
Theoretical Computer Science 262 (2001) 377–414
www.elsevier.com/locate/tcs

Tree-based generation of languages of fractals�

Frank Drewes ∗

Department of Computing Science, Ume�a University, S-901 87 Ume�a, Sweden

Received 26 January 2000; revised 15 May 2000; accepted 22 June 2000
Communicated by A. Salomaa

Abstract

The notion of P-interpreted top-down tree generators is introduced, combining the nondeter-
ministic nature of grammars as known from formal language theory with the in0nite re0nement
of pictures studied in fractal geometry. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Picture language; Fractal; Tree language; In0nite tree

1. Introduction

This paper introduces an approach to generate languages of fractals, thus combining
fractal geometry with one of the main ideas of formal language theory, namely to
consider in0nite sets of objects related by a common grammatical description.

The theory of formal languages is normally concerned with the grammatical genera-
tion of sets of discrete objects, these sets being called languages. Traditional questions
ask for the properties of these languages and their recognition by various sorts of au-
tomata. While the objects of interest had initially been words, the ideas were soon
taken up by researchers interested in more complex data structures like arrays, trees,
and graphs (see [25] for a representative overview of the 0eld). Fractal geometry,
on the other hand, usually focuses on single objects with an in0nitely 0ne-grained
structure, called fractals (see, e.g., [2, 9, 18, 20]).

� This work was partially supported by Deutsche Forschungsgesellschaft (DFG) under grant no.
Kr-964=6-1, the EC TMR Network GETGRATS (General Theory of Graph Transformation Systems) and
the ESPRIT Working Group APPLIGRAPH through the University of Bremen.

∗ Tel.: +46-907869790; fax: +46-907866126.
E-mail address: drewes@cs.umu.de (F. Drewes).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00280 -2

378 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

The connections between fractal geometry and formal languages are manyfold. Just
to mention a few examples, the approximation sequences of several fractals (especially
curves like the Hilbert, dragon, or Koch curve) can be obtained by graphically inter-
preted Lindenmayer systems [21], the study of cellular automata is an important part
of fractal geometry (see, e.g., [20, Ch. 8]), and a suitable class of collage grammars
[8] yields the approximation sequences of iterated function systems [17]. However,
until now no one seems to have made a serious attempt to study devices which allow
to generate languages of fractals, thus combining the views of fractal geometry and
formal languages.

To some extent, the motivation to study fractals arose (and still arises) from the
observation that the means of traditional Euclidean geometry are insuHcient to describe
the complex geometry of natural objects like plants, clouds, crystals, mountains, etc.
This is because, as argued by Mandelbrot [18], these objects show details on any
arbitrary scale (or at least on so many scales that they are “in0nite in practice”), which
prevents a faithful description by means of polygons, circles, etc. Fractal geometry can
be used to model such objects in a more appropriate way. For example, in [2] Barnsley
uses an iterated function system in order to model a maple leaf. However, every iterated
function system yields one particular fractal, which in this case means that it models a
particular leaf. Depending on the application one may sometimes rather wish to model a
whole variety of objects of a similar nature, like the set of all maple leaves – a language
of fractals. From the point of view of formal language theory it is an obvious idea
to achieve this by adding certain points of nondeterministic choice to the generation
process, thus obtaining an in0nity of generated fractals while retaining the 0niteness
of the generating device. As a matter of experience, the process of developing such a
device for a particular set of objects will usually lead to a deeper understanding of the
structure of these objects as it requires to 0nd and express their common characteristics
as well as the variation parameters.

Given a (device generating a) language of fractals, there immediately arise interesting
theoretical questions which cannot sensibly be asked for single fractals. First, there are
all the traditional questions of formal language theory: Is it possible to decide whether
a given fractal (described by some iterated function system, say) is a member of the
language? Do all the fractals in the language have a certain property? Is one type of
generating device more powerful than the other? Which structural properties do the
generated languages have, and which languages cannot be generated?

The approach presented in this paper is based on the notion of top-down tree gen-
erators (td generators, for short), continuing the work presented in [7]. A td generator
generates a language of trees – a tree being a term over some single-sorted signa-
ture �. By associating with such a td generator a �-algebra over pictures one obtains
a language of pictures, given by the set of all values of trees in the generated tree
language. Since every picture in the resulting language has a 0nite description, namely
the tree whose value it is, this does not yield the desired language of fractals yet. In
order to accomplish this, we turn from 0nite trees to in0nite ones: The value of an
in0nite tree will be called a syntactic fractal. The attribute “syntactic” emphasizes the

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 379

deviation from the traditional “semantic” attempts to de0ne the notion of fractals. The
latter are usually based on semantic properties of the pictures in question, such as frac-
tal dimension (see, e.g., the discussion in [18, pp. 361–362]). In contrast, the present
paper focusses on the way in which a picture is generated – the language theoretic
point of view.

A td generator is composed of a regular tree grammar g and a 0nite sequence
td1; : : : ; tdn of top-down tree transducers (td transducers), as introduced by Rounds
and Thatcher [22, 26] (see also [15] and the recent book [14]). It generates the set
of trees obtained by applying td1; : : : ; tdn in succession to the language generated by
g. So, the class of tree languages obtained is the closure of the class of regular tree
languages under (the considered type of) td transductions. For the case of 0nite trees,
this class was studied in many papers (see, for example, [1, 12, 13]).

The advantage of using td generators for picture generation is that many properties
and proofs can be formulated on the level of trees and tree languages without having
to deal with the conceptually more complicated pictures all the time. In this respect
it turns out to be very convenient that the evaluation of trees yields a continuous
mapping from (possibly in0nite) trees to pictures. The fact that an arbitrary number of
td transducers can be used yields rather powerful devices, while proofs can usually be
done by induction on the number of td transducers, so that their complexity remains
limited.

The main results of this paper can be summarised as follows:

(1) The language of all pictures generated by a so-called approximating td generator,
which is a language of fractals and 0nitely generated approximations, is the closure
of the set of 0nitely generated approximations.

(2) The fractals can be approximated by so-called re0nement sequences, which yields
a simple method to construct sequences converging to the fractals in the language.

(3) The languages containing only one fractal p are those for which p is rational.
Moreover, p is rational if and only if it can be generated by a mutually recursive
function system [4, 5] (or, equivalently, a hierarchical IFS [20]) with condensation
sets.

(4) In general, for every fractal in such a language, there is a sequence of rational
fractals converging to the given one. In particular, if the generated language of
fractals is 0nite, then it consists entirely of rational fractals.

In the next section some basic notions are recalled. Section 3 is devoted to regular
tree grammars and top-down tree transducers, including their generalisation to the case
of in0nite trees. Top-down tree generators are introduced in Section 4, and Section 5
shows how to use them in order to generate picture languages. Some examples are pre-
sented in Section 6. In Section 7 the results concerning rational fractals are presented,
and Section 8 contains some concluding remarks.

380 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

2. Preliminaries

In this section the basic notions and notations used throughout the paper are com-
piled. Mainly, these stem from the 0elds of term rewriting and metric spaces. Readers
who are familiar with only one of these 0elds (or none of them) will hopefully 0nd
it convenient that I have tried to explain the standard notions as well. Others may
perhaps prefer to have only a short glance at the main notations rather than reading
everything in detail.

2.1. Basic mathematical notation

The sets of all natural numbers (including 0) and of all real numbers are denoted by
N and R, respectively. N∞ denotes N∪{∞}. For every n∈N, [n]
denotes the set {1; : : : ; n}. The cardinality of a set S is denoted by |S|. If f : S→T is
a function then the canonical extension of f to the powerset of S is denoted by f,
too: f(S ′) = {f(s) | s∈ S ′} for all S ′ ⊆ S. The set of all 0nite sequences (also called
strings or words) over a set S, including the empty string �, is denoted by S∗, and
S+ = S∗\{�}. The length of a word w is denoted by |w|. An in0nite sequence (bi)i∈N
is a subsequence of (ai)i∈N if it equals (aji)i∈N for a sequence (ji)i∈N of indices such
that ji¡ji+1 for all i∈N.

If convenient, a binary relation r⊆ S×T is considered as a function mapping S into
the powerset of T , i.e., r(s) = {t ∈T | (s; t)∈ r} for all s∈ S. In this case, for every
subset S ′ of S, r(S ′) denotes the union of all r(s) for which s∈ S ′. The composition of
r with another binary relation r′ ⊆T ×U is given by r′ ◦ r, where (r′ ◦ r)(s) = r′(r(s))
for all s∈ S.

2.2. Trees

A (ranked) symbol is a pair (f; n) consisting of a symbol f and a number n∈N,
its rank. Instead of (f; n) we usually write f(n) or just f. The reader should keep in
mind, however, that f(m) and f(n) are diOerent for m
= n, even though both may be
denoted by f. A signature is a set � of symbols. By �(n) (n∈N) we denote the set
of all symbols in � whose rank equals n.

A (rooted, ordered, and node labelled) tree is a mapping t :V (t)→�, where � is
a signature and V (t), the set of nodes or vertices, is a pre0x-closed nonempty sub-
set of (N\{0})∗ such that, for all v∈V (t), t(v)∈�(n) implies {i∈N | vi∈V (t)}= [n].
Thus, every node labelled with a symbol of rank n has exactly n children. A tree
t is 3nite if V (t) is 0nite; otherwise, it is in3nite. The depth of t is given by
depth(t) = sup{|v| | v∈V (t)} (which equals ∞ if t is in0nite).

For any label f and all trees t1; : : : ; tn, f[t1; : : : ; tn] denotes the tree t such that
V (t) = {�}∪ ⋃

i∈[n]{iv | v∈V (ti)}, t(�) =f and t(iv) = ti(v) for all i∈ [n] and v∈V (ti).
If n= 0 then we shall usually write f instead of f[], thus identifying single-node trees
with the symbol its root is labelled with. For v∈V (t) the subtree of t rooted at v is
denoted by t=v, i.e., V (t=v) = {w | vw∈V (t)} where t=v(w) = t(vw) for all w∈V (t=v).

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 381

Given a signature � and a set T of trees, T�(T) denotes the set of trees over �
with subtrees in T . A tree t is in T�(T) if t(v)∈� or t=v∈T for all v∈V (t). T�(∅)
is abbreviated by T�. Thus, T� is simply the set of all trees of the form t :V (t)→�.
We shall furthermore use the notation F�(T) in order to denote the set of all 0nite
trees in T�(T). Finally, �(T) denotes the set of all trees f[t1; : : : ; tn] such that f∈�(n)

and t1; : : : ; tn ∈T for all i∈ [n].

2.3. Substitution

For the remainder of the paper, 0x a countably in0nite signature X = {x(0)
1 ; x(0)

2 ; : : :}
of pairwise distinct variables xi. Variables are reserved for a special purpose and are
not allowed to occur in ordinary signatures. For every n∈N, Xn denotes {x1; : : : ; xn}.

Let n∈N and consider trees t; t1; : : : ; tn such that (a) {t(v)∈X | v∈V (t)}=Xn and
(b) t(u) = t(v)∈Xn implies u= v for all u; v∈V (t) (in other words, t contains each
variable in Xn exactly once, and it does not contain any variable not in Xn). Then,
we denote by t[[t1; : : : ; tn]] the tree obtained from t by replacing the unique node
labelled with xi by ti, for all i∈ [n]. Formally, let u1; : : : ; un ∈V (t) be the nodes
such that t(ui) = xi for every i∈ [n]. Then t[[t1; : : : ; tn]] yields the tree t′ such that
V (t′) =V (t)∪ ⋃

i∈[n] {uiv | v∈V (ti)} and, for all u∈V (t′),

t′(u) =
{
t(u) if u ∈ V (t)\{u1; : : : ; un}
ti(v) if u = uiv; where i ∈ [n] and v ∈ V (ti):

In the following, the use of the notation t[[t1; : : : ; tn]] is always meant to imply assump-
tions (a) and (b), even if they are not mentioned explicitly.

2.4. Metric spaces

A distance function or metric on a set A is a function d :A×A→R such that, for
all a; b; c∈A,

(i) d(a; b) =d(b; a)¿0,
(ii) d(a; b) = 0 if and only if a= b, and
(iii) d(a; c)6d(a; b) + d(b; c).

If d is a metric on A then the pair (A; d) is a metric space (which may be identi0ed
with A if d is clear from the context). The elements of A are called the points of the
space. As usual, a sequence (ai)i∈N of points in A is a Cauchy sequence if for every
”¿0 there is some n∈N such that d(ai; aj)6” for all i; j¿n. A sequence converges
to a∈A if for all ”¿0 there is some n∈N such that i¿n implies d(ai; a)6”. In this
case, a is the limit of the sequence, denoted by limi→∞ ai, or just lim ai if the index
in question is clear from the context. The metric space is complete if every Cauchy
sequence (ai)i∈N in A converges to some point in A. Thus, for a complete metric
space a sequence is Cauchy if and only if it converges (as it is easy to see that every

382 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

converging sequence is Cauchy), which means that the two terms can be understood
as synonyms in this case.
A⊆A is closed if it contains every point a in A which is the limit of some con-

verging sequence in A. A is bounded if sup{d(a; b) | a; b∈A}
= ∞, and compact if it
is bounded and closed. The closure cl(A) of A ⊆ A is the smallest closed subset of
A containing A (i.e., cl(A) is the set of all points lim ai such that (ai)i∈N is a con-
verging sequence in A). A transformation of A is a continuous mapping f :A→A.
A function f :An→A is a contraction if there exists some c¡1, called a contrac-
tion factor, such that d(f(a1; : : : ; an); f(b1; : : : ; bn))6c max{d(ai; bi) | i∈ [n]} for all
a1; : : : ; an; b1; : : : ; bn ∈A. Notice that every contraction is automatically continuous.

The set of all trees can be turned into a complete metric space in a well-known
way (see, e.g., [3]): For all trees s; t, let eq(s; t)∈N∞ be the supremum of all n∈N
such that the restrictions of s and t to {v∈V (s) | |v|¡n} and {v∈V (t) | |v|¡n}, re-
spectively, are equal. Intuitively, eq(s; t) is the maximum depth up to which the
two trees coincide; in particular, eq(s; t) =∞ if (and only if) s= t. Now, de0ne
d(s; t) = 2−eq(s; t) (where, by convention, 2−∞ = 0). It is easy to show that d is a metric
on the set of all trees. In fact, d is even a bounded ultrametric: we have d(s; t)61
and d(r; t)6max(d(r; s); d(s; t)) for all trees r; s; t.

Most of the time we are going to deal with sets of trees over 3nite signatures. This
is why the following lemma turns out to be quite useful.

Lemma 2.1. Every sequence (si)i∈N of trees in T�; where � is a 3nite signature;
contains a subsequence (ti)i∈N which is Cauchy.

Proof. The assertion is trivial if the given sequence contains only 0nitely many pair-
wise distinct trees. Therefore, it may be assumed, without loss of generality, that the
trees si are pairwise distinct (because repeated occurrences of a particular tree may be
cancelled).

For a tree s∈T� and a natural number i, denote by [s]i the equivalence class of
all trees t ∈T� such that eq(s; t)¿i. Since � is 0nite, for every i∈N there are only
0nitely many pairwise distinct equivalence classes [t]i with t ∈T�. This observation can
be used to construct a sequence T0 ⊇T1 ⊇T2 ⊇ · · · of in0nite sets of trees in (si)i∈N
such that eq(t; t′)¿i for all t; t′ ∈Ti, as follows. To start with, let T0 = {si | i∈N}. By
the assumption in the beginning, T0 is in0nite. Now, for i∈N, de0ne Ti+1 =Ti ∩ [t]i+1,
where t ∈Ti is some arbitrary tree such that Ti ∩ [t]i+1 is in0nite. Since Ti is in0nite
and there are only 0nitely many equivalence classes [t]i+1 such a tree must exist.

Now, the sequence (Ti)i∈N can be used to de0ne the trees ti sought: (ti)i∈N = (sji)i∈N
where j0 = 0 and, for every i¿1; ji is the smallest index greater than ji−1 such that
sji ∈Ti (which must exist because Ti is in0nite). Clearly, (ti)i∈N is Cauchy because
ti; tj ∈Ti for all i; j∈N with i6j, which implies eq(ti; tj)¿i.

Another useful property is the following one.

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 383

Lemma 2.2. Let (ti)i∈N be a converging sequence of trees. If t= lim ti is a 3nite
tree; then there is some i0 ∈N such that ti = t for all i¿i0.

Proof. Let ”= 2−# where #= max{|v| | v∈V (t)}. For every tree t′
= t we must neces-
sarily have eq(t; t′)6#, and thus d(t; t′)¿”. On the other hand, since (ti)i∈N converges
there exists some i0 ∈N such that d(t; ti)¡”, and therefore ti = t, for all i¿i0.

3. Generation and transformation of trees

In this section, the concepts of a regular tree grammar and a top-down tree transducer
are recalled (and generalised to the case of in0nite trees), and some of their basic
properties are shown.

De�nition 3.1 (Regular tree grammar). A regular tree grammar is a quadruple g=
(N; �; P; S) consisting of a 0nite signature N of nonterminals of rank 0, a 0nite output
signature � disjoint with N , a 0nite set P of productions (or rules) A→ t such that
A∈N and t ∈F�(N)\N , and an initial nonterminal S ∈N .

Let s; s′ ∈T�(N). There is a derivation step from s to s′, denoted by s⇒ gs′, if
V (s)⊆V (s′) and for all v∈V (s) either s′(v) = s(v)∈� or s(v) =A∈N and s′=v= t
for some production A→ t in P.

The regular tree language generated by g is given by

L(g) = {lim ti | t0 ⇒g t1 ⇒g · · · where t0 = S}
Furthermore, L0n(g) = {t ∈L(g) | t 0nite} and Linf (g) = {t ∈L(g) | t in0nite} denote the
sets of 0nite, respectively in0nite trees generated by g.

As usual, the two parts A and t of a production A→ t are said to be its left-
and right-hand side, respectively. Sequences of derivation steps are called derivations
(including in0nite ones). A 0nite derivation t0 ⇒g t1 ⇒g · · ·⇒g tn may, for the sake of
brevity, be denoted by t0 ⇒∗

g tn or, if the number of steps matters, t0 ⇒n
g tn. Similarly,

if t0 ⇒g t1 ⇒g · · · is an in0nite derivation one may write t0 ⇒∞
g t where t= lim ti.

Concerning the de0nition of regular tree grammars, there are some subtle points
which should be noticed. First, for every tree t ∈T� it holds that t⇒g t. Second, the
right-hand side t of a production A→ t is not allowed to be a single nonterminal
(which is a well-known normal form in the case of 0nite trees, but is important if
in0nite trees are considered as well). Finally, derivations are maximum parallel in the
sense that every derivation step is required to replace all nonterminals of a tree. The
latter properties ensure that every in0nite derivation t0 ⇒g t1 ⇒g · · · as in the de0nition
of L(g) yields a sequence (ti)i∈N of trees such that v∈V (ti) and ti(v)∈N implies
|v|¿i (which in particular yields eq(ti; ti+1)¿i) for all i∈N. As a consequence, L(g)
is a well-de0ned subset of T�. Moreover, by the 0rst property, L(g) consists of all
the terminal trees that can be derived, not only the in0nite ones. Clearly, L0n(g) is the

384 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

Fig. 1. A derivation by a regular tree grammar.

set of all trees t ∈T� such that there is a derivation S⇒∗
g t. Thus, for 0nite trees the

de0nition does not deviate from those found in the literature.
A regular tree grammar g= (N; �; P; S) is said to be one-producing if P⊆N ×�(N)

and approximating if there is at least one production A→ t with t ∈F� for every
A∈N .

Example 3.2 (Regular tree grammar). Consider the (approximating and one-produ-
cing) regular tree grammar g= ({A; B}; �; P; A), where �= {a(2); b(2);⊥(0)}, and

P = {A → a[A; B]; A→ a[B; A]; A→ ⊥; B → b[B; B]; B → ⊥}:
L(g) consists of all trees in T� containing a unique a-labelled path. More precisely, a
tree is in L(g) if and only if it equals ⊥ or reads a[t1; t2], where one of t1; t2 is in L(g)
and the other one is a tree over {b(2);⊥(0)}. A sample derivation is shown in Fig. 1. If
we delete the production A→⊥, the grammar is not approximating any more, and the
generated language consists entirely of in0nite trees, namely all those where an in0nite
path is labelled by a’s and the remaining binary nodes are labelled by b’s.

Now, let us consider top-down tree transducers.

De�nition 3.3 (Top-down tree transducer). A top-down tree transducer (td transducer)
is a quintuple td = (�; �′; Q; R; q0), where � and �′ are 0nite signatures, the input and
the output signature, Q is a 0nite signature of states of rank 1 with Q∩ (�∪�′) = ∅,
R is a 0nite set of rules, and q0 ∈Q is the initial state. Every rule in R has the form

q[f[x1; : : : ; xn]] → t[[q1[xi1]; : : : ; ql[xil]]];

where q; q1; : : : ; ql ∈Q, f∈�(n) for some n∈N, t ∈F�′(Xn)\Xn, and xi1 ; : : : ; xil ∈Xn.
Consider two trees s; s′ ∈T�′(Q(T�)) and let V = {v∈V (s) | s(v′)
∈Q for all proper
pre0xes v′ of v}. 1 There is a derivation step s⇒td s′ if V ⊆V (s′) and for all v∈V
either s′(v) = s(v)∈� or s′(v) = q[f[s1; : : : ; sn]]∈Q(T�), and there is a rule as above
such that s′=v= t[[q1[si1]; : : : ; ql[sil]]].

1 If �∩�′ = ∅ one can just say V = {v∈V (s) | s(v)∈�∪Q}.

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 385

The set of output trees of td on input t ∈T�, denoted by td(t), is the set of all trees
lim ti such that (ti)i∈N is a sequence with t0 = q0[t] and ti ⇒td ti+1 for all i∈N.

Thus, a top-down tree transducer td as in the de0nition determines a binary relation
between T� and T�′ , which is denoted by td as well, in the following. Henceforth,
such a relation will be called a top-down tree transduction.

As in the case of regular tree grammars, only maximum parallel derivations are
considered. Furthermore, deviating from the usual de0nition of td transducers, the one
employed here forbids the use of rules whose right-hand sides are elements of Q(X).
This is important because a rule like q[a[x1]]→ q[x1] would turn a tree t consisting of
an in0nite chain of a’s into itself: q[t]⇒td q[t]. The mentioned restriction prevents a
behaviour like this. More precisely, for all trees s; s′ ∈T�′(Q(T�)) such that s⇒td s′,
it holds that min{|v| | v∈V (s); s(v)∈Q}¡min{|v| | v∈V (s′); s′(v)∈Q} (if s′ contains
a state at all). Therefore, td(t) is a subset of T�′ for every tree t ∈T�. Of course, for
0nite trees t we have td(t) = {t′ ∈F� | q0[t]⇒td · · ·⇒td t′}, which is the de0nition of
td(t) one usually 0nds in the literature.

As before, derivations (i.e., sequences of derivation steps) can be denoted as s⇒∗
td t

or s⇒n
td t if they consist of a 0nite number n of steps, and as s⇒∞

td t if s= s0 ⇒td s1 ⇒td

· · · and t= lim si. Notice that t⇒td t is a valid derivation step for t ∈F�. This turns
out to be convenient because it means that, for s∈T�, td(s) is the set of all trees such
that there exists a derivation q0[s]⇒∞

td t. Thus, it is often not necessary to mention
the 0nite case separately. A similar statement holds for every regular tree grammars
g= (N; �; P; S), of course: L(g) is the set of all trees t ∈T� such that S⇒∞

g t.
In order to simplify the denotation of trees and rules in connection with td transduc-

ers, the following conventions will be employed throughout the rest of this
paper:

1. A tree of the form q[t], where q is a state, is denoted by qt.
2. The left-hand side qf[x1; : : : ; xn] of a rule is denoted by qf.
3. If the td transducer in question has a monadic input signature, the variable x1

(the only one occurring in the rules) is omitted in the right-hand sides as well.
Thus, in this case the rule qf→ g[h[q′x1; q′′x1]; q′x1] reads qf→ g[h[q′; q′′]; q′],
for example. (This is slightly ambiguous when there is a symbol q(0) ∈�′ such
that q(1) ∈Q. Therefore, such a situation should be avoided.)

There are a few special cases of td transducers which turn out to be of interest in
the context of this paper. A td transducer as in the de0nition is

• total (resp. deterministic) if R contains at least (resp. at most) one rule whose left-
hand side is qf[x1; : : : ; xn], for every state q∈Q and every input symbol f∈�(n)

(n∈N),
• nondeleting (resp. linear) if for every rule qf→ t in R and every i∈ [n] there is

at least (resp. at most) one node v∈V (t) such that t(v) = xi,
• one-producing if all right-hand sides of rules in R are elements of �′(Q(X)), and

386 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

• a (linear and nondeleting) tree homomorphism if it is total, deterministic, linear
and nondeleting, and |Q|= {q0}.

Notice that, in contrast to the de0nition of tree homomorphisms in [10], the de0nition
above requires them to be linear and nondeleting.

To see that the term tree homomorphism is indeed justi0ed, observe that, for ev-
ery symbol f∈�(n), the unique rule having f in its left-hand side has the form
qf→ tf[[qx1; : : : ; qxn]], where tf ∈F�′(Xn). In other words, td is uniquely determined
by a mapping h :�→F�′(X) associating with every f∈�(n) a tree h(f)∈F�′(Xn), so
that every variable in Xn occurs in h(f) exactly once. Then, td(t) = h(f)[[td(t1); : : : ;
td(tn)]] for every tree t=f[t1; : : : ; tn]∈T�. This means that the tree transduction td is
the canonical extension of h to trees in T�. In the following, if it is not of particular
importance to emphasise that the tree homomorphism is realised by a top-down tree
transducer, we shall therefore simply view it as the canonical extension of h to T�

and denote it by h as well.

Example 3.4 (td transducer). Consider the td transducer td = (�; �′; {q0; q1; q′1}; R;
q0), where �= {a(2); b(2);⊥(0)} is as in Example 3.2, �′ =�∪{◦(2)}, and R consists
of the rules

q0⊥ → ◦[⊥;⊥];
q0c → ◦[c[q1x1; q1x2]; c[q′1x2; q

′
1x1]] for c∈{a; b};

q0c→◦[c[q′1x2; q′1x1]; c[q1x1; q1x2]] for c∈{a; b};
q⊥→⊥ for q∈{q1; q′1};
q1c→ c[q1x1; q1x2] for c∈{a; b}
and
q′1c→ c[q′1x2; q

′
1x1] for c∈{a; b}:

In eOect, td transforms every tree t ∈T� into the trees ◦[t; t′] and ◦[t′; t], such that,
intuitively, t′ is obtained by “mirroring” t at the vertical axis (where q1 is the state
producing t in the output by just copying it, and q′1 produces the mirror image of t
by reversing the order of the two subtrees of every node which is not a leaf). Fig. 2
shows a sample derivation on a small input tree.

Finally, let us discuss derivation trees. It should not come as a big surprise that the
derivations of regular tree grammars and top-down tree transducers can be represented
by derivation trees in a convenient way. In fact, these derivation trees can even be
generated by regular tree grammars or top-down tree transducers, respectively. For
this, let us assume from now on that every rule s→ t (of a regular tree grammar or
top-down tree transducer) is given a unique name r, denoted by r : s→ t, such that the
names of distinct rules are distinct as well. One could, for example, use every rule as
its own name. Therefore, in the following we usually do not distinguish between rules
and their names.

For a regular tree grammar g= (N; �; P; S) let d-g= (N; �P; P′; S) be de0ned as fol-
lows. For every production p :A→ t[[A1; : : : ; An]] in P (where t ∈F�(Xn)), �P contains

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 387

Fig. 2. A derivation by a td transducer.

the symbol p(n) and P′ contains the production A→p[A1; : : : ; An]. Neither �P nor
P′ contain any further elements. For A∈N , the trees dt∈T�P with A⇒∞

d-g dt are
the A-derivation trees of g. An S-derivation tree of g is called a derivation tree
of g. The result of dt∈T�P (N) is given by res(dt) = dt if dt∈N and res(dt) =
t[[res(dt1); : : : ; res(dtn)]] if dt =p[dt1; : : : ; dtn] for some production p :A→ t[A1; : : : ; An]
in P.

The respective de0nitions for top-down tree transducers are similar. Given a top-
down tree transducer td = (�; �′; Q; R; q0), d-td = (�; �R; Q; R′; q0) is de0ned as
follows. For every rule r : qf→ t[[q1xi1 ; : : : ; qmxim]] in R (where t ∈F�′(Xm)), �R con-
tains the symbol r(m) and R′ contains the rule qf→ r[q1xi1 ; : : : ; qmxim]. Again, no fur-
ther rules are included in �R or R′. For q∈Q and t ∈T�, the trees dt∈T�R with
qt⇒∞

d-td dt are the qt-derivation trees of td . A q0t-derivation tree of td is called a
t-derivation tree of td . The result of dt∈T�R(Q(T�)) is given by res(dt) = dt if
dt∈Q(T�) and res(dt) = t[[res(dt1); : : : ; res(dtm)]] if dt = r[dt1; : : : ; dtm] for some rule
r : qf→ t[[q1xi1 ; : : : ; qmxim]] in R.

The following lemma proves that derivation trees are a faithful representation of
derivations. Furthermore, res is compatible with taking limits. The proof is omitted
because it is very straightforward.

Lemma 3.5. (1) Let g= (N; �; P; S) be a regular tree grammar and s∈T�P (N). If
s⇒d-g t for some tree t then res(s)⇒g res(t). Conversely; if res(s)⇒g t′ for some tree
t′ then t′ = res(t) for a tree t such that s⇒d-g t.

In particular; the equations L0n(g) = res(L0n(d-g)); Linf (g) = res(Linf (d-g)); and
L(g) = res(L(d-g)) are valid.

(2) Let td = (�; �′; Q; R; q0) be a top-down tree transducer and s∈T�R(Q(T�)). If
s⇒d-td t for some tree t then res(s)⇒td res(t). Conversely; if res(s)⇒td t′ for some
tree t′ then t′ = res(t) for a tree t such that s⇒d-td t.

In particular; td(t) = res(d-td(t)) for all trees t ∈T�.
(3) In both cases; if (dti)i∈N is a sequence of derivation trees converging to dt;

then dt is a derivation tree and (res(dti))i∈N converges to res(dt).

388 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

Consider a top-down tree transducer td and suppose we are given two trees s and t
which are equal up to depth i+1, a derivation of length i by d-td on input s, yielding
a tree s′, and a t-derivation tree dt which coincides with s′ up to depth i. Intuitively,
the latter means that the derivation represented by dt and the given one (yielding s′)
coincide for the 0rst i steps. However, since their respective input trees s and t coincide
up to depth i+ 1, the input symbols for the next step coincide as well. Therefore, the
considered derivation can be extended by another step in the same way as the one
represented by dt. In other words, we obtain a tree s′′ such that eq(s′′; dt)¿i+1. This
intuition is formalised by the following lemma, which will afterwards be used in order
to construct in0nite derivations from in0nitely many 0nite ones.

Lemma 3.6. Let td = (�; �′; Q; R; q0) be a top-down tree transducer; s; t ∈T� such
that eq(s; t)¿i+1 (where i∈N); s′ a tree such that qs⇒i

d-td s
′ for some q∈Q; and dt

a qt-derivation tree such that eq(s′; dt)¿i. Then there is a tree s′′ with eq(s′′; dt)¿i+1
and s′ ⇒d-td s′′.

Proof. Proceed by induction on i. Due to the assumption eq(s; t)¿i+ 1, s and t must
have the form s=f[s1; : : : ; sn] and t=f[t1; : : : ; tn] for some n∈N and f∈�(n), where
eq(sj; tj)¿i for all j∈ [n]. Let dt = r[dt1; : : : ; dtm] for some rule r : qf→ u[[q1xi1 ; : : : ;
qmxim]]. For i= 0 one can immediately de0ne s′′ = r[q1si1 ; : : : ; qmsim] in order to obtain
eq(s′′; dt)¿1 and s′ = qs⇒d-td s′′. For i¿0 the assumption eq(s′; dt)¿i implies that
the derivation qs⇒i

d-td s
′ has the form

qs ⇒d-td r[q1si1 ; : : : ; qmsim] ⇒i−1 r[s′1; : : : ; s
′
m] = s′;

where eq(s′j; dtj)¿i − 1 for all i∈ [m]. Therefore, the induction hypothesis yields
trees s′′j (j∈ [m]) with eq(s′′j ; dtj)¿i such that s′j ⇒∗

d-td s
′′
j , which means that we have

eq(s′′; dt)¿i + 1 and s′ ⇒d-td s′′ for s′′ = r[s′′1 ; : : : ; s
′′
m].

Lemma 3.7. Let td = (�; �′; Q; R; q0) be a top-down tree transducer and ti ∈ td(si)
for all i∈N; where (si)i∈N is any sequence of trees in T�. If (ti)i∈N converges to a
tree t; then there is a subsequence (s′i)i∈N of (si)i∈N converging to a tree s such that
t ∈ td(s).

Proof. For every i∈N, let dti be an si-derivation tree such that res(dti) = ti. By
Lemma 2.1 there is a subsequence (s′i)i∈N of (si)i∈N which converges to some tree s.
Let (dt′i)i∈N be the corresponding subsequence of (dti)i∈N. Since (res(dt′i))i∈N is a
subsequence of (ti)i∈N, it still converges to t. By a second application of Lemma 2.1,
now to the derivation trees dt′i themselves, it may additionally be assumed that (dt′i)i∈N
converges (for if it does not, it can be replaced by a subsequence that does).

Let dt = lim dt′i and u0 = q0s. We are going to use Lemma 3.6 in order to construct
a derivation u0 ⇒d-td u1 ⇒d-td · · · such that eq(ui; dt)¿i for all i∈N, which means
that lim ui = dt, showing that t= res(dt)∈ td(s). Suppose u0 ⇒i

d-td ui with eq(ui; dt)¿i
(which clearly holds for the induction basis i= 0). Then there is some j∈N satisfying

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 389

eq(s′j; s)¿i+1 and eq(dtj; dt)¿i+1. Since eq(ui; dt)¿i the latter implies eq(ui; dtj)¿i,
which by Lemma 3.6 means that ui ⇒d-td ui+1 for some tree ui+1 with eq(ui+1; dtj)
¿i+1. Together with the fact that eq(dtj; dt)¿i+1 this yields eq(ui+1; dt)¿i+1, as
required.

From the previous lemma the main result of this section is obtained.

Theorem 3.8. For every top-down tree transducer td = (�; �′; Q; R; q0) and every set
T ⊆T� the set td(cl(T)) is closed; and if td is total then td(cl(T)) = cl(td(T)).

Proof. The 0rst assertion is a consequence of Lemma 3.7. Suppose (ti)i∈N converges to
a tree t, where ti ∈ td(cl(T)) for all i∈N, and let si ∈ cl(T) be such that ti ∈ td(si) for
all i∈N. By Lemma 3.7 there is a converging subsequence (s′i)i∈N of (si)i∈N such that
t ∈ td(lim s′i). Since s′i ∈ cl(T) for all i∈N, we have lim si ∈ cl(T), i.e., t ∈ td(cl(T)),
showing that td(cl(T)) is closed.

Now, suppose td is total. The proof of the inclusion cl(td(T))⊆ td(cl(T)) is quite
the same as the one above: If (ti)i∈N converges to a tree t, where ti ∈ td(T) for all
i∈N, then by Lemma 3.7 there is a converging sequence (s′i)i∈N in T such that
t ∈ td(lim s′i), which yields t ∈ td(cl(T)).

It remains to check the inclusion td(cl(T))⊆ cl(td(T)), assuming that td is total.
Let s= lim si and t ∈ td(s) for some Cauchy sequence (si)i∈N in T , and let dt be
an s-derivation tree of td with res(dt) = t. For every i∈N, by the totality of td ,
eq(si; s)¿n means that there is an si-derivation tree dti of td such that eq(dti ; dt)¿n.
This observation yields a sequence (dti)i∈N converging to dt, where each dti is an
si-derivation tree (i ∈ N). Thus, (res(dti))i∈N is a sequence in td(T) converging
to t.

Observe that, due to this theorem, the range of a total td transducer td = (�; �′; Q; R;
q0) is nothing but the closure of td(F�), except for the pathological case of a nonempty
input signature containing only symbols of rank strictly greater than 0 (which is the
only case in which T�
= cl(F�)). If td is not total, then its range is still closed (even in
the mentioned pathological case), but it may not be the closure of td(F�). In particular,
td(F�) may be empty while td(T�) is not.

4. Top-down tree generators

It is now possible to de0ne the notion of top-down tree generators, the type of
tree-generating device which will be considered throughout the rest of this paper.
A top-down generator consists of a regular tree grammar and a 0nite sequence of
top-down tree transducers. It generates the language of trees which is obtained by tak-
ing the language generated by the regular tree grammar, and then transforming it by
applying the tree transducers one after another.

390 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

De�nition 4.1 (Top-down tree generator). A top-down tree generator (td generator)
is a pair G= (g; td1 · · · tdn) consisting of a regular tree grammar and a 0nite sequence
of td transducers td1; : : : ; tdn (for some n∈N) such that

(i) g and td1; : : : ; tdn are one-producing and
(ii) for all i∈ [n], the input signature of td i coincides with the output signature of

td i−1 for i¿1 and of g for i= 1.
G generates the languages

L(G) = tdn(· · · (td1(L(g))) · · ·);
L0n(G) = {t ∈ L(G) | t 0nite}

and

Linf (G) = {t ∈L(G) | t in0nite}:

In the following, the regular tree grammar g of a td generator G= (g; td1 · · · tdn)
is denoted by gG if it is not explicitly named, and the composition of td1; : : : ; tdn is
denoted by -G, i.e., -G = tdn ◦ · · · ◦ td1 (if n= 0 then -G is the identity on T�, where
� is the output signature of g). The output signature of G is the output signature of
tdn. G is called approximating if g is approximating and all of td1; : : : ; tdn are total.

Example 4.2 (td generator). Let G= (g; td), where g is the regular tree grammar dis-
cussed in Example 3.2 and td is the td transducer of Example 3.4. Then, L(G) is
the set of all trees ◦[t; t′] such that t contains one path of a’s from the root to some
leaf (labelled ⊥), all other binary nodes of t being labelled by b’s, and t′ is t mir-
rored at the vertical axis. Notice that this is something which cannot be achieved by
a regular tree grammar because regular tree grammars do not provide any means to
“synchronise” the derivation of distinct occurrences of nonterminals.

By de0nition, the class of tree languages which can be generated by td generators is
the closure of the regular tree languages under one-producing td transductions. For the
case of 0nite trees, this class of tree languages (without the restriction to one-producing
td transducers) has been studied before by several authors (see, e.g., [1, 12, 13]). In [12]
a hierarchy result is shown which proves that the language generating power strictly
increases with the number of td transducers used. As one can easily see, this result
remains valid for one-producing td transducers, and also if approximating td generators
are considered. More precisely, we have the following theorem.

Theorem 4.3 (Engelfriet [12]). For every n∈N let Tn denote the class of all tree
languages T such that T = L(G) for some td generator G= (g; td1 · · · tdn). Then Tn

is properly contained in Tn+1 for all n∈N.

The following lemma shows that, intuitively, the regular tree grammar in a td gen-
erator could be replaced by an additional top-down tree transducer. For this, and for
future use as well, let �succ be the signature consisting of a symbol s of rank 1 and

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 391

a symbol 0 of rank 0. Furthermore, let s0[0] = 0 and sn+1[0] = s[sn[0]] for n∈N, and
denote by s∞ the unique in0nite tree in T�succ .

Lemma 4.4. For every regular tree grammar g= (N; �; P; S) there is a top-down tree
transducer td = (�succ; �; N; R; S) such that td(F�succ) = L0n(g) and td(s∞) = td(T�succ)
= L(g). If g is approximating then td is total and if g is one-producing; so is td.

Proof. The construction is straightforward. For every production A→ t[[A1; : : : ; An]] in
P, where t ∈F�(Xn), R contains the rule As→ t[[A1; : : : ; An]]. Furthermore, if n= 0 then
R also contains the rule A0→ t.

Since g is approximating, td is total. Furthermore, if g is one-producing, so is td . It
follows by a straightforward induction on i that, for A; A1; : : : ; An ∈N and t ∈F�(Xn),
we have A⇒i

g t[[A1; : : : ; An]] if and only if Asi+j[0]⇒i
td t[[A1s j[0]; : : : ; Ansj[0]]], for all

i; j∈N. This implies L0n(g) = td(F�succ) and Linf (g) = td(s∞), which completes the
proof.

The most interesting td generators are the approximating ones. This is because it
turns out that L(G) is simply the closure of L0n(G), which is mainly a consequence
of Theorem 3.8. Furthermore, despite the fact that -G may transform in0nite trees into
0nite ones by deleting in0nite subtrees of its input, L0n(G) equals -G(L0n(gG)). For
td generators which are not approximating both statements do not generally hold, but
one can at least say that L(G) is always closed.

Theorem 4.5. For every td generator G; L(G) is closed. Furthermore; if G is ap-
proximating then L0n(G) = -G(L0n(gG)) and L(G) = cl(L0n(G)).

Proof. Let L0
0n =F�succ and L0 =T�succ . Lemma 4.4 states that there are td transducers

td1; : : : ; tdn such that L0n(G) = -(L0
0n) and L(G) = -(L0), where -= tdn ◦ · · · ◦ td1.

Moreover, if G is approximating then it may be assumed that td1; : : : ; tdn are total.
Let Li

0n = td i(· · · td1(L0
0n) · · ·) and Li = td i(· · · td1(L0) · · ·) for all i∈ [n]. The closed-

ness of Li follows by induction on i, using Theorem 3.8 and the fact that L0 is
closed. Thus, in order to complete the proof it suHces to show by induction on i that
{t ∈Li | t 0nite}⊆Li

0n and Li = cl(Li
0n) (which yields the claimed equations by taking

i= n).
For i= 0 both equations obviously hold. Now, consider some i¿1 and suppose

the equations are correct with respect to i − 1. In order to verify the 0rst equation,
let s be an in0nite tree in Li−1 such that there is a 0nite tree t ∈ td i(s). By the
second part of the induction hypothesis, s∈ cl(Li−1

0n), which yields t ∈ td i(cl(Li−1
0n))

and thus, by Theorem 3.8, t ∈ cl(Li
0n). However, since t is 0nite this implies t ∈Li

0n,
using Lemma 2.2. The second equation follows directly from Theorem 3.8 and the
induction hypothesis: Li = td i(Li−1) = td i(cl(Li−1

0n)) = cl(td i(Li−1
0n)) = cl(Li

0n).

392 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

For approximating td generators, Theorem 4.5 tells us that the in0nite trees in Linf (G)
can be approximated by considering converging sequences in L0n(G). However, is there
a simple way to 0nd a set of converging sequences which is suHcient in order to get
all the elements of Linf (G)? It is shown below that there is indeed a rather natural
procedure to obtain approximations of all trees in Linf (G). For this, the following
de0nition is needed.

De�nition 4.6. Let G= (g; td1 · · · tdn) be an approximating td generator:
1. A tuple D= (dt0; : : : ; dtn) is a derivation in G if dt0 is a derivation tree of g and

dti is a res(dti−1)-derivation tree of td i for every i∈ [n]. The result res(D) of D
is res(dtn) and its depth is depth(D) = depth(dt0).

2. Let D= (dt0; : : : ; dtn) be a derivation in G, where depth(D) =m∈N. A deriva-
tion D′ = (dt′0; : : : ; dt′n) extends D if depth(D′) =m+ 1 and eq(dti ; dt′i) =m for all
i∈{0; : : : ; m}.
If (Di)i∈N is a sequence of derivations such that depth(D0) = 0 and Di+1 extends
Di for all i∈N, then (res(Di))i∈N is a re3nement sequence in G.

Obviously, due to Lemma 3.5, L(G) is the set of all trees res(D) such that D is a
derivation in G. We can now show that it is suHcient to concentrate on re0nement
sequences if one wants to approximate the elements of Linf (G).

Theorem 4.7. For every approximating td generator G;

Linf (G) = {lim ti | (ti)i∈N is a re3nement sequence in G}:

Proof. (⇐) It follows directly from De0nition 4.6 that, given a re0nement sequence
(ti)i∈N in G, we have ti ∈L0n(G) and eq(ti; ti+1) = i for all i∈N. Consequently, t=
lim ti exists and is in0nite (since eq(ti; ti+1) = i implies depth(ti)¿i). By Theorem 4.5
this means t ∈Linf (G).

(⇒) Let G= (g; td1 · · · tdn) and proceed by induction on n. In order to prove the
statement for n= 0, let t ∈Linf (g) and consider a derivation dt0 ⇒d-g dt1 ⇒d-g dt2 · · ·
such that res(dt) = t, where dt = lim dti. By assumption, g is approximating. Therefore,
for all i∈N there is some dt′i ∈F�P such that dti ⇒d-g dt′i (where P is the set of
productions of g). Since t is in0nite, so is dt, which means that depth(dti) = i and
thus depth(dt′i) = i for all i∈N. This implies eq(dt′i ; dt′i+1)6i. On the other hand, by
construction we have eq(dt′i ; dt′i+1)¿i, yielding the required equation eq(dt′i ; dt′i+1) = i.
This shows that dt′i+1 extends dt′i for all i∈N. Furthermore, (res(dt′i))i∈N converges
to t as (dt′i)i∈N converges to dt.

Now, suppose n¿0, let tdn = (�; �′; Q; R; q0), and assume that the statement is valid
for the td generator G′ = (g; td1 · · · tdn−1). The proof is mainly based on the following
observation, which is an obvious consequence of the fact that tdn is total (by the
de0nition of td generators).

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 393

Let s; s′ ∈T� and let dt be an s-derivation tree of tdn. For all m∈N such that
eq(s; s′)¿m, there is an s′-derivation tree dt′ of tdn such that eq(dt; dt′)¿m.

Now, let t ∈Linf (G) and consider an s-derivation tree dt of tdn such that s∈Linf (G′)
and res(dt) = t. By the induction hypothesis there exists a re0nement sequence (si)i∈N
in G′ such that s= lim si. Furthermore, depth(si) = i= eq(si; s) for all i∈N, by the
de0nition of re0nement sequences and the fact that g; td1; : : : ; tdn−1 are one-producing.
Consequently, by the observation above, for every i∈N there is an si-derivation tree dti
of tdn such that eq(dti ; dt)¿i. Since we have depth(dti)6depth(si) = i the inequality
eq(dti ; dt)¿i would imply dti = dt, which is impossible since s is in0nite. Therefore,
eq(dti ; dt) = i and thus eq(dti ; dti+1) = i for all i∈N, which proves that (res(dti))i∈N
is a re0nement sequence in G (that converges to t, as required, since (dti)i∈N converges
to dt and res(dt) = t).

5. Languages of pictures and fractals

In this section the results on td generators are applied in order to obtain devices
that generate languages of pictures and fractals. The basic idea is to consider algebras
over pictures and to use td generators in order to generate tree languages which are
then evaluated in such an algebra. This way of generating sets is of course applicable
to any sort of domain, not just to pictures. Therefore, the basic de0nition is not at all
restricted to the case of pictures.

Let us 0rst make precise what an algebra is. For this, let � be a signature such
that �(0)
= ∅. A �-algebra A (which we shall just call an algebra if � is of minor
importance) is a pair (A; (fA)f∈�) such that A is a set, the domain of A, and
fA :An→A is a function for every f∈�(n) (n∈N). The functions fA are called the
operations of A. Trees in F� are evaluated by the homomorphism valA in the usual
way: valA(f[t1; : : : ; tn]) =fA(valA(t1); : : : ; valA(tn)) for all trees f[t1; : : : ; tn]∈F�. We
shall consider valA as a partial function from T� to A (which is total on F�). This
turns out to be useful because sometimes in0nite trees can be assigned a value in a
meaningful way, too – a fact that will soon be exploited. In this respect it is important
to be aware of the general requirement �(0)
= ∅. Obviously, this ensures that T� is the
closure of F�, so that every in0nite tree can be approximated by a sequence of 0nite
ones. In the following, whenever a signature � appears in connection with a �-algebra,
�(0)
= ∅ is assumed without mentioning this fact explicitly.

As remarked above, the idea developed in this section is to consider td generators
whose generated trees are interpreted in an algebra A in order to obtain a subset of A.
However, in order to increase the Qexibility of such devices, a slight generalisation turns
out to be useful: Rather than interpreting trees in A itself, one may choose an algebra
derived from A. For this, the following de0nitions are necessary.

Let A be a �-algebra. Then every tree t ∈FA(Xn) (where n∈N) de0nes a function
opA(t) :An→A which, applied to a1; : : : ; an ∈A, simply evaluates t while interpreting

394 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

xi as ai. Formally, for a1; : : : ; an ∈A let A[a1 · · · an] be the �∪Xn-algebra with domain
A such that fA[a1···an] =fA for all f∈� and xiA[a1···an] = ai for all i∈ [n]. Now, opA(t)
is the function g :An→A such that g(a1; : : : ; an) = valA[a1···an](t) for all a1; : : : ; an ∈A.

A �′-algebra B is said to be derived from A if B=A and there is a tree homomor-
phism h such that fB = opA(h(f)) for all f∈�′. The operations of B are said to be
derived from the operations of A. Notice that, intuitively, according to the de0nition
of tree homomorphisms a derived operation can neither delete nor copy its arguments
since each of the variables in Xn must occur exactly once in the tree h(f) de0ning
fB for f∈�′(n). As mentioned above, we shall also consider algebras in which cer-
tain in0nite trees have a de0ned value. If A is such an algebra then the de0nedness
of values carries over to B via h: For all in0nite trees t ∈T�′ such that valA(h(t))
is de0ned, we set valB(t) = valA(h(t)). (Notice that this is compatible with the 0nite
case, since we obviously have valB(t) = valA(h(t)) for all t ∈F�′ .)

Now, the central de0nition of this paper can be given.

De�nition 5.1 (A-interpreted td generator). Let A be an algebra. An A-interpreted
td generator is a pair G= (G;B) consisting of a td generator G and a �-algebra B

derived from A, such that � is the output signature of G.
G de0nes the language L0n(G) = valB(L0n(G)). Moreover, if valB(t) is de0ned for

all t ∈Linf (G) then Linf (G) = valB(Linf (G)) and L(G) = valB(L(G)) = L0n(G)∪Linf (G).

The following lemma is an immediate consequence of these de0nitions.

Lemma 5.2. Let G= (G;B) be an A-interpreted td generator; for some �-algebra
A; where B is a �′-algebra given by a tree homomorphism h :T�′ →T�. Then
L0n(G) = valA(h(L0n(G))) and; if Linf (G) is de3ned; Linf (G) = valA(h(Linf (G))).

Regarding the previous lemma, it seems worth mentioning that a tree language is
of the form h(L(G)) for some td generator G and a tree homomorphism h if and
only if it has the form tdn(· · · td1(L(g)) · · ·) for some regular tree grammar g and td
transducers td1; : : : ; tdn. In other words, when designing a td generator to be interpreted
in an algebra A, one can use regular tree grammars and td transducers which are not
necessarily one-producing. The reason is that td i (i∈ [n]) can be written as res ◦d-td i,
which yields a decomposition of td i into a one-producing td transducer and a tree
homomorphism. Similarly, L(g) = res(L(d-g)) and d-g is one-producing, too. For a
td transducer td and a homomorphism h, td ◦ h is again a td transducer (see [10]).
Furthermore, the composition of tree homomorphisms is a tree homomorphism, which
yields the claimed equivalence by induction on the number of td transducers involved,
as all the homomorphisms can be shifted to the left. Moreover, if g is approximating and
td1; : : : ; tdn are total, then the resulting td generator G is approximating. This follows
from the known fact that td ◦ h can be realised by a total td transducer if td is total.

In the following, we shall be interested in the case where A is a certain algebra
over pictures. There are, in fact, several such algebras one may consider, dealing with

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 395

diOerent sorts of pictures. For example, it is shown in [7] that Lindenmayer systems
with turtle interpretation [21] and context-free chain-code grammars [6, 19] are special
cases of A-interpreted td generators, where A is an algebra over line drawings, its
central operation being the concatenation of line drawings. Another possibility (also
studied in [7]) is to view subsets of Rd as pictures and use operations which are
based on the geometric transformation of such pictures. This yields a generalisation of
iterated function systems [2, 9, 20] and collage grammars [8, 16].

The second case is the one studied in the remainder of this paper. In order to de0ne
the respective algebra, let us 0x an arbitrary complete metric space (S; d) such as
the Euclidean plane. A picture is a nonempty compact subset of S. The set of all
pictures is henceforth denoted by P. It is well known (see, e.g., [2]) that P can be
turned into a complete metric space (P; dH) by means of the Hausdor< metric dH,
which is obtained from d as follows. For every point x∈S and every picture p let
d1(x; p) = min{d(x; y) |y∈p}. Then, for p;p′ ∈P,

dH(p;p′) = max({d1(x; p′) | x ∈ p} ∪ {d1(x; p) | x ∈ p′}):
Intuitively, dH(p;p′) is the maximum distance of a point in one of the pictures to the
nearest point in the other picture. It should be clear that every transformation f of
S, remains continuous (i.e., a transformation) if it is viewed as a mapping f :P→P
(which can be done because f is continuous and, therefore, maps compact sets to
compact sets). Furthermore, if f is contracting as a mapping on S then it is also
contracting as a mapping on P, with the same contraction factor.

If we are given n transformations f1; : : : ; fn of S, we can turn them into a picture
operation 〈f1 · · ·fn〉 :Pn→P by de0ning

〈f1 · · ·fn〉(p1; : : : ; pn) = f1(p1) ∪ · · · ∪ fn(pn)
for all pictures p1; : : : ; pn ∈P. These picture operations are the main operations of the
algebra P considered in the remainder of this paper. All other operations are constants
– operations of arity 0 denoting pictures.

Let us 0x an arbitrary nonempty subset P0 of P (not necessarily 0nite or countable)
whose elements are called the primitive pictures. Now, P is the �P-algebra with
domain P, such that �P consists of

• all symbols p(0), where p∈P0 and pP =p (i.e., every primitive picture is a con-
stant of the algebra, and it denotes itself) and

• all symbols 〈f1 · · ·fn〉(n), where n¿1, f1; : : : ; fn are contracting transformations of
S, and 〈f1 · · ·fn〉A = 〈f1 · · ·fn〉 (i.e., every picture operation consisting of n¿1
contracting transformations is an operation of P and is denoted by itself).

Remark. Notice that it is intentionally left unspeci0ed what a primitive picture is. In
fact, the results in this paper do not depend on the choice of P0. One can even choose
P0 =P, but this seems to be somewhat inappropriate from the point of view of formal
language theory, as in this case there are P-interpreted td generators which do not

396 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

have a 0nite description. Another somewhat unnatural eOect of this choice would be
that every picture could be derived by an appropriate P-interpreted td generator in
one step, just by using the picture in question as a constant. Therefore, one should
preferably think of P0 as a set of pictures with 0nite descriptions in classical geometry
(if (S; d) is the Euclidean plane, for example), like 0nite unions of polygons, circles,
parabola sections, etc.

According to the de0nition of P, every operation 〈f1 · · ·fn〉 is required to consist
of contracting transformations. In the theory of iterated function systems there exists a
well-known basic result saying that an iterated function system consisting of contracting
transformations is itself a continuous contraction. Using similar arguments, we obtain
the following lemma saying that the operations of P are continuous contractions.

Lemma 5.3. Let f1; : : : ; fn be contracting transformations of S for some n¿1; and
let ci be the contractivity factor of fi for every i∈ [n]. Then 〈f1 · · ·fn〉 is a continuous
contraction with contraction factor max{c1; : : : ; cn}.

Proof. Let F = 〈f1 · · ·fn〉 and c= max{c1; : : : ; cn}. It is well known that the inequality
dH(p1 ∪p2; p′

1 ∪p′
2)6max(dH(p1; p′

1); dH(p2; p′
2)) holds for all pictures p1; p2; p′

1; p
′
2

∈P (see, e.g., [2, Lemma 7:4]). Using this, we obtain the inequality required by the
de0nition of contractivity, for all p1; : : : ; pn; p′

1; : : : ; p
′
n ∈P:

dH(F(p1; : : : ; pn); F(p′
1; : : : ; p

′
n)) = dH


⋃

i∈[n]

fi(pi);
⋃
i∈[n]

fi(p′
i)




6max
i∈[n]

dH(fi(pi); fi(p′
i))

6max
i∈[n]

cidH(pi; p′
i)

6 cmax
i∈[n]

dH(pi; p′
i):

The claimed continuity of F follows directly from the continuity of f1; : : : ; fn.

Hence, all operations of P are contractions. This enables us to prove the following
lemma, which makes it possible to extend valP to suitable in0nite trees.

Lemma 5.4. For every 3nite signature �⊆�P there are c; C0 ∈R; 06c¡1; such that
eq(s; t)¿n implies dH(valP(s); valP(t))6cnC0 for all s; t ∈F� and n∈N.

Proof. Let p0 =
⋃
�(0) (which, by the 0niteness of �, is compact), and let 2 be

the set of all transformations which appear in the remaining operations of �, i.e.,
2=

⋃ {{f1; : : : ; fn} | 〈f1 · · ·fn〉 ∈�}. De0ne c to be the maximum of the contraction
factors of transformations in 2. Banach’s famous 0xed-point theorem (also called the
contraction mapping principle, see e.g. [2, Section III.6]) states that every contraction
on a complete metric space posseses a unique 0xed point. In other words, for every

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 397

f∈2 there is a unique point xf ∈S such that f(xf) = xf (as f is contracting). Let
B⊇p0 be any closed ball such that xf ∈B for all f∈2. Clearly, such a ball exists
because 2 is 0nite. Let z be the centre of B and r its radius, and consider some f∈2.
Let 4=d(z; xf). Then, for every point x∈B we get

d(f(x); z)6 d(f(x); xf) + 4

= d(f(x); f(xf)) + 4

6 cd(x; xf) + 4

6 c(d(x; z) + d(z; xf)) + 4

6 c(r + 4) + 4:

In other words, if we choose r large enough to satisfy r¿c(r+4)+4, i.e., r¿4(1+
c)=(1 − c), then f(B)⊆B. As 2 is 0nite, this proves the following claim.

Claim. There is a closed ball B⊆S such that valP(t)⊆B for all t ∈F�.

Let B be a ball as in the claim and de0ne C0 to be the diameter of B: C0 =
max{d(x; y) | x; y∈B}. By Lemma 5.3 every operation FP, F ∈�, is contracting, with
contraction factor 6c. Using this, it follows by induction on n∈N that eq(s; t)¿n
implies dH(valA(s); valA(t))6cnC0 for all trees s; t ∈F�, as claimed in the lemma.
This is because, for n= 0, by the choice of C0 and the fact that valP(s); valP(t)⊆B,
we have dH(valP(s); valP(t))6C0. For n¿0, let s=F[s1; : : : ; sk] and t=F[t1; : : : ; tk].
By the induction hypothesis the inequality dH(valP(si); valP(ti))6cn−1C0 holds for all
i∈ [k], which yields dH(valP(s); valP(t))6cnC0, due to the contractivity of FP. This
completes the proof of the lemma.

Using Lemma 5.4, we can now de0ne the value of those in0nite trees over �P
which contain only 0nitely many pairwise distinct symbols. Let t ∈T� be in0nite,
where �⊆�P is 0nite, and consider a Cauchy sequence (ti)i∈N in F� with lim ti = t
(without loss of generality, we may assume that �(0)
= ∅, which ensures that such
a sequence exists). By Lemma 5.4 the sequence (valP(ti))i∈N is Cauchy in (P; dH).
Since (P; dH) is complete, lim valP(ti) is a picture in P as well. We can thus de0ne
valP(t) = lim valP(ti).

In order to see that this de0nition is sound, it suHces to notice that any other
sequence (si)i∈N in F� which converges to t satis0es lim valP(si) = lim valP(ti) be-
cause, according to Lemma 5.4, dH(valP(si); valP(ti)) converges to 0.

As a consequence of this de0nition, for every P-interpreted td generator G= (G;A)
the mapping valA is now total. This is because, by de0nition, A is a �-algebra,
where � is the 0nite output signature of G. It is furthermore worthwhile to notice
that, since valA(t) = valP(h(t)) for a tree homomorphism h (by de0nition) and tree
homomorphisms are continuous, it follows that valA is continuous as well.

Due to the totality of valA, the language Linf (G) is de0ned for every P-interpreted
td generator G= (G;A). The elements of Linf (G) will be called the syntactic fractals

398 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

(or just fractals, for short) generated by G. The attribute “syntactic” is used because
this notion of fractals depends on G, i.e., on the way a picture is generated by the
particular td generator at hand. By contrast, in the literature most (if not all) attempts
to provide a formal de0nition for the term “fractal” are semantic ones which are based,
for example, on the fractal dimension of a picture. The syntactic variant proposed here
focuses on the 0niteness or in0nity of the description of a picture. Of course, there
may sometimes be pictures in L0n(G)∩Linf (G). According to the de0nition above,
these are called fractals as well, but it is certainly a matter of taste how to decide this
question.

Let us call a P-interpreted td generator G= (G;A) approximating if G is approxi-
mating. Making use of the continuity of valA, the results of the previous section carry
over to L0n(G) and Linf (G). This is stated in the following theorem, where a sequence
of pictures is called a re3nement sequence in G if it has the form (valA(ti))i∈N for
some re0nement sequence (ti)i∈N in G.

Theorem 5.5. For every P-interpreted td generator G the language L(G) is closed.
Furthermore; if G is approximating then
(1) L(G) is the closure of L0n(G) and
(2) a picture p∈P is an element of Linf (G) if and only if p= lim pi for some

re3nement sequence (pi)i∈N in L0n(G).

Proof. This follows directly from Theorems 4.5 and 4.7, and the fact that valA is
continuous for every �-algebra A derived from P (where � is 0nite).

6. Examples

The purpose of this section is to present some examples, all of which having as their
underlying space the Euclidean plane. Furthermore, all operations which appear in the
examples are derived from constants which are polygons or 0lled polygons, and picture
operations which consist of aHne transformations. As a convenient side eOect of the
latter, operations can be suitably represented in a graphical way, which is probably
easier to grasp than an explicit numerical de0nition.

Recall that an aHne transformation f of R2 is uniquely determined by any three
pairs (x1; y1); (x2; y2); (x3; y3) such that yi =f(xi) for i= {1; 2; 3}, provided that the xi
do not lie on the same straight line (or, equivalently, that x2−x1 and x3−x1 are linearly
independent). Therefore, f can be described by 0xing the image of some geometric
object p which is not a subset of a straight line (a polygon, say) under f. In fact, to
be precise we must also say which point in p is mapped to which one in f(p). If p
is a polygon, this can be done by saying which of its vertices is the 0rst, which one
is the second, etc. In the following such a geometric object p, whose sole purpose is
to visualise transformations, is called a sample. Like the constants, all samples in this
section are polygons. The order of the vertices of a sample is indicated by an arrow.

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 399

Fig. 3. Graphical representation of operations used in the 0rst example.

As an example, Fig. 3 depicts the operations of a �-algebra H derived from P,
where �= {F (3); F ′(3); G(1); H (0)}, the sample being the hexagon shown at the top. It
should be rather obvious how to interpret the bottom row of Fig. 3. The 0rst picture in-
dicates that FH is given by 〈f1f2f3〉, where f1 is the unique aHne transformation map-
ping the sample to the topmost one of the three small hexagons (without any rotation
or reQexion). Similarly, f2 and f3 map the sample to the two remaining hexagons. The
derived operation F ′

H makes use of the same transformations, but in addition its de0ni-
tion involves a constant of P. More precisely, F ′

H(p1; p2; p3) =p0 ∪ 〈f1f2f3〉(p1; p2;
p3) for all p1; p2; p3 ∈P, where p0 is the outermost hexagonal polygon. Notice that
F ′
H is indeed an allowed operation as it can be de0ned by 〈f0f1f2f3〉[p′

0; x1; x2; x3]∈
F�P , where f0 is any injective aHne contraction such that p′

0 =f−1
0 (p0)∈P0 (assum-

ing that P0 is rich enough).
The operation GH is the unary derived operation such that GH(p) =p0 ∪ g1(p) for

all p∈P, where p0 is as before and g1 is the transformation indicated in the 0gure,
involving a slight scaling and a rotation about the centre of the sample. Finally, HH

is the 0lled hexagon whose dimensions are those of the sample.
Now, let HEXAGONS1 be the td generator (g; �) simply consisting of the regular

tree grammar g= ({S; A}; �; P; S), where

P = {S → F[S; S; S]; S → G[A]; S → H;

A → F ′[S; S; S]; A→ G[A]; A→ H}:
Then the P-interpreted td generator GHEXAGONS1 = (HEXAGONS1;H) yields fractals
like those in Fig. 4. 2 An initial segment of a re0nement sequence is depicted in Fig. 5.

2 Of course, strictly speaking, these are only good approximations instead of “real” fractals.

400 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

Fig. 4. Fractals generated by GHEXAGONS1 .

Fig. 5. A re0nement sequence in GHEXAGONS1 .

It was shown in [7] that P-interpreted td generators of this kind, i.e., those which just
consist of a regular tree grammar, are equivalent to collage grammars, as introduced
by Habel and Kreowski in [16] (see also [8]). To be precise, it must be mentioned that
the usual de0nition of collage grammars neither contains the restriction to contracting
transformations and compact pictures, nor does it de0ne Linf (G). Thus, in this paper we
obtain a notion of fractals generated by collage grammars at the expense of imposing
the restriction to contracting transformations and compactness.

Using a td generator which consists of a regular tree grammar and a td transducer, a
language of more symmetric pictures can be obtained. For this, let �0 = {a(1); b(1); c(0)}
and de0ne HEXAGONS2 = (g′; td) where g′ = ({S}; �0; P′; S) and td = (�0; �; {q; q′};
R; q). Here, � is as before and the productions of g′ and rules of td are the following

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 401

ones: 3

P′ = {S → a[S]; S → b[S]; S → c}
and

R= {qa → F[q; q; q]; qb→ G[q′]; qc → H;

q′a → F ′[q; q; q]; q′b → G[q′]; q′c → H}:
Notice the similarity between the productions of g above and the rules of td . The
states q and q′ correspond to the nonterminals S and A, respectively, the only diOerence
being that the formerly nondeterministic choice of rules is now determined by the input
symbols read. In fact, it was shown in [13] that, for a td transducer having a monadic
input signature, the input symbols determine a partition of the set of rules into “tables”
in the sense of T0L- or ETOL-systems [23, 24]. Rules having the same input symbol
in their left-hand sides belong to the same table. Since the input tree is monadic, in
each step all states process the same input symbol, which ensures that rules from the
same table are chosen.

As for the present example, this means that every tree t generated by HEXAGONS2

has a rather special form. For all nodes v; v′ ∈V (t) such that |v|= |v′| it holds that
t(v) = t(v′). Regarding L(GHEXAGONS2) (where GHEXAGONS2 = (HEXAGONS2;H))
this guarantees a high degree of symmetry, as shown in Fig. 6. Part of the re0ne-
ment sequence of the 0rst fractal in Fig. 6 can be seen in Fig. 7.

To discuss another example, let �= {F (2); F ′(1); F ′′(1); G(2); G′(1); G′′(1); C(0)} and
consider the �-algebra S whose operations are depicted (in a similar way as be-
fore) in Fig. 8. Notice that, intuitively, F ′

S and F ′′
S (G′

S and G′′
S) are the left and right

part of FS (GS resp.). The rotation angles used in FS are 25◦ and −15◦. Conversely,
in GS the angles are 15◦ and −25◦.

Let SEAWEED = (g′; td), where g′ is as in the previous example, generating all
trees over �0 = {a(1); b(1); c(0)}, and td = (�0; �; {q; r; l}; R; q) where

R = {qa → F[q; r]; qb → G[l; q]; qc → C;
ra → F ′[r]; rb→ F ′′[r]; rc → C
la → G′[l]; lb→ G′′[l]; lc → C}:

Some of the generated fractals and a re0nement sequence are shown in Figs. 9 and 10.
Intuitively, the state q of td produces the main branch of each generated picture, turning
to the left if the input symbol b is encountered, and to the right otherwise. In both
cases it produces a smaller side-branch (which is not ramifying any further) at the
opposite side. Left side-branches are produced by means of the state l whereas right
ones are produced by means of r. Both of them generally behave like the main branch,
but l uses the smaller one of the two rotation angles whenever it turns left. Similarly,
r uses the small angle when turning right.

3 Recall the convention that, since �0 is monadic, the variable x1 is omitted in the right-hand sides of the
rules in R.

402 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

Fig. 6. Fractals generated by GHEXAGONS2 .

The next example shows how one can make use of a td generator consisting, as in the
two examples before, of a regular tree grammar and a td transducer, but where the trees
generated by the regular tree grammar are not monadic. Let �= {O(8); T (4); P(0)} and let
M be the �-algebra whose operations are depicted in Fig. 11. Consider the td generator
GMOSAIC = (MOSAIC ;M), where MOSAIC = (g; td) is given by g= ({S; A}; �0; P; S)
and td = (�0; �; {q; q′}; R; q) with

P = {S → init[A]; S → b; A → a[A; A]; A→ b} and

R= {q init → O[qx1; qx1; qx1; qx1; qx1; qx1; qx1; qx1];

qa → T [qx1; qx2; q′x2; qx2];

q′a → T [q′x2; q′x1; qx1; q′x1];

qb → P;

q′b → P}:

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 403

Fig. 7. A re0nement sequence in GHEXAGONS2 .

Fig. 8. The operations of S.

404 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

Fig. 9. Fractals generated by GSEAWEED.

Fig. 10. A re0nement sequence in GSEAWEED.

Fig. 11. The operations of M.

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 405

Fig. 12. Fractals generated by GMOSAIC .

Fig. 12 shows some of the fractals generated by GMOSAIC ; a re0nement sequence is
pictured in Fig. 13. Intuitively, the octagon is divided into concentric rings of triangles
using TM. The input tree processed by td determines whether or not a ring is subdi-
vided. In order to see how this works, consider a derivation of td on input t ∈T�0 .
After some derivation steps, every state in the derived tree corresponds to a triangle
on one of the mentioned rings. What is more, all states referring to the same ring
process the same subtree of t. In the next step, if the input in state q is a[t1; t2], the

406 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

Fig. 13. A re0nement sequence in GMOSAIC (the 0rst picture, PM, being omitted).

triangle is replaced with four smaller ones: an inner triangle whose further re0nement
is determined by t1, and three outer triangles re0ned along t2. Because of the fact that
one of the triangles is mirrored, we need a second state in order to keep track of the
orientation. The re0nement of a ring stops if the input symbol b is encountered.

Finally, let us consider an example which demonstrates the bene0t of using more
than just one td transducer. The previous examples should have made clear that a
single nonlinear td transducer can be employed in order to create certain dependencies
between diOerent parts of a generated picture. The simplest case is a td transducer
whose input signature is �succ (or a similar one). Here, the input sn[0] can be used as
a kind of counter in order to ensure that all parts of the picture are re0ned to the same
degree. This cannot be achieved by a regular tree grammar (provided that the output
trees are not essentially monadic ones) because the latter allows to replace nonterminal
symbols independently from each other (see the pictures generated by GHEXAGONS1 in
the beginning of this section). However, a td transducer can also use nondeterminism. If
this is combined with nonlinearity, two copies of a subtree of the input tree may yield
output trees which show certain similarities (by taking advantage of the fact that the
same input is processed), yet they are diOerent because of the nondeterministic choice
of rules. Now, a second td transducer can be used in order to repeat this game on the
next level: By copying subtrees of its input (which the 0rst td transducer produced
in a nondeterministic way) it can use them to produce dependencies between diOerent
parts of a picture.

Here is an example, using the �-algebra L whose operations are shown in Fig. 14 (in
the way the reader should by now be familiar with). Thus, �= {E(3); F (2); G(1); G′(1);
T (0)}. The aim is to construct a P-interpreted td generator GLEAVES = (LEAVES;L)
such that Linf (GLEAVES) consists of “leaves” like those shown in Fig. 15. Every such

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 407

Fig. 14. The operations of L.

Fig. 15. Fractals generated by GLEAVES .

leaf consists of a stem with several leaQets on either side. Each pair of opposite leaQets
is exactly symmetric: The leaQet on the right is the mirror image of its counterpart
on the left. On the other hand, the individual leaQets themselves are not in general
symmetric with respect to their middle axis. Intuitively, this is achieved by generating
the two halves of a leaQet in a nondeterministic way using a td transducer, and then
duplicating the resulting leaQets by another td transducer in order to obtain two copies

408 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

Fig. 16. A re0nement sequence in GLEAVES .

of each. For this, let LEAVES = (gsucc; td0td1), where gsucc is as in Lemma 4.4 and

td0 = (�succ; �0; {q0; q; q′}; R0; q0) and td1 = (�0; �; {q}; R; q):

Here, �0 = {E(2); F (2); G(1); G′(1); T (0)} (which deviates from � only with respect to the
rank of E) and

R0 = {q0s → E[q0; q]; qs → F[q′; q′]; q′s → G[q′]; q′s → G′[q′];

q00 → T; q0 → T; q′0 → T}

and

R= {qE → E[qx1; qx2; qx2]; qF → F[qx1; qx2];

qG → G[qx1]; qG′ → G′[qx1];

qT → T}:

Thus, td1 simply copies its input tree, except that the second subtree of every E-
labelled node is duplicated. In Fig. 16 one of the re0nement sequences in GLEAVES is
depicted.

7. Rational fractals

P-interpreted td generators can simulate the so-called mutually recursive function
systems (MRFSs), which generalise the well-known iterated function systems. In the
literature, MRFSs can be found under diOerent names, with slightly diOerent but ob-
viously equivalent de0nitions regarding their picture generating capabilities. They are
called MRFSs by CRulik and Dube [4, 5] and hierarchical IFS’s by Peitgen, JSurgens,
and Saupe [20]. As a slight extension, one may allow an MRFS to make use of the
condensation sets known from Barnsley’s famous book [2], which yields MRFSs with
condensation sets (cMRFSs).

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 409

The following de0nition of cMRFSs in terms of td generators is taken from [7]
(where they are called tree-based IFSs).

De�nition 7.1 (Tree-based cMRFS). A tree-based cMRFS is a P-interpreted td gen-
erator (G;A) such that G= (td ; gsucc) for a total, deterministic, and nondeleting td
transducer td .

Notice that every tree-based cMRFS as in the de0nition is approximating. Since the
regular tree grammar gsucc just generates T�succ ; L(G) is simply the range of the td
transducer td . As the latter is required to be total, deterministic, and nondeleting, it is
clear that td(sn[0]) consists of a single tree of depth n, for every n∈N. Consequently,
td(s∞) = Linf (G) is a singleton, i.e., Linf (G) consists of a single fractal.

It was shown in [7] that tree-based cMRFSs generate the same fractals as cMRFSs,
provided the latter use only condensation sets which can be expressed using the con-
stants in P0. Intuitively, the condensation sets are the constants used in the de0nition
of the derived operations in A. Thus, if we restrict ourselves to the case where A con-
tains only operations of P (rather than derived ones), tree-based MRFSs are obtained
which are equal in power to MRFSs. Finally, if the state set of td is required to be
a singleton, then we get tree-based IFSs (with or without condensation, the diOerence
being the same as above).

As, in general, a P-interpreted td generator yields a whole language of fractals, one
may immediately expect that some of its fractals can be generated by cMRFSs whereas
others cannot. The study of this relationship is the purpose of the present section.

The next de0nition, together with Theorem 7.4, provides a name for the sort of
fractals generated by cMRFSs.

De�nition 7.2 (Rational fractal). A tree t is rational if it has only 0nitely many sub-
trees, i.e., if the set {t=v | v∈V (t)} is 0nite. A picture p is a P0-rational fractal
(rational fractal, for short) if p= valP(t) for some in0nite rational tree t ∈T�P .

Let us call a tree or fractal irrational if it is not rational. (Notice that irrational trees
must necessarily be in0nite.) The following lemma states that a td transducer cannot
derive any irrational tree from a rational one without deriving a rational tree from this
input tree, too. Furthermore, if the irrational output tree is taken from a regular tree
language L, then the rational one can also be taken from L.

Lemma 7.3. Let td = (�; �′; Q; R; q0) be a td transducer, L⊆T�′ a regular tree
language; and t ∈T� a rational tree. If td(t)∩L
= ∅ then it contains a rational
tree.

Proof. It is well known that the regularity of L implies the existence of a td trans-
ducer td ′ = (�; �′; Q′; R′; q′0) such that td ′(s) = td(s)∩L for all s∈T� (see, e.g., [12,
Lemma 2.2]). Therefore, it suHces to prove the following claim.

410 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

Claim. For every rational tree t ∈T� such that td(t)
= ∅; td(t) contains a rational
tree.

The claim is proved by constructing a rational t-derivation tree. For this, if dt is
a t-derivation tree of td , denote the tree in Q(T�) from which dt=v is derived by
origdt(v): if |v|= l and q0t⇒l

d-td t
′ ⇒∞

d-td dt is the unique derivation yielding dt, then
origdt(v) = t′=v.

The rational t-derivation tree dt to be constructed will be obtained as the limit of a
converging sequence (dti)i∈N of t-derivation trees. For this, associate with every tree
s∈Q(T�) an arbitrary but 0xed tree #(s) such that s⇒∞

d-td #(s), if such a tree exists.
The sequence (dti)i∈N is constructed inductively. To start with, let dt0 = #(q0t)

(which is de0ned, by the assumption that td(t)
= ∅). For i¿1; dti is the unique tree
such that

(1) dti(v) = dti−1(v) for all v∈V (dti−1) with |v|¡i, and
(2) dti=v= #(origdti−1

(v)) for all v∈V (dti−1) with |v|= i.

The tree #(origdti−1
(v)) in (2) exists since the derivation origdti−1

(v)⇒∗
d−td dti−1=v

exists. Therefore, each dti is indeed a t-derivation tree of td . Furthermore, lim dti
(which, by the fact that eq(dti ; dti+1)¿i for all i∈N, is de0ned) yields an in0nite
t-derivation tree dt. It remains to be shown that dt is rational. Due to (1) and (2),
for all v∈V (dti) with |v|6i it holds that dti(v) = #(origdti(v))(�) (i.e., dti(v) is the
root symbol of #(origdti(v))). Consequently, dt(v) = #(origdt(v))(�) for all v∈V (dt).
However, by the de0nition of derivation trees, origdt(v) and dt(v) together uniquely
determine origdt(vj) for all j∈N such that vj∈V (td), which means that dt=v is
uniquely determined by origdt(v). Therefore, dt=u= dt=v for all u; v∈V (dt) satisfy-
ing origdt(u) = origdt(v). This shows that dt is rational, because t is rational and every
tree origdt(v) (v∈V (dt)) has the form qt′, where q∈Q and t′ = t=v′ for some v′ ∈V (t).
Of course, the rationality of dt implies that res(dt) is rational, which completes the
proof of the claim and, hence, the proof of the lemma.

We can now show that rationality of a fractal means that it is generated by a tree-
based cMRFS, and vice versa.

Theorem 7.4. A picture p is a rational fractal if and only if there is a tree-based
cMRFS G such that Linf (G) = {p}.

Proof. (⇒) Let t ∈T�P be an in0nite rational tree such that p= valP(t), and let
{t1; : : : ; tk}= {t′ ∈T�P\F�P | t′ = t=v for some v∈V (t)}, where t1 = t. In order to con-
struct an appropriate tree-based cMRFS G= (G;A), de0ne a signature � and a �-
algebra A as follows. �(0) = {a} where aA =p0 for some arbitrary element p0 of P0.
Furthermore, for every i∈ [k], � contains a symbol Fi whose rank and interpretation in
A are determined as follows. Obviously, ti can be written in the form t0i [[t9i(1); : : : ; t9i(li)]]
for some tree t0i ∈F�P(Xli), where li ∈N and 9i(j)∈ [k] for all j∈ [li]. (Notice that
li¿1 since ti is in0nite.) Now, let the rank of Fi be li and de0ne FiA = opP(t0i).

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 411

Let td = (�succ; �; {q1; : : : ; qk}; R; q1) where R contains the rules

qi0 → a

qis → Fi[q9i(1); : : : ; q9i(li)]

for every i∈ [k]. It follows immediately from this construction that td(s∞) = {t′}
for some tree t′ ∈F� satisfying h(t′) = t, where h is the homomorphism de0ning
A, i.e., the one given by h(Fi) = t0i and h(a) =p0. Consequently, G= (G;A) with
G= (td ; gsucc) satis0es Linf (G) = {p}. Furthermore, td is deterministic. It is also non-
deleting since li¿1 (as mentioned above), which proves that G is a tree-based cMRFS,
as required.

(⇐) Let Linf (G) = {p} for some tree-based cMRFS G. By de0nition, this means
p= valP(h(td(s∞))) for some total, deterministic, and nondeleting td transducer td
and a tree homomorphism h (which, by the very de0nition of tree homomorphisms, is
also a total, deterministic, and nondeleting td transduction). By the nondeleting property
of td and h, h(td(s∞)) is in0nite since s∞ is, and by Lemma 7.3 (applied twice, where
L is the set of all trees over the relevant output signature) h(td(s∞)) is rational, so p
is a rational fractal, as claimed.

The next lemma directly leads to the main theorem of this section. The lemma states
that every fractal in Linf (G) (where G is a P-interpreted td generator) lies near to a
rational fractal.

Lemma 7.5. Let G be a P-interpreted td generator and let p∈Linf (G). For every
”¿0 there is a rational fractal p′ ∈Linf (G) such that dH(p;p′)6”.

Proof. The proof of the lemma consists mainly of the veri0cation of two claims.
The 0rst claim states that the inverse image of a regular tree language under a td
transduction is regular (see also [11, Lemma 1:2] and the remark following its proof).

Claim 1. Let td = (�; �′; Q; R; q0) be a td transducer and L⊆T�′ a regular tree
language. Then the tree language

td−1(L) = {s ∈ TT | td(s) ∩ L
= ∅}
is regular.

In order to prove Claim 1 it suHces to note the following well-known facts (the
0rst one of which was already used in the proof of Lemma 7.3):
(1) There is a td transducer td ′ such that td ′(s) = td(s) ∩ L for all s∈T�.
(2) For every td transducer td ′, the set dom(td ′) of all trees s such that td ′(s)
= ∅,

is regular.
By (1) and (2) dom(td ′) = td−1(L) is regular, as claimed.
The second claim is already almost everything which is needed in order to prove

the lemma itself.

412 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

Claim 2. Let - be a composition of 3nitely many td transductions, and let L be
a regular tree language. If -(T�succ) ∩ L
= ∅ then -(T�succ) ∩ L contains a rational
tree.

In order to prove Claim 2, proceed by induction on the number n of td transductions
- is composed of. For n= 0 there is nothing to show because T�succ contains only
rational trees. Now, let -= td ◦ -′ for some td transducer td and assume that the claim
is known to hold for -′. If -(T�succ)∩L
= ∅ then there is a tree t0 ∈ -′(T�succ) such that
td(t0) ∩ L
= ∅. By Claim 1 the tree language td−1(L) is regular. Since t0 ∈ td−1(L),
the induction hypothesis yields a rational tree t′0 ∈ -′(T�succ)∩td−1(L). This implies that
td(t′0) ∩ L
= ∅. As t′0 is rational, Lemma 7.3 says that td(t′0) ∩ L contains a rational
tree. This 0nishes the proof of Claim 2 because td(t′0)⊆ -(T�succ).

Now, in order to prove the lemma, let G= (G;A) for some td generator G and a
�-algebra A. By the continuity of valA (see Lemma 5.4) it suHces to show that, for
every tree t ∈Linf (G) and every m∈N, there is an in0nite rational tree t′ ∈Linf (G)
satisfying eq(t; t′)¿m. By Lemma 4.4 it holds that L(G) = -(T�succ) for a composition
- of 0nitely many td transducers. In other words, we have t ∈ -(T�succ) ∩ I , where
I =T�\F�. The set I is in fact regular: it is generated by the regular tree grammar
g= ({S; A}; �; P; S), where P contains, for every f∈�(n) (n∈N), all rules

S → f[A; : : : ; A︸ ︷︷ ︸
i−1

; S; A; : : : ; A︸ ︷︷ ︸
n−i

]

such that i∈ [n], as well as the rule A→f[A; : : : ; A]. Another regular tree language
is Lt;m = {t′ ∈T� | eq(t; t′)¿m}. To see this, decompose t into t0[[t1; : : : ; tl]], where
V (t0) = {v∈V (t) | |v|6m} and t0(v)∈X ⇔ |v|=m for all v∈V (t0) (i.e., t1; : : : ; tl are
the subtrees of t rooted at depth m). Then, Lt;m is generated by the regular tree grammar
gt;m = ({S; A}; �; {S→ t0[[A; : : : ; A]]} ∪ {A→f[A; : : : ; A] |f∈�}; S).

Due to the regularity of I and Lt;m their intersection is regular as well. Furthermore,
t ∈ -(T�succ) ∩ I ∩ Lt;m, which by Claim 2 implies that -(T�succ) ∩ I ∩ Lt;m contains a
rational tree t′. In other words, t′ is a rational tree in Linf (G) such that eq(t; t′)¿m,
as required.

As a direct consequence of Lemma 7.5 the main theorem of this section, which
extends Theorem 7.4, is obtained.

Theorem 7.6. Let G be a P-interpreted td generator. For every irrational fractal
p∈Linf (G) there is a converging sequence (pi)i∈N of rational fractals pi ∈Linf (G)
such that limpi =p. In particular; if Linf (G) is 3nite then every picture p∈Linf (G)
is a rational fractal.

Proof. The main statement is an immediate consequence of Lemma 7.5. Furthermore,
if p= lim pi is irrational for a converging sequence (pi)i∈N of rational fractals, then
{pi | i∈N} must necessarily be in0nite (since p
= pi implies dH(p;pi)¿0 for all

F. Drewes / Theoretical Computer Science 262 (2001) 377–414 413

i∈N, yet (pi)i∈N converges to p). Therefore, Linf (G) cannot contain an irrational
fractal unless it is in0nite.

8. Conclusion

In this paper, an approach has been proposed which combines formal language theory
and fractal geometry through the notion of P-interpreted top-down tree generators.
These devices generate languages of fractals by deriving in0nite trees and interpreting
them as expressions which denote pictures.

It was shown in [7] that P-interpreted td generators are able to simulate collage
grammars [8, 16] and mutually recursive function systems ([4, 5], see also the previ-
ous section). However, while collage grammars generate pictures with 0nite derivation
trees (i.e., they do not contain fractals), a mutually recursive function system is a
deterministic device which generates just a single fractal by an in0nite process. The
approach presented here combines the nondeterministic nature of grammars with the
fractal detailedness of generated objects.

The so-called approximating td generators turned out to be particularly well behaved
as the fractals they generate are the limits of re0nement sequences – converging se-
quences in the generated language which can be constructed by a simple syntactic
procedure. As a consequence, the generated fractals can be approximated by pictures
which are themselves elements of the generated language.

It remains to be mentioned that the examples shown in this paper were produced
using TREEBAG, a Java implementation of the ideas presented here, which can be
downloaded from http:==www.informatik.uni-bremen.de/˜drewes=treebag. The distribu-
tion contains many examples, including those presented in Section 6 of this paper.

Acknowledgements

I thank the anonymous referee for the helpful suggestions he=she made.

References

[1] B.S. Baker, Tree transducers and tree languages, Inform. and Control 37 (1978) 241–266.
[2] M. Barnsley, Fractals Everywhere, 2nd ed., Academic Press, Boston, 1993.
[3] B. Courcelle, Fundamental properties of in0nite trees, Theoret. Comput. Sci. 25 (1983) 95–169.
[4] K. Culik II, S. Dube, AHne automata and related techniques for generation of complex images, Theoret.

Comput. Sci. 116 (1993) 373–398.
[5] K. Culik II, S. Dube, L-systems and mutually recursive function systems, Acta Inform. 30 (1993)

279–302.
[6] J. Dassow, F. Hinz, Decision problems and regular chain code picture languages, Discrete Appl. Math.

45 (1993) 29–49.
[7] F. Drewes, Tree-based picture generation, Theoret. Comput. Sci. 246 (2000) 1–51.

414 F. Drewes / Theoretical Computer Science 262 (2001) 377–414

[8] F. Drewes, H.-J. Kreowski, Picture generation by collage grammars, in: H. Ehrig, G. Engels,
H.-J. Kreowski, G. Rozenberg (Eds.), Handbook of Graph Grammars and Computing by Graph
Transformation, vol. 2: Applications, Languages, and Tools, World Scienti0c, Singapore, 1999, pp.
397–457 (Chapter 11).

[9] G.A. Edgar, Measure, Topology, and Fractal Geometry, Springer, New York, 1990.
[10] J. Engelfriet, Bottom-up and top-down tree transformations – a comparison, Math. Systems Theory 9

(3) (1975) 198–231.
[11] J. Engelfriet, Top-down tree transducers with regular look-ahead, Math. Systems Theory 10 (1977)

289–303.
[12] J. Engelfriet, Three hierarchies of transducers, Math. Systems Theory 15 (1982) 95–125.
[13] J. Engelfriet, G. Rozenberg, G. Slutzki, Tree transducers, L systems, and two-way machines, J. Comput.

System Sci. 20 (1980) 150–202.
[14] Z. FSulSop, H. Vogler, Syntax-Directed Semantics: Formal Models Based on Tree Transducers, Springer,

Berlin, 1998.
[15] F. GXecseg, M. Steinby, Tree languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal

Languages, vol. III: Beyond Words, Springer, Berlin, 1997, pp. 1–68 (Chapter 1).
[16] A. Habel, H.-J. Kreowski, Collage grammars, in: H. Ehrig, H.-J. Kreowski, G. Rozenberg (Eds.), Proc.

4th Internat. Workshop on Graph Grammars and Their Application to Comput. Sci., Lecture Notes in
Computer Science, vol. 532, Springer, Berlin, 1991,, pp. 411–429.

[17] R. Klempien-Hinrichs, H.-J. Kreowski, S. Taubenberger, Correct translation of mutually recursive
function systems into TOL collage grammars, in: G. Ciobanu, Gh. Paun (Eds.), Proc. Fundamentals of
Computation Theory (FCT’99), Lecture Notes in Computer Science, vol. 1684, pages 350–361, 1999.

[18] B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Company, New York, 1983.
[19] H.A. Maurer, G. Rozenberg, E. Welzl, Using string languages to describe picture languages, Inform.

and Control 54 (1982) 155–185.
[20] H.-O. Peitgen, H. JSurgens, D. Saupe, Chaos and Fractals. New Frontiers of Science, Springer, New

York, 1992.
[21] P. Prusinkiewicz, A. Lindenmayer, The Algorithmic Beauty of Plants, Springer, New York, 1990.
[22] W.C. Rounds, Mappings and grammars on trees, Math. Systems Theory 4 (1970) 257–287.
[23] G. Rozenberg, Extensions of tabled 0L systems and languages, Internat. J. Comput. Inform. Sci. 2

(1973) 311–334.
[24] G. Rozenberg, T0L systems and languages, Inform. and Control 23 (1973) 262–283.
[25] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, vols. 1–3, Springer, Berlin, 1997.
[26] J.W. Thatcher, Generalized2 sequential machine maps, J. Comput. System Sci. 4 (1970) 339–367.

