Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2012-03-09

Application of Subjective Logic to Vortex Core
Line Extraction and Tracking from Unsteady
Computational Fluid Dynamics Simulations

Ryan Phillip Shaw
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd
b Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation

Shaw, Ryan Phillip, "Application of Subjective Logic to Vortex Core Line Extraction and Tracking from Unsteady Computational Fluid
Dynamics Simulations” (2012). All Theses and Dissertations. 2989.
https://scholarsarchive.byu.edu/etd /2989

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an

authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2989&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2989&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F2989&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2989&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2989&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F2989&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2989?utm_source=scholarsarchive.byu.edu%2Fetd%2F2989&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Application of Subjective Logic to Vortex Core Line Extraction
and Tracking from Unsteady Computational

Fluid Dynamics Simulations

Ryan Phillip Shaw

A thesis submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of

Master of Science

Steven E. Gorrell, Chair
R. Daniel Maynes
Julie C. Vanderhoff

Department of Mechanical Engineering
Brigham Young University

April 2012

Copyright © 2012 Ryan Phillip Shaw

All Rights Reserved

ABSTRACT

Application of Subjective Logic to Vortex Core Line Extraction
and Tracking from Unsteady Computational
Fluid Dynamics Simulations

Ryan Phillip Shaw
Department of Mechanical Engineering, BYU
Master of Science

Presented here is a novel tool to extract and track believable vortex core lines from unsteady
Computational Fluid Dynamics data sets using multiple feature extraction algorithms. Existing
work explored the possibility of extracting features concurrent with a running simulation using in-
telligent software agents, combining multiple algorithms’ capabilities using subjective logic. This
work modifies the steady-state approach to work with unsteady fluid dynamics and is designed to
work within the Concurrent Agent-enabled Feature Extraction concept. Each agent’s belief tuple
is quantified using a predefined set of information. The information and functions necessary to set
each component in each agent’s belief tuple is given along with an explanation of the methods for
setting the components. This method is applied to the analyses of flow in a lid-driven cavity and
flow around a cylinder, which highlight strengths and weaknesses of the chosen algorithms and
the potential for subjective logic to aid in understanding the resulting features. Feature tracking
is successfully applied and is observed to have a significant impact on the opinion of the vortex
core lines. In the lid-driven cavity data set, unsteady feature extraction modifications are shown to
impact feature extraction results with moving vortex core lines. The Sujudi-Haimes algorithm is
shown to be more believable when extracting the main vortex core lines of the cavity simulation
while the Roth-Peikert algorithm succeeding in extracting the weaker vortex cores in the same sim-
ulation. Mesh type and time step is shown to have a significant effect on the method. In the curved
wake of the cylinder data set, the Roth-Peikert algorithm more reliably detects vortex core lines
which exist for a significant amount of time. the method was finally applied to a massive wind tur-
bine simulation, where the importance of performing feature extraction in parallel is shown. The
use of multiple extraction algorithms with subjective logic and feature tracking helps determine
the expected probability that an extracted vortex core is believable. This approach may be applied
to massive data sets which will greatly reduce analysis time and data size and will aid in a greater
understanding of complex fluid flows.

Keywords: Feature Extraction, Feature Tracking, Vortex Core Lines, Computational Fluid Dynam-
ics, Subjective Logic noabstract

ACKNOWLEDGMENTS

The author would like to thank his thesis advisor Dr. Steven Gorrell for his guidance and
direction in the research as well as assistance in editing this thesis. The author would also like to
thank committee members Dr. Daniel Maynes and Dr. Julie Vanderhoff for their input and aid. The
author would like to thank the Air Force Office of Scientific Research for sponsoring the project
through a Phase II STTR. Thanks also goes out to Dr. Robert Woodley and Mike Gosnell of 21st
Century Systems, Inc. for their partnership in this research. Many thanks go to the CAFE research
group — Matt Lively, Matthew Marshall, Kevin Hoopes, and Joshua Wilson — for assistance in the
research and many interesting discussions about a wide variety of subjects. Finally, the author
would like to thank his wife Ashley and son Kaleb for their wonderful support through the entire

process of research and writing this thesis.

TABLE OF CONTENTS

LIST OF TABLES e e e vi
LIST OF FIGURES e e e e vii
NOMENCLATURE e e e e X
Chapter 1 Introduction. 1
1.1 Motivation o o e e e e e e 1

1.2 Feature EXtraction e e 2

1.3 Feature Tracking e 3

1.4 Subjective Logic e 4

1.5 Objective e e e e e 5

1.6 OVEIVIEW v v i o e e e e e e e e e e e 5
Chapter 2 Background & Literature Review 7
2.1 VOrtiCeS o o o e e e e e e e 7
2.2 Vortex EXtraction e 9
2.2.1 Extracting Vortex Regions 9

2.2.2 Extracting Vortex Core Lines 11

2.3 Vortex Core Line Characteristics i, 15
2.3.1 Vortex Strength L 16

232 Quality e 16

233 Curvature e 16

2.4 Unsteady Vortex Extraction 18
2.4.1 Parallel Vectors Modifications 18

2.4.2 Alternative Methods 21

2.5 Feature Tracking e 23
2.5.1 Post-Processing Methods, 23

2.5.2 Co-Processing Methods 26

2.6 Subjective Logic 29
2.6.1 OpmionTriangle 29

2.6.2 Probability Expectation oL 30

277 Trust Networks e 31
2.77.1 Discounting Operator v v vt i e e 31

2.77.2 Consensus Operator i e e 32

2.8 Steady-State Trust Network oL 33
Chapter 3 Vortex Core Extraction & Tracking Method 36
3.1 Transient Vortex Extraction 36

3.2 Modifications to Vortex Core Line Characteristics 37
321 Curvature e e e 37

322 Quality e 38

1l

3.3 Attribute-Based Vortex Core Tracking 39

3.3.1 Vortex Core Attributes 40

3.3.2 Calculating Feature Correspondence 40

3.3.3 Efficient SearchMethod 43

3.3.4 Measuring Feature Lifetime 44
Chapter 4 Forming Opinions on Vortex Core Lines 45
4.1 TrustNetwork Setup 45
4.2 Algorithm Agent Opinions 46
4.2.1 Extracting Algorithm Agent Opinion 48

4.2.2 Non-extracting Algorithm Agent Opinion 55

4.3 Master Agent Opinion e e e e 57
4.4 Aggregation of Believable Features into a Final DataSet 59
Chapter 5 Results and Discussion 61
5.1 Lid-Driven Cavity e 61
5.1.1 Vortex Cores Extracted from DataSet 62

5.1.2 Influence of Time Derivatives on Extracted Vortex Cores 65

5.1.3 Vortex Cores Processed by Agents 66

5.1.4 Automatic Combination of Data Sets 70

5.2 CylinderinCrossFlow 71
5.2.1 Comparison of Vortex Cores Extracted from Different Grids 73

5.2.2 Effect of Time Step Width on Vortex Core Extraction 78

5.2.3 Feature TrackingResults 79

5.2.4 Vortex Cores Processed by Intelligent Agents 81

5.2.5 Visualization of CFD Data Set Vortex Physics 85

5.2.6 Effects of Changing Subjective Logic Equation Constants 87

5.3 Wind Turbine 90
5.3.1 Computational Requirements of Method 91

5.3.2 Discussion of Extracted and Tracked Vortex Cores 92

5.3.3 Vortex Cores Processed by Agents 94
Chapter 6 Recommendations for Future Work 96
6.1 General Unsteady Feature Extraction & Tracking 96
6.2 Vortex Core Line Extraction & Tracking 97

6.3 Subjective Logic Framework 98
Chapter 7 Summary and Conclusions 100
7.1 Summary e e e e e 100
7.2 ConcClusions L e 101
REFERENCES e 105
Appendix A Flow Visualization Images 111

v

Appendix B User’s Guide to Vortex Core Extraction Method with Source Code 119

B.1 User'sGuide e 119
B.1.1 Cafe_scriptbash 119
B.1.2 intelligentExtractionTransient.cxx 120

B2 SourceCode e 122
B.2.1 Cafe_scriptbash 122
B.2.2 intelligentExtractionTransient.cxx 123

B.3 HeaderFiles e 147
B.3.1 vtkAttributeTracking.h L. 147
B.3.2 vtkCombineFeatureSets.h 148
B.3.3 vtkCreateOpinion_Vortex-h 150
B.3.4 wvtkCurvatureh 151
B.3.5 vtkFeatureAttributes.h 152
B.3.6 vtkFeatureLifetime.h 153
B.3.7 vtkLambdaTwo.h 154
B.3.8 vtkTimeDerivatives.h 154

B.4 SourceFiles e 156
B.4.1 vtkAttributeTracking.cxx L 156
B.4.2 vtkCombineFeatureSets.CXX e 162
B.4.3 vtkCreateOpinion_VOrteX.CXX v v v v v v v v vt e e 167
B.4.4 vtkCurvature.CXX e e e 175
B.4.5 vtkFeatureAttributes.cXX 180
B.4.6 vtkFeatureLifetime.CXX 183
B.47 vtkLambdaTwo.CXX e 184
B.4.8 vtkTimeDerivatives.CXX v v i e e 187

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
54

5.5
5.6
5.7
5.8

LIST OF TABLES

AAEg belief tuple setup. 48
AAE opinion values set for the SH vortex core extraction algorithm. 49
AAE opinion values set for the RP vortex core extraction algorithm. 54
AANE belief tuple setup. 56
MA belief tuple setup. L e 57
Cavity simulation parameters. 62
Cylinder mesh details. 72
Cylinder data set drag coefficient study. 73
Results of extracting vortex cores from the cylinder data set

using different time step widths. Lo L oo 78
Vortex core extraction & tracking results from the cylinder dataset. 81
Original constants in subjective logic b,d,u equations. 88
Subjective logic b,d,u equation constants study. 89
Vortex core extraction and tracking results from the wind turbine data set. Memory

and time requirements are shown per processor. 92

vi

2.1
22
2.3
24
2.5
2.6
2.7
2.8

29

2.10
2.11

3.1

32

33

34

3.5

4.1
4.2
4.3

4.4
4.5
4.6

LIST OF FIGURES

View of a tornado, a popular conception of a vortex. Photo taken by Eric Nguyen
[20]. . .
Wingtip vortex visualized with smoke. Photo taken from [21].
Visual representation of the critical point Sujudi Haimes algorithm. When w,, =0
at two points on the cell boundary, a vortex core line segment is added. Image by
Martin Roth [7]. o o
Model of a perfectly circular vortex core line with rotating streamlines. Image by
Martin Roth [7].
Vortex quality at both ends of an extracted vortex core line.
Three points (A, B, C) in a vortex core line circumscribed by acircle.
Feature events as defined by Samtaney et al. Image from [54].
Vortex core lines extracted and tracked from the 3D cylinder data set using a feature
flow field. Grey paths indicates future movement, and red paths indicates past
movement. Image by Tino Weinkauf [45].
A subjective logic triangle with @, = (0.4,0.1,0.5,0.6) as an example. Image by
AudunJosang [14]. e
Trust network explanation
Graphical representation of two algorithm trust network.

Curvature approximation of a vortex core line (black segmented line) using cir-
cumscribed circles (red curves).
Line Integral Convolution (LIC) of a cylinder in cross flow (Section 5.2. Flow
moves from lefttoright. o
Vortex core line which is made up of several line segments. Line length is the sum
of all segments that makeuptheline..
Computation of the position of a vortex core by placing a bounding box around the
core line and finding the box’s geometriccenter.
Example of efficient search method created to reduce the necessary number of
vortex cores to compare against for feature tracking.

Graphical representation of modular agent structure.
Two separate line-type features extracted by AA (black) and AAj (red).
Opinions of vortex cores represented by circles on a scale of either belief or prob-
ability expectation. (a) Vortex core opinions with good spacing. (b) Vortex core
opinions With poor spacing. e
Transformation of vortex strength data set to find a proper normalization value.
Representation of the logistic function of Eq. 4.15, where m; =1 and my = —1. . .
Example of two vortex core lines which are automatically verified as duplicates.
The vortex core with high average probability expectation is kept and the other is
removed. L

Vil

27

30

41

5.1

5.2

53

5.4

5.5

5.6

5.7

5.8

59

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

Slices of the computational meshes created for the lid-driven cavity simulation.
The lid, denoted by the side with an arrow over it, is moved at a constant velocity
inthe +x-direction.
Visualization of the lid-driven cavity data set. Streamlines are traced in the y-
midplane, and the slice is colored by velocity magnitude. The lid moves in the +x
direction and the velocity isinm/s. oL
Vortex cores extracted by the SH and RP algorithms. Key vortex structures are
listed. The lid moves in the +-x-direction.
Effect of grid density on vortex core extraction in the lid-driven cavity data set.
The lid moves in the +x-direction.
Vortex cores extracted from the lid-driven cavity case using Sujudi-Haimes: red
cores — time derivatives included, blue cores — no time derivatives (steady-state
aSSUMPLION). . . . o v v v vt e e e e e e e e e e e e e e e e e
Comparison of the belief and disbelief values from the final opinion @} of the
vortex cores extracted by the SH and RP algorithms from the lid-driven cavity data
set. The lid moves in the +-x-direction.
Comparison of the uncertainty value and probability expectation from the final
opinion cogIA of the vortex cores extracted by the SH and RP algorithms from the
lid-driven cavity data set. The lid moves in the +-x-direction.
Automatic combination of two different algorithm outputs shown in the cavity data
set. The lid moves in the +-x-direction.
Computational meshes used in the simulation of a cylinder in cross flow. Flow
moves in the +x-direction. oL
Vortex cores detected by the RP algorithm from the three different types of grids.
Flow moves from lefttoright.
Comparative slices of the structured fine CFD data set for the case of cylinder in
cross flow. Slices are colored by y-vorticity ((:y) on the same scale as shown in (b).
Flow is in the +x-direction.
Comparison of Mode B vortex cores extracted from fine mesh to DNS and experi-
mental results. Extracted vortex cores are coloredby {y..
Comparison of vortex cores extracted with time step widths of Az = 0.01 (black)
and Ar = 0.10 (red). Flow is from lefttoright.
Paths of RP vortex cores which existed for more than 100 time steps of a 200-time
step portion of thedataset.
Opinion calculated on vortex cores extracted from one time step of the cylinder
data set. Flow moves from lefttoright.
Cylinder data set vortex cores colored by characteristics defining the belief tuple.
Flow moves from lefttoright.
Final vortex core data set which was generated using the feature set combination
method. L
Visualization of the wake in the cylinder data set. The visualization of vortex core
lines provides a clear method for understanding the physics of the flow.
Slice of the CFD data set colored by {, along with vortex cores from the RP data
set colored by probability expectation.
Results from the subjective logic equation constants study.

viil

62

81

87

5.21

5.23

Near-wake slice of the computational mesh used in the wind turbine simulation. . . 91
5.22 Vortex cores extracted from the wind turbine data set at 1 time step. Both data sets

are colored by vortex core line length. Flow moves in the +z-direction. 93

Probability expectation of wind turbine vortex core data sets. Flow moves from

bottom tO tOP. e e e 95

A.l

A2

A3
A4
A5

A.6
A7

Verification of the main vortex core lines in the lid-driven cavity set. Streamlines
are used to show swirling strength and vortex extents. Lid moves in the +x-direction.112
Verification of vortex core lines in the lid-driven cavity set. Cutting planes of the
CFD data set colored by vortex strength show the correct and spurious vortex cores
and that the computed subjective logic of the vortex cores agrees with the manual

visualization. Lid moves in the +x-direction. 113
Values for the RP vortex cores at t = 3.0s. Lid moves in the +x-direction. 114
Values for the SH vortex cores at t = 3.0s. Lid moves in the +x-direction. 115

Visualization of cylinder data set vortex cores extracted from the structured coarse
mesh (Section 5.2.1). RP vortex cores agree with the simulation more than than
SH vortex cores. Vortex stretching can be seen in the cylinder far wake. 116
Visualization of a particle trace in the structured fine cylinder CFD data set. 117
Visualization of y-vorticity isosurfaces in the structured fine cylinder CFD data set. 118

1X

NOMENCLATURE

a Atomicity
a Acceleration, m/s?
AA Algorithm Agent

AAg Extracting Algorithm Agent
AANE Non-extracting Algorithm Agent

b Belief

b Jerk, m/ g3

C Curvature of vortex core line

CAFE Concurrent Agent-enabled Feature Extraction
Corr Feature tracking line correspondence

d Disbelief

D Diameter

E Probability expectation

f Feature Flow Field

J Jacobian; Velocity gradient tensor Vu

l Line segment length

L Total vortex core line length

MA Master Agent

Q Rotation tensor

O] Opinion; Belief tuple

P Coordinate center of the vortex core line bounding box
PV Parallel Vectors operator

R Radius

Re Reynolds number

RP Roth-Peikert algorithm

S Strain rate tensor

S Vortex strength

SH Sujudi-Haimes algorithm

t Time

Trune Tracking tolerance for select attribute function
t Vortex core tangent vector

u Uncertainty

u Velocity, m/s

Uy Reduced velocity, m/s

¢ Vorticity

Mathematical Operators

S Consensus operator
® Discounting operator
A Difference

\% Gradient operator

CHAPTER 1. INTRODUCTION

1.1 Motivation

Computational Fluid Dynamics (CFD) is a discipline in which the equations governing
fluid flow and heat transfer in a system are numerically solved on a computational mesh. With
ever-increasing computational resources available to researchers, the ability to simulate complex
fluid flows using CFD becomes progressively more feasible. The simulation of unsteady flows has
also been recognized as a more accurate method of modeling the flow in complicated systems such
as turbomachinery [1,2]. The fine meshes required for a simulation can contain tens to hundreds
of millions of nodes, and time-dependent data sets consist of many time steps, which may generate
terabytes of raw data. A growing challenge due to the size of these data sets lies in analysis and
post-processing, which can be extremely time-consuming and require large amounts of storage
space. The problem is exacerbated in time-dependent simulations, where regions of interest may
not be stationary and fluid interactions become more important.

Currently, post-processing is accomplished by the expertise of the analyst, and often much
of the flow field is ignored due to prior prejudice or incomplete knowledge of the flow domain.
Simple visualization techniques such as cutting planes, contour plots, and stream traces require a
correct choice of placement and often the view becomes very cluttered. Isosurfaces may also be
useful, but correct choice of scalar field and values are vital for viewing different flow structures. In
time-dependent flows, the number of time steps under consideration requires an even greater effort
to visualize the physics of the simulation, including development and interactions in the flow. In
massive data sets, much of the physics is ignored while extracting time-averaged or surface flows.

Software programs have been created to assist in the visualization of large-scale CFD data
sets. Some commercial packages, including Tecplot [3] and Ensight [4], include advanced post-
processing techniques such as data mining to aid in viewing data sets. Data mining is defined as a

method for analyzing large amounts data from different perspectives and summarizing it into useful

information. Brigham Young University and 21% Century Systems, Inc. (21CSI) are creating a new
data mining concept, called Concurrent Agent-enabled Feature Extraction (CAFE) to combine
multiple feature extraction algorithms in an intelligent fashion. This research is a component of

the CAFE program.

1.2 Feature Extraction

Analysts are often interested in viewing basic flow features in the data set to understand the
physics of the flow field. Post et al. explained features as “phenomena, structures or objects in a
data set, that are of interest for a certain research or engineering problem” [5]. Common features
of interest in CFD include vortices, shock waves, and separation and attachment lines. Viewing
these features as geometric primitives like lines and surfaces allows for fast location of important
regions in the simulation.

To aid in visualization and reduce post-processing time, data mining algorithms and meth-
ods have been researched and created which “extract” relevant flow features in a simulation. These
feature extraction algorithms employ flow variables obtained from the CFD simulation and may
use cell or point values. Extraction algorithms may be as simple as finding regions within a cer-
tain flow property threshold, or they may calculate complex higher-level variables in order to locate
specific features. Feature extraction methods have been created for use in steady-state and unsteady
simulations.

Depending on the desired feature, there have been various algorithms created, each of
which have respective strengths and weaknesses. Post et al. [5] provided an excellent review of the
different methods for the extraction of features and concluded that there were many methods for
feature extraction and tracking with little quantitative comparison between extraction algorithms.
Ma [6] stated, “it is clear that there is no single best shock detection...algorithm.” Similarly, Roth
[7] declared, “none of the [vortex extraction] methods is clearly superior in all the tested data sets.”
This means that multiple feature extraction algorithms are required in order to successfully find all

important features in a data set.

When extracting vortices Roth suggested the following:

An idea for a follow-up project situated in computer science is adding methods from
computer vision and Al [artificial intelligence] techniques to combine the various pro-
posed definitions into a single system. Such a system would calculate the vortex cores
according to a set of definitions, and then try to use knowledge about the strengths and
weaknesses of each method to determine a single set of vortex cores. For example, as
long as the resulting vortices are sufficiently strong or almost straight, the zero curva-
ture definition produces very good results. So by adding higher-level post-processing
and considering the various feature detection algorithms as specialized knowledge
bases, one could use a rule-based Al system to decide which definitions are most likely

to give the best results in each particular situation.

1.3 Feature Tracking

Feature tracking is important in unsteady data sets for analyzing important feature events
and interactions. Often it is desired to understand how a feature evolves over time and the in-
teractions that occur between different features in the data set. Many methods have been created
to automate feature tracking, and they all attempt to solve what is known as the “correspondence
problem” — matching all relevant features in all time steps of interest. As an example, consider the
interaction of shock waves and vortices, a problem which has been researched by many [8,9]. Asa
vortex passes through the shock wave, it may be desired to view how the vortex changes in shape,
direction, strength, etc. Feature tracking is also useful for understanding trends in the data set and
the effects of design changes on the computational flow field. When many different features exist
in the data set, it is desirable to automate tracking to aid the analyst.

Many methods have been proposed to track features over time, falling into two main cat-
egories: tracking as a post-processing step to extraction, and tracking coupled with extraction.
The post-processing methods include region-based [10] and attribute-based [11] methods. Post-
processing methods work quickly because of the data reduction during feature extraction, and
attribute-based methods do well with event detection. However, existing approaches usually op-

erate on region-type features (i.e. isosurfaces) and modifications must be made to apply the post-

processing approach to line-type features. Coupled methods include feature flow fields [12] and
scale space [13], among others, and these are attractive because of their run time capabilities and
their ability to detect events. The coupled methods are more complex and often employ higher

dimensional vector fields or surfaces.

1.4 Subjective Logic

Subjective logic [14-16] is a mathematics-based logic system that represents opinions
which account for uncertainty in a system state using four basic elements: belief (b), disbelief
(d), uncertainty (u), and atomicity (a). Atomicity is used in an opinion to give an a priori weight

to a system’s uncertainty. The entire opinion, or belief tuple, is shown in Eq. 1.1.

o = (b,d,u) (1.1)

The three opinion values in subjective logic allow agents to form opinions that are not
strictly true or false. In other words, if uncertainty exists in a given situation, an agent is not
forced to assign belief or disbelief when formulating an opinion. An agent might then formulate
an opinion based on how probable an outcome is rather than simply reducing the outcome to a
binary situation. Subjective logic is also useful when making decisions about uncertain situations
and/or when data is missing or incomplete. For example, missing or incomplete data can be taken
into account when formulating a belief tuple’s uncertainty value.

Prior work was undertaken to create a framework to utilize subjective logic in CFD data
sets. Mortensen [17] utilized a trust network [18] to use subjective logic with multiple feature
extraction algorithms. He formulated this method to be applicable in steady-state CFD data sets
and the equations defining subjective logic were made on the basis of steady flow. This method
was also created to be run concurrent to a running simulation and was meant to help discern the
convergence of a simulation. The method was validated on steady-state CFD simulations and

steady vortex cores were extracted from these data sets.

1.5 Objective

The objective of this research was to develop a methodology which employed subjective
logic to view and track features extracted from transient CFD data sets by existing feature extrac-
tion algorithms. The developed method was designed as a part of the CAFE concept. The method
utilized multiple algorithms, thus leveraging each algorithm’s strengths to find different features in
the same data set. The existing steady-state method created by Mortensen was modified to work
in time-dependent data sets, which includes modifying the feature extraction algorithms as well
as the parameters which influence the belief tuple of the features. A feature tracking method was
modified to operate on vortex core lines. Feature tracking was accomplished in order to determine
the belief of features and view the evolution of the features over time. The method was validated
using vortex core lines as features, though other features may be found. Two CFD simulations
are shown that contain vortex core lines in an unsteady environment in order to test this work.
Vortex core lines were extracted and tracked from these two simulations. This method correctly
defines the expected probability of moving vortex core lines in unsteady CFD data sets. Automa-
tion of different aspects of this method were also accomplished, which reduces the amount of user
interaction and allows the method to be used on a broader range of data sets.

By combining subjective logic and multiple feature extraction algorithms, the most proba-
ble features are easily visualized and tracked through time. This method also allows the analyst to
view one feature set which contains only highly probable features. Its applicability to massive data
sets was shown through a large unsteady CFD data set, and it was shown that there is a significant

data size reduction and an increased ease of visualization through use of the method.

1.6 Overview

This document is organized as follows: Chapter 2 gives background on unsteady vortex
extraction, feature tracking methods, subjective logic, trust networks, and prior work in steady-
state data sets. Chapter 3 outlines the method used to extract and track vortex core lines from
unsteady CFD data sets. Chapter 4 shows the implementation of feature extraction and tracking
in the agent trust network. Chapter 5 gives results of two benchmark unsteady CFD simulations

as well as a large data set to analyze the effectiveness of the method in massive CFD data sets.

Chapter 6 gives recommendations for future research and Chapter 7 gives conclusions about the

research.

CHAPTER 2. BACKGROUND & LITERATURE REVIEW

This chapter contains background on fluid vortices as well as prior methods which have
been created to extract vortices from CFD data sets. Feature tracking is explained along with the
different methods used to track features through time. A background is given on subjective logic,
trust networks, and the prior work undertaken to use subjective logic in steady-state CFD feature

extraction.

2.1 Vortices

Vortices are fluid structures which are common in many different types of flows, and an
understanding of their location and attributes aid in understanding of the flow physics of engineer-
ing systems. They occur in areas of high rotation and may be utilized to enhance mixing, such as
in a combustion chamber. In other applications, such as turbomachinery, the losses generated by
vortices account for lower efficiencies and it is desirable to minimize the effect of vortices. Noise
generation by vortices, especially in the case of shock-vortex interactions, is also another active
area of current research. In any case, knowledge of vortex location, size, strength, and life is de-
sirable for design changes. When a vortex is found, design geometry or flow conditions may be
altered in order to understand the effect of these parameters on fluid vortices.

Though the intuitive concept of a vortex is clear, there is no agreement on a formal defi-
nition of a vortex. A well-known vortex, a tornado, may be seen in Figure 2.1. From a technical

standpoint, the following definition of Robinson [19] is often used:

A vortex exists when instantaneous streamlines mapped onto a plane normal to the
vortex core exhibit a roughly circular or spiral pattern, when viewed from a reference

frame moving with the center of the vortex core.

An example of this definition may be seen in Figure 2.2, where the wingtip vortex is nearly normal

to the photograph, which allows for clear visualization of the vortex. However, this definition is

7

Figure 2.1: View of a tornado, a popular conception of a vortex. Photo taken by Eric Nguyen [20].

Figure 2.2: Wingtip vortex visualized with smoke. Photo taken from [21].

self-referential, meaning that the vortex core line direction must be known a priori to determine
whether there is swirling flow. Also, the velocity of the vortex must also be known in order to

select the correct frame of reference.

2.2 Vortex Extraction

A vortex consists of two interacting parts: the center of the vortex, or core line, and the
swirling region around the core. The vortex core is the line along which there is zero velocity
relative to the velocity of the vortex. Because of this vortex structure, two different general methods
have been proposed to extract and visualize vortices: extracting vortex regions and extracting
vortex core lines.

In transient flows, the movement of vortices leads to the question of the Galilean invariance
of extraction methods. According to Roth [7], a feature extraction method is Galilean invariant “if
[the feature extraction result] does not change with the choice of an arbitrary, constantly moving
coordinate system.” In general, most region-based extraction methods are Galilean invariant, while
many of the vortex core line extraction methods rely upon the velocity field and are thus Galilean

variant. Methods have been created to treat the Galilean variance of core line detection algorithms.

2.2.1 Extracting Vortex Regions

One vortex region extraction method involves finding regions with high magnitude of vor-
ticity, where vorticity is calculated using Eq. 2.1. While it is true that a vortex region is one with
high vorticity, a region of high vorticity may not always be a vortex region. This occurs in boundary
layers, though there is no large-scale swirling motion in this case. Villasenor and Vincent [22] em-
ployed this method to extract vortex tubes from unsteady data sets. Vorticity-based vortex regions
are Galilean invariant.

(=Vxu 2.1)

Other authors have created methods which employ the velocity gradient tensor for finding
vortex regions. Because they employ only the velocity gradient, which is shown in Eq. 2.2, all of

these methods are Galilean invariant. In Eq. 2.2, u, v, and w are the components of w.

du Jdu Ju

dx dy 0z

_ — Jdv dv dv
J=Vu=| 2 o g (2.2)

w o aw

dx dy b4

Hunt et al. [23] proposed a method called the Q criterion, where Q is calculated using Eq. 2.3:

o=-[I21*- 1S, (2.3)

| =

where S and (2 are calculated using Eqgs. 2.4 and 2.5.

S=_(+J") (2.4)

| =

Q=_-@-J" (2.5)

| =

When Q > 0, a vortex exists according to the authors.

Chong et al. [24] created the A criterion which is based on the assumption that a vortex
region is a region with complex values of Vu. Jeong and Hussain [25] created a method based
on the eigenanalysis of the S? + Q7 tensor. When two of the three eigenvalues of this symmetric
matrix are negative (A, < 0), a vortex region is found. This method, aptly called the A; criterion, is
the most widely used of the above three methods. Haller [26] presented a new region-based vortex
detection method called the M,-criterion, which was created to be rotation invariant as well as
Galilean invariant. Each of these methods are Galilean invariant and have been shown to correctly
extract vortex regions in many different flow domains, though each method failed in certain tests.
Also, in turbomachinery simulations, vortex regions often blend together and most of the domain
is shown to be a vortex region.

Vortex region extraction methods work well to quickly visualize vortices in many different
data sets. Their complexity is often much less than that of vortex core line extraction methods and
aid in quickly looking for key regions of possible vortex activity. Flow variables such as vorticity
are well known and extraction of vortices using these variables is often more intuitive than other
methods. Because most region extraction methods are Galilean invariant, they are applicable in
time-dependent simulations without any modifications.

There are also specific shortcomings related to region extraction methods. First, vortex
regions do not help the analyst pinpoint the exact location of the center of swirling flow, and when
multiple vortices are closely spaced, the separate vortex regions cannot be easily differentiated.

Second, most of the above methods are parameter-dependent, in that the correct choice of values

10

must be known a priori to clearly visualize vortices. As stated above, the A, criterion is satisfied
when A, < 0, but in some simulations, correct vortices have A, values much less than 0, while
spurious regions have a A, of slightly less than 0. Regions are often more difficult to visualize than

lines, and for these reasons, it is desirable to extract vortex core lines from CFD data sets.

2.2.2 Extracting Vortex Core Lines

Many different algorithms have been created to locate vortex core lines which each have
specific strengths and weaknesses. Two specific algorithms were chosen because of their robust-
ness and wide applicability. Two vortex core line extraction algorithms work on the same data set
to show that the formulated method works in finding all vortex core lines in a data set. While only
two algorithms are used in this research, multiple extraction algorithms may be used to increase

the likelihood of finding all relevant features in a flow field.

Parallel Vectors (PV) Operator

Peikert and Roth [27] created the “Parallel Vectors” (PV) operator to group several different
vortex core line algorithms into one general method. The general idea of the PV operator is that
vortex core lines occur in areas of the data set where two vector fields are parallel, where the vector
fields are approximated at nodes or cell centers in the data set. Many different vector fields have
been used in the PV operator algorithm to find vortex core lines. Some vector fields include the
pressure gradient [28] and vorticity [29]. Roth [7] provided an excellent overview of these several

methods and noted their strengths and weaknesses in different flow situations.

Sujudi-Haimes Algorithm

The Sujudi-Haimes (SH) algorithm [30] was the first algorithm chosen for this research.
This algorithm was formulated as a robust vortex core line detection algorithm and has been im-
plemented in CFD post-processing software packages such as Ensight 9 [4] and pV3 [31]. The SH
algorithm is based on critical point theory and uses eigenvalues and eigenvectors of the velocity

gradient tensor.

11

direction of real

eigenvector

—> velocities —> reduced velocities immwa COre segment

Figure 2.3: Visual representation of the critical point Sujudi Haimes algorithm. When u,, = 0 at
two points on the cell boundary, a vortex core line segment is added. Image by Martin Roth [7].

The SH algorithm operates on a cell by cell basis and locates points in the domain where
the set of eigenvalues contain one real valued and two complex conjugate eigenvalues. Next, the
reduced velocity is computed in Eq. 2.6, where n is the normalized eigenvector corresponding to
the real eigenvalue. The reduced velocity is then linearly interpolated across the cell, and locations
are found along the cell boundaries where u,, = 0. If two points are found in the cell where
the reduced velocity equals zero, the points are connected and the line segment is added to the
vortex core line data set. A visual representation of the SH algorithm may be seen in Figure 2.3.
However, gradient computations at neighboring cells produce line segments which do not meet at
the cell faces, which results in a set of disjointed line segments in the data set. This method is also

computationally intensive because of the eigenanalysis of the entire flow domain.

ur=u—(u-n)n (2.6)

The assumption of u,, = 0 is equivalent to stating the the velocity vector must be parallel
to the eigenvector corresponding to the real eigenvalue of the velocity gradient tensor, as shown in
Eq.2.7.

u || eg (2.7)

12

Roth and Peikert [32] also showed that the eigenvector from the real eigenvalue may also be ex-

pressed as
u || Vu-u (2.8)
This can then be reformulated as
ulla (2.9)
since
Du Jdu
- — "4 Vu- 2.10
a Dt ot tVuu ()

In the original formulation, the partial derivative of velocity with respect to time was neglected,
since the algorithm was initially formulated for use in steady-state data sets.

Use of the PV operator allows the SH algorithm to find connected vortex core lines in the
flow domain. It finds all points in the domain where Eq. 2.9 is true, then thresholds points with
a discriminant of Vu > 0 to ensure that there is one real eigenvalue and two complex conjugate
eigenvalues. Points are connected into lines by use of a search map which finds points who share
common cell neighbors. The PV operator version of the SH algorithm is the method used in this
research.

The SH algorithm was designed for linear flow fields and thus has inherent strengths and
weaknesses due to this assumption. It successfully extracts vortex core lines which are straight and
have high vortex strength (high rotational velocity about the core). However, curved vortices or
those which have low vortex strength are not well extracted by the SH algorithm. The SH algorithm

also performs poorly when the flow has a non-constant acceleration along the vortex core line.

Roth-Peikert Algorithm

The Roth-Peikert (RP) algorithm [7,33] was the second algorithm chosen for this research.
Roth and Peikert focused on turbomachinery data sets and formulated their vortex core extraction
method to extract vortex core lines specific to these types of flow situations. Whereas the SH
algorithm was designed with a linear flow field in mind, the RP algorithm was specifically designed
to extract curved vortex core lines, which are more common in data sets with curved flow paths

such as turbomachinery.

13

Figure 2.4: Model of a perfectly circular vortex core line with rotating streamlines. Image by
Martin Roth [7].

The RP algorithm was designed after the model of a perfectly semi-circular vortex core line.
Figure 2.4 shows such a core line with streamlines seeded around it, where the vectors u, a, and b
are velocity, acceleration, and jerk, respectively. In this model, the SH algorithm fails to extract the
vortex core line because the velocity is perpendicular instead of parallel to the acceleration. The

RP algorithm is thus referred to as a higher-order method because it find points where
ullb (2.11)

The jerk is the second material derivative of velocity, which is shown in Eq. 2.12.

B D*u B 0%u

_D—ﬂ_W+V(VU-u)u (2.12)

In the original RP algorithm, the unsteady term was dropped from the equation, which results in

the condition

u||V(Vu-u)u (2.13)

Using the PV operator, points are found similar to the SH algorithm and lines are aggregated using
the same cell search map.

The RP algorithm, similar to the SH algorithm, also has strengths and weaknesses associ-
ated with its formulation. Because the RP algorithm was designed to extract a semi-circular model

of a vortex core, it does well in extracting curved vortex cores with lower vortex strength than does

14

the SH algorithm. However, due to the computation of higher-order derivatives, the RP algorithm
extracts more noise and is more prone to numerical error. The RP algorithm also has a similar
weakness to SH in that it may fail when the acceleration along a core line is not constant.

The SH and RP algorithms were chosen for this research for several reasons. First, the
strengths and weaknesses of the two algorithms complement each other and ensure that different
vortex core lines will be detected by each algorithm in order to prove the concept that multiple
algorithms may be used to find all features in the spatiotemporal flow domain. However, both the
RP and the SH algorithms are Galilean variant because they rely upon the velocity field to find
vortex core points. Because of this, some modification must be made to ensure that the algorithms

will correctly extract vortex core lines from time-dependent data sets.

Other Vortex Core Extraction Methods

Several other vortex core extraction algorithms have been created which were not utilized
in this research. Many methods use the velocity field and are thus Galilean variant, but Sahner
et al. [34] created a Galilean invariant method of extracting the valley or ridge lines of common
vortex scalar quantities such as vorticity or A,. Jiang [35] created a vortex core line extraction
method based on Sperner’s lemma in combinatorial topology. Sperner’s lemma was originally
used to break a large triangle into smaller triangles and then label the subtriangles. It guarantees
that any subdivision of a triangle into smaller triangles will result in an odd number of fully labeled
triangles. Sperner’s lemma can also be applied to 3D vector fields where a vector field is labeled in
the same fashion as a triangle. A critical point, or a vortex core line, is found when a triangulation is
fully labeled. Filtering must be done to separate saddle regions from the correct set of vortex cores.
Other notable vortex core extraction algorithms have been given by Globus et al. [36], Pagendarm

et al. [37], and Miura and Kida [38].

2.3 Vortex Core Line Characteristics

Vortex core line characteristics are required to compute the agent opinion in subjective
logic. Many different vortex characteristics may be used, but the three variables used to character-

ize vortex core lines in this research are strength, quality, and curvature.

15

2.3.1 Vortex Strength

Vortex strength (S) is a measure of the local flow rotation around a vortex core. Vortex
strength may be measured in two dimensional flow field by an eigenanalysis of Vu. Helman and
Hesselink [39,40] characterized such critical points as center and repelling and attracting foci, all
of which have only complex conjugate eigenvalues. Vortex strength is defined as the imaginary part
of the complex eigenvalues. However, vortex core lines in three-dimensional data sets are rarely
constrained to two dimensions, which requires creation of a two-dimensional plane to measure
vortex strength. Roth [7] suggested to use a plane perpendicular to the velocity vector at the core
line. The local flow field can be projected onto this plane and the local vortex strength can be found

from the imaginary part of the complex conjugate eigenvalues.

2.3.2 Quality

Quality is a vortex characteristic originally defined by Roth [7]. Quality is measured as the
angle between the vortex core line and the velocity at that point and is computed using Eq. 2.14.
Since vortex core lines are really multiple points connected by line segments, the tangent vector
t to the vortex core line at a point is the line segment vector at that point which minimizes 6.
Roth noted that although vortex core lines are not usually streamlines, they are generally close to
a streamline in the flow. This assumption leads to the calculation of a low velocity-core angle, or
low quality. A visualization of this characteristic may be seen in Figure 2.5. At the start of the
core, the quality is low, which is more likely to be correctly extracted than the end of the core line,

which has high quality.
t
0 =cos™ ! (i : _> (2.14)

2.3.3 Curvature

Because a major delineation between the RP and SH algorithms is curvature, geometric
curvature of the vortex core line is calculated. Curvature is found by circumscribing a circle to
points in the vortex core and computing the radius of the circle, as shown in Figure 2.6. Here,

A, B, and C represent three points in the vortex core, a, b, and c¢ are the distances between the

16

velocity
vector

L1

core line

Figure 2.5: Vortex quality at both ends of an extracted vortex core line.

2

Figure 2.6: Three points (A, B, C) in a vortex core line circumscribed by a circle.

points, and O is the center of the circle. The radius of the circle is calculated using Eq. 2.15 [41].

Curvature is then calculated as the reciprocal of the circle radius , as shown in Eq. 2.16.

R= abe (2.15)
 la+b+c)(—at+b+c)a—b+c)(at+b—c) '

c=1 2.16

= (2.16)

2.4 Unsteady Vortex Extraction

As stated before, the RP and SH algorithms are both Galilean variant, and many modifica-
tions have been proposed to allow for extraction of moving vortex core lines from time-dependent

CFD data sets.

2.4.1 Parallel Vectors Modifications

The parallel vectors operator is a widely used method for extracting vortices in steady-state
simulations, and modifications to this method have been made by others to extend its usefulness to
the unsteady domain. In the steady-state formulations, the unsteadiness of a vector field over time

was ignored, which demands a modification for unsteady flow.

Time Derivatives

Fuchs et al. [42] created a simple derivative-based modification for algorithms which use
derivatives of a time-dependent vector field. For unsteady vector fields which are implemented in
the PV operator, one may merely calculate the proper time derivatives and include the derivatives in
the vector field to find vortex cores. This modification essentially shifts the focus from streamline
topology to path line topology. The SH algorithm [30] calculates the locations where velocity and
acceleration are parallel: u || @. The material derivative of the velocity field is the acceleration, as
shown in Eq. 2.10. Similarly, the RP algorithm [33] calculates the locations where the velocity and
jerk are parallel: w || b. The jerk is the second material derivative of the velocity field, as seen in
Eq. 2.12. In the steady state algorithms, the partial derivatives with respect to time were removed,
and so by calculating these time derivatives, the unsteady nature of the flow field can be taken into
consideration.

Fuchs et al. showed their success at more correctly extracting unsteady vortices using the
SH and RP algorithms. They demonstrated that the vortex core lines extracted with the influence
of time derivatives were shifted closer to a local pressure minimum and were more spatially accu-
rate. They also investigated the impact of time step width on derivative calculations and showed
that the amount of time steps between saved data sets has a large impact on the correctness and

completeness of the extracted vortex core lines.

18

Schindler et al. [43] also used temporal derivatives to extract features and applied the
method to Smoothed Particle Hydrodynamics data sets. Though their approach was somewhat
different because of the special nature of their data, the general method was the same. They found
that inclusion of time derivatives worked well in data sets in which there was smaller changes be-
tween time steps. To account for data sets with a high amount of change between time steps, they

suggested the use of higher-order interpolation methods to calculate time derivatives.

Scale-Space

The theory of scale-space and feature-based methods can also be used to extract and track
vortices in unsteady flow. Bauer and Peikert [13] proposed a method to apply Gaussian smoothing
to the data set, which also simplifies the calculation of time derivatives. They then select a proper
scale to extract relevant features from the flow. The extracted features are then brought down to
a new scale to track them over time. Their method involves 5 dimensions — 3 spatial, 1 temporal,
and 1 scale. The method is attractive because it combines feature extraction and tracking in one
algorithm and allows for the use of the PV operator. However, the idea of scale-space is quite com-
plicated and involves such computations as solving a Gaussian scalar field convolution, assigning

hypercube vertices, and calculating element stiffness matrices.

Feature Flow Fields

Feature Flow Fields (f) have been created as a method to “represent the dynamics behavior
of features as the streamlines of a higher dimensional vector field” [44]. More simply put, vortex
core lines extracted by RP and SH are streamlines of f. This method was also treated by Theisel
et al. [45]. Streamline integration is well understood, and once f is obtained, it can be integrated

to extract vortex cores. The calculation for f in a 3D vector field is as follows:

+det(uy, u;, uy

f(x7y7z7t) =

(

—det(ug, u;, uy

+det (u;, uy, u,
(

)
) (2.17)
)
)

—det (Uy,uy, u,

19

From Eq. 2.17, it is clear that use of f also requires time derivatives. The advantage of using
the feature flow field method over merely calculating time derivatives is that f can also be used
to track features over time, thus eliminating the need to find a separate feature tracking method.
Another requirement to find f is that vortex cores must be extracted at #,,;, and #,,,, in order to
extract all lines in between and track them.

Weinkauf et al. [12] presented a method similar to the PV operator, which they called the
Coplanar Vectors operator and used the feature flow field to extract vortex core lines. In unsteady

flows, path lines are calculated as follows:

u(x,y,z,t)
’Ux7y7Z7t vx7y7Z7t
p(x,y,z,t) = () = () (2.18)
1 w(x,y,z,t)
1

The Jacobian of p is
ux uy uz u[

Ve Vy Vz Vg

J(p) = (2.19)
W_x Wy WZ Wt
0 0 0 O
and has the 4 eigenvectors
e e e
LT T = (2.20)
0 0 0

where s denotes the steady-state eigenvectors. With these vectors calculated, Weinkauf et al. stated
that cores of swirling particle motion occur when p, €®, and f are coplanar. After some manipula-

tion, they come up with the following:

ej fi u
M| e [+4 fr | —Jfa| v =0 (2.21)
e f3 w
—— - -
a b

20

The vectors are thus coplanar when a || b. With this method, they extracted critical points and
vortex cores from the 2D unsteady cavity flow problem. They showed that the vortex cores were
extracted in the center of swirling particle motion instead of swirling streamline motion, which is

more correct in unsteady flow data sets.

2.4.2 Alternative Methods

Though the PV operator is a strong and robust method for extracting vortex core lines,
other researchers have created significantly different methods which are also viable for use. Jiang
et al. [46] recommended that only Galilean invariant extraction algorithms be used in order to avoid
the difficulty knowing the vortex core reference velocity a priori, which negates the use of the RP
and SH algorithms in their view. Some of the following methods are Galilean invariant and provide

a different method to account for unsteady flows.

Potential Flow

Peikert et al. [47] presented a method that extracts vortices from time-dependent flows
by measuring the deviation of an actual flow from potential flow, which they called “localized
flow”. They used a Helmholtz-Hodge decomposition to find a potential flow that shared the same
boundary conditions as the actual flow. This allowed them to extract vortices from unsteady flows
without using a moving frame of reference. The main application they gave of this method was in

situations where the main flow direction was not constant.

“Trigger” Method

Marusic et al. [48] presented a very different method which extracts features of interest by
use of “triggers.” Instead of extracting features from the entire data set, these triggers are used
to write the data in key regions of interest to disk. Though it reduces the required storage space,
the regions of interest or the triggers must be known a priori and require user interaction to find
the correct triggers. After the determination of the triggers, they can be updated to write only
the regions where features have been previously extracted, thus reducing future computational

demand.

21

Lagrangian Methods

In order for Galilean invariance to be satisfied, several authors provided Lagrangian meth-
ods which investigate the motion of all particles in the flow instead of the Eulerian view. Fuchs
et al. [49] investigated critical points and Lagrangian flow topology in the unsteady domain and
created a measure for unsteadiness of the flow. This unsteadiness measurement describes the rate
of change of the velocities of the fluid element over time. This method did not produce line fea-
tures but rather provided a view of the flow field and its critical points. The importance of critical
points is that vortices swirl around these critical points. Kasten et al. [50] proposed a method for
extracting Lagrangian equilibrium points that exist for multiple time steps, since these are where
the most important features are located. In both of these methods, time derivatives were also in-
volved and the output was quite dissimilar from the SH and RP algorithms due to the inclusion of

critical points and saddle regions.

Path/Streak Line Methods

Several authors employ path line attributes to extract vortices from complicated flows.
Fuchs et al. [51] integrated path lines through a data set with user-defined integration lengths to
extract regions of swirl and correlated it using the A, method. This algorithm required sustained
user interaction as integration line lengths became incorrect. Shi et al. [52] similarly integrated
path lines, but they computed many different attributes of the path lines that they felt were impor-
tant in extracting regions of swirling flow. Again, this method was very interactive and included
selection of regions of interest from charts of these path line attributes. While these methods lent to
an understanding of swirling regions, they do not apply well to automatic extraction and tracking
of vortex cores in a subjective logic framework.

Weinkauf and Theisel [53] extracted vortex core lines based on streaklines by creation of a
streakline vector field. This vector field was created through dense path line integration of the flow,
which is computationally expensive. They showed that the core lines obtained from the streakline
vector field were more accurate than those obtained by streamline and path line methods. This
method is also Galilean invariant, and as in all other techniques which employ path line integration,

multiple time steps or the entire data set are necessary to find the paths of particles over time.

22

2.5 Feature Tracking

Feature extraction alone in time-dependent flows often provides insufficient information
about the temporal evolution and interactions of features. For this reason, feature tracking has
been researched and implemented along with feature extraction in order to follow salient features
over time. Researchers have approached this problem using techniques from image processing,
feature extraction, and fluid mechanics. The problem is not trivial and many different approaches
have been used over the years.

Feature tracking methods can be generalized into two main categories: tracking as a post-
processing step to extraction, and tracking concurrent with and often as a step of feature extraction.
Post et al. [5] reviewed a number of the state-of-the-art feature tracking methods at that time but
made no conclusions as to the superiority of any method. In the post-processing method, fea-
tures are first extracted from all considered time steps, then feature tracking is performed to find
the features which best correspond to each other throughout all time steps. The concurrent, or
co-processing, method employs higher-dimensional vector fields or isosurfaces to abstract the 3-
dimensional features through time and is often used to extract and track features in the same step.

Event detection is another aspect of feature tracking which has received much considera-
tion. As features move and evolve, it is important to understand how they interact and affect the
simulation. Samtaney et al. [54] were among the first to classify important feature events, which
are as follows: continuation, creation/dissipation, entry/exit, and amalgamation/bifurcation. These
events can be visualized in Figure 2.7. Creation and dissipation refer to the birth or death of a
feature in a certain time step, respectively. Entry and exit refers to the case when a feature enters
or leaves the computational domain boundaries. Amalgamation refers to the event in which two or
more separate features in one time step merge into one feature in the next time step, while bifur-
cation describes the opposite case of one feature splitting into multiple features. Different authors

have used various names but essentially look for the same events.

2.5.1 Post-Processing Methods

Post-processing methods include tracking algorithms which have been designed to work

after features have been extracted from all time steps. Many of these methods have been borrowed

23

/

/—&
amalgamition
——

@ ? creation

bifur:ation/bJ____———\s
@ = || &
_//7 -
Mrm\& Q .
@ = dissipation
1

Figure 2.7: Feature events as defined by Samtaney et al. Image from [54].

from other scientific fields such as medical imaging and surveillance. The two main methods in this
category include region-based methods, which match feature regions, and attribute-based methods,
which correlate calculated attributes of the features in different time steps. Post-processing meth-
ods have the advantage of speed because they operate on already extracted features, though they
must solve the difficult “correspondence problem” — the issue of matching a set of features in

different time steps — by exhaustive search or some other search method.

Region-Based Methods

Region-based methods are some of the earliest feature tracking methods, and they operate
by matching feature regions in successive time steps. This is mainly done by either measuring
the distance between features or by using spatial overlap. Kalivas et al. [10] used a 2D linear
affine transformation matrix to correlate the movement of 3D objects. Spatial overlap indicates
that features overlap in successive time steps, and the assumption that the sampling frequency is
high enough for this to be the case has been made by numerous authors [54-58]. Often these
methods correlate incorrect features because of the overlap assumption, though corrections can be

made which also correlate feature volume.

24

A novel region-based method was created which tracks vortex core lines. Schafhitzel et
al. [59, 60] tracked vortex core lines using a pathline predictor-corrector method. They started
with extracted core lines at the first time step and seeded particles along the pathlines. At the next
time step, they found the new locations of the particles and correlated the particle locations to core
lines in the time step. If enough particles from a single core line at ¢#; fell within the vortex region
(specified by the A, criterion) at ¢;, |, the two cores were matched. The authors had difficulty when
dealing with events such as split and merge, though they created a method to detect birth/death and
entry/exit events. This method requires both a core line and a region in order to correlate particles
and core positions.

Region-based feature tracking is also used in a unique way with Particle Image Velocimetry
(PIV) [61]. In PIV, a laser sheet illuminates a section of an experimental flow field with particles
seeded in the fluid. Image pairs are cross-correlated in order to predict and calculate the displace-
ment of particles in the flow. With each particle tracked between an image pair, a velocity field can
then be constructed from the images, and other flow variables such as strain and vorticity can then
be calculated.

Region correspondence has certain strengths and weaknesses, especially in the context of
vortex tracking. Event detection can be handled using region-based methods, especially amalga-
mation and bifurcation, though it is not a clear focus of these methods. These methods are quite
simple to code and use as a post-processing step, but the most pressing concern is that these are
region-based methods, while vortex extractions are line features. While some of the aspects of re-
gion correspondence may be applied to line features, spatial overlap is infeasible, and the minimum

distance method may not work well in data sets with closely packed features.

Attribute-Based Methods

Attribute correspondence refers to the method of tracking features by use of calculated
attributes such as position, size, volume, and orientation. In the case of vortex tracking, volume
may appropriately be replaced by length. This correspondence method works well with event
detection, since the attributes of split or merged features are the sum of the original features in
the previous time step. This method also involves multiple passes to correlate features and detect

events.

25

Samtaney et al. [54] pioneered the use of attribute correspondence in CFD and employed
such methods as distance minimization and search algorithms to track features. This method as-
sumed that the sampling frequency was high enough that neighborhood thresholding could be used
to track features and reduce the amount of feature comparisons between time steps. They also em-
ployed a search octree to remove features as soon as they had been attached to a tracked feature.
Last, they placed high importance on distance minimization to correspond features, which also
assumes a high sampling frequency.

Reinders et al. [11,62,63] used attribute correspondence and a predictor-corrector method
to track different features over time. By using the attributes from the previous time step, they were
able to predict the future movement of a feature and match it to a feature in the current time step.
After a feature tracking path was created, they linearly extrapolated feature attributes to predict and
match the feature in the next time step. They also created a graph viewer to aid in the visualization
of tracked features.

Silver et al. [55,56] focused on turbulent data sets and feature tracking in a parallel environ-
ment. They employed spatial overlap as a main requirement of feature correspondence and used
octree forests to detect events and differentiate between tracked features. Chen et al. [56] focused
on the application of feature tracking over a distributed network, which is extremely important
when tracking features in massive data sets. They accomplished this with local merging of fea-
tures and exhaustive search to find the best match between features across processor boundaries.
While the idea of feature tracking in a parallel environment is necessary for massive data sets, the
concept of exhaustive search seems infeasible for data sets which contain many features and could

be quite time-consuming.

2.5.2 Co-Processing Methods

In contrast with post-processing methods, certain authors have created algorithms which
extract and track features in the same step, where tracking is often used as a step of feature ex-
traction. These methods generally employ higher-dimensional objects or vector fields and track
features through the time axis instead of using feature attributes or spatial overlap to correspond
previously extracted features. The methods used here range from imaging techniques to fluid dy-

namics principles, and each has certain strengths and weaknesses.

26

Figure 2.8: Vortex core lines extracted and tracked from the 3D cylinder data set using a feature
flow field. Grey paths indicates future movement, and red paths indicates past movement. Image
by Tino Weinkauf [45].

Feature Flow Fields

Feature Flow Fields f were discussed in Section 2.4.1 as a feature extraction method, since
extraction and tracking usually occur together in this method. The motivation behind the use of
f for feature tracking was that streamline integration is a well-known method in CFD, and by
integration of the streamlines of f, the path of features may be found through time.

Feature flow fields have been applied to the Parallel Vectors (PV) formulation of feature
extraction algorithms with good success. This was applied to a 3D cylinder data set, as seen in
Figure 2.8. It can easily be seen that through time, the vortex core is lifted from a 2 dimensional
line to a 3 dimensional surface. Visualization of feature movement was accomplished by coloring
future and previous movement with translucent grey and red paths, respectively.

Event detection is also handled by f. Birth and death events can be visualized as a closed
loop at some time step t;, and split/merge events were also classified by the authors. The visualiza-
tion of feature events was more abstract than that of the attribute-based methods.

The feature flow field approach has some limitations which are important to discuss. Some
formulations of f do not guarantee streamlines which always converge on the features, though
Weinkauf et al. [53] discussed a correction factor which may guarantee convergence on features.
Another limitation of f is that, like streamlines, it requires proper seeding points to capture all of

the features of interest. This requires the extraction of features at key time steps and integrating

27

streamlines of f from points on these features. Thus, the use of f for tracking as a simulation runs

is infeasible.

Scale Space

Another method which performs tracking concurrent to feature extraction is the scale space
method, which allows one to track a feature through scale and time using imaging methods. Bauer
et al. [13,64] applied this method to feature extraction and tracking of vortex core lines and used
the PV algorithm of Roth and Peikert. They used the Marching Cubes algorithm to search the data
set on a cell-by-cell basis, then constructed a hypercube from the data at #; and #; 1. A hypercube
is fundamentally a cube in 4 dimensions where each of the vertices of the hypercube is a cell
boundary at one of the time steps. With this information, the authors found the sets of points of a
hypercube where the vector fields were parallel.

After construction of the hypercube, a feature mesh was created. Vortex cores were added
to the feature mesh when the Parallel Vectors algorithms was satisfied. Event detection was not
implemented in scale space methods, but the authors theorized that such would be possible using
feature mesh attributes. Birth/death events would appear as sharp points of the feature mesh,
while split and merge events would be characterized by a separation or reconnection of the mesh,
respectively.

Scale space feature tracking is computationally expensive and requires the implementa-
tion of some fairly complex algorithms. It has the advantage of working with Parallel Vectors

algorithms, but was not proven in 3 dimensional CFD data sets.

Other Methods

Tzeng et al. [57] used adaptive transfer functions to predict and track features in large-scale
4D simulations. Their approach was a region-based one, which is not appealing for vortex core
tracking. Also, their method was quite complex, and they used such techniques as neural networks,
support vector machines, and interactive machine learning to accomplish the task.

Muelder et al. [58] also used a region-based interactive method, which may be applied to

line-type features. In the first time step, they extracted features and used a predictor-corrector

28

method to extract and track features concurrently. As they made a prediction in a subsequent time
step, they would search the neighborhood for cells which satisfied the feature extraction criterion.
By use of feature region growing/shrinking they would match the region in #;_; to the region in #;.
This eliminated the need to correspond features later, as they correlated features as they extracted
them. This method also lends well to interactive and runtime simulations, but requires modification

for non-region features such as vortex core lines.

2.6 Subjective Logic

As stated in Section 1.4, subjective logic incorporates four basic elements: belief (b), dis-
belief (d), uncertainty (u), and atomicity (a). In this research the assumption of a = 0.5 is used,
which denotes that equal weight is given to each agent. This assumption was made so that the
method could be used generally in any CFD data set. To maintain uniformity and provide for
mathematical constructs, the summation of an opinion’s components, also called the belief tuple,

is always equal to unity as displayed in Eq. 2.22.

b+d+u=1 (2.22)

Furthermore, belief, disbelief, and uncertainty can only take on values between O and 1. These
basic prerequisites provide much of the framework necessary for working with opinions in a math-

ematically rigorous fashion.

2.6.1 Opinion Triangle

An opinion may be visualized by use of a triangle due to the formulation of Eq. 2.22.
Figure 2.9 shows an example of an opinion of @, = (b,d,u,a) = (0.4,0.1,0.5,0.6) visualized on
the opinion triangle. The opinion can be located by following two of the three arrows located at the
midpoint of each triangle side from the side opposite the arrowhead. The dotted lines which are
perpendicular to each arrow delineate each value by a width of 0.1. For example, @, may be found

by first traveling 0.4 steps on the belief arrow. Next, follow the dotted line from the 0.1 value of

29

Uncertainty

A

Iy l\
AR

/ N :
/ . -\~ Director

20

\ — PI'O}IC’CFOI'
‘.’ /\\‘ v

Disbelief 1@ {0 o o
0 T 0.5 a, E(x) 1
Probability axis

Figure 2.9: A subjective logic triangle with @, = (0.4,0.1,0.5,0.6) as an example. Image by
Audun Josang [14].

the disbelief line and find where it intersects the dotted line from the 0.4 value of the belief. The

uncertainty value may also be substituted to find the location of the opinion in the opinion triangle.

2.6.2 Probability Expectation

Subjective logic attempts to remove strict notions of TRUE and FALSE. Thus, instead of
specifically stating if a feature is present, the opinion of a detected CFD feature can express if
that feature has a high expected probability of occurring. When evaluating an opinion, probability
expectation (E) gives the expected probability of an outcome based on the opinion and can be
calculated using Eq. 2.23:

E=b+au (2.23)

It takes the entire opinion into account and incorporates the atomicity base rate proportionally to
the uncertainty. Uncertainty is taken into account because it is a measure of the unknowns in an
outcome and the atomicity is the expected outcome in the absence of any additional information.

Due to the assumption that @ = 0.5, The probability expectation reduces to

1
E=b+u (2.24)

30

° - e - G
derived trust

Figure 2.10: Simple trust network showing A’s derived trust in C from B.

The probability expectation identifies what an agent expects the probability to be and is not an
exact measure of probability. However, mappings also exist which allow subjective logic opinions
to be expressed as probabilistic distributions [14].

The opinion triangle lends to a clearer understanding of the effect of changing atomicity.
As seen in Figure 2.9, with an atomicity of a = 0.6, the line connecting the opinion value to the
probability axis, the projector, is parallel to the director, thus denoting that a weight is given to the
belief of the feature. This results in a probability expectation of £ = 0.7 Given an atomicity of 0.5,
the probability expectation in this example would be closer to 0.65, which proves visually that as

one increases atomicity of an agent, the probability expectation also increases.

2.7 Trust Networks

A means of combining output from multiple feature extraction algorithms into a single
coherent feature set was needed. Intelligent software agents designed in the form of a trust network
accomplish this task. Trust networks [18] are a way to quantify trust that is transferred from one
individual to another. For example, Figure 2.10 shows a simple trust network where individual A
has trust in individual B, but does not know individual C. Individual B trusts individual C and can
then “refer” individual C to individual A, thus giving individual A derived trust in individual C.
In the trust network individuals are called ‘agents’ and the means by which trust is quantitatively

transferred between agents is subjective logic.

2.7.1 Discounting Operator

In a trust network there are two critical operators that transfer trust: the discounting operator
and the consensus operator. The discounting operator (®) is used when agents in a trust network

lie along the same path as in Figure 2.10. In this situation, B has formed some opinion of C which

31

is unknown to A. For A to formulate an opinion of C, A discounts B’s opinion (A ® B) deriving
trust of C based on A’s opinion of B and B’s opinion of C. The discounting operator is associative

but not commutative. The opinion of A in C is shown by
of = 0 @ of (2.25)

where the superscripts represent an agent having the trust and the subscripts represent an agent, or
piece of information, on which the trust is based. For example, a)g‘ represents the trust that A has

in B. To compute the opinion of A in C, Eqs. 2.26-2.28 are used.

b = bybE (2.26)
df = bjd? (2.27)
up = d + ulp + byul (2.28)

2.7.2 Consensus Operator

The consensus operator is used to create an opinion reflecting two opinions in a fair and
equal way. Different observations can create different opinions of the same event with independent
values of belief, disbelief, and uncertainty. An important aspect of the trust network is being able to
combine multiple opinions of the same event. The consensus operator is able to combine opinions
with the effect of reducing uncertainty (belief and disbelief of the opinions proportionally aggregate
while uncertainty decreases). The consensus operator is represented by the symbol & and is given
by

o) = of &) (2.29)

32

To compute the opinion using the consensus operator, the following equations are used to find

belief, disbelief, and uncertainty.

bXY (b Uy +bzuz>/

fork #£0 dyY = (djuy+dyu}) /x

XY __

uy (uzuz) /K

xy _ Yby by
Y+1
dX +dY
fork=0 d§Y:m
Y+1
& =0
where
Kzuﬁ—ﬂé—u?u?
and
_ Uz
Y u)Z(

2.8 Steady-State Trust Network

(2.30)
(2.31)
(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

Mortensen [17] created a trust network and used it to extract features from steady-state

CFD data sets. A graphical representation of the CFD trust network is shown in Figure 2.11. The

algorithm agent AA contains actual feature extraction algorithms with subscripts 1 and 2 denoting

separate algorithms. The master agent MA combines information from multiple AA’s to form its

opinion. The MA can be thought of as the governing, or controlling, agent. It has the most influence

on the believability of extracted features. Its job is to synthesize information from multiple AA’s

and provide a final decision on the extracted features. R refers to a grid point contained in the

extracted feature under inspection by the agents to find whether or not the feature is probable. The

end goal is for the MA to form an opinion on R, meaning that the MA will have some belief,

disbelief, and uncertainty about the feature contained in R.

33

Figure 2.11: Graphical representation of two algorithm trust network.

Once features have been extracted and sent through simple filters, agents can begin to form
opinions on extracted features. When agents form their opinions it means that a belief, disbelief,
and uncertainty value is defined within an agent opinion adhering to Eq. 2.22. Agents form their
opinions based on a user-defined set of information known to influence the extraction of the feature.

The belief tuple is defined as follows: belief is set by extraction algorithm strengths, disbe-
lief is set by extraction algorithm weaknesses, and uncertainty is set by flow feature characteristics.
Belief corresponds to the strengths of the algorithm matching with the conditions where the feature
was detected. Disbelief is set similar to belief except the weaknesses, or situations where a feature
extraction algorithm may spuriously extract a feature, govern the value. The weakness characteris-
tics may be the exact opposite of the strength characteristics. Uncertainty is set from scientifically
known characteristics of the flow feature which provide a measure of the unknowns in an outcome.
Some of the unknowns may positively affect an outcome while some may negatively affect an
outcome.

Mortensen created and outlined first-order equations defining belief, disbelief, and uncer-
tainty equations. These equations were based on the following parameters: vortex strength, cur-
vature, and quality (the angle between the vortex core and velocity vector). He also made the

assumption that in steady-state data sets, a converged data set contains features that do not move

34

between iterations and based the MA opinion on this assumption. This method was shown to
be a useful tool for visualizing features concurrent to a running simulation and gauging conver-
gence in steady-state data sets. The architecture of his method is modified and used to operate on

time-dependent CFD data sets.

35

CHAPTER 3. VORTEX CORE EXTRACTION & TRACKING METHOD

This chapter outlines the modifications made to the steady state algorithms to account for
unsteady flow. The feature tracking method is also described. Chapter 4 will outline in greater
detail the opinion calculations and subjective logic methods.

The steps which describe this method are as follows:
1. Extract vortex core lines from the CFD data set using unsteady feature extraction algorithms.
2. Track extracted vortex cores through time.
3. Create agent opinions for each vortex core line.

4. Combine agent opinions to form final opinions of vortex core lines.

9,

. Aggregate believable vortex cores from separate data sets into one final feature set.

3.1 Transient Vortex Extraction

The steady state feature extraction algorithms were modified in order to correctly extract
vortices from unsteady simulations. The time derivative method of Fuchs et al. [42] as discussed in
Section 2.4.1 was implemented to modify existing steady-state vortex extraction algorithms. This
method was utilized because of its relatively simplicity and success in other flow fields as shown
by Fuchs et al. As stated before, the SH algorithm employs acceleration, the material derivative of
velocity, which was shown in Eq. 2.10. Similarly, the RP algorithm calculates the jerk, which is the
second material derivative of the velocity field, as seen in Eq. 2.12. In the steady state algorithms,
the partial derivatives with respect to time were neglected, so by calculating the time derivatives in
the Egs. 2.10 and 2.12, the unsteady nature of the flow can be taken into consideration.

Derivatives were calculated in a manner that minimized numerical error without requiring

an excessive amount of memory. The partial derivatives with respect to time in Eqgs. 2.10 and 2.12

36

were computed using a central-differenced Taylor series approximation. These approximations

may be seen in Eqgs. 3.1 and 3.2.

ou Ui — Ui 2
— = —— 4+ 0(At 3.1
ot 2At +o(ar) G-
0%u Ui —2uitu

57 = v +0(Ar) (3.2)

Both derivative approximations are second order accurate. This required storage of 3 time steps in
memory, but the computational cost was necessary in order to minimize numerical error.
Central-differenced time derivatives require information from the previous and future time
steps and thus vortex core lines were not extracted from the first and last time steps in considera-
tion. For example, if 50 time steps of the CFD data set were written out and extraction were to be
performed on the data set, features would be extracted from only 48 of the data files. For the pur-
poses of this tool, it was felt that discarding two time steps was more prudent than using forward-
and backward-difference approximations for the first and last time steps, respectively, and risk the

numerical errors associated with these first-order approximations.

3.2 Modifications to Vortex Core Line Characteristics

The vortex core attributes used to compute the opinion are strength, curvature, and quality.
Mortensen [17] created methods for calculating these characteristics in steady state vortex core
extraction. Because vortex strength is computed using the velocity gradient tensor Vu, it is a
Galilean invariant quantity and thus requires no modification in unsteady vortex core extraction.
However, curvature and quality calculations were modified in order to more correctly reflect the

opinion of vortex cores extracted from unsteady data sets.

3.2.1 Curvature

In the steady state method, only one curvature value was calculated per core line, which was
too rough an estimate to correctly reflect the local curvature of a line. Prior geometric curvature
was calculated using the core endpoints and the midpoint. An example of this can be seen in

Figure 3.1(a). As seen, the one-circle curvature approximation does not accurately describe the

37

/

(a) Vortex core line curvature approximated by one circle.

(b) Vortex core line curvature approximated by multiple circles.

Figure 3.1: Curvature approximation of a vortex core line (black segmented line) using circum-
scribed circles (red curves).

local curvature, especially in the hooked right end of the vortex core. To correct this problem, a
local curvature may be calculated for each point by using the immediately adjacent points. The
same vortex core with the local curvature approximation may be seen in Figure 3.1(b). Here it
can be seen that the point-by-point method more closely approximates the local curvature of the
line. At the endpoints of the vortex core line, there are not two adjacent points, which presents a
problem to the local curvature calculation. To bypass this problem, the curvature of the point next
to each endpoint is assumed to be the same at the endpoint. If desired, every 2" or greater point

may be used in data sets with fine grids to capture higher curvature.

3.2.2 Quality

In steady-state simulations, quality was used successfully to threshold spurious cores and
to determine the opinion of the remaining cores. However, when vortex cores move, as is the
case in transient simulations, the velocity field often does not indicate swirling flow, and a proper
convection velocity must be chosen in order to analyze the moving vortex core. One example of

this problem may be seen in Figure 3.2, which was taken from case of a cylinder in cross flow,

38

(a) In the original frame of reference, swirling flow can only be seen near the cylinder.

(b) In a frame of reference moving with the vortex cores, the von Karman vortex street may be clearly seen.

Figure 3.2: Line Integral Convolution (LIC) of a cylinder in cross flow (Section 5.2. Flow moves
from left to right.

which is presented in Section 5.2. By subtracting a constant velocity field that corresponds to the
vortex convection velocity, the swirling flow in the cylinder wake may be clearly seen. This then
allows for the proper calculation of vortex quality. In order to select a proper convection velocity,
the average velocity of each core line was calculated, which was then used as the convection
velocity of the core line. The convection velocity of the core line was then subtracted from the
velocity at the point and quality was calculated from the reduced point velocity. This individual
treatment of each core line was a new method created for unsteady vortex extraction and allowed

for separate line convection velocities.

3.3 Attribute-Based Vortex Core Tracking

Feature tracking is helpful to more fully understand the physics of unsteady flows and the
complex feature interactions that occur. The attribute-based method created by Reinders et al. [11]
was modified for use with vortex core lines. This method was used because of its robustness in
applications where features behave predictably through time and because of its low computational

cost.

39

3.3.1 Vortex Core Attributes

Reinders et al. created their tracking method based on the assumptions that features behave
predictably between time steps and used certain feature attributes to correspond features. However,
they created the feature tracking method for region-type features and utilized such attributes as
volume, mass, orientation, and position. Since vortex core lines do not possess most of these
attributes, other vortex core attributes were chosen for use in the tracking method.

The first three vortex core attributes were the same that were computed for use in subjective
logic and were explained in Section 2.3: vortex strength, quality, and curvature. These values were
computed at each point in the line, but a line-based attribute was needed as input in feature tracking.
To utilize these attributes, the values of the attributes at each point in the line were averaged to
obtain a line-based value for vortex strength, quality, and curvature.

The next two vortex core attributes were length and position, which relied more on the ge-
ometric properties of the line but were still considered valid parameters for use in feature tracking.
As stated previously, each vortex core line consists of connected line segments, and an illustration
of this may be seen in Figure 3.3. The total line length is then computed using Eq. 3.3. The posi-
tion P of the vortex core line was a coordinate in 3-dimensional space and was approximated as the
geometric center of the vortex core line bounding box. An example of the position approximation

may be seen in Figure 3.4, where the position P of the vortex core is represented as a red point.

n
L=Y (3.3)
i=1
In summary, five vortex core line attributes are used to compute feature correspondence:

vortex strength, curvature, quality, length, and position. With these calculated, the task of feature

tracking can then begin.

3.3.2 Calculating Feature Correspondence

Attribute functions were created for vortex core line attributes which are used to compare
two lines that are contained in separate consecutive time steps. The attribute functions followed

the format of Reinders et al. [11] and may be seen in Egs. 3.4-3.8. In these equations, O; and O,

40

Figure 3.3: Vortex core line which is made up of several line segments. Line length is the sum of
all segments that make up the line.

Figure 3.4: Computation of the position of a vortex core by placing a bounding box around the
core line and finding the box’s geometric center.

denote the two lines that are currently under comparison. With the exception of Eq. 3.8, each of
the below equations results in a value between 0 and 1. The Euclidean distance between two points

as calculated by Eq. 3.8 is strongly influenced by the size of the data set under consideration.

[1S1] = 152l

VortexStrength(O1,0;) = (3.4)
8101 02) = (STl 152
IC1 — G
C t 0,,0) = ————— 3.5
urvature(01,03) max (C.C3) (3.5)

41

|01 — Q1]

Qualily(Ol,Oz) = m (36)
Ly —L

Length(01,0,) = W (3.7)

Position(01,0;,) = ||| — || (3.8)

Correspondence functions are then created from the attribute functions. The general form
of a correspondence function may be seen in Eq. 3.9, where func(O1,0,) corresponds to Egs. 3.4—
3.8. This formulation allow for values of Cy,,, between —eo and 1, where 1 denotes a perfectly
matched attribute, 0 denotes a barely matched attribute, and negative values indicate attribute
matching of less than the tolerance Ttyuc. Trunc values are chosen based on the user’s prefer-
ence. For example, if one wished to match features which had attributes which were within 90%
of each other, then a Ty, of 0.1 would be chosen for all tolerances except position. As stated be-
fore, the position attribute function is very simulation-dependent and a specific position tolerance
corresponding to the data set must be used. For example, in a simulation of flow past an airfoil,
a position tolerance of 10% of the chord may be used, whereas in an atmospheric simulation, the

position tolerance may be on the order of kilometers.

func(01,07)

Cfunc(ObOZ) =1- T
func

(3.9

The overall feature correspondence parameter Corr is next computed and used to de-
cide whether two features correspond. The correspondence parameter is computed according to
Eq. 3.10. Here, weights are assigned to each correspondence function, which may be changed if
one attribute is felt to be better suited for tracking vortex cores. For this research equal weight is
given to each correspondence function. The correspondence parameter also has a range similar to
each correspondence function, i.e. —eo < Corr(01,0,) < 1.0.

Z]-\Q‘Lfm Ci(01,02)W;

Corr(01,0;) = ==—— (3.10)
Z funcm

i=1

Prediction of feature attributes may be made once a feature has been tracked for at least

two time steps by use of linear extrapolation. A tracking path must first be initialized by using the

42

given feature attributes for a line. When a tracking path has been made, attributes in the next time
step may be predicted using Eq. 3.11.
lit1 — 1

P :01""2‘.—(01'_01'71) (3.11)

i—tli—1

In the case of a constant time step, which is true for this research, Eq. 3.11 simplifies to the
following:

Piy1=20i =0y (3.12)

Eq. 3.12 is used to predict attributes of a vortex core in t;1 1, which are then used to compute
Eqgs. 3.4 through 3.10. Use of linear extrapolation assumes that features behave linearly between
time steps, which is not usually the case, but it will generally be a better prediction than using
feature attributes of a line in time ¢;.

Feature tracking is accomplished by sweeping through the data set multiple times and re-
laxing the attribute tolerances on each sweep. Reinders at al. reported that the best success in
tracking comes when strict tolerances are initially used to find the most obvious tracking paths.
By performing forward and backward passes through the data set while gradually increasing the
tracking tolerances Ty, less and less obvious tracking paths may be created and added upon. In
this research, each successive pass results in a tolerance relaxation of 10% of the initial tracking

tolerance.

3.3.3 Efficient Search Method

Attribute-based feature tracking was initially created as an exhaustive search method where
each feature was compared to every other feature in the next time step. The exhaustive search
method was improved upon by only considering untracked features in the next time step, but for
massive CFD data sets with perhaps thousands of features, even the improved search method can
be a prohibitively long process. A more efficient search method was created for this research in the
form of a sphere of influence. A sphere with a radius equal to the length of the vortex core line is
placed at the center of the vortex core bounding box. Any vortex cores in the next time step which

are contained in this “sphere of influence” then become the candidate vortex cores against which

43

T

(a) The original data set showing a sphere placed (b) The reduced data set which shows the candidate
around the vortex core under consideration (heavy red vortex cores for feature tracking.
line).

Figure 3.5: Example of efficient search method created to reduce the necessary number of vortex
cores to compare against for feature tracking.

the current vortex core is compared. An example of this method may be seen in Figure 3.5, which
was visualized from the wind turbine data set (Section 5.3). It can be seen that from a complex
vortical data set, only a handful of vortex core lines are close enough in the next time step to be
considered for feature tracking. A similar assumption of feature predictability was made as in the

feature tracking method, i.e. the vortex core will not move drastically in between time steps.

3.3.4 Measuring Feature Lifetime

The lifetime of the feature, or the number of time steps in which it exists, is measured
so that it may be used in the subjective logic formulation. As a new tracking path is created
during the tracking process, a unique “tracking ID” is assigned to the new path. As new vortex
cores are added onto a certain path, they also receive the tracking ID of the initial path. This is
performed throughout the tracking process, with untracked features receiving a tracking ID of 0.
After tracking has been performed throughout the entire data set, another pass is made to measure
the lifetime of features. This is accomplished by creating an array the size of the number of unique
tracking paths created. The feature lifetime of a feature within a certain tracking ID path is thus
incremented by one as the same tracking ID is found in different time steps. After the lifetime
measurement pass has completed, another pass is made through the data set to assign the measured
feature lifetimes of all vortex cores. Vortex core lines with a tracking ID of O receive a feature

lifetime of 1, since they existed one time step in the data set.

44

CHAPTER 4. FORMING OPINIONS ON VORTEX CORE LINES

This chapter outlines the method used to form opinions on vortex cores. Also, the method to

aggregate believable features from separate algorithm outputs into one final feature set is presented.

4.1 Trust Network Setup

The trust network set up by Mortensen [17] was outlined in Chapter 2 and is now explained
in greater detail. Figure 2.11 shows the agent-based trust network, which contains the Master
Agent (MA), two algorithm agents (AA| and AA;) and the region (R) which contains the feature.
The final goal is to find the opinion of the MA in R — wﬁ/lA. To accomplish this, four belief tuples

must be calculated: wp”", 0™

, a)}X[ﬁl and (‘%Q . The discounting operator (®) is used to compute
the MA opinion through each AA, and the consensus operator (&) must be used to combined both
linear opinions into a)ﬁ/IA. Eq. 4.1 show the use of the consensus and discounting operators to give
the final opinion and Egs. 4.2-4.4 give the belief tuple values in the final opinion for the realistic

assumption of k # 0.

o)A = (w%ﬁl ® wﬁA‘> ® <w/§’lﬁ2 ® a)ﬁ’”) 4.1)
MA ;AAI\ MA | MA | 2MA AA MA 7AA2\ MA | MA | 2MA AA
pMA _ (ban, DR) (dap, Tuan, TOXAUR)+ (Daa,bR) (dap, +uxn, +DXAUR) 42)
R = .
K
MA JAAIN MA | MA | pMA AA MA jAAN MA | MA | MA AA
JMA _ (DA, dr) (dany T uph, HoaauR) + (Dap,dr2) (daa, +uxn, + DR UR) 43)
R _— .
K
MA | . MA |, ;MA AAN MA | MA | 1MA AA
MA _ (dAA, TUan, T DA UR) (dAx, TUuxn, T DAAUR) 44)
R - :
where

_(JMA | MA | pMA AA MA | MA | pMA AA;
K= (dap, HUpn, TOAAUR)+ (dAA, T UAN, T PAAUR)

4.5)
— (AN XD+ BNR up™) (AN R + BN up™)

45

= /

L

Figure 4.1: Graphical representation of modular agent structure.

~—

BH—E—E
BH—®—E

O—@®—®
&)

It can be seen in Eqs. 4.2—4.4 the effect of the discounting and consensus operators as
described in Section 2.7. For example, the two terms in the numerator of Eq. 4.2 are the effects of
the discounting operator and the consensus operator is shown in the equation as the sum of the two
terms divided by k.

While only two AA’s were used in this research to create the trust network, any number
of AA’s may be added to the trust network to add more feature extraction algorithms. Figure 4.1
shows how this is accomplished by simply adding linear paths along which the MA computes its
opinion of R through AAN. Adding and removing agents from this structure is quite simple, since
the structure of the entire trust network is modularized. Eq. 4.6 shows the necessary extension from
Eq. 4.1 to have N AA’s in the trust network. The effect of adding AA’s is to reduce uncertainty in

the features extracted by the AA’s.

4.2 Algorithm Agent Opinions

The first step to compute the final opinion of a feature is to compute the agent opinions
AA,

R

features and should be thought of as separate feature sets. This is illustrated in Figure 4.2, where

and a)ﬁAz. Though each AA extracts features from the same data set, they extract different

46

Figure 4.2: Two separate line-type features extracted by AA (black) and AA; (red).

the black line was extracted by AA| and the red line was extracted by AA;. While these lines may
be visualized together, they are contained in different feature sets.

Though there are two separate feature sets, each AA must compute an opinion at each point
in each feature set. To explain this more clearly, consider again Figure 4.2. AA|, which extracted
the black line, must compute an opinion at each point in the black line as well as in the red line. The
same applies to AA; and raises the question, Why must an AA compute an opinion on a feature
that it did not extract? This can be explained by looking at the structure of Figure 2.11 and Eq. 4.1.
As seen, each AA computes an opinion on R. R is defined as every point that was extracted by both
AA’s; thus, each AA must compute an opinion at every point in both feature sets.

To compute the AA opinions at all points contained in R, the algorithm agents are separated
into two parts: extracting agents (AAg) and non-extracting agents (AANg). AA; extracted the
features in feature set 1 (black line) and thus is AAg at these points, while AA; becomes AANg at
points in feature set 1. The setup is reversed in feature set 2, where AA| becomes AANg and AA;
is AAg. With extracting and non-extracting algorithm agents, each AA may compute an opinion
at each point in all feature sets.

This methodology of extracting and non-extracting agents works with the current two-agent
trust network as well as with multiple agents. At each point in a feature set, there will be one AAg,
with all other AA’s assigned as AANg. The AAE and AANg opinion calculations will be explained

below.

47

Table 4.1: AAGg belief tuple setup.

AAg Setby
bﬁAE AAGE Strengths
dsAE AAg Weaknesses

AA ..
Uy E Feature Characteristics

4.2.1 Extracting Algorithm Agent Opinion

The belief tuple set for AAE is defined as follows: belief is set by extraction algorithm
strengths, disbelief is set by extraction algorithm weaknesses, and uncertainty is set by flow feature
characteristics. This may also be seen in Table 4.1.

From Table 4.1, it is clear that a good understanding of the AA as well as feature charac-
teristics are required for successful opinion calculation. Both the belief and disbelief components
of the AAg opinion depend on a good working knowledge of the AAE’s strengths and weaknesses.
When an extracted feature contains attributes that correspond to strengths of the algorithm, then
belief is high. Conversely, when the extracted feature has attributes which correspond to algorithm
weaknesses, disbelief will be high. Feature characteristics are scientifically known attributes of
the feature being extracted, such as vortex core lines. For example, a vortex core line is the center
of swirling flow in simple terms, and this physics-based characteristic may be used to define AAg
uncertainty. A requirement for the characteristics that make up the AAg opinion is that they be
quantifiable and can be manipulated such that Eq. 2.22 is true.

First-order functions are utilized for the equations which define belief, disbelief, and un-
certainty. This framework was created by Mortensen and was shown to work well in different CFD
data sets. The general form of the b,d,u equations can be seen in Eq. 4.7, where y is the opinion
component and x is the parameter used to define the opinion component. The two values m; and
my are constants that are selected in order to satisfy Eq. 2.22. While this first-order assumption
was made to calculate the belief tuple, other equations may be used, such as a quadratic fit. This
equation format is also used for most belief components with a few exceptions. This setup will be
explained below.

y=mix+mp “4.7)

48

Table 4.2: AAE opinion values set for the SH vortex core extraction algorithm.

AAg Set by Sujudi-Haimes

bliHE AAE Strengths Straight core, high strength, low quality
dgHE AAg Weaknesses Curved core, low strength, high quality
uIS{HE Feature Characteristics A, criterion

Sujudi-Haimes Belief Tuple

Table 4.2 shows the strengths, weaknesses, and feature characteristics when Sujudi-Haimes
is the AAg. The SH algorithm was formulated with a linear flow field in mind and is designed to
detect straight vortex cores; thus, straight lines were used as one of the strengths. Because of the
linear flow field assumption, vortex cores with high rotational strength are well extracted, so high
vortex strength is another of the strengths. Quality is a vortex core attribute which is independent
of the extraction algorithm and low quality is a strength in both algorithms to define high belief.

The weakness characteristics defining the SH algorithm are the opposite of the strength
characteristics. Curved core, low strength, and high quality are all characteristics that increase
disbelief of vortex core lines extracted by SH. In other algorithms, the characteristics defining
belief and disbelief need not be the same, though this was the case for the SH algorithm.

The A, criterion was used as the vortex core characteristic defining the AAg uncertainty for
both the SH and RP algorithms. Because it is a Galilean invariant vortex definition, it performs well
in finding moving vortex cores in unsteady simulations. However, it is not the only characteristic
that may be used to define vortex core uncertainty. Streamline rotation may also be used if the
convection velocity of the vortex core is subtracted from the surrounding flow field, but this would
be a computationally expensive step for each vortex core in the flow field. Other methods such
as the Q and the A criteria may also be added to the AAg uncertainty in the future to increase the
effectiveness of the uncertainty computation.

The AAE belief tuple is created by quantifying the strengths, weaknesses, and feature char-

acteristics. The belief tuple is calculated using Eqgs. 4.8—4.10.

bgHE =0.4- NormalAverage + 0.6 (4.8)

49

dlS{HE = —0.4- NormalAverage + 0.4 4.9)

1
gt = (4.10)
I +e 9"
where
NormalVortexStrength + NormalCurvature + Normal Quality
NormalAverage = 3 (4.11)
and
VortexStrength VortexStrength <1
VortexSt thN) VortexSt thN
N()rmalVor[exStrength — ortexsltrengi orm orrexoireng, orm (412)
1 VortexStrength >1
\ VortexStrengthNorm | —
(
Curvature ‘ Curvature <1
NormalCurvature — CurvatureNorm > CurvatureNorm (4 13)
0 Curvature 1
’ CurvatureNorm —
Quality Quality <1
, lityN) lityN

NormalQuality = QualityNorm QualityNorm 4.14)

Quality
0’ QualityNorm > 1

Eqgs. 4.11-4.14 were created for the steady-state trust network in order to quantify the
strengths and weaknesses of the SH algorithm. NormalAverage is created in such a way that
0 < NormalAverage < 1. When NormalAverage = 1, this is the case when all of the strengths are
satisfied and results in biHE =1and a’gHE = 0. Conversely, when NormalAverage = 0, bliHE =0.6
and dﬁHE = 0.4, because the SH algorithm should have some belief in its own extraction. Eq. 4.12
was formulated so that high vortex strength contributed to a high NormalAverage. However,
Eqgs. 4.13 and 4.14 were created in such a way that low values of curvature (straight line) and
quality contributed to a high NormalAverage.

The constants in Eqgs. 4.8 and 4.9 were created by Mortensen [17] to ensure a good spacing
in the final opinion of the extracted features. Mortensen noticed that if certain constants were used
in the belief and disbelief equations, the final opinion of the vortex core data set was bunched
around one value, which increased the difficulty of discerning believable from spurious vortex
cores. Figure 4.3 gives a graphical representation of vortex core opinions with good and poor

spacing. In Figure 4.3(a), it is clear that the vortex core represented by the red circle is the most

50

O
O

J- 0.5 05

(a) (b)

Figure 4.3: Opinions of vortex cores represented by circles on a scale of either belief or probability
expectation. (a) Vortex core opinions with good spacing. (b) Vortex core opinions with poor
spacing.

believable in the data set, with the vortex core represented by the blue circle as the second most
believable. In Figure 4.3(b), it is much more difficult to tell that the red and blue circles are the
most believable. Mortensen showed that the constants in the AAE belief and disbelief equations
resulted in well-spaced vortex core opinions. The same constants are used in the unsteady trust
network and have been observed to also result in well-spaced vortex core opinions.

The normalization values VortexStrengthNorm, CurvatureNorm, and QualityNorm are
used to require that NormalVortexStrength, NormalCurvature, and NormalQuality stay in the
range of 0 and 1. In the steady state agent-based method, the normalization values were manually
set for each data set. Quality has a known range from 0 to 90 degrees, so choice of QualityNorm is
independent of the data set. However, vortex strength and curvature can vary widely from data set
to data set, so an automated method of finding a proper VortexStrengthNorm and CurvatureNorm
was created in this research. The distribution of the vortex core variables of vortex strength and
curvature was found to be extremely positively skewed, which pulls the mean of the data toward
the tail of the distribution. Using the mean of the data to normalize would then cause too few
vortex cores to be believable, so a logarithmic transformation was applied to normalize the data.
As seen in Figure 4.4, the original vortex strength data was highly skewed and most of the vor-
tex strength values were less than 12,000. When a logarithmic transformation is performed on
positively skewed data, the resulting distribution much more resembles a normal distribution [65].
The curvature data behaved in much the same way and became much more normally distributed

after the logarithmic transformation. The anti-log of the mean of the transformed data is called

51

Frequency
&

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 220000 240000 260000 280000 300000 320000 340000 360000 380000 400001
Bins - VortexStrength

(a) Original data, which is very skewed and has high kurtosis.

=

Frequency

LN e B o ey e 0

500 1000 2000 5000 20000 50000 100000 200000

10000
Bins - VortexStrength

(b) Logarithmically transformed data, which much more resembles a normal distri-
bution.

Figure 4.4: Transformation of vortex strength data set to find a proper normalization value.

the geometric mean and is often used for data analysis when the data is highly skewed. The
geometric mean of vortex strength and curvature were used to define VortexStrengthNorm and
CurvatureNorm, respectively. In this manner, the choice of normalization values 1s much more
robust and allows for a more general use of the overall method.

Another modification made to the steady-state trust network was the manner in which the
AAE uncertainty was calculated. Eq. 4.10 is not patterned after a first-order curve, but rather a

logistic function, which is a type of sigmoidal curve that is often used in statistics and scientific

52

=

-6 -4 =2 0 2 4 6

Figure 4.5: Representation of the logistic function of Eq. 4.15, where m; = 1 and my = —1.

modeling. A general form of the logistic function is shown in Eq. 4.15 and a visual representation
may be seen in Figure 4.5. In this function, m; controls the maximum function value and m;
represents the slope of the curve around ¢ = 0. This type of curve was well suited to the uncertainty
computation when the A, criterion was used, since points with A, values of less than zero will be
much less uncertain than points where A, > 0. The stark contrast in uncertainty between negative
and positive values of A, would not be correctly reflected if a linear function were to be used.
The slope of the function m, = —10 was chosen so that even slightly positive A, values denote a

relatively high uncertainty.
T 4emt

P(t) (4.15)

The constants which were used in the Eqs. 4.8-4.10 were chosen so that b+d +u = 1
is close to satisfied. When that condition is violated, belief is held constant while disbelief and

uncertainty are decreased equally until the Eq. 2.22 is satisfied.

Roth-Peikert Belief Tuple

Table 4.3 shows the strengths, weaknesses, and feature characteristics when Roth-Peikert
is the AAg. Since the RP algorithm was created using a model of a perfectly semi-circular vortex
core, one of its strengths is that it reliably detects curved vortex cores. The RP algorithm also

detects cores with lower rotational strength and therefore is a strength of the algorithm. Although

53

Table 4.3: AAE opinion values set for the RP vortex core extraction algorithm.

AAg Set by Roth-Peikert
bEPE AAE Strengths Curved core, low to high strength, low quality
dEPE AAEg Weaknesses Straight core, near zero strength, high quality
uEPE Feature Characteristics A, criterion

RP can correctly extract weaker cores, it also performs well with high-strength cores which is also
factored into the strengths.

RP algorithm weaknesses are set up similar to SH weaknesses with one exception: near
zero vortex strength. Instead of quantifying weakness as the opposite of the strength of low vortex
strength, merely a smaller magnitude is defined to set the RP weakness characteristic. Setting a
straight core as a weakness may seem odd, since because the RP algorithm can reliably extract both
straight and curved core lines. This was set as a weakness because there is more belief that the
SH algorithm will extract straight lines more correctly than the RP algorithm. In this manner, each
algorithm’s belief and disbelief equations are set up to reflect the specific application for which
they were created.

The A, criterion was also used to define AAg uncertainty for the RP algorithm. When
multiple agents are extracting the same feature, the same feature characteristic may be used to
define AAE uncertainty for each algorithm since characteristics which define feature physics are
not algorithm dependent.

The RP AAE belief tuple is created similar to the method used for the SH algorithm. With
the exception of Eq. 4.18, the following equations were created by Mortensen [17]. The belief

tuple is calculated using Egs. 4.16—4.18.

bEPE =0.4-NormalAverage + 0.6 (4.16)
dEPE = —0.4- NormalAverage + 0.4 4.17)
Reg L (4.18)

Up = = 1_|_e—10~/12 ’

54

where

NormalVortexStrength + NormalCurvature + Normal Quality

NormalAverage = 3 4.19)
and
VortexStrength VortexStrength ‘ <1
VortexSt thN ’ VortexSt thN
NormalVortexStrength = orewstrengtu¥orm oriewstrengtiyorm (4.20)
1 VortexStrength >1
’ VortexStrengthNorm | —
Curvature Curvature <1
NormalCurvature — CurvatureNorm’ CurvatureNorm (421)
Curvature
1’ CurvatureNorm 21
Quality Quality <1
. lityN ’ lityN
NormalQuality = QualityNorm QualityNorm 4.22)
0 Quality >1
)

QualityNorm =

The setting of the AAg opinion for the RP algorithm only differs from the SH algorithm
in the curvature calculation. The RP algorithm is designed to extract curved vortex cores so
NormalCurvature will equal one when Curvature > CurvatureNorm. The automation method
of using the geometric mean for VortexStrengthNorm and CurvatureNorm is also used for the
RP algorithm AAg. One of the RP algorithm’s strengths is extracting weaker vortex cores, so the
question of the validity of the automation method may be raised. However, after comparison of
VortexStrengthNorm for both SH and RP, the RP data set always has a VortexStrengthNorm con-
siderably lower than the SH data set. This is because the RP algorithm extracts many more cores

which are weak, which shifts the geometric mean closer to zero.

4.2.2 Non-extracting Algorithm Agent Opinion

The belief tuple set for AAng is defined as follows: belief is set by extraction algorithm
strengths, disbelief is set by extraction algorithm weaknesses, and uncertainty is set by distance
from the current extracted vortex core line. This may also be seen in Table 4.4. For the AANE,
belief and disbelief are set from the AAg strengths and weaknesses. For example, if the SH al-
gorithm is the AANE, then the RP algorithm strengths and weaknesses will be used for belief and

disbelief. To compute minimum distance, the current point is compared to every other point in the

55

Table 4.4: AANE belief tuple setup.

AANg Set by
bﬁANE AAE Strengths
dﬁANE AAg Weaknesses

uﬁANE Minimum distance from AANg extracted point

other extraction output. Again, as an example, if the SH algorithm is the AANg, the closest point is
found in the SH algorithm’s output and the distance between the two points is set as the minimum
distance.

Linear functions, which Mortensen also created, are also used similar to the AAEg to define

the belief, disbelief, and uncertainty of the AANg and can be seen in Egs. 4.23—4.25.

b ™E = 0.8 - NormalAverage +0.2 (4.23)
df™E = —0.8 - NormalAverage +0.8 (4.24)
ugANE = 0.5- NormalMinimumDistance (4.25)

where NormalAverage is computed from Eq. 4.11 if the RP algorithm is the AANg or Eq. 4.19 if

the SH algorithm is the AANg. NormalMinimumDistance is computed using Eq 4.26.

MinimumDistance MinimumDistance

o L m L 1
.. . MinimumDistanceNorm | ° | MinimumDistanceNorm
NormalMinimumDistance = (4.26)
1 | MinimumDistance 1
) MinimumDistanceNorm | —

The reasoning behind the use of NormalMinimumDistance to calculate AANg uncertainty
is that if the AANEg extracts a vortex core very near to the AAg, then the AANg will have very low
uncertainty in the vortex core under consideration. The geometric mean of MinimumDistance was
attempted to automate the choice of MinimumDistanceNorm, but resulted in an unfavorable value
in many data sets. A much better choice of MinimumDistanceNorm is some key length scale from
the data set, which requires a user input of this value. This is a very problem-dependent value but
results in a better representation of AANg uncertainty. For this research, minimumDistanceNorm

was changed for each data set to increase the range of belief values in the data set.

56

Table 4.5: MA belief tuple setup.

MA Set by

b%AAi Feature life

d%gi Feature life
MA

upy, Feature correspondence

From Eqgs. 4.23-4.25, it can be seen that b +d +u > 1 in certain cases. For example, if

A
NormalAverage = 1, then by

ANE — 1 and dﬁANE = 0. Rarely will two vortex core algorithms extract
the same exact point for a simulation, which means that generally u > 0. To satisty Eq. 2.22, the

uncertainty is held constant while belief and disbelief are decreased equally until b +d +u = 1.

4.3 Master Agent Opinion

Because the MA is the agent which computes the final opinion of the feature in R, it has
the most influence on the believability of extracted vortex cores. It performs the duty of combining
the opinions of all the AA’s and providing a final belief tuple on the extracted vortex cores — a)ﬁ/IA.
The MA opinion is set up to be impartial to an individual algorithm’s strengths and weaknesses
and is more related to the type of data set from which the features are extracted, i.e. steady-state or
time-dependent, rather than certain algorithm characteristics or feature flow physics. This results
in a markedly different computation of the MA belief tuple from that of AA belief tuples.

In steady-state data sets, the assumption that was used to compute the MA opinion was that
believable features moved very little in between iterations, since a converged simulation should
contain stationary features. However, this assumption fails in time-dependent simulations, where
features are expected to move and interact through time. In transient data sets, the MA belief tuple
is formed on the assumption that believable vortex cores will be those which exist for multiple
time steps and behave predictably through time. Feature tracking is the method used to determine
the parameters of FeatureLife, or how many time steps the vortex core exists, and feature corre-

spondence (Corr), or how well the feature was tracked to a feature in the next time step. These

parameters, which are used to define the MA belief tuple, can be seen in Table 4.5.

57

Eqgs. 4.27-4.29 are used to compute the belief, disbelief, and uncertainty of the Master
Agent (MA).

b%‘i‘i =0.5-NormalFeatureLife+0.5 4.27)
d%ﬁi = —0.5-NormalFeatureLife+ 0.5 (4.28)
1
MA _
Uap;, = 1+65~C0rr (429)

where NormalFeatureLife is computed from Eq. 4.30.

FeatureLife FeatureLife <1
. FeatureLifeNorm® FeatureLifeNorm
NormalFeatureLife = f S (4.30)
1 FeatureLife 1
)

FeatureLifeNorm —

The constant in the MA belief and disbelief equations were chosen to give the MA opinion
equal weight for belief and disbelief. The MA opinion operates on generic vortex cores and is
impartial to the extraction algorithm, which is why the constants of 0.5 were chosen. If a vortex
core has been well tracked (NormalFeatureLife = 1), then b = 1 and d = 0. On the opposite
extreme, if NormalFeatureLife =0, then b = 0.5 and d = 0.5. It may seem that a poorly tracked
line should receive a belief value of 0, but this is accounted for in uncertainty. When b+d +u > 1,
uncertainty is held constant while belief and disbelief are decremented by an equal value until
b+d-+u=1is satisfied.

NormalFeatureLife is formulated in a similar manner to other normalization parameters
so that it is on the range of 0 and 1. FeatureLifeNorm is a parameter which must be selected by
the user. This is the number of time steps that a believable feature is expected to exist and may be
any integer value greater than or equal to 2. In this research, FeatureLifeNorm was selected after
visual inspection of the data set to give good spacing to the opinion. If FeatureLifeNorm is set too
low, most of the vortex cores will have belief values clustered around 1, and if FeatureLifeNorm
is set too high, the belief of all vortex cores is reduced in a similar manner. In the three data sets
that will be considered in Chapter 5, FeatureLifeNorm was a value from 10 to 30, depending upon
the data set. In a data series with a low number of time steps, FeatureLifeNorm would need to be

smaller to give a good spacing to the vortex core opinions.

58

The MA uncertainty is based on line correspondence, Corr, and is computed using a lo-
gistic function. This is because Corr, which is computed using Eq. 3.10, has a range of —oo to 1.
A Corr greater than 0 denotes a tracked feature, and thus much lower uncertainty is imparted to
vortex cores with a Corr < 0. A slope of 5 at the origin is used which gives a perfectly matched line
(Corr = 1) an uncertainty of uk’[ﬁ‘i = 0.007. A logistic function is well suited to a parameter such
as Corr and eliminates the need to normalize the characteristic defining MA uncertainty. Because
each vortex core may be tracked to two other vortex cores (one in the previous time step and one

in the next time step), the higher Corr parameter is used to define MA uncertainty.

4.4 Aggregation of Believable Features into a Final Data Set

One of the end goals of the intelligent feature extraction method is to select believable
features extracted from different extraction algorithms and combine them into one final feature set.
In previous work, visual inspection was used to find and remove low-belief and duplicate features.
A two-step method was developed to automate the feature set combination so that larger data sets
with many features could be operated upon. Bear in mind that the final opinion a)gIA is computed

before the automated feature set combination. The two steps are as follows:

1. Remove features below a user-defined opinion threshold.

2. Find duplicate features and remove the duplicate with lower belief.

The first step of removing low-belief features is fairly trivial except for the selection of
variable and threshold value. Different variables such as belief, disbelief, or uncertainty may be
used, though probability expectation (E) is the most commonly used in subjective logic to define
feature opinion. The next issue becomes selection of threshold value, since in subjective logic there
is no hard-and-fast rule for what is believable. In this research, line-averaged E is used, and vortex
core lines with an average value of E < 0.75 are removed. In point-based applications of subjective
logic, E > 0.85 is commonly used as a metric for believable features, so a lower threshold value
was used for line-averaged E since probability expectation can vary considerably in a vortex core
line.

The next step of finding and removing duplicate vortex cores is accomplished by using

length and position tolerances. It is a rare occurrence that two extraction algorithms will extract

59

LinePrababiltyExpectation LinePrababiiityExpectation

066 068 07 072 074 066 068 07 072 074
[SR - | = -
0.65 0.75 0.65 0.75

Figure 4.6: Example of two vortex core lines which are automatically verified as duplicates. The
vortex core with high average probability expectation is kept and the other is removed.

vortex cores in the exact same location, so tolerances are used to match two lines. To reduce
computational demands, only features within one line length of the feature under consideration are
inspected, similar to the process presented in Section 3.3.3. The length and position tolerances
employed in duplicate feature matching are shown in Eqs. 4.31 and 4.32. These equations are
formed so that they are in a range from 0 to 1, where lower function values denote highly duplicate
lines. When both Eq. 4.31 and 4.32 are less than 0.1, the lines are considered duplicates. The
duplicate lines are compared, and the vortex core with a lower average E is removed. An example
of this operation can be seen in Figure 4.6. Though it is apparent that the two lines are very similar,

the automatic method created here removes the lower belief line without any user input.

L1 — Lo
= 4.31
flength max (L17L2) ()
P —P
fposition = H —1L 2” (4.32)
1

The automated method created here currently only operates on line-type features. For shell
features such as shock waves, surface area might replace line length in Eq. 4.31, and for volume
features, volume may be successful in place of length for finding duplicate features. Eq. 4.32

would also require modification to work for other types of features.

60

CHAPTERS. RESULTS AND DISCUSSION

Two benchmark simulations were run on different geometries in order to test the time-
dependent feature extraction and tracking framework described in Chapters 3 and 4. The three-
dimensional cubic lid-driven cavity has been extensively studied and contains well-defined vortex
core lines. It is a simple data set which is simple to set up and run quickly. The three-dimensional
cylinder in cross flow, another classical unsteady flow problem which exhibits the famous von
Kéarmén vortex street, was also used in this research. The cylinder case has a more complex
unsteady flow field and was selected to validate the unsteady vortex visualization method.

A massive simulation of a wind turbine was obtained in order to test the method on a large
data set. The results of vortex core line extraction from the two benchmark simulations as well as

the massive data set are shown below.

5.1 Lid-Driven Cavity

A CFD simulation of a cubic lid-driven cavity [66] was run using the unsteady laminar
Navier-Stokes equations and was solved in Fluent 12. The Pressure Implicit Splitting of Opera-
tors (PISO) algorithm was used for pressure-velocity coupling with second-order implicit stepping
through time. For each time step, 40 Newton sub-iterations were computed to attain convergence.
The lid of the cavity was impulsively started at # = 0O s in order to view the development of the vor-
tex cores. The Reynolds number based on cavity side length and lid velocity was 1000, at which
the flow was laminar and became steady after a period of time. Two structured grids were created
(40 < 40 x 40 and 80 x 80 x 80) to find the influence of grid density on vortex core extraction. A
slice of each grid can be seen in Figure 5.1. Grid clustering was employed near the walls to account
for wall effects, and all boundaries were set with a no-slip boundary condition. The lid was also
modeled as a no-slip wall, but with a constant velocity in the x-direction. Other properties of the

simulation may be seen in Table 5.1.

61

[
[T
IIHIIIIIIIII i
[T
TR

z
XL

(a) Coarse mesh — 64,000 nodes (b) Fine mesh — 512,000 nodes

Figure 5.1: Slices of the computational meshes created for the lid-driven cavity simulation. The
lid, denoted by the side with an arrow over it, is moved at a constant velocity in the +x-direction.

Table 5.1: Cavity simulation parameters.

Time step (s) Lid velocity (m/s) Side length (m) Reynolds number
0.01 1 0.1 1000

The simulation was run for a total time of 10.0 s and was saved at each time step. A
visualization of the flow evolution through time may be seen in Figure 5.2, where the fine mesh
simulation was used. At early time steps, the central vortex moved from the top right corner to the
center and grew in size. At later time steps, secondary corner vortices developed and also grew
in strength, though they were much weaker than the primary vortex. Little change occurred to the
flow domain after 5.5 s, or the equivalent of 55 lid passings. Though the full domain was modeled,

the data set showed a high degree of symmetry around the xz-midplane of the cavity.

5.1.1 Vortex Cores Extracted from Data Set

Vortex cores were extracted with the time derivative modification from the lid-driven cavity
data set. The vortex cores extracted by the SH and RP algorithms at the steady state condition can
be seen in Figure 5.3. As shown in Figure 5.3(a), the SH algorithm extracted the main vortex cores
from the data set: the primary, secondary, and corner vortex cores. They were disconnected near

the xz-midplane, and the vortex cores around the xz-midplane were quite symmetric. As shown

62

Time: 0.6 8

(a) (b)

Time: 1.0's Time: 2.0s

(© (d)

Time: 5,58

(e) ®

Figure 5.2: Visualization of the lid-driven cavity data set. Streamlines are traced in the y-midplane,
and the slice is colored by velocity magnitude. The lid moves in the +x direction and the velocity
is in m/s.

in Figure 5.3(b), the RP algorithm extracted many more vortex cores which would be difficult to
differentiate without vortex core line extraction because they were fairly close to each other. By
visual inspection in the CFD data set, some of the vortex cores extracted by the RP algorithm were
confirmed to be spurious, while others in the RP data set were similar to those extracted by the
SH algorithm and were verified to be correct vortex cores. Taylor-Gortler-Like (TGL) vortices —

streamwise vortices along the wall of the cavity — were also discernible in the RP data set and have

63

Corner . = —
</ Vortices i

Pri | J
ey L
| _,//\\‘\‘ r/

Secondary
Vortices

TGL

Vortices ; k}

| Streamwise
vortices

(a) SH vortex cores. (b) RP vortex cores.

Figure 5.3: Vortex cores extracted by the SH and RP algorithms. Key vortex structures are listed.
The lid moves in the +x-direction.

been verified by Albensoeder at this flow regime [66]. Other vortex cores of interest which were
extracted by the RP algorithm were the long stream-wise vortex cores which were extracted near
the walls in the 4+ and —y-directions.

Grid density was investigated in the lid-driven cavity data set to understand its effect on un-
steady vortex core extraction. Figure 5.4 shows both extraction algorithm outputs for the two grids.
All extractions shown were from the same time (5.0s), when the vortex cores were still moving
into their steady positions. It can clearly be seen that the existing vortex cores were refined as the
grid was refined, which can be seen especially in the case of the primary vortex. Both algorithms
extracted a clear primary vortex in the fine grid, whereas both failed to extract contiguous primary
core lines from the coarse mesh. Also, both algorithms detected new vortex cores in the fine mesh
case that were not found in the coarse mesh. Some of the new vortex cores in the fine mesh were
found to be true vortex cores, while others were verified to be false, especially some of the shorter
extracted vortex cores in the data set. With clearer true vortex cores in the fine mesh came a cost
— many small, intertwining vortex cores were extracted in the corners at certain time steps, which
appeared as vortex regions and were generally false detections of the extraction algorithms.

In order to correctly extract the main vortex cores, the cost of finding more vortex cores
was acceptable in this data set. In a larger, more complex data set, the trade-off of CFD data size

and correctness of extracted vortex cores would need to be taken into consideration. The process

64

(c) RP, coarse mesh. (d) RP, fine mesh.

Figure 5.4: Effect of grid density on vortex core extraction in the lid-driven cavity data set. The lid
moves in the +x-direction.

of manually verifying the many vortex cores in this data set was a laborious task, which increased
the attractiveness of applying subjective logic to automatically detect the true vortex cores in the

data set.

5.1.2 Influence of Time Derivatives on Extracted Vortex Cores

Time derivatives were computed and added to the feature extraction process in order to
more correctly extract vortex core lines from time-dependent flows. The difference between cores
extracted with and without time derivatives can be seen in Figure 5.5. For ease of visualization,
the coarse data set was used to investigate the influence of time derivatives. At early time steps
(t =0.2—-0.6 s), the primary vortex moved significantly through the data set, and this movement
was shown by the noticeable difference in vortex cores extracted with and without velocity time

derivatives. At intermediate time steps (t = 1 — 3), the secondary vortices were still developing,

65

though the top corner vortex cores had become fully developed. As the simulation reached a
steady-state condition (r = 5.5 s), the core lines extracted with and without the time derivatives
were identical.

Though the effect of time derivatives on vortex core extraction appeared somewhat minimal
in this data set, it was due to the fact that velocity and length scales are small. In larger data
sets with higher Reynolds numbers, the addition of time derivatives will likely result in vortex
cores which are shifted further from those extracted under a steady-state assumption. Even in
this low flow situation, the difference in extracted cores was visually noticeable as the vortex cores
moved. It was also shown that many vortex cores extracted under the steady-state assumption were
spurious, so the extra computational cost of computing time derivatives was seen as a favorable

step in unsteady vortex core extraction.

5.1.3 Vortex Cores Processed by Agents

The vortex cores extracted by both algorithms were processed by the agent-based trust
network to determine the belief tuple of the final opinion a)ﬁ/IA. This was performed in all time
steps of the cavity data set, but only one time step will be considered here (3.0 s). Figure 5.6 shows
the belief and disbelief values of SH and RP vortex cores and highlights some of the strengths and
weaknesses of each algorithm. When looking at the belief values for the SH vortex cores in Figure
5.6(a), one can see that high belief (~ 0.75 — 1) was calculated for the primary and top near corner
vortex cores, with low belief in the top far corner vortex cores. Similarly, in Figure 5.6(c), it can
be seen that the opposite occurs in the disbelief values in the vortex cores. Since the SH algorithm
was designed to extract strong, straight vortex cores, only the vortex cores which were straighter
and had higher vortex strength contained higher belief values. The local curvature calculation was
also seen to be successful, since the highest belief occurred in portions of the vortex cores with the
lowest local curvature. In the RP data set the belief values as seen in Figure 5.6(b) were around
0.5 for the longer vortex cores, with low belief calculated for short vortex cores near the far wall of
the cavity. The RP algorithms strengths included curved and weaker vortex cores, which was why
higher belief was given to the curved, weaker corner vortex core lines. The effects of imparting
low disbelief to highly curved vortex cores can be seen in Figure 5.6(d); the lowest disbelief values

occurred in areas of the vortex cores where curvature was highest.

66

—) =
V. gt | ' FTN :/
2 ‘
| il v -,.: =
Z e’
/
Time: 0.2 s Time: 2.0's
T [f ™| ,J
:) —) L
| — === { | ,_,____./
;@ﬁ #ﬁ/ “‘ﬁ ‘ /4"
7 o
S
Time: 0.65 Time: 3.0 s
q =gl |
: ‘ r i]
) B
| oy /" f | r———mjﬂ F
Z / ‘l;o":;‘ E | - .1 i’/’ - B /}.
it) o)
Time:]:.O 5 Time: 5.5 s

Figure 5.5: Vortex cores extracted from the lid-driven cavity case using Sujudi-Haimes: red cores
— time derivatives included, blue cores — no time derivatives (steady-state assumption).

A comparison of uncertainty values of both agents’ vortex cores revealed how closely the
output agreed with the parameters used to define uncertainty. Figures 5.7(a) and 5.7(b) show the
uncertainty values for the SH and RP vortex cores, respectively. The SH vortex cores which had
low uncertainty calculated were both well tracked through time and had a A, value of less than zero
for most of the cores. The cores with higher uncertainty, especially the short vortex cores extracted
in the far bottom corner of the cavity, were poorly tracked since they would often “flash” in and

out of consecutive time steps, which greatly increased the difficulty of tracking. In the RP data set,

67

0 1
(a) SH belief values. (b) RP belief values.
——_ N —— ﬁ\\‘\\’:j
T 1 Ay
\ - |) \ 7\. l) \ \ \5\ .
D 2o B AN
b | P i, \
\ ‘ / \ \ w\/)& | == ~ (\ 1
. / ‘ N) \ //
\ l AN (\S \ G & Nz/—"g”‘\ (/
_—— e v S) N T
~ T~)\ % K) ANE NG 2 S
o N NS L X
7 \\\\ . s //////// \\ 1 // e
y \ L // OIlDZisbeIief o L\/ Ogisbeuef oa
\ — h‘““.\“,“g_‘i“““J:ﬁ \ -HH.\HJP_LEMwa‘:h
X 0 05 0 0.5
(c) SH disbelief values. (d) RP disbelief values.

Figure 5.6: Comparison of the belief and disbelief values from the final opinion a)ﬁ/IA of the vortex

cores extracted by the SH and RP algorithms from the lid-driven cavity data set. The lid moves in
the +x-direction.

a large range of uncertainty values was calculated for the vortex cores. Very low uncertainty was
calculated for the top corner vortex cores, with uncertainties of roughly 0.25 obtained for the bulk
of the longer vortex cores. The highest uncertainties were calculated where the vortex cores were
not tracked at all. In general, it was observed that feature tracking had a larger effect on the RP
vortex core uncertainty than the A, criterion.

The probability expectation (E) of the vortex core data sets revealed the most believable
vortex cores and which algorithm extracted them. Recall that E is calculated using Eq. 2.24, which
takes into account the final belief and uncertainty and gives what one would expect the probability

of a feature to be. The vortex cores colored by E may be seen in Figures 5.7(c) and 5.7(d) for the

68

~ {
‘ L : =0 Y
\\\ ‘ / \\3 N , _=__ By >
LY i AN L /‘/
N /Uncerminfy \“ A — Uncertainty
™ oo 020 BB DT / 025 . 05 O
' P "oy ‘ -1 ﬂ“‘ "o ! ﬂ]

1 J
[\ Vi /I g (
\\\,\ " | S TN :
~—_ \ <K /- s
N ;) -
N) S

S ’ —
L 7.y e
ProbabwllTyExpec’rcmon \\\ ProbabilityExpectation
‘\‘”‘““ﬂ“““\“““ \\\/w(‘}‘.%s‘m“gﬁm““0“‘7?“H
1

0 1

(c) SH probability expectation values. (d) RP probability expectation values.

Figure 5.7: Comparison of the uncertainty value and probability expectation from the final opinion
a)lg/IA of the vortex cores extracted by the SH and RP algorithms from the lid-driven cavity data set.
The lid moves in the +x-direction.

SH and RP algorithms, respectively. The SH algorithm clearly extracted more believable primary
and near top corner vortex cores, since the values of E in these vortex cores were greater than 0.75.
The RP algorithm had higher E in the weaker, more curved vortex cores, which included the long
stream-wise vortex cores and the smaller TGL vortex cores near the far back wall of the cavity.
However, the RP data set was too cluttered with vortex cores with low E to clearly visualize some

of the vortex cores with high probability expectation.

69

5.1.4 Automatic Combination of Data Sets

The vortex cores extracted by the SH and RP algorithms were combined using the method
outlined in Section 4.4. The results of this automatic operation can be seen in Figure 5.8, where the
two unfiltered data sets are shown in Figure 5.8(a) and the final data set is shown in Figure 5.8(b).
Many of the vortex cores with low average probability expectation were removed from the data set,
which clearly reduced the amount of visual clutter. In the final data set, many of the expected vortex
cores (primary, secondary, corner, stream-wise, and TGL) had a high probability expectation and
were included in the final feature set. The second step of the feature set combination method was to
find vortex cores which had been extracted by both algorithms and select the more believable vortex
core. This step was required to select the most believable primary and secondary cores, and the SH
algorithm was generally found to be more successful through time in extracting both of these vortex
cores. However, the check for duplicate cores failed in the case of the near top corner vortex cores,
where both algorithms extracted similar vortex cores with high probability expectation. They were
not similar enough in size or location to be automatically detected. However, the method performed
well in most cases and created a data set with believable vortex cores from both algorithms.

Verification was performed on all of the expected vortex cores as well as some of the
spurious vortex cores. This was accomplished by use of streamlines and cutting planes of the CFD
data set. The use of subjective logic was also proven to be effective at finding the correct vortex
cores in the data set. For example, streamlines seeded around the primary vortex core showed that
the SH algorithm was more successful at correctly extracting the primary core, which was also
shown by use of subjective logic. Other vortex cores with high expected probability also agreed
with the swirling flow definition by use of streamlines. Cutting planes of the CFD data set colored
by vortex strength also showed the success of subjective logic in detecting spurious vortex cores.
Vortex cores with low E also agreed with regions of very low vortex strength, though this was only
one of the characteristics used in subjective logic. Visualization of the verification of these vortex

cores may be seen in Appendix A.

70

\ | T "'PEdBabninyxpecmﬂon
‘ M'?ﬁuu.uﬂﬁum\p\‘mw

0 1

(a) Unfiltered output of both vortex core extraction algo-
rithms.

\ __—— ProbabilityExpectation
e 025 05 075
X B wl‘HHHJ%IHHHH‘\H\L
0 1

(b) Final feature set, which includes only believable vortex
cores.

Figure 5.8: Automatic combination of two different algorithm outputs shown in the cavity data set

The lid moves in the +x-direction.

5.2 Cylinder in Cross Flow

The second CFD simulation used in this research to validate the unsteady feature extraction
method was the case of a cylinder in cross flow [67]. This simulation was chosen as a validation
case for the method because of the more complex flow field in the cylinder wake and the convec-

tion of the vortex cores through the domain. The Reynolds number based on cylinder diameter and

71

Table 5.2: Cylinder mesh details.

Number of points
y z Cylinder
Unstructured 1,691,412 100 50 100 80
Structured 1,026,000 68 86 75 85
Structured, fine 4,222,773 156 140 115 200

Mesh type Node count

freestream velocity was 300, at which three-dimensional mode B shedding has been documented in
both experimental and numerical results. Mode B vortex shedding, according to Williamson [68],
“comprises finer-scale streamwise vortices, with a spanwise length scale of around one diam-
eter. The large intermittent low-frequency wake velocity fluctuations, originally monitored by
Roshko [69] and then by Bloor [70], have been shown to be due to the presence of large-scale
spot-like ‘vortex dislocations’ in this transition regime. These are caused by local shedding-phase
dislocations along the span.”

The unsteady, incompressible Navier-Stokes equations were solved in Fluent 12. The PISO
algorithm was used for pressure-velocity coupling with second-order implicit stepping through
time. Three different meshes were created to view the effectiveness of the method in differing
grid types: unstructured, structured, and very fine structured. These three meshes, as well as a
view of the computational domain, can be seen in Figure 5.9. As seen in the 3 slices, the wake
was refined in order to capture the vortical flow structures that were shed from the cylinder. The
domain extended 20 cylinder diameters upstream of the cylinder, 30 diameters downstream of the
cylinder, and 10 cylinder diameters in the spanwise direction. A no-slip wall boundary condition
was applied to the cylinder wall, a velocity inlet with a prescribed x-velocity was used for the inlet,
and a pressure outlet boundary condition was used for the domain outlet. Symmetry boundary
conditions were used for the top and bottom of the domain in order to recreate the conditions of
the simulations run by Zhang et al. [67]. Table 5.2 give more details about the meshes.

The simulations were run until the flow became quasi-steady. This was determined by
investigation of the drag coefficient history. After 2000 time steps, the drag coefficient oscillated
around the same mean value and the flow was deemed to be fully developed. The drag coefficient
values were compared to the Direct Numerical Simulation (DNS) results of Zhang et al. [67] and

can be seen in Table 5.3.

72

VAV
AYE
A7

N AVAV \VAVAVA
Ay, SYAVAVAYAVAVAVA)

DeROoisa
NSRRI AT
AVAVATAVAVAVavay, (8w vl
AV, NANAAVavava 0% i
%ﬁﬁ%&%’gﬁ&gﬁ'ﬂ;‘ﬁ

VAT e TATAVAV S PAVATA S v vy i
;"ﬂé‘:.?l‘“, VAYAX OAVAAY, Ny

\VAVAVAN

7\

I/

AVAVA)

V¥
K/
</
&
0

AVA’
5]
D

B
B

Vi
KR

I

STAVAVAWA
4?‘5#‘

Top
\ /Ouﬂe’r
/Cylinder

%
AVAY
Ava

Gt

.
4k
%

oK)
ot

%5

Y(ava) >
e
:

PRERA

KR
e

X
AL
S

7

K]
o
ORERA

£f
oy

%

KA
Kk
0%
5
%
oK

Y
iy
O

K%

<]
S T Ao VAT Rt Vava Vs A YAV
o L 00
AR N AP OO N SASIAR RIS A KR
AR KROOBORR K/
AV

<
4%
WA
‘4‘

A
s
KX

&

Papars
KX
VAVaY,

!

PAVAYA .
%
X

VAVATAVAVAVa vy AVAY) 4§'AVXVA1€;¥'AVAVAVA
VA ViV AUV vavavi VAVAVAYAVAVATAY
AAAAAARPIAARN]

YAV

VaY;

QVA

NN

2\

7
%V

AVAY
N
Vav,

pVAY
Y

VAVAY
ok
s

oY,
5

VAV,
%

VAV
NN

A

Vv,

v
R

AR

Inlet
(a) Full 3-D domain.

o

‘&\‘\\\\\ i

o
SRR

R
gﬁ\\\\\\“%\\e\“

R

S 0\:\\\\\\

i
R
A
S
S
R

/
o

2
4%'/ g‘a-,,;z, i

sy
Uil ,;lll'm
i pittiny
I}

i
Ugggtinmaan| |1

;'l ""[i I HHHHHIHT AR AR
/7 AR
A Hl,l\‘\lﬂl\ll R
o

(c) Slice of the structured mesh. (d) Slice of the fine structured mesh.

Figure 5.9: Computational meshes used in the simulation of a cylinder in cross flow. Flow moves
in the +x-direction.

Table 5.3: Cylinder data set drag coefficient study.

Mesh Time Step(s) Cp Cppns Error (%)
Unstructured 0.05 1.132 1.278 11.4
Structured 0.05 1.242 1.278 2.85
Structured, fine 0.01 1.298 1.278 1.54

5.2.1 Comparison of Vortex Cores Extracted from Different Grids

Vortex cores were extracted from each of the grids of the cylinder data set using the RP and
SH algorithms. Figure 5.10 shows the representative results obtained by the RP algorithm from the

three grids studied. Note that the vortex cores shown here were not extracted from the same time

73

(a) Unstructured mesh results.

/{

/
\

/JQ/JM)?

“
)N D)D

:_\\;
\
\\

(b) Structured mesh results.

T /\]\
\\:\\\\\\
}/\f{ \S/
Sy > (L
%/\)“t \\\
NEAR I B

(¢) Fine structured mesh results.

Figure 5.10: Vortex cores detected by the RP algorithm from the three different types of grids.
Flow moves from left to right.

step in the simulation, so the vortex core locations were not exactly the same. It can be seen that
the type of mesh and grid resolution had a significant impact on the vortex core extraction process.

The vortex cores extracted from the unstructured mesh appeared very jagged and unphysi-
cal, as seen in Figure 5.10(a). The jaggedness of the vortex cores was due to the due to the nature

of the vortex point detection and the line connection algorithm used. Both vortex core extraction

74

algorithms used the PV operator to investigate each cell edge in the domain and determine if two
vector fields were parallel at the node points of the edge. Linear interpolation was then used to
find the point on the edge where the PV operator was satisfied. The line connection algorithm
then connected points which were extracted from cells with a common edge. In the unstructured
data set, cell neighbors were not well ordered, and thus the interpolation and connection process
resulted in jagged core lines. It was also observed that the vortex cores extracted were not parallel
to the cylinder, nor were they continuous through the domain. One important note was that the
drag coefficient in the unstructured mesh simulation was quite different from DNS result, which
meant that the under-resolved simulation may have also had an effect on the extracted vortex cores.

The vortex core lines extracted from the structured mesh, as seen in Figure 5.10(b), were
much more smooth but still exhibited similar characteristics to the unstructured mesh vortex cores.
While some of the core lines were continuous through most of the spanwise domain, there were
none that extended the whole length of the cylinder. Also, in the far downstream wake of the
cylinder, the vortex cores were very disconnected and curved, which may be attributed both to
mesh coarsening and breaking up of the vortex cores as they were convected downstream. Using
a particle trace, some of the cores extracted by the RP algorithm near the cylinder were verified
to follow swirling particle flow, though the short vortex cores far downstream of the cylinder were
not in the centers of swirling flow. The SH algorithm generally failed to extract correct vortex
cores, which was due to the fact that the vortex cores in the far wake were quite curved, which
was a weakness of the SH algorithm. One of the weaknesses of both algorithms as noted by Roth
[7] was that a vortex core with a non-constant acceleration along the core was poorly extracted.
From Figure 5.10(b), it can be seen that the vortex cores were stretched as they were convected
downstream, which introduced a non-constant acceleration along the core lines. Visualizations of
the vortex cores extracted on this grid as compared to the CFD data set may be seen in Appendix
A.

The results from the fine structured mesh may be seen in Figure 5.10(c) and differed dra-
matically from both other grid results. Near the cylinder, streamwise vortex cores dominated the
flow, while the expected spanwise vortex core lines which were conspicuous in the other data sets
were missing. One reason that the extraction algorithms failed to extract the spanwise vortex cores

was because their strength was much lower than that of the mode B vortex cores. Figure 5.11

75

(a) §, in the xz-plane shows the strong streamwise mode (b) {, in the xy-plane shows that the spanwise vortex cores
B vortex cores. dissipate more quickly.

Figure 5.11: Comparative slices of the structured fine CFD data set for the case of cylinder in
cross flow. Slices are colored by y-vorticity ({,) on the same scale as shown in (b). Flow is in the
+x-direction.

shows comparative slices for the structured fine data set. It can be seen in Figure 5.11(a) that the
streamwise mode B vortex cores had a high y-vorticity and showed that the strength of the vortex
cores was high because of the large regions of {, in the vortex cores. In Figure 5.11(b), the span-
wise vortex cores had a lower {, than the streamwise cores and dissipated quickly in the wake.
Another reason that the spanwise vortex cores were not extracted was the formulation of the two
extractions algorithms: the RP algorithm was designed to detect curved vortex cores, and the SH
algorithm was formulated to detect strong vortex cores. Since the spanwise vortex cores were weak
and straight, neither extraction algorithm successfully detected the spanwise vortex cores. Last, the
success of the coarse structured grid in extracting the spanwise vortex cores may have been due to
the fact that the time step was less fine than the fine simulation, which may have resulted in more
coherent spanwise vortex cores in the domain.

A comparison of the extracted streamwise vortex cores to experimental and DNS flow visu-
alization, as seen in Figure 5.12, verified that the mode B vortex cores extracted from the fine data
set agreed well with the physics of the flow. At a Reynolds number of Rep = 300, mode B vortex
shedding has been shown to dominate the flow as the wake transitions to a 3-dimensional flow,
which can be seen by the extracted vortex cores. The vortex cores in Figures 5.12(c) and 5.12(a)
were comprised mostly of the mode B vortex structures, with a lack of the longer spanwise vortex
structures that can be seen in Figure 5.12(b). Another aspect of the correctness of the extracted
vortex cores was the distance between counter-rotating vortex pairs. The § of the vortex core lines
in Figures 5.12(c) and 5.12(a) showed that the immediately adjacent vortex cores in the near-wake

region had opposite vorticity, meaning they were counter-rotating vortex pairs. Williamson [68]

76

¢ Fix Jr=i
[R\ R
[VAN
VAN AR
,rljf/VQJkijLL!

|§\j“§klvkﬁﬂ
Lt 7 720

n / EEN " -:\-
.ML&-. "‘ = L 1
D ————,—
(a) Vortex cores extracted by RP al- (b) Experimental results from Williamson [68].
gorithm.
~ £

Y-vorticity
4

m _\4\\ m \fﬁuu HOH.HWH%\HHM

-5 5

(c) Vortex cores extracted by RP algorithm. (d) DNS results from Thompson et al. [71]. Reynolds
number is 285.

Figure 5.12: Comparison of Mode B vortex cores extracted from fine mesh to DNS and experi-
mental results. Extracted vortex cores are colored by (.

reported that the wavelength between streamwise vortex core pairs was roughly 1D, which was
qualitatively shown by the vortex cores in Figure 5.12(a). The curvature and breakup distance of
the vortex cores shown in Figure 5.12(c) also compared well to the {, isosurfaces from the DNS
results presented in Figure 5.12(d).

The remainder of the vortex core analysis for the cylinder data set will be made with the

fine mesh data set, since it was felt to reflect the physics of the CFD data set most correctly.

77

Table 5.4: Results of extracting vortex cores from the cylinder data set
using different time step widths.

Algorithm At Number of Vortex Cores

0.01 175

. 0.02 169
Roth-Peikert 0.05 159
0.10 135

0.01 30

e rro 0.02 30
Sujudi-Haimes 0.05 34
0.10 65

5.2.2 Effect of Time Step Width on Vortex Core Extraction

The effect of time step width between data sets on vortex core extraction was investigated.
Different time step widths were used to extract vortex cores: 0.01, 0.02, 0.05, and 0.10 seconds.
For example, with a time step width of 0.05 s, feature extraction was performed every 0.05 s, with
a corresponding time derivative computation for CFD data sets with a spacing of 0.05 s. Table
5.4 shows the total number of vortex core lines using the different time step widths for the same
time in the data set so that vortex cores at the same time step could be compared. At this time
step, 156 vortex cores were expected in the simulation. This number was found by computing
a {, isosurface and counting the number of expected vortex cores. The RP algorithm acted as
expected — as the time step width increased, the number of extracted vortex cores decreased, with
the largest decrease between time steps widths of 0.05 and 0.10. It was also observed that the
vortex cores eliminated as time step width increased were those which were most believable — the
mode B vortex cores in the cylinder near-wake. Fuchs et al. [42] reported a similar result that as
time step width increased between data sets, the time derivative computation became less accurate,
thus reducing the number of believable vortex cores while increasing the number of spurious cores.
However, the SH algorithm behaved in the opposite of the RP algorithm, where as the time step
width increased, the number of extracted vortex cores increased.

To determine why the RP and SH algorithms acted so differently, the vortex cores extracted
using different time step widths were overlaid and visualized. The vortex cores extracted using time

step widths of 0.01 and 0.10 seconds can be seen in Figure 5.13. The vortex cores extracted by

78

the RP algorithm using different time step width, as shown in Figure 5.13(a), were quite similar,
with only a small shift in the extraction between many of the vortex cores. Using a larger time
step width did result in the extraction of more vortex cores near the cylinder surface, which were
verified to be spurious. Also, a significant number of Ar = 0.01s vortex cores (black) were not
detected with the larger time step width.

Viewing the results of the time step width study with regard to the SH algorithm revealed
why it extracted more vortex cores as time step width increased. In Figure 5.13(b), it is much easier
to tell the difference between Ar = 0.01s vortex cores (black) and Ar = 0.10s cores (red) than in
the RP data set. The Ar = 0.10s vortex cores extracted by the SH algorithm exhibited much less
curvature and were generally longer than the Ar = 0.01s cores. After considering the assumption
made by the SH algorithm of a linear flow field, it made sense that increasing time step width
would increase the success of the SH algorithm in detecting vortex core lines. As time step width
increased, the temporal resolution and thus the curvature of the wake vortex street decreased; there-
fore, the SH algorithm detected more vortex cores in the lower curvature velocity field. However,
though this may lead to the conclusion that data needs to be saved less frequently, the longer, low
curvature vortex cores extracted by the SH algorithm using Ar = 0.10s were spurious.

Both extraction algorithms showed in different ways that time step width was an important
factor when extracting unsteady vortex core lines. When saving unsteady CFD data sets for use in
feature extraction, the number of time steps between saved CFD data sets must be chosen carefully
and tailored to each simulation. In simulations where features are expected to move significantly
or the flow moves at a high velocity, the time step width will likely become more important when

extracting unsteady vortex core lines.

5.2.3 Feature Tracking Results

Feature tracking was performed on the cylinder data set and cores were tracked through
time. 502 time steps were selected for analysis, so 500 extraction steps were performed due to
the computation of central-differenced time derivatives. The key results from both Roth-Peikert
and Sujudi-Haimes can be seen in Table 5.5. As seen, the RP algorithm extracted almost six times
more vortex cores than the SH algorithm. The RP vortex cores were also tracked better than the SH

vortex cores and had longer average path length. One interesting note was the effect of increasing

79

e =

(b) Vortex cores extracted by SH algorithm.

Figure 5.13: Comparison of vortex cores extracted with time step widths of Az = 0.01 (black) and
At = 0.10 (red). Flow is from left to right.

the number of passes through the data set while relaxing tracking tolerances as presented in Section
3.3.2: few new paths were found, as seen by the small increase in the the total tracking paths.
However, increasing the number of passes did have a significant effect on the average path length.
Performing multiple passes through the data set helped to extend previously created tracking paths,
thus increasing the average feature life.

Though there were features extracted by both algorithms that only existed for 2 or less
frames, most of the paths lasted much longer, and some existed for more than 100 time steps, or
20% of the entire data set. Vortex cores were observed to convect from the cylinder to the domain
exit in roughly 300 time steps, so some vortex cores were tracked for 30% or more of a vortex
core’s life in the domain.

A 200 time step portion of the full RP data set was considered, and vortex cores which
existed for more than 100 time steps in the smaller data set are shown in Figure 5.14. The longest-

tracked vortex core existed for 178 time steps and was tracked from the mid-wake of the cylinder

80

Table 5.5: Vortex core extraction & tracking results from the cylinder data set.

Tracking parameters Roth-Peikert Sujudi-Haimes

1 Pass 10 Passes 1Pass 10 Passes
Vortex cores 83,582 14,180
Tracking paths 12,346 12,362 2,393 2,413

Untracked features 6,985 3,116 1,582 860
% features tracked 91.6 96.3 88.8 93.9
Average path length 12.2 19.1 6.2 12.2

i

, Featurelife

y -||2|\O\ i I l.l-l‘ﬂ.pl N T \-||6|\O| i ¢

L—X o E i
100 180

Figure 5.14: Paths of RP vortex cores which existed for more than 100 time steps of a 200-time
step portion of the data set.

to the domain exit. In this data set, where the time step was quite small, many vortex cores were
quite predictable, which increased the success of the feature tracking step. The attribute tracking
method allowed for quick correlation and viewing of a relatively complex data set which would

have been difficult to follow without the tracking paths to understand feature movement.

5.2.4 Vortex Cores Processed by Intelligent Agents

After feature extraction and tracking were accomplished, subjective logic was applied to
define the opinion of the data set. The belief, disbelief, uncertainty, and probability expectation of

the vortex cores were computed for each time step, and one representative time step can be seen

81

in Figure 5.15. A comparison of the vortex cores extracted by the SH and RP algorithms showed
that the SH algorithm performed poorly in this data set, extracting only some of the mode B vortex
cores and other spurious cores, while the RP algorithm extracted most of correct near-wake vortex
street as well as a number of other spurious vortex cores in the far wake.

The belief and disbelief values of the two data sets confirmed the RP algorithm’s suitability
in this flow situation and the SH algorithm’s weakness in curved wakes. As shown in Figure
5.15(a), higher belief was calculated for the SH vortex cores near the cylinder, which was due to
the higher vortex strength of the cores and relatively long feature life. However, most of the SH
vortex cores had low belief due to the higher curvature of the vortex cores in the cylinder wake. The
vortex cores extracted by the RP algorithm had a large range of belief values, as shown in Figure
5.15(b). This simulation was well-suited to the strengths of the RP algorithm, which include high
curvature, moderate vortex strength, and low quality. As expected, the vortex cores in the near
wake had higher belief (0.7 — 1) than those in the far wake, which had computed belief values of
approximately 0.25 to 0.5. The disbelief of the the RP vortex cores, as seen in Figure 5.15(d),
acted similarly, with low disbelief in the near wake with increasing disbelief for the vortex cores
in the far wake.

An analysis of the various characteristics was made to understand why the AA belief tuple
was computed as it was. A visualization of the characteristics that defined AA belief, disbelief, and
uncertainty of the vortex cores can be seen in Figure 5.16. As expected, VortexStrength, shown in
Figures 5.16(b) and 5.16(a), was high for both algorithms near the cylinder and declined further in
the cylinder wake. The vortex cores near the cylinder had curvature higher than CurvatureNorm =
25, as seen in Figures 5.16(d) and 5.16(c). This in effect increased the RP vortex cores’ belief
while decreasing the SH vortex core belief near the cylinder. In other areas of the wake, segments
of the SH vortex cores had lower curvature, which increased the expected probability in those
small segments of the vortex cores, as seen in Figure 5.15(g). The quality values shown in Figures
5.16(f) and 5.16(e) demonstrated that calculation of quality in unsteady data sets generally resulted
in higher quality values than was acceptable in steady-state data sets. This was due to the calculated
vortex convection velocity, which was taken as the average velocity at which the vortex core line
was moving and may not have been representative of the true vortex convection velocity. When

looking at the A; criterion in Figures 5.16(h) and 5.16(g), which influenced AA uncertainty, it was

82

)
)

{

\
/,

— i e . N e
Be[iejf Belief
e 025, 85 075,
0 1 0 1
(a) SH belief values. (b) RP belief values.
= . y
23 S |
A . ;
= § " - \
L > e ‘
o4 ~ o e : ~ 5
gi;&%f” /; - Disoolief o
0 05 0 0.5
(c) SH disbelief values. (d) RP disbelief values.
s 3 N '; j’\\ 7 . —
:\/ /> = T 4
0
/ ~ \ o Y e Y ey W el ; N Sy
- ST e — N2y e
- ol SR P \
\ =T n T T TP s T
i 2 = :;i Eaall ~ R P /\ | . i {
= — co o<l Lt & =
02 Uncgrfoinﬁé 0 Uncer’roinhé
: 5 075 . 5 07
- 25 H] . 25 3 ‘5#
(e) SH uncertainty values. (f) RP uncertainty values.
T N
- 7: |
J g .4* N - =
S W ho F i W) R L /
. Pr%kéosbilif%égpe%’fé’rgon) \ Prng%bnméEépezgl:}fgon
X OHMHAM\HV\\II*] woﬂ,l,w. “HHH?‘HH
(g) SH probability expectation. (h) RP probability expectation.

Figure 5.15: Opinion calculated on vortex cores extracted from one time step of the cylinder data
set. Flow moves from left to right.

observed that the RP algorithm extracted vortex cores which more closely agreed to the criterion,

83

while the SH algorithm generally failed to extract vortex cores which satisfied A, < 0. This resulted

in a lower uncertainty for the RP vortex cores and a higher uncertainty for the SH vortex cores.

e = P o w8 -
~ — g\/\/ /e ’{ > 7
T T T e
7 ~ f:_j /\z’_‘)\\ 5 <
- P
\ ~A _ ;/C)3\;/ S \/
S fﬁ;f:/ PRS- T T e S
= 5 N
S — =
e o ™ e - = r; // < M < i D S A Ss
VortexStrength VortexStrength
2 2 2 0 2
3 3 -3 3
(a) SH vortex strength. (b) RP vortex strength.
N ; B
i \ 5 el |
A Lo : (
J = a =
> =1 — \
o S — T o= | \
Curvature™ Curvature
‘ S0, 20 ; L0, 20
-] -
0 30 0 30
(c) SH curvature. (d) RP curvature.
¢ —
b} |
,’: l/ ~
4 = ~ 4 \
— - = R, e \\‘\j*)
Quality” Quality
0 40 60 80 20 40 60 80
200000 S0 dadD 00, 80,
0 90 0 90
(e) SH quality.
- = p—
C= 7
~—
B —
~ - L
L~ / — A
: - —)
P ~— — T / L% —y
i S P, T R
7 Lambda?2 Lambda?2
X -%,g% O.H‘Oiﬁlm% 2804 0. 04 %
=1 1 =] 1
(g) SH 4. (h) RP A,.

Figure 5.16: Cylinder data set vortex cores colored by characteristics defining the belief tuple.
Flow moves from left to right.

84

The uncertainty of the vortex cores was seen to be a strong function of the feature tracking
method, with a lesser influence from the A, criterion. The vortex cores with u = 1 in Figures 5.15(¢e)
and 5.15(f) had high uncertainty because the lines were not tracked at all in either direction, which
resulted in a line correspondence, Corr, of less than —1. The MA uncertainty was based on Corr,
as shown in Section 4.3, so the final uncertainty of the vortex core was 1 when a line was untracked
in both directions in time.

Feature tracking was observed to have a greater impact overall than any of the other in-
dividual characteristics which were used to define the agent opinions. This was due to the fact
that the MA opinion, which has the largest agent influence on the final opinion, was formulated
using feature tracking parameters. When a feature was poorly tracked, it contributed to a generally
lower opinion for the vortex core. This situation occurred even if a certain attribute, such as vortex
strength, contributed to a high belief in the vortex core. However, when vortex cores exhibited
all the strengths of a certain algorithm other than feature tracking, the final opinion was not as
dependent on the feature tracking results.

The automated feature set combination method was applied to the cylinder data set and
helped reduce some of the spurious and weak vortex cores from both data sets. The combined
feature set may be seen in Figure 5.17. The RP algorithm was the dominant extraction algorithm
in the cylinder data set, which was reflected in the vortex cores of the final data set — only 2 vortex
cores at the time step shown in Figure 5.17 were extracted by the SH algorithm. Also, since the
two algorithms did not extract vortex cores in the same location in most cases, the duplicate check
did not result in the removal of vortex cores from either of the vortex core data sets. Another item
of note was that in most time steps, many of the vortex cores that had been extracted by the RP
algorithm in the far wake were eliminated due to the fact that they had very low vortex strength,

A, values greater than 0, and were mostly poorly tracked.

5.2.5 Visualization of CFD Data Set Vortex Physics

The main goal of feature extraction is to provide a clear and simple representation of the
flow domain which also allows for visualization of massive data sets on a local workstation. The
agent-based method presented here is also a good tool for visualizing the vortex physics of a

CFD data set. One common vortex visualization method is finding isosurfaces of {y, as shown in

85

/ ProbabilityExpectation
X MO_I%\QI ‘u.‘unﬁ' g\ Ll pfz\s\ H
0 1

Figure 5.17: Final vortex core data set which was generated using the feature set combination
method.

Y-vorticity
0

2_ i I -2

(a) Isosurfaces of y-vorticity (§, = —2 and 2). (b) RP vortex cores shown with §; isosurface.

Figure 5.18: Visualization of the wake in the cylinder data set. The visualization of vortex core
lines provides a clear method for understanding the physics of the flow.

Figure 5.18. The {, isosurface in Figure 5.18(a) clearly shows the mode B vortex shedding and
the 3-dimensional vortex breakup in the far wake, but it is difficult to visualize some of the finer
details because of the visual clutter produced by isosurfaces. Other issues with isosurfaces include
choosing the correct isosurface value as well as indistinct delineation between vortex regions. In
Figure 5.18(b), the addition of the vortex cores extracted by the RP algorithm showed that feature
extraction agreed with the { isosurface and resulted in a simpler visualization of the physics in the

wake of the cylinder.

86

Figure 5.19: Slice of the CFD data set colored by { along with vortex cores from the RP data set
colored by probability expectation.

The use of subjective logic to find the opinion of the extracted vortex cores further assisted
in a determination of the vortex physics of CFD data sets. A slice of the CFD data set which bisects
a row of vortex cores can be seen in Figure 5.19. Most of the vortex cores bisected by the slice had
high probability expectation and agreed well with the centers of high {,. The vortex cores that did
have low probability expectation were shown to be shifted from the centers of the swirling flow.
One key application of this tool is to find vortex cores in the data set with high expected probability,
then utilize other visualization methods such as slices or isosurfaces to explore the flow physics in

that region in further depth.

5.2.6 Effects of Changing Subjective Logic Equation Constants

In Chapter 4, the equations defining agent belief, disbelief, and uncertainty were shown
to be a first-order model with two constants defining the line in the form of Eq. 4.7. Many of the
constants m| and my were created by Mortensen [17] for the steady-state feature extraction method
and were also used in the unsteady method. To determine the effect of the constants on the final
opinion of a data set, the constants were changed and the subjective logic was calculated for the
same vortex core data set. One time step from the cylinder data set was used to calculate the average

probability expectation of all vortex cores in the time step (E) due to the change in constants.

87

Table 5.6: Original constants in subjective logic b, d,u equations.

MA RPE RPNE SHg SHNE
b d u b d u b d u b d u b d u
m |05 -05 10|06 -04 05|08 -08 10|06 -04 05|08 -0.8 1.0
my |05 05 50|04 04 -10/02 08 00|04 04 -10|02 0.8 0.0

Many runs were conducted where m| and m, for each equation were changed simultaneously. For
example, in one run the two constants that defined the Roth-Peikert extracting agent (RPg) belief,
my prpg and mo j, rpg, Were changed while all other constants were kept as the original values
and the new E was calculated. The constants were changed to reflect the behavior of the original
constants, i.e. if the sum of m; and m, was 1, the new constants also summed to 1.

32 runs were conducted in which the constants of each equation used in subjective logic
were changed from the original values shown in Table 5.6. The constants in each run were chosen
to provide a wide range of values in order to find the effects of the constants for different extremes.
For example, the original constants m; , ma and my;, Ma Were 0.5 and 0.5, respectively, so two
runs were made which changed the constants to 0.9 and 0.1, and 0.1 and 0.9. The results of the
study can be seen in Table 5.7 and Figure 5.20. Generally, changes in the constants which defined
belief resulted in more change in probability expectation than did those that defined disbelief and
uncertainty.

Changes in the constants used in the MA opinion resulted in a similar change for the opin-
ions of SH and RP vortex cores. In Run 1, changing the MA belief constants resulted in a 20% and
15% change in the RP and SH E, respectively. The MA disbelief constants in Run 4 also resulted
in a significant AE of 4% and 8% for RP and SH, respectively. Changes in the MA uncertainty
constants resulted in the most significant change in terms of uncertainty equation constants, with
AE as high a 7% recorded.

The belief constants for the AAg had the most impact on the vortex cores which the AAg
extracted. This can be seen by the results of Runs 9, 21, and 22 in Figure 5.20, where AE was
as high as 16.5%. The disbelief and uncertainty constants in the AAg equations had a negligible

effect on the final opinion of the vortex cores.

88

Table 5.7: Subjective logic b,d,u equation constants study.

Run Agent Tuple m; mp Erp AERrp (%) Esg AEsy (%)

0 Original - — Z 0658 - 0.571 -

1 b 09 01 0526 1999 0484 15.14
2 0.1 09 0693 526 0565 091
3 d 09 09 0621 565 0547 4.09
4 MA 0.1 01 0628 452 0523 8.41
5 u 05 50 0679 326 0572 0.6
6 01 50 0707 747 0575 0.80
7 1.0 100 0.656 036 0559 2.07
8 b 09 01 0634 358 0570 0.15
9 01 09 0723 994 0.579 1.40
10 d 09 09 0651 1.09 0569 020
11 RPg 0.1 01 0.651 1.01 0.562 1.48
12 u 05 -50 0.646 182 0569 035
13 09 -50 0.661 0.44 0.555 2.66
14 0.1 50 0.669 172 0.578 1.30
15 b 05 05 0654 067 0592 3.80
16 02 08 0.659 0.18 0.585 2.44
17 op 04 0.6 0662 066 0576 0.99
18 NE d -01 01 0661 0.51 0.674 18.07
19 05 05 0659 010 0612 733
20 u 05 05 0.668 153 0582 201
21 b 09 01 0672 206 0512 1027
22 0.1 09 0.667 1.31 0.665 16.52
23 d -09 09 0655 048 0.553 3.11
24 SHE 0.1 0.1 0667 135 0573 0.38
25 u 05 -50 0.651 1.09 0575 077
26 09 -50 0.673 222 0571 0.02
27 0.1 -50 0.671 202 0.551 3.44
28 b 01 09 0673 231 0559 2.07
29 05 05 0657 009 0574 0.66
30 SHyng d -05 05 0699 619 0571 0.01
31 0.1 0.1 0725 1021 0576 1.03
32 u 05 05 0664 092 0569 0.26

For the AANE, the constants in the disbelief equations affected the vortex cores which the
AANE did not extract. This was most shown in Runs 18 and 31, where E changed by 10% and 18%

for the RP and SH vortex cores, respectively. For the AANEg, the belief and uncertainty constants

89

0.75

0.70

Average Probability Expectation

== Roth-Peikert
— Sujudi-Haimes
= =RP Original
= =SH Original

0.50

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Run
L)\)\ J\ Jit J
| T T T Y

MA RP: RP e SHe SH e

Figure 5.20: Results from the subjective logic equation constants study.

were observed to have a negligible effect on the vortex core opinion, similar to what was observed
for the AAg.

In summary, the final opinion of extracted vortex cores was most sensitive to changes in
the following constants: MA belief and disbelief, AAg belief, and AAng disbelief. Changes in
other constants, especially the AAg and AANg uncertainty, showed the insensitivity of the opinion
by changing these constants. An understanding of the sensitivity of certain constants helps for
future improvement of the equations defining subjective logic. One idea for improving the opinion
computation is to optimize the constants described here so that the opinion more correctly reflects
the belief through all data sets. This might be accomplished by applying the method on data sets
with known vortex cores and altering the constants until a correct opinion has been computed

through the different data sets.

5.3 Wind Turbine

A simulation of a wind turbine was obtained to test the method’s effectiveness in massive
CFD data sets. The data set was a simulation of the NREL Phase VI two-blade wind turbine [72].

The simulation was run in OVERFLOW-D [73], a NASA CFD flow solver which utilizes overset

90

Ve

Figure 5.21: Near-wake slice of the computational mesh used in the wind turbine simulation.

grids to solve the Navier-Stokes equations. An adaptive overset mesh, which contained roughly 30
million mesh nodes per time step, was used where refined blocks were inserted in areas of interest.
A representative slice of the overset mesh near the turbine blade is shown in Figure 5.21. More
details on the simulation are presented by Duque et al. [74].

The simulation was run to convergence and 360 time steps were saved, which corresponded
to 1 time step per degree of blade revolution. In order to operate on a massive data set, the fea-
ture extraction and tracking method was compiled on the local BYU supercomputer to fulfill the
memory requirements of the method. Feature extraction and tracking were performed on each time

step, and subjective logic was applied to compute the opinion of the vortex cores.

5.3.1 Computational Requirements of Method

Table 5.8 shows the results of the different steps taken on the wind turbine data set in terms
of data size, memory, and processing time. Here it can be seen that the method developed reduced
the data size by 2 to 3 orders of magnitude, which allowed for quick visualization on a desktop
workstation instead of a computationally expensive visualization cluster. However, the amount of
required memory and processing time per processor for the extraction step was roughly 11 and 80
times greater than that of the actual CFD simulation, respectively, because it could only be run on

one processor. Feature extraction required a large amount of memory because 3 different time steps

91

Table 5.8: Vortex core extraction and tracking results from the wind turbine data set. Memory
and time requirements are shown per processor.

Data size (MB) Processors Memory (MB) Wall time (hr)

CFD data set (per time step) 3000 162 2000.0 0.03
Extraction (per time step) 2.2-20.0 1 23000 2.5
Tracking (5 passes) N/A 1 90 10.0
Opinion (full data set) 2.5-27.0 1 50 4.0

were read into memory simultaneously for computation of time derivatives. The requirements of
feature extraction showed the need for this step to become parallelized so that feature extraction
could be run on the same processors as the CFD simulation and thus keep up with the simulation
as it runs.

Because of the nature of the different steps of the method, feature extraction was the only
step that could be performed in real time as the simulation was running. The other steps of feature
tracking and subjective logic required a series of extracted feature sets to be able to work. However,
those steps were negligible in terms of memory and processing time when compared to the feature
extraction step. To reduce the post-processing time, one could extract vortex cores as soon as three
consecutive CFD time steps have been written out, then track and compute the opinion of the vortex
cores as soon as the desired number of feature sets have been obtained. For example, consider a
simulation which will be run for 5000 time steps. When the simulation reaches the 1000 time
step, feature extraction could be run for 100 time steps concurrent to the simulation. After the
vortex cores have been extracted, the feature tracking and agent opinion steps would then be run

so that the analyst could view the results of the simulation while the simulation is still running.

5.3.2 Discussion of Extracted and Tracked Vortex Cores

The vortex cores extracted by the SH and RP algorithms displayed a similar trend as in
the cylinder data set, as seen in Figure 5.22. The RP algorithm again extracted many more vortex
cores than the SH algorithm — over 360 time steps, the RP algorithm extracted 455,000 vortex
cores, while the SH algorithm extracted 56,000 vortex cores. The RP algorithm extracted the
noticeable tip vortices on both blades as well as many other vortex cores in the turbine wake. The

SH algorithm mainly extracted short vortex cores which were mostly confined to the root of the

92

bp? = oy 7
Lot . I, Oy 7 =y
o & =~ S v 4 { &

'3 Var ol A -

E e AL o !
'\//"_—— o
& E

e

LineLength
2 4
0 5

(b) Vortex cores extracted by SH algorithm.

Figure 5.22: Vortex cores extracted from the wind turbine data set at 1 time step. Both data sets
are colored by vortex core line length. Flow moves in the +z-direction.

wind turbine. The location where the tip vortices dissipated and broke up into less coherent vortex
cores was shown to be roughly 1.5 blade diameters downstream of the wind turbine, as seen in
Figure 5.22(a).

Some challenges were encountered while extracting vortex cores from unsteady data sets
with an adaptive mesh such as the wind turbine data set. Because of the adaptive mesh utilized
in the CFD simulation, time derivatives were not calculated for most of the domain. Recall that
time derivatives were computed using the i node point in a mesh in three separate time steps.

However, in an adaptive mesh, the /" node point in a certain time step does not correspond to the

93

i™ node point in another time step, so time derivatives were not computed and the vortex cores
were extracted using a steady-state assumption. In the wind turbine data set, the mesh blocks near
the turbine blade were not adapted over time, so time derivatives were computed in these blocks,
where most of the tip vortex cores were contained. The same difficulty would be encountered in a
data set with a moving mesh. One option for computing time derivatives from these types of data
sets would be to calculate time derivatives at physical coordinates in the domain instead of at mesh
nodes. The time derivative field could then be interpolated onto the mesh nodes so that unsteady
extraction might be accomplished.

Another challenge in feature extraction was due to the overset mesh of the wind turbine
data set. Overset meshes were created in such a way that most of the domain in the wake of
the wind turbine was a combination of overlapping coarse and fine meshes. Vortex cores were
extracted from each block of the data set, where there were roughly 1,500 blocks in each time
step. The vortex cores from each block were then combined into one final set. It was observed
that some vortex cores which had been extracted through multiple blocks were disconnected at the
block edges, and some vortex cores were duplicated because they had been found in overlapping
blocks. To fix this, one could convert the whole data set into one unstructured mesh and remove
duplicate mesh nodes, then perform feature extraction. This was performed and it was observed
that the feature extraction from the unstructured mesh required much more time and memory than
from the blocks of the structured data set.

Feature tracking in the wind turbine data set showed the success of the efficient search
method outlined in Section 3.3.3. In this data set, there were roughly 1,200 vortex cores per time
step, a number at which exhaustive search through the data set became prohibitive. Without use
of the search method, one pass of the feature tracking was incomplete after 100 hours of run time.
With the efficient search method in place, five passes of feature tracking were performed in roughly
10 hours. With a faster tracking time, the post-processing of the data set was expedited in a more

timely manner.

5.3.3 Vortex Cores Processed by Agents

The opinion of the extracted and tracked vortex cores was calculated and is shown in Figure

5.23. As seen, the RP algorithm was the dominant extraction algorithm in the wind turbine data

94

set. This made sense because the incoming flow was fairly low speed (13 m/s) and the wake of
the turbine was highly curved. This resulted in curved, low strength vortex cores. However, the
RP algorithm also extracted many spurious vortex cores in the far wake of the data set, similar to
what happened in the cylinder data set. These spurious vortex cores were assigned low belief and
therefore also had low expected probability. The vortex cores extracted by the SH algorithm were
assigned low belief due to the nature of the data set, though some of the SH vortex cores near the
root of the turbine blade were passed into the final feature set. The final feature set, as shown in
Figure 5.23(c), showed the tip vortex cores near the turbine blade as well as the root vortex wake
which extended further downstream. The creation of the final feature set allowed for viewing of the
key vortex structures in the wake of the wind turbine without the noise created by the RP algorithm

in the far wake.

]

A

ProbabilityExpectation

o
™

0.5

02

© T FTRRRET o -

(a) RP vortex cores. (b) SH vortex cores. (c) Final vortex core data set.

Figure 5.23: Probability expectation of wind turbine vortex core data sets. Flow moves from
bottom to top.

95

CHAPTER 6. RECOMMENDATIONS FOR FUTURE WORK

This chapter gives general recommendations regarding the extension of unsteady feature
extraction and tracking to features other than vortex core lines. Also presented are topics for future

research regarding vortex core lines and the application of subjective logic to CFD data mining.

6.1 General Unsteady Feature Extraction & Tracking

Currently, only vortex core line extraction algorithms have been modified to correctly ex-
tract vortex core lines from time-dependent CFD data sets. Two other features which were re-
searched by Lively [75] were shock waves and separation and attachment lines. These features
were extracted from steady-state data sets and subjective logic was applied to compute the opinion
of the features. Future work should investigate transient modifications to these extraction algo-
rithms and the effect of the modifications on the extracted features.

Feature tracking is another aspect of the unsteady trust network that that would require
attention in different types of features. The attribute-based feature tracking implemented here
required line-type features as input, and different attributes would be required for different types
of features. For example, if it was desired to track a volume-type feature, attributes such as volume
and orientation might be used, as suggested by Reinders et al. [11]. Different tracking methods
have been created for specific types of features and might be implemented in the general unsteady
feature extraction method so that different features might be successfully tracked.

It was shown in Section 5.3.1 that feature extraction took much longer and required more
memory per processor than the actual CFD simulation. Due to the architecture of the feature
extraction method it was not possible to run feature extraction on multiple processors, which in-
creased the difficulty of running the extraction on large data sets. In order to reduce extraction
time, the code would need to be parallelized so that feature extraction could be run on the same

processors as a CFD simulation while the simulation is running.

96

6.2 Vortex Core Line Extraction & Tracking

Two feature extraction algorithms were used in this research to show the feasibility of uti-
lizing a trust network to detect believable features in unsteady CFD data sets. As shown in Chapter
2, many vortex core extraction algorithms have been and continue to be developed, especially for
use in unsteady flow situations. Any extraction algorithm could be utilized into the trust network
with a knowledge of its strengths and weaknesses. Future research should look into the effect of
employing multiple vortex core extraction algorithms in the trust network.

The attribute-based tracking method used in this research was shown to be quite effective at
tracking vortex core lines through an unsteady CFD data set, but would require additional work to
become more robust throughout data sets. The Position tolerance was very simulation-dependent,
since length scales vary widely in different CFD simulations. One idea for future work would be to
create a parameter which finds an appropriate Position tolerance, perhaps based on a characteristic
length of the flow such as hydraulic diameter. Feature event detection was also not implemented
in the tracking method. Finding events such as split and merge as shown in Figure 2.7 serves two
purposes: increase the feature life of an extracted vortex core and view additional aspects of vortex
cores which might aid in a greater understanding of flow physics. Birth and death events may also
be found by marking vortex cores which have only been tracked in one direction in time. For the
vortex core line extracting and tracking step of the method, this is should be addressed first in order
to improve vortex core line tracking through time.

Grid density and mesh type was shown to be an important factor in extracting vortex cores
that agreed with the physics of the flow domain. Extraneous vortex cores extracted from coarse
meshes sometimes had a high calculated probability expectation because the vortex core satisfied
the strengths of the extraction algorithm. Some parameter which describes the grid density, perhaps
related to the reference length of the simulation or wall y™ in turbulent flows, could be created and
used to help define the opinion of an extracted vortex core. Another improvement that could be
made to the vortex core extraction methods would be a technique to extract smooth vortex core
lines from data sets with unstructured meshes. One possible application of the method might
be to find vortex cores with high expected probability and use them as input for adaptive mesh

refinement.

97

The data sets considered here were incompressible flows in the laminar or turbulent range,
where the turbulence was modeled using RANS. Another area of research would look at the results
of feature extraction and tracking from unsteady LES and DNS simulations of different flow do-
mains. Turbulent eddies are partially or fully resolved in these simulations, so future work would
determine whether feature extraction methods extract these flow structures as vortex core lines.
Also, with the fine meshes and small time steps associated with such simulations, the data reduc-
tion would need to be investigated to ascertain whether the method actually helps to detect key
vortex structures in such refined simulations. Compressible flows should also be considered, since
the study of vortex-shock interactions is one of key interest in many industries, and an understand-

ing of vortex physics in compressible simulations would lend to improved engineering designs.

6.3 Subjective Logic Framework

In Section 2.2.2, both vortex core extraction algorithms used had the same weakness of
incorrectly extracting vortex core lines with a non-constant acceleration. This weakness was not
implemented in the subjective logic computations, and a better calculation of vortex core belief
would likely result from the addition of an acceleration check along vortex core lines extracted by
the SH and RP algorithms. Future research would investigate the magnitudes of acceleration along
these vortex core lines and the effect of an acceleration parameter in subjective logic.

The A, criterion was used to define vortex core uncertainty in this research. This vortex
identification method has been extensively used in a variety of CFD data sets with success, but it
has its shortcomings. It can fail to find vortices in rotating frames of reference, was not formulated
to be useful in compressible flow, and can declare the whole domain to be a vortex in certain
simulations. Some of the criteria presented in Section 2.2.1 may be used in tandem with the A,
criterion to define AAEg uncertainty, or other methods such as particle tracing may be used in
unsteady CFD data sets to find areas of swirling flow.

The MA opinion was calculated based on a normalized feature life FeaturelLifeNorm,
which was very simulation-dependent and required user input based on the number of time steps
a believable feature was expected to exist. This required analysis of the data set in order to select
a proper value of FeatureLifeNorm, and some method of automation for this parameter would

increase the generality of the unsteady trust network. Because feature tracking is closely related

98

to time step, some parameter might be created which correlates the time step to vortex convection
velocity or shedding frequency to find an appropriate FeatureLifeNorm for individual data sets
without the user’s input.

In Chapter 4, the equations defining agent belief, disbelief, and uncertainty were shown to
be first-order equations with user-defined constants which were chosen to satisfy b+d 4+ u = 1.
However, in most situations, this requirement was not satisfied, which resulted in a less robust
implementation of subjective logic and incorrect values of belief, disbelief, and uncertainty, espe-
cially in situations where b +d +u > 2. This result reflected the need for a better set of equations
which define the agent belief tuples and is the most important aspect of the subjective logic frame-
work that should be addressed. Future work would look at improving the agent b, d, u equations so
that the condition of b +d +u =1 is satisfied more consistently.

The automated feature set combination was shown to effectively combine two feature sets
and detect many duplicate lines between data sets. However, in some instances, vortex core lines
which were visually verified to be duplicate lines were not detected by the automated method. One
idea for finding believable vortex core lines is to find all believable points in vortex core lines and
place the disconnected points into a new data set. A new line connection method could then be

used to connect the believable points into a final set of vortex core lines.

99

CHAPTER7. SUMMARY AND CONCLUSIONS

7.1 Summary

This thesis has presented a method for extracting and tracking vortex core lines from un-
steady CFD data sets using subjective logic in a trust network. The method comprises five steps

which may be applied to any unsteady CFD data set:
1. Extract vortex core lines from the CFD data set using unsteady feature extraction algorithms.
2. Track extracted vortex cores through time.
3. Create agent opinions for each vortex core line.
4. Combine agent opinions to form final opinions of vortex core lines.
5. Aggregate believable vortex cores from separate data sets into one final feature set.

The SH and RP algorithms were used to extract vortex core lines from unsteady data sets.
Both algorithms were selected because they are well known and have documented strengths and
weaknesses which complement each other. The algorithms and parameters which defined the
strengths and weaknesses of the algorithms were modified for unsteady data sets. An efficient
feature tracking method was also created for use with line-type features and was shown to success-
fully track vortex core lines through a time series of data. The opinion of the extracted and tracked
vortex cores was computed using subjective logic in a trust network. The MA opinion was for-
mulated using feature tracking parameters, while the AA opinions were computed using algorithm
strengths and weaknesses as well as the A, criterion. After the final opinion of the vortex core
lines was determined, the believable features from both algorithm data sets were automatically

combined into one final believable vortex core line data set.

100

7.2 Conclusions

The addition of time derivatives to the feature extraction algorithms had a noticeable effect
on the vortex cores extracted. The computational cost of simultaneously loading 3 time steps into
memory was felt to be necessary for correct extraction of vortex cores from unsteady CFD data
sets. The vortex cores extracted with time derivatives from the lid-driven cavity data set were
shifted towards the center of rotation. Also, there were many more spurious vortex cores which
were extracted without time derivatives.

The automated feature set combination showed that subjective logic could be used to suc-
cessfully find the believable vortex core lines in a flow simulation and to remove spurious vortex
cores. A critical line-average probability expectation of E = (.75 was found to be most successful
at automatically removing spurious vortex core lines from the simulations and leaving only the
highly believable vortex cores for visualization. In the lid-driven cavity, application of the feature
set combination showed that the SH algorithm extracted the most believable primary, secondary,
and corner vortex core lines and removed the corresponding vortex core lines extracted by the RP
algorithm. In the cylinder data set, the vortex core lines in the far wake were marked as mostly
spurious which moved the focus of the visualization on the stronger mode B vortex cores in the
near wake of the cylinder.

The type of grid from which vortex cores were extracted was shown to have a significant
effect on the quality of the extracted vortex core lines. Grid density in the cylinder data set had a
significant effect on the quality of extracted vortex core lines. The vortex cores extracted from the
structured mesh of the cylinder data set were segmented and did not generally follow the swirling
flow of the data set. In the fine structured mesh, the mode B vortex core lines, as expected at the
simulation flow regime, were extracted and were tracked well through time.

The RP algorithm was determined to be the dominant extraction algorithm in simulations
of wake flows. The RP algorithm extracted roughly six times as many vortex cores as the SH
algorithm from the cylinder and wind turbine data sets since the RP algorithm was designed to
extract the ideal semi-circular vortex core line. The vortex core line opinions computed with
subjective corroborated this conclusion, with higher expected probability in most of the vortex
cores extracted by the RP algorithm than those extracted by the SH algorithm. The effect of

increasing time step width was also shown to be very important as it decreased the flow curvature

101

in wake simulations, which decreased the effectiveness of the RP algorithm while allowing the SH
algorithm to detect more vortex core lines. In either case, increasing time step width resulted in
poorer results for both algorithms.

Feature tracking was shown to have a greater effect on the final opinion of the vortex cores
than any other individual characteristic of vortex cores because of its use in computing the MA
opinion. When a vortex core line was untracked in both directions in time, the final uncertainty
was usually u = 1, which resulted in a probability expectation of E = 0.5. The addition of using
more tracking passes through the data set with increasing tolerances resulted in significantly longer
tracking path lengths, which increased the belief of well-tracked vortex core lines.

Analysis of the constants used in the agent b, d, u equations showed that the most important
constants were those defining MA belief and disbelief, AAE belief, and AANg disbelief. In general,
changing the belief and disbelief constants in the MA opinion resulted in the most change in
opinion for both the vortex core data sets from the cylinder data set, with changes of up to 20% in
E reported. Change in the belief constants of the AAg resulted in considerable AE of up to 16%
for the vortex cores which the AAE extracted. The last significant change occurred when the AANg
disbelief constants were altered, with AE of up to 18% in the vortex cores which the AANg did not
extract.

This method allows for a clear and simple visualization of the flow physics of unsteady
CFD data sets. In the lid-driven cavity simulation, the RP algorithm extracted several vortex core
lines which were not expected but had high expected probability and were then verified to be
centers of swirling flow. In the cylinder data set, mode B vortex cores were extracted and tracked
through time and corresponded well to findings made by others. The vortex breakup in the far
wake of the cylinder data set was also observed. The vortex cores extracted from the wind turbine
data set showed the extent of the tip vortex cores as well as the length at which the turbine wake
broke up into more random vortex cores. By use of the method, a researcher can find vortex cores
with high expected probability and investigate the region from which the vortex core was extracted
in greater depth as well as following the vortex core as it travels through the data set.

This method contains certain weaknesses which increase the difficulty of using it in un-
steady data sets. Feature extraction and tracking results in a significant data size reduction from

the CFD data set, but there is still a large amount of data to analyze, especially when the method

102

is performed on large CFD data sets. With such a large amount of data, application of subjective
logic results in incorrect opinions for certain vortex core lines. Subjective logic is also by defini-
tion uncertain, meaning that there is no clear true or false when it comes to defining the opinion
of a feature, so the opinion of weaker vortex core lines may be inconclusive. One of the biggest
weaknesses of the method presented here is the numerous values which define the b, d, u equations.
There are three opinions with three belief tuple equations each, where each belief tuple component
contains two constants, which results in 18 variables that can be changed to find the final opinion
of features. Last, a good knowledge of an algorithm’s strengths and weaknesses must be known
to form the opinion, so algorithms which are new or not well understood cannot be used in this
method.

Even with these weaknesses, the application of this method in large unsteady data sets
provides a way to remove a considerable amount of spurious features and allows for clear analysis
of the most believable features in a data set. Since there is no clear true or false result from
subjective logic opinions, this allows some flexibility for the researcher to decide what is believable
and what is not. The method also aids in the search for features in areas of a simulation that may
not have been apparent and points the researcher to areas where features are most believable.
In unsteady data sets, these believable features can then be followed through time to watch the
interactions and evolution of features in time.

The novel application of intelligent agents to extract and track vortex core lines from un-
steady CFD data set aids in the search for all relevant flow features in a time-dependent flow field.
By use of subjective logic in a trust network, the belief and expected probability of features may
be found if knowledge of the algorithm and flow feature physics are known. Feature tracking in
unsteady data sets is also used to find the belief of a feature as it exists through time. Features
with high expected probabilities from different data set are then combined into one final feature
set, which simplifies the analysis of the flow domain into one simple data set. This new CFD visu-
alization method will enable an analyst to focus on key regions of a CFD simulation and quickly

analyze the physics of massive time-dependent data sets.

103

REFERENCES

[1] List, M., Gorrell, S., and Turner, M., 2008. “Investigation of Loss Generation in an Em-
bedded Transonic Fan Stage at Several Gaps using High Fidelity, Time-accurate CFD.” In
Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air.

[2] Yao, J., Wadia, A., and Gorrell, S., 2008. “High-Fidelity Numerical Analysis of Per-Rev-
Type Inlet Distortion Transfer in Multistage Fans—Part II: Entire Component Simulation and
Investigation.” ASME Paper GT2008-50813, June.

[3] TECPLOT, INC, 2011. Tecplot 360 User’s Manual Release 2. P.O. Box 52708, Bellevue, WA
98015-2708, U.S.A.

[4] COMPUTATIONAL ENGINEERING INTERNATIONAL, INC., 2008. EnSight User Manual for
Version 9.0. 2166 N. Salem Street, Suite 101, Apex, NC 27523.

[5] Post, F., Vrolijk, B., Hauser, H., Laramee, R., and Doleisch, H., 2003. “The State of the Art
in Flow Visualization: Feature Extraction and Tracking.” Computer Graphics Forum, 22(4),
December, pp. 775-792.

[6] Ma, K.-L., van Rosendale, J., and Vermeer, W., 1996. “3D Shock Wave Visualization on
Unstructured Grids.” In Proceedings of the 1996 Symposium on Volume Visualization, pp. 87—
94,104.

[7] Roth, M., 2000. “Automatic Extraction of Vortex Core Lines and Other Line-Type Features
for Scientific Visualization.” PhD dissertation, Swiss Federal Institute of Technology.

[8] Meadows, K. R., Kumar, A., and Hussaini, M., 1991. “Computational Study on the Interac-
tion Between a Vortex and a Shock Wave.” AIAA Journal, 29(2), pp. 174-179.

[9] Inoue, O., and Hattori, Y., 1999. “Sound Generation by Shock—Vortex Interactions.” Journal
of Fluid Mechanics, 380, pp. 81-116.

[10] Kalivas, D. S., and Sawchuk, A. A., 1991. “A Region Matching Motion Estimation Algo-
rithm.” CVGIP: Image Understanding, 54(2), pp. 275-288.

[11] Reinders, F., Post, F. H., and Spoelder, H. J., 2001. “Visualization of Time-Dependent Data
with Feature Tracking and Event Detection.” The Visual Computer, 17, pp. 55-71.

[12] Weinkauf, T., Sahner, J., Theisel, H., and Hege, H.-C., 2007. “Cores of Swirling Particle
Motion in Unsteady Flows.” IEEE Transactions on Visualization and Computer Graphics,
13(6), November/December, pp. 1759-1766.

[13] Bauer, D., and Peikert, R., 2002. “Vortex Tracking in Scale-Space.” In Proceedings of the
Symposium on Data Visualization 2002, VISSYM ’02, Eurographics Association, pp. 233—ff.

105

[14] Jgsang, A., 2001. “A Logic for Uncertain Probabilities.” International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, 9(3), June, pp. 279-311.

[15] J@sang, A., 2002. “The Consensus Operator for Combining Beliefs.” Artificial Intelligence
Journal, 141(1-2), October, pp. 157-170.

[16] McAnally, D., and Jgsang, A., 2004. “Addition and Subtraction of Beliefs.” In Proceedings
of Information Processing and Management of Uncertainty in Knowledge-Based Systems.

[17] Mortensen, C. H., 2010. “A Computational Fluid Dynamics Feature Extraction Method
Using Subjective Logic.” Master’s thesis, Brigham Young University, August.

[18] Jgsang, A., Hayward, R., and Pope, S., 2006. “Trust Network Analysis with Subjective
Logic.” In Proceedings of the 29" Australasian Computer Science Conference, Vol. 48,
pp- 85-94.

[19] Robinson, S., 1991. “Coherent Motions in the Turbulent Boundary Layer.” Annual Reviw of
Fluid Mechanics, 23, pp. 601-639.

[20] Nguyen, E., 2004. Mulvane, KS Tornado http://http://www.mesoscale.ws/pic2004/
040612-13. jpg, June.

[21] eFluids, 2010. NASA Wake Vortex Study at Wallops Island http://media.efluids.com/
galleries/vortex?medium=191, May.

[22] Villasenor, J., and Vincent, A., 1992. “An Algorithm for Space Recognition and Time Track-
ing of Vorticity Tubes in Turbulence.” Computer Vision, Graphics, and Image Processing:
Image Understanding, 55(1), pp. 27-35.

[23] Hunt, J., Wray, A., and Moin, P., 1988. Eddies, Stream, and Convergence Zones in Turbulent
Flows Tech. Rep. CTR-S88, Center for Turbulence Research Report.

[24] Chong, M., Perry, A., and Cantwell, B., 1990. “A General Classification of Three-
Dimensional Flow Fields..” Physics of Fluids A, 2, pp. 765-777.

[25] Jeong, J., and Hussain, F., 1995. “On the Identification of a Vortex.” Journal of Fluid
Mechanics, 285, pp. 69-94.

[26] Haller, G., 2003. “An Objective Definition of a Vortex.” Journal of Fluid Mechanics, 528,
pp. 1-26.

[27] Peikert, R., and Roth, M., 1999. “The ‘Parallel Vectors’ Operator — A Vector Field Visual-
ization Primitive.” In Proceedings of IEEE Visualization 99, pp. 263-270.

[28] Banks, D., and Singer, B., 1995. “A Predictor-Corrector Technique for Visualizing Unsteady
Flow.” IEEE Transactions on Visualization and Computer Graphics, 1, pp. 151-163.

[29] Strawn, R. C., Ahmad, J., and Kenwright, D. N., 1999. “Computer Visualization of Vortex
Wake Systems.” AIAA Journal, 37, apr, pp. 511-512.

[30] Sujudi, D., and Haimes, R., 1995. “Identification of Swirling Flow in 3-D Vector Fields.”
AIAA Paper 95-1715, June.

106

http://http://www.mesoscale.ws/pic2004/040612-13.jpg
http://http://www.mesoscale.ws/pic2004/040612-13.jpg
http://media.efluids.com/galleries/vortex?medium=191
http://media.efluids.com/galleries/vortex?medium=191

[31] Haimes, R., 1994. “pV3: A Distributed System for Large-Scale Unsteady CFD Visualiza-
tion.” AIAA Paper 94-0321.

[32] Roth, M., and Peikert, R., 1996. “Flow Visualization for Turbomachinery Design.” In Pro-
ceedings of Visualization *96, pp. 381-384.

[33] Roth, M., and Peikert, R., 1998. “A Higher-order Method for Finding Vortex Core Lines.” In
Proceedings of IEEE Visualization, pp. 143—150.

[34] Sahner, J., Weinkauf, T., and Hege, H.-C., 2005. “Galilean Invariant Extraction and Iconic
Representation of Vortex Core Lines.” In EUROGRAPHICS - IEEE VGTC Symposium on
Visualization, K. Brodlie, D. Duke, and K. Joy, eds., pp. 151-160.

[35] Jiang, M., Machiraju, R., and Thompson, D., 2002. “Geometric Verification of Swirling
Features in Flow Fields.” In Visualization, 2002. VIS 2002. IEEE, pp. 307-314.

[36] Globus, A., Levit, C., and Lasinski, T., 1991. “A Tool for Visualizing the Topology of Three-
Dimensional Vector Fields.” In VIS ’91: Proceedings of the 2" Conference on Visualization
‘91, pp. 33-40.

[37] Pagendarm, H., Henne, B., and Riitten, M., 1999. “Detecting Vortical Phenomena in Vector
Data by Medium-Scale Correlation.” In VIS '99: Proceedings of the Conference on Visual-
ization ’99, pp. 409-412.

[38] Miura, H., and Kida, S., 1996. “Identification of Central Lines of Swirling Motion in Turbu-
lence.” In Proceedings of International Conference on Plasma Physics, pp. 866—869.

[39] Helman, J., and Hesselink, L., 1989. “Representation and Display of Vector Field Topology
in Fluid Flow Data Sets.” IEEE Computer, 22(8), pp. 27-36.

[40] Helman, J., and Hesselink, L., 1991. “Visualizing Vector Field Topology in Fluid Flows.”
IEEE Computer Graphics and Applications, 11(3), pp. 36—46.

[41] Dorrie, H., 1965. 100 Great Problems of Elementary Mathematics. Dover.

[42] Fuchs, R., Peikert, R., Hauser, H., Sadlo, F., and Muigg, P., 2008. “Parallel Vectors Criteria
for Unsteady Flow Vortices.” IEEE Transactions on Visualization and Computer Graphics,
14(3), May/June, pp. 615-626.

[43] Schindler, B., Fuchs, R., Biddiscombe, J., and Peikert, R., 2009. “Predictor-Corrector
Schemes for Visualization of Smoothed Particle Hydrodynamics Data.” IEEE Transactions
on Visualization and Computer Graphics, 15(6), November/December, pp. 1243—1250.

[44] Thiesel, H., and Seidel, H.-P., 2003. “Feature Flow Fields.” In Joint EUROGRAPHICS -
IEEE TCVG Symposium on Visualization, G.-P. Bonneau, S. Hahmann, and C. Hansen, eds.,
The Eurographics Association, pp. 141-149.

[45] Theisel, H., Sahner, J., Weinkauf, T., Hege, H.-C., and Seidel, H.-P., 2005. “Extraction of
Parallel Vector Surfaces in 3D Time-Dependent Fields and Application to Vortex Core Line
Tracking.” In Proc. IEEE Visualization 2005, pp. 631-638.

107

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Jiang, M., Machiraju, R., and Thompson, D., 2005. “Detection and Visualization of Vortices.”
In The Visualization Handbook. Academic Press, pp. 295-3009.

Peikert, R., Parkinson, E., Ait-Bouziadz, Y., Sicky, M., Sadlo, F., Favrex, J., Biddiscombex,
J., and Jangx, Y., 2008. Physically Based Methods for Flow Visualization and Analysis and
Interactive Exploration Techniques for Time-Dependent CFD Data Tech. Rep. 1, CTL

Marusic, 1., Candler, G., Interrante, V., Subbareddy, P., and Moss, A., 2001. Real Time
Feature Extraction for the Analysis of Turbulent Flows. Springer, ch. 13, pp. 223-238.

Fuchs, R., Kemmler, J., Schindler, B., Sadlo, F., Hauser, H., and Peikert, R., 2010. “Toward
a Lagrangian Vector Field Topology.” Computer Graphics Forum, 29(3), pp. 1163-1172.

Kasten, J., Hotz, 1., Noack, B., and Hege, H.-C., 2010. “On the Extraction of Long-Living
Features in Unsteady Fluid Flows.” In Topological Methods in Data Analysis and Visualiza-
tion: Theory, Algorithms, and Applications (TopolnVis’09).

Fuchs, R., Peikert, R., Sadlo, F., Alsallakh, B., and Groller, M. E., 2008. “Delocalized
Unsteady Vortex Region Detectors.” In Proceedings VMV 2008, D. K. D. S. Oliver Deussen,
ed., pp. 81-90.

Shi, K., Theisel, H., Hauser, H., Weinkauf, T., Matkovic, K., Hege, H.-C., and Seidel, H.-
P., 2009. “Path Line Attributes — An Information Visualization Approach to Analyzing the
Dynamic Behavior of 3D Time-Dependent Flow Fields.” In Topology-Based Methods in
Visualization 11, H.-C. Hege, K. Polthier, and G. Scheuermann, eds., Mathematics and Visu-
alization, Springer, pp. 75-88.

Weinkauf, T., Theisel, H., Gelder, A. V., and Pang, A., 2010. “Stable Feature Flow Fields.”
IEEE Transactions on Visualization and Computer Graphics, 17(6), pp. 770-780.

Samtaney, R., Silver, D., Zabusky, N., and Cao, J., 1994. “Visualizing Features and Tracking
Their Evolution.” IEEE Computer, 27(7), July, pp. 20-27.

Silver, D., and Wang, X., 1997. “Tracking and Visualizing Turbulent 3D Features.” IEEE
Transactions on Visualization and Computer Graphics, 3(2), April-June, pp. 129-141.

Chen, J., Silver, D., and Parashar, M., 2003. “Real Time Feature Extraction and Tracking in a
Computational Steering Environment.” In Proceedings of the High Performance Computing
Symposium, HPC2003, Society for Modeling and Simulation International, pp. 155-160.

Tzeng, E.-Y., and Ma, K.-L., 2005. “Intelligent Feature Extraction and Tracking for Visu-
alizing Large-Scale 4D Flow Simulations.” In SC ’05: Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing, IEEE Computer Society, p. 6.

Muelder, C., and Ma, K.-L., 2009. “Interactive Feature Extraction and Tracking by Utiliz-
ing Region Coherency.” In Proceedings of the 2009 IEEE Pacific Visualization Symposium,
PACIFICVIS ’09, IEEE Computer Society, pp. 17-24.

Schafhitzel, T., Baysal, K., Rist, U., Weiskopf, D., and Ertl, T., 2008. “Particle-Based Vortex
Core Line Tracking Taking into Account Vortex Dynamics.” In Proceedings of International
Symposium on Flow Visualization *08.

108

[60] Schafhitzel, T., Baysal, K., Vaaraniemi, M., Rist, U., and Weiskopf, D., 2011. “Visualizing
the Evolution and Interaction of Vortices and Shear Layers in Time-Dependent 3D Flow.”
IEEE Transactions on Visualization and Computer Graphics, 17(4), April, pp. 412-425.

[61] eFluids, 2012. Particle Image Velocimetry http://www.efluids.com/efluids/pages/
products/piv.htm, March.

[62] Reinders, F., Post, F. H., and Spoelder, H. J. W., 1999. “Attribute-based Feature Tracking.”
In Data Visualization *99, Springer Verlag, pp. 63—-72.

[63] Reinders, F., Sadarjoen, 1. A., Vrolijjk, B., and Post, F. H., 2002. “Vortex Tracking and
Visualisation in a Flow Past a Tapered Cylinder.” Computer Graphics Forum, 21(4), Nov,
pp- 675-682.

[64] Bauer, D., 2006. “Selective Visualization of Unsteady 3D Flow Using Scale-Space and
Feature-Based Techniques.” PhD dissertation no. 16640, Swiss Federal Institute of Tech-
nology (ETH).

[65] Bland, J. M., and Altman, D. G., 1996. “Transforming Data.” British Medical Journal, 312,
March, p. 770.

[66] Albensoeder, S., and Kuhlmann, H., 2005. “Accurate Three-Dimensional Lid-Driven Cavity
Flow.” Journal of Computational Physics, 206(2), July, pp. 536-558.

[67] Zhang, H.-Q., Fey, U., Noack, B. R., Kénig, M., and Eckelmann, H., 1995. “On the Transition
of the Cylinder Wake.” Physics of Fluids, 7(4), April, pp. 779-794.

[68] Williamson, C., 1996. “Vortex Dynamics in the Cylinder Wake.” Annual Review of Fluid
Mechanics, 28, pp. 477-539.

[69] Roshko, A., 1952. “On the Development of Turbulent Wakes from Vortex Streets.” PhD
thesis, California Institute of Technology.

[70] Bloor, M., 1964. “The Transition to Turbulence in the Wake of a Circular Cylinder.” Journal
of Fluid Mechanics, 19(290), pp. 290-304.

[71] Thompson, M., Hourigan, K., and Sheridan, J., 1996. “Three-Dimensional Instabilities in the
Wake of a Circular Cylinder.” Experimental Thermal and Fluid Science, 12, pp. 190-196.

[72] Hand, M., Simms, D., Fingersh, L., Jager, D., Cotrell, J., Schreck, S., and Larwood, S.,
2001. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and
Available Data Campaigns Tech. Rep. NREL/TP-500-29955, National Renewable Energy
Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401-3393, December.

[73] Nichols, R. H., and Buning, P. G., 2008. User’s Manual for OVERFLOW 2.1.,2.1ted. NASA,
August.

[74] Duque, E. P., Burklund, M. D., and Johnson, W., 2003. “Navier-Stokes and Comprehensive
Analysis Performance Predictions of the NREL Phase VI Experiment.” ASME Journal of
Solar Enery Engineering, 125, November, pp. 457-467.

109

http://www.efluids.com/efluids/pages/products/piv.htm
http://www.efluids.com/efluids/pages/products/piv.htm

[75] Lively, M. C., 2012. “Extraction of Shock Waves and Separation and Attachment Lines
From Computational Fluid Dynamics Simulations Using Subjective Logic.” Master’s thesis,
Brigham Young University, June.

[76] Kitware, 2006. The VTK User’s Guide., 5 ed. Kitware, Inc.

[77] Kitware, 2006. The Visualization Toolkit., 4 ed. Kitware, Inc.

110

APPENDIX A. FLOW VISUALIZATION IMAGES

This appendix contains additional flow visualization conducted for the lid-driven cavity

and the cylinder in cross flow.

111

Rotfation =
‘ Rotation T

o O e S OO

50_— 50

(a) Streamlines seeded around the primary vortex core (b) Streamline rotation verifies extents of secondary

shows that SH (red) was better than RP (blue) at ex- vortex core.
tracting the primary core.

AngularVelocity

Rotation

-25
Y 04 791'2 0 mpx"\znm 04
Ex T . e

-0.5 0.5

(d) Weak swirling flow is detected in the RP Taylor-

(c) Swirling flow is verified for RP stream-wise vortex
Gortler-Like vortex cores.

cores.

Figure A.1: Verification of the main vortex core lines in the lid-driven cavity set. Streamlines are
used to show swirling strength and vortex extents. Lid moves in the +x-direction.

112

~ X\, Strong Vortex
_— Cores

i - ~__— ProbabilityExpectation
g U -

025 05 075 S T~
\ e |

0

ProbabilityExpectation
0 Spurious Vortex Core N

W”""Z"‘“
0

1
(a) yz-slice of CFD data set with RP vortex cores.

(b) yz-slice of CFD data set with RP vortex cores.

Strong Vortex Cores

e P
ProbabilityExpectation |) | ~~~ ProbabilityExpectation
0.25 075 8 ~_ | 025 .05 075
' o
0] 0 1
(c) xy-slice of CFD data set with RP vortex cores.

(d) xz-slice of CFD data set with SH vortex cores.

Figure A.2: Verification of vortex core lines in the lid-driven cavity set. Cutting planes of the
CFD data set colored by vortex strength show the correct and spurious vortex cores and that the
computed subjective logic of the vortex cores agrees with the manual visualization. Lid moves in
the +x-direction.

113

VortexStrength Curvature
40 80 120

2 0 2
i1 s '

-4 4 0 150

(a) (b)

Featurelife

2

1 10

(d)

Figure A.3: Values for the RP vortex cores at t = 3.0s. Lid moves in the +x-direction.

114

VortexStrength

2 0 2
i '

-4 4

Curvature
40 80 LI \]\]20
'

0 150

(a)

Featurelife
2 4

6 8
[R

1 10

(d)

Figure A.4: Values for the SH vortex cores at # = 3.0s. Lid moves in the +x-direction.

115

911

z-Vorticity 7 Vortex Strength

_i'e _i'A i ,\Qﬁl\u i i 038 04 0 ,\,\Qiflm O'E
1 R

mY
1 -1 1

(a) Slice of CFD data set colored by z-vorticity with overlaid RP vortex (b) Slice of CFD data set colored by vortex strength with overlaid SH vortex
cores. cores.

x—VeIociTy v k | x-velocity
0.4 0 0 0.8 0.4 04 O
-0.5 1 -0.5 1
(c) Particles seeded in CFD data set and overlaid with RP vortex cores. (d) Particles seeded in CFD data set and overlaid with SH vortex cores.

Figure A.5: Visualization of cylinder data set vortex cores extracted from the structured coarse mesh (Section 5.2.1). RP vortex cores

agree with the simulation more than than SH vortex cores. Vortex stretching can be seen in the cylinder far wake.

N g

Time: 24.01

(a) Traced particles colored by rotation.

¥ AngularVelocity

-2

L 2 4
Time: 24.01 L .JI}IIIJMF)

(b) View of traced particles and vortex core lines extracted by the RP algorithm.

Figure A.6: Visualization of a particle trace in the structured fine cylinder CFD data set.

117

3 Y-vorticity

- 0 1
O HL!’H\ Hiuv:hi\,,\l\\HH‘\HU\\H

-2 2

(a) y-vorticity isosurface viewed from the xz-plane.

i Y-vorticity

o7 X

- 0 1
7\‘\\\ \ﬂ\\\\\\\\‘\\\\ﬂ

-2 2

(b) y-vorticity isosurface viewed from the xy-plane.

Figure A.7: Visualization of y-vorticity isosurfaces in the structured fine cylinder CFD data set.

118

APPENDIX B. USER’S GUIDE TO VORTEX CORE EXTRACTION METHOD WITH
SOURCE CODE

B.1 User’s Guide

The code that runs the intelligent vortex core extraction and tracking is shown below. To
run the code, Cafe_script.bash, which contains user inputs and is shown in Section B.2.1, is run
from the command line. The ‘main’ program, which is contained in Section B.2.2, contains all
the routines that are required to extract vortex core lines, track the vortex cores through time, and
compute the opinion of the extracted and tracked vortex cores. Before this code will compile the
VTK 5.8 libraries with parallel enabled must be compiled and working properly. All other linked
libraries come from the C++ Standard Library. This code has been compiled on Ubuntu 10.04
LTS (Lucid Lynx) using g++ and cmake 2.8 to create make files. Each section of the code will be

explained below.

B.1.1 Cafe_script.bash

The bash script created for this research contains many user inputs which are subsequently
passed into the main routine. Lines 5-7 specify which types of features will be extracted. Line 10
specifies whether or not the data set under consideration is time-dependent. In line 13, the time
step is input, and line 16 specifies the time value of the first data set under consideration. line 19
specifies the data set file type and supports Ensight, FLUENT, Plot3D, OVERFLOW, and VTK file
types.

File paths and names are specified in Lines 22-43. In lines 22-26, the path to the executable
is specified based on the time-dependence of the data set. Line 30 sets the file path to the CFD data
sets and line 34 sets the file path where vortex core line data sets will be written. In line 39, the
base name of the CFD data set is specified and line 40 sets the file extension of the CFD data set.

Last, the number of CFD data sets under consideration is set in line 40.

119

Lines 45-70 run the actual intelligent extraction and tracking code. When “TRANSIENT’
is set to ‘true’, then the unsteady feature extraction and tracking code is run using line 46. Lines
48-68 are used when features are extracted from steady-state CFD data sets. In this research, only

transient data sets were considered, so the steady-state section of the script was not used.

B.1.2 intelligentExtractionTransient.cxx

The # include statements on lines 1-2 call other files which include all the required C++
and VTK classes which are required for the code to work. Lines 10-21 contain additional user
inputs for the entire code and include calls on which portion of the code will be run, i.e. extrac-
tion/tracking/opinion. Lines 24—48 contain additional inputs which are specific to vortex core line
extraction. Lines 25-31 are specific to extraction, and lines 33—48 pertain to feature tracking.

Inputs from the bash script are instantiated in lines 52-69 for later use in the code. For
transient data sets, each input and output file pertains to a certain time in the simulation, so an
array of the times under consideration is created in lines 71-131. After the array is created, each
time is converted to a string with the necessary leading and trailing zeros in order to create a time
step file name appellation for the vortex core line files.

In order to handle the different input file types, the code has a different section for each
input type, which is contained in lines 133-589. Velocity, pressure, and density array names are
created specific to each file type in lines 133—172. File names and other variables are passed from
the bash script in lines 174-182. Because some of the file types require a multi-block data set,
each data set is read into a multi-block data set. Three multi-block data sets are created in lines
188-195, which correspond to the current, previous, and next time step of the data set. Three
data sets are read in simultaneously for computation of time derivatives. Lines 205-290 contain
the routine for reading in FLUENT files and calculating the velocity vector. Ensight offers the
choice of transient and instantaneous file types, which are handled using lines 292-341 and lines
343-389, respectively. PLOT3D files are read in using lines 391-461. The OVERFLOW routine
is contained is lines 463-541. OVERFLOW files are often multi-block data sets, so for-loops are
used to assign each block of the data sets to the respective blocks of the VTK multi-block data set.
Last, the VTK file reader is contained is lines 543-589.

120

Lines 591-855 is the section of the code where feature extraction is performed. Lines 591—
601 set up the vortex core line output file names using the given output file prefix and the time
step under consideration. The for-loop on line 608 starts the extraction for vortex cores from each
block of the data set. The results of extraction from each block are appended onto a vtkPolyData
structure, which is instantiated in lines 603—605. In lines 610-639, cell-centered data is converted
to point data due to the requirements of the extraction algorithms. Velocity time derivatives are then
computed in lines 641-657. Cells near walls are removed using a velocity magnitude threshold in
lines 665-673, then the A, criterion is calculated for all points in the domain in lines 675-680. If it
is desired to write the full CFD data set with A, and vortex strength at each point, then the code in
lines 682-701 is used. Vortex core lines are then extracted using the Roth-Peikert algorithm in lines
703-717, which takes in the vtkUnstructuredGrid with a velocity vector field as input and outputs
raw polylines. A similar process is conducted using the Sujudi-Haimes algorithm in lines 722-736.
After all blocks in the data set have been inspected, the output from the two algorithms is cleaned
in lines 743-747 to remove duplicate vortex cores. Vortex core attirbutes are then calculated for
both data sets and the vortex core data is then written to file in lines 749-855.

Feature tracking is accomplished in lines 857-1434. Line-averaged vortex core attributes
are first calculated in lines 862-956. Tracking is then begun in line 976 after instantiating some
variables for tracking. The for-loop on line 976 sets up how many forward and backward passes
are performed through the time series of vortex core lines. The for-loop on line 980 then enters the
forward pass through the data set. Lines 980—1122 contain the forward tracking pass, where vortex
cores are tracked in positive time. Lines 1124-1275 perform a similar function as the forward
pass but now a backward pass is conducted through negative time. After performing n passes
through the data set, the feature lifetime of the tracked vortex cores is measured in lines 1282—1348.
Different tracking parameters such as average feature life are then calculated in lines 1350-1368.
The calculated feature lifetimes are then set for each vortex core in lines 1371-1434.

The subjective logic portion of the code is contained in lines 1437-1589. Subjective logic
is calculated starting at i == 3 due to feature tracking and time derivative constraints. The timing
of the opinion calculation is performed in lines 1444—1450 and file names are instantiated in lines
1452—-1465. The RP and SH vortex core lines are then read in lines 1467-1481, after which the

minimum distance between both data sets is measured in lines 1483—1497. The final opinion of

121

the data sets are then computed and unnecessary arrays are removed in lines 1499-1550. The last
steps are to combine believable vortex cores into the final data set, which is performed in lines

1552-1562, and to write all the results to file in lines 1564—1583. Lines 1585—1587 deal with code

© ® N AW N =

[~

timing, then the code exits on line 1592.

B.2 Source Code

B.2.1 Cafe_script.bash

#!/bin/bash

#Select which features to extract

#Specify "true" or "false
SA=false
SHOCK=false

VORTEX=true

#Specify whether simulation is time—dependent
TRANSIENT=true

#Change to the iteration interval/time step between each saved dataset
DATASET_INTERVAL=0.01

#Change to the iteration/time step of the first saved dataset
CURRENT_DATASET=19.02

#Change to the type of saved datasets (ensight, ensighttransient, fluent, plot3d, overflow, vtk)
MODE=ensighttransient

#Specify the path to the executable and the executable name
if [$TRANSIENT == 'true']; then
IE_PATH=/home/rshaw/Workspace/finallntelligentExtraction/runlntelligentExtractionTransient
else
IE_PATH=/home/rshaw /Workspace/finallntelligentExtraction/runIntelligentExtractionSteady
fi

#Specify the path to the directory where the files to be processed are
#Change to address of saved datasets to process
INPUT_PATH=/home/rshaw /Workspace/dataSets/CylinderFine/

#Specify the path to the directory where the extracted files go
#Change to address of where you want extracted files to be saved

OUTPUT_PATH=/home/rshaw /Workspace/dataSets/CylinderFine/

#Specify the base file name for your files to be processed

#for overflow the grid file must be named grid.in or this script will fail

#Also for overflow the FILE_BASE NAME must be equal to q.

FILE_BASE_NAME="cyl ' #Change to the name of the datasets of interest
FILE_EXTENSION=".encas ' #Change to the suffix of the datasets of interest
#Set number of data sets to analyze

NUM_OF_DATASETS=502

if [$TRANSIENT == 'true']; then
$SIE_PATH $DATASET_INTERVAL $CURRENT_DATASET $NUM_OF DATASETS $SA $SHOCK $VORTEX S$INPUT_PATH
$FILE_BASE_NAME $OUTPUT_PATH $MODE
else
i=1

122

49
50
51
52
53
54

55
56

57
58
59
60

61
62

63
64
65
66
67
68
69
70

fi

B.

PREVIOUS_DATASET=$ (($CURRENT_DATASET-$DATASET_INTERVAL))
while [$i —1t $NUM_OF DATASETS |
do
if [SMODE == 'overflow ']; then
if [$i == 0]; then

$IE_PATH $DATASET_INTERVAL $i $SA $SHOCK $VORTEX $MODE $INPUT_PATH' grid .in'

SINPUT_PATH ' q. '$CURRENT_DATASET $OUTPUT_PATH
else

$IE_PATH $DATASET_INTERVAL $i $SA $SHOCK $VORTEX $MODE $INPUT_PATH' grid.in'

SINPUT_PATH ' q. '$CURRENT_DATASET $OUTPUT_PATH $OUTPUT_PATH'x_'
$PREVIOUS_DATASET
fi
else
if [$i == 0]; then
$SIE_PATH $DATASET_INTERVAL $i $SA $SHOCK $VORTEX $MODE

$INPUT_PATHSFILE_BASE_NAMESCURRENT_DATASETS$FILE_EXTENSION $OUTPUT PATH

else
$IE_PATH $DATASET_INTERVAL $i $SA $SHOCK $VORTEX $MODE

$INPUT_PATHSFILE_BASE_NAME$SCURRENT_DATASET$FILE_EXTENSION $OUTPUT_PATH

$OUTPUT_PATHSFILE_BASE_NAMES$PREVIOUS_DATASET
fi
fi

i=$((1+8%i))

PREVIOUS_DATASET=$CURRENT_DATASET

CURRENT_DATASET=$ (($CURRENT_DATASET + $DATASET_INTERVAL))
done

2.2 intelligentExtractionTransient.cxx

#include <headers.h>
#include <classHeaders.h>

int main(int argc, chars argv|[])

{

/1

// Extracting features from data sets

/1

/! General user inputs

int numLeadingZeros (0) ; // Number of leading zeros in file name

int numTrailingZeros (0); // Number of trailing zeros in file name

bool extract = false; // Do you want to extract features?

bool writeDataSet = false; // Do you want to write out a copy of the CFD data set?
bool track = true; // Do you want to track features?

bool logic = false; // Do you want to perform subjective logic?

bool verbose = false; /! Output to screen the percent complete

int cpu = 1; // Number of cpus to use for vtkParallelVectors class
double probExpThreshold = 0.7; // Used for combining outputs

double combLengthTol = 0.25; // length tolerance for combining lines

double combDistTol = 0.25; // distance tolerance for combining lines

/1]

/! User inputs for vortex extraction / tracking

double qualityThresholdValue = 45; // Typically between 30 and 45 degrees.

bool thresholdLines = false; /! Tells quality filter to threshold lines

int minimumCorePoints = 20; // Min value 5

bool adaptiveMesh = false; /1 Required for time derivatives

int numBlocksToDerive = 14; // Change to desired number for adaptive meshes
bool timeStepPhys = false; // True if physical time step is not file time step
double dtPhys = 1000000; // Physical time step for computing time derivatives
int numberOfPasses = 10;

double lengthTolerance = 0.15;

double strengthTolerance = 0.2;

123

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99

100

101

102

double curvatureTolerance =
double qualityTolerance = 0.
double distanceTolerance = 0.1;
double lengthIncr = 0O.lxlengthTolerance;
double strengthlncr = 0.1sstrengthTolerance;
double curvatureIncr = 0O.lxcurvatureTolerance;
double qualitylncr = 0.1xqualityTolerance;
double distancelncr = 0.1xdistanceTolerance;
double lengthWeight = 0.20;
double strengthWeight = 0.20;
double curvatureWeight = 0.20;
double qualityWeight = 0.20;
double distanceWeight = 0.20;
int normFeatureLife = 10; /1 IMPORTANT — Change based on how long
/l vortex cores are expected to exist in time

0.2;
1;

/1
// Begin determining dataset type and use correct reader
string inputFileName , inputFileName_ext, inputFileName_noext, filePathName;
string outputLocation;
string outputFileNameSH , outputFileNameRP ,

outputFileNameDataSet;
string passiveResultsName

// Time step between saved data sets
double timeStep;
sscanf(argv[1], "%lf",&timeStep);

// Start time of data sets
double startTime ;
sscanf(argv([2], "%lf",&startTime);

// Start time of data sets
int numberOfDataSets;
sscanf(argv[3], "%d",&numberOfDataSets);

// Naming variables
size_t decimalFound;
string intPart, decPart;
int numDecimals[numberOfDataSets], numDecimalsMax (0) ,
numlIntegers [numberOfDataSets], numlIntegersMax (0) ;
double time;

// Creating double and string time arrays
double timeArray[numberOfDataSets];
string timeArrayString [numberOfDataSets];
for(int i = 0 ; i < numberOfDataSets ; ++i)
{

// Setting time i

stringstream out;

if (i == 0)
timeArray [0] = startTime;
else

timeArray[i] = timeArray[i—1] + timeStep;

// Passing time to a string
out << timeArray[i];
timeArrayString[i] = out.str ();

/] Parsing time by decimal point
decimalFound = timeArrayString[i].find('.");
if (decimalFound != string ::npos) // if a decimal exists
{
intPart = timeArrayString[i].substr(0,decimalFound);
decPart = timeArrayString[i].substr(decimalFound+1);

// Setting number of integer and decimal places
numlIntegers[i] = intPart.length();

124

103 numDecimals[i] = decPart.length();

104 }

105 else // if no decimal exists
106 {

107 numlIntegers[i] = timeArrayString[i].length();

108 numDecimals[i] = 0;

109 intPart = timeArrayString[i];

110 decPart = "";

111 }

112

113 /] Setting max integer and decimal place counts

114 if (numIntegers[i] > numlIntegersMax)

115 numlIntegersMax = numlIntegers[i];

116 if (numDecimals[i] > numDecimalsMax)

117 numDecimalsMax = numDecimals[i];

118

119 // Omitting decimal point in string

120 timeArrayString[i] = intPart + decPart;

121 }

122

123 cout << endl;

124

125 // Adding necessary 0's to front and end of string

126 for(int i = 0 ; i < numberOfDataSets ; ++i)

127 {

128 timeArrayString[i].insert(0,numlntegersMax—numlIntegers[i]+numLeadingZeros, '0");
129 timeArrayString[i].append (numDecimalsMax—numDecimals[i]+numTrailingZeros, '0");
130 cout << timeArrayString[i] <<endl;

131 }

132

133 // Create velocity , pressure, and density array names

134 const charx velocityArrayName;
135 const chars pressureArrayName;
136 const chars densityArrayName;
137 if (strcmp(argv[10]," fluent") == 0)

138 {

139 velocityArrayName = "Velocity";

140 pressureArrayName = "PRESSURE";

141 densityArrayName = "DENSITY";

142 }

143 else if (strcmp(argv[10],"ensighttransient”") == 0)
144 {

145 velocityArrayName = "velocity";

146 pressureArrayName = "pressure";

147 densityArrayName = "density";

148 }

149 else if (strcmp(argv[10],"ensight") == 0)
150 {

151 velocityArrayName = "velocity";

152 pressureArrayName = "pressure";

153 densityArrayName = "density";

154

155 else if (strcmp(argv[10],"plot3d") == 0)
156 {

157 velocityArrayName = "Velocity";

158 pressureArrayName = "Pressure";

159 densityArrayName = "Density";

160

161 else if (strcmp(argv[10],"overflow") == 0)
162 {

163 velocityArrayName = "Velocity";

164 pressureArrayName = "Pressure";

165 densityArrayName = "Density";

166 }

167 else

168 {

169 velocityArrayName = "Velocity";

170 pressureArrayName = "Pressure";

125

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

densityArrayName = "Density";

}

// File name structure

string inputFilePath , fileBaseName , inputFilePrefix ,
inputFileSuffix , outputFilePath , outputFilePrefix ,
fullFileName , fullFileNameNext, fullFileNamePrev ;

inputFilePath = argv[7];

fileBaseName = argv[8];

inputFilePrefix = inputFilePath + fileBaseName;

outputFilePath = argv[9];

outputFilePrefix = outputFilePath + fileBaseName;

cout << "Input file prefix: " << inputFilePrefix << endl;

cout << "Output file prefix: << outputFilePrefix << endl;

cout << "File mode: " << argv[10] << endl;

"

// Creating multi—block data sets for time steps
vtkSmartPointer <vtkMultiBlockDataSet> multiBlock =
vtkSmartPointer <vtkMultiBlockDataSet >::New () ;
vtkSmartPointer <vtkMultiBlockDataSet> multiBlockNext
vtkSmartPointer <vtkMultiBlockDataSet >::New() ;
vtkSmartPointer <vtkMultiBlockDataSet> multiBlockPrev
vtkSmartPointer <vtkMultiBlockDataSet >::New() ;
int numberOfBlocks, numberOfBlocksNext, numberOfBlocksPrev;

// Storing number of vortex core lines
int numLinesRP(0), numLinesSH (0) ;

[5 £ o :
if (extract)

{

PERFORMING FEATURE EXTRACTION : s %

for(int i = 1 ; i < numberOfDataSets—1 ; ++i)

{
// FLUENT Reader
if (strcmp(argv[10]," fluent") == 0)

{
// Parsing file names
inputFileSuffix = ".cas";
fullFileName = inputFilePrefix + timeArrayString[i]

+ inputFileSuffix;

fullFileNameNext = inputFilePrefix + timeArrayString[i+1] + inputFileSuffix;
fullFileNamePrev = inputFilePrefix + timeArrayString[i—1] + inputFileSuffix;

cout << "Full File Name: " << fullFileName << endl;

cout << "Begin Reading File." << endl;
cout << "File Format: Fluent" << endl;

// Reading in the FLUENT 5/6 file to a vtkUnstructuredGrid

vtkSmartPointer <vtkFLUENTReader> fluent =
vtkSmartPointer <vtkFLUENTReader >::New () ;

fluent —>SetFileName (fullFileName .c_str());

fluent —>Update () ;

cout << "End Reading File.

<< endl;

vtkSmartPointer <vtkFLUENTReader> fluentNext =

vtkSmartPointer <vtkFLUENTReader >::New () ;
fluentNext —>SetFileName (fullFileNameNext.c_str());
fluentNext —>Update () ;

vtkSmartPointer <vtkFLUENTReader> fluentPrev =

vtkSmartPointer <vtkFLUENTReader >::New () ;
fluentPrev —>SetFileName (fullFileNamePrev.c_str());
fluentPrev —>Update () ;

/! Creating the 'Velocity' array
vtkSmartPointer <vtkArrayCalculator > arrayCalc =
vtkSmartPointer <vtkArrayCalculator >::New() ;

arrayCalc —>AddScalarVariable ("X_Velocity", "X VELOCITY",

126

0);

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

296
297
298
299
300
301
302
303
304
305
306

arrayCalc —>AddScalarVariable ("Y_Velocity", "Y_VELOCITY", 0);

arrayCalc —>AddScalarVariable ("Z_Velocity", "Z VELOCITY", 0);

arrayCalc —>SetResultArrayName (velocityArrayName) ;

arrayCalc —>SetFunction ("iHat*(X_Velocity) +"
"jHat=(Y_Velocity) +"
"kHat*(Z_Velocity)");

arrayCalc —>SetInput (fluent —>GetOutput () —>GetBlock (0));

arrayCalc —>SetAttributeModeToUseCellData () ;

arrayCalc —>Update () ;

vtkSmartPointer <vtkArrayCalculator> arrayCalcNext =
vtkSmartPointer <vtkArrayCalculator >::New() ;

arrayCalcNext —>AddScalarVariable ("X_Velocity", "X_VELOCITY", 0);

arrayCalcNext—>AddScalarVariable ("Y_Velocity", "Y_VELOCITY", 0);

arrayCalcNext—>AddScalarVariable ("Z_Velocity", "Z VELOCITY", 0);

arrayCalcNext —>SetResultArrayName (velocityArrayName) ;

arrayCalcNext—>SetFunction ("iHat*(X_Velocity) +"
"jHat*(Y_Velocity) +"
"kHat*(Z_Velocity)");

arrayCalcNext—>SetInput (fluentNext —>GetOutput () —>GetBlock (0));

arrayCalcNext —>SetAttributeModeToUseCellData () ;

arrayCalcNext —>Update () ;

vtkSmartPointer <vtkArrayCalculator> arrayCalcPrev =
vtkSmartPointer <vtkArrayCalculator >::New() ;

arrayCalcPrev—>AddScalarVariable ("X_Velocity", "X _VELOCITY", 0);

arrayCalcPrev —>AddScalarVariable ("Y_Velocity", "Y_VELOCITY", 0);

arrayCalcPrev—>AddScalarVariable("Z_Velocity", "Z VELOCITY", 0);

arrayCalcPrev —>SetResultArrayName (velocityArrayName) ;

arrayCalcPrev —>SetFunction ("iHat*(X_Velocity) +"
"jHat*(Y_Velocity) +"
"kHat*(Z_Velocity)");

arrayCalcPrev —>SetInput (fluentPrev —>GetOutput () —>GetBlock (0));

arrayCalcPrev —>SetAttributeModeToUseCellData () ;

arrayCalcPrev —Update () ;

// Passing multi—block data set to extraction algorithms
numberOfBlocks = 1;
multiBlock —>SetNumberOfBlocks (numberOfBlocks) ;
for(int j = 0; j < numberOfBlocks ; j++)
multiBlock —>SetBlock (j, arrayCalc —>GetOutput());

numberOfBlocksNext = 1;

multiBlockNext —>SetNumberOfBlocks (numberOfBlocksNext) ;

for(int j = 0; j < numberOfBlocksNext ; j++)
multiBlockNext—>SetBlock (j, arrayCalcNext—>GetOutput());

numberOfBlocksPrev = 1;

multiBlockPrev —>SetNumberOfBlocks (numberOfBlocksPrev) ;

for(int j = 0; j < numberOfBlocksPrev ; j++)
multiBlockPrev —>SetBlock (j, arrayCalcPrev—>GetOutput());

}

// Ensight transient reader

if (strcmp(argv[10],"ensighttransient”) == 0)
{

// Parsing file names

inputFileSuffix = ".encas";

fullFileName = inputFilePrefix + inputFileSuffix;
fullFileNameNext = inputFilePrefix + inputFileSuffix;
fullFileNamePrev = inputFilePrefix + inputFileSuffix;
cout << "Full File Name: " << fullFileName << endl;

cout << "Begin Reading File." << endl;
cout << "File Format: Ensight Transient" << endl;

// Reading in the ENSIGHT to a vtkUnstructuredGrid
vtkSmartPointer <vtkGenericEnSightReader> ensightTransientReader

127

307 vtkSmartPointer <vtkGenericEnSightReader >::New() ;

308 ensightTransientReader —>SetCaseFileName (fullFileName.c_str());

309 ensightTransientReader —>SetTimeValue (timeArray[i]);

310 ensightTransientReader —>Update () ;

311

312 vtkSmartPointer <vtkGenericEnSightReader> ensightTransientReaderNext =
313 vtkSmartPointer <vtkGenericEnSightReader >::New() ;

314 ensightTransientReaderNext —>SetCaseFileName (fullFileNameNext.c_str());
315 ensightTransientReaderNext —>SetTimeValue (timeArray[i+1]);

316 ensightTransientReaderNext —>Update () ;

317

318 vtkSmartPointer <vtkGenericEnSightReader> ensightTransientReaderPrev =
319 vtkSmartPointer <vtkGenericEnSightReader >::New() ;

320 ensightTransientReaderPrev —>SetCaseFileName (fullFileNamePrev.c_str());
321 ensightTransientReaderPrev —>SetTimeValue (timeArray[i—1]);

322 ensightTransientReaderPrev —>Update () ;

323

324 cout << "End Reading File." << endl;

325

326 // Passing multi—block data set to extraction algorithms

327 numberOfBlocks = 1;

328 multiBlock —>SetNumberOfBlocks (numberOfBlocks) ;

329 for(int j = 0; j < numberOfBlocks ; j++)

330 multiBlock —>SetBlock (j, ensightTransientReader —>GetOutput () —>GetBlock (0));
331

332 numberOfBlocksNext = 1;

333 multiBlockNext —>SetNumberOfBlocks (numberOfBlocksNext) ;

334 for(int j = 0; j < numberOfBlocksNext ; j++)

335 multiBlockNext —>SetBlock (j, ensightTransientReaderNext—>GetOutput()—>GetBlock(0));
336

337 numberOfBlocksPrev = 1;

338 multiBlockPrev —>SetNumberOfBlocks (numberOfBlocksPrev);

339 for(int j = 0; j < numberOfBlocksPrev ; j++)

340 multiBlockPrev —>SetBlock (j, ensightTransientReaderPrev —>GetOutput ()—>GetBlock (0));
341 }

342

343 // Ensight Reader

344 if (strcmp(argv[10],"ensight") == 0)

345 {

346 // Parsing file names

347 inputFileSuffix = ".encas";

348 fullFileName = inputFilePrefix + timeArrayString[i] + inputFileSuffix;
349 fullFileNameNext = inputFilePrefix + timeArrayString[i+1] + inputFileSuffix;
350 fullFileNamePrev = inputFilePrefix + timeArrayString[i—1] + inputFileSuffix;
351 cout << "Full File Name: " << fullFileName << endl;

352

353 cout << "Begin Reading File." << endl;

354 cout << "File Format: Ensight" << endl;

355

356 // Reading in the ENSIGHT to a vtkUnstructuredGrid

357 vtkSmartPointer <vtkGenericEnSightReader> ensight =

358 vtkSmartPointer <vtkGenericEnSightReader >::New() ;

359 ensight —>SetCaseFileName (fullFileName.c_str());

360 ensight —>Update () ;

361

362 vtkSmartPointer <vtkGenericEnSightReader> ensightNext =

363 vtkSmartPointer <vtkGenericEnSightReader >::New() ;

364 ensightNext —>SetCaseFileName (fullFileNameNext.c_str());

365 ensightNext —>Update () ;

366

367 vtkSmartPointer <vtkGenericEnSightReader> ensightPrev =

368 vtkSmartPointer <vtkGenericEnSightReader >::New() ;

369 ensightPrev —>SetCaseFileName (fullFileNamePrev.c_str());

370 ensightPrev —>Update () ;

371

372 cout << "End Reading File." << endl;

373

374 // Passing multi—block data set to extraction algorithms

128

375 numberOfBlocks = 1;

376 multiBlock —>SetNumberOfBlocks (numberOfBlocks) ;

377 for(int j = 0; j < numberOfBlocks ; j++)

378 multiBlock —>SetBlock (j, ensight —>GetOutput ()—>GetBlock(0));
379

380 numberOfBlocksNext = 1;

381 multiBlockNext —>SetNumberOfBlocks (numberOfBlocksNext) ;
382 for(int j = 0; j < numberOfBlocksNext ; j++)

383 multiBlockNext—>SetBlock (j, ensightNext—>GetOutput()—>GetBlock (0));
384

385 numberOfBlocksPrev = 1;

386 multiBlockPrev —>SetNumberOfBlocks (numberOfBlocksPrev) ;
387 for(int j = 0; j < numberOfBlocksPrev ; j++)

388 multiBlockPrev —>SetBlock (j, ensightPrev —>GetOutput()—>GetBlock (0));
389 }

390

391 // PLOT3D Reader

392 if (strcmp(argv[10],"plot3d") == 0)

393

394 string gridName;

395

396 // Parsing file names

397 inputFileSuffix = "q.";

398 fullFileName = inputFilePath + inputFileSuffix + timeArrayString[i];
399 fullFileNameNext = inputFilePath + inputFileSuffix + timeArrayString[i+1];
400 fullFileNamePrev = inputFilePath + inputFileSuffix + timeArrayString[i—1];
401 gridName = inputFilePath + "grid.in";

402 cout << "Full File Name: " << fullFileName << endl;
403

404 cout << "Begin Reading File." << endl;

405 cout << "File Format: Plot3D" << endl;

406

407 // Converting PLOT3D data set to unstructured grid

408 vtkSmartPointer <vtkPLOT3DReader> pl3d =

409 vtkSmartPointer <vtkPLOT3DReader >::New () ;

410 pl3d —>SetXYZFileName (gridName . c_str());

411 pl3d —>SetQFileName (fullFileName.c_str());

412 pl3d—>BinaryFileOn () ;

413 pl3d —>IBlankingOn () ;

414 pl3d—>AddFunction (100) ;

415 pl3d —>AddFunction(110);

416 pl3d—>AddFunction(210);

417 pl3d —>AddFunction (200) ;

418 pl3d—>Update () ;

419

420 vtkSmartPointer <vtkPLOT3DReader> pl3dNext =

421 vtkSmartPointer <vtkPLOT3DReader >::New () ;

422 pl3dNext—>SetXYZFileName (gridName.c_str());

423 pl3dNext—>SetQFileName (fullFileNameNext.c_str());

424 pl3dNext—>BinaryFileOn () ;

425 pl3dNext—>IBlankingOn () ;

426 pl3dNext—>AddFunction (100) ;

427 pl3dNext—>AddFunction(110);

428 pl3dNext—>AddFunction (210);

429 pl3dNext—>AddFunction (200) ;

430 pl3dNext—>Update () ;

431

432 vtkSmartPointer <vtkPLOT3DReader> pl3dPrev =

433 vtkSmartPointer <vtkPLOT3DReader >::New () ;

434 pl3dPrev —>SetXYZFileName (gridName.c_str());

435 pl3dPrev —>SetQFileName (fullFileNamePrev.c_str());

436 pl3dPrev—>BinaryFileOn () ;

437 pl3dPrev —>IBlankingOn () ;

438 pl3dPrev—>AddFunction(100);

439 pl3dPrev—>AddFunction(110);

440 pl3dPrev—>AddFunction(210);

441 pl3dPrev—>AddFunction (200) ;

442 pl3dPrev —>Update () ;

129

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

500
501
502
503
504
505
506
507
508
509
510

}

/1 OVERFLOW

cout << "End Reading File." << endl;

/! Passing
numberOfBlocks

multi—block

data set

1;

to extraction algorithms

multiBlock —>SetNumberOfBlocks (numberOfBlocks) ;

for(int j = 0; j < numberOfBlocks ;
multiBlock —>SetBlock (j,

pl3d —

numberOfBlocksNext = 1;
multiBlockNext—>SetNumberOfBlocks (numberOfBlocksNext) ;

for(int j = 0; j < numberOfBlocksNext ;
multiBlockNext —>SetBlock (j,

numberOfBlocksPrev = 1;
multiBlockPrev —>SetNumberOfBlocks (numberOfBlocksPrev) ;

for(int j = 0; j < numberOfBlocksPrev
multiBlockPrev —>SetBlock (j,

Reader

j++)
GetOutput());

j++)

pl3dNext—>GetOutput());

Y]

pl3dPrev —>GetOutput());

if (strcmp(argv[10],"overflow") == 0)

{

string gridName
/1 Parsing file
inputFileSuffix
fullFileName

B

fullFileNameNext
fullFileNamePrev
if (adaptiveMesh)

{
gridName
gridNameNext
gridNamePrev

}

else

{
gridName
gridNameNext
gridNamePrev

}

cout << "Full

cout << "Begin Reading File.
"File Format:

cout <<

/! Reading

File Name:

multi —block

gridNameNext ,

names

n ",

q.°;
= inputFilePath
inputFilePath
inputFilePath

inputFilePath +
inputFilePath
inputFilePath +

+

inputFilePath +
inputFilePath +
inputFilePath +

"

<<
OverFlow"

overflow

gridNamePrev ;

+ inputFileSuffix + timeArrayStringl[i];
+ inputFileSuffix + timeArrayString[i+1];
+ inputFileSuffix + timeArrayString[i—1];

" "

+ timeArrayString[i];
"x." + timeArrayString[i+1];

" "

x." + timeArrayString[i—1];

"grid.in"
"grid.in"
"grid.in"

<< fullFileName << endl;

endl ;

<< endl;

data set

vtkSmartPointer <vtkMultiBlockOVERFLOWReader> oReader =
vtkSmartPointer <vtkMultiBlockOVERFLOWReader >::New () ;
oReader —>SetXYZFileName (gridName . c_str ());
oReader—>SetQFileName (fullFileName.c_str());
oReader—>AddFunction (100);
oReader—>AddFunction(110);
oReader—>AddFunction(210);
oReader —>AddFunction (200) ;
oReader—>AutoSetFileProperties () ;
oReader—>Update () ;

cout << "End Reading File."

<< endl;

vtkSmartPointer <vtkMultiBlockOVERFLOWReader> oReaderNext =
vtkSmartPointer <vtkMultiBlockOVERFLOWReader >::New () ;
oReaderNext—>SetXYZFileName (gridNameNext. c_str ());
oReaderNext—>SetQFileName (fullFileNameNext.c_str());
oReaderNext—>AddFunction (100);
oReaderNext—>AddFunction(110);
oReaderNext—>AddFunction(210);

130

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

}

oReaderNext—>AddFunction (200) ;
oReaderNext—>AutoSetFileProperties () ;
oReaderNext—>Update () ;

vtkSmartPointer <vtkMultiBlockOVERFLOWReader> oReaderPrev =
vtkSmartPointer <vtkMultiBlockOVERFLOWReader >::New () ;

oReaderPrev—>SetXYZFileName (gridNamePrev.c_str());

oReaderPrev —>SetQFileName (fullFileNamePrev.c_str());

oReaderPrev —>AddFunction (100);

oReaderPrev—>AddFunction(110);

oReaderPrev—>AddFunction(210);

oReaderPrev—>AddFunction (200) ;

oReaderPrev—>AutoSetFileProperties () ;

oReaderPrev—>Update () ;

// Passing multi—block data set to extraction algorithms
numberOfBlocks = oReader —>GetOutput () —>GetNumberOfBlocks () ;
multiBlock —>SetNumberOfBlocks (numberOfBlocks) ;
for(int j = 0; j < numberOfBlocks ; j++)

multiBlock —>SetBlock (j, oReader—>GetOutput ()—>GetBlock(j));

numberOfBlocksNext = oReaderNext—>GetOutput () —>GetNumberOfBlocks () ;

multiBlockNext —>SetNumberOfBlocks (numberOfBlocksNext) ;

for(int j = 0; j < numberOfBlocksNext ; j++)
multiBlockNext—>SetBlock (j, oReaderNext—>GetOutput ()—>GetBlock(j));

numberOfBlocksPrev = oReaderPrev—>GetOutput () —>GetNumberOfBlocks () ;
multiBlockPrev —>SetNumberOfBlocks (numberOfBlocksPrev) ;
for(int j = 0; j < numberOfBlocksPrev ; j++)

multiBlockPrev —>SetBlock (j, oReaderPrev—>GetOutput()—>GetBlock(j));

//VIK Reader
if (strcmp(argv[10],"vtk") == 0)

{

// Parsing file names

inputFileSuffix = ".vtk";

fullFileName = inputFilePrefix + timeArrayString[i] + inputFileSuffix;
fullFileNameNext = inputFilePrefix + timeArrayString[i+1] + inputFileSuffix;
fullFileNamePrev = inputFilePrefix + timeArrayString[i—1] + inputFileSuffix;
cout << "Full File Name: " << fullFileName << endl;

cout << "Begin Reading File." << endl;
cout << "File Format: VIK" << endl;

// Reading in the vtk file to a vtkUnstructuredGrid
vtkSmartPointer <vtkUnstructuredGridReader > vtkReader =

vtkSmartPointer <vtkUnstructuredGridReader >::New () ;
vtkReader —>SetFileName (fullFileName .c_str());
vtkReader —>Update () ;

vtkSmartPointer <vtkUnstructuredGridReader > vtkReaderNext =

vtkSmartPointer <vtkUnstructuredGridReader >::New() ;
vtkReaderNext —>SetFileName (fullFileNameNext.c_str());
vtkReaderNext —>Update () ;

vtkSmartPointer <vtkUnstructuredGridReader> vtkReaderPrev

vtkSmartPointer <vtkUnstructuredGridReader >::New () ;
vtkReaderPrev —>SetFileName (fullFileNamePrev.c_str());
vtkReaderPrev —>Update () ;

cout << "End Reading File." << endl;

// Passing multi—block data set to extraction algorithms
numberOfBlocks = 1;
multiBlock —>SetNumberOfBlocks (numberOfBlocks) ;
for(int j = 0; j < numberOfBlocks ; j++)
multiBlock —>SetBlock (j, vtkReader—>GetOutput());

131

579

580 numberOfBlocksNext = 1;

581 multiBlockNext —>SetNumberOfBlocks (numberOfBlocksNext) ;

582 for(int j = 0; j < numberOfBlocksNext ; j++)

583 multiBlockNext—>SetBlock (j, vtkReaderNext—>GetOutput());

584

585 numberOfBlocksPrev = 1;

586 multiBlockPrev —>SetNumberOfBlocks (numberOfBlocksPrev) ;

587 for(int j = 0; j < numberOfBlocksPrev ; j++)

588 multiBlockPrev —>SetBlock (j, vtkReaderPrev—>GetOutput());

589 }

590

591 cout << "VORTEX CORE FILES:\n";

592 outputFileNameSH = outputFilePrefix + "_" + timeArrayString[i] + "_SH.vtk";
593 outputFileNameRP = outputFilePrefix + "_" + timeArrayString[i] + "_RP.vtk";
594 cout << "\tSH output file: " << outputFileNameSH << endl;

595 cout << "\tRP output file: " << outputFileNameRP << endl;

596 if (writeDataSet)

597 {

598 outputFileNameDataSet = outputFilePrefix + "_" + timeArrayString[i] + "_DataSet.vtk";
599 cout << "\tData set output file: " << outputFileNameDataSet << endl;
600 }

601 cout << endl;

602

603 // Setting up append filters for each extraction type

604 vtkSmartPointer <vtkAppendPolyData> appendSH = vtkSmartPointer <vtkAppendPolyData >::New() ;
605 vtkSmartPointer <vtkAppendPolyData> appendRP = vtkSmartPointer <vtkAppendPolyData >::New() ;
606

607 // Tterating through all blocks of data set

608 for(int j = 0 ; j < numberOfBlocks ; j++)

609 {

610 /! Converting cell data to point data

611 vtkSmartPointer <vtkCellDataToPointData> c2p =

612 vtkSmartPointer <vtkCellDataToPointData >::New() ;

613 c2p—>Setlnput (multiBlock —>GetBlock (j));

614 c2p—>Update () ;

615

616 // Calculate velocity magnitude

617 vtkSmartPointer <vtkArrayCalculator > velMagCalc =

618 vtkSmartPointer <vtkArrayCalculator >::New() ;

619 velMagCalc—>AddVectorVariable (" Velocity " ,velocityArrayName) ;

620 velMagCalc —>SetResultArrayName (" VelocityMagnitude") ;

621 velMagCalc—>SetFunction ("mag(Velocity)");

622

623 // Computing time derivatives in areas where mesh adaption does not occur
624 if (adaptiveMesh && j > numBlocksToDerive —1)

625 {

626 velMagCalc—>SetInput (c2p—>GetOutput());

627 velMagCalc —>Update () ;

628 }

629 else

630 {

631 vtkSmartPointer <vtkCellDataToPointData> c2pNext =

632 vtkSmartPointer <vtkCellDataToPointData >::New () ;

633 c2pNext—>SetInput (multiBlockNext —>GetBlock (j));

634 c2pNext—>Update () ;

635

636 vtkSmartPointer <vtkCellDataToPointData> c2pPrev =

637 vtkSmartPointer <vtkCellDataToPointData >::New() ;

638 c2pPrev—>Setlnput (multiBlockPrev—>GetBlock(j));

639 c2pPrev—>Update () ;

640

641 cout << "Computing time derivatives." << endl;

642 vtkSmartPointer <vtkTimeDerivatives > timeDer =

643 vtkSmartPointer <vtkTimeDerivatives >::New() ;

644 timeDer —>AddInputConnection (c2p—>GetOutputPort());

645 timeDer—>AddInputConnection (c2pNext—>GetOutputPort ());

646 timeDer —>AddInputConnection (c2pPrev—>GetOutputPort ());

132

647 if (timeStepPhys)

648 timeDer—>SetTimeStep (dtPhys);

649 else

650 timeDer—>SetTimeStep (timeStep) ;

651 timeDer—>SetVelocityl ArrayName (velocityArrayName) ;

652 timeDer—>SetVelocity2ArrayName (velocityArrayName) ;

653 timeDer —>SetVelocity3ArrayName (velocityArrayName) ;

654 timeDer—>ForwardDifferenceOff () ;

655 timeDer—>BackwardDifferenceOff () ;

656 timeDer—>CentralDifferenceOn () ;

657 timeDer —>Update () ;

658

659 velMagCalc—>SetInput (timeDer —>GetOutput());

660 velMagCalc—>Update () ;

661 }

662

663 cout << "Extracting Vortex Core Lines.\n";

664

665 // Thresholding to ignore low—velocity regions, i.e. walls
666 cout << "\tThresholding out wall cells." << endl;

667 vtkSmartPointer <vtkThreshold> threshWalls = vtkSmartPointer <vtkThreshold >::New() ;
668 threshWalls —>SetInput (velMagCalc —>GetOutput());

669 threshWalls —>ThresholdByUpper (0.001) ;

670 threshWalls —>AllScalarsOff () ;

671 threshWalls —>SetInputArrayToProcess (0, 0, O,

672 vtkDataObject :: FIELD_ASSOCIATION_POINTS, "VelocityMagnitude");
673 threshWalls —>Update () ;

674

675 // Computing lambda_2 at each point in the data set

676 cout << "\tComputing lambda_2." << endl;

677 vtkSmartPointer <vtkLambdaTwo> 12 = vtkSmartPointer <vtkLambdaTwo >::New() ;
678 12—>SetInput (threshWalls —>GetOutput ()) ;

679 12 —>SetVelocityArrayName (velocityArrayName) ;

680 12 —>Update () ;

681

682 // Data set writing option

683 if (writeDataSet)

684 {

685 // Compute vortex strength in data set

686 vtkSmartPointer <vtkVortexStrength> strengthl =

687 vtkSmartPointer <vtkVortexStrength >::New() ;

688 strengthl —>SetInput (12—>GetOutput());

689 strengthl —>SetInputArrayToProcess (0, 0, O,

690 vtkDataObject :: FIELD_ASSOCIATION_POINTS, velocityArrayName);
691 strengthl —>SetInputArrayToProcess(1, 0, O,

692 vtkDataObject :: FIELD_ASSOCIATION_POINTS, "VelocityGradients");
693 strengthl —>Update () ;

694

695 /] Writing data set

696 vtkSmartPointer <vtkUnstructuredGridWriter > writerl =

697 vtkSmartPointer <vtkUnstructuredGridWriter >::New () ;

698 writerl —>SetInput(strengthl —>GetOutput());

699 writer]l —>SetFileName (outputFileNameDataSet.c_str());

700 writerl —>Write () ;

701 }

702

703 // Extracting corelines using vtkRothPeikert

704 // need to have a data set with point data as input and a velocity vector not
705 /! velocity as three separate scalar components.

706 cout << "\t#x+*ROTH-PEIKERT*#*" << endl;

707 vtkSmartPointer <vtkRothPeikert> rothPeikert =

708 vtkSmartPointer <vtkRothPeikert >::New() ;

709 rothPeikert —>Setlnput (12—>GetOutput());

710 rothPeikert —>SetVelocityArrayName (velocityArrayName) ;

711 rothPeikert —>SetMinimumNumberOfPoints (minimumCorePoints) ;
712 if (adaptiveMesh && j > numBlocksToDerive —1)

713 rothPeikert —>SetTransient (false);

714 else

133

715
716
17
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
7170
771
772
773
774
775
776
717
778
779
780
781
782

rothPeikert —>SetTransient (true);
rothPeikert —>SetVerbose (verbose) ;
rothPeikert —>Update () ;

/! Appending results of current block t

o append filter
appendRP—>AddInput(rothPeikert —>GetOutput());

/!l Extracting corelines using vtkSujudiHaimes
// need to have a data set with point data
/] velocity as three separate scalar components.
cout << "\txxxSUJUDI-HAIMES#x*%" << endl;
vtkSmartPointer <vtkSujudiHaimes> sujudiHaimes =
vtkSmartPointer <vtkSujudiHaimes >::New () ;
sujudiHaimes —>SetInput (12 —>GetOutput ()) ;
sujudiHaimes —>SetVelocityArrayName (velocityArrayName) ;
sujudiHaimes —>SetMinimumNumberOfPoints (minimumCorePoints) ;

if (adaptiveMesh && j > numBlocksToDerive —1)

sujudiHaimes —>SetTransient (false);
else

sujudiHaimes —>SetTransient (true);
sujudiHaimes —>SetVerbose (verbose) ;
sujudiHaimes —>Update () ;

// Appending results of current block t

cout << endl;

// cleaning the input data set
vtkSmartPointer <vtkCleanPolyData> cleanl

as input and

o append filter
appendSH—>AddInput(sujudiHaimes —>GetOutput ()) ;

vtkSmartPointer <vtkCleanPolyData >::New() ;

cleanl —>SetInput (appendRP—>GetOutput());
cleanl —>Update () ;

// Calculating vortex strength

vtkSmartPointer <vtkVortexStrength > vortexStrengthl =
vtkSmartPointer <vtkVortexStrength >::New() ;

vortexStrengthl —>SetInput(cleanl —>GetOutput());

vortexStrengthl —>SetInputArrayToProcess (0, 0,
vtkDataObject : : FIELD_ASSOCIATION_POINTS,

vortexStrengthl —>SetInputArrayToProcess (1

. 0,

vtkDataObject :: FIELD_ASSOCIATION_POINTS,

vortexStrengthl —>Update () ;

// Computing the quality of the vortices
vtkSmartPointer <vtkQuality > qualityl =
vtkSmartPointer <vtkQuality >::New() ;

0,

a velocity

velocityArrayName) ;

0,

"VelocityGradients");

qualityl —>SetInput(vortexStrengthl —>GetOutput());
qualityl —>SetThresholdLines (thresholdLines);

qualityl —>SetQualityThresholdValue (qualityThresholdValue);

qualityl —>SetVelocityArrayName (velocityArrayName) ;

qualityl —>SetConvectiveCorrection (true) ;
qualityl —>Update () ;

// Paramaterizing line segments
// each line segment has an a,b,c,d,e,f and 1

associated

vtkSmartPointer <vtkParamaterizeLineFilter > plfl =
vtkSmartPointer <vtkParamaterizeLineFilter >::New() ;

plfl —>SetInput(qualityl —>GetOutput());
plfl —>Update () ;

/] calculating the curvature of the line
vtkSmartPointer <vtkCurvature> curvaturel
vtkSmartPointer <vtkCurvature >::New() ;
curvaturel —>Setlnput (plfl —>GetOutput());
curvaturel —>MultiSegmentCurvatureOn () ;
curvaturel —>VelocityFieldCurvatureOff () ;
curvaturel —>PointwiseCurvatureOff () ;

134

value

vector

not

783 curvaturel —>Update () ;

784

785 // Computing feature —averaged attributes

786 vtkSmartPointer <vtkFeatureAttributes > featureAttributesl =
787 vtkSmartPointer <vtkFeatureAttributes >::New() ;

788 featureAttributesl —>SetInput(curvaturel —>GetOutput());
789 featureAttributesl —>Update () ;

790

791 // writing the connected lines to RP.vtk

792 vtkSmartPointer <vtkPolyDataWriter > writerl =

793 vtkSmartPointer <vtkPolyDataWriter >::New () ;

794 writer]l —>Setlnput(featureAttributesl —>GetOutput());

795 writer]l —>SetFileName (outputFileNameRP.c_str());

796 writerl —>Write () ;

797 cout << "Writing " << outputFileNameRP.c_str() << endl;
798

799 // cleaning the input data set

800 vtkSmartPointer <vtkCleanPolyData> clean2 =

801 vtkSmartPointer <vtkCleanPolyData >::New() ;

802 clean2 —>SetInput (appendSH—>GetOutput ());

803 clean2 —>Update () ;

804

805 // Calculating vortex strength

806 vtkSmartPointer <vtkVortexStrength> vortexStrength2 =
807 vtkSmartPointer <vtkVortexStrength >::New () ;

808 vortexStrength2 —>Setlnput(clean2 —>GetOutput());

809 vortexStrength2 —>SetInputArrayToProcess (0, 0, 0O,

810 vtkDataObject :: FIELD_ASSOCIATION_POINTS, velocityArrayName);
811 vortexStrength2 —>SetInputArrayToProcess (1, 0, 0O,

812 vtkDataObject :: FIELD_ASSOCIATION_POINTS, "VelocityGradients");
813 vortexStrength2 —>Update () ;

814

815 // Computing the quality of the vortices

816 vtkSmartPointer <vtkQuality > quality2 =

817 vtkSmartPointer <vtkQuality >::New() ;

818 quality2 —>SetInput(vortexStrength2 —>GetOutput());

819 quality2 —>SetThresholdLines (thresholdLines);

820 quality2 —>SetQualityThresholdValue (qualityThresholdValue);
821 quality2 —>SetVelocityArrayName (velocityArrayName) ;

822 quality2 —>SetConvectiveCorrection (true);

823 quality2 —>Update () ;

824

825 // Paramaterizing line segments

826 // each line segment has an a,b,c,d,e,f and 1 associated value
827 vtkSmartPointer <vtkParamaterizeLineFilter > plf2 =

828 vtkSmartPointer <vtkParamaterizeLineFilter >::New() ;
829 plf2 —>Setlnput (quality2 —>GetOutput());

830 plf2 —>Update () ;

831

832 /] calculating the curvature of the line

833 vtkSmartPointer <vtkCurvature> curvature2 =

834 vtkSmartPointer <vtkCurvature >::New() ;

835 curvature2 —>Setlnput (plf2 —>GetOutput());

836 curvature2 —>MultiSegmentCurvatureOn () ;

837 curvature2 —>VelocityFieldCurvatureOff () ;

838 curvature2 —>PointwiseCurvatureOff () ;

839 curvature2 —>Update () ;

840

841 // Computing feature —averaged attributes

842 vtkSmartPointer <vtkFeatureAttributes > featureAttributes2 =
843 vtkSmartPointer <vtkFeatureAttributes >::New() ;

844 featureAttributes2 —>Setlnput(curvature2 —>GetOutput());
845 featureAttributes2 —>Update () ;

846

847 /] writing extracted lines from Sujudi—Haimes

848 vtkSmartPointer <vtkPolyDataWriter > writer2 =

849 vtkSmartPointer <vtkPolyDataWriter >::New() ;

850 writer2 —>Setlnput(featureAttributes2 —>GetOutput());

135

851 writer2 —>SetFileName (outputFileNameSH.c_str());

852 writer2 —>Write () ;

853 cout << "Writing " << outputFileNameSH.c_str() << endl;

854 }

855 }

856

857 / PERFORMING FEATURE TRACKING

858 if (track)

859 {

860 /] Calculating feature attributes

861 cout << "sxxxxxxxCalculating feature attributes .sxxxxxssss%%x" << endl << endl;
862 for(int i = 1 ; i < numberOfDataSets—1 ; ++1)

863 {

864 string inputFileNameSH, inputFileNameRP,

865 outputFileNameSH , outputFileNameRP;

866

867 /] getting correct names for the input/output files

868 inputFileNameSH = outputFilePrefix + "_" + timeArrayString[i] + "_SH.vtk";
869 outputFileNameSH = outputFilePrefix + "_" + timeArrayString[i] + "_SH.vtk";
870 inputFileNameRP = outputFilePrefix + "_" + timeArrayString[i] + "_RP.vtk";
871 outputFileNameRP = outputFilePrefix + "_" + timeArrayString[i] + "_RP.vtk";
872

873 e «Sujudi—Haimes Section ssxxx////

874 // Reading in data set

875 vtkSmartPointer <vtkPolyDataReader> readerl =

876 vtkSmartPointer <vtkPolyDataReader >::New () ;

877 readerl —>SetFileName (inputFileNameSH . c_str());

878 readerl —>Update () ;

879

880 // Finding number of SH core lines

881 numLinesSH += readerl —>GetOutput ()—>GetNumberOfLines () ;

882

883 // Calculating the curvature of the line

884 vtkSmartPointer <vtkCurvature> curvaturel =

885 vtkSmartPointer <vtkCurvature >::New() ;

886 curvaturel —>Setlnput(readerl —>GetOutput());

887 curvaturel —>MultiSegmentCurvatureOn () ;

888 curvaturel —>VelocityFieldCurvatureOff () ;

889 curvaturel —>PointwiseCurvatureOff () ;

890 curvaturel —>Update () ;

891

892 /] compute vortex strength

893 vtkSmartPointer <vtkVortexStrength > vortexStrengthl =

894 vtkSmartPointer <vtkVortexStrength >::New() ;

895 vortexStrengthl —>SetInput(curvaturel —>GetOutput());

896 vortexStrengthl —>SetInputArrayToProcess (0, 0, 0,

897 vtkDataObject :: FIELD_ASSOCIATION_POINTS, velocityArrayName);
898 vortexStrengthl —>SetInputArrayToProcess (1, 0, 0,

899 vtkDataObject :: FIELD_ASSOCIATION_POINTS, "VelocityGradients");
900 vortexStrengthl —>Update () ;

901

902 // Calculating feature attributes

903 vtkSmartPointer <vtkFeatureAttributes > attributesl =

904 vtkSmartPointer <vtkFeatureAttributes >::New() ;

905 attributesl —>SetInput(vortexStrengthl —>GetOutput());

906 attributes1 —>Update () ;

907

908 // Writing data set

909 vtkSmartPointer <vtkPolyDataWriter > writerl =

910 vtkSmartPointer <vtkPolyDataWriter >::New () ;

911 writerl —>SetInput(attributesl —>GetOutput());

912 writer]l —>SetFileName (outputFileNameSH.c_str());

913 writerl —>Write () ;

914

915 /111 «Roth—Peikert Section sxxx////

916 // Reading in data set

917 vtkSmartPointer <vtkPolyDataReader> reader2 =

918 vtkSmartPointer <vtkPolyDataReader >::New () ;

136

919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

reader2 —>SetFileName (inputFileNameRP.c_str());

reader2 —>Update () ;

// Finding number of RP core lines

numLinesRP += reader2 —>GetOutput () —>GetNumberOfLines () ;

// Calculating the curvature of the line
vtkSmartPointer <vtkCurvature> curvature?2
vtkSmartPointer <vtkCurvature >::New()

>

curvature2 —>Setlnput(reader2 —>GetOutput());

curvature2 —>MultiSegmentCurvatureOn () ;
curvature2 —>VelocityFieldCurvatureOff () ;
curvature2 —>PointwiseCurvatureOff () ;
curvature2 —>Update () ;

// compute vortex strength

vtkSmartPointer <vtkVortexStrength> vortexStrength2 =
vtkSmartPointer <vtkVortexStrength >::New() ;
vortexStrength2 —>Setlnput(curvature2 —>GetOutput());
vortexStrength2 —>SetInputArrayToProcess (0, 0, 0O,
vtkDataObject : : FIELD_ASSOCIATION_POINTS, velocityArrayName) ;
vortexStrength2 —>SetInputArrayToProcess (1, 0, 0,
vtkDataObject :: FIELD_ASSOCIATION_POINTS, "VelocityGradients");

vortexStrength2 —>Update () ;

/! Calculating feature attributes

vtkSmartPointer <vtkFeatureAttributes > attributes2 =
vtkSmartPointer <vtkFeatureAttributes >::New() ;
attributes2 —>SetInput(vortexStrength2 —>GetOutput());

attributes2 —>Update () ;

// Writing data set

vtkSmartPointer <vtkPolyDataWriter> writer2 =
vtkSmartPointer <vtkPolyDataWriter >::New () ;

writer2 —>Setlnput(attributes2 —>GetOutput());

writer2 —>SetFileName (outputFileNameRP.c_str());

writer2 —>Write () ;

}

/1

// Tracking features by attributes

// inputs for tracking
/1

int maxTrackingldSH 0;
int maxTrackingldRP = 0;
/1l

/] getting correct names for the files
string currentFileNameSH , prevFileNameSH ,

nextFileNameSH ,

currentOutputFileNameSH , nextOutputFileNameSH ,

currentFileNameRP , prevFileNameRP ,

nextFileNameRP ,

currentOutputFileNameRP , nextOutputFileNameRP ;

cout << "mmmswkxssskkxssxTracking Features .sssrssrsskrrrsrrssxssx”" << endl << endl;
cout << "Number of passes: " << numberOfPasses << endl;

// Multiple passes
for(int p = 0 ; p < numberOfPasses ; p++)
{

cout << "Pass << p << endl;

// Forward pass through data sets

for(int i = 1 ; i < numberOfDataSets—2 ; ++i)
{
cout << "\tTime = " << timeArrayString[i] << endl;
currentFileNameSH = outputFilePrefix + "_" + timeArrayString[i] + "_SH.vtk";
if(i == 1)
prevFileNameSH = outputFilePrefix + "_" + timeArrayString[i] + "_SH.vtk";
else

137

987 prevFileNameSH = outputFilePrefix +

+ timeArrayString[i—1] + "_SH.vtk";

988 nextFileNameSH = outputFilePrefix + "_" + timeArrayString[i+1] + "_SH.vtk";
989 currentOutputFileNameSH = outputFilePrefix + "_" + timeArrayString[i] + "_SH.vtk";
990 nextOutputFileNameSH = outputFilePrefix + "_" + timeArrayString[i+1] + "_SH.vtk";
991

992 currentFileNameRP = outputFilePrefix + "_" + timeArrayString[i] + "_RP.vtk";
993 if(i == 1)

994 prevFileNameRP = outputFilePrefix + "_" + timeArrayString[i] + "_RP.vtk";
995 else

996 prevFileNameRP = outputFilePrefix + "_" + timeArrayString[i—1] + "_RP.vtk";
997 nextFileNameRP = outputFilePrefix + "_" + timeArrayString[i+1] + "_RP.vtk";
998 currentOutputFileNameRP = outputFilePrefix + "_" + timeArrayString[i] + "_RP.vtk";
999 nextOutputFileNameRP = outputFilePrefix + "_" + timeArrayString[i+1] + "_RP.vtk";
1000

1001 /111 Sujudi—Haimes Section = /11

1002 // Reading in time step of interest

1003 vtkSmartPointer <vtkPolyDataReader> polyReaderl =

1004 vtkSmartPointer <vtkPolyDataReader >::New () ;

1005 polyReaderl —>SetFileName (currentFileNameSH . c_str ());

1006 polyReaderl —>Update () ;

1007

1008 // Reading in next time step

1009 vtkSmartPointer <vtkPolyDataReader> polyReader2 =

1010 vtkSmartPointer <vtkPolyDataReader >::New () ;

1011 polyReader2 —>SetFileName (nextFileNameSH . c_str ());

1012 polyReader2 —>Update () ;

1013

1014 // Reading in prev time step

1015 vtkSmartPointer <vtkPolyDataReader> polyReader3 =

1016 vtkSmartPointer <vtkPolyDataReader >::New () ;

1017 polyReader3 —>SetFileName (prevFileNameSH . c_str());

1018 polyReader3 —>Update () ;

1019

1020 // Tracking lines

1021 vtkSmartPointer <vtkAttributeTracking > trackerl =

1022 vtkSmartPointer <vtkAttributeTracking >::New() ;

1023 trackerl —>AddInputConnection (polyReaderl —>GetOutputPort());

1024 trackerl —>AddInputConnection (polyReader2 —>GetOutputPort());

1025 trackerl —>AddInputConnection (polyReader3 —>GetOutputPort());

1026 if(i == 1)

1027 trackerl —>BoundaryDataSetOn () ;

1028 else

1029 trackerl —>BoundaryDataSetOff () ;

1030 trackerl —>ForwardPassOn () ;

1031 trackerl —>BackwardPassOff () ;

1032 trackerl —>SetMaximumTrackingID (maxTrackingldSH) ;

1033 trackerl —>SetLengthTolerance (lengthTolerance);

1034 trackerl —>SetStrengthTolerance (strengthTolerance);

1035 trackerl —>SetCurvatureTolerance (curvatureTolerance);

1036 trackerl —>SetQualityTolerance (qualityTolerance);

1037 trackerl —>SetDistanceTolerance (distanceTolerance);

1038 trackerl —>SetLengthWeight(lengthWeight) ;

1039 trackerl —>SetStrengthWeight (strengthWeight);

1040 trackerl —>SetCurvatureWeight (curvatureWeight) ;

1041 trackerl —>SetQualityWeight(qualityWeight);

1042 trackerl —>SetDistanceWeight (distanceWeight);

1043 trackerl —>Update () ;

1044

1045 // Incrementing maximum tracking ID for current pass

1046 maxTrackingldSH = trackerl —>GetMaximumTrackingID () ;

1047

1048 // Writing tracking results for current time step

1049 vtkSmartPointer <vtkPolyDataWriter> writerl =

1050 vtkSmartPointer <vtkPolyDataWriter >::New () ;

1051 writerl —>Setlnput(trackerl —>GetOutput(0));

1052 writer]l —>SetFileName (currentOutputFileNameSH.c_str());

1053 writerl —>Write () ;

1054

138

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122

// Writing tracking results for next time step

vtkSmartPointer <vtkPolyDataWriter> writer2 =
vtkSmartPointer <vtkPolyDataWriter >::New () ;

writer2 —>SetInput (trackerl —>GetOutput(1));

writer2 —>SetFileName (nextOutputFileNameSH . c_str());

writer2 —>Write () ;

/1 1]+ Roth—Peikert Sectionsxxx////

// Reading in time step of interest

vtkSmartPointer <vtkPolyDataReader> polyReader4 =
vtkSmartPointer <vtkPolyDataReader >::New () ;

polyReader4 —>SetFileName (currentFileNameRP . c_str ());

polyReader4 —>Update () ;

// Reading in next time step

vtkSmartPointer <vtkPolyDataReader> polyReader5 =
vtkSmartPointer <vtkPolyDataReader >::New () ;

polyReader5 —>SetFileName (nextFileNameRP.c_str());

polyReader5 —>Update () ;

// Reading in prev time step

vtkSmartPointer <vtkPolyDataReader> polyReader6 =
vtkSmartPointer <vtkPolyDataReader >::New () ;

polyReader6 —>SetFileName (prevFileNameRP.c_str());

polyReader6 —>Update () ;

// Tracking lines
vtkSmartPointer <vtkAttributeTracking > tracker2 =
vtkSmartPointer <vtkAttributeTracking >::New() ;
tracker2 —>AddInputConnection (polyReader4 —>GetOutputPort());
tracker2 —>AddInputConnection (polyReader5 —>GetOutputPort());
tracker2 —>AddInputConnection (polyReader6 —>GetOutputPort());
if(i == 1)
tracker2 —>BoundaryDataSetOn () ;
else
tracker2 —>BoundaryDataSetOff () ;
tracker2 —>ForwardPassOn () ;
tracker2 —>BackwardPassOff () ;
tracker2 —>SetMaximumTrackingID (maxTrackingldRP) ;
tracker2 —>SetLengthTolerance (lengthTolerance) ;
tracker2 —>SetStrengthTolerance (strengthTolerance);
tracker2 —>SetCurvatureTolerance (curvatureTolerance);
tracker2 —>SetQualityTolerance (qualityTolerance);
tracker2 —>SetDistanceTolerance (distanceTolerance);
tracker2 —>SetLengthWeight(lengthWeight) ;
tracker2 —>SetStrengthWeight (strengthWeight);
tracker2 —>SetCurvatureWeight (curvatureWeight) ;
tracker2 —>SetQualityWeight(qualityWeight);
tracker2 —>SetDistanceWeight (distanceWeight);
tracker2 —>Update () ;

// Updating maximum tracking ID from most recent pass
maxTrackingldRP = tracker2 —>GetMaximumTrackingID () ;

// Writing tracking results of current time step

vtkSmartPointer <vtkPolyDataWriter> writer3 =
vtkSmartPointer <vtkPolyDataWriter >::New () ;

writer3 —>Setlnput(tracker2 —>GetOutput(0));

writer3 —>SetFileName (currentOutputFileNameRP.c_str());

writer3 —>Write () ;

// Writing tracking results of next time step

vtkSmartPointer <vtkPolyDataWriter> writer4 =
vtkSmartPointer <vtkPolyDataWriter >::New () ;

writer4 —>Setlnput(tracker2 —>GetOutput(1));

writer4 —>SetFileName (nextOutputFileNameRP.c_str());

writer4d —>Write () ;

139

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190

// Backward pass through data sets
for(int i = numberOfDataSets—2 ; i > 1 ; i—)

{

cout << "\tTime = " << timeArrayString[i] << endl;
currentFileNameSH = outputFilePrefix + "_" + timeArrayString[i] + "_SH.vtk";
if (i == numberOfDataSets —2)

prevFileNameSH = outputFilePrefix + "_" + timeArrayString[i] + "_SH.vtk";
else

prevFileNameSH = outputFilePrefix + "_" + timeArrayString[i+1] + "_SH.vtk";
nextFileNameSH = outputFilePrefix + "_" + timeArrayString[i—1] + "_SH.vtk";
currentOutputFileNameSH = outputFilePrefix + "_" + timeArrayString[i] + "_SH.vtk";
nextOutputFileNameSH = outputFilePrefix + "_" + timeArrayString[i—1] + "_SH.vtk";
currentFileNameRP = outputFilePrefix + "_" + timeArrayString[i] + "_RP.vtk";
if (i == numberOfDataSets —2)

prevFileNameRP = outputFilePrefix + "_" + timeArrayString[i] + "_RP.vtk";
else

prevFileNameRP = outputFilePrefix + "_" + timeArrayString[i+1] + "_RP.vtk";
nextFileNameRP = outputFilePrefix + "_" + timeArrayString[i—1] + "_RP.vtk";
currentOutputFileNameRP = outputFilePrefix + "_" + timeArrayString[i] + "_RP.vtk";
nextOutputFileNameRP = outputFilePrefix + "_" + timeArrayString[i—1] + "_RP.vtk";
[l 1]+ Sujudi —Haimes Section xxx%////

// Reading in time step of interest

vtkSmartPointer <vtkPolyDataReader> polyReaderl =
vtkSmartPointer <vtkPolyDataReader >::New () ;

polyReaderl —>SetFileName (currentFileNameSH . c_str ());

polyReaderl —>Update () ;

// Reading in next time step

vtkSmartPointer <vtkPolyDataReader> polyReader2 =
vtkSmartPointer <vtkPolyDataReader >::New () ;

polyReader2 —>SetFileName (nextFileNameSH.c_str());

polyReader2 —>Update () ;

// Reading in prev time step

vtkSmartPointer <vtkPolyDataReader> polyReader3 =
vtkSmartPointer <vtkPolyDataReader >::New () ;

polyReader3 —>SetFileName (prevFileNameSH . c_str());

polyReader3 —>Update () ;

// Tracking lines

vtkSmartPointer <vtkAttributeTracking > trackerl =
vtkSmartPointer <vtkAttributeTracking >::New() ;

trackerl —>AddInputConnection (polyReaderl —>GetOutputPort());

trackerl —>AddInputConnection (polyReader2 —>GetOutputPort());

trackerl —>AddInputConnection (polyReader3 —>GetOutputPort());

if (i == numberOfDataSets —2)
trackerl —>BoundaryDataSetOn () ;
else

trackerl —>BoundaryDataSetOff () ;
trackerl —>ForwardPassOff () ;
trackerl —>BackwardPassOn () ;
trackerl —>SetMaximumTrackingID (maxTrackingldSH) ;
trackerl —>SetLengthTolerance (lengthTolerance);
trackerl —>SetStrengthTolerance (strengthTolerance);
trackerl —>SetCurvatureTolerance (curvatureTolerance);
trackerl —>SetQualityTolerance (qualityTolerance);
trackerl —>SetDistanceTolerance (distanceTolerance);
trackerl —>SetLengthWeight(lengthWeight) ;
trackerl —>SetStrengthWeight (strengthWeight);
trackerl —>SetCurvatureWeight (curvatureWeight) ;
trackerl —>SetQualityWeight(qualityWeight);
trackerl —>SetDistanceWeight (distanceWeight);
trackerl —>Update () ;

// Updating maximum tracking ID from most recent pass

140

1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258

maxTrackingldSH = trackerl —>GetMaximumTrackingID () ;

// Writing tracking results of current time step

vtkSmartPointer <vtkPolyDataWriter > writerl =
vtkSmartPointer <vtkPolyDataWriter >::New () ;

writerl —>SetInput(trackerl —>GetOutput(0));

writerl —>SetFileName (currentOutputFileNameSH .c_str());

writerl —>Write () ;

/! Writing tracking results of next time step

vtkSmartPointer <vtkPolyDataWriter > writer2 =
vtkSmartPointer <vtkPolyDataWriter >::New () ;

writer2 —>SetInput (trackerl —>GetOutput(1));

writer2 —>SetFileName (nextOutputFileNameSH.c_str());

writer2 —>Write () ;

/] /]#%%+%Roth—Peikert Sectionsxxx////

// Reading in time step of interest

vtkSmartPointer <vtkPolyDataReader> polyReader4 =
vtkSmartPointer <vtkPolyDataReader >::New () ;

polyReader4 —>SetFileName (currentFileNameRP.c_str ());

polyReader4 —>Update () ;

// Reading in next time step

vtkSmartPointer <vtkPolyDataReader> polyReader5 =
vtkSmartPointer <vtkPolyDataReader >::New () ;

polyReader5 —>SetFileName (nextFileNameRP.c_str());

polyReader5 —>Update () ;

// Reading in previous time step

vtkSmartPointer <vtkPolyDataReader> polyReader6 =
vtkSmartPointer <vtkPolyDataReader >::New () ;

polyReader6 —>SetFileName (prevFileNameRP.c_str());

polyReader6 —>Update () ;

// Tracking lines
vtkSmartPointer <vtkAttributeTracking > tracker2 =
vtkSmartPointer <vtkAttributeTracking >::New() ;
tracker2 —>AddInputConnection (polyReader4 —>GetOutputPort());
tracker2 —>AddInputConnection (polyReader5 —>GetOutputPort());
tracker2 —>AddInputConnection (polyReader6 —>GetOutputPort());
if (i == numberOfDataSets —2)
tracker2 —>BoundaryDataSetOn () ;
else
tracker2 —>BoundaryDataSetOff () ;
tracker2 —>ForwardPassOff () ;
tracker2 —>BackwardPassOn () ;
tracker2 —>SetMaximumTrackingID (maxTrackingldRP) ;
tracker2 —>SetLengthTolerance (lengthTolerance);
tracker2 —>SetStrengthTolerance (strengthTolerance);
tracker2 —>SetCurvatureTolerance (curvatureTolerance);
tracker2 —>SetQualityTolerance (qualityTolerance);
tracker2 —>SetDistanceTolerance (distanceTolerance);
tracker2 —>SetLengthWeight(lengthWeight) ;
tracker2 —>SetStrengthWeight (strengthWeight);
tracker2 —>SetCurvatureWeight (curvatureWeight) ;
tracker2 —>SetQualityWeight (qualityWeight);
tracker2 —>SetDistanceWeight (distanceWeight);
tracker2 —>Update () ;

// Updating maximum tracking ID from most recent pass
maxTrackingldRP = tracker2 —>GetMaximumTrackingID () ;

// Writing tracking results of current time step

vtkSmartPointer <vtkPolyDataWriter > writer3 =
vtkSmartPointer <vtkPolyDataWriter >::New () ;

writer3 —>Setlnput(tracker2 —>GetOutput(0));

writer3 —>SetFileName (currentOutputFileNameRP.c_str());

141

1259 writer3 —>Write () ;

1260

1261 // Writing tracking results of next time step

1262 vtkSmartPointer <vtkPolyDataWriter > writer4 =

1263 vtkSmartPointer <vtkPolyDataWriter >::New () ;

1264 writer4d —>SetInput (tracker2 —>GetOutput(1));

1265 writer4 —>SetFileName (nextOutputFileNameRP.c_str());
1266 writerd —>Write () ;

1267 }

1268

1269 // Incrementing tracking tolerances for next pass

1270 lengthTolerance = lengthTolerance + lengthlncr;

1271 strengthTolerance = strengthTolerance + strengthlncr;
1272 curvatureTolerance = curvatureTolerance + curvaturelncr;
1273 qualityTolerance = qualityTolerance + qualitylncr;

1274 distanceTolerance = distanceTolerance + distancelncr;
1275 }

1276

1277 cout << "SH Maximum Tracking ID = " << maxTrackingldSH << endl
1278 << "RP Maximum Tracking ID = " << maxTrackingldRP << endl
1279 << endl;

1280

1281 /1

1282 /! Measuring lifetime of feature paths

1283

1284 /] getting correct names for the files

1285 string inputFileNameSH , inputFileNameRP;

1286

1287 // Instantiating lifetime arrays

1288 vtkIntArray =lifetimeArraySH = vtkIntArray ::New();

1289 lifetimeArraySH —>SetNumberOfValues (maxTrackingldSH+1) ;
1290 lifetimeArraySH —>SetNumberOfComponents (1) ;

1291 lifetimeArraySH —>SetNumberOfTuples (maxTrackingldSH+1) ;

1292 lifetimeArraySH —>SetName (" FeatureLifetimeSH") ;

1293

1294 vtkIntArray =lifetimeArrayRP = vtkIntArray ::New();

1295 lifetimeArrayRP —>SetNumberOfValues (maxTrackingldRP+1);
1296 lifetimeArrayRP —>SetNumberOfComponents (1) ;

1297 lifetimeArrayRP —>SetNumberOfTuples (maxTrackingldRP+1);
1298 lifetimeArrayRP —>SetName (" FeatureLifetimeRP") ;

1299

1300 // Initializing lifetime arrays

1301 // each index initially has a lifetime of 0

1302 for(int i = 0 ; i < maxTrackingldSH ; ++i)

1303 lifetimeArraySH —>SetValue (i,0);

1304 for(int i = 0 ; i < maxTrackingldRP ; ++i)

1305 lifetimeArrayRP —>SetValue (i,0);

1306

1307 cout << "sxwsskxxssxMeasuring feature lifetimes .sssssskssxssrssx" << endl << endl;
1308 // Tterating through time steps to find feature lifetimes
1309 for(int i = 1 ; i < numberOfDataSets—1 ; ++1)

1310 {

1311 cout << "Time = " << timeArrayString[i] << endl;

1312

1313 /! Getting file names for input files

1314 inputFileNameSH = outputFilePrefix + "_" + timeArrayString[i] + "_SH.vtk";
1315 inputFileNameRP = outputFilePrefix + "_" + timeArrayString[i] + "_RP.vtk";
1316

1317 /111 « Sujudi—Haimes Section ssxx////

1318 // Reading input file

1319 vtkSmartPointer <vtkPolyDataReader> readerl =

1320 vtkSmartPointer <vtkPolyDataReader >::New () ;

1321 reader] —>SetFileName (inputFileNameSH.c_str());

1322 readerl —>Update () ;

1323

1324 // Passing data set to calculate feature lifetime

1325 vtkSmartPointer <vtkFeatureLifetime > lifeCalcl =

1326 vtkSmartPointer <vtkFeatureLifetime >::New() ;

142

1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381

1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392
1393
1394

/1
/1]

lifeCalcl —>SetlInput(readerl —>GetOutput());
lifeCalcl —>SetFeatureLifeArray (lifetimeArraySH) ;
lifeCalcl —>CalculateFeatureLifetimeOn () ;
lifeCalcl —>SetFeatureLifetimeOff () ;

lifeCalcl —>Update () ;

/117 «Roth—Peikert Section xxxx////

// Reading input file

vtkSmartPointer <vtkPolyDataReader> reader2 =
vtkSmartPointer <vtkPolyDataReader >::New () ;

reader2 —>SetFileName (inputFileNameRP.c_str());

reader2 —>Update () ;

// Passing data set to calculate feature lifetime

vtkSmartPointer <vtkFeatureLifetime > lifeCalc2 =
vtkSmartPointer <vtkFeatureLifetime >::New() ;

lifeCalc2 —>Setlnput(reader2 —>GetOutput());

lifeCalc2 —>SetFeatureLifeArray (lifetimeArrayRP);

lifeCalc2 —>CalculateFeatureLifetimeOn () ;

lifeCalc2 —>SetFeatureLifetimeOff () ;

lifeCalc2 —>Update () ;

}

/! Measuring average feature lifetime
double lifeSumSH(0), lifeSumRP(0), avgLifeSH, avgLifeRP;
for(int i = 0 ; i < maxTrackingldSH+1 ; ++i)

lifeSumSH += lifetimeArraySH —>GetComponent (i ,0) ;
for(int i = 0 ; i < maxTrackingldRP+1 ; ++i)

lifeSumRP += lifetimeArrayRP —>GetComponent(i,0) ;

avgLifeSH = lifeSumSH / (maxTrackingldSH+1);
avgLifeRP = lifeSumRP / (maxTrackingldRP+1);

cout << "SH total number of features = " << numLinesSH << endl
<< "SH number of untracked features = " << lifetimeArraySH —>GetComponent(0,0)
<< "SH percent untracked = " << lifetimeArraySH —>GetComponent(0,0)/numLinesSH
<< "SH average life = " << avgLifeSH << endl
<< "RP total number of features = " << numLinesRP << endl
<< "RP number of untracked features = " << lifetimeArrayRP —>GetComponent(0,0)
<< "RP percent untracked = " << lifetimeArrayRP —>GetComponent(0,0)/numLinesRP
<< "RP average life = " << avgLifeRP << endl
<< endl;

Setting feature lifetimes

cout << "sxwxsxkx Setting feature lifetime arrays.sssssssssssx" << endl;

// Tterating through time steps to set feature lifetimes
for(int i = 1 ; i < numberOfDataSets—1 ; ++i)
{

// Getting file names for input/output files

inputFileNameSH = outputFilePrefix + "_" + timeArrayString[i] + "_SH.vtk";
outputFileNameSH = outputFilePrefix + + timeArrayString[i] + "_SH.vtk";
inputFileNameRP = outputFilePrefix + "_" + timeArrayString[i] + "_RP.vtk";
outputFileNameRP = outputFilePrefix + "_" + timeArrayString[i] + "_RP.vtk";

"o

w2

1111 < Sujudi—Haimes Section ssxxx////

// Reading input file

vtkSmartPointer <vtkPolyDataReader> reader3 =
vtkSmartPointer <vtkPolyDataReader >::New () ;

reader3 —>SetFileName (inputFileNameSH .c_str ());

reader3 —>Update () ;

/] Passing data set to calculate feature lifetime

vtkSmartPointer <vtkFeatureLifetime > lifeCalc3 =
vtkSmartPointer <vtkFeatureLifetime >::New() ;

lifeCalc3 —>SetInput(reader3 —>GetOutput());

143

endl
endl

endl
endl

1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462

[% % % :
if (logic)

{

lifeCalc3 —>SetFeatureLifeArray (lifetimeArraySH);
lifeCalc3 —>CalculateFeatureLifetimeOff () ;
lifeCalc3 —>SetFeatureLifetimeOn () ;

lifeCalc3 —>Update () ;

// Writing output file

vtkSmartPointer <vtkPolyDataWriter > writerl =
vtkSmartPointer <vtkPolyDataWriter >::New () ;

writerl —>SetInput(lifeCalc3 —>GetOutput());

writer]l —>SetFileName (outputFileNameSH.c_str());

writerl —>Write () ;

/1 1] «Roth—Peikert Sectionsxxx////

// Reading input file

vtkSmartPointer <vtkPolyDataReader> reader4 =
vtkSmartPointer <vtkPolyDataReader >::New () ;

reader4 —>SetFileName (inputFileNameRP.c_str());

reader4 —>Update () ;

// Passing data set to calculate feature lifetime
vtkSmartPointer <vtkFeatureLifetime > lifeCalc4 =
vtkSmartPointer <vtkFeatureLifetime >::New() ;
lifeCalc4 —>Setlnput(reader4 —>GetOutput());
lifeCalc4 —>SetFeatureLifeArray (lifetimeArrayRP);
lifeCalc4 —>CalculateFeatureLifetimeOff () ;
lifeCalc4 —>SetFeatureLifetimeOn () ;
lifeCalc4 —>Update () ;

// Writing output file

vtkSmartPointer <vtkPolyDataWriter> writer2 =
vtkSmartPointer <vtkPolyDataWriter >::New () ;

writer2 —>Setlnput(lifeCalc4 —>GetOutput());

writer2 —>SetFileName (outputFileNameRP.c_str());

writer2 —>Write () ;

}

/! Deleting lifetime arrays
lifetimeArraySH —>Delete () ;
lifetimeArrayRP —>Delete () ;

«* PERFORMING SUBJECTIVE LOGIC

/! Subjective logic cannot be computed until 3rd time step because of
// feature tracking and time derivatives
for(int i = 3 ; i < numberOfDataSets—1 ; ++i)
{
// Stop watch — vortex
CStopWatch stopWatchVortex = CStopWatch:: CStopWatch () ;
stopWatchVortex . startTimer () ;
double timeToCompletionVortex , oldTimeVortex ;

cout << "Vortex: Computing Opinion for " << i << endl;
stopWatchVortex . startTimer () ;

/] getting correct names for the files

string activeFileNameSH , passiveFileNameSH , outputFileNameSH ,
activeFileNameRP , passiveFileNameRP, outputFileNameRP,
outputFileNameVortex ;

activeFileNameSH = outputFilePrefix + "_" + timeArrayString[i] + "_SH.vtk";
passiveFileNameSH = outputFilePrefix + "_" + timeArrayString[i—1] + "_Complete_SH.vtk";
outputFileNameSH = outputFilePrefix + "_" + timeArrayString[i] + "_Complete_SH . vtk";
activeFileNameRP = outputFilePrefix + "_" + timeArrayString/[i] + "_RP.vtk";
passiveFileNameRP = outputFilePrefix + "_" + timeArrayString[i—1] + "_Complete_RP.vtk";

1463
1464
1465

1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529

"o

outputFileNameRP = outputFilePrefix +

"

outputFileNameVortex = outputFilePrefix +

/111 : Sujudi—Haimes Section ssxx////
cout << "\tSujudi—Haimes\n";
// Reading in Sujudi—Haimes vortex core lines

+ timeArrayString[i]

vtkSmartPointer <vtkPolyDataReader> polyReaderl

vtkSmartPointer <vtkPolyDataReader >::New ()

B

+ timeArrayString[i] +

polyReaderl —>SetFileName (activeFileNameSH . c_str());

polyReaderl —>Update () ;

/1 /]%x+x%Roth—Peikert Sectionsx=xxx////
cout << "\tRoth—Peikert\n";
// Reading in Roth—Peikert vortex core lines

vtkSmartPointer <vtkPolyDataReader> polyReader2

vtkSmartPointer <vtkPolyDataReader >::New ()

>

polyReader2 —>SetFileName (activeFileNameRP . c_str ());

polyReader2 —>Update () ;

// Computing minimum distance between points
// and points in Roth—Peikert data set.

in

Sujudi—Haimes data set

vtkSmartPointer <vtkMinimumDistance> minimumDistancel =

vtkSmartPointer <vtkMinimumDistance >::New () ;

minimumDistancel —>AddInputConnection (polyReaderl —>GetOutputPort());
minimumDistancel —>AddInputConnection (polyReader2 —>GetOutputPort());

minimumDistancel —>Update () ;

// Computing minimum distance between points
// and points in Sujudi—Haimes data set.

in

Roth—Peikert data set

vtkSmartPointer <vtkMinimumDistance> minimumDistance2 =

vtkSmartPointer <vtkMinimumDistance >::New() ;

minimumDistance2 —>AddInputConnection (polyReader2 —>GetOutputPort());
minimumDistance2 —>AddInputConnection (polyReaderl —>GetOutputPort());

minimumDistance2 —>Update () ;

// Creating the final opinion of the data set

vtkSmartPointer <vtkCreateOpinion_Vortex > createOpinionl =
vtkSmartPointer <vtkCreateOpinion_Vortex >::New() ;
createOpinionl —>SetInput (minimumDistancel —>GetOutput());

createOpinionl —>SujudiHaimesOn () ;
createOpinionl —>RothPeikertOff () ;
createOpinionl —>SetTransient (true);

createOpinionl —>SetFeatureLifeNorm (normFeatureLife) ;

createOpinionl —>Update () ;

// Removing unneeded arrays

createOpinionl —>GetOutput ()—>GetPointData ()—>RemoveArray ('

createOpinionl —>GetOutput ()—>GetPointData () —>RemoveArray ("a
createOpinionl —>GetOutput ()—>GetPointData () —>RemoveArray("c

")
")
)

"

B

createOpinionl —>GetOutput ()—>GetPointData () —>RemoveArray ("d");
createOpinionl —>GetOutput ()—>GetPointData () —>RemoveArray("e");
createOpinionl —>GetOutput ()—>GetPointData () —>RemoveArray ("f");
createOpinionl —>GetOutput ()—>GetPointData () —>RemoveArray("1");
createOpinionl —>GetOutput ()—>GetPointData () —>RemoveArray ("t");
createOpinionl —>GetOutput ()—>GetPointData ()—>RemoveArray (" Discriminant") ;

createOpinionl —>GetOutput ()—>GetPointData () —>RemoveArray (" Gradients") ;

"

+ "_Complete_RP.vtk";

_Complete_Vortex . vtk

createOpinionl —>GetOutput ()—>GetPointData ()—>RemoveArray (" TensorXVelocity");
createOpinionl —>GetOutput ()—>GetPointData () —>RemoveArray (" TimelstDerivatives");
createOpinionl —>GetOutput ()—>GetPointData () —>RemoveArray (" Time2ndDerivatives");
createOpinionl —>GetOutput ()—>GetPointData () —>RemoveArray (" VelocityMagnitude") ;

// Creating the final opinion of the data set

vtkSmartPointer <vtkCreateOpinion_Vortex > createOpinion2 =
vtkSmartPointer <vtkCreateOpinion_Vortex >::New() ;
createOpinion2 —>Setlnput (minimumDistance2 —>GetOutput ()) ;

createOpinion2 —>SujudiHaimesOff () ;

145

1530 createOpinion2 —>RothPeikertOn () ;

1531 createOpinion2 —>SetTransient (true);

1532 createOpinion2 —>SetFeatureLifeNorm (normFeatureLife) ;

1533 createOpinion2 —>Update () ;

1534

1535 // Removing unneeded arrays

1536 createOpinion2 —>GetOutput ()—>GetPointData () —>RemoveArray("a");

1537 createOpinion2 —>GetOutput ()—>GetPointData () —>RemoveArray("b");

1538 createOpinion2 —>GetOutput ()—>GetPointData () —>RemoveArray("c");

1539 createOpinion2 —>GetOutput ()—>GetPointData () —>RemoveArray ("d");

1540 createOpinion2 —>GetOutput ()—>GetPointData () —>RemoveArray("e");

1541 createOpinion2 —>GetOutput ()—>GetPointData () —>RemoveArray ("f");

1542 createOpinion2 —>GetOutput () —>GetPointData () —>RemoveArray("1");

1543 createOpinion2 —>GetOutput ()—>GetPointData () —>RemoveArray ("t");

1544 createOpinion2 —>GetOutput ()—>GetPointData () —>RemoveArray (" Gradients") ;
1545 createOpinion2 —>GetOutput ()—>GetPointData () —>RemoveArray (" Gradients1");
1546 createOpinion2 —>GetOutput ()—>GetPointData ()—>RemoveArray (" TensorXVelocity");
1547 createOpinion2 —>GetOutput () —>GetPointData ()—>RemoveArray (" TensorXVelocityl");
1548 createOpinion2 —>GetOutput ()—>GetPointData () —>RemoveArray (" TimelstDerivatives");
1549 createOpinion2 —>GetOutput ()—>GetPointData () —>RemoveArray (" Time2ndDerivatives");
1550 createOpinion2 —>GetOutput ()—>GetPointData () —>RemoveArray (" VelocityMagnitude") ;
1551

1552 // Combining believable vortex outputs

1553 vtkSmartPointer <vtkCombineFeatureSets > combineVortex =

1554 vtkSmartPointer <vtkCombineFeatureSets >::New() ;

1555 combineVortex —>AddInputConnection (createOpinionl —>GetOutputPort());

1556 combineVortex —>AddInputConnection (createOpinion2 —>GetOutputPort());

1557 combineVortex —>PointFeaturesOff () ;

1558 combineVortex —>LineFeaturesOn () ;

1559 combineVortex —>SetProbabilityExpectationThreshold (probExpThreshold) ;
1560 combineVortex —>SetLengthTolerance (combLengthTol) ;

1561 combineVortex —>SetDistanceTolerance (combDistTol) ;

1562 combineVortex —>Update () ;

1563

1564 /1 Writing file to check it

1565 vtkSmartPointer <vtkPolyDataWriter > pdWriterl =

1566 vtkSmartPointer <vtkPolyDataWriter >::New () ;

1567 pdWriterl —>SetInput(createOpinionl —>GetOutput());

1568 pdWriterl —>SetFileName (outputFileNameSH.c_str());

1569 pdWriterl —>Write () ;

1570

1571 /1 Writing file to check it

1572 vtkSmartPointer <vtkPolyDataWriter > pdWriter2 =

1573 vtkSmartPointer <vtkPolyDataWriter >::New() ;

1574 pdWriter2 —>SetInput (createOpinion2 —>GetOutput());

1575 pdWriter2 —>SetFileName (outputFileNameRP.c_str());

1576 pdWriter2 —>Write () ;

1577

1578 /1 Writing file to check it

1579 vtkSmartPointer <vtkPolyDataWriter > pdWriter3 =

1580 vtkSmartPointer <vtkPolyDataWriter >::New() ;

1581 pdWriter3 —>SetInput (combineVortex —>GetOutput ());

1582 pdWriter3 —>SetFileName (outputFileNameVortex.c_str());

1583 pdWriter3 —>Write () ;

1584

1585 stopWatchVortex . stopTimer () ;

1586 oldTimeVortex = stopWatchVortex.getElapsedTime () ;

1587 cout << "Vortex: Completed " << i << " in Time = " << oldTimeVortex << " s" << endl << endl
1588 }

1589 }

1590

1591

1592 return 1;

1593}

146

B.3 Header Files

In this section header files are listed for code I have written in C++. Header files have
not been listed for code I did not write like vtkRothPeikert and vtkSujudiHaimes. All of the

code uses VTK 5.8 code as superclasses. Two books from Kitware, Inc. explain the VTK object

=T = Y R N e N

structure [76,77]. The header files are listed in alphabetical order.

B.3.1 vtkAttributeTracking.h

/' .NAME vtkAttributeTracking

/1 .SECTION Description
// vtkAttributeTracking is a filter that tracks features

/! through time based on the feature's attributes.

#ifndef __vtkAttributeTracking_h
#define __vtkAttributeTracking_h

#include "vtkPolyDataAlgorithm.h"
class vtkFloatArray;

class vtkIdList;
class vtkPolyData;

class VTK_GRAPHICS_EXPORT vtkAttributeTracking : public vtkPolyDataAlgorithm

{
public:

vtkTypeRevisionMacro (vtkAttributeTracking , vtkPolyDataAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent);
static vtkAttributeTracking =New();
// Turn on/off boundary data set calculations
vtkSetMacro (BoundaryDataSet , int);
vtkGetMacro (BoundaryDataSet , int);
vtkBooleanMacro (BoundaryDataSet, int); //false is 0
// Turn on/off forward pass
vtkSetMacro (ForwardPass , int);
vtkGetMacro (ForwardPass , int);
vtkBooleanMacro (ForwardPass , int); //false is 0
// Turn on/off backward pass
vtkSetMacro (BackwardPass , int);
vtkGetMacro (BackwardPass , int);
vtkBooleanMacro (BackwardPass, int); //false is 0
// Setting length tolerance
vtkSetMacro (MaximumTrackingID, int);
vtkGetMacro (MaximumTrackingID, int);
/] Setting length tolerance
vtkSetMacro(LengthTolerance , double);
vtkGetMacro(LengthTolerance , double);
// Setting vortex strength tolerance
vtkSetMacro(StrengthTolerance , double);
vtkGetMacro(StrengthTolerance , double);

147

51 // Setting curvature tolerance

52 vtkSetMacro(CurvatureTolerance , double);
53 vtkGetMacro (CurvatureTolerance , double) ;
54

55 /! Setting quality tolerance

56 vtkSetMacro (QualityTolerance , double);
57 vtkGetMacro (QualityTolerance , double);
58

59 // Setting distance tolerance

60 vtkSetMacro(DistanceTolerance , double);
61 vtkGetMacro (DistanceTolerance , double);
62

63 // Setting length weight

64 vtkSetMacro(LengthWeight, double);

65 vtkGetMacro (LengthWeight, double);

66

67 /! Setting vortex strength weight

68 vtkSetMacro (StrengthWeight , double) ;

69 vtkGetMacro (StrengthWeight , double) ;

70

71 /] Setting curvature weight

72 vtkSetMacro (CurvatureWeight , double);

73 vtkGetMacro (CurvatureWeight , double);

74

75 /] Setting quality weight

76 vtkSetMacro (QualityWeight , double);

77 vtkGetMacro (QualityWeight , double);

78

79 // Setting distance weight

80 vtkSetMacro (DistanceWeight, double);

81 vtkGetMacro (DistanceWeight , double);

82

83 protected:

84 vtkAttributeTracking () ;

85 ~vtkAttributeTracking () {};

86

87 // Usual data generation method

38 int FilllnputPortInformation(int port, vtkInformations* info);
89 int RequestData(vtkInformation #, vtkInformationVector %, vtkInformationVector =);
90

91 int BoundaryDataSet;

92 int ForwardPass;

93 int BackwardPass;

94 int MaximumTrackingID;

95 double LengthTolerance;

96 double StrengthTolerance;

97 double CurvatureTolerance;

98 double QualityTolerance;

99 double DistanceTolerance;

100 double LengthWeight;

101 double StrengthWeight;

102 double CurvatureWeight;

103 double QualityWeight;

104 double DistanceWeight;

105

106 private:

107 vtkAttributeTracking (const vtkAttributeTracking&); // Not implemented .
108 void operator=(const vtkAttributeTracking&); /! Not implemented.
109 };

110

11 #endif

B.3.2 vtkCombineFeatureSets.h

1 // .NAME vtkCombineFeatureSets — computes feature displacement

148

/1 .SECTION Description

// vtkCombineFeatureSets is a filter that takes two feature data sets
// as input and outputs one feature set. The two data sets are combined
and thresholded by probability expectation.

#ifndef __vtkCombineFeatureSets_h
#define __vtkCombineFeatureSets_h

=T = N I N U Iy O}
~
~

#include "vtkPolyDataAlgorithm.h"

13 class vtkFloatArray;
14 class vtkIdList;
15 class vtkPolyData;

16
17 class VTK_GRAPHICS_EXPORT vtkCombineFeatureSets : public vtkPolyDataAlgorithm
18 {

19 public:

20 vtkTypeRevisionMacro (vtkCombineFeatureSets , vtkPolyDataAlgorithm) ;
21 void PrintSelf(ostream& os, vtkIndent indent);

22

23 static vtkCombineFeatureSets =New() ;

24

25 // turning on/off line feature methods

26 vtkSetMacro(LineFeatures , int);

27 vtkGetMacro(LineFeatures , int);

28 vtkBooleanMacro(LineFeatures , int);

29

30 // turning on/off point feature methods

31 vtkSetMacro(PointFeatures , int);

32 vtkGetMacro (PointFeatures , int);

33 vtkBooleanMacro (PointFeatures , int);

34

35 // setting probability expectation threshold

36 vtkSetMacro(ProbabilityExpectationThreshold , double);

37 vtkGetMacro (ProbabilityExpectationThreshold , double);

38

39 // setting length tolerance

40 vtkSetMacro(LengthTolerance , double);

41 vtkGetMacro(LengthTolerance , double);

4

43 /] setting distance tolerance

44 vtkSetMacro (DistanceTolerance , double);

45 vtkGetMacro(DistanceTolerance , double);

46

47 protected :

48 vtkCombineFeatureSets () ;

49 ~vtkCombineFeatureSets () {};

50

51 // Usual data generation method

52 int RequestData(vtkInformation =, vtkInformationVector =%, vtkInformationVector =x);
53 int FilllnputPortInformation(int port, vtkInformations* info);

54

55 vtkIntArray =SameLineArray;

56 int LineFeatures;

57 int PointFeatures;

58 double ProbabilityExpectationThreshold;

59 double LengthTolerance;

60 double DistanceTolerance;

61

62 private:

63 vtkCombineFeatureSets (const vtkCombineFeatureSets&); // Not implemented.
64 void operator=(const vtkCombineFeatureSets&); /! Not implemented .
65 };

66

67 #endif

149

© ® N AW N =

B.3.3 vtkCreateOpinion_Vortex.h

/1 .NAME vtkCreateOpinion_Vortex

// .SECTION Description
// vtkCreateOpinion_Vortex is a filter that computes the
// of each extracted point.

#ifndef __vtkCreateOpinion_Vortex_h
#define __vtkCreateOpinion_Vortex_h

#include "vtkPolyDataAlgorithm.h"

class vtkFloatArray;
class vtkIdList;
class vtkPolyData;

class VTK_GRAPHICS_EXPORT vtkCreateOpinion_Vortex : public vtkPolyDataAlgorithm

{
public:

vtkTypeRevisionMacro(vtkCreateOpinion_Vortex , vtkPolyDataAlgorithm);

void PrintSelf(ostream& os, vtkIndent indent);
static vtkCreateOpinion_Vortex =New();

/! Description: Set/Get constant used to find belief,
/! disbelief , and uncertainty values for Master Agent
vtkSetMacro(FeatureDisplacementConstant , double);
vtkGetMacro (FeatureDisplacementConstant , double);

// Description: Set/Get constant used to find belief ,
// disbelief , and uncertainty values for Master Agent

opinion

vtkSetMacro(ChangelnFeatureDisplacementConstant , double);
vtkGetMacro(ChangelnFeatureDisplacementConstant , double);

// Description: Set/Get feature life normalization value

// which divides all the feature life values.
vtkSetMacro (FeatureLifeNorm , int);
vtkGetMacro (FeatureLifeNorm , int);

// Description: Turn on/off Sujudi—Haimes as the
/] active extraction algorithm.

vtkSetMacro (SujudiHaimes , int);

vtkGetMacro (SujudiHaimes , int);
vtkBooleanMacro (SujudiHaimes , int);

/! Description: Turn on/off Roth—Peikert as the
// active extraction algorithm.
vtkSetMacro(RothPeikert , int);

vtkGetMacro (RothPeikert , int);
vtkBooleanMacro (RothPeikert , int);

// setting transient/steady—state
vtkSetMacro(Transient , int);
vtkGetMacro(Transient , int);
vtkBooleanMacro (Transient , int);

// Description: Set/Get largest vortex strength value
/! divides all the vortex strength values.
vtkSetMacro (VortexStrengthNorm , double) ;

vtkGetMacro(VortexStrengthNorm , double) ;

/! Description: Set/Get largest curvature value which
// divides all the curvature values.
vtkSetMacro (CurvatureNorm , double);
vtkGetMacro (CurvatureNorm , double) ;

150

which

66 /! Description: Set/Get largest quality value which

67 // divides all the quality values.

68 vtkSetMacro (QualityNorm , double);

69 vtkGetMacro (QualityNorm , double);

70

71 // Description: Set/Get largest quality value which
72 // divides all the minimumDistance values.

73 vtkSetMacro (MinimumDistanceNorm , double);

74 vtkGetMacro (MinimumDistanceNorm , double) ;

75

76 // Description: Set/Get largest quality value which
7 // divides all the RP windingAngle values.

78 vtkSetMacro (Lambda2Norm, double) ;

79 vtkGetMacro (Lambda2Norm, double) ;

80

81 protected :

82 vtkCreateOpinion_Vortex () ;

83 ~vtkCreateOpinion_Vortex () {};

84

85 // Usual data generation method

86 int RequestData(vtkInformation =, vtkInformationVector =%, vtkInformationVector
87

88 double FeatureDisplacementConstant;

89 double ChangelnFeatureDisplacementConstant;

90 int FeatureLifeNorm;

91 double VortexStrengthNorm;

92 double CurvatureNorm;

93 double QualityNorm;

94 double MinimumDistanceNorm ;

95 double Lambda2Norm;

96 int SujudiHaimes ;

97 int RothPeikert;

98 int Transient;

99

100 private:

101 vtkCreateOpinion_Vortex (const vtkCreateOpinion_Vortex&); /1 Not implemented.
102 void operator=(const vtkCreateOpinion_Vortex&); // Not implemented.
103 };

104

105 #endif

B.3.4 vtkCurvature.h

// .NAME vtkCurvature — computes curvature of lines

/1 .SECTION Description
/" vtkCurvature is a filter that computes the curvature of a polyline and
/l sets a curvature value for each point in the line.

#ifndef __vtkCurvature_h
#define __vtkCurvature_h

=T R - . N N P I SR

10 #include "vtkPolyDataAlgorithm.h"

12 class vtkFloatArray;
13 class vtkIdList;

14 class vtkPolyData;

15 class vtkPointLocator;

16

17 class VTK_GRAPHICS_EXPORT vtkCurvature : public vtkPolyDataAlgorithm
18 {

19 public:

20 vtkTypeRevisionMacro (vtkCurvature , vtkPolyDataAlgorithm) ;

21 void PrintSelf (ostream& os, vtkIndent indent);

22

151

23 static vtkCurvature #New()

24
25 // Description:
26
27 // Description:
28 // Turn on/off the calculation of curvature for multiple
29 // line segments using a circle approximation.
30 vtkSetMacro (MultiSegmentCurvature , int);
31 vtkGetMacro (MultiSegmentCurvature , int);
32 vtkBooleanMacro (MultiSegmentCurvature , int); // false is O
33
34 // Description:
35 // Turn on/off the calculation of curvature using only
36 /! the velocity field and not the geometry.
37 vtkSetMacro(VelocityFieldCurvature , int);
38 vtkGetMacro(VelocityFieldCurvature , int);
39 vtkBooleanMacro(VelocityFieldCurvature , int); // false is O
40
41 // Description:
42 // Turn on/off the calculation of curvature using only
43 /! points and an octree point locator
44 vtkSetMacro (PointwiseCurvature , int);
45 vtkGetMacro (PointwiseCurvature , int);
46 vtkBooleanMacro (PointwiseCurvature , int); // false is O
47
48 protected:
49 vtkCurvature () ;
50 ~vtkCurvature () {};
51
52 int MultiSegmentCurvature;
53 int VelocityFieldCurvature;
54 int PointwiseCurvature;
55
56 // Usual data generation method
57 virtual int FilllnputPortInformation(int port, vtkInformation =info);
58 virtual int RequestData(vtkInformation =, vtkInformationVector =%, vtkInformationVector =);
59
60 private:
61 vtkCurvature (const vtkCurvature&); // Not implemented.
62 void operator=(const vtkCurvature&); /! Not implemented .
63 };
64
65 #endif
B.3.5 vtkFeatureAttributes.h
1 // .NAME vtkFeatureAttributes
2
3 // .SECTION Description
4 // vtkFeatureAttributes is a filter that calculates
5 // line attributes for use in feature tracking.
6
7 #ifndef __vtkFeatureAttributes_h
g8 #define __vtkFeatureAttributes_h
9

10 #include "vtkPolyDataAlgorithm.h"

12 class vtkFloatArray;
13 class vtkIdList;
14 class vtkPolyData;

15

16 class VTK_GRAPHICS_EXPORT vtkFeatureAttributes : public vtkPolyDataAlgorithm
17 {

18 public:

19 vtkTypeRevisionMacro (vtkFeatureAttributes , vtkPolyDataAlgorithm);

152

20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

© X N U AW N -

38
39
40
41
42
43
44
45

void PrintSelf (ostream& os, vtkIndent indent);

static vtkFeatureAttributes =xNew() ;
protected :

vtkFeatureAttributes () ;

~vtkFeatureAttributes () {};

// Usual data generation method

int RequestData(vtkInformation =, vtkInformationVector =,

private:
vtkFeatureAttributes (const vtkFeatureAttributes&);
void operator=(const vtkFeatureAttributes&); /1 Not
1
#endif

B.3.6 vtkFeatureLifetime.h

// NAME vtkFeatureLifetime

/1 .SECTION Description
// vtkFeatureLifetime is a filter that calculates
// line attributes for use in feature tracking.

#ifndef __vtkFeatureLifetime_h
#define __vtkFeatureLifetime_h

#include "vtkPolyDataAlgorithm.h"
class vtkFloatArray;

class vtkIdList;
class vtkPolyData;

vtkInformationVector

// Not implemented.
implemented .

class VTK_GRAPHICS _EXPORT vtkFeatureLifetime : public vtkPolyDataAlgorithm

{
public:

vtkTypeRevisionMacro (vtkFeatureLifetime , vtkPolyDataAlgorithm) ;

void PrintSelf (ostream& os, vtkIndent indent);

static vtkFeatureLifetime xNew() ;

// Turn on/off calculation of feature lifetimes
vtkSetMacro(CalculateFeatureLifetime , int);
vtkGetMacro(CalculateFeatureLifetime , int);

vtkBooleanMacro(CalculateFeatureLifetime , int); // false

// Turn on/off setting of feature lifetimes

vtkSetMacro(SetFeatureLifetime , int);
vtkGetMacro(SetFeatureLifetime , int);
vtkBooleanMacro (SetFeatureLifetime , int); //false is

// Set/Get feature lifetime array
vtkGetMacro (FeatureLifeArray , vtkIntArray=);
vtkSetMacro (FeatureLifeArray , vtkIntArray=);

protected:
vtkFeatureLifetime () ;
~vtkFeatureLifetime () {};

// Usual data generation method

int RequestData(vtkInformation =, vtkInformationVector s,

int CalculateFeatureLifetime ;

153

0

vtkInformationVector

*)]

*)

=T R e . B N P R SR

29

W =

4
5

}s

int SetFeatureLifetime ;

vtkIntArray xFeatureLifeArray;

private:

vtkFeatureLifetime (const vtkFeatureLifetime&);
void operator=(const vtkFeatureLifetime&);

#endif

B.3.7 vtkLambdaTwo.h

/! Not implemented .
// Not implemented .

derivatives

vtkInformationVector =*#, vtkInformationVector

info);

/!l NAME vtkLambdaTwo
/1 .SECTION Description
// vtkLambdaTwo is a filter that computes the partial
// with respect to time in a data set.
#ifndef __vtkLambdaTwo_h
#define __vtkLambdaTwo_h
#include "vtkDataSetAlgorithm.h"
class vtkFloatArray;
class vtkIdList;
class vtkPolyData;
class VTK_GRAPHICS_EXPORT vtkLambdaTwo public vtkDataSetAlgorithm
{
public:
vtkTypeRevisionMacro (vtkLambdaTwo , vtkDataSetAlgorithm) ;
void PrintSelf (ostream& os, vtkIndent indent);
static vtkLambdaTwo #New() ;
/! creating the velocity array name
vtkSetMacro (VelocityArrayName , const char =x);
vtkGetMacro(VelocityArrayName , const char =);
protected :
vtkLambdaTwo () ;
~vtkLambdaTwo () {};
// Usual data generation method
int RequestData(vtkInformation =,
int FilllnputPortInformation(int port, vtkInformations=
const char = VelocityArrayName ;
private:
vtkLambdaTwo (const vtkLambdaTwo&); // Not implemented.
void operator=(const vtkLambdaTwo&); /! Not implemented .
}s
#endif

B.3.8 vtkTimeDerivatives.h

/1

/1
/1
/1

.NAME vtkTimeDerivatives

.SECTION Description
vtkTimeDerivatives is

with

respect

to

time

a
in

¢

i
1

ilter
data

that
set .

computes

the

154

partial

derivatives

*) 3

59

#ifndef __vtkTimeDerivatives_h
#define __vtkTimeDerivatives_h

#include "vtkDataSetAlgorithm.h"

class vtkFloatArray;
class vtkIdList;
class vtkPolyData;

class

{

public:

VTK_GRAPHICS_EXPORT vtkTimeDerivatives

public vtkDataSetAlgorithm

vtkTypeRevisionMacro (vtkTimeDerivatives , vtkDataSetAlgorithm);
indent);

void PrintSelf (ostream& os, vtkIndent
static vtkTimeDerivatives *New() ;

/! Description: Set/Get time step for
// calculating time derivatives.
vtkSetMacro (TimeStep, double);
vtkGetMacro (TimeStep, double);

// creating the velocity array name
vtkSetMacro(VelocitylArrayName , const
vtkGetMacro (Velocityl ArrayName , const

// creating the velocity array name
vtkSetMacro (Velocity2ArrayName , const
vtkGetMacro (Velocity2ArrayName , const

// creating the velocity array name
vtkSetMacro(Velocity3ArrayName , const
vtkGetMacro (Velocity3ArrayName , const

// Description:

// Turn on/off the calculation of forward—differenced

use

char
char

char
char

char
char

vtkSetMacro (ForwardDifference , int);
vtkGetMacro (ForwardDifference , int);
vtkBooleanMacro (ForwardDifference , int);

// Description:

// Turn on/off the calculation of backward—differenced

vtkSetMacro(BackwardDifference , int);
vtkGetMacro (BackwardDifference , int);
vtkBooleanMacro (BackwardDifference , int);

// Description:

// Turn on/off the calculation of central—differenced

vtkSetMacro(CentralDifference , int);
vtkGetMacro(CentralDifference , int);
vtkBooleanMacro (CentralDifference , int);

protected:

vtkTimeDerivatives () ;
~vtkTimeDerivatives () {};

// Usual data generation method

in

®) 5
*) 5

*) 3
*) 5

*) 3
®) 5

/] false

/l false

/] false

derivatives

derivatives

0

derivatives

int RequestData(vtkInformation =, vtkInformationVector =%, vtkInformationVector

int FilllnputPortInformation (int port,

double TimeStep;

const char = VelocitylArrayName;
const char x Velocity2ArrayName ;
const char x Velocity3ArrayName;
int ForwardDifference;

int BackwardDifference;

int CentralDifference;

155

vtkInformations* info);

*) 3

R T N A N

private:
vtkTimeDerivatives (const vtkTimeDerivatives&); // Not implemented.
void operator=(const vtkTimeDerivatives&); // Not implemented.
}s
#endif

B.4 Source Files

In this section source files are listed for each of the header files in Section B.3. Source files
have not been listed for code I did not write like vtkRothPeikert and vtkSujudiHaimes. All of the

code uses VTK 5.8 code as superclasses. The source files are listed in alphabetical order.

B.4.1 vtkAttributeTracking.cxx

#include "vtkAttributeTracking.h"
#include <headers.h>

vtkCxxRevisionMacro (vtkAttributeTracking , "$Revision: 1.70 $");
vtkStandardNewMacro (vtkAttributeTracking);

/1
vtkAttributeTracking :: vtkAttributeTracking ()
{
this —>SetNumberOfInputPorts (1) ;
this —>SetNumberOfOutputPorts (2) ;
this —>BoundaryDataSet = false;
this —>ForwardPass = true;
this —>BackwardPass = false
this —>MaximumTrackingID
this —>LengthTolerance =
this —>StrengthTolerance
this —>CurvatureTolerance =
this —>QualityTolerance = 0
this —>DistanceTolerance
this —>LengthWeight = 0.2
this —>StrengthWeight = 0.
this —>CurvatureWeight = 0.
this —>QualityWeight = 0.15;
this —>DistanceWeight = 0.25;

ol
o~ o«

}

/]
int vtkAttributeTracking :: FilllnputPortInformation(int port, vtkInformations info)
{
if (port == 0)
{
info—>Set(vtkDataObject : : DATA_ TYPE NAME() , "vtkPolyData");
info—>Set(vtkAlgorithm :: INPUT_IS_REPEATABLE(), 1);

return 1;

}

vtkErrorMacro (" This filter does not have more than 1 input port!");
return 0;

156

a4 /]
45 int vtkAttributeTracking :: RequestData(
46 vtkInformation =vtkNotUsed(request),

47 vtkInformationVector =xinputVector,

48 vtkInformationVector =outputVector)

49 {

50 /! get the info objects

51 vtkInformation xinInfol = inputVector[0]—>GetInformationObject(0);

52 vtkInformation =xinInfo2
53 vtkInformation *inInfo3
54 vtkInformation xoutInfol

inputVector[0]—>GetInformationObject (1) ;
inputVector[0]—>GetInformationObject (2);
outputVector —>GetInformationObject (0) ;

55 vtkInformation soutlnfo2 = outputVector —>GetlnformationObject(1);

56

57 /] get input and output

58 vtkPolyData =inputl = vtkPolyData::SafeDownCast(inInfol —>Get(vtkDataObject::DATA_OBJECT()));
// current time step

59 vtkPolyData =input2 = vtkPolyData::SafeDownCast(inInfo2 —>Get(vtkDataObject::DATA_OBJECT()));
// next time step

60 vtkPolyData =xinput3 = vtkPolyData::SafeDownCast(inInfo3 —>Get(vtkDataObject::DATA_OBJECT()));

// previous time step

61 vtkPolyData =#xoutputl = vtkPolyData:: SafeDownCast(outlnfol —>Get(vtkDataObject ::DATA_OBJECT()));
// current

62 vtkPolyData =xoutput2 = vtkPolyData:: SafeDownCast(outInfo2 —>Get(vtkDataObject::DATA_OBIJECT())):;
/' next

63

64 /! Creating correspondence array

65 vtkSmartPointer <vtkDoubleArray> correspondenceArray = vtkSmartPointer <vtkDoubleArray >::New() ;

66 correspondenceArray —>SetNumberOfValues (2xinputl —>GetNumberOfLines ()) ;

67 correspondenceArray —>SetNumberOfComponents (2) ;

68 correspondenceArray —>SetNumberOfTuples (inputl —>GetNumberOfLines ()) ;

69 correspondenceArray —>SetName (" LineCorrespondence ") ;
70
71 /] Creating new tracking ID array — current time step

72 vtkSmartPointer <vtkIntArray > IDArray = vtkSmartPointer<vtkIntArray >::New() ;
73 IDArray —>SetNumberOfValues (inputl —>GetNumberOfLines ()) ;

74 IDArray —>SetNumberOfComponents (1) ;

75 IDArray —>SetNumberOfTuples (inputl —>GetNumberOfLines ()) ;

76 IDArray —>SetName (" TrackingID") ;

77

78 // Creating correspondence array — next time step

79 vtkSmartPointer <vtkDoubleArray> correspondenceArrayNext = vtkSmartPointer <vtkDoubleArray >::New
03

80 correspondenceArrayNext —>SetNumberOfValues (2+input2 —>GetNumberOfLines ()) ;

81 correspondenceArrayNext —>SetNumberOfComponents (2) ;

82 correspondenceArrayNext —>SetNumberOfTuples (input2 —>GetNumberOfLines ()) ;

83 correspondenceArrayNext —>SetName("LineCorrespondence");

84

85 // Creating new tracking ID array next time step

86 vtkSmartPointer <vtkIntArray > IDArrayNext = vtkSmartPointer <vtkIntArray >::New() ;
87 IDArrayNext—>SetNumberOfValues (input2 —>GetNumberOfLines ()) ;

88 IDArrayNext—>SetNumberOfComponents (1) ;

89 IDArrayNext—>SetNumberOfTuples (input2 —>GetNumberOfLines ()) ;

90 IDArrayNext—>SetName (" TrackingID") ;

91

92 // Copying old correspondence & tracking ID arrays into new ones

93 for(int i = 0 ; i < inputl —>GetNumberOfLines() ; i++)

94 {

95 correspondenceArray —>SetComponent (i ,0,inputl —>GetCellData ()—>GetArray ("LineCorrespondence")—>
GetComponent(i,0));

96 correspondenceArray —>SetComponent(i,1,inputl —>GetCellData ()—>GetArray ("LineCorrespondence")—>
GetComponent(i,1));

97 IDArray —>SetComponent (i ,0,inputl —>GetCellData () —>GetArray (" TrackingID")—>GetComponent (i ,0));

98 }

99 for(int i = 0 ; i < input2 —>GetNumberOfLines() ; i++)

100 {

101 correspondenceArrayNext —>SetComponent (i ,0,input2 —>GetCellData () —>GetArray ("LineCorrespondence

")—>GetComponent(i,0));

157

102 correspondenceArrayNext —>SetComponent(i,l,input2 —>GetCellData () —>GetArray("LineCorrespondence
")—>GetComponent(i,1));

103 IDArrayNext—>SetComponent (i ,0,input2 —>GetCellData () —>GetArray (" TrackingID")—>GetComponent (i
,0))5

104 }

105

106 // Removing old ID arrays from the input data sets

107 inputl —>GetCellData () —>RemoveArray ("LineCorrespondence") ;
108 inputl —>GetCellData ()—>RemoveArray (" TrackingID");
109 input2 —>GetCellData () —>RemoveArray ("LineCorrespondence") ;
110 input2 —>GetCellData () —>RemoveArray (" TrackingID") ;

111

112 // Iterating through lines in current time step

113 for(int i = 0 ; i < inputl —>GetNumberOfLines () ; i++)

114 {

115 // Instantiating variables

116 int trackingID , trackingIDNext;

117 double length, lengthNext;

118 double strength , strengthNext;

119 double curvature, curvatureNext;

120 double quality , qualityNext;

121 double bounds[6], boundsNext[6];

122 double xC, yC, zC, xCNext, yCNext, zCNext;

123 double fL, fS, fC, fQ, fD, corr;

124

125 /1 Getting tracking ID of current line

126 trackingID = int(IDArray —>GetComponent(i,0));

127

128 // Setting current attributes

129 // Previously untracked line, i.e. trackingIlD = 0

130 if (trackinglD == 0)

131 {

132 length = inputl —>GetCellData ()—>GetArray ("LineLength")—>GetComponent(i,0) ;

133 strength = inputl —>GetCellData ()—>GetArray ("LineVortexStrength")—>GetComponent(i,0) ;

134 curvature = inputl —>GetCellData ()—>GetArray("LineCurvature")—>GetComponent(i,0);

135 quality = inputl —>GetCellData () —>GetArray ("LineQuality")—>GetComponent (i ,0) ;

136

137 // Getting bounds of line and finding center of bounding box

138 inputl —>GetCellBounds (i, bounds);

139 xC = (bounds[0O]+bounds[1]) / 2;

140 yC = (bounds[2]+bounds[3]) / 2;

141 zC = (bounds[4]+bounds[5]) / 2;

142 }

143

144 // Previously tracked line, i.e. trackingID != 0

145 else

146 {

147 bool extrapolate = false;

148 // Finding corresponding line in prior time step

149 int cellPrevID;

150 if (! BoundaryDataSet)

151 {

152 for(int j = 0 ; j < input3 —>GetNumberOfLines () ; j++)

153 {

154 /1 Getting tracking ID of previous line

155 int trackingIDPrev = int(input3 —>GetCellData ()—>GetArray (" TrackingID")—>GetComponent(j
,0))

156 if (trackingIDPrev == trackingID)

157 {

158 extrapolate = true;

159 cellPrevID = j;

160 break ;

161 }

162 }

163 }

164

165

166 if (extrapolate)

158

167 {

168 // Use linear extrapolation to predict future attributes

169 length = 2xinputl —>GetCellData () —>GetArray ("LineLength")—>GetComponent(i ,0) —

170 input3 —>GetCellData ()—>GetArray ("LineLength")—>GetComponent(cellPrevID ,0) ;

171 strength = 2xinputl —>GetCellData () —>GetArray ("LineVortexStrength")—>GetComponent(i,0) —

172 input3 —>GetCellData () —>GetArray ("LineVortexStrength")—>GetComponent (

cellPrevID ,0) ;

173 curvature = 2xinputl —>GetCellData ()—>GetArray ("LineCurvature")—>GetComponent(i,0) —

174 input3 —>GetCellData () —>GetArray ("LineCurvature")—>GetComponent(cellPrevID ,0) ;

175 quality = 2xinputl —>GetCellData () —>GetArray ("LineQuality ")—>GetComponent(i ,0) —

176 input3 —>GetCellData () —>GetArray ("LineQuality ")—>GetComponent(cellPrevID ,0) ;

177

178 /!l Getting bounds of line and finding center of bounding box

179 double boundsPrev[6];

180 inputl —>GetCellBounds (i, bounds) ;

181 input3 —>GetCellBounds (cellPrevID , boundsPrev);

182 xC = bounds[0] + bounds[1] — (boundsPrev[0O]+boundsPrev[1]) / 2;

183 yC = bounds[2] + bounds[3] — (boundsPrev[2]+boundsPrev[3]) / 2;

184 zC = bounds[4] + bounds[5] — (boundsPrev[4]+boundsPrev[5]) / 2;

185 }

186 else

187 {

188 length = inputl —>GetCellData ()—>GetArray ("LineLength")—>GetComponent(i,0);

189 strength = inputl —>GetCellData ()—>GetArray ("LineVortexStrength")—>GetComponent(i,0);

190 curvature = inputl —>GetCellData () —>GetArray ("LineCurvature")—>GetComponent(i,0);

191 quality = inputl —>GetCellData ()—>GetArray ("LineQuality")—>GetComponent (i ,0) ;

192

193 /! Getting bounds of line and finding center of bounding box

194 inputl —>GetCellBounds (i, bounds) ;

195 xC = (bounds[O]+bounds[1]) / 2;

196 yC = (bounds[2]+bounds[3]) / 2;

197 zC = (bounds[4]+bounds[5]) / 2;

198 }

199 }

200

201 // check to make sure that line has not been tracked already into the future

202 bool alreadyTracked = false;

203 for(int j = 0 ; j < input2 —>GetNumberOfLines () ; j++)

204 {

205 trackingIDNext = int(IDArrayNext—>GetComponent(j,0));

206 if (trackingID != 0 && trackingIDNext == trackinglID)

207 {

208 alreadyTracked = true;

209 break ;

210 }

211

212 }

213

214 /! Tracking only if line has not already been tracked in the future

215 if (!alreadyTracked)

216 {

217 // Creating cell ID array for later use

218 vtkSmartPointer<vtkIdFilter > ids = vtkSmartPointer<vtkIdFilter >::New() ;

219 ids —>Setlnput (input2);

220 ids —>PointldsOff () ;

221 ids —>CellldsOn () ;

222 ids —>FieldDataOn () ;

223 ids —>SetldsArrayName (" CellID") ;

224

225 /! Creating a sphere source for finding nearby core lines

226 vtkSmartPointer <vtkSphere> sphere = vtkSmartPointer <vtkSphere >::New() ;

227 sphere —>SetRadius (length);

228 sphere —>SetCenter (xC,yC,zC) ;

229

230 // Extracting lines in data set within bounding sphere

231 vtkSmartPointer <vtkExtractPolyDataGeometry > extract = vtkSmartPointer<
vtkExtractPolyDataGeometry >::New() ;

232 extract —>SetInput (ids —>GetOutput());

159

233
234
235
236
237
238
239
240
241

242
243
244
245
246
247
248
249
250
251
252
253
254

255

256

257

258
259
260
261
262
263
264
265
266
267
268

269
270
271
272
273
274
275
276
277

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

extract —>SetlmplicitFunction (sphere);
extract —>ExtractInsideOn () ;

extract —>ExtractBoundaryCellsOn () ;
extract —>Update () ;

/!l Getting cell ID's of extracted lines
vtkSmartPointer <vtkIdList> celllds = vtkSmartPointer <vtkIdList >::New() ;
for (int j(0) ; j < extract —>GetOutput()—>GetNumberOfLines () ; ++j)
celllds —>Insertld (j, extract —>GetOutput()—>GetCellData ()—>GetArray (" CellID")—>
GetComponent(j,0));

// Compare line to all others in next time step
// Ignore lines already tracked (trackinglD != 0)
double corrMax = —100;

int corrMaxLine (0);

for(int j = 0 ; j < extract —>GetOutput () —>GetNumberOfLines () ; j++)

{
// Ignoring lines in next time step which have been tracked
trackingIDNext = int(IDArrayNext—>GetComponent(celllds —>Getld(j) ,0));

if (trackingIDNext == 0)
{
/! Getting attributes of line in next time step
lengthNext = input2 —>GetCellData ()—>GetArray ("LineLength")—>GetComponent(celllds —>
Getld(j).0);
strengthNext = input2 —>GetCellData ()—>GetArray("LineVortexStrength")—>GetComponent (

celllds —>Getld (j) ,0);

curvatureNext = input2 —>GetCellData ()—>GetArray ("LineCurvature")—>GetComponent(celllds
—>Getld(j) ,0);

qualityNext = input2 —>GetCellData () —>GetArray ("LineQuality ")—>GetComponent(celllds —>
Getld(j) ,0);

/! Getting bounds of line and finding center of bounding box
input2 —>GetCellBounds (celllds —>Getld (j) ,boundsNext) ;

xCNext = (boundsNext[0]+boundsNext[1]) / 2;

yCNext = (boundsNext[2]+boundsNext[3]) / 2;

zCNext (boundsNext[4]+boundsNext[5]) / 2;

/! Computing correspondence functions
fL = 1—(fabs(length—lengthNext)/((length > lengthNext) ?
length : lengthNext))/LengthTolerance;

fS = 1—(fabs(fabs(strength)—fabs(strengthNext))/((fabs(strength) > fabs(strengthNext))
9
fabs(strength) : fabs(strengthNext)))/StrengthTolerance;
fC = 1—(fabs(curvature —curvatureNext)/((curvature > curvatureNext) ?

curvature : curvatureNext))/CurvatureTolerance;
fQ = 1—(fabs(quality —qualityNext)/((quality > qualityNext) ?
quality : qualityNext))/QualityTolerance;

fD 1—sqrt (pow (xC—xCNext,2)+pow (yC—yCNext,2)+pow (zC—zCNext,2))/ DistanceTolerance;

// Compute overall correspondence
corr = (fLxLengthWeight+fS+StrengthWeight+fC+CurvatureWeight+fQ=QualityWeight+fD=
DistanceWeight) /
(LengthWeight+StrengthWeight+CurvatureWeight+QualityWeight+DistanceWeight) ;

/! detecting tracking continuation
if (corr > corrMax)

{
corrMaxLine = celllds —>Getld(j);
corrMax = corr;
}
}
}
// Setting tracking ID arrays if line was tracked

if (corrMax > 0)

/] Setting array for next time step
// Setting proper correspondence component depending on pass

160

294 if (ForwardPass)

295 correspondenceArrayNext —>SetComponent (corrMaxLine ,0,corrMax) ;
296 if (BackwardPass)

297 correspondenceArrayNext —>SetComponent (corrMaxLine ,1,corrMax) ;
298

299 // Newly tracked path receives a new ID

300 if (trackingID == 0)

301 IDArrayNext—>SetValue (corrMaxLine , MaximumTrackingID+1) ;
302

303 // Continuing path receives prior tracking ID

304 else

305 IDArrayNext—>SetValue (corrMaxLine , trackingID);

306

307 /! Setting array for current time step

308 // Setting proper correspondence component depending on pass
309 if (ForwardPass)

310 correspondenceArray —>SetComponent(i,1,corrMax);

311 if (BackwardPass)

312 correspondenceArray —>SetComponent (i ,0,corrMax);

313

314 /] Newly tracked path receives a new ID

315 if (trackingID == 0)

316 IDArray —>SetValue (i , MaximumTrackingID+1) ;

317

318 // Incrementing maximum tracking ID if a new path was made
319 if (trackingID == 0)

320 MaximumTrackingID ++;

321 }

322

323 /] Setting correspondence array for untracked lines

324 else

325 {

326 /] Set correspondence array if current correspondence is larger than previous value
327 if (ForwardPass)

328 if (corrMax > correspondenceArray —>GetComponent(i,1))

329 correspondenceArray —>SetComponent(i,l,corrMax);

330

331 if (BackwardPass)

332 if (corrMax > correspondenceArray —>GetComponent(i,0))

333 correspondenceArray —>SetComponent (i ,0,corrMax);

334 }

335 }

336 }

337

338 // adding arrays to the input data set

339 inputl —>GetCellData ()—>AddArray (correspondenceArray) ;

340 inputl —>GetCellData () —>AddArray (IDArray);

341 input2 —>GetCellData () —>AddArray (correspondenceArrayNext) ;
342 input2 —>GetCellData () —>AddArray (IDArrayNext) ;

343

344 // Copying the input data and structure to the outputs

345 outputl —>CopyStructure (inputl);

346 outputl —>GetPointData ()—>PassData(inputl —>GetPointData());
347 outputl —>GetCellData () —>PassData(inputl —>GetCellData());
348 outputl —>GetFieldData ()—>PassData(inputl —>GetFieldData ());
349 output2 —>CopyStructure (input2);

350 output2 —>GetPointData ()—>PassData (input2 —>GetPointData ());
351 output2 —>GetCellData () —>PassData (input2 —>GetCellData ());
352 output2 —>GetFieldData ()—>PassData (input2 —>GetFieldData ());
353

354 return 1;

355}

356

357 //

358 void vtkAttributeTracking :: PrintSelf(ostream& os, vtkIndent indent)
359 {

360 this —>Superclass :: PrintSelf (os,indent);

361}

161

T - Y I NI SR

[~

B.4.2 vtkCombineFeatureSets.cxx

#include "vtkCombineFeatureSets.h"

#include <headers.h>

vtkCxxRevisionMacro (vtkCombineFeatureSets , "$Revision: 1.70 $");
vtkStandardNewMacro (vtkCombineFeatureSets) ;

/1

vtkCombineFeatureSets :: vtkCombineFeatureSets ()

{

this —>SetNumberOfInputPorts (1) ;

this —>SetNumberOfOutputPorts (1) ;

this —>LineFeatures = true;

this —>PointFeatures = false;

this —>ProbabilityExpectationThreshold = 0.8;

this —>LengthTolerance = 0.25;
this —>DistanceTolerance = 0.2;
}
/1
int vtkCombineFeatureSets:: FilllnputPortInformation(int port, vtkInformations info)
{
if (port == 0)
{
info —>Set(vtkDataObject :: DATA_TYPE NAME() , "vtkPolyData");
info—>Set(vtkAlgorithm :: INPUT_IS_REPEATABLE(), 1);
return 1;
}
vtkErrorMacro ("This filter does not have more than 1 input port!");
return O;
}
/1

int vtkCombineFeatureSets :: RequestData (
vtkInformation =vtkNotUsed(request),
vtkInformationVector =xinputVector,

vtkInformationVector xoutputVector)
{
// get the info objects
vtkInformation xinInfol = inputVector[0]—>GetInformationObject(0);
vtkInformation xinInfo2 = inputVector[0]—>GetInformationObject(1);
vtkInformation xoutInfo = outputVector —>GetInformationObject (0);
// get the 2 inputs and 1 ouptut
// inputl is the data object that we will be calculating the feature displacement for

vtkPolyData =xinputl = vtkPolyData:: SafeDownCast(inInfol —>Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData =input2 = vtkPolyData:: SafeDownCast(inInfo2 —>Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData xoutput = vtkPolyData:: SafeDownCast(outlnfo —>Get(vtkDataObject::DATA_OBJECT()));
// Handle line features

if (LineFeatures)

{

vtkSmartPointer <vtkDoubleArray> lineProbExpArrayl = vtkSmartPointer <vtkDoubleArray >::New() ;
lineProbExpArrayl —>SetNumberOfComponents (1) ;

lineProbExpArrayl —>SetNumberOfTuples (inputl —>GetNumberOfLines ()) ;
lineProbExpArrayl —>SetNumberOfValues (inputl —>GetNumberOfLines ()) ;
lineProbExpArrayl —>SetName("LineProbabilityExpectation");

vtkSmartPointer <vtkDoubleArray> lineProbExpArray2 = vtkSmartPointer <vtkDoubleArray >::New() ;
lineProbExpArray2 —>SetNumberOfComponents (1) ;

lineProbExpArray2 —>SetNumberOfTuples (input2 —>GetNumberOfLines ()) ;
lineProbExpArray2 —>SetNumberOfValues (input2 —>GetNumberOfLines ()) ;
lineProbExpArray2 —>SetName (" LineProbabilityExpectation");

162

66

67 // Finding line average probability expectation for Ist data set

68 std:: vector <int> cellPointListl] ;

69 for(int i(0) ; i < inputl —>GetNumberOfLines() ; ++i)

70

71 // Putting cell point ids into an array

72 vtkIdList xcellPtldsl = inputl —>GetCell(i)—>GetPointlds () ;

73 cellPointList]l .resize (cellPtIds1 —>GetNumberOflds ()) ;

74 for(int j = 0 ; j < cellPtldsl —>GetNumberOflds () ; j++)

75

76 cellPointListl [j] = cellPtIdsl —>GetId(j);

77 }

78

79 double probExpSuml (0), probExpMeanl;

80

81 // Summing prob. exp. values in line

82 for (int j(0) ; j < inputl —>GetCell(i)—>GetNumberOfPoints() ; j++)

83 probExpSuml += inputl —>GetPointData ()—>GetArray (" ProbabilityExpectation")—>GetComponent(
cellPointList1[j],0);

84

85 // Find average probability expectation value for line

86 probExpMeanl = probExpSuml / inputl —>GetCell (i)—>GetNumberOfPoints () ;

87

88 /! Setting prob. exp. average for points in line

89 lineProbExpArrayl —>SetValue (i, probExpMeanl);

90 }

91

92 // Finding line average probability expectation for 2nd data set

93 std :: vector <int> cellPointList2;

94 for(int i(0) ; i < input2 —>GetNumberOfLines () ; ++1i)

95 {

96 // Putting cell point ids into an array

97 vtkIdList xcellPtlds2 = input2 —>GetCell(i)—>GetPointlds () ;

98 cellPointList2 .resize (cellPtlds2 —>GetNumberOflds ()) ;

99 for(int j = 0 ; j < cellPtlds2 —>GetNumberOflds () ; j++)

100 {

101 cellPointList2[j] = cellPtlds2 —>Getld(j);

102 }

103

104 double probExpSum?2(0), probExpMean2;

105

106 // Summing prob. exp. values in line

107 for (int j(0) ; j < input2 —>GetCell(i)—>GetNumberOfPoints() ; j++)

108 probExpSum2 += input2 —>GetPointData ()—>GetArray (" ProbabilityExpectation")—>GetComponent (
cellPointList2[j],0);

109

110 // Find average probability expectation value for line

111 probExpMean2 = probExpSum2 / input2 —>GetCell(i)—>GetNumberOfPoints () ;

112

113 /] Setting prob. exp. average for points in line

114 lineProbExpArray2 —>SetValue (i, probExpMean2);

115 }

116

117 // Adding arrays to input

118 inputl —>GetCellData () —>AddArray (lineProbExpArrayl);

119 input2 —>GetCellData () —>AddArray (lineProbExpArray2);

120

121 // Thresh inputl by probability expectation

122 vtkSmartPointer <vtkThreshold > threshl = vtkSmartPointer <vtkThreshold >::New() ;

123 threshl —>Setlnput(inputl);

124 threshl —>ThresholdByUpper (ProbabilityExpectationThreshold);

125 threshl —>SetInputArrayToProcess (0,0,0,1,"LineProbabilityExpectation");

126 threshl —>Update () ;

127

128 /! Convert thresholdl to polydata

129 vtkSmartPointer <vtkGeometryFilter > polyDatal = vtkSmartPointer <vtkGeometryFilter >::New() ;

130 polyDatal —>Setlnput (threshl —>GetOutput());

131 polyDatal —>Update () ;

163

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

expectation
vtkSmartPointer <vtkThreshold> thresh?2
thresh2 —>SetInput(input2);

thresh2 —>ThresholdByUpper(ProbabilityExpectationThreshold);

thresh2 —>SetInputArrayToProcess (0,0,0,1,"LineProbabilityExpectation");
thresh2 —>Update () ;

vtkSmartPointer <vtkThreshold >::New() ;

vtkSmartPointer <vtkGeometryFilter > polyData2
polyData2 —>SetInput(thresh2 —>GetOutput());
polyData2 —>Update () ;

vtkSmartPointer <vtkGeometryFilter >::New () ;

int num(0);
:vector <int> deletedCells;
i < polyDatal —>GetOutput () —>GetNumberOfLines ()

double length ,
double corrMin(1);

position[3], fL, fD,

int cellMatchID;

length = polyDatal —>GetOutput ()—>GetCellData ()—>GetArray ("LineLength")—>GetComponent(i,0) ;
polyDatal —>GetOutput ()—>GetCellBounds (i, bounds) ;

= (bounds[0O]+bounds[1]) / 2;

= (bounds[2]+bounds[3]) / 2;

(bounds[4]+bounds[5]) / 2;

position [0]
position[1]
position[2]

// Creating
vtkSmartPointer <vtkIdFilter > ids = vtkSmartPointer<vtkIdFilter >::New() ;
ids —>SetInput (polyData2 —>GetOutput ());

ids —>PointldsOff () ;

ids —>CellldsOn () ;

ids —>FieldDataOn () ;

ids —>SetldsArrayName (" CellID") ;

/! Creating
vtkSmartPointer <vtkSphere> sphere
sphere —>SetRadius (0.5xlength);
sphere —>SetCenter (position[0],

vtkSmartPointer <vtkSphere >::New() ;
position[1], position[2]);

// Extracting

vtkSmartPointer <vtkExtractPolyDataGeometry > extract = vtkSmartPointer <
vtkExtractPolyDataGeometry >::New() ;

extract =>SetInput (ids —>GetOutput());

extract —>SetlmplicitFunction (sphere);

extract —>ExtractInsideOn () ;

extract —>ExtractBoundaryCellsOn () ;

extract —>Update () ;

// Getting cell ID's of extracted lines
vtkSmartPointer <vtkIdList> celllds = vtkSmartPointer<vtkIdList >::New() ;
for(int j(0) ; j < extract —>GetOutput()—>GetNumberOfLines() ; ++j)
celllds —>InsertlId (j, extract —>GetOutput()—>GetCellData ()—>GetArray (" CellID")—>
GetComponent(j,0));

// Comparing current line in inputl to nearby lines in input2
bool deleted = false;
for(int j(0) ; j < extract —>GetOutput()—>GetNumberOfLines() ; ++j)

{
// Making sure current line has not been deleted
for(int k(0) ; k < deletedCells.size() ; ++k)
if (j == deletedCells[k])
{

deleted = true;

164

198
199
200
201
202
203
204
205
206

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

238
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

break;

if (!deleted)
{
/! Getting line length and position
double length2 , bounds2[6], position2[3];
length2 = polyData2 —>GetOutput ()—>GetCellData () —>GetArray ("LineLength")—>GetComponent (
celllds —>Getld (j) ,0);
polyData2 —>GetOutput () —>GetCellBounds (celllds —>GetId (j) ,bounds2);
position2 [0] = (bounds2[0]+bounds2[1]) / 2;
position2[1] = (bounds2[2]+bounds2[3]) / 2;
position2[2] (bounds2 [4]+bounds2[5]) / 2;

// Computing correspondence functions

fL = fabs(length—length2)/((length > length2) ? length : length2);

fD = sqrt(pow(position[0]—position2[0],2)+pow(position[l]—position2[1],2)+
pow(position[2]—position2[2],2))/length;

/1 Setting matched lines
if (fL < LengthTolerance && fD < DistanceTolerance)
{

matched = true;
corr = (fL+fD)/2;

// Ensuring the best match is made
if (corr < corrMin)

{
cellMatchID = celllds —>Getld(j);
corrMin = corr;
}
}
}
}
// Comparing average probability expectations and choose best line
if (matched)
{

double probExp, probExp2;
probExp = polyDatal —>GetOutput()—>GetCellData () —>GetArray("LineProbabilityExpectation")
—>
GetComponent(i,0);
probExp2 = polyData2 —>GetOutput ()—>GetCellData () —>GetArray ("LineProbabilityExpectation")

—>
GetComponent(cellMatchID ,0) ;
// Mark less probable line for removal
if (probExp > probExp2)

{
polyData2 —>GetOutput ()—>DeleteCell (cellMatchID) ;
deletedCells . push_back(cellMatchID);

}
else
{
polyDatal —>GetOutput ()—>DeleteCell (i)
num++;
}
}
}
cout << "Number of lines deleted: input 1 = " << num << endl
<< " input 2 = " << deletedCells.size () << endl;
/! Deleting lines marked for removal

polyDatal —>GetOutput ()—>RemoveDeletedCells () ;
polyData2 —>GetOutput ()—>RemoveDeletedCells () ;

165

263 // Combine both data sets

264 vtkSmartPointer <vtkAppendPolyData> appendDataSets = vtkSmartPointer <vtkAppendPolyData >::New()
265 appendDataSets —>AddInput (polyDatal —>GetOutput ());

266 appendDataSets —>AddInput(polyData2 —>GetOutput ());

267 appendDataSets —>Update () ;

268

269 // Clean duplicate points/lines

270 vtkSmartPointer <vtkCleanPolyData> cleanDataSet = vtkSmartPointer <vtkCleanPolyData >::New() ;
271 cleanDataSet —>SetInput (appendDataSets —>GetOutput ());

272 cleanDataSet —>Update () ;

273

274 // Copying the input data and structure to the output

275 output —>CopyStructure (cleanDataSet —>GetOutput());

276 output —>GetPointData () —>PassData(cleanDataSet —>GetOutput ()—>GetPointData ());

277 output —>GetCellData () —>PassData(cleanDataSet —>GetOutput ()—>GetCellData ());

278 output —>GetFieldData () —>PassData(cleanDataSet —>GetOutput ()—>GetFieldData ());

279 }

280

281 // Handle point features

282 if (PointFeatures)

283 {

284 // Thresh inputl by probability expectation

285 vtkSmartPointer <vtkThresholdPoints > threshl = vtkSmartPointer <vtkThresholdPoints >::New() ;
286 threshl —>SetInput(inputl);

287 threshl —>ThresholdByUpper(ProbabilityExpectationThreshold);

288 threshl —>SetInputArrayToProcess (0,0,0,0,"ProbabilityExpectation");

289 threshl —>Update () ;

290

291 // Thresh input2 by probability expectation

292 vtkSmartPointer <vtkThresholdPoints > thresh2 = vtkSmartPointer <vtkThresholdPoints >::New() ;
293 thresh2 —>Setlnput(input2);

294 thresh2 —>ThresholdByUpper (ProbabilityExpectationThreshold);

295 thresh2 —>SetInputArrayToProcess (0,0,0,0,"ProbabilityExpectation");

296 thresh2 —>Update () ;

297

298 // Combine both data sets

299 vtkSmartPointer <vtkAppendPolyData> appendDataSets = vtkSmartPointer <vtkAppendPolyData >::New()
300 appendDataSets —>AddInput(threshl —>GetOutput());

301 appendDataSets —>AddInput(thresh2 —>GetOutput());

302 appendDataSets —>Update () ;

303

304 // Clean duplicate points/lines

305 vtkSmartPointer <vtkCleanPolyData> cleanDataSet = vtkSmartPointer <vtkCleanPolyData >::New() ;
306 cleanDataSet —>SetInput (appendDataSets —>GetOutput());

307 cleanDataSet —>Update () ;

308

309 /! Copying the input data and structure to the output

310 output —>CopyStructure (cleanDataSet —>GetOutput());

311 output —>GetPointData () —>PassData(cleanDataSet —>GetOutput ()—>GetPointData ());

312 output —>GetCellData ()—>PassData(cleanDataSet —>GetOutput ()—>GetCellData ());

313 output —>GetFieldData () —>PassData(cleanDataSet —>GetOutput ()—>GetFieldData ());

314 }

315

316 return 1;

317}

318

319 //

320 void vtkCombineFeatureSets :: PrintSelf (ostream& os, vtkIndent indent)

321 |

322 this —>Superclass :: PrintSelf (os,indent);

323 }

166

© ® N AW N =

B.4.3 vtkCreateOpinion_Vortex.cxx

#include "vtkCreateOpinion_Vortex.h"

#include <headers.h>

vtkCxxRevisionMacro (vtkCreateOpinion_Vortex , "$Revision: 1.70 $");

vtkStandardNewMacro (vtkCreateOpinion_Vortex) ;

/1]

vtkCreateOpinion_Vortex :: vtkCreateOpinion_Vortex ()

{
this —>FeatureLifeNorm = 15;
this —>SujudiHaimes = true;
this —>RothPeikert = false;
this —>Transient = false;
this —>FeatureLifeNorm 1;
this —>FeatureDisplacementConstant = 0.02;
this —>ChangelnFeatureDisplacementConstant = 2.25;
this —>VortexStrengthNorm = 0;
this —>CurvatureNorm 0;
this —>QualityNorm 80;
this —>MinimumDistanceNorm 0.2;
this —>Lambda2Norm = 1;

1

/1]

int vtkCreateOpinion_Vortex :: RequestData (
vtkInformation =vtkNotUsed(request),
vtkInformationVector =xinputVector,
vtkInformationVector =outputVector)

/1 the info objects

vtkInformation #xinInfo =

vtkInformation #outlnfo =

get

// get input and
vtkPolyData =xinput =
vtkPolyData xoutput =

output

[ELETEEErr i i i rr i rrrrrrrrrry

// Constants
double ml_b_MA,
ml_b_RPNE,
ml_b_SHE,
ml_b_RPE,
ml_b_SHNE,
// Master Agent
ml_b_MA = 0.5;
m2_b_MA =
ml_d_MA =
m2_d_MA =
ml_u_MA =
m2_u_MA =

for b, d, u equations
m2_b_MA, ml_d_MA,
m2_b_RPNE, ml_d_RPNE,
m2_b_SHE, ml_d_SHE,
m2_b_RPE, ml_d RPE,
m2_b_SHNE, ml_d_SHNE,

o
wn S w»n

5
.5;
5

>

wo— o
oo

>

// RP_Non—Extracting
ml_b_ RPNE = 0.8;

m2_b_RPNE = 0.
ml_d_RPNE = -—
m2_d_RPNE =
ml_u_RPNE =
m2_u_RPNE =

2;
0.8;
3;
04
0

B

0.
1.
0.0;
// SH_Extracting
ml_b_SHE = 0.6;

m2_b_SHE 0.4;
ml_d_SHE = -0.4;

m2_d_MA,
m2_d_RPNE,
m2_d_SHE,
m2_d_RPE,
m2_d_SHNE,

167

ml_u_MA,
ml_u_RPNE,
ml_u_SHE,
ml_u_RPE,
ml_u_SHNE,

inputVector[0]—>GetInformationObject (0) ;
outputVector —>GetInformationObject (0) ;

vtkPolyData :: SafeDownCast(inInfo —>Get(vtkDataObject : : DATA_OBJECT()));
vtkPolyData :: SafeDownCast(outInfo —>Get(vtkDataObject : : DATA_OBJECT())) ;

m2_u_MA,
m2_u_RPNE,
m2_u_SHE,
m2_u_RPE,
m2_u_SHNE;

66 m2_d_SHE = 0.4;
67 ml_u_SHE = 0.5;
68 m2_u_SHE = —10.0;

69

70 // RP_Extracting
71 ml_b_RPE = 0.6;
72 m2_b_RPE = 0.4;
73 ml_d_RPE = —-0.4;
74 m2_d_RPE = 0.4;
75 ml_u_RPE = 0.5;
76 m2_u_RPE = —10.0;
77

78 // SH_Non—Extracting
79 ml_b_SHNE = 0.8;

80 m2_b_SHNE = 0.2;

81 ml_d_SHNE = -0.8;

82 m2_d_SHNE = 0.8;

83 ml_u_SHNE = 1.0;

84 m2_u_SHNE = 0.0;

85 IELETELEErrr i rrrrrr
86

87 // creating Master Agent opinion array

88 vtkSmartPointer <vtkDoubleArray > MAArray = vtkSmartPointer <vtkDoubleArray >::New() ;
89 MAArray—>SetNumberOfValues (input —>GetNumberOfPoints () 3) ;

90 MAArray—>SetNumberOfComponents (3) ;

91 MAArray—>SetNumberOfTuples (input —>GetNumberOfPoints ()) ;

92 MAArray—>SetName ("MA") ;

93
9% // Creating array to store algorithm agent opinion when
95 /! the Roth—Peikert algorithm extracts the cores

96 vtkSmartPointer <vtkDoubleArray > AARPArray = vtkSmartPointer <vtkDoubleArray >::New() ;
97 AARPArray—>SetNumberOfValues (input —>GetNumberOfPoints () %3) ;

98 AARPArray—>SetNumberOfComponents (3) ;

99 AARPArray—>SetNumberOfTuples (input —>GetNumberOfPoints ()) ;

100 AARPArray—>SetName ("AARP") ;

101
102 /! Creating array to store algorithm agent opinion when
103 // the Sujudi—Haimes algorithm extracts the cores

104 vtkSmartPointer <vtkDoubleArray> AASHArray = vtkSmartPointer <vtkDoubleArray >::New() ;

105 AASHArray—>SetNumberOfValues (input —>GetNumberOfPoints () %3) ;

106 AASHArray—>SetNumberOfComponents (3) ;

107 AASHArray—>SetNumberOfTuples (input —>GetNumberOfPoints ()) ;

108 AASHArray—>SetName ("AASH") ;

109

110 // Creating array to store final opinion

111 vtkSmartPointer <vtkDoubleArray> finalOpinionArray = vtkSmartPointer <vtkDoubleArray >::New() ;
112 finalOpinionArray —>SetNumberOfValues (input —>GetNumberOfPoints () *3);

113 finalOpinionArray —>SetNumberOfComponents (3) ;

114 finalOpinionArray —>SetNumberOfTuples (input —>GetNumberOfPoints ()) ;

115 finalOpinionArray —>SetName (" FinalOpinion");

116

117 // Creating array to store probability expectation value

118 vtkSmartPointer <vtkDoubleArray > probExpArray = vtkSmartPointer <vtkDoubleArray >::New() ;
119 probExpArray —>SetNumberOfValues (input —>GetNumberOfPoints ()) ;

120 probExpArray —>SetNumberOfComponents (1) ;

121 probExpArray —>SetNumberOfTuples (input —>GetNumberOfPoints ()) ;

122 probExpArray —>SetName (" ProbabilityExpectation");

123

124 // Calculating Master Agent (MA) opinion on vortex core lines

125 int life;

126 double b, d, u, normalLife, corrPrev, corrNext, corr, FD, CFD, tupleCheck, equalizer, alpha,

beta;
127 std :: vector <int> cellPointList;
128 if (Transient)
129 {
130 for(int i = 0 ; i < input—>GetNumberOfLines () ; ++i)
131 {
132 // Storing cell point IDs in current time step

168

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200

}
}

else

{

vtkIdList xcellPtlds;

cellPtlds = input—>GetCell(i)—>GetPointlds () ;

cellPointList.resize (cellPtlds —>GetNumberOflds ()) ;

for(int j = 0 ; j < cellPtlds —>GetNumberOflds () ; ++j)
cellPointList[j] = cellPtlds —>Getld(j);

life = int(input—>GetCellData ()—>GetArray (" FeatureLife")—>GetComponent(i,0));
normalLife = (double) life / FeatureLifeNorm;
if (normalLife > 1) {normalLife = 1;}

corrPrev = input—>GetCellData ()—>GetArray ("LineCorrespondence")—>GetComponent(i,0) ;
corrNext = input—>GetCellData ()—>GetArray ("LineCorrespondence")—>GetComponent(i,1);

corr = (corrPrev > corrNext) ? corrPrev : corrNext;
b = ml_b_ MA % normalLife + m2_b_MA;

if(b < 0) {b = 0;}

d = ml_d MA % normalLife + m2_d MA;

if(d > 1) {d =1}

u = ml_uMA/(1 + exp(m2_u MAsxcorr));

if(u>1) {u=1;}

tupleCheck = b + d + u;
if (tupleCheck > 1)
{

if(u ==1)
{

b = 0;
d = 0;
}

else

{

equalizer = ((u + d + b)—1)/2;
b = b — equalizer;
d = d — equalizer;
if(b < 0) {b = 0;}
if(d < 0) {d = 0;}
tupleCheck = b + d + u;
if (tupleCheck > 1)
{
if(b == 0) {d = -
if(d == 0) {b=1— u;}
}

|
[=1

}
}

for (int j(0) ; j < input—>GetCell(i)—>GetNumberOfPoints () ; ++j)

{
MAArray—>SetComponent(cellPointList[j], 0, b);
MAArray—>SetComponent(cellPointList[j], 1, d);
MAArray—>SetComponent(cellPointList[j], 2, u);

}

for(int i = 0 ; i < input—>GetNumberOfPoints () ; ++i)

{

FD = input—>GetPointData () —>GetArray (" FeatureDisplacement")—>GetComponent(i,0) ;

CFD = input—>GetPointData ()—>GetArray ("ChangelnFeatureDisplacement")—>GetComponent(i,0) ;

b = (—ChangelnFeatureDisplacementConstant % CFD — FeatureDisplacementConstant * FD)/2 + 1;
if(b < 0) {b = 0;}

d = FeatureDisplacementConstant * FD;

if(d > 1) {d = 1;}

u = ChangelnFeatureDisplacementConstant * CFD;

if(u > 1) {u= 1}

tupleCheck = b + d + u;
if (tupleCheck > 1)

169

201 {

202 if(u == 1)

203 {

204 b = 0;

205 d = 0;

206 }

207 else

208 {

209 equalizer = ((u + d + b)—1)/2;

210 b = b — equalizer;

211 d = d — equalizer;

212 if(b < 0) {b = 0;}

213 if(d < 0) {d = 0;}

214 tupleCheck = b + d + u;

215 if (tupleCheck > 1)

216 {

217 if(b==20) {d=1-u;}

218 if(d == 0) {b=1— u;}

219 }

220 }

221 }

222

223 MAArray—>SetComponent(i, 0, b);

224 MAArray—>SetComponent (i, 1, d);

225 MAArray—>SetComponent (i, 2, u);

226 }

227 }

228

229 // initializing variables

230 double vortexStrength, curvature, quality , minimumDistance, lambda2,

231 normalVortexStrength , normalCurvature , normalQuality , normalAverage,

normalMinimumDistance ;

232

233 // calculating belief tuple values as if Sujudi—Haimes was the

234 /] extraction algorithm for the set of vortex cores.

235 if (SujudiHaimes)

236 {

237 for(int i = 0 ; i < input—>GetNumberOfPoints () ; ++i)

238 {

239 /] creating the AARP opinion for the Roth—Peikert algorithm when RP DOES NOT extract the
points

240 // putting vortex strength value in proper form

241 vortexStrength = input—>GetPointData ()—>GetArray (" VortexStrength")—>GetComponent(i,0);

242 this —>VortexStrengthNorm = input—>GetFieldData ()—>GetArray (" VortexStrengthGeometricMean")—>
GetComponent(0,0);

243 normalVortexStrength = fabs(vortexStrength/VortexStrengthNorm) ;

244 if (normalVortexStrength > 1) {normalVortexStrength = 1;}

245

246 // putting curvature value in proper form

247 curvature = input—>GetPointData ()—>GetArray (" Curvature")—>GetComponent(i,0);

248 this —>CurvatureNorm = input—>GetFieldData ()—>GetArray (" CurvatureGeometricMean")—>
GetComponent(0,0);

249 if (curvature > CurvatureNorm) {curvature = CurvatureNorm;}

250 normalCurvature = fabs(curvature/CurvatureNorm — 1);

251

252 // putting quality value in proper form

253 quality = input—>GetPointData ()—>GetArray (" Quality")—>GetComponent(i,0)

254 if (quality > QualityNorm) {quality = QualityNorm;}

255 normalQuality = fabs(quality/QualityNorm — 1);

256

257 // finding the average of the three values

258 normalAverage = (normalVortexStrength + normalCurvature + normalQuality) / 3;

259

260 // putting minimum distance value in proper form

261 minimumDistance = input—>GetPointData ()—>GetArray ("MinimumDistance")—>GetComponent(i,0) ;

262 this —>MinimumDistanceNorm = input—>GetFieldData () —>GetArray ("MinimumDistanceGeometricMean")
—>GetComponent (0,0) ;

263 normalMinimumDistance = fabs(minimumDistance/MinimumDistanceNorm) ;

170

264 if (normalMinimumDistance > 1) {normalMinimumDistance = 1;}

265

266 // the function that sets the belief value

267 b = ml_b_RPNE % normalAverage + m2_b_RPNE; /1<

268 if(b > 1) {b = 1;}

269 // the function that sets the disbelief value

270 d = ml_d_RPNE =* normalAverage + m2_d_RPNE; /1<

271 if(d < 0) {d = 0;}

272 // the function that sets the uncertainty value

273 u = ml_u_RPNE #* normalMinimumDistance + m2_u_RPNE; /< u=norm
%0.5

274

275 tupleCheck = b + d + u;

276

277 // checking the belief tuple to make sure it sums to 1. i.e. b+d+u=l

278 if (tupleCheck > 1)

279 {

280 // If b + d + u doesn't equal 1 then update u and d

281 equalizer = ((b +d + u) — 1) / 2;

282 u =u — equalizer;

283 b = b — equalizer;

284 if(u < 0) {u=0;}

285 if(b < 0) {b = 0;}

286 tupleCheck = u + b + d;

287 if (tupleCheck > 1)

288 {

289 if(u==20) {b=1-4d;}

290 if(b ==20) {u=1-4d;}

291 }

292 }

293

294 AARPArray—>SetComponent(i, 0, b);

295 AARPArray—>SetComponent (i, 1, d);

296 AARPArray—>SetComponent (i, 2, u);

297 }

298

29 [/ AT rrrrry
300

301 for(int i = 0 ; i < input—>GetNumberOfPoints () ; ++1i)

302 {

303 /] creating the AASH opinion for the Sujudi—Haimes algorithm when SH DOES extract the
points .

304 // putting vortex strength value in proper form

305 vortexStrength = input—>GetPointData ()—>GetArray (" VortexStrength")—>GetComponent(i,0) ;

306 this —>VortexStrengthNorm = input—>GetFieldData ()—>GetArray (" VortexStrengthGeometricMean")—>
GetComponent(0,0);

307 normalVortexStrength = fabs(vortexStrength/VortexStrengthNorm) ;

308 if (normalVortexStrength > 1) {normalVortexStrength = 1;}

309

310 // putting curvature value in proper form

311 curvature = input—>GetPointData ()—>GetArray (" Curvature")—>GetComponent(i,0);

312 this —>CurvatureNorm = input—>GetFieldData ()—>GetArray (" CurvatureGeometricMean")—>
GetComponent(0,0) ;

313 if (curvature > CurvatureNorm) {curvature = CurvatureNorm;}

314 normalCurvature = fabs(curvature/CurvatureNorm — 1);

315

316 /] putting quality value in proper form

317 quality = input—>GetPointData ()—>GetArray (" Quality")—>GetComponent(i,0)

318 if (quality > QualityNorm) {quality = QualityNorm;}

319 normalQuality = fabs(quality/QualityNorm — 1);

320

321 // finding the average of the three values

322 normalAverage = (normalVortexStrength + normalCurvature + normalQuality) / 3;

323

324 // putting lambda2 value in proper form

325 lambda2 = input—>GetPointData ()—>GetArray ("Lambda2")—>GetComponent(i,0) ;

326

327 // the function that sets the b—value

171

328

329
330
331

332
333
334

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

=

373
374
375
376
377
378

379
380
381
382
383
384
385
386
387
388
389
390

NEE

b = ml_b_SHE % normalAverage + m2_b_SHE; //<——— Original = 0.4 * norm +
0.6

if(b > 1) {b = 1;}

// the function that sets the d—value

d = ml_d_SHE % normalAverage + m2_d_SHE; //<—————— Original = —0.4 % norm +
04

if(d < 0) {d = 0;}

// the function that sets the u—value

u = ml_u_SHE/(1 + exp(m2_u_SHE=xlambda2)); /1< Original = 0.5 * norm

tupleCheck = b + d + u;

/! checking the belief tuple to make sure it sums to 1. i.e. b+d+u=l
if (tupleCheck > 1)
{

// If b + d + u doesn't equal 1 then update u and d

equalizer = ((b +d +u) — 1) / 2;

u =u — equalizer;

d = d — equalizer;

if(u < 0) {u=0;}
if(d < 0) {d 0;}
tupleCheck = u + b + d;
if (tupleCheck > 1)
{
if(u==0) {d =
if (d == 0) {u
}

|
—_—
|
o o
I

}

AASHArray—>SetComponent(i, 0, b);
AASHArray—>SetComponent(i, 1, d);
AASHArray—>SetComponent(i, 2, u);
}

}

wx /11111111

/] calculating belief tuple values as if RothPeikert was the
/] extraction algorithm for the set of vortex cores.
if (RothPeikert)
{
for(int i = 0 ; i<input—>GetNumberOfPoints() ; ++i)
{
// creating the AARP opinion for the Roth—Peikert algorithm when RP DOES extract the points
// putting vortex strength value in proper form
vortexStrength = input—>GetPointData ()—>GetArray (" VortexStrength")—>GetComponent(i,0)
this —>VortexStrengthNorm = input—>GetFieldData ()—>GetArray (" VortexStrengthGeometricMean")—>
GetComponent(0,0);
normalVortexStrength = fabs(vortexStrength/VortexStrengthNorm);
if (normalVortexStrength > 1) {normalVortexStrength = 1;}

// putting curvature value in proper form

curvature = input—>GetPointData ()—>GetArray (" Curvature")—>GetComponent(i,0);

this —>CurvatureNorm = input—>GetFieldData ()—>GetArray (" CurvatureGeometricMean")—>
GetComponent(0,0);

normalCurvature = curvature/CurvatureNorm;

if (normalCurvature > 1) {normalCurvature = 1;}

// putting quality value in proper form

quality = input—>GetPointData ()—>GetArray (" Quality")—>GetComponent(i,0)
if (quality > QualityNorm) {quality = QualityNorm;}

normalQuality = fabs(quality/QualityNorm — 1);

// finding the average of the three values
normalAverage = (normalVortexStrength + normalCurvature + normalQuality) / 3;

// putting lambda2 value in proper form

172

391 lambda2 = input—>GetPointData ()—>GetArray ("Lambda2")—>GetComponent(i,0) ;
392

393 // the function that sets the b—value

394 b = ml_b_RPE % normalAverage + m2_b_RPE; /| <———— Original = 0.4 % norm +
0.6

395 if(b> 1) {b = 1;}

396 // the function that sets the d—value

397 d = ml_d_RPE % normalAverage + m2_d_RPE; //<———— Original = —0.4 % norm +
04

398 if(d < 0) {d = 0;}

399 // the function that sets the u—value

400 u = ml_u_RPE/(1 + exp(m2_u_RPExlambda2)); //<——— Original = 0.5 * norm

401

402 tupleCheck = b + d + u;

403

404 /! checking the belief tuple to make sure it sums to 1. i.e. b+d+u=l

405 if (tupleCheck > 1)

406 {

407 // If b + d + u doesn't equal 1 then update u and d

408 equalizer = ((b +d +u) — 1) / 2;

409 u =u — equalizer;

410 d = d — equalizer;

411 if(u < 0) {u= 0;}

412 if(d < 0) {d = 03}

413 tupleCheck = u + b + d;

414 if (tupleCheck > 1)

415 {

416 if(u==20) {d=1- Db}

417 if(d == 0) {u=1- b3}

418 }

419 }

420

421 AARPArray—>SetComponent(i, 0, b);

422 AARPArray—>SetComponent(i, 1, d);

423 AARPArray—>SetComponent (i, 2, u);

424 }

425

a6 [T i i i rr e rrg

427

428 for(int i = 0 ; i<input—>GetNumberOfPoints() ; ++i)

429 {

430 // creating the AASH opinion for the Sujudi—Haimes algorithm when SH DOES NOT extract the
points

431 // putting vortex strength value in proper form

432 vortexStrength = input—>GetPointData ()—>GetArray (" VortexStrength")—>GetComponent(i,0);

433 this —>VortexStrengthNorm = input —>GetFieldData ()—>GetArray (" VortexStrengthGeometricMean")—>
GetComponent(0,0) ;

434 normalVortexStrength = fabs(vortexStrength/VortexStrengthNorm) ;

435 if (normalVortexStrength > 1) {normalVortexStrength = 1;}

436

437 // putting curvature value in proper form

438 curvature = input—>GetPointData ()—>GetArray (" Curvature")—>GetComponent(i,0);

439 this —>CurvatureNorm = input—>GetFieldData ()—>GetArray (" CurvatureGeometricMean")—>
GetComponent(0,0) ;

440 normalCurvature = fabs(curvature/CurvatureNorm) ;

441 if (normalCurvature > 1) {normalCurvature = 1;}

442

443 // putting quality value in proper form

444 quality = input—>GetPointData ()—>GetArray (" Quality")—>GetComponent(i,0);

445 if (quality > QualityNorm) {quality = QualityNorm;}

446 normalQuality = fabs(quality/QualityNorm — 1);

447

448 // finding the average of the three values

449 normalAverage = (normalVortexStrength + normalCurvature + normalQuality) / 3;

450

451 // putting minimum distance value in proper form

452 minimumDistance = input—>GetPointData ()—>GetArray ("MinimumDistance")—>GetComponent(i,0) ;

173

453 this —>MinimumDistanceNorm = input—>GetFieldData ()—>GetArray ("MinimumDistanceGeometricMean")
—>GetComponent (0,0) ;

454 normalMinimumDistance = fabs(minimumDistance/MinimumDistanceNorm) ;
455 if (normalMinimumDistance > 1) {normalMinimumDistance = 1;}
456

457 // the function that sets the belief value

458 b = ml_b_SHNE # normalAverage + m2_b_SHNE; /1<

459 if(b>1) {b =1;}

460 // the function that sets the disbelief value

461 d = ml_d_SHNE % normalAverage + m2_d_SHNE; /<

462 if(d < 0) {d = 0;}

463 // the function that sets the uncertainty value

464 u = ml_u_SHNE % normalMinimumDistance + m2_u_SHNE; /1<
465

466 tupleCheck = b + d + u;

467

468 /! checking the belief tuple to make sure it sums to 1. i.e. b+d+u=l
469 if (tupleCheck > 1)

470 {

471 // If b + d + u doesn't equal 1 then update u and b

472 equalizer = ((b +d +u) — 1) / 2;

473 u =u — equalizer;

474 b = b — equalizer;

475 if(u < 0) {u= 0;}

476 if(b < 0) {b = 0;}

477 tupleCheck = u + b + d;

478 if (tupleCheck > 1)

479 {

480 if(u==20) {b=1-4d;}

481 if(b ==0) {u=1-4d;}

482 }

483 }

484

485 AASHArray—>SetComponent (i, 0, b);

486 AASHArray—>SetComponent (i, 1, d);

487 AASHArray—>SetComponent (i, 2, u);

488 }

489 }

490

491 // Combining all the opinions into the final opinion.

492 double MA[3], AARP[3], AASH[3], MAXAASH[3], MAXAARP[3], k, finalOpinion[3], gamma;
493 for(int i = 0 ; i<input—>GetNumberOfPoints() ; ++i)

494 {

495 MAArray—>GetTuple (i ,MA) ;

496 AARPArray—>GetTuple (i ,AARP) ;

497 AASHArray—>GetTuple (i ,AASH) ;

498

499 // Discounting operator

500 MAXAARP[0] = MA[O] = AARP[O];

501 MAXAARP[1] = MA[O] = AARP[1];

502 MAXAARP[2] = MA[1] + MA[2] + MA[O] = AARP[2];

503

504 // Discounting operator

505 MAXAASH[O0] = MA[O] = AASH[O];

506 MAXAASH[1] = MA[O] = AASH[1];

507 MAXAASH[2] = MA[1] + MA[2] + MA[O] = AASH[2];

508

509 // Consensus operator for combining beliefs

510 k = MAXAARP[2] + MAXAASH[2] — MAXAARP[2] * MAxAASH[2];
511 if(k != 0)

512 {

513 finalOpinion [0] = (MAXAARP[0O] * MAXAASH[2] + MAxAASH[O] = MAxAARP[2]) / k;
514 finalOpinion[1] = (MAXAARP[1] % MAXAASH[2] + MAxXAASH[1] = MAxAARP[2]) / k;
515 finalOpinion [2] = (MAXAARP[2] % MAxAASH[2]) / k;

516 }

517 else

518 {

519 gamma = MAXAASH[2] / MAXAARP[2];

174

520
521

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

© 0 NN AW N =

finalOpinion [0] = (gamma = MAXAARP[O]+MAXAASH[0]) / (gamma + 1);
finalOpinion[1] = (gamma * MAXAARP[1]+MAXAASH[1]) / (gamma + 1);
finalOpinion [2] = O0;
}
finalOpinion [0] = (MAXAARP[0O] % MAXAASH[2] + MAXAASH[0] = MAxAARP[2]) / k;
finalOpinion[1l] = (MAXAARP[1] % MAxXAASH[2] + MAxAASH[1] % MAxAARP[2]) / k;
finalOpinion[2] = (MAxXAARP[2] % MAXAASH[2]) / k;

finalOpinionArray —>SetTuple (i, finalOpinion);

// calculating the probability expectation value
probExpArray —>SetValue (i, finalOpinion[0]+0.5%finalOpinion[2]);
}

// adding arrays to the input data set

input —>GetPointData () —>AddArray (MAArray) ;

input —>GetPointData () —>AddArray (AASHArray) ;

input —>GetPointData () —>AddArray (AARPArray) ;

input —>GetPointData () —>AddArray (finalOpinionArray);
input —>GetPointData () —>AddArray (probExpArray) ;

// Copying the input data and structure to the output
output —>CopyStructure (input);
output —>GetPointData () —>PassData(input —>GetPointData ());

output —>GetCellData () —>PassData(input —>GetCellData ());
output —>GetFieldData ()—>PassData (input —>GetFieldData ());
return 1;

1

/]

void vtkCreateOpinion_Vortex :: PrintSelf (ostream& os, vtkIndent indent)

{

this —>Superclass :: PrintSelf (os,indent);

}

B.4.4 vtkCurvature.cxx

#include "vtkCurvature.h"
#include <headers.h>
vtkCxxRevisionMacro (vtkCurvature , "$Revision: 1.70 $");
vtkStandardNewMacro (vtkCurvature) ;
vtkCurvature :: vtkCurvature ()
{
this —>MultiSegmentCurvature = false;
this —>VelocityFieldCurvature = false;
this —>PointwiseCurvature = false;
}

int vtkCurvature :: FilllnputPortInformation (int port, vtkInformation =info)

{
}

/1

int vtkCurvature :: RequestData(
vtkInformation =vtkNotUsed(request),
vtkInformationVector =#xinputVector,
vtkInformationVector xoutputVector)

// get the info objects

vtkInformation =xinInfo = inputVector[0]—>GetInformationObject(0);
vtkInformation xoutlnfo = outputVector —>GetInformationObject (0) ;

175

// get the input and
vtkPolyData =input
vtkPolyData xoutput

ouptut

vtkPolyData :: SafeDownCast(inInfo —>Get(vtkDataObject : : DATA_OBJECT()));
vtkPolyData :: SafeDownCast(outInfo —>Get(vtkDataObject :: DATA_OBJECT()));

LTI rr i i i i i rr i rr i rr i rr i rrrrrrrrg

if (MultiSegmentCurvature)

{
// initializing values
double pO[3], pl[3], p2[3];
double a, b, ¢, suml, sum2, sum3, radius, curvature;

double logSum(0) ,logCurvature (0), logMean(0), gMean(0);

// Initializing the curvature array to add to
vtkSmartPointer <vtkDoubleArray> curvatureArray
curvatureArray —>SetNumberOfComponents (1) ;

polydata

vtkSmartPointer <vtkDoubleArray >::New () ;

curvatureArray —>SetNumberOfTuples (input —>GetNumberOfPoints ()) ;

curvatureArray —>SetName (" Curvature ") ;

// compute geometric mean of curvature values
vtkSmartPointer <vtkDoubleArray> curvatureGMean
curvatureGMean —>SetNumberOfComponents (1) ;
curvatureGMean —>SetNumberOfTuples (1) ;

vtkSmartPointer <vtkDoubleArray >::New () ;

curvatureGMean —>SetName (" CurvatureGeometricMean") ;

for(int i = 0 ; i < input—>GetNumberOfLines() ; i++)
{
for (int j = 0 ; j < input—>GetCell(i)—>GetNumberOfPoints (); j++)
{
/] getting point Ids to use later

vtkSmartPointer <vtkIdList> ptlds
input —>GetCellPoints (i, ptlds);

/! First core point:

// use ls,t 3rd, and 5th points in line

if(j == 0)

{
input —>GetCell (i)—>GetPoints ()—>GetPoint(j,p0);
input —>GetCell (i)—>GetPoints ()—>GetPoint(j+2,pl);
input —>GetCell (i)—>GetPoints ()—>GetPoint(j+4,p2);

}

/! Second core point:

// use 1st, 3rd, and 5th points in line

else if(j == 1)

{
input —>GetCell (i)—>GetPoints ()—>GetPoint(j —1,p0);
input —>GetCell (i)—>GetPoints ()—>GetPoint(j+1,pl);
input —>GetCell (i)—>GetPoints ()—>GetPoint(j+3,p2);

}

/! Second to last core point:

// use 1Ist, 3rd, and S5th points at end of line

else if(j == input—>GetCell(i)—>GetNumberOfPoints () —2)

{
input —>GetCell (i)—>GetPoints ()—>GetPoint(j —3,p0);
input —>GetCell (i)—>GetPoints ()—>GetPoint(j —1,pl);
input —>GetCell (i)—>GetPoints ()—>GetPoint(j+1,p2);

}

// Last core point:

// use 1st, 3rd, and 5th points at end of line

else if(j == input—>GetCell(i)—>GetNumberOfPoints () —1)

{

input —>GetCell (i)—>GetPoints ()—>GetPoint(j —4,p0);
input —>GetCell (i)—>GetPoints ()—>GetPoint(j —2,pl);
input —>GetCell (i)—>GetPoints ()—>GetPoint(j,p2);

176

vtkSmartPointer <vtkIdList >::New() ;

96 }

97

98 /1 All other core points:

99 // use points 2 away

100 else

101 {

102 input —>GetCell (i)—>GetPoints ()—>GetPoint(j —2,p0);
103 input —>GetCell (i)—>GetPoints ()—>GetPoint(j,pl);

104 input —>GetCell (i)—>GetPoints ()—>GetPoint(j+2,p2);
105 }

106

107 // Calculating distances between points

108 a = sqrt(pow(pl[0]—=p0[0],2) + pow(pl[1]—pO[1],2) + pow(pl[2]—pO[2],2));
109 b = sqrt(pow(p2[0]-pl[0].2) + pow(p2[1]-pl[1].2) + pow(p2[2]-pl[2].2)):
110 ¢ = sqrt(pow(p2[0]—p0[0],2) + pow(p2[1]—pO[1],2) + pow(p2[2]—-p0[2].2));
111 suml = —a+b+c; sum2 = a—b+c; sum3 = a+b—c;
112

113 // Case of points on a straight line

114 if (suml < 1e—100 Il sum2 < 1e—100 |l sum3 < 1le—100)
115 curvature = 0;

116 else

117 {

118 /1 Calculating radius of circumcircle

119 radius = axbxc / sqrt((a+b+c)=(—a+b+c)*(a—b+c)=(a+b—c));
120 curvature = 1/radius;

121 }

122

123 if (curvature < 0.00001)

124 curvature = 0.00001;

125

126 // Compute logarithm sum

127 logCurvature = loglO(curvature);

128 logSum += logCurvature;

129

130 curvatureArray —>SetComponent(ptlds —>Getld(j) ,0,curvature);
131 }

132 }

133

134 // Compute geometric mean

135 logMean = logSum / input—>GetNumberOfPoints () ;

136 gMean = pow(10.0,logMean);

137

138 curvatureGMean —>SetValue (0,gMean) ;

139

140 input —>GetPointData () —>AddArray (curvatureArray);

141 input —>GetFieldData () —>AddArray (curvatureGMean) ;

142

143 // Copying the input data and structure to the output
144 output —>CopyStructure (input);

145 output —>GetPointData () —>PassData(input —>GetPointData ());
146 output —>GetCellData ()—>PassData(input —>GetCellData());
147 output —>GetFieldData () —>PassData(input —>GetFieldData ());
148 }

149

150 [/ SLIITTLIIE i rrrrrr
151
152 else if(VelocityFieldCurvature)

153 {

154 // calculate curvature vector

155 vtkSmartPointer <vtkArrayCalculator> calc = vtkSmartPointer <vtkArrayCalculator >::New() ;
156 calc —>AddScalarVariable ("a_x", "TensorXVelocity", 0);

157 calc —>AddScalarVariable ("a_y", "TensorXVelocity", 1);

158 calc —>AddScalarVariable("a_z", "TensorXVelocity", 2);

159 calc —>AddScalarVariable ("v_x", "NormVelocity", 0);

160 calc —>AddScalarVariable ("v_y", "NormVelocity", 1);

161 calc —>AddScalarVariable ("v_z", "NormVelocity", 2);

162 calc —>SetResultArrayName (" CurvatureVector");

163 calc —>SetFunction ("iHat*((v_y*a_z — v_z=a_y)/(V_X*V_X + V_y*V_y + v_z*v_z)"1.5) +"

177

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

222
223
224
225
226
227
228
229

"jHat#((v_zxa_x — v_x#%a_z)/(V_X*V_X + V_y*V_y + v_zxv_z)"1.5) +"
"kHat#((v_x=*a_y — v_y#a_X)/(V_X*V_X + V_y*V_y + v_zxv_z)"1.5)");
calc —>Setlnput(input);
calc —>ReleaseDataFlagOn () ;
calc —>Update () ;

// calculate curvature from curvature vector

vtkSmartPointer <vtkArrayCalculator> calc2 = vtkSmartPointer <vtkArrayCalculator >::New() ;
calc2 —>AddScalarVariable ("c_x", "CurvatureVector", 0);

calc2 —>AddScalarVariable("c_y", "CurvatureVector", 1);

calc2 —>AddScalarVariable("c_z", "CurvatureVector", 2);

calc2 —>SetResultArrayName (" Curvature") ;

calc2 —>SetFunction (" (c_x#%c_X + c_y*c_y + c_z*xc_z)"0.5");

calc2 —>Setlnput(calc —>GetOutput ());

calc2 —>ReleaseDataFlagOn () ;

calc2 —>Update () ;

// compute geometric mean of curvature values

vtkSmartPointer <vtkDoubleArray > curvatureGMean = vtkSmartPointer <vtkDoubleArray >::New() ;
curvatureGMean —>SetNumberOfComponents (1) ;

curvatureGMean —>SetNumberOfTuples (1) ;

curvatureGMean —>SetName (" CurvatureGeometricMean") ;

double logSum(0) ;
for (int i = 0 ; i < input—>GetNumberOfPoints() ; i++)

{
double logCurvature = logl0O(calc2 —>GetOutput()—>GetPointData ()—>GetArray (" Curvature")—>
GetComponent(i,0));
logSum += logCurvature;
}

double logMean = logSum / input—>GetNumberOfPoints () ;
double gMean = pow(10.0, logMean);

curvatureGMean —>SetTuplel (0, gMean);
output —>GetFieldData () —>AddArray (curvatureGMean) ;

// Copying the input data and structure to the output

output —>CopyStructure (calc2 —>GetOutput());

output —>GetPointData () —>PassData (calc2 —>GetOutput () —>GetPointData ());
output —>GetCellData ()—>PassData(calc2 —>GetOutput () —>GetCellData ()) ;
output —>GetFieldData () —>PassData(input —>GetFieldData ());

}

[T EEErr i i i i rrrrr

else if (PointwiseCurvature)
{
// Obtaining change in feature displacement at each point
// Initializing the array and naming variables
vtkSmartPointer <vtkDoubleArray> curvatureArray = vtkSmartPointer <vtkDoubleArray >::New() ;
curvatureArray —>SetNumberOfValues (input —>GetNumberOfPoints ()) ;
curvatureArray —>SetNumberOfComponents (1) ;
curvatureArray —>SetNumberOfTuples (input —>GetNumberOfPoints ()) ;
curvatureArray —>SetName (" Curvature ") ;

// Create the tree

vtkSmartPointer <vtkOctreePointLocator> octree = vtkSmartPointer<vtkOctreePointLocator >::New()

octree —>SetDataSet(input);
octree —>BuildLocator () ;

// declare variables
double distance[5];
double point_holder[15];

//Loop through each point

178

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

254
255
256
257
258
259
260

261
262
263
264
265
266
267

268
269
270
271
272
273
274

275
276
277
278
279
280
281

282
283
284
285
286

288
289
290
291

for (int j(0); j < input—>GetNumberOfPoints(); j++)

{

// Find the k closest points to (0,0,0)
unsigned int k = 5;
double testPoint[3];

testPoint [0] = input—>GetPoints ()—>GetData ()—>GetComponent(j ,0);
testPoint[1] input —>GetPoints () —>GetData () —>GetComponent(j ,1);
testPoint[2] = input—>GetPoints ()—>GetData ()—>GetComponent(j ,2);

vtkSmartPointer <vtkIdList> result = vtkSmartPointer<vtkIdList >::New() ;

octree —>FindClosestNPoints (k, testPoint, result);

//1loop for every k—th point

for (vtkldType i = 0; i < k ; i++)

{
// find the distance between each point of interest
double p[3];
input —>GetPoint(result —>Getld (i), p);

if (i == 0)
{

distance [0]=sqrt (pow((testPoint[0]—p[0]) ,2)+pow((testPoint[1]—p[l]) ,2)+pow((testPoint

[21-p[2]) .2));
point_holder [0]=p[0];
point_holder[1]=p[1];
point_holder[2]=p[2];

}
if(i == 1)
{

distance[1]=sqrt(pow((testPoint[0]—p[0]) ,2)+pow((testPoint[1]—p[1]) ,2)+pow((testPoint

[21-p[2]) .2));
point_holder[3]=p[0];
point_holder[4]=p[1];
point_holder[5]=p[2];

}
if(i == 2)
{

distance [2]=sqrt(pow((testPoint[0]—p[0]) ,2)+pow((testPoint[1]—p[1]) ,2)+pow((testPoint

[2]1-p[2]),2));
point_holder[6]=p[0];
point_holder[7]=p[1];
point_holder [8]=p[2];

}
if(i == 3)
{

distance [3]=sqrt(pow((testPoint[0]—p[0]) ,2)+pow((testPoint[1]—p[1]) ,2)+pow((testPoint

[21-p[2]) .2));
point_holder[9]=p[0];
point_holder [10]=p[1];
point_holder[11]=p[2];

}
if(i == 4)
{

distance [4]=sqrt(pow((testPoint[0]—p[0]) ,2)+pow((testPoint[1]—p[1]) ,2)+pow((testPoint

[2]1-p[2]),2));
point_holder[12]=p[0];
point_holder[13]=p[1];
point_holder[14]=p[2];

}

distance [0]=sqrt(pow((point_holder[12]—point_holder[9]) ,2)+pow ((point_holder[13]—
point_holder[10]) ,2)+pow ((point_holder[14]—point_holder[11]).,2));

}

// Set up some variables to make curvature calculation easier
double a, b, ¢, suml, sum2, sum3, radius, curvature;
a = distance[0]; b = distance[3]; ¢ = distance[4];

179

311

316

322
323
324
325
326
327
328
329

330

331
332

R T N N O

16
17
18
19

suml = —a+b+c; sum2 = a—b+c; sum3 = a+b—c;
/! case of points on a straight line
if (suml < le—100 Il sum2 < le—100 Il sum3 < le—100)
curvature = 0;
// Calculate radius of circle circumscribed by 3 points
else
{
radius = axbxc / sqrt((a+b+c)=x(—a+b+c)x(a—b+c)=*x(a+b—c));
curvature = 1/radius;
}
// Make zero curvature low for geometric mean
if (curvature < 0.00000000001)
curvature = 0.000001;
// calculate curvature based on radius
curvatureArray —>SetValue (j, curvature) ;
}
/! adding computed arrays to inputl
input —>GetPointData () —>AddArray (curvatureArray);
// Copying the input data and structure to the output
output —>CopyStructure (input);
output —>GetPointData () —>PassData(input —>GetPointData ());
output —>GetCellData ()—>PassData(input —>GetCellData());
output —>GetFieldData () —>PassData(input —>GetFieldData ());
}
return 1;
}
/1
void vtkCurvature :: PrintSelf (ostream& os, vtkIndent indent)
{
this —>Superclass :: PrintSelf (os,indent);
os << indent << "MultiSegmentCurvature: " << (this —>MultiSegmentCurvature ? "On\n"
)
os << indent << "VelocityFieldCurvature: " << (this—>VelocityFieldCurvature ? "On\n"
")
os << indent << "PointwiseCurvature: " << (this —>PointwiseCurvature ? "On\n"
}

B.4.5 vtkFeatureAttributes.cxx

#include "vtkFeatureAttributes.h"
#include <headers.h>

vtkCxxRevisionMacro(vtkFeatureAttributes , "$Revision: 1.70 $");
vtkStandardNewMacro(vtkFeatureAttributes);

1/
vtkFeatureAttributes :: vtkFeatureAttributes ()

{
}

/1
int vtkFeatureAttributes :: RequestData (
vtkInformation =vtkNotUsed(request),
vtkInformationVector sxinputVector,
vtkInformationVector =xoutputVector)

{

180

"Off\n"

"Off\n

"Off\n");

20
21
2
23
24
25
26
27
28
29
30
31
0
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
6

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

// get the info objects

vtkInformation xinInfo = inputVector[0]—>GetInformationObject(0);
vtkInformation xoutlnfo = outputVector —>GetlnformationObject (0);
/! get input and output

vtkPolyData =xinput = vtkPolyData:: SafeDownCast(inInfo —>Get(vtkDataObject ::DATA_OBJECT()));
vtkPolyData xoutput = vtkPolyData:: SafeDownCast(outlnfo —>Get(vtkDataObject::DATA_OBJECT()));

// Creating 1
vtkSmartPointer <vtkDoubleArray> lengthArray =
lengthArray —>SetNumberOfValues (input —>GetNumberOfLines ()) ;
lengthArray —>SetNumberOfComponents (1) ;
lengthArray —>SetNumberOfTuples (input —>GetNumberOfLines ()) ;
lengthArray —>SetName (" LineLength");

// Creating 1
vtkSmartPointer <vtkDoubleArray> strengthArray
strengthArray —>SetNumberOfValues (input —>GetNumberOfLines ()) ;
strengthArray —>SetNumberOfComponents (1) ;
strengthArray —>SetNumberOfTuples (input —>GetNumberOfLines ()) ;
strengthArray —>SetName (" LineVortexStrength");

// Creating 1
vtkSmartPointer <vtkDoubleArray> curvatureArray = vtkSmartPointer <vtkDoubleArray >::New() ;
curvatureArray —>SetNumberOfValues (input —>GetNumberOfLines ()) ;

curvatureArray —>SetNumberOfComponents (1) ;
curvatureArray —>SetNumberOfTuples (input —>GetNumberOfLines ()) ;
curvatureArray —>SetName (" LineCurvature");

/! Creating 1
vtkSmartPointer <vtkDoubleArray> qualityArray
qualityArray —>SetNumberOfValues (input —>GetNumberOfLines ()) ;
qualityArray —>SetNumberOfComponents (1) ;
qualityArray —>SetNumberOfTuples (input —>GetNumberOfLines ()) ;
quality Array —>SetName (" LineQuality ") ;

/! Creating

ine

ine

ine

ine

length array

vortex strength array

curvature array

quality array

tracking ID array

vtkSmartPointer <vtkIntArray > trackingIDArray
trackingIDArray —>SetNumberOfValues (input —>GetNumberOfLines ()) ;
trackingIDArray —>SetNumberOfComponents (1) ;
trackingIDArray —>SetNumberOfTuples (input —>GetNumberOfLines ()) ;
trackingIDArray —>SetName (" TrackingID") ;

/! Creating 1
vtkSmartPointer <vtkDoubleArray> correspondenceArray = vtkSmartPointer <vtkDoubleArray >::New() ;
correspondenceArray —>SetNumberOfValues (input —>GetNumberOfLines ()) ;

correspondenceArray —>SetNumberOfComponents (2) ;

correspondenceArray —>SetNumberOfTuples (input —>GetNumberOfLines ()) ;

correspondenceArray —>SetName (" LineCorrespondence ") ;

// Creating

ine

C()l']"CSp()[]dC[]CC array

event array

vtkSmartPointer <vtkIntArray > eventArray = vtk
eventArray —>SetNumberOfValues (input —>GetNumberOfLines ()) ;
eventArray —>SetNumberOfComponents (1) ;
eventArray —>SetNumberOfTuples (input —>GetNumberOfLines ()) ;
eventArray —>SetName (" SplitMergeEvent") ;

/! Creating

feature lifetime array

vtkSmartPointer <vtkIntArray > featureLifeArray
featureLifeArray —>SetNumberOfValues (input —>GetNumberOfLines ()) ;
featureLifeArray —>SetNumberOfComponents (1) ;
featureLifeArray —>SetNumberOfTuples (input —>GetNumberOfLines ()) ;
featureLifeArray —>SetName (" FeatureLife");

// Computing

for (int

{

i=0

average attributes for each line
std :: vector <int> cellPointList;

5

i < input—>GetNumberOfLines ()

vtkSmartPointer <vtkDoubleArray >::New () ;

= vtkSmartPointer <vtkDoubleArray >::New () ;

= vtkSmartPointer <vtkDoubleArray >::New () ;

= vtkSmartPointer <vtkIntArray >::New() ;

SmartPointer <vtkIntArray >::New() ;

= vtkSmartPointer <vtkIntArray >::New() ;

;i)

181

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

105

106

108
109
110
111
112
113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142}
143
144 //

// Putting cell point ids into an array

vtkIdList =cellPtlds;

cellPtlds = input—>GetCell (i)—>GetPointlds () ;
cellPointList.resize (cellPtIds —>GetNumberOfIds ()) ;
for(int j = 0 ; j < cellPtlds —>GetNumberOflds () ; j++)
{

}

cellPointList[j] = cellPtlds —>Getld(j);

// Instantiating variables
double strengthSum (0), curvatureSum(0), qualitySum(0),
avgStrength , avgCurvature, avgQuality;

// Summing up point values in the line
for(int j = 0 ; j < input—>GetCell(i)—>GetNumberOfPoints () ; j++)
{

strengthSum += input —>GetPointData ()—>GetArray (" VortexStrength")—>GetComponent (
cellPointList[j],0);
curvatureSum += input—>GetPointData ()—>GetArray (" Curvature")—>GetComponent(cellPointList[]

1,0);
qualitySum += input —>GetPointData () —>GetArray (" Quality ")—>GetComponent(cellPointList[]

1.0);

}

// Finding the average of each attribute

avgStrength = strengthSum / input—>GetCell(i)—>GetNumberOfPoints () ;

avgCurvature = curvatureSum / input—>GetCell (i)—>GetNumberOfPoints () ;

avgQuality = qualitySum / input—>GetCell (i)—>GetNumberOfPoints () ;

/] Setting attribute arrays
lengthArray —>SetValue (i, input —>GetPointData ()—>GetArray ("1")—>GetComponent(cellPointList
[0],0));

strengthArray —>SetValue (i, avgStrength);

curvatureArray —>SetValue (i,avgCurvature);

qualityArray —>SetValue (i, avgQuality);

trackingIDArray —>SetValue (i ,0);

eventArray —>SetValue (i,0) ;

featureLifeArray —>SetValue(i,1);

correspondenceArray —>SetTuple2 (i,—100,—-100);
}

// adding arrays to the input data set

input —>GetCellData () —>AddArray (lengthArray);

input —>GetCellData ()—>AddArray (strengthArray);

input —>GetCellData () —>AddArray (curvatureArray);

input —>GetCellData () —>AddArray (qualityArray);

input —>GetCellData () —>AddArray (trackingIDArray);
input —>GetCellData () —>AddArray (eventArray) ;

input —>GetCellData ()—>AddArray (featureLifeArray);
input —>GetCellData () —>AddArray (correspondenceArray);

// Copying the input data and structure to the output
output —>CopyStructure (input);

output —>GetPointData () —>PassData(input —>GetPointData ());
output —>GetCellData () —>PassData(input —>GetCellData());
output —>GetFieldData () —>PassData (input —>GetFieldData ());

return 1;

145 void vtkFeatureAttributes :: PrintSelf(ostream& os, vtkIndent indent)

146 {
147
148}

this —>Superclass :: PrintSelf (os,indent);

182

© ® N AW N =

53
54
55
56
57
58
59
60
61
62
63

B.4.6 vtkFeatureLifetime.cxx

#include

#include <headers.h>

"vtkFeatureLifetime .h"

vtkCxxRevisionMacro (vtkFeatureLifetime , "$Revision: 1.70 $");
vtkStandardNewMacro (vtkFeatureLifetime) ;

/1]
vtkFeatureLifetime :: vtkFeatureLifetime ()
{
this —>CalculateFeatureLifetime = true;
this —>SetFeatureLifetime = false;
}
/1]
int vtkFeatureLifetime :: RequestData (

vtkInformation =xvtkNotUsed(request),
vtkInformationVector =xinputVector,
vtkInformationVector =outputVector)

/1

/1l

get the info objec
vtkInformation =inInfo
vtkInformation #outInfo

get input and outp
vtkPolyData xinput =
vtkPolyData #xoutput =

ts

ut

inputVector[0]—>GetInformationObject (0) ;
= outputVector —>GetInformationObject (0);

vtkPolyData :: SafeDownCast(inInfo —>Get(vtkDataObject : : DATA_OBJECT())) ;
vtkPolyData :: SafeDownCast(outlnfo —>Get(vtkDataObject : : DATA_OBJECT())) ;

if (CalculateFeatureLifetime)

{

}

for (int

{

}

/!l Getting tracking
int (input —>GetCellData ()—>GetArray (" TrackingID")—>GetComponent(i, 0));

int trackinglD =

i =0 ; i < input—>GetNumberOfLines () ; i++)

ID of line

// Incrementing feature life array by 1 at index of tracking ID
FeatureLife Array —>SetComponent(trackingID , 0, FeatureLifeArray —>GetComponent(trackingID ,0)

+1);

if (SetFeatureLifetime)

{

/1l

/1l

creating new tracking ID array — current time step

vtkSmartPointer <vtkIntArray > lifetimeArray = vtkSmartPointer <vtkIntArray >::New() ;
lifetimeArray —>SetNumberOfValues (input —>GetNumberOfLines ()) ;

lifetimeArray —>SetNumberOfComponents (1) ;

lifetimeArray —>SetNumberOfTuples (input —>GetNumberOfLines ()) ;

lifetimeArray —>SetName (" FeatureLife ") ;

Copying old feature

life arrays into new ones

for(int i = 0 ; i < input—>GetNumberOfLines() ; i++)
lifetimeArray —>SetComponent(i,0,input —>GetCellData () —>GetArray (" FeatureLife")—>GetComponent

/1

/1

std ::

(i,0));

Removing old feature life array from the input data set
input —>GetCellData ()—>RemoveArray (" FeatureLife");

Setting feature

lifetimes for each tracking ID

vector <int> cellPointList;

for(int i = 0 ; i < input—>GetNumberOfLines() ; i++)

{

/] Getting tracking

double trackingID

ID of line
input —>GetCellData ()—>GetArray (" TrackingID")—>GetComponent(i,0) ;

183

64
65
66
67
68
69
70
71
72
73

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

© % NN AW N -

// Setting array for current line
// Untracked path receives a lifetime of 1
if (trackinglD == 0)

lifetimeArray —>SetValue(i,1);

// Tracked path receives measured lifetime
else
lifetimeArray —>SetComponent (i ,0, FeatureLifeArray —>GetComponent(trackingID ,0));

}

input —>GetCellData () —>AddArray (lifetimeArray);
}

/! Copying the input data and structure to the output
output —>CopyStructure (input);

output —>GetPointData () —>PassData(input —>GetPointData ());
output —>GetCellData ()—>PassData(input —>GetCellData());
output —>GetFieldData () —>PassData (input —>GetFieldData ());

return 1;

}

/1]
void vtkFeatureLifetime :: PrintSelf (ostream& os, vtkIndent indent)
{

this —>Superclass :: PrintSelf (os,indent);

}

B.4.7 vtkLambdaTwo.cxx

#include "vtkLambdaTwo.h"
#include <headers.h>

vtkCxxRevisionMacro (vtkLambdaTwo, "$Revision: 1.70 $");
vtkStandardNewMacro (vtkLambdaTwo) ;

/]
vtkLambdaTwo :: vtkLambdaTwo ()
{

this —>SetNumberOfInputPorts (1) ;

this —>SetNumberOfOutputPorts (1) ;

this —>VelocityArrayName = "Velocity";
}

/1
int vtkLambdaTwo :: FilllnputPortInformation (int, vtkInformation =info)
{
info—>Set(vtkAlgorithm :: INPUT_REQUIRED_DATA_TYPE(), "vtkDataSet");
return 1;

}

/1

int vtkLambdaTwo :: RequestData(
vtkInformation =vtkNotUsed(request),
vtkInformationVector sxinputVector,
vtkInformationVector =xoutputVector)

// get the info objects
vtkInformation xinInfo = inputVector[0]—>GetInformationObject(0);
vtkInformation #xoutlnfo = outputVector —>GetInformationObject (0);

// get the input and ouptut

vtkDataSet xinput = vtkDataSet:: SafeDownCast(inInfo —>Get(vtkDataObject::DATA_OBJECT()));
vtkDataSet soutput = vtkDataSet:: SafeDownCast(outInfo —>Get(vtkDataObject ::DATA_OBJECT()));

184

36

37 // Computing lambda_2 at each point

38 // Creating array to hold lambda_2

39 vtkSmartPointer <vtkDoubleArray > lambda2Array = vtkSmartPointer <vtkDoubleArray >::New() ;
40 lambda2Array —>SetName ("Lambda2") ;

41 lambda2Array —>SetNumberOfComponents (1) ;

42 lambda2Array —>SetNumberOfTuples (input —>GetNumberOfPoints ()) ;

43
44 // Computing vorticity at each point
45 // Creating array to hold vorticity

46 vtkSmartPointer <vtkDoubleArray> vorticityArray = vtkSmartPointer <vtkDoubleArray >::New() ;
47 vorticityArray —>SetName (" Vorticity ") ;

48 vorticityArray —>SetNumberOfComponents (3) ;

49 vorticityArray —>SetNumberOfTuples (input —>GetNumberOfPoints ()) ;

50

51 // creating arrays to hold velocity components

52 vtkSmartPointer <vtkDoubleArray> xVelocity = vtkSmartPointer <vtkDoubleArray >::New() ;
53 vtkSmartPointer <vtkDoubleArray> yVelocity = vtkSmartPointer <vtkDoubleArray >::New() ;
54 vtkSmartPointer <vtkDoubleArray> zVelocity = vtkSmartPointer <vtkDoubleArray >::New() ;
55 xVelocity —>SetName ("xVelocity");

56 yVelocity —>SetName ("yVelocity");

57 zVelocity —>SetName ("zVelocity");

58 xVelocity —>SetNumberOfValues (input —>GetNumberOfPoints ()) ;

59 yVelocity —>SetNumberOfValues (input —>GetNumberOfPoints ()) ;

60 zVelocity —>SetNumberOfValues (input —>GetNumberOfPoints ()) ;

61

62 for(int i = 0 ; i < input—>GetNumberOfPoints() ; i++)

63 {

64 xVelocity —>SetValue (i,input —>GetPointData () —>GetArray (VelocityArrayName)—>GetComponent(i,0));
65 yVelocity —>SetValue (i, input—>GetPointData () —>GetArray (VelocityArrayName)—>GetComponent(i,1));
66 zVelocity —>SetValue (i, input —>GetPointData ()—>GetArray (VelocityArrayName)—>GetComponent (i ,2));
67 }

68 input —>GetPointData () —>AddArray (xVelocity);

69 input —>GetPointData () —>AddArray (yVelocity);

70 input —>GetPointData () —>AddArray(zVelocity);

71

72 /! Calculating the gradient of x—velocity

73 vtkSmartPointer <vtkGradientFilter > vgfl = vtkSmartPointer<vtkGradientFilter >::New() ;
74 vgfl —>Setlnput(input);

75 vgfl—>SetlnputScalars (vtkDataObject :: FIELD_ASSOCIATION_POINTS, "xVelocity ") ;

76 vgfl —>SetResultArrayName ("uGradient") ;

77 vgfl —>Update () ;

78

79 /! Calculating the gradient of y—velocity

80 vtkSmartPointer <vtkGradientFilter > vgf2 = vtkSmartPointer<vtkGradientFilter >::New() ;
81 vgf2—>Setlnput (vgfl —>GetOutput());

82 vgf2—>SetlnputScalars (vtkDataObject :: FIELD_ASSOCIATION_POINTS, "yVelocity ") ;

83 vgf2 —>SetResultArrayName (" vGradient") ;

84 vgf2 —>Update () ;

85

86 /! Calculating the gradient of z—velocity

87 vtkSmartPointer <vtkGradientFilter > vgf3 = vtkSmartPointer<vtkGradientFilter >::New() ;
88 vgf3—>Setlnput (vgf2—>GetOutput());

89 vgf3—>SetlnputScalars (vtkDataObject :: FIELD_ASSOCIATION_POINTS, "zVelocity ") ;

90 vgf3 —>SetResultArrayName (" wGradient") ;

91 vgf3—>Update () ;

92

93 // putting the velocity gradients into one 9 component array

94 vtkSmartPointer <vtkDoubleArray > vgArray = vtkSmartPointer <vtkDoubleArray >::New() ;
95 vgArray —>SetName (" VelocityGradients ") ;

96 vgArray —>SetNumberOfComponents (9) ;

97 vgArray —>SetNumberOfTuples (input —>GetNumberOfPoints ()) ;

98 double J[3][3];

99

100 for(int i = 0 ; i < input—>GetNumberOfPoints() ; i++)

101 {

102 J[O][O0] = vgfl —>GetOutput ()—>GetPointData ()—>GetArray ("uGradient")—>GetComponent (i ,0) ;
103 J[O][1] = vgfl —>GetOutput ()—>GetPointData ()—>GetArray ("uGradient")—>GetComponent(i,1);

185

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

168
169
170
171

J[o][2]
J[11[0]
JOI][1]
JI11[2]
T[2]10]
J[2]01]
T12]12]

vgfl —>GetOutput () —>GetPointData () —>GetArray ("uGradient")—>GetComponent (i

= vgf2 —>GetOutput ()—>GetPointData () —>GetArray (" vGradient")—>GetComponent (i
= vgf2—>GetOutput ()—>GetPointData () —>GetArray (" vGradient")—>GetComponent (i

= vgf2 —>GetOutput ()—>GetPointData () —>GetArray (" vGradient")—>GetComponent (i
= vgf3—>GetOutput ()—>GetPointData () —>GetArray ("wGradient")—>GetComponent (i
= vgf3—>GetOutput ()—>GetPointData () —>GetArray ("wGradient")—>GetComponent (i,

= vgf3—>GetOutput ()—>GetPointData () —>GetArray ("wGradient")—>GetComponent (i,

vgArray >SetC0mponent(1 0 J[OT[0]);

vgArray —>SetComponent (i,

vgArray —>SetComponent (i ,2 LJ101121) s
LJLLI[0])
vgArray —>SetComponent (i ,4,J[1][1]);
SILLI02])
vgArray —>SetComponent (i ,6,J[2][0]);
vgArray —>SetComponent (i ,7,J[2][1]);
vgArray —>SetComponent (i ,8,J[2][2]);

vgArray —>SetComponent (i,3

vgArray —>SetComponent (i,5

SJL010TD) 5

// Calculating the transpose of the velocity gradient tensor
double Jt[3][3];
vtkMath ::

Transpose3x3(J,Jt);

// Calculating the strain rate tensor

double S[3][3];

S[O][0] = 0.5%(J[O][O]+Jt[0][O]):
SIOI[1] = O0.5=(J[O][1]+Tt[O][1]);
S[O][2] = 0.5%(J[0][2]+Jt[0][2]);
S[1]1[0] 0.5«(J[1][0]+ Tt [1][0]);
S[1][1] O.5«(J[1][1]+Tt[1][1]);
S[11[2] 0.5=(CJ[LI[2]1+Te[11[2]);
S[2][0] 0.5«(J[2][0]+Jt[2][0]);
S[2][1] = 0.5«(J[2][1]+ Tt [2][1]);
S[2]1[2] = O0.5=(J[21[2]1+Jt[2][2]);

// Calculating the vorticity tensor
double O[3][3];

O[0][0] = 0.5x(J[0][0]—=Jt[O][O]);
O[0][1] = 0.5%(J[OJ[1]—=Je[O][1]);
o[o112] = 0.5=(J[0][2] =Jt[O][2]);
O[1][0] = 0.5%(J[1][0]—=Je[1][0]);
O[1][1] = 0.5x(J[LI[1]—=Je[1][1]);
o[1][2] 0.5«(J[1][2] = Je[1][2]);
O[2][0] 0.5%(J[2][0] —Je[2][0]);
o[2][1] 0.5%(J[2][1] = Je[2][1]);
O[2][2] = 0.5=(J[2][2] —Jt[2][2]);

/] Calculating vorticity vector
double vorticity [3];
vorticity [0] = 2=O[1][2];
vorticity [1] = 2«O[2][0];

vorticity [2]

2x0[0][1];

vorticityArray —>SetTuple3 (i, vorticity [0], vorticity[1], vorticity[2]);

// Combining the strain rate and vorticity tensors (S*2+0O"2)

double ==t

for (int

tfj] =
t[0][0]
t[O][1]
t[0][2]
t[1][0]
t[1][1]
t[1][2]
t[2][0]
t[2][1]
t[2][2]

i

= new double=[3];
=0 j <3 j++)

new double[3];

pow (S[O0][0],2)+pow(O[0][0],2);
pow (S[O][1],2)+pow(O[0][1],2);
pow(S[0][2],2)+pow(O[0][2],2);
pow (S[1][0],2)+pow(O[1][0].2);

= pow(S[L1][1],2)+pow(O[1][1],2)
= pow(S[1][2],2)+pow(O[1][2],2);
= pow(S[2][0],2)+pow(O[2][0],2) ;
= pow(S[2][1],2)+pow(O[2][1],2)

pow(S[2][2],2)+pow(0[2][2],2);

// Calculating the eigenvalues of S"2 + O"2

186

,2) 5
,0) 5
1)
,2) 5
,0) 5

1);
2);

172 double xeigenvalues = new double[3];

173 double xxeigenvectors = new doublex[3];

174 for(int j =0 ; j <3 ; j++)

175 eigenvectors[j] = new double[3];

176 vtkMath :: Jacobi(t,eigenvalues ,eigenvectors);
177

178 // Deleting pointers

179 for(int j =0 ; j <3 ; j++)

180 {

181 delete [] t[j];

182 delete [] eigenvectors[j];

183 }

184 delete [] t;

185 delete [] eigenvectors;

186

187 /] Setting the value of lambda_2 at the point
188 lambda2Array —>SetComponent (i ,0,eigenvalues[1]);
189

190 delete [] eigenvalues;

191 }

192

193 input —>GetPointData () —>AddArray (vgArray);

194 input —>GetPointData () —>AddArray (lambda2Array) ;

195 input —>GetPointData () —>AddArray (vorticityArray);

196

197 // Removing unrequired arrays

198 input —>GetPointData () —>RemoveArray (" xVelocity");

199 input —>GetPointData () —>RemoveArray ("yVelocity");

200 input —>GetPointData () —>RemoveArray (" zVelocity");

201

202 // Copying the input data and structure to the output
203 output —>CopyStructure (input);

204 output —>GetPointData () —>PassData(input —>GetPointData ());
205 output —>GetCellData ()—>PassData(input —>GetCellData());
206 output —>GetFieldData () —>PassData(input —>GetFieldData ());
207

208 return 1;

209 }
210
211 //

212 void vtkLambdaTwo:: PrintSelf (ostream& os, vtkIndent indent)
213 {

214 this —>Superclass :: PrintSelf (os,indent);

215}

B.4.8 vtkTimeDerivatives.cxx

#include "vtkTimeDerivatives.h"
#include <headers.h>

vtkCxxRevisionMacro (vtkTimeDerivatives , "$Revision: 1.70 $");
vtkStandardNewMacro (vtkTimeDerivatives) ;

® N R W~

/1

9 vtkTimeDerivatives :: vtkTimeDerivatives ()

11 this —>SetNumberOfInputPorts (1) ;
12 this —>SetNumberOfOutputPorts (1) ;
13 this —>TimeStep = 0;

14 this —>Velocityl ArrayName = "Velocityl";
15 this —>Velocity2ArrayName = "Velocity2";
16 this —>Velocity3ArrayName = "Velocity3";
17 this —>ForwardDifference = false;
18 this —>BackwardDifference = false;

187

31
2
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
8
69

w

=N

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

}

/1

int vtkTimeDerivatives :: FilllnputPortInformation (int,

{

}

/1

this —>CentralDifference = true;

vtkInformation =xinfo)

info—>Set(vtkAlgorithm :: INPUT_REQUIRED_DATA_TYPE() ,
info—>Set(vtkAlgorithm :: INPUT_IS_REPEATABLE(), 1);

"vtkDataSet");

return 1;

int vtkTimeDerivatives :: RequestData(

vtkInformation =vtkNotUsed(request),
vtkInformationVector =xxinputVector,
vtkInformationVector sxoutputVector)
info

/l get the objects

vtkInformation
vtkInformation
vtkInformation
vtkInformation

// get the 2
// inputl is
vtkDataSet
vtkDataSet

inputs
the
=inputl =
=input2 =

xinInfol =
«*inlnfo2 =
x*inInfo3 =
xoutlnfo =

and 1
data

ouptut
object

that
vtkDataSet ::
vtkDataSet ::

inputVector[0]—>GetInformationObject (0) ;
inputVector[0]—>GetInformationObject (1) ;
inputVector[0]—>GetInformationObject (2);
outputVector —>GetInformationObject (0) ;

we will be calculating the derivatives
SafeDownCast(inInfol —>Get(vtkDataObject :
SafeDownCast(inInfo2 —>Get(vtkDataObject :

for
:DATA_OBIJECT ())
:DATA_OBIJECT ())

>

’

vtkDataSet
vtkDataSet

/1
/1

Obtaining
Initializing
vtkSmartPointer <vtkDoubleArray > FirstDerArray =

s

#input3 =
xoutput =

vtkDataSet :: SafeDownCast(inInfo3 —>Get(vtkDataObject :
vtkDataSet :: SafeDownCast(outlnfo —>Get(vtkDataObject :

: DATA_OBIECT())
: DATA_OBJECT())

— = — —

’

time at each

variables

first derivative in

the array

the point
and naming

vtkSmartPointer <vtkDoubleArray >::New() ;

FirstDerArray —>SetNumberOfValues (inputl —>GetNumberOfPoints () *3) ;
FirstDerArray —>SetNumberOfComponents (3) ;

FirstDerArray —>SetNumberOfTuples (inputl —>GetNumberOfPoints ()) ;
FirstDerArray —>SetName (" TimelstDerivatives");

/1
/1

Obtaining
Initializing
vtkSmartPointer <vtkDoubleArray> SecondDerArray =

at each

variables

second derivative in time

the array

the point
and naming

vtkSmartPointer <vtkDoubleArray >::New () ;

SecondDerArray —>SetNumberOfValues (inputl —>GetNumberOfPoints () %3) ;
SecondDerArray —>SetNumberOfComponents (3) ;

SecondDerArray —>SetNumberOfTuples (inputl —>GetNumberOfPoints ()) ;
SecondDerArray —>SetName (" Time2ndDerivatives") ;

double ulDer,

u2Der, viDer, v2Der, wlDer, w2Der;

LETTTIEE i i i r i i i i i i i i i r i rrrrrrrrg

if (ForwardDifference)

{
/1

/1
/1

for (int i = 0 ;

{

// Compute
ulDer =

viDer =

inputl ———>time i
input2
input3 ———>time

i+1
1+2

>time

i < inputl —>GetNumberOfPoints () ; i++)

forward 1st derivatives (2nd—order)

(—3xinputl —>GetPointData () —>GetArray (Velocityl ArrayName)—>GetComponent(i ,0) +
4:xinput2 —>GetPointData () —>GetArray (Velocity2ArrayName)—>GetComponent (i ,0) —

input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent (i ,0)) /(2% TimeStep) ;
(=3xinputl —>GetPointData () —>GetArray (Velocityl ArrayName)—>GetComponent(i ,1) +
4xinput2 —>GetPointData ()—>GetArray (Velocity2ArrayName)—>GetComponent (i ,1) —

input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent(i,1))/(2+ TimeStep) ;

wlDer = (—3*xinputl —>GetPointData ()—>GetArray (Velocityl ArrayName)—>GetComponent (i ,2) +

4«input2 —>GetPointData () —>GetArray (Velocity2ArrayName)—>GetComponent (i ,2) —

188

87
88
89
90
91
92

93
94
95

96
97
98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144
145
146

147
148

}

input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent (i ,2)) /(2% TimeStep) ;

// Compute forward 2nd derivatives (lst—order)
u2Der = (inputl —>GetPointData ()—>GetArray (Velocityl ArrayName)—>GetComponent(i ,0) —
2«input2 —>GetPointData () —>GetArray (Velocity2ArrayName)—>GetComponent(i ,0) +
input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent (i ,0))/(pow(TimeStep
,2)) s
v2Der = (inputl —>GetPointData ()—>GetArray (Velocityl ArrayName)—>GetComponent(i,1) —
2#input2 —>GetPointData () —>GetArray (Velocity2ArrayName)—>GetComponent (i, 1) +
input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent(i,1))/(pow(TimeStep
,2))
w2Der = (inputl —>GetPointData ()—>GetArray (Velocityl ArrayName)—>GetComponent(i ,2) —
2«input2 —>GetPointData () —>GetArray (Velocity2ArrayName)—>GetComponent (i ,2) +
input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent (i ,2))/(pow(TimeStep

,2)) 5

FirstDerArray —>SetComponent (i, 0, ulDer);
FirstDerArray —>SetComponent(i, 1, vlDer);
FirstDerArray —>SetComponent (i, 2, wlDer);

SecondDerArray —>SetComponent (i, 0, u2Der);

SecondDerArray —>SetComponent(i, 1, v2Der);

SecondDerArray —>SetComponent(i, 2, w2Der);
}

/! adding computed arrays to inputl
inputl —>GetPointData () —>AddArray (FirstDerArray);
inputl —>GetPointData () —>AddArray (SecondDerArray) ;

// Copying the input data and structure to the output
output —>CopyStructure (inputl);

output —>GetPointData () —>PassData(inputl —>GetPointData ());
output —>GetCellData ()—>PassData(inputl —>GetCellData ());

LETTTEEET e i i r i i r i i i i i r i r i r i r i rrrrrrrrg

else if (BackwardDifference)

{

// inputl ———>time i
// input2 >time 1—1
// input3 ———>time i-2

for (int i = 0 ; i < inputl —>GetNumberOfPoints () ; i++)
{
// Compute backward 1st derivatives (2nd—order)
ulDer = (3xinputl —>GetPointData () —>GetArray (Velocityl ArrayName)—>GetComponent(i ,0) —
4xinput2 —>GetPointData () —>GetArray (Velocity2ArrayName)—>GetComponent (i ,0) +
input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent (i ,0)) /(2% TimeStep) ;
viDer = (3*inputl —>GetPointData ()—>GetArray (Velocityl ArrayName)—>GetComponent(i,1) —
4xinput2 —>GetPointData () —>GetArray (Velocity2ArrayName)—>GetComponent (i ,1) +
input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent(i,1)) /(2% TimeStep) ;
wlDer = (3xinputl —>GetPointData () —>GetArray (VelocitylArrayName)—>GetComponent (i ,2) —
4xinput2 —>GetPointData () —>GetArray (Velocity2ArrayName)—>GetComponent (i ,2) +
input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent(i,2))/(2+ TimeStep) ;

// Compute backward 2nd derivatives (lst—order)
u2Der = (inputl —>GetPointData () —>GetArray(Velocityl ArrayName)—>GetComponent(i ,0) —
2«input2 —>GetPointData () —>GetArray (Velocity2ArrayName)—>GetComponent (i ,0) +
input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent (i ,0))/(pow(TimeStep
,2))5
v2Der = (inputl —>GetPointData ()—>GetArray (VelocitylArrayName)—>GetComponent(i,1) —
2«input2 —>GetPointData () —>GetArray (Velocity2ArrayName)—>GetComponent (i, 1) +
input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent (i, 1)) /(pow(TimeStep
,2))5
w2Der = (inputl —>GetPointData ()—>GetArray (Velocityl ArrayName)—>GetComponent(i ,2) —
2«input2 —>GetPointData () —>GetArray (Velocity2ArrayName)—>GetComponent (i ,2) +

189

149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

2

192
193
194

195
196
197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

}

input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent (i ,2))/(pow(TimeStep

,2))5

FirstDerArray —>SetComponent(i, 0, ulDer);
FirstDerArray —>SetComponent (i, 1, vlDer);
FirstDerArray —>SetComponent (i, 2, wlDer);

SecondDerArray —>SetComponent (i, 0, u2Der);

SecondDerArray —>SetComponent(i, 1, v2Der);

SecondDerArray —>SetComponent (i, 2, w2Der);
}

// adding computed arrays to inputl
inputl —>GetPointData () —>AddArray (FirstDerArray);
inputl —>GetPointData () —>AddArray (SecondDerArray) ;

/! Copying the input data and structure to the output
output —>CopyStructure (inputl);

output —>GetPointData () —>PassData(inputl —>GetPointData ());
output —>GetCellData ()—>PassData(inputl —>GetCellData ());

[T EEEr i i i rrrrrr

else if (CentralDifference)

{

// inputl ———>time i
/] input2 ———>time i+l
// input3 ———>time i-—1

for (int i = 0 ; i < inputl —>GetNumberOfPoints() ; i++)

{

// Compute central 1st derivatives (2nd—order)
ulDer = (input2 —>GetPointData ()—>GetArray (Velocity2ArrayName)—>GetComponent (i ,0) —

input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent (i ,0)) /(2% TimeStep) ;
viDer = (input2 —>GetPointData ()—>GetArray (Velocity2ArrayName)—>GetComponent(i,1) —

input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent(i,1)) /(2= TimeStep) ;
wlDer = (input2 —>GetPointData ()—>GetArray (Velocity2ArrayName)—>GetComponent(i ,2) —

input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent(i,2))/(2+ TimeStep) ;

// Compute central 2nd derivatives (2nd—order)
u2Der = (input2 —>GetPointData ()—>GetArray(Velocity2ArrayName)—>GetComponent(i ,0) —
2«inputl —>GetPointData () —>GetArray (Velocityl ArrayName)—>GetComponent(i ,0) +
input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent (i ,0))/(pow(TimeStep
,2))5
v2Der = (input2 —>GetPointData ()—>GetArray (Velocity2ArrayName)—>GetComponent(i,1) —
2«inputl —>GetPointData () —>GetArray (Velocityl ArrayName)—>GetComponent(i ,1) +
input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent (i, 1)) /(pow(TimeStep
,2)) s
w2Der = (input2 —>GetPointData ()—>GetArray (Velocity2ArrayName)—>GetComponent(i ,2) —
2«inputl —>GetPointData () —>GetArray (Velocityl ArrayName)—>GetComponent (i ,2) +
input3 —>GetPointData () —>GetArray (Velocity3ArrayName)—>GetComponent (i ,2))/(pow(TimeStep
,2)) s

FirstDerArray —>SetComponent (i, 0, ulDer);
FirstDerArray —>SetComponent (i, 1, vlDer);
FirstDerArray —>SetComponent (i, 2, wlDer);

SecondDerArray —>SetComponent (i, 0, u2Der);
SecondDerArray —>SetComponent(i, 1, v2Der);
SecondDerArray —>SetComponent (i, 2, w2Der);

}

// adding computed arrays to inputl

inputl —>GetPointData () —>AddArray (FirstDerArray);
inputl —>GetPointData () —>AddArray (SecondDerArray) ;

// Copying the input data and structure to the output

190

213 output —>CopyStructure (inputl);

214 output —>GetPointData () —>PassData (inputl —>GetPointData ());
215 output —>GetCellData ()—>PassData(inputl —>GetCellData ());
216 output —>GetFieldData () —>PassData(inputl —>GetFieldData ());
217 }

218

219 return 1;

220 }

221

222 //

223 void vtkTimeDerivatives:: PrintSelf (ostream& os, vtkIndent indent)
224 |

225 this —>Superclass :: PrintSelf (os,indent);

226 }

191

