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Abstract

This paper presents an approximation algorithm for simultaneously constructing a rectilinear
Steiner tree and bu#er insertion points into the tree. The objective of the algorithm is to divide
each wire into multiple smaller segments and minimize the number of the bu#er insertion points
(Steiner points) which are only located at the end of each segment. We show that (a) the Steiner
ratio is 1

3 , that is, the rectilinear minimum spanning tree yields a polynomial-time approximation
with a performance ratio exactly 3; (b) there exists a polynomial-time approximation with a
performance ratio 2. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In VLSI technology, some gates on a chip often have to drive many sinks or long
wires resulting in propagation delay. Three techniques are commonly applied to reduce
such delay: gate sizing, wire sizing, and bu#er insertion. This paper focuses on the last
technique. Bu#ers can not only decouple a large load that is o# the critical path but
also directly reduce the ARC delay of a long wire.
Berman et al. [2] showed that simultaneously constructing a tree and inserting bu#ers

at the internal nodes of the tree is NP-Complete. The authors of [8, 9] proposed a
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method of bu#er insertion as follows: Hrst, Hnd a best location for a single bu#er,
and then recursively apply the algorithm. But the bu#ers’ sizes are assumed to be
variable. Ginneken [4] gave an optimal dynamic programming algorithm that inserts at
most one bu#er into a single wire. Okamoto et al. [11] extended Ginneken’s method
so that it can simultaneously construct a Steiner tree and insert bu#ers while keeping
the restriction that at most one bu#er may be placed on each wire. Alpert et al. [1]
proposed a method that arbitrarily divides each wire into segments and eliminates at
most one bu#er per wire restriction. But their work is based on the assumption that
the routing tree topology and bu#er locations for each wire are provided.
Our work is to provide a polynomial-time approximation algorithm that can simul-

taneously build the routing tree topology (a rectilinear Steiner tree) and segment each
wire under the assumption that the length-bound of segment is given. The goal is to
minimize the number of bu#er insertion points (Steiner points). In this paper, we show
that the rectilinear minimum spanning tree-based algorithm has a performance ratio of
exactly 3. We also present a new polynomial-time approximation with a performance
ratio of at most 2.

2. Preliminary

For a given set of terminals V in the rectilinear plane, a rectilinear Steiner tree
[5–7] is a tree spanning a superset X of V . Points in X \V are called Steiner points
[5–7]. The rectilinear length of an edge between two points v1 and v2 is deHned by
|v1v2|= |x1−x2|+|y1−y2|, where (xi; yi) are the coordinates of vi for i=1; 2. The length
of a tree is the sum of its edges’ lengths. The rectilinear Steiner minimal tree problem
(RSTP) is to Hnd a rectilinear Steiner tree of minimum length. An edge between two
points of X may consist of a sequence of alternating vertical and horizontal lines.
Turning points on such edges are called corners. Given a constant R¿0, the rectilinear
Steiner tree problem with minimal number of Steiner points (RSTP-MSP) asks for
a rectilinear Steiner tree such that each edge has a length not more than R and the
number of Steiner points is minimized.
The optimal Steiner trees for RSTP and RSTP-MSP may have di#erent structures.

In the classical RSTP [5], every vertex has degree less than Hve and Steiner points
have degree either three or four. In RSTP-MSP, however, Steiner points may have
degree two. For example, when V contains two terminals v1 and v2 with |v1v2|¿R,
the optimal Steiner tree is a path containing �|v1v2|=R − 1� Steiner points whose de-
grees are two; Moreover, some vertices may have degree as large as eight. Consider
nine terminals (white nodes) in Fig. 1(a). The optimal Steiner tree for RSTP in Fig.
1(b) includes two Steiner points (black nodes) and has length of 6R. Two optimal
Steiner trees for RSTP-MSP in Fig. 1(c, d) both include no Steiner point and have
length of 8R; Note in the Hrst tree every terminal has degree less than three while in
the second tree one terminal has degree eight. However, we can show the following
lemma.
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Fig. 1. An example: (a) nine terminals; (b) the optimal Steiner tree of RSTP; (c) and (d) the optimal Steiner
trees of RSTP-MSP.

Fig. 2. Proof of Lemma 1.

Lemma 1. There exists a shortest optimal Steiner tree of RSTP-MSP such that
every vertex in the tree has degree at most four.

Proof. Suppose, by contradiction, that every shortest optimal Steiner tree has a vertex
whose degree is more than four. Then let T be such a tree with minimal number of
vertices that have degrees more than four, and let vertex v0 in T be adjacent to Hve
vertices vi, i=1; 2; : : : ; 5. We assume, without loss of generality, that v0 = (0; 0). Now
consider v0’s neighborhood of radius R, which is a square. Note lines x=y and x=−y
partition the square into four small squares. See Fig. 2.
Suppose vertices v1 and v2 are in the same small square, say, the one formed by

lines −x6y and x6y. If neither v1 nor v2 is on one of these two lines, then it can
be veriHed that |v1v2|¡max{|v1v0|; |v2v0|}. Thus, replacing the longer edge of v1v0
and v2v0 with edge v1v2 will produce a Steiner tree whose length is shorter than T ,
contradicting that T is the shortest Steiner tree. Therefore, we can assume that vertices
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Fig. 3. Proof of Lemma 2.

v1; v2 and v3 are in two small squares formed by −x6y and v2 is on line x=y. See
Fig. 2(a). We now consider two cases separately.
Case 1: v2 has degree less than four. Then substituting edge v1v0 with edge v1v2

will produce a shortest Steiner tree that has less number of vertices that have degree
at least Hve than T , contradicting that T has minimal number of such vertices.
Case 2: v2 has degree four (or bigger). Then v2 is adjacent to three vertices u1; u2;

and u3 besides vertex v0. If there exists a vertex ui that is in the two small squares
of v2’s neighborhood formed by the line in the direction of x=−y and passing vertex
v2, then either |v1ui|¡|v1v0| or |v3ui|¡|v3v0|. In either case, a shorter Steiner tree can
be constructed by replacing edge v1v0 with edge v1ui or edge v3v0 with edge v3ui,
contradicting that T is the shortest one. Hence, we can assume that ui for 16i63 are
all in the other two small squares while u2 in line x=y. See Fig. 2(b).
By repeating the above argument at vertex u2 and so on, in the end we will reach

Case 1 and Hnd a contraction. The proof is then complete.

Lemma 2. There exists a shortest optimal Steiner tree for RSTP-MSP such that no
two edges cross each other.

Proof. Suppose that T is a shortest optimal Steiner tree that includes two edges ac
and bd crossing at point p, and ac and bd may have corners at points c′ and d′,
respectively. See Fig. 3.
We can assume that |ap|6|pc′|, |bp|6|pd′| and |ap|6|bp|. Then we have

|ad|= |ap|+ |pd′| ± |d′d|6|bp|+ |pd′|+ |d′d|= |bd|;

|ab|= |ap|+ |pb|6|bp|+ |pd′|+ |d′d|= |bd|:

Therefore, replacing edge ad with edge ab if there is a path in T between vertices b
and a or c, and with edge ab if there is a path in T between vertices d and a or c,
can make a shortest Steiner tree T ′. Moreover, the number of crossings in T ′ is less
than that in T . By repeating this operation we can obtain a shortest optimal Steiner
tree without any crossing.
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In fact, by applying the combination of the arguments in the proofs of Lemmas
1 and 2, we are able to prove that there exists a shortest optimal Steiner tree for
RSTP-MSP such that every vertex in the tree has degree at most four and there is no
two edges crossing each other. Hence in the rest of the paper, we consider only such
a kind of shortest optimal Steiner trees for RSTP-MSP.
A rectilinear spanning tree is a tree interconnecting the given terminals with edges

only between a pair of terminals. The rectilinear minimum spanning tree (RMST) is a
rectilinear spanning tree with minimum length. Note a rectilinear spanning tree (even
if it is a RMST) may not be a feasible solution for RSTP-MSP, since some edges
may be too long (their lengths exceed R). To make it feasible, we can break any edge
longer than R into several small segments with lengths at most R by adding some
Steiner points in the edge. The resulting tree will be called a steinerized rectilinear
spanning tree. The steinerized RMST has the following interesting property.

Lemma 3. Every steinerized RMST has the minimum number of Steiner points
among the steinerized rectilinear spanning trees.

Proof. Note that every RMST can be obtained from a rectilinear spanning tree by a
sequence of operations that each replaces an edge by another shorter edge. Since the
shorter edge needs less number of Steiner points than the longer edge when rectilinear
spanning tree is steinerized. This leads to the conclusion.

3. Steinerized rectilinear spanning tree

In this section we will show the following result.

Theorem 1. The steinerized rectilinear minimum spanning tree is a polynomial-time
approximation for RSTP-MSP with a performance ratio of exactly 3.

To obtain the lower bound of performance ratio, consider a simple example in
Fig. 4. There are four terminals (white nodes) such that every pair of them has length
of 2L, where L=(1− �)R and � is a very small positive real number. Fig. 4(a) illus-
trates the optimal Steiner tree for RSTP-MSP that has only one Steiner point (black
node). Fig. 4(b) illustrates the steinerized RMST that has three Steiner points. This
implies that the performance ratio of steinerized RMST is at least three.
Note that every leaf in a shortest optimal Steiner tree is a terminal. A rectilinear

Steiner tree is called full if every terminal is a leaf. When a rectilinear Steiner tree
is not full, we can always Hnd a terminal with degree more than one where we can
break the tree into parts. In such a way, every rectilinear Steiner tree can be broken
into several small full rectilinear Steiner trees, which are called full components of the
rectilinear Steiner tree.
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Fig. 4. The lower bound: (a) the optimal solution of RSTP-MSP; and (b) the steinerized RMST.

To obtain the upper bound of performance ratio, we need to study the properties
of rectilinear convex path between two terminals in the shortest optimal full tree for
RSTP-MSP. A path q1q2 : : : qm is called a rectilinear convex path if one places a
coordinate axis at any point on the path then at least one of the quadrants does not
contain any point in the path. Note that angles can be deHned along the convex path.
The angles of 180◦ and 270◦ will play an important role in the proof of Theorem 1.
For simplicity, such angles are called big angles.
Let T denote a shortest optimal full tree for RSTP-MSP.

Lemma 4. Let q1q2 : : : qm be a rectilinear convex path between terminals q1 and qm
in T and m¿2. Suppose there are t1 angles of 180◦ and t2 angles of 270◦ among
m − 2 angles “q1q2q3; “q2q3q4; : : : ;“qm−2qm−1qm. Then overall; it is true that
|q1qm|6(t1 + 2t2 + 2)R.

Proof. First, we deHne a staircase to be a continuous path of alternating vertical lines
and horizontal lines such that their projections on the vertical and horizontal axes have
no overlapping intervals.
Then we prove the lemma by induction on m. For m63, it is true, since |q1; q3|=2R

6(t1+2t2+2)R. Now, suppose m¿4. Consider the rectilinear convex hull H of points
q1; q2; : : : ; qm. If at least one of q1 and qm does not lie on the boundary of H , then by
the induction hypothesis, any rectilinear distance between two vertices of the convex
hull H is at least (t1 + 2t2 + 2)R. Therefore, |q1qm|6(t1 + 2t2 + 2)R.
Next, we may assume that both q1 and qm lie on the boundary of H . Then the

whole path q1q2 : : : qm lies on the boundary of H (see Fig. 5(c)). Since there are
overlapping intervals if a rectilinear convex path is not a staircase, we can always
obtain |q1qm|6(t1 + 2t2 + 2)R by induction hypothesis. So it suMces to show that this
inequality is true for staircase (see Fig. 5(a, b)). We consider the following cases:
Case 1: When the rectilinear convex path is straight. Clearly, we have |q1qm|=

(t1 + 1)R ¡ (t1 + 2)R6(t1 + 2t2 + 2)R.
Case 2: When the rectilinear convex path is a L-shaped path. As shown in Fig. 5(a),

the turning point of the L-shaped path may be a Steiner point with degree 2, 3 or 4.
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Fig. 5. Proof of Lemma 4: (a) L-shaped path; (b) Staircase; and (c) whole path.

It can also just be a corner. For the latter we have |q1qm|=(t1+1)R from Case 1. If the
turning point is a Steiner point, say qi, then we have |q1qm|=(t1+2)R6(t1+2t2+2)R.
Case 3: The other possible shapes of rectilinear convex paths are those like q′1 : : : qm

and q1 : : : qm as shown in Fig. 5(b) (may be in other directions). Otherwise, we can
have a shorter tree by Nipping some corner or Steiner point contradicting that T is the
shortest optimal tree for RSTP-MSP. For those convex paths like q′1 · · · qm, it is easy
to show that |q′1qm|6(t1 + 2t2 + 2)R holds. For those like q1 : : : qm, when the turning
point of path qi : : : qj is a Steiner point qk shown in Fig 5(b), it can be veriHed that
|q1qm|6(t1+2t2+2)R also holds. When the turning point is a corner, |q1qm|=(t1+3)R
and t2 = 0 will be obtained. This violates the inequality |q1qm|6(t1+2t2+2)R. However,
since there must exist another rectilinear convex path q′′1 : : : q

′′
n which shares qi · · · qj

with the convex path q1 : : : qm and it is not diMcult to show that |q′′1 q′′n |6(t′′1 +2t′′2 +1)R
is true, where t′′1 is the number of angles of 180◦ and t′′2 is the number of angles of
270◦ among n − 2 angles along this convex path. Thus, we can charge cost 1 from
|q1qm| to |q′′1 q′′n |. Therefore, overall we have |q1qm|6(t1 +2t2 +2)R. The proof is then
complete.

Lemma 5. In the shortest optimal tree for RSTP-MSP, there are at most two big
angles at a terminal with degree two, one big angle at a vertex with degree three,
and no big angle with degree four.

Proof. The lemma follows from the deHnition of RSTP-MSP.

Lemma 6. Let T be a full rectilinear Steiner tree interconnecting n terminals, and si
denote the number of Steiner points with degree i in T . Then 2s4 + s3 = n− 2:

Proof. Since T has s4 + s3 + s2 + n− 1 edges, and the total degrees of vertices in T
is 4s4 + 3s3 + 2s2 + n=2(s4 + s3 + s2 + n− 1). Hence, 2s4 + s3 = n− 2:
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Fig. 6. Rectilinear convex paths having designated properties.

Given a shortest optimal Steiner tree for RSTP-MSP on n terminals, if it is a full
rectilinear Steiner tree, then we can Hnd a set of n rectilinear convex paths in the tree
that satisfy the following three properties:
(1) each path connects two terminals,
(2) each terminal appears in exactly two paths,
(3) each angle at a Steiner point appears in the paths exactly once.
Fig. 6 shows an example. Terminals and Steiner points are marked by white and

black nodes, respectively, and rectilinear convex paths by dash lines. Now, we are
ready to show Theorem 1.

Proof of Theorem 1. Denote by C(T∗) the number of Steiner points in T∗. First, we
assume that T∗ is a full rectilinear Steiner tree. Let si denote the number of Steiner
points with degree i in T∗. Let s′2 denote the number of Steiner points of degree
two with angle 180◦, and s′′2 denote the number of Steiner points of degree two with
angle 270◦. Clearly, s2 = s′2 + s′′2 . By Lemma 6, n=2s4 + s3 + 2. Consider a rectilinear
spanning tree Ts consisting of n−1 edges each connecting two terminals at endpoints of
a rectilinear convex path in T∗. By Lemma 4, each edge in Ts has length upper-bounded
by (t1 + 2t2 + 2)R where t1 and t2 are the numbers of big angles of 180◦ and 270◦ on
the rectilinear convex path connecting two terminals, respectively. Hence we need at
most (t1 + 2t2 + 1) Steiner points to steinerize the edge. By Lemma 5, the rectilinear
spanning tree Ts can be steinerized by at most s3 + 2s′2 + 2s′′2 + n− 1= s3 + 2s2 + n− 1
Steiner points. By Lemma 3, any steinerized MRST contains at most s3 + 2s2 + n− 1
Steiner points. Clearly,

s3 + 2s2 + n− 1 = 2s4 + 2s3 + 2s2 + 1 = 2(s4 + s3 + s2) + 1:

When s4 + s3 + s2¿ 0, we have s3 +2s2 +n−163(s4 + s3 + s2). When s4 + s3 + s2 = 0,
we have Ts=T∗. Therefore, in either case, every steinerized MRST contains at most
3(s4 + s3 + s2)(= 3C(T∗)) Steiner points.
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Now suppose T∗ is not a full rectilinear Steiner tree. Then T∗ can be decomposed
into several full components T1; T2; : : : ; Tk , each satisfying the above properties (1,2,3).
Let C(Tj) be the number of Steiner points in Tj. For each full component Tj, by the
above argument, we know that the steinerized RMST on terminals in Tj contains at
most 3C(Tj) Steiner points. Note that the union of steinerized RMSTs is a steinerized
rectilinear spanning tree for all terminals. By Lemma 3, the number of Steiner points
in T∗ is at most 3

∑k
j= 1 C(Tj)= 3C(T∗). The proof is then complete.

4. 2-Approximation

Suppose T∗ is a shortest optimal Steiner tree for RSTP-MSP that has k full com-
ponents T1; T2; : : : ; Tk . In the proof of Theorem 1, we have showed that the steinerized
RMST on terminals in Tj contains at most 2C(Tj)+1 Steiner points. In the following,
we will study when this upper bound can be improved.

Lemma 7. Let T ′
j be the steinerized RMST on terminals in Tj. Then,

(1) T ′
j contains at most 2C(Tj) + 1 Steiner points.

(2) T ′
j contains at most 2C(Tj) Steiner points when Tj contains a Steiner point with

degree at most three.
(3) T ′

j contains at most 2C(Tj) Steiner points when T ′
j contains an edge between

two terminals.

Proof. Conclusions (1) and (3) follow immediately from the proof of Theorem 1.
To show (2), let nj be the number of terminals in Tj. Note that there are exactly nj
paths in the forms shown in Lemma 4 in Tj. Choose any nj − 1 of them and connect
two endpoints of each path. We will obtain a rectilinear spanning tree. Its steinerization
is denoted by Ts. Now, assume u is a Steiner point with degree at most three. When
there is a big angle at u, we choose nj − 1 rectilinear convex paths not containing the
big angle. When there is no big angle at u, we can choose any nj−1 rectilinear convex
path. In such a way, we can obtain C(Ts)6s3 + 2s2 − 1 + (nj − 1)62(s4 + s3 + s2)
= 2C(Tj).

In the following, we propose a Kruskal-type approximation algorithm.

Step 0: Given a set of n terminals,
sort all n(n− 1)=2 possible edges ei between n terminals
in increasing order of their length, |e1|6|e2|6 : : :6|en(n−1)=2|.
TA := (X; ∅) and i := 1.

Step 1:while |ei|6R do begin
if ei connects two di#erent connected components of TA
then put ei into TA.
i := i + 1.

end-while
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Step 2: for three terminals a; b; c are in three connected components of TA do
if there exists a point s within distance R from a; b; c,
then put the 3-star, consisting of three edges sa; sb; sc into TA.

Step 3: while i6n(n− 1)=2 do begin
if ei connects two connected components of TA,
then put ei into TA along with �|di|=R� − 1 Steiner points.
i := i + 1:

end-while
return TA

Theorem 2. Let C(TA) be the number of Steiner points in the approximation TA
produced by the proposed algorithm. Then C(TA)62C(T∗).

Proof. Denote by T (i) the TA at the beginning of Step i in the algorithm. Suppose
T (3) − T (2) contains m 3-stars. Then

C(TA)6C(Ts)− m;

where C(Ts) is the number of Steiner points in Ts which is a steinerized RMST on
all given terminals. We construct a steinerized rectilinear spanning tree T as follows:
Initially, put T (2) into T . For each full component Tj (16j6k), add to T the steinerized
rectilinear spanning tree Hj for terminals in Tj. If T has a cycle, then destroy the cycle
by deleting some edges along with Steiner points of Hj. An important fact is that if
Hj does not contain an edge between two terminals, then at least one Steiner point
must be deleted when destroying a cycle in Hj ∪ T (2). From this fact and Lemma 7,
we have

C(Ts)62C(T ∗) + h;

where h is the number of full components Tj’s with properties that every Steiner point
in Tj has degree four and Tj ∪ T (2) has no cycle. Hence we have

C(TA)62C(T ∗) + h− m:

Now to prove the theorem it suMces to show h6m.
Suppose T (2) has p connected components. Then T (3) has p − 2m connected com-

ponents C1; C2; : : : ; Cp−2m. We now construct a graph H with vertex set consisting of
n terminals and the edge set deHned as follows: First, we put all edges of T (2) into H .
Then consider every full component Tj (16j6k) with properties that every Steiner
point in Tj has degree four and Tj∪T (2) has no cycle. If Tj has only one Steiner point,
then this Steiner point connects four terminals which must lie in at most two Ci’s.
Hence, among them there are two pairs of terminals; each pair lies in the same Ci.
Connect the two pairs with two edges and put the two edges into H . If Tj has at least
two Steiner points, then there must exist at least two Steiner points each connecting
three terminals. We can also Hnd two pairs of terminals among them such that each
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pair lies in the same Ci. Connect the two pairs with two edges and put the two edges
into H .
Clearly, H has at most p− 2h connected components. Since every connected com-

ponents of H is included in a Ci, we have p − 2m6p − 2h. Therefore, h6m. The
proof is then complete.
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