
Theoretical Computer Science 262 (2001) 633–647
www.elsevier.com/locate/tcs

Tree-shellability of Boolean functions

Yasuhiko Takenagaa ; ∗, Kouji Nakajimab, Shuzo Yajimac

aDepartment of Computer Science, University of Electro-Communications, Chofu,
Tokyo 182-8585, Japan

bDepartment of Information Science, Graduate School of Engineering, Kyoto University, Japan
cFaculty of Informatics, Kansai University, Japan

Received 9 April 1999; revised 13 July 2000; accepted 7 August 2000
Communicated by S. Miyano

Abstract

In this paper, we de5ne tree-shellable and ordered tree-shellable Boolean functions. A tree-
shellable function is a positive Boolean function such that the number of prime implicants equals
the number of paths from the root node to a 1-node in its binary decision tree representation.
A tree-shellable function is easy to dualize and good for a kind of reliability computation. We
show their basic properties and clarify the relations between several shellable functions, i.e.
shellable, tree-shellable, ordered tree-shellable, aligned and lexico-exchange functions. We also
discuss on tree-shellable quadratic functions. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Shellability; Dualization; Binary decision tree; Prime implicant; Boolean function

1. Introduction

It is important to clarify the properties of Boolean functions in various 5elds of
computer science. Prime implicant is a very important concept on the theory of Boolean
functions. Each prime implicant of a positive Boolean function is essential. Thus, every
positive Boolean function is uniquely represented by an irredundant DNF and each term
of the irredundant DNF corresponds to a minimum true point.

A shellable Boolean function is a positive Boolean function whose irredundant DNF
representation satis5es that, for any k, 5rst k product terms become orthogonal without
changing the function by adding negative literals to each term. Shellable Boolean func-
tions play an important role in many 5elds. The notion of shellability was originally
used in the theory of simplicial complexes and polytopes (for example in [8, 10]). More
recently, it is studied for its importance on reliability theory (for example in [1, 2, 16]).

∗ Corresponding author.
E-mail address: takenaga@cs.uec.ac.jp (Y. Takenaga).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00369 -8

634 Y. Takenaga et al. / Theoretical Computer Science 262 (2001) 633–647

In this paper, we de5ne a tree-shellable function and an ordered tree-shellable func-
tion as restricted shellable Boolean functions. The notion of tree-shellability makes it
possible to de5ne several subclasses of shellable Boolean functions in terms of tree-
shellability. A tree-shellable function is a positive Boolean function de5ned by the
relation between its prime implicants and binary decision tree (BDT) representation:
there exists a BDT representation such that the number of prime implicants equals the
number of paths from the root to a leaf labeled 1 in the BDT. An ordered tree-shellable
function has the similar relation with an ordered BDT (OBDT), which is a BDT such
that, on all the paths, variables appear according to a total order of variables.

A shellable function has the following good properties when it is given with the
order of terms to make it shellable. First, if a Boolean function f is shellable, one can
easily solve the following problem.

[Union of Product Problem] [2]
Input: Pr[xi = 1](16i6n); f(x1; : : : ; xn)
Output: Pr[f(x1; : : : ; xn) = 1],

where Pr[A] represents the probability of event A. This is the problem of computing the
reliability of some kind of systems. Each variable represents the state of a subsystem.
A subsystem is operative if the variable has value 1. If a Boolean function f is
shellable, one can easily compute the exact value of Pr[f = 1] using the orthogonal
DNF representation of f.

Second, if a Boolean function f is shellable, it is easy to compute the dual of f.
The dual of a Boolean function f(x1; : : : ; xn) is de5ned by fd =f(x1; : : : ; xn). It is
not known if the DNF representation of the dual fd can be computed from the DNF
representation of f in time polynomial to the input and output size. So the problem
is still interested in by many researches (for example in [4, 11, 13]). The classes of
Boolean functions which can be dualized in polynomial time include 2-monotonic (or
regular) functions (which include threshold functions) [7, 9, 15], aligned functions [5],
positive k-DNFs [12], matroid functions [14], etc.

If f is tree-shellable and the BDT representation of a Boolean function f is given, it
is possible to compute the BDT representation of fd only by exchanging a 1-edge and
a 0-edge for every variable node and exchanging labels 1 and 0 for every leaf node.
For ordered tree-shellable functions, it is possible to obtain an OBDT representation
of an ordered tree-shellable function f in polynomial time when the shelling variable
order is given, and it is easy to compute a positive DNF representation of fd from
the OBDT representation of f.

In this paper, we 5rst de5ne tree-shellable and ordered tree-shellable functions and
show some basic properties of them. Next, we clarify relations among various shellable
functions. Various subclasses of shellable Boolean functions have been proposed, e.g.
lexico-exchange function [2], aligned function [5]. An aligned function clearly has
both of the above good properties and, in addition, it is possible to check whether a
Boolean function is aligned in polynomial time. However, the class of aligned functions
is smaller than the ones de5ned in this paper. We show that the implications between
shellable and tree-shellable functions, tree-shellable and ordered tree-shellable functions,

Y. Takenaga et al. / Theoretical Computer Science 262 (2001) 633–647 635

ordered tree-shellable and aligned functions are proper. We also show that ordered tree-
shellability is equivalent to the lexico-exchange property. At last, we discuss on the
tree-shellability of quadratic functions and the shelling variable order of ordered tree-
shellable quadratic functions.

2. Preliminaries

2.1. Basic notations

Let B= {0; 1}; n be a natural number, and [n] = {1; 2; : : : ; n}. Let [0] = ∅. Let �
be a permutation on [n]. � represents a total order of integers in [n]. Let �(i) be
the ith element of �. If s appears before t with respect to �, we denote s≺� t. For
S ⊆ [n]; min�(S) and max�(S) for order � is de5ned as follows:

min
�

(S) = h if h ∈ S and h ≺� i for all i ∈ S\{h};

max
�

(S) = h if h ∈ S and i ≺� h for all i ∈ S\{h}:

If � is clear from the context, we can simply write s≺ t; min(S) or max(S).
Let Is; It be distinct subsets of [n] and � be a permutation on [n]. If Is ∩{�(1); : : : ;

�(i−1)}= It ∩{�(1); : : : ; �(i−1)}, and either Is ∩{�(i); : : : ; �(n)}= ∅ or �(i)∈ Is; �(i) =∈
It hold for some i∈ [n], we denote Is ≺L It . The order ≺L is called lexicographical
order.

2.2. Disjunctive normal form Boolean formula

Let f(x1; : : : ; xn) and g(x1; : : : ; xn) be Boolean functions. We denote f¿g if f(x) = 1
for any assignment x∈{0; 1}n which makes g(x) = 1. An implicant of f is a product
term

∧
i∈I xi

∧
j∈J xj which satis5es

∧
i∈I xi

∧
j∈J xj6f, where I; J ⊆ [n]. An implicant

which satis5es
∧

i∈I−{s} xi
∧

j∈J xj � f for any s∈ I and
∧

i∈I xi
∧

j∈J−{t} xj � f for
any t ∈ J is called a prime implicant of f. A product term which contains each of the
n variables in either positive or negative literal is called a minterm.

An expression of the form f =
∨m

k=1(
∧

i∈Ik xi
∧

j∈Jk
xj) is called a disjunctive nor-

mal form Boolean formula (DNF), where Ik ; Jk ⊆ [n] and Ik ∩ Jk = ∅ for k = 1; : : : ; m.
Tk =

∧
i∈Ik xi

∧
j∈Jk

xj is called a term of f.
A DNF is called an orthogonal DNF (ODNF), if (Ik ∩ Jl)∪ (Il ∩ Jk) �= ∅ for every

pair of terms Tk ; Tl (k �= l). If f is represented as an ODNF, at most one term of f
has value 1 for any assignment.

A positive DNF (PDNF) is a DNF such that Jk = ∅ for all k. If f can be represented
as a PDNF, it is called a positive Boolean function. For simplicity, we call that Ik is a
term of a positive function. A PDNF is called irredundant if Ik ⊆ Il is not satis5ed for
any k; l (16k; l6m; k =∈ l). For an irredundant PDNF, let PI(f) be the set of all Ik .
PI(f) represents the prime implicants of f. For Ik ∈PI(f), a minterm

∧
i∈Ik xi

∧
j =∈Ik xj

is called a minimum true point of f. In the following of this paper, we consider only

636 Y. Takenaga et al. / Theoretical Computer Science 262 (2001) 633–647

positive functions and we assume that a function is given as an irredundant PDNF
f =

∨m
k=1

∧
i∈Ik xi.

2.3. Binary decision tree

A binary decision tree (BDT) is a labeled tree that represents a Boolean function.
The leaf nodes of a BDT are labeled by 0 or 1 and any other node is labeled by
a variable. Each node except leaf nodes has two outgoing edges, which are called a
0-edge and a 1-edge. The value of the function is given by traversing from the root
node to a leaf node. At a node, one of the outgoing edges is selected according to the
assignment for the variable. The value of the function is 0 if the label of the leaf is
0, and 1 if the label is 1.

A path from the root node to a leaf node labeled 1 is called a 1-path. On every
1-path, each variable appears at most once. A path P of a BDT is represented by a
sequence of literals. If the kth edge on a 1-path P is the 1-edge (0-edge, resp.) from
the node labeled by xi, positive literal xi (negative literal xi, resp.) is the kth element
of P. For simplicity, we denote x̃i ∈P when x̃i is included in the sequence representing
P, where x̃i is either xi or xi. Let Pk; P(k) denote the kth element of P and the pre5x
of P with length k, respectively.

When the 0-edge and the 1-edge of node v point to the nodes representing the same
function, v is called to be a redundant node. A BDT which has no redundant node is
called a reduced BDT. In the following of this paper, a BDT means a reduced BDT.
If there is a total order of variables � which is consistent with the order of variables in
any path of a BDT, it is called an ordered BDT (OBDT). The total order of variables
for an OBDT is called the variable order. Let S(P) be the set of variables that appear
in path P in either a positive literal or a negative literal. An OBDT which satis5es
S(P) = {�(1); : : : ; �(|S(P)|)} for every path P is called a leveled BDT.

3. Shellable Boolean functions

3.1. Shellable function

De�nition. Let f be a positive Boolean function represented by a PDNF f =
∨m

k=1∧
i∈Ik xi and �T be an order of terms of f. f is shellable with respect to �T if there

exist J1; : : : ; Jm(⊆ [n]) which satisfy the following conditions:
(1) For any l (16l6m);

∨l
k=1

∧
i∈I�T (k)

xi =
∨l

k=1(
∧

i∈I�T (k)
xi
∧

j∈J�T (k)
xj).

(2) For any s; t such that 16s ¡ t6m; (Is ∩ Jt)∪ (It ∩ Js) �= ∅.
f is shellable if there exists �T such that f is shellable with respect to �T . �T is
called the term order of f.

3.2. Lexico-exchange function

De�nition (Ball and Provan [2]). Let f be a positive Boolean function represented by
a PDNF and � be an order of variables of f. f is lexico-exchange with respect to

Y. Takenaga et al. / Theoretical Computer Science 262 (2001) 633–647 637

�, if, for every pair Ii; Ij such that Ii ≺L Ij, there exists Il which satis5es Il ≺L Ij and
Il\Ij = {h}, where h= min(Ii\Ij). f is lexico-exchange if there exists � such that f
is lexico-exchange with respect to �.

It is proved in [6] that it is NP-hard to check if a PDNF is lexico-exchange.

4. Tree-shellable Boolean functions

4.1. Tree-shellable function

De�nition. A positive Boolean function f is tree-shellable when it can be represented
by a BDT with exactly |PI(f)| 1-paths.

Proposition 1. If f =
∨m

k=1

∧
i∈Ik xi is tree-shellable; there exists a BDT T represent-

ing f which satis9es the following conditions:
• T has m 1-paths P1; : : : ; Pm.
• Each Pk corresponds to a term Ik by the rule that i∈ Ik i: xi ∈Pk .

Proof. It is clear from the de5nition that there exists a BDT which satis5es the
5rst condition. Thus, we have only to prove that the second condition holds on the
BDT. Let P1; : : : ; Pm be the paths of a BDT representing f which has m 1-paths. Let
pos(Pk)(neg(Pk), resp.) be the set of indices of variables whose positive (negative,
resp.) literals are in Pk .

First, assume that, for some k, there exists a 1-path Pl which satis5es pos(Pl)(Ik .
Then, minterm

∧
i∈pos(Pl) xi

∧
j =∈pos(Pl) xj must be 0 because no prime implicant make it

to be 1. However, Pl makes it to be 1 in T . Thus, there exists no Pl which satis5es
pos(Pl)(Ik .

Next, assume that, for some k, there exists no 1-path Pl which satis5es pos(Pl)⊆ Ik .
Then, no 1-path makes minterm

∧
i∈Ik xi

∧
j =∈Ik xj to be 1 because, for any 1-path Pl,

there exists a variable in pos(Pl) which appears in the minterm as a negative literal.
However, the minterm must be 1 because it is a minimum true point of f. Thus, for
any k, there exists a 1-path Pl which satis5es pos(Pl)⊆ Ik .

To satisfy both of them, there must be a 1-path Pl satisfying pos(Pl) = Ik . As T has
exactly m 1-paths, each 1-path corresponds to a term by the rule that pos(Pk) = Ik .

When a BDT T represents f, we call a 1-path P which satis5es pos(P) = Ii the
main path of Ii.

De�nition. For a BDT T , let �T be an order of 1-paths such that i≺�T j iK P(k−1)
i =

P(k−1)
j ; Pk

i is a positive literal and Pk
j is a negative literal. Let f =

∨m
k=1

∧
i∈Ik xi be

tree-shellable and a BDT T representing f has m paths. Then we call that f is tree-
shellable with respect to �T and �T is the shelling term order of f.

The next proposition shows that tree-shellability is a kind of shellability as its name
shows.

638 Y. Takenaga et al. / Theoretical Computer Science 262 (2001) 633–647

Proposition 2. Let a positive Boolean function f =
∨m

k=1

∧
i∈Ik xi be tree-shellable with

respect to �T ; and Pk be the 1-path of the BDT representing f that corresponds to
Ik . Then

l∨
k=1

∧
i∈I�T (k)

xi =
l∨

k=1

(∧
i∈pos(P�T (k))

xi
∧

j∈neg(P�T (k))
xj

)

for any l (16l6m).

This proposition is obvious from the property of a BDT. If a 1-edge is always the
right edge, the shelling term order is obtained by ordering the 1-paths in a BDT from
the right one to the left one.

If a BDT T represents f =
∨m

k=1

∧
i∈Ik xi and has exactly m paths, T witnesses that

f is tree-shellable. The next two corollaries deal with such f and T .

Corollary 3. If a BDT T witnesses that f is tree-shellable; for any 1-path Pk of T
and any xs ∈Pk; there exists l which satis9es P(t−1)

k =P(t−1)
l ; Pt

k = xs; Pt
l = xs and

Il (Ik ∪{s} for some t.

Proof. Assume w.l.o.g. that �T (k) = k for any k and that Pk is the main path of
Ik(16k6m). Then

f =
m∨

k=1

∧
i∈Ik

xi =
m∨

k=1

(∧
i∈pos(Pk)

xi
∧

j∈neg(Pk)
xj

)

holds because T witnesses that f is tree-shellable.
The idea of this proof is as follows. As Pk (k �= 1) includes negative literals, Pk

cannot make all the minterms in Ik to be 1. Thus, the remaining minterms should be
made 1 by the other 1-paths. We prove that the corollary should hold in order to make
the remaining minterms to be 1.

The following discussion holds for any 1-path Pk and xs ∈Pk . Minterm
∧

i∈Ik∪{s} xi∧
j =∈Ik∪{s} xj (= z) is 1 because

∧
i∈Ik xi¿z. However, because s∈ neg(Pk);

∧
i∈pos(Pk) xi∧

j∈neg(Pk) xj � z. Thus, there must exist a path Pl(l �= k) which makes z to be 1. To
make z to be 1 by Pl, pos(Pl)⊆ Ik ∪{s} and neg(Pl)⊆ [n] − (Ik ∪{s}) should hold.
Therefore, there is only one variable xs that may appear in Pk and Pl as diKerent literals.
Hence, Pl is on Pk until the node labeled by xs. Therefore, P(t−1)

k =P(t−1)
l ; Pt

k = xs and
Pt
l = xs hold for some t.
As shown above, pos(Pl)⊆ Ik ∪{s} holds. However, Il �= Ik ∪{s} because f is given

as an irredundant DNF. Thus, Il (Ik ∪{s}.

Corollary 4. Let T be a BDT such that T has m= |PI(f)| 1-paths P1; P2; : : : ; Pm and
pos(Pk) = Ik for any k (16k6m). Then T witnesses that f is tree-shellable if for any
1-path Pk of T and any xs ∈Pk; there exists l which satisfy P(t−1)

k =P(t−1)
l ; Pt

k = xs;
Pt
l = xs and Il (Ik ∪{s} for some t.

Y. Takenaga et al. / Theoretical Computer Science 262 (2001) 633–647 639

Proof. As T has |PI(f)| 1-paths, we have only to prove that T represents f. Assume
w.l.o.g. that �T satis5es �T (k) = k for any k. We prove by induction on k that

k∨
i=1

∧
q∈Ii

xq =
k∨

i=1

(∧
q∈pos(Pi)

xq
∧

r∈neg(Pi)
xr

)

holds for any k (16k6m). When k =m, the above equation means that T represents
f.

When k = 1, P1 makes
∧

q∈I1 xq to be 1 because the rightmost 1-path P1 includes no
negative literal.

Assume that the above equation holds for k = j− 1. We prove that it also holds for
k = j. Pj represents a product term

∧
q∈pos(Pj) xq

∧
r∈neg(Pj) xr . As

∧
q∈Ij

xq =

(∧
q∈pos(Pj)

xq
∧

r∈neg(Pj)
xr

)∨(∨
r∈neg(Pj)

((∧
q∈Ij

xq

)∧
xr

))

holds,
∨

r∈neg(Pj)((
∧

q∈ Ij xq)
∧

xr) must be made to be 1 by P1; : : : ; Pj−1. Assume that,

for any r ∈ neg(Pj), there exists l which satis5es P(t−1)
j =P(t−1)

l ; Pt
j = xr; Pt

l = xr and
Il (Ij ∪{r} for some t. Then Il (Ij ∪{r} means that

∧
q∈Il xq¿(

∧
q∈Ij xq)

∧
xr holds.

Moreover, P(t−1)
j =P(t−1)

l ; Pt
j = xr and Pt

l = xr means that 16l6j − 1. Thus,

j∨
i=1

∧
q∈Ii

xq =

(
j−1∨
i=1

∧
q∈Ii

xq

)∨(∧
q∈pos(Pj)

xq
∧

r∈neg(Pj)
xr

)

∨(∨
r∈neg(Pj)

((∧
q∈Ij

xq

)∧
xr

))

=

(
j−1∨
i=1

∧
q∈Ii

xq

)∨(∧
q∈pos(Pj)

xq
∧

r∈neg(Pj)
xr

)
:

Using the induction hypothesis,(
j−1∨
i=1

∧
q∈Ii

xq

)∨(∧
q∈pos(Pj)

xq
∧

r∈neg(Pj)
xr

)

=

(
j−1∨
i=1

(∧
q∈pos(Pi)

xq
∧

r∈neg(Pi)
xr

))∨(∧
q∈pos(Pj)

xq
∧

r∈neg(Pj)
xr

)

=
j∨

i=1

(∧
q∈pos(Pi)

xq
∧

r∈neg(Pi)
xr

)
:

Therefore the above equation holds for k = j.

We can check the tree-shellability of a given PDNF using Corollary 4. We 5rst give
the label xs of the root node and check if there exists Il which satis5es Il (Ik ∪{s}

640 Y. Takenaga et al. / Theoretical Computer Science 262 (2001) 633–647

Fig. 1. An example of an ordered tree-shellable function.

for any Ik which satis5es xs =∈ Ik . If the condition is not satis5ed for some Ik , there
exists no BDT whose root is labeled by xs that witnesses that f is tree-shellable. If
the condition is satis5ed, examine recursively if two subfunctions f|xi=0 and f|xi=1

are both tree-shellable. If both of them are tree-shellable, f is tree-shellable and there
exists a BDT with the root node labeled by xi which witnesses that a given function f
is tree-shellable. Otherwise, we choose the other variables one by one as the label of
the root node. As this algorithm checks all the possible BDTs, this algorithm requires
exponential time of n.

4.2. Ordered tree-shellable function

De�nition. A positive Boolean function f is ordered tree-shellable with respect to � if
it can be represented by an OBDT with variable order � which has exactly |PI(f)| 1-
paths. f is ordered tree-shellable if there exists � such that f is ordered tree-shellable
with respect to �. We call � to be the shelling variable order of f.

Fig. 1(a) is an example of an ordered tree-shellable function. Note that the leaves
with label 0 and the edges to them are omitted in this 5gure. f is ordered tree-shellable
with respect to variable order x1x2x3x4. Fig. 1(b) is an example of a function which is
not ordered tree-shellable. With variable order x1x2x3x4x5, the BDT representing g has
5ve 1-paths, which does not equal the number of prime implicants. It is not diLcult
to check that g is not ordered tree-shellable with respect to any other variable order.

As an ordered tree-shellable function is tree-shellable, Propositions 1 and 2 also hold
for ordered tree-shellable functions. The shelling term order of an ordered tree-shellable
function is equivalent to the lexicographical order based on the shelling variable order.

Theorem 5. A positive Boolean function f =
∨m

k=1

∧
i∈Ik xi is ordered tree-shellable

with respect to � i: the following condition holds.

Y. Takenaga et al. / Theoretical Computer Science 262 (2001) 633–647 641

For any Ik and any s =∈ Ik ; s≺� max(Ik); either
(i) there does not exist Il such that (Ik ∪{s})∩{�(1); �(2); : : : ; s}= Il ∩{�(1);

�(2); : : : ; s}; or
(ii) if such prime implicants exist; at least one of them satis9es Il (Ik ∪{s}.

Proof. (If) We assume w.l.o.g. that the variable order � satis5es �(k) = k for any k,
and the lexicographical order of terms �T satis5es �T (k) = k for any k.

First, we show how to construct an OBDT from f. To construct an OBDT, we add
terms one by one in lexicographical order. The algorithm to determine the path Pk that
corresponds to Ik is as follows. Note that ‘·’ means concatenation of two sequences.

Construct OBDT
1. Pk = (empty sequence)
2. For i = 1 to max(Ik) repeat 3 and 4.
3. If i∈ Ik , then Pk =Pk · xi.
4. If i =∈ Ik and there already exists a path which starts with Pkxi, then Pk =Pk · xi.

Next, we have to show that the OBDT constructed by this algorithm witnesses that f
is ordered tree-shellable if f satis5es the condition of this theorem. Its proof is similar
to that of Corollary 4 by the following reason. Condition (i) of this theorem means
that xs =∈Pk . Otherwise, xs =∈Pk and Il of this theorem satis5es P(t−1)

k =P(t−1)
l ; Pt

k = xs

and Pt
l = xs for some t. Thus, it is equivalent to Corollary 4.

(Only if) It is proved similarly to Corollary 3.

Using Theorem 5, it is possible to check the ordered tree-shellability of a Boolean
function by an algorithm similar to that for tree-shellability. The only diKerence is
that all the subtrees must have the same variable order in the case of ordered tree-
shellable functions. This algorithm also requires exponential time because it checks all
the variable orders.

4.3. Aligned function

De�nition (Boros [5]). Let f be a positive Boolean function represented by a PDNF
f =

∨m
k=1

∧
i∈Ik xi: f is aligned with respect to � if, for every Ik and for every i such

that i =∈ Ik and i≺� max(Ik), there exists Il (k �= l) such that Il ⊆{i}∪ (Ik\{max(Ik)}).
f is aligned if there exists � such that f is aligned with respect to �.

The result in [5] can be written as follows if we use our terms.

Theorem 6. A positive Boolean function f is aligned with respect to � i: there exists
a leveled OBDT with variable order � which represents f and has exactly |PI(f)| 1-
paths.

This theorem means that the class of aligned functions is a subclass of ordered tree-
shellable functions. It can be seen as another de5nition of an aligned function. It is

642 Y. Takenaga et al. / Theoretical Computer Science 262 (2001) 633–647

Fig. 2. A BDT representing f2.

also shown in [5] that it is possible to decide if a positive function is aligned or not
and 5nd a shelling variable order � if it is shellable in polynomial time.

5. Relations among shellable functions

In this section, we show relations among various shellable Boolean functions. Let S
be the class of all shellable functions, LE be the class of all lexico-exchange functions,
TS be the class of all tree-shellable functions, OTS be the class of all ordered tree-
shellable functions and A be the class of all aligned functions, respectively.

Theorem 7. TS is a proper subclass of S.

Proof. Consider f1 = x1x2x3 + x1x2x4 + x1x2x5 + x1x3x5 + x1x3x6 + x2x4x5 + x2x4x6 +
x3x4x6 + x3x5x6 + x4x5x6. f1 is shellable because f1 = x1x2x3 + x1x2x3x4 + x1x2x3 x4x5 +
x1x2x3x5 + x1x2x3x5x6 + x1x2x4x5 + x1x2x4x5x6 + x1x3x4x6 + x1x3x4x5x6 + x2 x3x4x5x6. We
can see that f is not tree-shellable by checking all the possible trees representing f1.

Theorem 8. OTS is a proper subclass of TS.

Proof. Consider f2 = x1x2x3+x1x2x4+x1x2x5+x1x3x6+x2x4x5+x2x4x6+x3x4x6+x3x5x6.
The BDT shown in Fig. 2 witnesses that f2 is tree-shellable. We can see that f is not
ordered tree-shellable by checking all variable orders.

Theorem 9. A is a proper subclass of OTS.

Proof. From Theorem 6, every aligned function is also ordered tree-shellable. Consider
f3 = x1x2 +x1x3 +x3x4. As shown in Fig. 1(a), f3 is ordered tree-shellable with respect

Y. Takenaga et al. / Theoretical Computer Science 262 (2001) 633–647 643

to variable order x1x2x3x4. We can see that f is not aligned by checking all variable
orders.

Theorem 10. OTS is equivalent to LE.

Proof. Let f be a positive Boolean function represented by a PDNF f =
∨m

k=1

∧
i∈Ik xi.

We assume w.l.o.g. that �(k) = k for any k.
First, assume that f is lexico-exchange with respect to a variable order �. Then we

prove that f satis5es the condition of Theorem 5 with the same variable order. That
is, we prove that, for any prime implicant Ik and s =∈ Ik ; s≺� max(Ik), if there exist
prime implicants Il that satisfy (Ik ∪{s})∩ [s] = Il ∩ [s], at least one of them satis5es
Il (Ik ∪{s}.

Assume that there exists Il′ that satis5es (Ik ∪{s})∩ [s] = Il′ ∩ [s]. Then, s= min(Il′\
Ik) and Il′ ≺L Ik hold. Thus, from the de5nition of a lexico-exchange function, there
exists Il which satis5es Il ≺L Ik and Il\Ik = {s}. If (Ik ∪{s})∩ [s](Il ∩ [s], it contra-
dicts Il\Ik = {s}. If (Ik ∪{s})∩ [s]) Il ∩ [s], there exists t6s which satis5es t ∈ Ik
and t =∈ Il. It contradicts Il ≺L Ik . Thus, (Ik ∪{s})∩ [s] = Il ∩ [s] holds. Also, from the
equality Il\Ik = {s}, Il (Ik ∪{s} holds.

Next, we assume that f is ordered tree-shellable with respect to �. We prove that
f is lexico-exchange using the condition of Theorem 5. Let Ii and Ij be any prime
implicants satisfying Ii ≺L Ij. Let h= min(Ii\Ij). Then, (Ij ∪{h})∩ [h] = Ii ∩ [h] holds.
Therefore, condition (ii) of Theorem 5 is satis5ed. That is, there exists Il such that
(Ij ∪{h})∩ [h] = Il ∩ [h] and Il (Ij ∪{h}. As h =∈ Ij, (Ij ∪{h})∩ [h] = Il ∩ [h] means
that Il ≺L Ij and Il (Ij ∪{h} means that Il\Ij = {h}. Hence, f is lexico-exchange with
respect to �.

6. Tree-shellability of quadratic functions

In this section, we consider the case when a positive Boolean function is quadratic.
A Boolean function is called quadratic if all the terms consist of exactly two lit-
erals. A positive quadratic function f is represented by a graph G = (V; E), where
V = {x1; x2; : : : ; xn} and (xu; xv)∈E iK xuxv is a term of f.

It is shown in [3] that a quadratic function is lexico-exchange (or ordered
tree-shellable) iK it is represented by a cotriangulated graph. A graph is called co-
triangulated if any induced subgraph contains a vertex whose nonneighbors form an
independent set. We call such a vertex cosimplicial and we call a vertex which has no
edges isolated. On the shelling variable order for quadratic functions, [3] shows that
x�(1); : : : ; x�(n) is a shelling variable order of f if x�(k) is a cosimplicial node or an
isolated node of the graph induced by x�(k); : : : ; x�(n) for any k (16k6n − 1).

We show that it is also the necessary condition for � to be a shelling variable
order. Let G denote the graph representing f and G�(k) denote the graph induced by
x�(k); : : : ; x�(n). Here G =G�(1).

644 Y. Takenaga et al. / Theoretical Computer Science 262 (2001) 633–647

Theorem 11. For an ordered tree-shellable quadratic function; if � is a shelling
variable order; x�(k) is a cosimplicial node or an isolated node of G�(k) for any
k (16k6n − 1).

Proof. The outline of this proof is as follows. In the 5rst step, we list all the require-
ments for � to be a shelling variable order using Theorem 5. Let us consider any
I ∪{i} (I ∈PI(f); i =∈ I). Here, I ∪{i} corresponds to Ik ∪{s} in Theorem 5. Then
I ∪{i} should satisfy the condition of Theorem 5 if i≺ max(I). In the second step,
we show that � satis5es Theorem 11 when all the requirements are satis5ed.

Now we show the detail of this proof. In the 5rst step, we consider the following
four cases depending on terms other than I . Let I = {k; l}. For simplicity, we call a
term J which satis5es i∈ J and J (I ∪{i} a term of type A, and one which satis5es
i∈ J; J * I ∪{i} a term of type B. Note that there exist at most two terms of type A,
xixk and xixl.

Case 1: The case when there exists at least one term of type A and no term of type
B. There are six possible orders of xi; xk ; xl in �, that is, i≺ k ≺ l; i≺ l≺ k; k ≺ i≺ l;
k ≺ l≺ i; l≺ k ≺ i and l≺ i≺ k. We consider which of them can be allowed using
Theorem 5. If (k ≺ i)∧ (l≺ i) (that is, if k ≺ l≺ i or l≺ k ≺ i), i≺ max(I) does not
hold. Then the condition of Theorem 5 need not be considered in these two cases.
Assume that there is only one term of type A and let xixk be the term. If l≺ i,
condition (i) of Theorem 5 is satis5ed because there exists no term Il′ which satis5es
(I ∪{i})∩{�(1); �(2); : : : ; i}= Il′ ∩{�(1); �(2); : : : ; i}. In other cases, condition (ii) is
satis5ed because there exists a term xixk . Therefore, the condition is always satis5ed
and no requirement is obtained. In a similar manner, we can see that the condition is
always satis5ed even when there are two terms of type A.

Case 2: The case when there exists at least one term of type B and no term of type
A. Assume there is only one term of type B. Let the term be xixt (t �= k; t �= l). Among
all the orders of xi; xk ; xl; xt in �, if (k ≺ i)∧ (l≺ i), i≺ max(I) does not hold. We
can see that condition (i) is satis5ed if (k ≺ i)∨ (l≺ i)∨ (t≺ i). In other cases, that
is, if (i≺ k)∧ (i≺ l)∧ (i≺ t), condition (i) is not satis5ed because there exists a term
xixt . Moreover, condition (ii) is not satis5ed either because there exists no term other
than I that is a subset of {i; k; l}. From the above discussions, the variable order must
satisfy

((k ≺ i) ∧ (l ≺ i)) ∨ ((k ≺ i) ∨ (l ≺ i) ∨ (t ≺ i)) = (k ≺ i) ∨ (l ≺ i) ∨ (t ≺ i):

Therefore, a requirement (k ≺ i)∨ (l≺ i)∨ (t≺ i) is obtained. If there are more than
one terms of type B, the above condition must be satis5ed for all of them.

Case 3: The case when there exist both prime implicants of types A and B. As-
sume that there is only one term of type A, xixk , and xixtj (tj �= k; tj �= l; j = 1; 2; : : :)
be terms of type B. From similar discussions as previous cases, we can obtain the
following. Condition (i) is satis5ed iK l≺ i and (k ≺ i)∨ (l≺ i)∨ (tj ≺ i) are satis-
5ed. Condition (ii) is satis5ed by xixk iK i≺ l. After all, the variable order must

Y. Takenaga et al. / Theoretical Computer Science 262 (2001) 633–647 645

satisfy

((k ≺ i) ∧ (l ≺ i)) ∨ ((l ≺ i) ∧ ((k ≺ i) ∨ (l ≺ i) ∨ (∧jtj ≺ i))) ∨ (i ≺ l):

As the formula is always true, the condition is always satis5ed. Therefore no require-
ment is obtained. It is similar even when there exist two terms of type A.

Case 4: The case when there exists neither a term of type A nor a term of type
B. That is, the case when xi is an isolated node. In this case, condition (i) is always
satis5ed and no requirement is obtained.

From the above discussion, requirements for variable order � are obtained only in
Case 2. The requirements are produced for all I and i classi5ed to Case 2 and all of
them must be satis5ed. Let R(G) denote the set of all the requirements produced by a
function whose corresponding graph is G. Now, we should note that the requirements
produced in Case 2 are the conjunction of the form ∗≺ i. This means that xi cannot
be the 5rst variable.

In the second step, we prove using induction on k that � is not a shelling variable
order if x�(k) is neither a cosimplicial node nor an isolated node of G�(k). For k = 1,
assume that x�(1) is not a cosimplicial node. Then there exists an edge (xk ; xl) such
that neither xk nor xl is a neighbor of x�(1). Let I = xkxl and i = x�(1). Then I ∪{i}
is classi5ed to Case 2 above. In this case, the obtained requirements indicates that xi

cannot be the 5rst variable so as to make � a shelling variable order.
If �(1); : : : ; �(j) (16j6n − 1) are chosen appropriately, some of the requirements

for � are already satis5ed and removed. Thus we prove the following claim.

Claim. Assume that � satis9es that x�(j) is a cosimplicial node or an isolated node
of G�(j) for any j (16j6k − 1). Then the remaining requirements are equivalent
to R(G�(k)).

If it holds, similarly to the case of k = 1; x�(k) should be a cosimplicial node or an
isolated node of G�(k).

Proof. It is obvious for k = 1 where R(G�(k)) =R(G). Assume that this claim holds
for k =m. Then the remaining requirements are equivalent to R(G�(k)). When x�(k) is
removed from G�(k), some more requirements are removed.

If x�(k) is an isolated node, it does not appear in the requirements. Thus R(G�(k)) =
R(G�(k − 1)) and the claim holds. If x�(k) is a cosimplicial node, it appears only in
the form �(k)≺ s for some s. Thus, when it is chosen as the kth variable, all the sum
terms in the formula that include �(k)≺ s are removed. Clearly no other requirements
are removed. It is not diLcult to see that a term is removed iK it is not generated from
a graph without x�(k). Then the remaining requirements are equivalent to R(G�(k)).

At last, we show an example. The graph representation of f = x1x2 + x2x3 + x3x4

(that is, G�(1)) is shown in Fig. 3(a). x2 and x3 are cosimplicial nodes in G�(1). For
I = {1; 2} and i = 4, J = {3; 4} is a term of type B and there is no term of type A.

646 Y. Takenaga et al. / Theoretical Computer Science 262 (2001) 633–647

Fig. 3. An example for Theorem 11. (f = x1x2 + x2x3 + x3x4).

Thus, we obtain a requirement (1≺ 4)∨ (2≺ 4)∨ (3≺ 4). Similarly, for I = {3; 4} and
i = 1, we obtain (2≺ 1)∨ (3≺ 1)∨ (4≺ 1). No other requirement is obtained from this
graph. Thus we can see that neither x1 nor x4 can be the 5rst variable. If we choose
x2 as the 5rst variable, the remaining graph G�(2) is as shown in Fig. 3(b). In G�(2),
x3 and x4 are cosimplicial nodes and x1 is an isolated node. Because both of the above
requirements are satis5ed by choosing x2 as the 5rst variable, any variable can be
chosen as the next variable.

The next theorem shows that tree-shellability is equivalent to ordered tree-shellability
on quadratic functions.

Theorem 12. A tree-shellable quadratic function is ordered tree-shellable.

Proof. Let T be a BDT which witnesses that a quadratic function f is tree-shellable.
Let Pm be the leftmost 1-path in T . We show that any variable order which is consistent
with the order of variables in Pm is a shelling variable order of f.

Let Pk1 ; : : : ; Pkt be the paths that diverge from Pm at the node labeled by xl. As
xl ∈Pki (16i6t), after the 1-edge from the node labeled by xl, Pki includes at most
one positive literal. For example, in Fig. 1(a), two paths x1x2 and x1x2x3 diverge from
the leftmost path at the node labeled by x1. Clearly, both of the paths include one
1-edge after the 1-edge from x1.

It is easy to see that a positive function all of whose terms have only one literal
is ordered tree-shellable with respect to any variable order. In Fig. 1(a), the variable
order of the subtree whose root is the node labeled by x2 can be changed arbitrarily.
Therefore, it is possible to change the order of variables in the 1-paths so that it is
consistent with that of Pm.

7. Conclusion

In this paper, we have de5ned tree-shellable and ordered tree-shellable Boolean func-
tions, which have the property that every 1-path of a BDT representation has a one-
to-one correspondence to a prime implicant. We have shown some basic properties of
tree-shellable and ordered tree-shellable functions, and clari5ed relations among classes
of several shellable functions. The notion of tree-shellability has also made it possi-
ble to characterize several subclasses of shellable functions in terms of tree-shellability.
That is, tree-shellable, lexico-exchange (equivalently ordered tree-shellable) and aligned
functions correspond to BDT, OBDT and leveled OBDT, respectively.

Y. Takenaga et al. / Theoretical Computer Science 262 (2001) 633–647 647

References

[1] M.O. Ball, G.L. Nemhauser, Matroids and a reliability analysis problem, Math. Oper. Res. 4 (1979)
132–143.

[2] M.O. Ball, J.S. Provan, Disjoint products and eLcient computation of reliability, Oper. Res. 36 (1988)
703–715.

[3] C. Benzaken, Y. Crama, P. Duchet, P.L. Hammer, F. MaKray, More characterizations of triangulated
graphs, J. Graph Theory 14 (1990) 413–422.

[4] J.C. Bioch, T. Ibaraki, Complexity of identi5cation and dualization of positive Boolean functions, Inform.
Comput. 123 (1995) 50–63.

[5] E. Boros, Dualization of aligned Boolean function, RUTCOR Research Report 9–94 1994.
[6] E. Boros, Y. Crama, O. Ekin, P. L. Hammer, T. Ibaraki, A. Kogan, Boolean normal forms, shellability

and reliability computations, SIAM J. Discrete Math. 13 (2000) 212–226.
[7] E. Boros, P.L. Hammer, T. Ibaraki, K. Kawakami, Polynomial time recognition of 2-monotonic positive

Boolean functions given by an oracle, SIAM J. Comput. 26 (1997) 93–109.
[8] H. Brugesser, P. Mani, Shellable decompositions of cells and spheres, Math. Scand. 29 (1971) 199–205.
[9] Y. Crama, Dualization of regular Boolean functions, Discrete Appl. Math. 16 (1987) 79–85.

[10] G. Danaraj, V. Klee, Shellings of spheres and polytopes, Duke Math. J. 41 (1974) 443–451.
[11] C. Domingo, Polynomial time algorithm for some self-duality problems, Proc. CIAC’97, Lecture Notes

in Computer Science, vol. 1203, Springer, Berlin, 1997, pp. 171–180.
[12] T. Eiter, G. Gottlob, Identifying the minimal transversals of a hypergraph and related problems, SIAM

J. Comput. 24 (1995) 1278–1304.
[13] M.L. Fredman, L. Khachiyan, On the complexity of dualization of monotone disjunctive normal forms,

J. Algorithms 21 (1996) 618–628.
[14] K. Makino, T. Ibaraki, The maximum latency and identi5cation of positive Boolean functions, SIAM

J. Comput. 26 (1997) 1363–1383.
[15] U.N. Peled, B. Simeone, Polynomial-time algorithm for regular set-covering and threshold synthesis,

Discrete Appl. Math. 12 (1985) 57–69.
[16] J.S. Provan, M.O. Ball, ELcient Recognition of matroids and 2-monotonic systems, in: R. Ringeisen,

F. Roberts (Eds.), Applications of Discrete Mathematics, SIAM, Philadelphia, 1988,, pp. 122–134.

