It is a �0

1-complete set of the form P!
1 where P1 is the singleton containing the only

word 0.
Remark that P1 = {0} is a regular set thus a context free language.
Let then B2 = {@∈{0; 1}!=∃!i @(i) = 1} be the well known �0

2-complete regular !-
language. It holds that B2 = (0?:1:0?)!. Let P2 = (0?:1:0?). Then P2 is rational hence
context free and then h(P2)∈CFL and (h(P2))! = (P!

2)≈ is a �0
3-complete set by The-

orem 6.4.
Iterating this method n times, we easily obtain a context free language Pn+2 such

that (Pn+2)! is a �0
n+2-complete set.

P1 and P2 are one counter languages because they are rational.
The languages L3a, for a∈XA, are one counter languages. Then for each integer

n¿1 the language Pn is an iterated counter language.

Remark 8.4. It is undecidable whether (LX ∩LY)! is open (respectively closed). Then,
it is undecidable, for eJectively given CFL L1 and L2, whether (L1 ∩L2)! is open
(respectively closed).

9. Gale–Stewart games

Recall the following:

De�nition 9.1 (Gale and Stewart [23]). Let A⊆X!, where X is a .nite alphabet. The
game G(A) is a game with perfect information between two players, player 1 .rst writes
a letter a1 ∈X , then player 2 writes a letter b1 ∈X , then player 1 writes a2 ∈X , and so
on : : : After ! steps, the two players have composed a word �= a1b1a2b2 : : : of X!.
Player 1 wins the play iJ �∈A, otherwise, player 2 wins the play.

692 O. Finkel / Theoretical Computer Science 262 (2001) 669–697

It follows from Martin’s Theorem that every Gale–Stewart game G(A), where A is
a Borel set, is determined, i.e. that one of the two players has a winning strategy.

And B<uchi–Landweber Theorem [7] states that whenever A is an !-regular language,
one can decide which player has a w.s. and one can eJectively construct a w.s. given
by a transducer.

Walukiewicz’s Theorem extends this result to deterministic pushdown automata [48].
The problem of the synthesis of winning strategies is of practical interest in computer

science, because the conditions of a Gale Stewart game may be seen as a speci.cation,
while the two players are respectively a non-terminating reactive program and the
“environment”.

The question of the eJective construction of w.s. is asked in [45, 29, 17].
We show here that for non deterministic !-CFL A, we cannot even decide which

player has a w.s.:

Theorem 9.2. For an e<ectively given closed !-CFL A; it is undecidable to determine
which player has a winning strategy in the Gale–Stewart game G(A).

Proof. We have shown in section 5 that one cannot decide whether the !-CFL LX;Y ,
over the alphabet �, is equal to �!.

Now de.ne the set BX;Y which is composed of the !-words �= a1b1a2b2 : : : such
that b1b2 : : : is in LX;Y .

Consider the game G(BX;Y).
If LX;Y =�!, player 1 always wins the play, then he has an obvious w.s.
If LX;Y �=�!. Player 2 has a w.s. which consists in writing a word b1b2 : : : which is

not in LX;Y .
Then, we cannot decide which player has a w.s., because we cannot decide whether

LX;Y =�! and it is easy to construct, from a MPDA accepting LX;Y , a MPDA ac-
cepting BX;Y .

The set LX;Y is a F�-set, because its complement L!X ∩L!Y is a G�-set, and we can
easily deduce that BX;Y is also a F�-set.

With a slight modi.cation, we can show that this result remains true where we
consider only closed !-CFL.

For that we can replace L!X ∩L!Y by (LX ∩LY):�! and call its complement L′X;Y .
Then we can show, as in Section 5, that L′X;Y is an !-CFL, and that one cannot
decide whether L′X;Y =�!.

But now L′X;Y is a closed !-CFL, and we can associate a Gale–Stewart game
G(B′

X;Y), where B′
X;Y is another closed !-CFL, and such that one cannot decide which

player has a w.s. in the game G(B′
X;Y).

10. Arithmetical properties

In this section, we shall deduce from the preceding proofs some results about !-
context free languages and the Arithmetical hierarchy.

O. Finkel / Theoretical Computer Science 262 (2001) 669–697 693

First recall the de.nition of the Arithmetical hierarchy of !-languages, [41].
Let X be a .nite alphabet. An !-language L⊆X! belongs to the class �n if and

only if there exists a recursive relation RL ⊆(N)n−1 × X? such that

L = {� ∈ X!=∃a1 : : : Qnan (a1; : : : ; an−1; �[an + 1]) ∈ RL};
where Qi is one of the quanti.ers ∀ or ∃ (not necessarily in an alternating order).
An !-language L⊆X! belongs to the class
n if and only if its complement X! − L
belongs to the class �n.

The inclusion relations that hold between the classes �n and
n are the same as for
the corresponding classes of the Borel hierarchy.

Proposition 10.1 (See Staiger [42]). (a) �n ∪
n (�n+1 ∩
n+1; for each integer n¿1.
(b) A set W ⊆X! is in the class �n if and only if its complement W− is in the

class
n.
(c) �n −
n �= ∅ and
n − �n �= ∅ hold for each integer n¿1.

The classes �n and
n are strictly included in the respective classes �0
n and �0

n of
the Borel hierarchy:

Theorem 10.2 (See Staiger [42]). For each integer n¿1; �n (�0
n and
n (�0

n .

Remark that cardinality arguments suQce to show that the inclusions are strict.
We are now able to prove the following result:

Theorem 10.3. Let n be an integer ¿1. Then it is undecidable whether an e<ectively
given !-CFL is in the class �n (respectively
n).

Proof. Return to the proof of Theorem 7.2. Let n be an integer ¿1. We had found a
family of omega context free languages

(A∼:n
X;Y)d = ((LX;Y ∪ �?)∼:n)d

over the alphabet {a; b; c;�1;�2; : : : ;�n; d} such that (A∼: n
X; Y)d is either {a; b; c;�1;

�2; : : : ;�n; d}! or an !-language which is neither a �0
n+1-subset nor a �0

n+1-subset of
{a; b; c;�1;�2; : : : ;�n; d}!.

In the .rst case {a; b; c;�1;�2; : : : ;�n; d}! is in �1 ∩
1 hence also in the class
�n (respectively
n) for each integer n¿ 1.

And in the second case it follows from Theorem 10.2 that (A∼: n
X; Y)d is neither in the

class �n+1 nor in the class
n+1. But one cannot decide which case holds.
Recall that the !-languages accepted by deterministic Turing machines with a B<uchi

(respectively Muller) acceptance condition are exactly the languages which are
2-
languages (respectively boolean combinations of
2-languages) [41].

Thus, in the above proof we have seen that (A∼:2
X;Y)d is either {a; b; c;�1;�2; d}!

(and in that case it is accepted by a deterministic B<uchi or Muller automaton hence

694 O. Finkel / Theoretical Computer Science 262 (2001) 669–697

also by a B<uchi deterministic Turing machine) or an !-language which is neither a �0
3-

subset nor a �0
3-subset of {a; b; c;�1;�2; d}!. Hence in this latter case (A∼:2

X;Y)d is not
a boolean combination of
2-languages (because
2 ⊆�0

2 and boolean combinations
of �0

2-sets are �0
3 ∩�0

3-sets [33]).
As it was proved above, one cannot decide which case holds, so we can deduce the

following:

Theorem 10.4. It is undecidable to determine whether an e<ectively given !-CFL is
accepted by a deterministic Turing machine with B@uchi (respectively Muller) accep-
tance condition.

In fact this result can be extended to other deterministic machines. Consider X-
automata as de.ned in [19] which are automata equipped with a storage type X.
Then the !-languages accepted by deterministic X-automata with a B<uchi (respec-
tively Muller) acceptance condition are languages which are �0

2-languages (respectively
boolean combinations of �0

2-languages) [19].
But if * is a .nite alphabet and X is a storage type, the !-language *! is accepted

by an X-automaton. Hence this provides the following generalization:

Theorem 10.5. Let X be a storage type as de9ned in [19]. Then it is undecidable
to determine whether an e<ectively given !-CFL is accepted by a deterministic X-
automaton with B@uchi (respectively Muller) acceptance condition.

11. Concluding remarks and further work

This paper is the .rst of several papers about topological properties of !-CFL:

11.1. Omega deterministic CFL

We have proved that, for any eJectively given !-regular language A and !-DCFL
B, we can decide whether B is in the Wadge class of A, or in the Wadge degree of A.

A natural question now arises. Are the Wadge degrees of !-DCFL also Wadge
degrees of !-regular languages? And can we decide whether A≡W B, for !-DCFL A
and B?

The answer to the .rst question is in fact an emphatic no: there are many more
wadge classes in DCFL! than in REG!. Considering the .rst classes of the Wadge
hierarchies of REG! and of DCFL!, one get:

The restriction of the Wadge hierarchy to (G� ∩F�)-sets in REG! has only length
! and it is formed by boolean combinations of (regular) closed sets, as it is proved
in [43, 47].

The restriction of the Wadge hierarchy to (G� ∩F�)-sets in DCFL!, (de.ned by
DBPDA) has length !!.

Duparc gives a proof using descriptive set theory methods [16].

O. Finkel / Theoretical Computer Science 262 (2001) 669–697 695

We shall present in future papers a study of the Wadge hierarchy of !-DCFL which
is analogous to Wagner’s study of !-regular languages, using notions of chains and
superchains, [22].

This will give an (eJective) extension of the Wagner Hierarchy, as announced in
[17], although included in the set of boolean combinations of G�-sets.

We just indicate here how one can generate many more Wadge degrees in DCFL!
than in REG!.

In his study of the Wadge hierarchy of Borel sets, Duparc de.ned also the operation
of multiplication of an !-language by a countable ordinal. The operation of multi-
plication by ! is well adapted to the context of !-DCFL, and it may be de.ned as
follows:

De�nition 11.1 (Duparc). Let A⊆�! be an !-language over the alphabet � and O+,
O− be two new letters not in �, then A:! is de.ned over the alphabet �∪{O+; O−}
by:

A:! =
⋃
n¿1

(O+)n:�:(�?:{O+; O−})6(n−1):�?:(O+:A ∪ O−:A−):

Thus, an (in.nite) word of A:! has an initial pre.x in the form (O+)n:a for an integer
n¿ 1 and a ∈ �. Then there are at most n more letters from {O+; O−} in the word
and the last such letter determines whether the suQx following this last letter O+ or
O− is in A or in A−.

It is not very diQcult to show that whenever A is in DCFL!, (and then A− is also
in DCFL! because DCFL! is closed under complementation), the !-language A:! is
also in DCFL!. But with regard to the Wadge degrees, d0

W (A:!) = d0
W (A):!. Starting

with the !-language �! over the alphabet �, of Wadge degree 1, one get languages
in DCFL! which have Wadge degrees !;!2; : : : ; !n; : : :

These languages are (G� ∩F�)-sets because their Wadge degrees are countable ordi-
nals, but they are not boolean combinations of closed sets because their Wadge degrees
are ¿! (see [15]).

For instance, the !-DCFL
⋃
n¿1

(O+)n:�:(�?:{O+; O−})6(n−1):�?:(O+):�!

over the alphabet � is not Wadge equivalent to any !-regular language.

11.2. Omega CFL

We have given an answer to a question of [29]: CFL! exhausts the Hierarchy of
Borel sets of .nite rank.

We have shown that the Wadge hierarchy of !-CFL is not eJective: we cannot
decide the Wadge class of an !-CFL, neither its Borel class.

But a lot of questions are still opened:
Are all omega context free languages Borel sets of .nite rank?

696 O. Finkel / Theoretical Computer Science 262 (2001) 669–697

Since this paper was written, we have answered to this question, showing that there
exist some !-CFL which are non Borel sets, [21].

What is the length of the Wadge hierarchy of Borel !-CFL?
In another paper, we show that it is an ordinal ¿B0, where B0 is the limit of the

ordinals @n de.ned by @0 = ! and @n+1 = !@n , [20].

Acknowledgements

Thanks to Jean-Pierre Ressayre, Jacques Duparc and Gilles Amiot for many useful
and stimulating discussions about Wadge and Wagner Hierarchies.

Thanks also to the anonymous referees for useful comments on a previous version
of this paper.

References

[1] J-M. Autebert, J. Berstel, L. Boasson, Context free languages and pushdown automata, in: G. Rozenberg
and A. Salomaa Handbook of Formal Languages, vol. 1, Springer, Berlin, 1996.

[2] R. Barua, The HausdorJ–Kuratowski hierarchy of !-regular languages and a hierarchy of Muller
automata, Theoret. Comput. Sci. 96 (1992) 345–360.

[3] J. Berstel, Transductions and Context Free Languages, Teubner Studienb<ucher Informatik, 1979.
[4] L. Boasson, M. Nivat, Adherences of Languages, J. Comput. System Sci. 20 (3) (1980) 285–309.
[5] J.R. B<uchi, Weak second order arithmetic and .nite automata, Z. Math. Logik Grundlag. Math. 6 (1960)

66–92.
[6] J.R. B<uchi, On a Decision Method in Restricted Second Order Arithmetic, Logic Methodology and

Philosophy of Science (Proc. 1960 Internat. Congr.). Stanford University Press, Stanford, CA, 1962,
pp. 1–11.

[7] J.R. B<uchi, L.H. Landweber, Solving sequential conditions by .nite state strategies, Trans. Amer. Math.
Soc. 138 (1969) 295–311.

[8] J.R. B<uchi, D. Siefkes, in: The Monadic Second Order Theory of All Countable ordinals, Decidable
Theories 2, Springer Lecture Notes in Mathematics, vol. 328, Springer, Berlin, 1973.

[9] R.S. Cohen, A.Y. Gold, Theory of !-languages, Parts 1 and 2, J. Comput. System Sci. 15(2) (1977)
169–184 and 185–208.

[10] R.S. Cohen, A.Y. Gold, !-computations on deterministic pushdown machines, J. Comput. System Sci.
(3) (1978) 257–300.

[11] O. Carton, D. Perrin, Chains and superchains for !-rational sets, automata and semigroups, Internat. J.
Algebra Comput. 7 (6) (1997) 673–695.

[12] O. Carton, D. Perrin, The Wagner hierarchy of !-rational sets, Internat. J. Algebra Comput. 9 (1999)
597–620.

[13] J. Duparc, La Forme Normale des Bor9eliens de Rang Fini, Ph.D. Thesis, Universit9e Paris 7, 1995.
[14] J. Duparc, The Normal form of Borel sets, Part 1: Borel sets of .nite rank, t.320, S9erie 1, C.R.A.S.,

Paris, 1995, pp. 651–656.
[15] J. Duparc, Wadge Hierarchy and Veblen hierarchy: part 1: Borel sets of .nite rank, J. Symbolic Logic,

(2001). Available from http:==www.logigue.jussieu.fr=www.duparc.
[16] J. Duparc, A hierarchy of context free Omega languages, Theoret. Comput. Sci., submitted for

publication.
[17] J. Duparc, O. Finkel, J-P. Ressayre, Computer Science and the Fine Structure of Borel Sets, Theoret.

Comput. Sci., in preparation, available from http:==www.logigue.jussieu.fr=www.duparc.
[18] S. Eilenberg, Automata, Languages and Machines, vol. A, Academic Press, New York, 1974.
[19] J. Engelfriet, H.J. Hoogeboom, X-automata on !-words, Theoret. Comput. Sci. 110 (1) (1993) 1–51.
[20] O. Finkel, Wadge hierarchy of omega context free languages, Theoret. Comput. Sci., in preparation.

O. Finkel / Theoretical Computer Science 262 (2001) 669–697 697

[21] O. Finkel, Borel hierarchy and omega context free languages, Theoret. Comput. Sci., submitted for
publication.

[22] O. Finkel, Wadge hierarchy and deterministic omega context free languages, in preparation.
[23] D. Gale, F.M. Stewart, In.nite games with perfect information, Ann. Math. Studies 28 (1953) 245–266.
[24] S. Ginsburg, The Mathematical Theory of Context Free Languages, McGraw-Hill, New York, 1966.
[25] J.E. Hopcroft, J.D. Ullman, Formal Languages and their Relation to Automata, Addison-Wesley,

Reading, MA, 1969.
[26] M. Kaminsky, A classi.cation of !-regular languages, Theoret. Comput. Sci. 36 (1985) 217–229.
[27] K. Kuratowski, Topology, Academic Press, New York, 1966.
[28] L.H. Landweber, Decision problems for !-automata, Math. Systems Theory 3 (4) (1969) 376–384.
[29] H. Lescow, W. Thomas, Logical speci.cations of in.nite computations, in: J.W. de Bakker, et al.,

(Eds.), A Decade of Concurrency, Springer Lecture Notes in Computer Science, vol. 803, Springer,
Berlin, 1994, pp. 583–621.

[30] M. Linna, On !-sets associated with context-free languages, Inform. and Control 31 (3) (1976) 272–
293.

[31] M. Linna, A decidability result for deterministic !-context-free languages, Theoret. Comput. Sci. 4
(1977) 83–98.

[32] R. MacNaughton, Testing and Generating in.nite sequences by a .nite automaton, Inform. and Control
9 (1966) 521–530.

[33] Y.N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980.
[34] M. Nivat, Mots in.nis engendr9es par une grammaire alg9ebrique, RAIRO Infor. Th9eor. 11 (1977) 311–

327.
[35] M. Nivat, Sur les ensembles de mots in.nis engendr9es par une grammaire alg9ebrique, RAIRO Infor.

Th9eor. 12 (1978) 259–278.
[36] D. Niwinski, Problem on !-powers Posed in the Proceedings of the 1990 Workshop, Logics and

Recognizable Sets, University of Kiel.
[37] D. Perrin, J.-E. Pin, In.nite Words, Book in preparation, available from http:==www.liafa.

jussieu.fr=jep=Resumes=In.niteWords.html.
[38] V. Selivanov, Fine hierarchy of regular !-languages, Theoret. Comput. Sci. 191 (1998) 37–59.
[39] P. Simonnet, Automates et th9eorie descriptive, Ph.D. Thesis, Universit9e Paris 7, March 1992.
[40] L. Staiger, Hierarchies of Recursive !-Languages, J. Inform. Process. Cybernet. EIK 22 (5/6) (1986)

219–241.
[41] L. Staiger, !-languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, vol. 3,

Springer, Berlin, 1997.
[42] L. Staiger, On !-power languages, in: G. Paun, A. Salomaa (Ed.), New Trends in Formal Languages,

Control, Cooperation, and Combinatorics, Lecture Notes in Computer Science, vol. 1218, Springer,
Berlin, 1997, pp. 377–393.

[43] L. Staiger, K. Wagner, Automatentheoretische und Automatenfreie Charakterisierungen Topologischer
Klassen Regul<arer Folgenmengen., Elektron. Informationsverarb. Kybernetik EIK 10 (7) (1974) 379–
392.

[44] W. Thomas, Automata on In.nite Objects, in: J. Van Leeuwen (Ed.), Handbook of Theoretical Computer
Science, vol. B, Elsevier, Amsterdam, 1990, pp. 133–191.

[45] W. Thomas, On the synthesis of strategies in in.nite games, STACS’95, Lecture Notes in Computer
Science, vol. 900, Springer, Berlin, 1995, pp. 1–13.

[46] W.W. Wadge, Ph.D. Thesis, Berkeley, 1984.
[47] K. Wagner, On omega regular sets, Inform. and Control 43 (1979) 123–177.
[48] I. Walukiewicz, Pushdown processes: games and model checking, published in CAV’96, LNCS 1102,

p. 62–75, full version in Inform. Comput., to appear.
[49] Th. Wilke, H. Yoo, Computing the Wadge degree, the Lifschitz degree and the Rabin index of a regular

language of in.nite words in polynomial time, in: P.D. Mosses, M. Nielsen, M.I. Schwartzbach (Eds.),
TAPSOFT’ 95: Theory and Practice of Software Development, Lecture Notes in Computer Science,
vol. 915, Springer, Berlin, 1995, pp. 288–302.

