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ABSTRACT

Elastic Energy Absorption via Compliant Corrugations

Sean S. Tolman
Department of Mechanical Engineering, BYU

Doctor of Philosophy

Elastic absorption of kinetic energy and distribution of impact forces are required in many
applications. This may be achieved through the use of compliant corrugations. An innovative
padding concept is investigated for such applications. Also, recent attention given to the potential
for using origami in engineering applications may provide new corrugation configurations that are
advantageous for energy absorption and force distribution. This work explores three areas related
to these concepts.

First, the parameters of a compliant, corrugated padding concept are investigated using Fi-
nite Element Analyses (FEA) and physical testing. The shape of the corrugation cross section is
explored as well as the wavelength and amplitude by employing a full factorial design of experi-
ments. FEA results are used to choose designs for prototyping and physical testing. The results
of the physical testing were consistent with the FEA predictions although the FEA tended to un-
derestimate the peak pressure compared to the physical tests. A performance metric is proposed
to compare different padding configurations. The concept shows promise for sports padding ap-
plications. It may allow for designs which are smaller, more lightweight, and move better with an
athlete than current technologies yet still provide the necessary protective functions.

Second, the elastic energy absorbing properties of a particular origami folding pattern, the
Miura-ori, is investigated. Analytical models for the kinematics and force-deflection of a unit cell
based on two different modes of elastic energy absorption are derived. The models are used to
explore the effects of the key geometrical parameters of the tessellation. Physical prototypes are
compared to the analytical models.

Third, a three-stage strategy is presented for selecting materials for origami-inspired corru-
gations that can deform to achieve a desired motion without yielding, absorb elastic strain energy,
and be light weight or cost effective. Two material indices are derived to meet these require-
ments based on compliant mechanism theory. Using Finite element analysis, it is shown that the
properties of Miura-ori pattern has advantages for energy absorption and force distribution when
compared to a triangular wave corrugation. While the focus of these studies is the Miura-ori tessel-
lation, the methods developed can be applied to other tessellated patterns used in energy absorbing
or force distribution applications.

Keywords: energy absorption, compliant mechanism, origami, corrugation, material selection,
Miura-ori



ACKNOWLEDGMENTS

I would like to acknowledge the many organizations and individuals who have supported

and contributed to this research. Funding was provided by the National Science Foundation and the

Air Force Office of Scientific Research under NSF Grant No. 1240417 and in part by XO Athletics.

I have greatly appreciated having access to the world-class resources and facilities pro-

vided and maintained by Brigham Young University and the Ira A. Fulton College of Engineering

and Technology, particularly the Fulton Supercomputing Lab. Also, the support of Utah Valley

University was integral to the successful completion of this research.

One of the most rewarding aspects of this work has been the interactions with so many ex-

cellent students and faculty at BYU. Amanda Beatty, Ryan Faber and Nathan Pehrson contributed

their expertise in prototype fabrication and testing. I benefited greatly from collaborations during

a Summer “Burst Project” with Terry Batemen, Jessica Morgan, Gary Ellingson, Greg Belnap and

Mary Wilson. In addition, a class project supervised by David Fullwood and begun with Isaac

Delimont, Andrew Marker, Bryce Edmondson and Brian Olsen resulted in what is now Chapter 4

of this dissertation. Matt Seeley deserves a special thanks for his patience in allowing us access to

the Biomechanics Research Lab.

On a personal note, I would like to thank Anton Bowden for giving me the opportunity to

prove myself as a graduate student and for starting me on the road to the successful completion of

this research and the achievement of my degree. Also, I have sincerely appreciated the mentorship

of Larry Howell and his broader perspective of the importance of academic pursuits not just for

personal growth, but for the positive impact they have on the world.

I, of course, owe a great debt of gratitude to my family. I am thankful for the patience and

understanding of my wife, Hillary, and my children, Toni, Opal and Zane, during the many years

of late-night study sessions. I also thank my parents, Stephen and Christine, for their enduring

support and example of stubborn stick-to-itiveness.



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2 Parameter characterization for elastic energy absorption of an embedded
corrugated wave padding concept with sports applications . . . . . . . . . 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Corrugation Shape Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Sine Wave Parameter Analysis . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Physical Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 2D Finite Element Analysis of Corrugation Shape . . . . . . . . . . . . . . 10
2.3.2 3D Finite Element Analysis of Sine Wave Parameters . . . . . . . . . . . . 10
2.3.3 Physical Drop Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 3 Elastic Energy Absorption of Origami-based Corrugations . . . . . . . . 20
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Kinematic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Kinetic Model from Virtual Work . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 3D Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Physical Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Model Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Prototype Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.3 Parameter Effects on Force . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.4 Total Tessellation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Chapter 4 Material Selection for Elastic Energy Absorption in Origami-Inspired
Compliant Corrugations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Material Indices for Energy Absorption . . . . . . . . . . . . . . . . . . . 45

iv



4.2.2 Finite Element Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Ashby Plots for Material Selection . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Detailed Local Material Selection and Design . . . . . . . . . . . . . . . . 52
4.3.3 Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Suggested Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Appendix A ANSYS Batch Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Appendix B Crash Pad Project Final report . . . . . . . . . . . . . . . . . . . . . . . . 83

v



LIST OF TABLES

2.1 DOE for 3D FEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Drop test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Perforation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vi



LIST OF FIGURES

2.1 Corrugated padding concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Shapes for 2D FEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Prototype testing apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 2D shape comparison results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 3D FEA Energy surface plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Acceleration pulse comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 3D FEA dynamic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 MidMid deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 LoHi deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.10 Perforated sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.11 Drop test and FEA Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Example of Miura-ori tessellation folded in paper. . . . . . . . . . . . . . . . . . . 21
3.2 Miura-ori unit cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Spherical geometry notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Description of paramaters used to derive θ and LX . . . . . . . . . . . . . . . . . . 25
3.5 PRBM of the hinge and membrane concepts. . . . . . . . . . . . . . . . . . . . . 26
3.6 Miura-ori prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Prototype test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8 Poisson’s ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.9 Force-deflection comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.10 Force-deflection data from prototype tests . . . . . . . . . . . . . . . . . . . . . . 33
3.11 Hinge force as a function of percent deflection . . . . . . . . . . . . . . . . . . . . 35
3.12 Membrane force as a function of percent deflection . . . . . . . . . . . . . . . . . 35
3.13 Surface plots for hinge model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.14 Surface plots for membrane model . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.15 An array of Miura-ori unit cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Example of Miura-ori tessellation folded in paper. . . . . . . . . . . . . . . . . . . 42
4.2 FEA model of a five-by-ten Miura-ori tessellation . . . . . . . . . . . . . . . . . . 48
4.3 FEA model of a triangular wave corrugation. . . . . . . . . . . . . . . . . . . . . 48
4.4 Dimensionsal paramaters Miura-ori unit cell. . . . . . . . . . . . . . . . . . . . . 49
4.5 Ashby plot of specific yield strength vs. specific modulus. . . . . . . . . . . . . . 51
4.6 Ashby plot of specific yield strength vs. specific modulus with cost. . . . . . . . . 52
4.7 Three-dimensional displacement of the top vertices. . . . . . . . . . . . . . . . . . 53
4.8 Vertical displacement of top vertices . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.9 Reaction force on central vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.10 Absorbed energy as a function of vertical displacement . . . . . . . . . . . . . . . 55
4.11 Absorbed energy for a given force as a function of stiffness ratio. . . . . . . . . . . 55
4.12 Reaction force ratio as a function of stiffness ratio. . . . . . . . . . . . . . . . . . 57
4.13 Material selection plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



CHAPTER 1. INTRODUCTION

1.1 Motivation

Engineers often face the challenge of finding ways to manage and absorb kinetic energy.

This occurs in applications such as protecting people from impacts in vehicle collisions, guarding

athletes in sporting activities, defending soldiers during military operations, mitigating damage

to equipment during operation, or safely transporting products. Factors that often determine the

optimum design for a given application are the size, weight, and toughness (i.e. ability to ab-

sorb energy) of the final design. Also, it may be important in certain applications that the energy

absorbing device be reusable. It would be impractical for a football player to have to replace

his helmet after every tackle or impact. Innovations that provide reusable and efficient (in terms

of size and/or weight) energy absorbing capabilities would be valuable to engineers facing such

design challenges.

Corrugated materials have long been important for many structural engineering applica-

tions. A thin plate of galvanized steel can be made to support the load of snow on a roof with-

out increasing its mass by simply forming it into a wave shape. Corrugations may also prove to

be valuable as reusable energy absorbing materials if the corrugation is allowed to deflect elas-

tically when impacted, thereby absorbing energy. Additionally, other corrugation configurations

inspired by origami designs may provide even more energy absorbing potential than traditional

one-dimensional corrugations. This research investigates the potential for creating innovative and

efficient energy absorbing methods through the elastic deformation of compliant corrugations.

1.2 Objectives

The main objective of this research is to investigate elastic energy absorption via compliant

corrugations. The corrugations that are studied are a sine-wave corrugation embedded in foam

1



and double corrugations related to the Miura-ori tessellation. The three research objectives are as

follows:

1. Use dynamic, three dimensional, finite element analysis to understand the corrugation pa-

rameters of the corrugated padding concept that are well-suited for energy absorption and

verify the analysis through the testing of physical prototypes.

2. Develop an analytical model based on spherical mechanism kinematics and the pseudo-rigid-

body approach [1] to predict the motion and energy absorption characteristics for the Miura-

ori unit cell.

3. Investigate material-related issues pertaining to the design of origami-based compliant cor-

rugations for energy absorbing applications.

1.3 Overview

The research for the first objective is presented in Chapter 2. It is a study of an innovative

padding design which consists of a compliant, corrugated sheet that is embedded in an elastic poly-

mer foam. The concept was developed by two BYU Capstone teams, Cougar Armor (2009-2010)

and Hephaestus Creations (2010-2011), and sponsored by XO Athletics. The main question that is

answered is how the parameters of the cross-sectional wave shape of the corrugation (its period and

amplitude) affect the energy absorbing properties of the padding. To answer this question, a com-

bination of two- and three-dimensional quasi-static and dynamic Finite Element Analysis (FEA)

together with physical testing was used. This manuscript was coauthored by Amanda Beatty, An-

ton Bowden and Larry Howell and is currently under review in the Journal of Sports Engineering

and Technology.

An idea motivated by the research of the first objective was to study how other, more com-

plex, corrugation configurations may be used for energy absorption. A specific area of origami

design focuses on creating two- or three-dimensional repeating geometric patterns called tessel-

lations. One well-known tessellation, the Miura-ori, is created when paper is folded to create a

repeating pattern of parallelograms. The result is a corrugation comprised of two mutually or-

thogonal zig-zag waves. When a traditional, one-dimensional corrugation is subjected to a load
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normal to the corrugated plane, the deflection of the wave is limited to the peaks where the force

is applied. However, the Miura-ori forms an array of mechanisms which allow for the transfer of

force and energy across the corrugation. This property may be advantageous for energy absorbing

applications.

Presented in Chapter 3 are the results of the second research objective. It focuses on under-

standing how elastic energy is stored in a Miura-ori-based mechanism and what its force-deflection

characteristics are. Kinematic and kinetic models were developed for a single unit cell based on

two modes of energy storage. In one mode, energy is stored in the folds or hinges of the corru-

gation. In another mode, energy is stored in an elastic membrane which is stretched through the

expanding motion of the corrugation. The models are used to explore the energy absorption effects

of the geometric properties of the Miura-ori. They are also used to analyze data collected from the

testing of physical prototypes. These models can serve as valuable design tools and their deriva-

tion as a useful approach for analyzing similar origami-inspired, compliant corrugations. This

manuscript was coauthored by Spencer Magleby and Larry Howell.

The third objective, presented in Chapter 4, is the investigation of material-related issues

pertaining to the design of origami-based compliant corrugations. It presents the analysis and

development of a method for material selection based on key material properties relating to the

mechanical performance of these corrugations. The method is a three-step process that begins

with screening materials based on elastic strain and modulus values, which leads to the selection

of a suitable subclass of material for compliant-mechanism-type applications. Second, the Ashby

method [2] is used to provide an efficient means for refining the choice of material further by

optimizing particular properties of the final component (such as mass, cost, resilience) within

the applied engineering constraints. Third, specific stiffness characteristics are chosen to deliver

improved force distribution and energy absorption properties for a peak desired force transfer.

These characteristics can be achieved through a combination of detailed geometry and/or local

material choice and are investigated in this study through FEA. The development of this method

will be important in the transition of origami-inspired design from paper to other materials. This

manuscript was coauthored by Isaac Delimont, David Fullwood, and Larry Howell and is currently

under review in Smart Materials and Structures.
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CHAPTER 2. PARAMETER CHARACTERIZATION FOR ELASTIC ENERGY AB-
SORPTION OF AN EMBEDDED CORRUGATED WAVE PADDING CONCEPT WITH
SPORTS APPLICATIONS

2.1 Introduction

Suffering an injury is a major risk associated with participating in all levels of sports activ-

ities ranging from recreational participants up to elite professional athletes. The use of protective

equipment such as padding has been shown to reduce some injuries to athletes [3–12]. Many or-

ganized sports have rules that require participants to use protective equipment such as helmets and

padding in hopes of reducing the risk of certain injuries. Additionally, some athletes choose to

wear discretionary protective equipment to provide further protection.

However, some athletes may prefer not to use protective equipment if they feel it will neg-

atively affect their level of athletic performance. This was demonstrated in 2013 by the reactions

of some professional football players to the decision of the National Football League in the United

States to require thigh and knee pads for all players. One professional player was quoted as saying,

“I don’t want that at all. I don’t like having anything restricting my movement in my legs” [13].

The main purpose of athletic protective padding is to absorb energy and distribute forces

from impacts to the players. It is also desirable that the padding not inhibit the movement or

negatively affect the performance of the athletes. Therefore, there continues to be a need to explore,

evaluate and develop potential new designs for sports protective padding which are smaller, more

lightweight, and move better with an athlete, yet still provide the necessary protective functions.

Corrugated plates are a familiar building and structural material that are used in numerous

engineering applications ranging from decking and roofing to sandwich plate core structures. They

are easy to form, cost-efficient and have a higher strength-to-weight ratio than flat plates [14].

Because of the widespread use of corrugated plates in engineering, much effort has been applied to

understanding and modeling their characteristics. Shimansky and Lele [15] developed an analytical
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model for the deformation of a sinusoidally corrugated plate subjected to a transverse load (in

the plane of the plate and perpendicular to the normal of the cross section of the corrugation).

Their model assumed small deflections. He et al. [16] analyzed corrugated-core, honeycomb-core

and X-core using a semi-analytical method that was based on linear elastic, small deformation

theory. Gilchrist [17] performed a large deformation finite element analysis of corrugated paper

board. Many researchers proposed modeling corrugated plates and sandwich boards as equivalent

orthotropic plates. The material properties for the orthotropic plate were determined by analyzing

the corrugate analytically or numerically typically using finite elements [14, 18–28]. An overview

of some of the most recent work done in energy absorbing properties of corrugated core and foam-

filled corrugated core can be found in Zhang [29]. Most of the studies focus on the compressive

strength and energy absorption mainly through plastic deformation of the corrugation. Little work

has been done to study the compliant or elastic energy absorbing properties of a corrugated plate

undergoing large deflection.

Elastic foam is a common material used for energy absorption in sports applications. The

energy absorption of foam combined with other materials has been studied in the context of sports

padding often with a particular emphasis on helmets and preventing head injuries [7, 10, 30, 31].

The analysis of foams using the finite element method can be challenging for dynamic impact

analyses but is a valuable research and design tool for understanding such events [32, 33].

An innovative padding concept incorporating a compliant corrugation embedded in an elas-

tic foam (Figure 2.1) holds potential interest for energy absorption and force distribution applica-

tions such as in athletic protective equipment. This is a patent-pending design developed with XO

Athletics through the BYU Capstone senior design program. The ability of the corrugation to de-

flect and elastically absorb energy, combined with lateral energy dispersion through a surrounding

foam matrix presents an intriguing engineering construct. The purpose of this work was to utilize

FEA and physical prototype testing to explore how specific design parameters of the corrugated

padding concept affect energy absorption and force distribution capability.
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Figure 2.1: Concept for compliant corrugation embedded in foam.

2.2 Method

2.2.1 Corrugation Shape Analysis

The first aspect considered was how the shape of the corrugation affects its compliance

and energy absorbing properties. A two-dimensional Finite Element Analysis (FEA) was per-

formed for four different shapes. The beam shapes were designed to have equivalent amplitude

and wavelength as if they were part of a repeating, corrugated wave. The shapes compared were:

a sinusoidal curve, a simple arc, a triangular wave and a 3rd-order polynomial curve. The poly-

nomial curve was designed to match the deflected shape of a cantilever beam with an end load as

calculated using an elliptic integral solution. The shapes are shown in Figure 2.2. Beam elements

were used and assigned the material properties of polycarbonate. One end of the wave was fixed

and a vertical deflection load applied to the free end.

2.2.2 Sine Wave Parameter Analysis

The sinusoidal curve was used for further study to explore the effects of the corrugation

amplitude and wavelength on its energy absorption and force distribution capability. A full factorial

design of experiments (DOE) was employed using three levels for the two parameters, resulting

in nine different designs for analysis. The DOE and corrugation parameters are shown in Table

2.1 where the configurations are designated by the relative wavelength and height (e.g. HiLo

represents a high length or wavelength and a low corrugation height or amplitude). These designs
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Figure 2.2: Corrugation shapes for 2D finite element analysis.

were evaluated using both quasi-static and dynamic three-dimensional FEA in LS-DYNA [34].

The two analyses predicted the padding response for a given deflection (quasi-static) and for a

given energy (dynamic). The ranges for each parameter were chosen based on the materials and

dimensions consistent with sports padding applications.

3D solid models of the geometry were created using Autodesk Inventor [35] and meshed

using solid hexahedral elements in LS-PrePost [36]. The corrugations were modeled as sine waves

with amplitude and wavelengths as defined in Table 2.1. Quarter symmetry was used to simplify

the analysis. The material model used for the corrugation was MAT ELASTIC (MAT 001) which

is an isotropic, hypoelastic material. For the foam, MAT LOW DENSITY FOAM (MAT 057)

was used. This material model allows the user to define the material stiffness by entering a custom

loading curve. The stress-strain behavior of the polyurethane foam was quasi-statically tested in

compression to collect data for the loading curve. Symmetry boundary conditions were applied

to two adjacent sides of the model and the nodes on the bottom face were constrained vertically.

The nodes on the top and the other two sides were unconstrained. For the quasi-static analyses,
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each model was compressed to 40% of its total thickness using a spherical, rigid wall. For the

dynamic tests, a solid sphere was modeled and meshed in LS-PrePost and constrained to be rigid

using MAT RIGID (MAT 020). The size and velocity of the impacting sphere were chosen to

simulate the parameters of a physical drop test that was designed to compare corrugated padding

configurations. The parameters of the test are presented in the next section.

2.2.3 Physical Testing

The FEA results were used to guide the selection of three designs for prototyping and

physical testing. These were the LoLo, LoMid and MidMid configurations. The corrugation in the

padding was made by compression-molding 0.79 mm (1/32 in) thick polycarbonate. The molds

were created by machining the corrugated shapes in aluminum using wire EDM. The mold was

heated to 148-154 C (300-310 F), just above the glass transition temperature of polycarbonate. A

101 x 101 mm (4 x 4 in) piece of polycarbonate was placed between the two heated sides of the

Table 2.1: DOE for corrugation parameter study.

 

Table 1 - DOE for corrugation parameter study 

 

  Corrugation Height (2 x Amplitude) 

  High 

12.7 mm  (1/2 in) 

Mid 

6.35 mm (1/4 in) 

Low 

3.18 mm (1/8 in) 
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High 

12.7 mm 

(1/2 in)    

Mid 

6.35 mm 

(1/4 in)    

Low 

3.18 mm 

(1/8 in)    

Sine 

Arc 

Triangle 

Polynomial 

Fig. 2 - Corrugation shapes for analysis 
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LoMid LoLo LoHi 
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Figure 2.3: Apparatus for controlled drop testing.

mold, and the molds were pressed together with a pressure of 138 KPa (20 psi). The mold was left

in this position until it was cooled so annealing would occur and remove the internal stresses. The

foam surrounding the corrugation was a 192 kg/m (12 lb/ft) free rise density polyurethane foam.

It is a two-part liquid foam that was hand mixed, then poured on the corrugated polycarbonate

allowing 3.2 mm (0.125 in) of foam above and below the corrugation peaks. It then was left to

solidify for at least an hour.

Controlled drop tests were conducted using the apparatus, shown in Figure 2.3, to drop

a steel ball onto the padding prototypes. The test setup and parameters were based on previous

tests done by Francisco et al. [37] which were designed to simulate low-velocity, soccer shin guard

impacts. A 2 kg (4.5 lb) steel ball was dropped from a height of 50 cm (19.5 in) above the bottom of

the test specimen. The resultant energy applied and absorbed by the padding was 9.7 J. A pressure

sensitive film (Fujifilm) was placed beneath the padding and recorded the peak force and force

distribution below the padding.
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2.3 Results

2.3.1 2D Finite Element Analysis of Corrugation Shape

The 2D FEA of the four different corrugation shapes was used to compare the vertical force

at the free end of each beam. The force-deflection characteristic of the shape is a key indicator of

its energy absorption capability. As can be seen in Figure 2.4, the shape of the corrugation does

not significantly affect its force-deflection characteristics.

2.3.2 3D Finite Element Analysis of Sine Wave Parameters

Both quasi-static and dynamic analyses were run on the 3D models to understand how the

corrugation amplitude and wavelength affect the ability of the padding to absorb energy and dis-

tribute impact loads. Using the quasi-static analysis, the force-displacement data were integrated

to get the work energy involved in deforming the foam and corrugation. Rather than comparing the

total energy absorbed by each configuration, the energy absorbed for a given force in each model is

compared. The energy was calculated by integrating the force deflection curve up to a force of 2.1

kN for each configuration. Also, since the weight of the padding is an important factor for sports

applications, the energy was divided by the mass of the padding to show the specific energy or en-

ergy absorbed per unit mass of each model. This provides a measure of the energy-absorbing mass

efficiency of the padding models and a means for comparing the configurations to understand the

effects of the wave parameters. These data are presented in Figure 2.5 as a surface plot to visualize

the corrugation parameter’s effects on the normalized energy for a given force. It can be seen that

generally, the normalized energy absorbed increases with the wavelength of the corrugation.

From the dynamic FEA, the acceleration pulse experienced by the sphere and the force dis-

tribution transferred through the padding were compared for each of the configurations defined in

the DOE (Table 2.1). For managing impacts, it is desirable that the padding absorbs impact energy

over a longer time duration and produces a smaller peak acceleration. Lower acceleration results

in lower impact forces transferred to the athlete through the padding. Figure 2.6 shows a compari-

son of the acceleration pulses for each of the corrugation configurations based on the dynamic 3D

FEA. The high amplitude configurations have a longer pulse and lower peak acceleration than the

10



Figure 2.4: Results of 2D FEA showing beam end load for corrugation shapes.

Figure 2.5: Energy for a given force normalized by mass based on quasi-static 3D FEA.

configurations with lower amplitudes. Also, reducing the wavelength of the corrugation tends to

decrease the calculated peak acceleration.

The force distribution can be visualized by creating fringe or contour plots of the stress

distribution in the bottom surface elements of the padding models. The force distributions of all

nine configurations are shown in Figure 2.7. As with the acceleration, the configurations with the

lowest peak stress and a more distributed stress are those with higher amplitude corrugation.

The deformation of the corrugation generally occurred as bending in the direction of the

corrugation as shown in Figure 2.8. However, the LoHi and MidHi configurations exhibited a
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Figure 2.6: Acceleration pulse comparison of each corrugation configuration based on dynamic
3D FEA.

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

approximated by a cylindrical volume whose diameter is the force width, W, and whose length is the sample 

thickness,  , as 

       
 

 
                                                                                                      

For the purpose of a metric for comparing samples, the constant,  
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The metric is made dimensionless by dividing the    value of each sample by that of the foam-only sample as 
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A value of      would mean the corrugated sample has a combined mass, peak pressure and volume lower than 

foam alone which would indicate a more effective padding. 

   

   

   

Fig. 7- Contour plots of stress distribution in bottom surface elements. 
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MidHi 

HiMid 

LoMid 

MidMid 

HiLo 
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MidLo 

Figure 2.7: Contour plots of stress distribution in bottom surface elements based on dynamic 3D
FEA.
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Figure 2.8: Finite Element prediction of the maximum deformation during impact to the MidMid
configuration.

Figure 2.9: Finite Element prediction of the maximum deformation of LoHi configuration showing
buckling of corrugation.

buckling mode of deformation, as shown in Figure 2.9. These two shapes also had the lowest peak

accelerations.

2.3.3 Physical Drop Tests

The results from the drop tests are summarized in Table 2.2. The force width, W, refers to

the size of the mark recorded by the pressure film and gives an indication of the force distributed

through the padding. According to experiments conducted by Desmoulin and Anderson [38], the

pressure distributions measured would likely correlate to the size of a bruise an athlete might

receive from an impact. The value reported is the average of the widest and narrowest dimensions

of the marks for two tests.
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To compare the samples, a performance metric is proposed that accounts for the size, mass

and force-distributing effectiveness of the padding samples. The metric is related to the peak

pressure, P, the area density, ρA, and the impacted volume of the sample. The area density of

the padding sample is the sample mass divided by the area of the padding normal to the loading

direction. The impacted volume takes into account the padding thickness and the force transferred

through the padding represented by the force width, W . The impacted volume, VI , is approximated

by a cylindrical volume whose diameter is the force width, W , and whose length is the sample

thickness, t, as

VI =
π

4
W 2t (2.1)

For the purpose of a metric for comparing samples, the constant, π/4, can be neglected. The

performance metric, MP, is then

MP = ρAPtW 2 (2.2)

The metric is made dimensionless by dividing the MP value of each sample by that of the foam-only

sample as

MR =
(MP)sample

(MP) f oam
(2.3)

Table 2.2: Results from drop tests.

has a     value of less than one indicating it is also more effective than foam alone.  Buckling was observed in the 

drop test onto the LoMid sample which resulted in permanent deformation in the polycarbonate.   

For one set of samples, after initial drop testing, an array of holes was cut into the samples (see Fig. 11) using a 

laser cutter and the samples were re-tested. The results of these before and after tests are shown in Table 3.  It can be 

observed that perforating the samples reduced the weight by an average of 22% and increased the peak pressure by 

an average of 19%.  It should be noted that laser cutting the holes may have affected the material properties of the 

polycarbonate due to the high heat of the laser.  In all the laser perforated samples, some permanent deformation 

occurred.  

The results of the drop tests were also compared to the dynamic FEA.  Fig. 10 shows the similarity of the 

pressure distribution for the MidMid and the LoMid configurations.  While the overall pressure patterns of the 

results are similar, the FEA underestimated the peak pressure by a percent difference of about 30%.  This difference 

may be due to effects associated with material nonlinearity in the foam constitutive behavior as well as geometric 

nonlinearities due to the interfacial conditions between the foam and the corrugate [35].  Also, the use of pressure 

sensitive film to record peak pressure may account for some inaccuracy due to variation and subjectivity in the 

manual color-to-pressure mapping. 

 

 

 

Table 2 - Results from drop tests. 

 

Corrugation  

Mass (g) 
 

Sample Thickness Total 
(t) / Corrugate (mm) 

Force Width, 
W  
(mm) 

Peak   
Pressure, P 
(MPa) 

Performance 
Metric,    

LoLo 34.8 9.9  / 3.4 17.6 45 0.47 

LoMid 43.7 12.4 / 5.4 25.6 25 1.09 

MidMid 37.7 12.1 / 4.6 17.8 47 0.81 

Foam only 31.3 12.7 19.1 55 1.00 
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Figure 2.10: Example of holes cut in perforated samples.

A value of MR < 1 would mean the corrugated sample has a combined mass, peak pressure

and volume lower than foam alone which would indicate a more effective padding.

All three corrugation samples transferred lower peak pressures than the foam alone. Of

the three corrugated samples, the LoMid configuration transferred the lowest amount of pressure

to the pressure film, and the MidMid configuration transferred the highest. By comparing the MR

values, we can see that although the LoMid configuration transferred the lowest peak pressure, its

volume and mass put it at a disadvantage to the LoLo sample which is a more effective padding

in terms of mass and volume compared to foam alone. The MidMid sample also has a MR value

of less than one indicating it is also more effective than foam alone. Buckling was observed in the

drop test onto the LoMid sample which resulted in permanent deformation in the polycarbonate.

For one set of samples, after initial drop testing, an array of holes was cut into the samples

(see Figure 2.10 ) using a laser cutter and the samples were re-tested. The results of these before

and after tests are shown in Table 2.3. It can be observed that perforating the samples reduced the

weight by an average of 22% and increased the peak pressure by an average of 19%. It should be

noted that laser cutting the holes may have affected the material properties of the polycarbonate

due to the high heat of the laser. In all the laser perforated samples, some permanent deformation

occurred.

The results of the drop tests were also compared to the dynamic FEA. Figure 2.11 shows

the similarity of the pressure distribution for the MidMid and the LoMid configurations. While

the overall pressure patterns of the results are similar, the FEA underestimated the peak pressure
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were equal (ie. HiHi, MidMid, and LoLo.)  In both analyses, the HiHi configuration had the best performance.   

The data suggest that for a given application, the goal would be to maximize the wave height within the design 

constraints, and then choose a wavelength such that the peak-to-peak height and length are equal.  The performance 

metric developed (Equation [2]) provides a useful method for  comparing  basic data from impact tests.  The metric 

takes into account the parameters of  padding samples that are most important to its performance in sporting 

applications.  Specifically, the impacted area can be thought of as relating to the size of a bruise that an athlete might 

develop as the result of an impact.  Also, minimizing the thickness and mass of athletic padding is important to 

athletes and affects their decision on whether or not to use certain types of padding.  The data required to implement 

this metric can be collected through simple tests requiring little to no specialized instrumentation.  The metric can be 

employed to compare samples to a control design, such as a foam only sample. 

Through the use of the performance metric presented in this study, the LoLo sample was the most effective 

padding sample compared to foam alone.  This means that for a given weight and padding thickness, the LoLo 

corrugated padding prototype will provide better protection from impact forces than foam alone.  Stated another 

way, to achieve the same amount of impact protection, a foam only sample would need to be much thicker.  Also, 

Fig. 10 - Comparison of drop test and FEA pressure distributions, Top:  MidMid, Bottom:  LoMid. 
Figure 2.11: Comparison of drop test and FEA pressure distributions, Top: MidMid, Bottom:
LoMid.

by a percent difference of about 30%. This difference may be due to effects associated with ma-

terial nonlinearity in the foam constitutive behavior as well as geometric nonlinearities due to the

interfacial conditions between the foam and the corrugate [39]. Also, the FEA did not account for

material failure or damage. In addition, the use of pressure sensitive film to record peak pressure

may account for some inaccuracy due to variation and subjectivity in the manual color-to-pressure

mapping.

Table 2.3: Comparison of padding samples before and after perforation.

4  DISCUSSION 

 

A key to the corrugated padding concept is not just the use of a corrugation to stiffen the padding, but also to enable 

elastic deflection of the corrugation to absorb energy from impacts.  The first factor to consider in designing a 

corrugation is the basic shape of the corrugated wave.  Four shapes were tested in this study using a configuration of 

equal peak-to-peak height and length.  The wave shape of the corrugation did not significantly alter the force of 

deflection.  This result would tend to indicate that many wave shapes could be used in a corrugation to achieve 

equivalent energy absorption through compliance or elastic deflection.   

However, this applies to the compliance along the corrugation only.  The bending of the corrugation 

perpendicular to the cross section would also affect the overall elastic strain energy stored in the corrugation.  

Bending stiffness in this direction would be dependent on the area moment of inertia (MOI) of the corrugation cross 

section in which case the arc wave (Fig. 2) would have the highest MOI and the triangle wave would have the 

lowest.  

For a given corrugation wave shape, the properties of the wave (its wavelength and amplitude) will also affect 

its ability to absorb energy.  From the quasi-static analyses, we learn that the energy absorbed per unit mass tends to 

be greatest for corrugations with a longer wavelength and higher amplitude.  The dynamic analysis results show the 

configurations with a desirable acceleration pulse tended to be the ones with a higher amplitude wave.  The peaks of 

the acceleration pulses for each configuration tended to be grouped in time according to the amplitude level.  At 

each level, the lowest peak acceleration was experienced by the corrugation where the wavelength and amplitude  

 

Table 3 - Comparison of padding samples before and after perforation. 

 

Corrugation 

Weight (g) Peak Pressure (MPa) Force Width (mm) 

Before After Change Before After %Change Before After %Change 

LoLo 21.5 16.75 - 22% 65 75 + 15% 25 34 + 36% 

LoMid 27.5 22.54 - 18% 45 65 + 40% 18 17 - 5% 

MidMid 26.34 19.45 - 26% 65 65 0% 24 17 - 30% 
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2.4 Discussion

A key to the corrugated padding concept is not just the use of a corrugation to stiffen the

padding, but also to enable elastic deflection of the corrugation to absorb energy from impacts. The

first factor to consider in designing a corrugation is the basic shape of the corrugated wave. Four

shapes were tested in this study using a configuration of equal peak-to-peak height and length. The

wave shape of the corrugation did not significantly alter the force of deflection. This result would

tend to indicate that many wave shapes could be used in a corrugation to achieve equivalent energy

absorption through compliance or elastic deflection.

However, this applies to the compliance along the corrugation only. The bending of the

corrugation perpendicular to the cross section would also affect the overall elastic strain energy

stored in the corrugation. Bending stiffness in this direction would be dependent on the area

moment of inertia (MOI) of the corrugation cross section in which case the arc wave (Figure 2.2)

would have the highest MOI and the triangle wave would have the lowest.

For a given corrugation wave shape, the properties of the wave (its wavelength and ampli-

tude) will also affect its ability to absorb energy. From the quasi-static analyses, we learn that the

energy absorbed per unit mass tends to be greatest for corrugations with a longer wavelength and

higher amplitude. The dynamic analysis results show the configurations with a desirable accel-

eration pulse tended to be the ones with a higher amplitude wave. The peaks of the acceleration

pulses for each configuration tended to be grouped in time according to the amplitude level. At

each level, the lowest peak acceleration was experienced by the corrugation where the wavelength

and amplitude were equal (ie. HiHi, MidMid, and LoLo.) In both analyses, the HiHi configuration

had the best performance.

The data suggest that for a given application, the goal would be to maximize the wave

height within the design constraints, and then choose a wavelength such that the peak-to-peak

height and length are equal. The performance metric developed (Equation [2]) provides a useful

method for comparing basic data from impact tests. The metric takes into account the parameters

of padding samples that are most important to its performance in sporting applications. Specifi-

cally, the impacted area can be thought of as relating to the size of a bruise that an athlete might

develop as the result of an impact. Also, minimizing the thickness and mass of athletic padding is

important to athletes and affects their decision on whether or not to use certain types of padding.
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The data required to implement this metric can be collected through simple tests requiring little

to no specialized instrumentation. The metric can be employed to compare samples to a control

design, such as a foam only sample.

According to the performance metric presented in this study, the LoLo sample was the most

effective padding sample compared to foam alone. This means that for a given weight and padding

thickness, the LoLo corrugated padding prototype will provide better protection from impact forces

than foam alone. Stated another way, to achieve the same amount of impact protection, a foam only

sample would need to be much thicker. Also, while the LoMid sample transferred the lowest peak

pressure, it was at a cost of being significantly heavier than the other samples tested.

The subsequent perforation and retesting of some of the corrugated padding prototypes

provided an exploration of a method to further reduce the weight of the corrugated padding concept

since weight is often a critical property for many sports applications. Perforation appears to be an

effective method of reducing the weight; however, there is some reduction in the ability of the

padding to distribute the impact forces. Generally, after perforation, the peak pressure increased

while the area of the force distribution decreased. Also, the cutting process with a laser may have

affected the mechanical properties of the polycarbonate corrugation. This effect was specific to this

prototyping process and could be reduced or eliminated through other manufacturing processes

more conducive to larger scale production.

The FEA predicted that low wavelength, high amplitude corrugation configurations would

experience buckling under load. This was verified with physical testing, which also showed that

the buckling often resulted in some permanent deformation of the corrugated material. Permanent

deformation may not be desirable for some padding applications where the padding must withstand

multiple impacts. In which case, as mentioned the best configuration would be to match the peak-

to-peak length and height. However, plastic deformation may be suited for other applications, such

as bike helmets. In those cases, a short wavelength and high amplitude corrugation can be effective

at dissipating energy and distributing impact forces.

2.5 Conclusions

This study investigated the important parameters for energy absorption and force distribu-

tion of an innovative padding concept. The concept has potential for use in sports applications
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to protect athletes from certain injuries. Through FEA and physical testing, it was found that the

wave shape of the corrugation may not be a major factor in the energy absorption. The best perfor-

mance of the corrugate for elastic energy absorption is achieved when the wave has peak-to-peak

height and length that are equal. For one-use types of applications, more energy absorption can be

achieved with configurations with a high amplitude and lower wavelength. These configurations

tend to produce buckling and plastic deformation and may not be reusable. The weight of the

padding may be reduced by perforating the foam and corrugation, however this may increase the

peak forces transferred through the padding.

A key advantage of this padding concept comes through the mechanical behavior of the

corrugate. A corrugation increases the bending stiffness of a sheet about the axis parallel to the

cross-section of the corrugate while maintaining a lower bending stiffness about an axis perpen-

dicular to the cross-section. This idea may be exploited to produce padding specific to a certain

body part and motion. Other corrugation shapes may also prove beneficial for certain motions or

applications. For example, rather than a straight corrugation, curved or orthogonal corrugations

may also be beneficial. A particular corrugation with a configuration of two mutually orthogonal

corrugations has its roots in origami [40]. This particular fold pattern, the Miura-ori [41], exhibits

unique mechanical properties which may also be beneficial when used in an energy absorbing

application such as this padding concept.

This work has introduced and explored an innovative padding concept that may be useful

to meet the needs of athletes to provide a light, effective padding that protects them from impact

injuries and does not interfere with their ability to compete in their sport. Further work will explore

the properties of other corrugations, specifically origami-inspired corrugations, for their usefulness

in elastic energy absorption applications. Also, other materials and manufacturing processes may

be investigated that would produce lighter designs while still providing a desired level of protec-

tion.
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CHAPTER 3. ELASTIC ENERGY ABSORPTION OF ORIGAMI-BASED CORRUGA-
TIONS

3.1 Introduction

A common engineering challenge is the design of systems to absorb kinetic energy and dis-

tribute applied forces through reusable means. Some examples of applications where reuse is im-

portant include athletic padding and helmets, protective shipping materials, mats and playground

coverings. In such applications, elastic energy absorption is necessary since energy is absorbed

through a temporary deformation of the material which is subsequently restored allowing for mul-

tiple deflections. Innovations that provide new methods for absorbing energy elastically would be

valuable to engineers facing such design challenges. Recent work in the application of techniques,

theories and principles learned from the study of origami may inspire innovative designs with the

potential of solving such practical engineering problems.

A specific class of origami design focuses on creating folding patterns which result in

either two- or three-dimensional geometric tessellations. One such tessellation is called the Miura-

ori. The pattern is shown in Figure 3.1. This particular tessellation has received much attention

in the engineering literature because of its simplicity and intriguing mechanical properties. The

folding pattern takes its name from Koryo Miura who first proposed it in the early 1970s. Miura

[41] presented the fold as part of a sandwich-core he called “Zeta-Core,” where the core is a

corrugate resulting from superposing two corrugations in mutually orthogonal directions. Klett and

Drechsler [42] described this pattern as a double developable corrugation while Lebee and Sab [43]

investigated the use of this “chevron pattern” in foldcore materials. Miura [44] later found that a

variation of the principal design of this double corrugation could be used for folding and deploying

large membranes for space applications. The Miura-ori was also found by Kobayashi [45] to

be naturally occurring in hornbeam and beech tree leaves. The auxetic characteristic of the fold
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Figure 3.1: Example of Miura-ori tessellation folded in paper.

pattern (it has a planar expansion in two orthogonal directions) can be observed in the unfolding

of leaves from these two types of trees.

The geometry of the Miura-ori fold pattern has been well defined in the literature. Tachi

[46] studied its geometry and developed a general model for a rigid foldable quadrilateral mesh.

Stachel [47–49] also studied the geometry of the Miura-ori as well as a more general quadrilateral

mesh and defined the conditions which allow it to be continuously flexible. Shenk and Guest [50]

describe the intriguing auxetic property of the Miura-ori tessellation (it has a negative Poissons

ratio for in-plane stretching) but yet deforms anticlastically (into a saddle shape) under out-of-plane

bending. To describe the bending stiffness of the Miura-ori tessellations, Schenk and Guest [51]

applied a structural engineering approach where the tessellation was modeled as a pin-jointed

bar framework. They applied a bending stiffness to describe both bending of the facets and the

bending along the fold line. Shenk and Guest [52] also proposed two configurations of the Miura-

ori fold to create metamaterials that may have several practical applications. Gattas et al. [53] also

studied the geometry of the Miura-ori tessellation and derivative patterns developed by altering

one characteristic of the Miura pattern. Tolman et al. [54] investigated various wave patterns

of compliant corrugations as possible means of elastically absorbing energy for athletic padding

applications.

The unique kinematic properties of the Miura-ori are of special interest. When employed

dynamically, the Miura-ori can be considered a compliant mechanism since its motion is derived

from the deflection of the material at its folds. As such, the mechanism can be studied using a
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Pseudo-Rigid-Body Model (PRBM) [1] in which the facets are considered links and the folds are

considered hinges or pin joints with the pin axes aligned with the folds [40]. Greenberg et al. [55]

demonstrated the approach of modeling kinetic origami using the PRBM.

By closely examining a single unit cell of the Miura-ori tessellation (Figrue 3.2), one can

observe that each fold intersects at a single point. Since the folds act as pin joints whose axes are

directed along the fold line, each unit cell of the tessellation is a four-bar spherical mechanism.

This basic type of spherical mechanism has been thoroughly studied and its kinematics defined by

several researchers [56–58].

This study focuses on the potential of the Miura-ori to be used in elastic energy absorbing

applications. The energy absorbing characteristics of the Miura-ori tessellation and other origami-

inspired designs have been studied by other researchers, however, their research has focused on

plastic deformation from impact loading or crushing of the folded material. Ma and You [59–

61] and Gattas and You [62] studied energy absorption through plastic deformation of several

origami-inspired shapes including a modified Miura pattern referred to as an “indented foldcore”.

Basily and Elsayed [63] looked specifically at the energy absorption characteristics of what they

called “folded chevron patterns.” These patterns were similar to Miura-ori created using metal

sheets and then loaded dynamically. The energy absorption mode was plastic deformation of

the material. Audoly and Boudaoud [64] modeled the buckling behavior of a thin elastic plate

bonded to a compliant substrate. In this case they found that the Miura-ori pattern served well as

a geometric model for a herringbone buckling mode observed in experiments. Heimbs [65, 66]

studied the impact strength and behavior of “foldcore sandwich structures,” which consisted of a

Miura-ori corrugation sandwiched between two plates. Particularly, Heimbs studied the application

of composites in creating the foldcore.

In this study, the elastic energy absorbing characteristics of the Miura-ori unit cell is inves-

tigated. Since the tessellated pattern expands auxetically in plane when strained, it is hypothesized

that this behavior may be advantageous for absorbing energy as it would allow for the distribution

of elastic strain across the tessellation. To better understand this behavior and its relationship to

energy absorption, a pseudo-rigid-body kinematic model is developed. The kinematic model is

then combined with a virtual work analysis to derive a kinetic model of a single unit cell of the

tessellation. The analytical models are verified through comparison with data in the literature for
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similar models and also using a commercial 3D simulation software. These analytical models are

used to explore how the main geometrical parameters affect the force and energy absorption prop-

erties of the Miura-ori. Testing of physical prototypes is used to determine the best parameters for

the model. This approach may be applied to similar origami tessellations and may be beneficial

for the design of innovative devices for elastic energy absorption applications.

3.2 Method

3.2.1 Kinematic Model

The Miura-ori tessellation is composed of a pattern of repeating parallelograms that can be

defined by the length of their adjacent sides, a and b, and their acute interior angles α as shown in

Figure 3.2. To describe the kinematics of a single unit cell, the notation defined by Lang [58] is

adopted as shown in Figure 3.3. Here α1 through α4 are the sector angles or the in-plane angles

between the fold lines. The dihedral angles, γ1 through γ4, describe the deviation from straightness

of the folded faces with γ = 0 corresponding to a flat sheet and γ = π describing the fully folded

state. The angles between the planes are denoted as β where β = π − γ . For the Miura-ori,

γ1 = γ3 and γ2 = γ4. By examining the unit cell inside a unit sphere, and analysing it as a spherical

mechanism, the spherical links have a length of α1−α4. As derived by Lang [58], the angle

between the two fold lines which lie along the plane of symmetry for the unit cell, ζ , is given by

cosζ = cosα1cosα2 + sinα1 sinα2 cos(π− γ2) (3.1)

This equation can be rearranged to give the value of dihedral angle γ2 given the sector angles α1

and α2.

γ2 = π− cos−1
(

cosζ − cosα1 cosα2

sinα1 sinα2

)
(3.2)

Lang [58] further derived the relationship between adjacent dihedral angles as

γ1 = cos−1
(

sinα1 sinα2 sin2
γ2

1− cosζ

)
(3.3)
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Figure 3.2: Miura-ori unit cell parameters and principal strain directions, X and Y.
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Figure 3.3: Spherical geometry notation as presented by Lang [58] of a unit cell cropped by a unit
circle shown flat on the left and folded on the right.

Using these relationships developed by Lang for the three-dimensional angles of a degree-4

vertex, we will apply the geometry of the Miura-ori unit cell to arrive at the kinematic relationships.

The principal directions of strain for the Miura-ori are shown as the two orthogonal axes, X and Y ,

in Figure 3.2. For a unit cell, length LY is defined in the direction of the Y axis as

LY = 2asin
(

ζ

2

)
(3.4)
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Figure 3.4: Description of paramaters used to derive θ and LX .

In the X direction, length LX is found by defining an angle, θ , as shown in Figure 3.4. The green

lines indicate how the larger figure fits inside a unit cell. The angle θ can be related to the angles

α and β by applying the Law of Cosines to the two triangles formed by adjacent sides to these

angles b and c (where c = bsinα). Both of these triangles share the common side, LX . Therefore,

cosθ = 1− sin2
α (1− cosβ ) (3.5)

and

LX = 2bsin
(

θ

2

)
(3.6)

3.2.2 Kinetic Model from Virtual Work

A virtual work analysis [1] is developed for two different models of the Miura-ori unit cell

where the facets are assumed to be rigid. The first model assumes the storage of elastic strain

energy to be in the folds or hinges of the Miura-ori unit cell. This will be referred to as the hinge

model. Through the application of the PRBM (Figure 3.5a), the strain energy is modeled as the

deflection of torsional springs with linear stiffness values of kT 1 and kT 2. A second model is

developed for a concept in which the Miura-ori is used to achieve an in-plane auxetic expansion
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Figure 3.5: PRBM of the hinge and membrane concepts.

of an attached elastic membrane. This will be referred to as the membrane model (Figure 3.5b). It

is assumed that the elastic strain energy of the membrane can be represented by two linear springs

attached to the bottom vertices of the unit cell such that they are aligned with the two primary

directions of motion. The linear spring constants in this model are kLX and kLY . A coordinate

system was chosen such that the origin is on the surface on which the unit cell rests with the z-axis

being vertically upward and passing through the central vertex. The distance of the vertex from the

origin or the surface is defined as h (shown in Figure 3.2) and can be defined as a function of ζ as

h = bcos
ζ

2
(3.7)

Additionally, several variables related to h are defined that will be useful in the discussion

of the data from these models and the prototype testing. If the tessellation is fully compressed in

the X-direction, the maximum height of the central vertex, H, is defined as

H = bsinα (3.8)

The height of the vertex in its starting, undeflected position is defined as h0 and the displacement

of the vertex, δ is
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δ = h0−h (3.9)

Further, two non-dimensional parameters of height are defined as %h and %H where

%h = h/h0 ∗100 (3.10)

and

%H = h/H ∗100 (3.11)

The virtual work analysis applied to each model results in an equation that describes the

force-deflection characteristic of the unit cell in the z-direction for each model. The analysis was

done with respect to the generalized coordinate, ζ . The virtual work, δW , associated with an

applied load in the z-direction is

δW =−F
dh
dζ

δζ (3.12)

The potential energy developed from the deflection of each hinge, i, of the hinge model is

Vi = kTi(γi− γi0) (3.13)

and for each linear spring, j, of the membrane model is

Vj = kL j(L j−L j0) (3.14)

The total virtual work is the sum of the work due to the input virtual displacement, δζ ,

of the input force (Equation 3.12) and the work from the potential energy of the virtual spring

displacements found by differentiating Equations 3.13 and 3.14 with respect to ζ and multiplying

by δζ . Applying the principle of virtual work [67] by setting δW equal to zero and dividing by

δζ yields an expression for the input force required to deflect the unit cell a distance of δ (Eq.

3.9). For the hinge model, FH is
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FH =

(
dh
dζ

)−1[
−2kT 1 (γ1− γ10)

dγ1

dζ
−2kT 2 (γ2− γ20)

dγ2

dζ

]
(3.15)

where the terms
dγ2

dζ
,

dγ1

dζ
, and

dh
dζ

are kinematic coefficients found by differentiating Eqs. (3.2,

3.3 and 3.7) with respect to ζ and are defined as

dγ2

dζ
=−sin(ζ )

(sinα1sinα2)

√
1−
(

cosζ − cosα1 cosα2

sinα1sinα2

)2
−1

(3.16)

dγ1

dζ
=

−1√
1− cos2 γ1

[
−sinγ2

dγ2

dζ
+

sinα1 sinα2 sin(2γ2)

1− cosζ

dγ2

dζ

−sinα1 sinα2 sin2
γ2 sinζ

(1− cosζ )2

]
(3.17)

dh
dζ

=−b
2

sin
(

ζ

2

)
(3.18)

The input force required to deflect the membrane model, FM, a distance of δ (Eq. 3.9) is

FM =

(
dh
dζ

)−1[
−kL1 (LY −LY 0)

dLY

dζ
− kL2 (LX −LX0)

dLX

dζ

]
(3.19)

where the terms
dLY

dζ
and

dLX

dζ
are kinematic coefficients found by differentiating Eqs. (3.4) and

(3.6) with respect to ζ and are defined as

dLY

dζ
= bcos

(
ζ

2

)
(3.20)
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dLX

dζ
= acos

(
θ

2

)
dθ

dζ
(3.21)

Eq. (3.21) also includes the term
dθ

dζ
, which is the derivative of Eq. (3.5) with respect to ζ , or

dθ

dζ
=

−1√
1− cos2 θ

[
sin2

α1 sinβ1
dγ1

dζ
+(1− cosβ1)

]
(3.22)

3.2.3 3D Simulation

To verify the analytical kinetic hinge model of the Miura-ori unit cell, a 3D simulation was

done using the Solidworks software. An assembly was constructed using planar surfaces that were

constrained to meet at the edges to simulate the fold lines. The surfaces were assumed to be rigid.

Torsional springs were placed along the fold lines with linear spring coefficients equal to those in

the virtual work model. The program was then used to simulate the force-deflection properties of

the assembly and compared to the predictions of the analytical model.

3.2.4 Physical Testing

Physical hardware was built and tested for both the hinge and membrane energy absorption

concepts (Figure 3.6). The facets of the Miura-ori unit cell for both models were made of 3 mm

thick acrylic so as to be stiff compared to the hinges.

Origami tessellations in paperboard material have complex mechanical behavior [68–70].

In this study the hinges were made from 0.4 mm nylon that was thermoformed to the appropriate

starting angle and mechanically attached to the acrylic facets. To achieve a good approximation of

a spherical mechanism the hardware was built with elastic hinges on the three joints representing

the mountain folds of the Miura-ori unit cell. This allowed the axes of rotation of the hinges to

intersect at a single point without the need to account for the thickness of the facets.
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(a) Hinge test hardware (b) Membrane test hardware

Figure 3.6: Physical test devices of Miura-ori unit cells for two methods of energy absorption.

The membrane hardware was assembled using thin adhesive tape to join the facets to mini-

mize friction and strain energy absorbed at the hinges. A nylon and spandex fabric membrane was

attached to the bottom of the unit cell.

To reduce the effect of friction from the expansion of the unit cell, the testing was done

on a flat, smooth, polyethylene surface. Each model was quasi-statically loaded in the z-direction

(vertically) using an Instron 3342 (0.5 kN capacity) universal testing machine with a 50 N load

cell. The test setup is shown in Figure 3.7. The force-deflection characteristics of each prototype

were measured and recorded.

The analytical models were used to determine the stiffness parameters of the hinges and

the membrane. The stiffness coefficients were optimized to reduce the sum of the square of the

residual between the model and the test data. This is of particular interest for the case of the

membrane model to evaluate how well the two-orthogonal-spring assumption can represent an

elastic membrane.
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Figure 3.7: Test setup for measuring the force-deflection characteristics of the hinge and membrane
unit cell prototypes.

3.3 Results & Discussion

3.3.1 Model Verification

Two methods were used to verify the analytical models: comparison with a Poisson ratio

model from the literature, and 3D simulation using Solidworks. The Poisson’s ratio for the unit

cell, defined as the relative amount of expansion in its two principal directions, was calculated

using the kinematic analytical model for the Miura-ori such that

νXY =
εY

εX
(3.23)

where εX and εY are the strains or changes in lengths LX and LY . Figure 3.8 shows νXY as a function

of %H for several different values of α . The results of Shenk and Guest [52], when translated to

the same variables, result in a graph identical to Figure 3.8 which serves as one verification of the

kinematic model. It can be seen that increasing α causes a greater expansion in the Y direction

relative to the X .

The kinetic analytical model developed through virtual work analysis was compared to a 3D

simulation done with Solidworks. Torsional spring stiffness were applied between the rigid facets

of the modeled unit cell to calculate the force-deflection behavior. The same unit cell dimensions
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Figure 3.8: Poisson’s ratios for several values of α as a function of the %H for a Miura-ori unit
cell with a/b = 1 .
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Figure 3.9: Comparison of force-deflection predictions for the CAD model and the analytical
model

and spring stiffnesses were used in the analytical model and the Solidworks model. Figure 3.9

compares the predicted force-deflection curves for two variations of the geometry of the Miura-ori

unit cell, where α = 45° and α = 75° (a/b = 1 for both), showing nearly identical results.
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Figure 3.10: Force-deflection data from prototype tests compared to fitted curve based on analytical
models.

3.3.2 Prototype Testing

Both the hinge and membrane analytical models were used to calibrate the model spring

constants to generate force-deflection curves that best fit the quasi-static test data. The spring con-

stants were optimized to minimize the square of the residuals between the test data and analytical

models. The optimized fits are shown in Figure 3.10. In both cases, the analytical models were

able to achieve a good fit of the test data.

Of particular interest was how well the membrane model fits the data from the physical

prototype by representing the membrane using two linear orthogonal springs. As seen in Figure

3.10(b) a reasonable fit is achieved with kLX being equal to zero. This is consistent with what is

observed in the actual deflection of the membrane due to the expansion of the unit cell, where the

main mode of strain across the membrane was primarily in the Y direction. For these values of α

and a/b, it is reasonable to conclude that the force will be mainly determined by the strain in the

Y direction and therefore using one spring stiffness can accurately represent the physical system

tested. If a prototype were built with an array of unit cells across a tessellated sheet, the stiffness

in the X direction would likely have a greater effect on the force-deflection curve.
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3.3.3 Parameter Effects on Force

The verified kinetic models allow for the exploration of the effects of the geometrical pa-

rameters of the Miura-ori tessellation on the force-deflection and energy absorption characteristics

of a unit cell. The parameters of interest (Figure 3.2) are the starting height of the unit cell’s central

vertex, h, the acute interior angle of the parallelogram, α , and the two adjacent side lengths of the

parallelogram a and b .

The effects of the starting height of the central vertex, h, on the force-deflection curve can

be seen in Figures 3.11 and 3.12. The maximum height of the central vertex for a given geometry is

denoted H. The force-deflection curve is calculated for a given geometry at several initial heights,

%H. The force is plotted as a function of the percentage of the total deflection, %h, of the central

vertex.

For both the hinge and membrane models, a starting height greater than 90%H results in a

higher initial stiffness and peak force during the first 10% of the deflection. The general trend of

the hinge model is to have a positive stiffness with the force generally increasing with deflection

(except at a starting height of 99%H where the force increases and then decreases before increasing

again.) The membrane model has an initial positive stiffness but transitions to a negative stiffness

with the force decreasing with deflection after reaching a peak force. For the hinge model, as the

starting point decreases so does the stiffness, and it approaches a linear stiffness over the smaller

deflection range. As the starting height of the membrane model decreases, the stiffness changes

from positive to negative and approaches a near constant force over a small deflection range.

The force-deflection behavior for each configuration is determined largely by the mechan-

ical advantage, or the ability of the unit cell to deform the elastic members (hinges or membrane)

due to its geometry. At high starting points, the facets of the unit cell are nearly parallel to each

other and to the line of action of the load applied to the central vertex. This results in a low mechan-

ical advantage for straining the elastic hinges or membrane, thus requiring a higher applied load.

As the unit cell expands, the mechanical advantage increases, which overcomes the increasing re-

sisting forces due to the deflection of the elastic members. At lower starting heights, the change in

the mechanical advantage is less extreme, which results in more consistent force-deflection behav-

ior but over a smaller range of motion.
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Figure 3.11: Force as a function of percent deflection for the hinge model at different vertex starting
heights, %H.

99% 

95% 

90% 

80% 

70% 

60% 
50% 

0

2

4

6

8

10

12

14

16

18

20

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fo
rc

e
 (

N
) 

Percent Deflection (%h) 

Figure 3.12: Force as a function of percent deflection for the membrane model at different vertex
starting heights, %H.
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Figure 3.13: Surface plots for hinge model as a function of a/b and α .

Figures 3.13 and 3.14 show how the force-deflection and energy characteristics of the

Miura-ori unit cell are affected by changes in a, b and α . The side lengths, a and b, are com-

bined into one parameter by considering their ratio, a/b. The analytical models were used to

calculate the peak force and the total work energy (area under the force-deflection curve) for hinge

and membrane unit cells. Each configuration was calculated from a starting height of %H = 90.

For the hinge unit cell, the peak force and the amount of energy absorbed increase with

increasing a/b and decreasing α . For the membrane model, a/b appears to have a greater affect on

both peak force and energy absorption at values of a/b > 1. It is interesting to observe that while

the largest a/b and the smallest α resulted in the highest peak force, the highest total energy was

absorbed at midrange values of α . Also at low values of a/b, both the peak force and total energy

decreased with decreasing α though the difference over the range of α was small.

3.3.4 Total Tessellation Energy

The kinetic models for the hinge and membrane concepts allow for the calculation of the

absorbed energy due to the deflection of a single unit cell. For a tessellation comprised of an array

of unit cells, the total energy absorbed would be the sum of the strain energy from each cell. The

total energy, ET , would then be
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Figure 3.14: Surface plots for membrane model as a function of a/b and α .

ET = Eu ∗N (3.24)

where Eu is the energy for one unit cell and N is the number of unit cells in the array. The mode

of energy absorption and the interconnection of the unit cells affects the method for summing the

unit cells and is therefore different for the hinge and membrane models.

The membrane model is the simpler case. If the rows and columns are counted as shown

in Figure 3.15 (assuming a full array with no half-cells), the number of cells is

Nm = R∗C (3.25)

where R is the total number of rows and C is the total number of columns of unit cells in the array.

For the hinge model, the total energy is accounted for by summing the unit cells that consist

of four hinges meeting at a single vertex. Figure 3.15 shows how these unit cells mesh across

the tessellation. The blue and green lines indicate opposite (i.e. mountain verses valley) central

vertices. In the case of a square array where R =C, the total number of unit cells, Nh, is

Nh = 2R2−R+1 (3.26)
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Figure 3.15: An array of Miura-ori unit cells with rows, R, and columns, C.

This equation accounts for the hinges around the edges of the tessellation (shown in magenta

in Figure 3.15) which, in the case of a square array, can be summed to form a number of full,

equivalent unit cells equal to the number of rows or columns of the array.

For a more general case where R 6=C, the edge (magenta) hinges cannot be equally divided

into equivalent unit cells. The amount of strain energy in these extra hinges is dependent on the

particular geometry, a, b, and α , as well as the starting height, %H. It is therefore difficult to

account exactly for the energy in these hinges. However, since each extra pair account for half

of a unit cell, we will approximate their contribution in strain energy as being half of a unit cell’s

energy. It is convenient to orient the array so as to have more rows than columns as shown in

Figure 3.15. With this orientation, the total number of unit cells, Nh, is

Nh ≈ 2RC+
1
2
(R−3C)+1 (3.27)

The majority of the energy absorbed by a hinged tessellation comes from the full unit cells.

Therefore, the error in the total energy due to the approximation of the energy associated with the
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extra hinges will be small. This error is further reduced if the tessellation is large and if R is close

to C.

The preceding equations for total energy absorbed by a Miura-ori tessellation are based on

an ideal model in which all of the deflection of the unit cells is in the hinges with no deflection in

the faces or panels. They therefore represent a theoretical maximum distribution for the energy.

A non-idealized tessellation would have some flexibility in the panels that would affect how the

deflection is transferred across the tessellation. If a point load were applied to a single unit cell in a

tessellated array, the deflection of the adjacent unit cells would decrease with the distance from the

point of the applied load. The affect of the relative stiffnesses of the hinges and panels on energy

absorption has been studied by Tolman et al. [54].

3.4 Conclusions

The analytical models developed in this study allowed for the investigation of how the

geometrical parameters of the Miura-ori tessellation affect its elastic energy absorption properties.

The starting height of the central vertex of the unit cell, %H, for both the hinge and membrane

models affects the shape of the force-deflection curve. High starting values of %H above 90%

create a large initial stiffness and high peak force due to decreased mechanical advantage in the

unit cell. As the starting height decreases, so does the stiffness and the force-deflection curve tends

to become more linear.

It was observed that both models of the Miura-ori tended to behave as nonlinear softening

springs where the hinge model approached a linear response and the membrane model approached

a constant force at low starting heights over a small deflection range.

The effects of the side lengths,(expressed as the ratio a/b), and the interior acute angle,

α , of the tessellated parallelogram of the Miura-ori were also investigated. For both models,

energy absorption and peak force tended to increase with increasing a/b and decreasing α with

the exception that for the membrane model, more energy is absorbed in the midrange α between

40 and 60 degrees.

The total energy absorbed by a tessellation of unit cells can be approximated by multiplying

the energy from a unit cell by the total number of cells in the array. The method of energy absorp-

tion affects how the unit cells are summed and is different for the hinge and membrane models.
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The methods presented represent the theoretical maximum energy distribution based on idealized

models.

This work lays a theoretical foundation for the use of the Miura-ori or similar origami

tessellations in elastic energy absorption applications. The unique auxetic property of this and

other origami folds have promise for elastic energy absorption applications because of their ability

to distribute the strain across the tessellated pattern. Further work could be done to investigate how

the models could be used to “tune” an energy absorption device based on the Miura-ori to achieve

application-specific force-deflection curves. Also, these models could be used to study the effects

of impacts to multiple unit cells. In addition, more exploration of materials and manufacturing

processes to build mechanisms that achieve the desired motion while also absorbing energy will be

necessary. For example, memory shape polymers may be advantageous for some applications [71].

Lastly, the affects of combining unit cells in different configurations such as though stacking may

provide new insights into the mechanical properties and potential uses of these designs.
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CHAPTER 4. MATERIAL SELECTION FOR ELASTIC ENERGY ABSORPTION IN
ORIGAMI-INSPIRED COMPLIANT CORRUGATIONS

4.1 Introduction

Many applications require designs that will absorb kinetic energy and distribute applied

forces multiple times through reusable means. For example, preventing damage to equipment or

products during transport or shipping requires that the packaging be able to withstand multiple

drops or impacts. Also, people participating in contact sports often need protective equipment that

can withstand multiple impacts, such as helmets and padding. In such cases, forces and energy are

temporarily absorbed and redistributed through means of elastic deformation of some part of the

protecting material. Common methods of elastic energy absorption include using foams, air-filled

bladders or corrugated paper sandwich panels (cardboard).

Recently, much attention has been given to the potential for using origami in engineering

applications. Origami-inspired designs have led to products that meet challenging design con-

straints. Such products include deployable solar arrays for satellite applications [72], medical

stents [73], adaptive camouflage by means of morphing structures [74], car crash boxes with higher

crumple zone energy dissipation [75], structural cores for aerospace applications which mitigate

water retention in the sandwiched layers [42], airbag folding, and the 100 meter diameter Eyeglass

Telescope [76].

A specific area of origami design focuses on creating folding patterns that result in either

two- or three-dimensional geometric tessellations. A subset of these origami tessellations have the

property of being rigidly foldable meaning that the geometry of the fold lines allow “continuous

motion between folded states without the need for twisting or stretching of the facets between the

creases” [46]. This subset of origami tessellations, when used as the basis for compliant mecha-

nisms, show great promise for elastic energy absorption applications.
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Figure 4.1: Example of Miura-ori tessellation folded in paper.

One such tessellation is the Miura-ori. An example, folded in paper, is shown in Figure

4.1. This particular tessellation has received much attention in the engineering literature because

of its simplicity and intriguing mechanical properties. The folding pattern was first proposed by

Miura [41] in the early 1970s as part of a sandwich-core where the core is a corrugate resulting

from superposing two zig-zag corrugations in mutually orthogonal directions. The geometry and

kinematics of the Miura-ori have been well defined by several researchers [46, 47, 49, 51]. Other

researchers have investigated the ability of the Miura-ori to absorb and dissipate energy through

crushing or plastically deforming the shape [63–66].

Due to its fold geometry, the Miura-ori is both rigidly foldable and auxetic for in-plane

motion. That is, when stretched in one direction, the folded, tessellated, sheet simultaneously

expands in the orthogonal, planar direction (having a negative Poisson’s ratio) [77]. Additionally,

a displacement applied normal to the plane of motion to a single vertex (fold intersection) of the

tessellation, results in the planar, bi-directional expansion of the entire tessellation. Of course,

the perfect distribution of the motion assumes rigid faces joined by perfect hinges. However, it

is theorized that this unique property may be useful for absorbing energy elastically through the

deformation of the folds and also distributing an applied force by redirecting it throughout the

shape. Numerous applications stand to benefit from better understanding of the elastic energy

absorption and force redistribution of this and other origami tessellations.

Compliant mechanism theory provides a bridge between traditional paper origami and

origami-inspired designs using non-paper materials. Compliant mechanisms derive their motion
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through the flexing of one or more of their members [67]. A crease or fold in paper can be con-

sidered to be a compliant member called a small-length flexural pivot [78]. By closely examining

a single unit cell of the Miura-ori tessellation, one can observe that each fold intersects at a single

point. Since the folds act as compliant hinges whose axes are directed along the fold lines, each

unit cell of the tessellation is a compliant, four-bar, spherical mechanism. The mechanics of com-

pliant mechanisms can be modeled using rigid members combined with torsional springs through

the application of the Pseudo-Rigid-Body-Model approach [67].

To use origami tessellations like the Miura-ori for energy absorption and force distribution,

it is important to identify and select non-paper materials with properties that are suited for these

applications. The goal of elastic energy absorption is to transform kinetic energy into elastic strain

energy through the deformation of an elastic material. Materials can be made to absorb energy

more efficiently by changing the geometry [79] or method of manufacturing [80]. The material

used in the tessellations must also be compliant to allow for the motion of the mechanism. The

peak elastic strain of a linear elastic material is Sy/E where Sy is the yield stress and E is the elastic

modulus of the material. Materials with higher Sy/E have been identified as more suitable candi-

dates for compliant mechanisms [67]. Several methods have been identified for selecting materials

for compliant mechanisms in specific applications [81–83]. In addition, for most energy absorb-

ing applications, the mass or density and the cost of the material are important considerations.

Ashby [2] has developed a method for material selection in mechanical design in which a mate-

rial index is derived based on the relevant material properties and mechanical models for a given

application. Graphical charts which display many materials according to these relevant material

properties are then created and used to find the material which optimizes the material index.

This study investigates material-related issues pertaining to the design of origami-based

compliant mechanisms for elastic energy absorption and force distribution. It presents the analysis

and development of a method for material selection based on key material properties relating to

the mechanical performance of these mechanisms. This method is a three-step process that begins

with screening materials based on elastic strain and modulus values, which leads to the selection of

a suitable subclass of material for compliant-mechanism-type applications, such as the Muira-Ori

energy-absorbing cushion. Second, the Ashby method is used to provide an efficient means for

refining the choice of material further by optimizing particular properties of the final component
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(such as mass, cost, resilience) within the applied engineering constraints. Third, specific stiffness

characteristics are chosen to deliver improved force distribution and energy absorption properties

for a peak desired force transfer. These characteristics can be achieved through a combination of

detailed geometry and/or local material choice and are investigated in this study through Finite

Element Analysis (FEA). The development of this method will be important in the transition of

origami-inspired design from paper to other materials [84]. While this work will focus specifically

on the Miura-ori tessellation, the results will provide a valuable design tool that may be applied to

similar patterns for elastic energy absorption and force distribution applications.

4.2 Method

When designing an origami-inspired, folded mechanism for energy absorption applica-

tions, there are three main material-related issues to consider. The first is to select a material that

can allow the joints or hinges of the tessellation to deform elastically to achieve the desired motion

while also providing enough stiffness in the tessellation panels to resist bending. A material that

has a higher elastic strain (Sy/E) is a better candidate for compliant mechanisms. Also, a minimum

elastic modulus should be identified for an application. Therefore, the first step of the material se-

lection method for energy absorbing, compliant corrugations is to screen the materials based on

their modulus and peak elastic strain.

The second issue is to select a material that will meet the requirements for the specific

application (i.e. optimize the functionality of most importance, within the constraints of the engi-

neering application). For the applications of interest in this work, it is desirable that the mechanism

is able to deflect and store elastic strain energy, but also result in a final design that is light weight

or cost-effective. The Ashby method of material selection can be applied to develop a material

index that is specific to these parameters. This second step of the material selection method allows

for identification of optimal materials for these mechanisms.

The third consideration is the stiffness of the folds, or compliant hinges, as compared to

that of the tessellated faces and how this stiffness ratio affects the auxetic motion, force distribution

and energy absorption of the mechanism. This is studied using FEA. Selecting a stiffness ratio for

specific energy absorption and force distribution requirements of an application is the third step of

the material selection method.
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4.2.1 Material Indices for Energy Absorption

A material index is developed for optimizing the material selection for an energy absorbing

design by applying compliant mechanism theory to a single fold of the tessellation. The fold will

be considered to be a small-length flexural pivot since it is much shorter and much more flexible

than the panel. That is

L >> l (4.1)

(EI)L >> (EI)l (4.2)

where L is the length of the panel and l is the length of the fold in the direction of bending. By

applying the Pseudo-Rigid-Body-Model (PRBM) approach [67], the small-length flexural pivot

can be modeled as two rigid links that are pinned with a linear torsional spring between them.

The use of the small-length flexural pivot PRBM to model the fold also assumes a linear

elastic material [85]. Creasing paper results in nonlinear stiffness at the folds [69, 86, 87]. The

behavior of creases in other materials has also been evaluated [88]. Since the purpose of the

material index is to assist in identifying non-paper materials that achieve elastic energy absorption,

the strains are constrained to remain in the elastic range. Many materials can be modeled with

reasonable accuracy to be linear in their elastic range. Therefore, the use of the small-length

flexural pivot (PRBM) is acceptable, especially for purposes of early design decisions.

The objective of the material index is to identify materials which create a light, energy

absorbent, small-length flexural pivot that is also constrained to stay elastic, σmax ≤ σy. The mass

of the design is defined as:

m = btLρ (4.3)

where m is the mass, b is the base width, t is the thickness, L is the length of the panel, and

ρ is the density of the material. The properties b, t, and L are a composite of four panels. Based on

the Pseudo-Rigid-Body-Model approach, the energy stored in a torsional spring, U , is given by:

U =
1
2

Kθ
2 (4.4)

45



K is the equivalent spring constant, defined as:

K =
EI
L

(4.5)

where E is the modulus, and I is the section moment of inertia. θ is the angle of deflection given

by:

θ =
ML
EI

(4.6)

where M is the moment applied. The yield strength, σy, is the maximum stress before yield occurs.

At the point of yielding

σy =
Mt
2I

(4.7)

Solving for M and substituting into equation (4.6) we obtain

θ =
2σyIL
tEI

=
2σyL
tE

(4.8)

and substituting equations (4.8) and (4.5) into equation (4.4) we obtain

U =
1
2

[
EI
L

][
2σyL
tE

]2

(4.9)

Assuming a rectangular cross-section of the fold, I = bt3/12, and distributing the square leads to

an equation for energy absorbed before yielding:

U =
Ebt322σ2

y L2

2[12][Lt2E2]
=

btσ2
y L

6E
(4.10)

Simplifying and solving for t results in

t =
6UE
bσ2

y L
(4.11)

Substituting equation (4.11) into equation (4.3) gives:

46



m = b
6UE
bσ2

y L
[Lρ] =

6UEρ

σ2
y

(4.12)

Eliminating constants yields the relationship of

m α
Eρ

σ2
y

(4.13)

Therefore, the material index for a light, energy absorbent unit cell is:

Mindex1 =
σ2

y

Eρ
(4.14)

This material index shows that the ability of the Miura-ori to be light and to elastically

absorb energy is dependent on the yield strength, Young’s modulus and the density of the material.

Similarly, a material index for an inexpensive, energy absorbing design can be derived,

where Cm is the material price per kg. The result is

Mindex2 =
σ2

y

ECmρ
(4.15)

which shows the inverse relationship between the price of the material and its feasibility for this

application. There is a trade-off between light and inexpensive that the designer must consider

when choosing a suitable material.

These material indices can be used to identify suitable materials for the folds of the tessel-

lation using Ashby material plots. They assume a linear elastic material for energy absorption. For

materials with elastic properties with significant nonlinearities in the elastic range (e.g. hyperelas-

tic materials), additional analysis would be required.

4.2.2 Finite Element Model

The material indices enable the selection of a class of materials that maximize the stored

elastic energy in components with a general geometry. FEA is used to account for specific ge-

ometries, such as the Miura-ori and triangular corrugations (Figures 4.2 and 4.3), and to study

material stiffness effects. If a mechanism based on the Miura-ori tessellation could be constructed

to have perfectly flexible hinges and rigid panels, an applied load to the vertex of one unit cell
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Figure 4.2: FEA model of a five-by-ten Miura-ori tessellation

Figure 4.3: FEA model of a triangular wave corrugation.

would create a uniform deflection on each of the corresponding vertices of every unit cell across

the tessellation. In the case of the triangular corrugation, rigid panels and flexible hinges would

result in the deflection of just one of the corrugation peaks while the rest of the corrugation would

remain undeflected.

In reality, the hinges are not perfectly flexible and the panels are not rigid, thus the de-

flection and the force that are transferred across the corrugations may decrease as a function of

the distance from the loaded point. The stiffness ratio, SR, is defined to account for this nonideal
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Energy Absorbing Application of Miura-ori 

 Physical prototypes of a Miura-ori tessellation made from a non-paper material suitable 

for energy absorption applications will be designed, built and tested.  The focus of the project 

will be to explore methods of achieving the characteristic auxetic kinematic behavior of the 

Miura-ori while also absorbing energy through straining of some part of the material.   

 Preliminary work has been completed on adapting the Miura-ori tessellation for the 

particular application of a bouldering crash pad.  Bouldering is a form of rock climbing that is 

done on low rocks and cliffs.  Since the climbers are typically not far off the ground, rather than 

using a rope to protect from falls, they place large foam pads, called crash pads, below 

themselves to absorb the energy from a fall.  These foam pads are large and can be awkward to 

carry to a climbing area.  It was thought that the Miura-ori tessellation would be well suited for 

developing a crash pad that would be highly compactable and therefore more easily transported. 

a 

b 

α 

h 

Figure 10 – Parameters of the Miura-ori tessellation. Figure 4.4: Dimensionsal paramaters Miura-ori unit cell.

behavior and is defined as the relative stiffness of the hinges to the stiffness of the panels. FEA

was used to study the affects of this parameter on the deflection and force transfer characteristics

of the Miura-ori and triangular corrugations.

The FEA was completed using a static, non-linear analysis in ANSYS. A five by ten tes-

sellation (Figure 4.2) was constructed by using Shell181 elements. The dimensional parameters

of the unit cell are shown in Figure 4.4. The lengths of a and b were both equal to 2.54 cm, the

angle α was 45 degrees, the width of the hinges was 1/25 of the rhombus side length, and h was

selected so that the panels would be 55 degrees from horizontal. The panels were meshed with a

25 x 25 element grid. The hinges were meshed with three elements across the hinge in order to

more accurately model the highly localized deformations that occur there.

It was assumed that the main mode of deflection of the panels and hinges is in bending and

therefore have a stiffness of EI. The relative stiffness of the panels and hinges can be controlled by

assigning either different elastic moduli or area moments of inertia to the elements of the panels

and hinges. For the purpose of this analysis, the moduli of the hinges were changed as a fraction

of the moduli of the panels. Therefore, for this particular case the stiffness ratio is defined as:

SR =
Ehinge

Epanel
(4.16)
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where Ehinge and Epanel are the modulli of the hinge and panel materials respectively. Analyses

were run for stiffness ratios of 0.5, 0.1, 0.05, and 0.01. A displacement load in the vertical, Z-

direction was applied to the central vertex. The loaded vertex was constrained from motion in the

X and Y directions. All vertices interfacing with the Z = 0 plane were constrained to move in the

X-Y plane. To simplify the model, a symmetry boundary condition was imposed to the nodes lying

on the X-Z plane at Y=0.

A similar FEA was conducted using a model for a triangular corrugation as shown in Figure

4.3. The overall dimensions and corrugation height match those of the Miura-ori model as well as

the loading and boundary conditions. These analyses allow for a comparison between the energy

absorption and force distribution properties of a Miura-ori tessellation with those of a triangular

corrugation.

The FEA is used to measure the applied force at the central vertex, the displacement of the

top, unconstrained vertices and the reaction forces on the bottom (Z = 0), vertically-constrained

vertices for the Miura-ori and the triangular corrugations. From the force and displacement data,

we can calculate the energy absorbed by the corrugations and see the distribution of the transferred

force. Typically, energy absorbing components should absorb the kinetic energy of a given force

with a minimum peak force transferred through the component. A design that distributes the load

well will have a smaller peak reaction force on the bottom of the pad compared to the applied load.

Also, in addition to calculating the total energy absorbed for each SR, it will be desirable to also

calculate the energy absorbed for a given force for each SR. This allows for the comparison of the

Miura-ori and triangular corrugations for how efficiently they absorb energy based on SR.

4.3 Results and Discussion

4.3.1 Ashby Plots for Material Selection

The first step in the material selection process is to screen potential material choices based

on their elastic strain value (Sy/E). Materials with an Sy/E value of less than 0.01 are not consid-

ered as they may not allow for enough elastic deflection and energy absorption required for many

applications. The resultant set of materials are then plotted on Ashby charts with axes given by the

critical material properties identified in the material indices developed above.
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Figure 4.5: Ashby plot of specific yield strength vs. specific modulus.

The derived material indices provide a coupling of the individual material properties in

a manner specific to achieving light weight, energy absorbing designs and cost effective, energy

absorbing designs. Plotting the material properties with axes on a logarithmic scale allows specific

values of the material indices to be plotted as linear contours. For example, the straight line in

the bottom rigt corner of Figure 4.5 shows the slope of the line for constant values of the material

index, Mindex1, Eq. (4.14).

To achieve designs that are energy absorbent and light weight, the material index should

be maximized. The value of the material index increases moving towards the top left of the chart,

which would indicate that materials that lie in the top left corner would be good candidates. Some

of the candidate materials would include Polyurethane, Isoprene, and Neoprene.

Figure 4.6 can be used with the second index, Mindex2, Eq. (4.15), to identify materials

for a cost effective, energy-absorbing design. Applying the same method to create contours for

the material index, good candidates again lie in the top left corner of the chart. Some candidate

materials for the case where an inexpensive, energy- absorbing material is the objective for an

application are Polyurethane, Isoprene, Rubber, Polychloroprene, and EVA.
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Figure 4.6: Ashby plot of specific yield strength vs. specific modulus with cost.

Designers would also need to take other factors into consideration while making a material

selection. For example, while a raw material may be inexpensive, the manufacturing process

needed to produce the final design will also affect the cost. Also, since energy absorption requires

that the design handle multiple impacts, the fracture toughness and fatigue life of a material may

be considered.

4.3.2 Detailed Local Material Selection and Design

A critical factor that determines how well a mechanism based on origami tessellations will

absorb energy and distribute applied forces is the relative stiffness between the tessellated faces and

the folded or hinged joints. The stiffness of a panel or a beam under bending can be changed by

either changing its material properties (elastic modulus) or its geometry (area moment of inertia).

FEA was used to study the force and deflection characteristics of the Miura-ori as a function

of the stiffness ratio, SR, Eq. (4.16). The three-dimensional displacement of the top, unconstrained

vertices for a stiffness ratio of 0.01 and of 0.5 are shown in Figure 4.7. A decrease in the stiffness

ratio results in greater auxetic expansion, which coincides with greater vertical displacement of
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Figure 4.7: Three-dimensional displacement of the top vertices.

the top vertices across the tessellation. If the panels were perfectly rigid and the hinges flexible,

resulting in SR = 0, a surface plot of the vertex displacements would be perfectly flat, with every

vertex moving the same amount in the vertical direction across the tessellation. Figure 4.8 shows

the effect of SR on the average vertical displacement as a function of the distance from the load. A

lower stiffness ratio results in greater vertical displacement throughout the tessellation.

The reaction force on the central, loaded, vertex is plotted as a function of its percent

deflection for each of the four stiffness ratios in Figure 4.9. The percent deflection (%h) is defined

as

%h =
h
h0
∗100 (4.17)

where h is the vertical height of the central vertex and h0 is the starting height of the central vertex.

An interesting result is the linear nature of these force-deflection curves. This would indicate that

unlike many foams, the entire Miura-ori tessellation behaves as an equivalent linear spring. This

allows for simple analysis of the elastic energy absorption for mechanisms based on the Muira-ori.

The results show that a higher SR results in greater reaction forces on the central vertex. However,

a lower SR results in greater auxetic expansion of the tessellation.

Integrating the force-deflection data results in a plot of the energy absorbed as a function

of displacement, as presented in Figure 4.10. This shows that for a given displacement, increasing

the SR results in higher energy absorption; this simply reflects the fact that a stiffer component
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Figure 4.8: Vertical displacement of top vertices as a function of distance from central vertex for
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Figure 4.9: Reaction force on central vertex vs. vertical displacement for each SR.

will absorb more energy for a given displacement. As mentioned, however, a more meaningful

comparison for energy absorption applications would be to compare the energy absorbed for a

given force rather than a given displacement. If a particular force is selected, and the energy

absorption calculated for each SR at that force, we can compare the energy absorption as a function

of SR, as presented in Figure 4.11.

It can be seen that lower SR corresponds to greater energy absorbed for a given force in both

the Miura-ori and triangular corrugations. However, the change in the energy absorbed is much
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Figure 4.10: Absorbed energy as a function of vertical displacement of central vertex for each SR.
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Figure 4.11: Absorbed energy for a given force as a function of stiffness ratio.

greater in the Miura-ori than the triangular corrugation. Since a lower stiffness ratio corresponds

to more energy absorption for a given force and greater auxetic expansion of the tessellation, it is

reasonable to conclude that the auxetic expansion of the tessellation is a mechanism for more effi-

cient energy absorption, especially when compared to a basic triangular corrugation that expands

much less.

Another important function of energy absorbing devices is their ability to distribute an

applied load over a larger area. The reaction forces on the bottom vertices of the tessellation
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were compared for each SR. The ability of the corrugation to distribute a force can be defined by

evaluating a parameter referred to in this paper as the force ratio, FR, such that

FR =
Fmax

Fapplied
(4.18)

where Fmax is the maximum of the reaction forces acting on the vertices in the Z=0 plane and

Fapplied is the force applied to the central vertex estimated as the sum of the reaction forces. A

larger value of FR indicates a bigger difference between the maximum force at any point under the

tessellation and the applied force. This will be the case if the force is not well-distributed across

the sheet. Figure 4.12 shows this force ratio as a function of the stiffness ratio for the Miura-ori

and the triangular corrugation. It can be seen that a larger stiffness ratio results in increased force

distribution. Also, the FR of the Miura-ori is much greater than that of the triangular corrugation

indicating greater force distribution.

Changing the stiffness ratio results in opposing effects on energy absorption and force

distribution. A reduction in the SR to increase energy absorption produces a tessellation that is

less effective at distributing an applied load. It is therefore necessary for designers to evaluate

the specific application and select the SR that will result in the desired balance between energy

absorption and force distribution.

It should be noted that the FR is a non-dimensional parameter used for comparing the

effects of changing the SR. It is dependent on the boundary conditions of the FEA. The bottom

vertices of the tessellated sheet were constrained in the vertical direction which resulted in some

negative reaction forces. These negative forces generally occurred at the same vertices for each SR

analysis and were accounted for in the estimation of Fapplied for each SR.

4.3.3 Application Example

The following section provides an example of how this method could be applied to select a

material for use in an origami-inspired, compliant corrugation for energy absorption. One potential

application of a Miura-ori sheet would be as padding inside a shipping box to protect an item such

as a laptop computer. The desired function of the design is to be lightweight and energy absorbent.
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Figure 4.12: Reaction force ratio as a function of stiffness ratio.

First, materials are filtered according to their elastic strain and modulus. To allow for

deflection of the compliant joints or hinges in the tessellated sheet, it is preferable that the material

have an elastic strain greater than 0.01. Also, the tessellation panels should resist deflection, so

materials are additionally filtered to eliminate any with an elastic modulus below 100 MPa. In this

example, this is done using the material database, CES Edupack.

The subset of materials is then plotted on an Ashby plot as shown in Figure 4.13. A contour

line of constant values of the material index Mindex1 is plotted to aid in identifying the materials

that maximize the index where the contours increase from right to left. Figure 4.13 shows four

possible materials in the maximum region. Leather could be eliminated as not being cost effective,

which leaves three polymers; Ionomers, PTFE and Thermoplastics. The final selection could be

made based on other design factors such as manufacturability, availability, cost, etc.

The last material-related design decision to make is selecting a stiffness ration, SR, for the

tessellation. To protect a laptop computer during shipping, energy absorption as well as distribution

of impact forces are needed. A smaller SR will absorb more energy while a larger SR will distribute

forces. By evaluating the energy and force ratio plots from the FEA (Figures4.11 and 4.12), it

can be seen that a SR of 0.05 provides a large amount of energy absorption without significantly

changing its FR and is therefore a good compromise between the competing objectives. A possible

implementation of the stiffness ratio in the design would be to make the thickness of the material
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Figure 4.13: Material selection plot after screening based on elastic strain and modulus.

in the joint or hinge about 37% of the thickness of the panel. Additionally, some space would need

to be allowed around the edges of the Miura-ori padding to allow for some in-plane expansion of

the sheet under load.

4.4 Conclusions

There are many applications where elastic energy absorption and force distribution are

needed. The unique mechanical properties of some origami-inspired mechanisms based on folded

tessellations, such as the Miura-ori pattern, may prove useful in these applications. Since these

mechanisms rely on the deformation of their folds or hinges to achieve their motion, they are con-

sidered compliant mechanisms and can be analysed by applying compliant mechanism theory. This

study has investigated some material-related issues pertaining to the design of origami-inspired

elastic energy absorption and force distribution mechanisms which had previously not been stud-

ied. A three-step method was presented for selecting materials for origami-inspired compliant

corrugations.

The material indices derived can enable the identification of materials that will either be

light and energy absorbent, or cost effective and energy absorbent. These material indices can
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be used with Ashby plots of many materials to identify the materials which optimize the material

indices.

The stiffness ratio is defined as the relative stiffness of the folds or compliant hinges to

the panels and is helpful in addressing the nonideal behavior of the system. Using finite element

analysis, this stiffness ratio was found to affect both the energy absorption and force distribution

characteristics of the Miura-ori tessellation. A lower stiffness ratio allows for more auxetic ex-

pansion of the mechanism which results in greater energy absorption. A higher stiffness ratio will

distribute an applied force across more of the tessellated sheet.

The stiffness ratio can be varied by changing the modulus of the hinge elements relative to

the panel elements or by adjusting the material thickness, thereby changing the moment of inertia

of the two areas. For designers, both options may be available for creating the desired stiffness

ratio. A tessellation could be created by using two different materials for the hinges and panels.

This would allow the sheet to have a consistent cross sectional thickness. Alternatively, a single

material could be used and manufactured or processed to create a different thickness at the hinges

compared to the panels. This may be achieved through machining, molding, for other forming

operations.

While the methods and analyses developed in this study focus specifically on the Miura-ori

pattern, they may be applied to other origami tessellations when used in mechanisms for energy

absorption or force distribution.

Other factors relating to the elastic energy absorbing characteristics of origami tessellations

should be considered in future work. It will be important to study the geometric effects of the tes-

sellated shape; both changes to a given base shape and comparing different tessellated patterns.

Also, the dynamic effects of impacts on energy absorption and force distribution for origami tes-

sellations should be studied. The auxetic motion of origami tessellations may have other benefits

when used for energy absorption. For example, attaching an energy absorbing membrane to the

tessellation and straining it through the auxetic expansion, is a concept that will also be pursued in

future work.
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CHAPTER 5. CONCLUSION

Compliant corrugations may provide useful means for engineers to absorb kinetic energy

in certain applications. An innovative padding concept was investigated that may be useful to meet

the needs of athletes to provide a light, effective padding that protects them from impact injuries

and does not interfere with their ability to compete in their sport. It was found that the type of

wave shape of the corrugation may not be a major factor in the energy absorption and that the

best performance of a corrugation for elastic energy absorption is achieved when the wave has

peak-to-peak height and length that are equal.

The adaptation of origami tessellations to create new corrugation configurations shows

promise for energy absorption applications. Analytical models were developed to investigate how

the geometrical parameters of the Miura-ori tessellation affect its elastic energy absorption prop-

erties. It was found that the starting height of the central vertex of the unit cell affects the shape of

its force-deflection response. The effects of the side lengths and the interior acute angle of the tes-

sellated parallelogram of the Miura-ori were also investigated. It was found that energy absorption

and peak force tended to increase with increasing a/b and decreasing α with the exception that for

the membrane model, more energy is absorbed in the midrange α between 40 and 60 degrees.

A three-step method was presented for selecting materials for origami-inspired compliant

corrugations. First, materials are screened based on their elastic strain and modulus values. Second,

the Ashby method is applied as a means to refine the choice of material further by optimizing

particular properties of the final component (such as mass, cost, resilience). Third, specific stiffness

characteristics are chosen to deliver improved force distribution and energy absorption properties

for a peak desired force transfer.

Auxetic expansion is a efficient means of absorbing energy. Using finite element analysis,

the stiffness ratio was found to affect both the energy absorption and force distribution character-

istics of the Miura-ori tessellation. A lower stiffness ratio allows for more auxetic expansion of
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the mechanism which results in greater energy absorption. A higher stiffness ratio will distribute

an applied force across more of the tessellated sheet. Furthermore, the Miura-ori tessellation was

shown to have both better energy absorption and force distribution abilities when compared to a

triangular wave corrugation. The ANSYS batch files used for the FEA are included in Appendix

A.

While the models, methods and analyses developed in this research focus specifically on

the Miura-ori pattern, they may be applied to other origami tessellations when used in compliant

corrugations for energy absorption.

5.1 Summary of Contributions

The primary contributions of this research are:

1. Modeling and testing of a corrugated padding concept.

2. Improved understanding of wave shape effects on energy absorption of compliant cor-

rugations.

3. Derivation and verification of kinetic models of two energy-absorbing modes of the

Miura-ori unit cell.

4. Analyses showing advantages of auxetic expansion.

5. Development of a material selection process for origami-inspired compliant corruga-

tions.

5.2 Suggested Future Work

Further development of the corrugated padding concept will increase its attractiveness as

a commercially viable product. A key advantage of the concept is provided by the mechanical

behavior of the corrugation. Corrugating a sheet of material increases its bending stiffness in one

direction while maintaining a lower bending stiffness in another direction. This idea may be ex-

ploited to produce padding specific to a certain body part and motion. Other corrugation shapes

may also prove beneficial for certain motions or applications. For example, rather than a straight

corrugation, curved or orthogonal corrugations may also be beneficial. Also, other materials and
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manufacturing processes may be investigated that would produce lighter designs while still pro-

viding a desired level of protection.

Another feature of the corrugated padding concept is the soft outer surface resulting from

the harder wave being embedded in a softer foam. A soft surface pad when worn for protection

during a impact sport, may provide additional protection to opposing athletes. For example, it has

been shown that a softer shoulder pad in hockey may lower the risk of concussions for players in

helmet to shoulder contacts [89]. Further research is warranted to explore such advantages.

This work lays a theoretical foundation for the use of the Miura-ori or similar origami

tessellations in energy absorption applications. Further work could be done to investigate how the

models could be used to “tune” an energy absorption device based on the Miura-ori to achieve

application-specific force deflection curves.

During the course of this research, several prototypes were built and many manufacturing

difficulties and hardware limitations were encountered. As a summer project, an attempt was made

to build an energy absorbing pad (called a crash pad) that could be used for the bouldering style

of rock climbing. The final report of that project is included in Appendix B in order to capture the

lessons learned. More exploration of materials and manufacturing processes to build mechanisms

that achieve the desired motion while also absorbing energy will be necessary.

The analyses of the origami-based mechanisms in this research centered on a quasi-static

approach. However, most applications for such designs will be highly dynamic, impact situations.

Therefore, he dynamic effects of impacts on energy absorption and force distribution for origami

tessellations should be studied.

Lastly, the affects of combining unit cells in different configurations should be studied.

Some configurations could include stacking tessellated sheets in a mirrored (peak-to-peak) or

aligned (peak-to-valley) configuration. Some testing done as part of this research suggests a peak-

to-peak stacking may provide additional mechanical advantage to increase the auxetic expansion

of the tessellated sheet. Future work in this area may provide new insights into potential uses of

these designs.
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APPENDIX A. ANSYS BATCH FILES

This appendix contains the ANSYS batch files used for the FEA of the Miura-ori and

triangular-wave corrugations.
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1   !Title: ShellMiura
2   !Author: Sean Tolman
3   !Date: November, 2013
4   
5   FINISH
6   /CLEAR
7   FINISH
8   
9   !/CWD,'/auto/fsb/st72/Miura/ANSYS/Shell'
10   /FILNAM,r5,1
11   
12   /BEGIN
13   
14   ! Define Constants
15   pi=acos(-1)
16   a = 1 !Side length of Parallelogram
17   b = 1
18   alpha1 = 55*pi/180 !Interior angles of parallelogram
19   alpha2 = pi/2-alpha1
20   phi = 55*pi/180 !Angle of side a from horizontal
21   zeta = 2*(pi/2-phi) !Angles used for Miura Kinematic Equations
22   psi = pi/2-alpha1
23   l = 1/25 !Ratio used to determine hinge size
24   
25   !Miura Kinematic equations
26   gamma2 = 

pi-acos((cos(zeta)-cos(alpha1)*cos(alpha2))/(sin(alpha1)*sin(alpha
2)))

27   gamma1 = 
acos(cos(gamma2)+(sin(alpha1)*sin(alpha2)*sin(2*gamma2)**2)/(1-cos
(zeta)))

28   theta = acos(1-cos(psi)**2*(1-cos(pi-gamma1)))
29   
30   offset1 = b*cos(theta/2) !Offsets used for Keypoint array
31   offset2 = b*sin(theta/2)
32   ndiv = 3 !Number of divisions for Hinge 

elements(short side)
33   ndiva = 25 !Number of divisions for Panel elements 

(long side)
34   
35   !Material Properties (lb, in, s)
36   E = 2.5e5 !modulus in psi
37   t = 1/32 !shell thickness
38   nu = 0.37 !Poisson's Ratio
39   
40   r = 0.01 !Stiffness Ratio (Hinge/Panel)
41   
42   FINISH
43   
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44   /PREP7
45   
46   !Define Element Properties
47   
48   ET,1,SHELL181 !Panel Elements
49   R,1,t,t,t,t !Real constants
50   MP,EX,1,E !Panel Material Properties
51   MP,PRXY,1,nu
52   MP,EX,2,E*r !Hinge Material Properties
53   MP,PRXY,2,nu
54   
55   !Define Keypoints
56   
57   K,1,0,0,a*sin(phi)
58   K,2,a*cos(phi),0,0
59   K,3,a*cos(phi)+a*l,0,0
60   K,4,2*a*cos(phi)+a*l,0,a*sin(phi)
61   K,5,2*a*cos(phi)+2*a*l,0,a*sin(phi)
62   K,6,0-offset1,0+offset2,a*sin(phi)
63   K,7,a*cos(phi)-offset1,0+offset2,0
64   K,8,a*cos(phi)+a*l-offset1,0+offset2,0
65   K,9,2*a*cos(phi)+a*l-offset1,0+offset2,a*sin(phi)
66   K,10,2*a*cos(phi)+2*a*l-offset1,0+offset2,a*sin(phi)
67   K,11,0-offset1,0+offset2+a*l,a*sin(phi)
68   K,12,a*cos(phi)-offset1,0+offset2+a*l,0
69   K,13,a*cos(phi)+a*l-offset1,0+offset2+a*l,0
70   K,14,2*a*cos(phi)+a*l-offset1,0+offset2+a*l,a*sin(phi)
71   K,15,2*a*cos(phi)+2*a*l-offset1,0+offset2+a*l,a*sin(phi)
72   K,16,0,0+2*offset2+a*l,a*sin(phi)
73   K,17,a*cos(phi),0+2*offset2+a*l,0
74   K,18,a*cos(phi)+a*l,0+2*offset2+a*l,0
75   K,19,2*a*cos(phi)+a*l,0+2*offset2+a*l,a*sin(phi)
76   K,20,2*a*cos(phi)+2*a*l,0+2*offset2+a*l,a*sin(phi)
77   K,21,0,0+2*offset2+2*a*l,a*sin(phi)
78   K,22,a*cos(phi),0+2*offset2+2*a*l,0
79   K,23,a*cos(phi)+a*l,0+2*offset2+2*a*l,0
80   K,24,2*a*cos(phi)+a*l,0+2*offset2+2*a*l,a*sin(phi)
81   K,25,2*a*cos(phi)+2*a*l,0+2*offset2+2*a*l,a*sin(phi)
82   K,26,0,-a*l/2,a*sin(phi)
83   K,27,a*cos(phi),-a*l/2,0
84   K,28,a*cos(phi)+a*l,-a*l/2,0
85   K,29,2*a*cos(phi)+a*l,-a*l/2,a*sin(phi)
86   K,30,2*a*cos(phi)+2*a*l,-a*l/2,a*sin(phi)
87   
88   !Define Lines
89   
90   LSTR,1,2 !line 1
91   LSTR,2,7 !line 2
92   LSTR,7,6 !line 3
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93   LSTR,6,1 !line 4
94   LSTR,2,3 !line 5
95   LSTR,7,8 !line 6
96   LSTR,3,4 !line 7
97   LSTR,4,9 !line 8
98   LSTR,9,8 !line 9
99   LSTR,8,3 !line 10
100   LSTR,4,5 !line 11
101   LSTR,9,10 !line 12
102   LSTR,10,5 !line 13
103   LSTR,6,11 !line 14
104   LSTR,7,12 !line 15
105   LSTR,8,13 !line 16
106   LSTR,9,14 !line 17
107   LSTR,10,15 !line 18
108   LSTR,11,12 !line 19
109   LSTR,12,17 !line 20
110   LSTR,17,16 !line 21
111   LSTR,16,11 !line 22
112   LSTR,12,13 !line 23
113   LSTR,17,18 !line 24
114   LSTR,13,14 !line 25
115   LSTR,14,19 !line 26
116   LSTR,19,18 !line 27
117   LSTR,18,13 !line 28
118   LSTR,14,15 !line 29
119   LSTR,19,20 !line 30
120   LSTR,15,20 !line 31
121   LSTR,16,21 !line 32
122   LSTR,17,22 !line 33
123   LSTR,18,23 !line 34
124   LSTR,19,24 !line 35
125   LSTR,20,25 !line 36
126   LSTR,21,22 !line 37
127   LSTR,22,23 !line 38
128   LSTR,23,24 !line 39
129   LSTR,24,25 !line 40
130   LSTR,1,26 !line 41
131   LSTR,2,27 !line 42
132   LSTR,3,28 !line 43
133   LSTR,4,29 !line 44
134   LSTR,5,30 !line 45
135   LSTR,26,27 !line 46
136   LSTR,27,28 !line 47
137   LSTR,28,29 !line 48
138   LSTR,29,30 !line 49
139   
140   ALLSEL,ALL
141   
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142   !Define Areas
143   AL,1,2,3,4 !area 1
144   AL,5,10,6,2 !area 2
145   AL,7,8,9,10 !area 3
146   AL,11,13,12,8 !area 4
147   AL,3,15,19,14 !area 5
148   AL,6,16,23,15 !area 6
149   AL,9,17,25,16 !area 7
150   AL,12,18,29,17 !area 8
151   AL,19,20,21,22 !area 9
152   AL,23,28,24,20 !area 10
153   AL,25,26,27,28 !area 11
154   AL,29,31,30,26 !area 12
155   AL,21,33,37,32 !area 13
156   AL,24,34,38,33 !area 14
157   AL,27,35,39,34 !area 15
158   AL,30,36,40,35 !area 16
159   AL,1,41,46,42 !area 17
160   AL,5,42,47,43 !area 18
161   AL,7,43,48,44 !area 19
162   AL,11,44,49,45 !area 20
163   
164   ! Assign Line Attributes
165   
166   LSEL,S,LENGTH,,a
167   LSEL,A,LENGTH,,b
168   LESIZE,ALL,,,ndiva
169   ALLSEL,ALL
170   LSEL,S,LENGTH,,a*l
171   LESIZE,ALL,,,ndiv
172   
173   !Assign Element Attributes to Areas
174   
175   ASEL,S,AREA,,1,3,2
176   ASEL,A,AREA,,9,11,2
177   AATT,1,1,1
178   ASEL,INVE
179   AATT,2,1,1
180   ALLSEL,ALL
181   
182   !Mesh Model
183   
184   !Mesh Hinges
185   MSHKEY,1
186   MSHAPE,0,2D
187   ASEL,S,MAT,,2
188   AMESH,all
189   ALLSEL,all
190   
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191   !Mesh Panels
192   MSHKEY,0
193   MSHAPE,0,2D !Quad elements
194   MOPT,EXPND,4
195   MOPT,TRANS,2
196   ASEL,S,MAT,,1
197   AMESH,all
198   ALLSEL,all
199   
200   !Copy Areas
201   
202   ASEL,S,LOC,Y,0,5
203   AGEN,5,ALL,,,0,2*(offset2+a*l),0,0,0,0        !Number of unit 

cells in y-dir
204   ASEL,ALL
205   AGEN,5,ALL,,,2*a*(cos(phi)+l),0,0,0,0,0 !Number of unit 

cells in x-dir
206   ASEL,ALL
207   AGEN,2,ALL,,,-10*a*(cos(phi)+l),0,0,0,0,0 !Doubles pattern 

in x-dir (-6 is multiple of x dir unit cells and 2)
208   !ASEL,ALL !Not needed if 

using symmetry BC
209   !AGEN,2,ALL,,,0,-6*(offset2+a*l),0,0,0,0
210   ALLSEL,ALL
211   NUMMRG,NODE !Merge 

coincident nodes and KP
212   NUMMRG,KP
213   
214   FINISH
215   
216   /SOL
217   
218   !Apply Boundary Conditions/Loads
219   
220   KSEL,S,LOC,Z,-0.5*a,0.01*a !"Table top" boundary 

condition
221   DK,ALL,UZ,0
222   ALLSEL,ALL
223   
224   NSEL,S,LOC,Y,-a*l/2 !Symmetry boundary 

condition, X-Z plane
225   D,ALL,UY,0
226   D,ALL,ROTX,0
227   D,ALL,ROTZ,0
228   ALLSEL,ALL
229   
230   NSEL,S,loc,y,0 !Apply displacement 

across hinge
231   NSEL,R,loc,x,0,-a*l
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232   CM,lapp,NODE
233   ALLSEL,all
234   
235   D,lapp,UX,0 !Fix KP 1 in X
236   D,lapp,UY,0
237   
238   D,lapp,UZ,-0.01 !Apply disp. load to KP 

1, load step 1
239   SOLCONTROL,ON
240   NSUBST,5,20,1
241   KBC,0
242   OUTRES,all,1
243   lswrite,1
244   
245   D,lapp,UZ,-0.05 !Load step 

2
246   SOLCONTROL,ON
247   NSUBST,5,50,5
248   KBC,0
249   OUTRES,all,1
250   lswrite,2
251   
252   D,lapp,UZ,-0.1 !Load step 3
253   SOLCONTROL,ON
254   NSUBST,10,50,10
255   KBC,0
256   OUTRES,all,1
257   lswrite,3
258   
259   D,lapp,UZ,-.3 !Load step 4
260   SOLCONTROL,ON
261   NSUBST,20,50,10
262   KBC,0
263   OUTRES,all,1
264   lswrite,4
265   
266   ANTYPE,0
267   LSSOLVE,1,4,1 !Solve load steps
268   
269   FINISH  
270   /DSCALE,1,1.0 
271   
272   /POST1
273   
274   KSEL,s,loc,z,a*sin(phi)
275   NSLK,s,1
276   NLIST,ALL,COORD
277   PRNSOL,U,SUM
278   ALLSEL,ALL
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279   
280   KSEL,s,loc,z,0
281   NSLK,s,1
282   NLIST,ALL,COORD
283   PRRSOL,FZ 
284   ALLSEL,ALL
285   
286   FINISH
287   
288   /POST26
289   
290   KSEL,s,kp,,1
291       NSLK,s
292       *get,nk2,node,0,num,max
293       ALLSEL,all
294   
295   KSEL,s,KP,,1177
296   NSLK,s
297   *get,nk3,node,0,num,max
298   ALLSEL,all
299   
300       NSOL,2,nk2,U,Z,uz2          !Z deflection of node at 

keypoint 1
301       RFORCE,3,nk2,F,Z,fz2 !Reaction forces of node at 

keypoint 1 
302   NSOL,4,nk3,U,Z,uz1177          !Z deflection of node at 

keypoint 1177
303       RFORCE,5,nk3,F,Z,fz1177 !Reaction forces of node at 

keypoint 1177
304   
305   FINISH
306   
307   
308   
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1   !Title: ShellWave
2   !Author: Sean Tolman
3   !Date: January, 2014
4   
5   FINISH
6   /CLEAR
7   FINISH
8   
9   !/CWD,'/auto/fsb/st72/Miura/ANSYS/Shell'
10   /FILNAM,W_r01,1
11   
12   /BEGIN
13   
14   !Define Constants
15   pi=acos(-1)
16   a = 1 !Side length of Wave
17   b = 0.7438 !Width of wave
18   phi = 55*pi/180 !Angle of side a from horizontal
19   l = 1/25 !Ratio used to determine panel hinge width
20   ndiv = 3 !Number of divisions for Hinge 

elements(short side)
21   ndiva = 10 !Number of divisions for Panel elements 

(long side)
22   
23   !Material Properties (lb, in, s)
24   E = 2.5e5 !modulus in psi
25   t = 1/32 !shell thickness
26   nu = 0.37 !Poisson's Ratio
27   
28   r = 0.5 !Stiffness Ratio (Hinge/Panel)
29   
30   FINISH
31   
32   /PREP7
33   
34   !Define Element Properties
35   
36   ET,1,SHELL181 !Panel Elements
37   R,1,t,t,t,t !Real constants
38   MP,EX,1,E !Material 1, Panel Material 

Properties
39   MP,PRXY,1,nu
40   MP,EX,2,E*r !material 2, Hinge Material 

Properties
41   MP,PRXY,2,nu
42   
43   !Define Keypoints
44   
45   K,1,0,0,a*sin(phi)
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46   K,2,a*l,0,a*sin(phi)
47   K,3,a*cos(phi)+a*l,0,0
48   K,4,a*cos(phi)+2*a*l,0,0
49   K,5,2*a*cos(phi)+2*a*l,0,a*sin(phi)
50   K,6,0,b,a*sin(phi)
51   K,7,a*l,b,a*sin(phi)
52   K,8,a*cos(phi)+a*l,b,0
53   K,9,a*cos(phi)+2*a*l,b,0
54   K,10,2*a*cos(phi)+2*a*l,b,a*sin(phi)
55   
56   !Define Lines
57   
58   LSTR,1,2 !line 1
59   LSTR,2,7 !line 2
60   LSTR,7,6 !line 3
61   LSTR,6,1 !line 4
62   LSTR,2,3 !line 5
63   LSTR,7,8 !line 6
64   LSTR,3,4 !line 7
65   LSTR,4,9 !line 8
66   LSTR,9,8 !line 9
67   LSTR,8,3 !line 10
68   LSTR,4,5 !line 11
69   LSTR,9,10 !line 12
70   LSTR,5,10 !line 13
71   ALLSEL,ALL
72   
73   !Define Areas
74   
75   AL,1,2,3,4 !area 1
76   AL,5,10,6,2 !area 2
77   AL,7,8,9,10 !area 3
78   AL,11,13,12,8 !area 4
79   
80   !Assign Line Attributes
81   
82   LSEL,S,LENGTH,,a
83   LESIZE,ALL,,,ndiva !Divisions for Short Side of 

Panel
84   ALLSEL,ALL
85   LSEL,S,LENGTH,,b !Divisions for Long Side of 

Panel
86   LESIZE,ALL,,,ndiva*b
87   ALLSEL,ALL
88   LSEL,S,LENGTH,,a*l !Divisions for Short Side of 

Hinge
89   LESIZE,ALL,,,ndiv
90   ALLSEL,ALL
91   
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92   !Assign Element Attributes to Areas
93   
94   ASEL,S,AREA,,2,4
95   AATT,1,1,1
96   ASEL,INVE
97   AATT,2,1,1
98   ALLSEL,ALL
99   
100   !Mesh Model
101   
102   !Mesh Hinges
103   MSHKEY,1
104   MSHAPE,0,2D
105   ASEL,ALL
106   AMESH,all
107   ALLSEL,all
108   
109   !Mesh Panels
110   !MSHKEY,1
111   !MSHAPE,0,2D !Quad elements
112   !ASEL,S,MAT,,1
113   !AMESH,all
114   !ALLSEL,all
115   
116   !Copy Areas
117   
118   ASEL,S,LOC,Y,0,5
119   AGEN,10,ALL,,,0,b,0,0,0,0        !Number of unit 

cells in y-dir
120   ASEL,ALL
121   AGEN,5,ALL,,,2*(a*cos(phi)+l*a),0,0,0,0,0 !Number of unit 

cells in x-dir
122   ASEL,ALL
123   AGEN,2,ALL,,,-10*(a*cos(phi)+l*a),0,0,0,0,0 !Doubles pattern 

in x-dir (-6 is multiple of x dir unit cells and 2)
124   ALLSEL,ALL
125   NUMMRG,NODE !Merge 

coincident nodes and KP
126   NUMMRG,KP
127   
128   FINISH
129   
130   !/EOF
131   
132   /SOL
133   
134   !Apply Boundary Conditions/Loads
135   
136   KSEL,S,LOC,Z,0 !"Table top" boundary condition
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137   DK,ALL,UZ,0
138   ALLSEL,ALL
139   
140   NSEL,S,LOC,Y,0 !Symmetry boundary 

condition, X-Z plane
141   D,ALL,UY,0
142   D,ALL,ROTX,0
143   D,ALL,ROTZ,0
144   ALLSEL,ALL
145   
146   NSEL,S,loc,y,0 !Apply displacement 

across hinge
147   NSEL,R,loc,x,0,a*l
148   CM,lapp,NODE
149   ALLSEL,all
150   
151   D,lapp,UX,0 !Fix KP 1 in X
152   D,lapp,UY,0
153   
154   D,lapp,UZ,-0.01 !Apply disp. load to KP 

1, load step 1
155   SOLCONTROL,ON
156   NSUBST,5,20,1
157   KBC,0
158   OUTRES,all,1
159   lswrite,1
160   
161   D,lapp,UZ,-0.05 !Load step 

2
162   SOLCONTROL,ON
163   NSUBST,5,50,5
164   KBC,0
165   OUTRES,all,1
166   lswrite,2
167   
168   D,lapp,UZ,-0.1 !Load step 3
169   SOLCONTROL,ON
170   NSUBST,10,50,10
171   KBC,0
172   OUTRES,all,1
173   lswrite,3
174   
175   D,lapp,UZ,-.3 !Load step 4
176   SOLCONTROL,ON
177   NSUBST,20,50,10
178   KBC,0
179   OUTRES,all,1
180   lswrite,4
181   
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182   ANTYPE,0
183   LSSOLVE,1,4,1 !Solve load steps
184   
185   FINISH
186   
187   /DSCALE,1,1.0 
188   
189   /EOF
190   
191   /POST1
192   
193   KSEL,s,loc,z,0
194   NSLK,s,1
195   NLIST,ALL,COORD
196   PRRSOL,FZ 
197   ALLSEL,ALL
198   
199   FINISH
200   
201   /POST26
202   
203   KSEL,s,kp,,1
204       NSLK,s
205       *get,nk1,node,0,num,max
206       ALLSEL,all
207   
208   KSEL,s,KP,,2
209   NSLK,s
210   *get,nk2,node,0,num,max
211   ALLSEL,all
212   
213       NSOL,2,nk1,U,Z,uz1          !Z deflection of node at 

keypoint 1
214       RFORCE,3,nk1,F,Z,fz1 !Reaction forces of node at 

keypoint 1 
215   NSOL,4,nk2,U,Z,uz2          !Z deflection of node at 

keypoint 2
216       RFORCE,5,nk2,F,Z,fz2 !Reaction forces of node at 

keypoint 2
217   
218   PRVAR,2,3,4,5
219   
220   FINISH
221   
222   
223   
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APPENDIX B. CRASH PAD PROJECT FINAL REPORT

The following pages are comprised of the final report for a design project completed from

May to August of 2013. This Summer Burst Project, sponsored by the BYU Compliant Mech-

anisms Research Group was supervised by Terry Batemen and lead by Sean Tolman with team

members Jessica Morgan, Gary Ellignson, Greg Belnap and Mary Wilson.

83



CMR Summer Burst Project 
Energy Absorbing 

Final Report 

 

1. Introduction/Motivation 

 
 Bouldering is a form of rock climbing where the climbers, rather than trying to scale a 
high rock face or mountain, focus on difficult and technical climbing challenges that are closer to 
the ground.  Bouldering routes typically reach no more than 10 to 20 feet above the ground and 
the most difficult part of the route is often just a few feet off the ground.  Because of this, 
climbers typically do not use ropes or harnesses while bouldering.  To protect themselves from 
injury due to falls, climbers place large foam pads, called “crash pads”, on the ground below 
them as they climb. 

Several types of crash pads are available on the market for bouldering. All of these 
crash pads use the same basic design of utilizing heavy foam pads to absorb the energy of a 
fall. These foam pads are effective for the energy absorption involved in a bouldering fall but 
have several inconvenient drawbacks.  Many bouldering locations are remote and only 
accessible by hiking, requiring climbers to carry the crash pad to the climbing site. The heavy 
foam used in crash pads is not easily compressed or compactable, making it awkward to 
transport to the climbing site and challenging to store in between use. The Tessapad is 
designed to be a reliable crash pad comparable to those on the market with the benefit of being 
able to compress to half of its fully deployed size. The compactability of the Tessapad makes it 
ideal for transporting to and from the climbing site and storing in between use with the same 
injury protection of a traditional crash pad.  

 

1.1 Design Requirement Goals 
 
 The Tessapad needs to match or outperform current marketed crash pads in the areas 
of cushioning a person’s fall, durability, transportability, easy compaction and deployed stability 
in order to make it a viable product. A statement on each of these features meeting customer’s 
needs is as follows:  

1. The pad needs to cushion a person’s fall by decreasing momentum. 
2. The pad needs to be able to sustain repeated falls without performance loss. 
3. The pad needs to be lighter and—when compressed—more compact than the  

leading crash pad. 
4. The pad needs to be easily re-compressed once deployed. 
5. The pad needs to be stable in its deployed state. 
Each of these features are important to the design of the Tessapad to make it a 

marketable crash pad.  
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There is currently no set standard for bouldering crash pads specifying the energy 
absorbing properties of the pad. Thus, crash pads readily on the market were used to set 
quantified energy absorption, density and weight benchmarks for the Tessapad, which are 
related in Table 1.  
 To determine the energy absorption benchmark, drop tests were done on a current 
commercially available crash pad using a 6.35 kg (14 lb) bowling ball. The crash pad was 
placed on top of a force plate to measure force over time and deflection. The bowling ball was 
dropped from a height of 2.13 m (7 ft.) The results of these tests are reflected in Figure 1 
 
Table 1 - Crash Pad Design Metrics 

Need Metric Units Test Values

Cushioned Fall Acceleration m/s2 Measure the acceleration that 
occurs when landing on the pad 
using force plates and a bowling 
ball. 

See Figs 1 
and 2.  

Durability Acceleration 
Deviation 

% m/s2 Subject the pad to 10 repeated 
impacts. Using force plates, 
measure for any deviation in 
acceleration after each use. 

< 20% 
acceleration 
deviation 

Transportability Density lb/ft3 Determine the ratio of the pad’s 
weight to both its deployed and 
un-deployed size. 

Deployed:
< 3lbs/ft3 

 Size ft3 Measure the pad size in its 
deployed state, and then 
measure the pad’s size in its 
compacted state. 

Compacted 
size 50% of 
deployed 
size 

Easy Compaction Compression 
Force 

lbs Using spring scales, measure the 
necessary force for keeping the 
pad in its fully-compressed state. 

<5lbs 

Deployed Stability Pass/Fail N/A Observe if the pad remains fully 
deployed under no external 
loads. 

N/A 
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Figure 1- The force deflection curve, the displacement (meters) of the pad versus the force 
(Newtons) in the drop test.  
 

 
Figure 2 - The force (Newtons) over time (seconds)  in the drop test.  
 
 
showing the force deflection curve and Figure 2 showing the drop test force data. Both Fig 1 
and Fig 2 show that the pad needs to be capable of withstanding 6000 N of force without 
bottoming out. The Tessapad needs to respond similarly to this tested crash pad under a 
dymanic load. 
  These outlined design requirements will make the Tessapad a competitive product in the 
market of bouldering crash pads by meeting the basic need of energy absorption and the added 
benefits of compactability that have never been applied before to crash pads. 
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2. Concepts 

 
 Our prototype utilizes the Miura-ori, an origami fold pattern invented by Japanese 
astrophysicist, Koryo Miura. The Miura-ori pattern consists of parallelograms, as shown in 
Figure 3, connected with mountain and valley folds on all four sides. A plastic version of Miura-
ori uses living hinges to connect the parallelograms and provide movement. Miura-ori has 
distinct properties beneficial to energy absorption. Any downward force on the Miura-ori plastic 
layer is translated into planar expansion of the material in two orthogonal directions. 

 
Figure 3- Top view of Miura-ori pattern 

 
The main concept of the Tessapad is to exploit the kinematic properties of the Miura-ori.  

It is designed to have comparable energy absorption to current marketable crash pads with the 
added benefit of compactability. This rules out the traditional use of foam as the energy 
absorber as it is heavy, bulky and does not easily compress. Using innovative design methods 
inspired by origami the Tessapad takes a different approach, combining energy absorption and 
compactability into the same features. 

The Tessapad utilizes multiple layers of the Miura-ori pattern stacked on top of each 
other as shown in Figure 4. Each layer is fastened to a flat, elastic membrane which serves as 
the main mechanism for absorbing the energy placed on the pad.  Upon impact, the Miura-ori 
pattern expands and the elastic membrane absorbs the energy and provides some padding. 
The use of multiple layers allow the pad to be thick while each individual layer has a relatively 
small tessellation pattern.  The layers also allow multiple membranes to be used in absorbing 
the energy needed.   

The actual kinematic properties of the Miura-ori are dependent on a set of input 
variables such as the size and angle of each parallelogram in the overall pattern. The 
optimization of these variables best suited for energy absorption will be discussed in the 
optimization section.  
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Figure 4 - Parameters of the Miura-ori tessellation.  

 

3. Optimization  
  
 A mathematical model was developed for the energy absorption of a Miura-ori unit cell 
and the attached membrane.  The model was developed by considering the Miura-ori unit cell to 
be a spherical mechanism and the attached membrane to be two orthogonal linear springs.  A 
virtual work analysis was applied to determine the work done by a force orthogonal to the plane 
of the Miura-ori.  See Appendix 7.5 for the mathematical model.  As mentioned, the Miura-ori is 
a tessellation of parallelograms that are defined by the length of their adjacent sides ܽ and ܾ 

and the acute interior angle between them, α as shown in Figure 4.  For given side lengths of ܽ =1.25” and ܾ =1.5”, the model was used to find the interior angle, α, that results in the 

maximum total work energy for the compression of the unit cell.  It was found that an acute 
interior angle (α in Figure 6) of about 55 degrees would yield the most energy absorption.  The 
parallelogram side lengths were chosen based on the desired dimensions for the final prototype 
and, according to the model, were not critical to maximizing the energy absorption.  The height 
h was chosen to achieve a planar compaction of the sheet of 50%. 

 
4. Product 

 
The living hinges as joints in the material make it plausible for the Miura-ori to maintain 

its properties of motion and durability  
The current design utilizes 1/16” polypropylene as the plastic for the Miura-ori layers.  

The plastic sheet was folded after living hinges that were cut into the material.  The living hinges 
were cut on a CNC mill using a 1/16” ball end mill. Optimally the living hinges in polypropylene 
would be cut down to leave them about .008” thick. However, because of the size of the end 
prototype there are inaccuracies inherent in cutting this relatively large sheet in a mill, the 
hinges were approximately .020 ± .015”. 
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  Figure 5 – Drawing of crash pad layering      Figure 6 – Side view of crash pad design        
showing layering of Miura-ori and elastic 
membrane. 

 
The Miura-ori layers are stacked such that a valley in one layer is fastened to the 

mountain of the proceeding layer. They are separated only by the elastic membrane. In the 
prototype, the elastic membrane is made up of 2 mm thick neoprene. The layers of neoprene 
and polypropylene Miura-ori are attached using sewing. Holes are punched in the hinges of the 
Miura-ori pattern using an industrial sewing machine to facilitate sewing the layers together. A 
layer of 5 mm thick neoprene is fastened to the top surface of the pad to provide extra padding 
upon impact.   

 

 
 

Sewing 
 

Living Hinge 
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5. Results 

 

 During assembly of the pad it was discovered that the thick hinges were to stiff to 
fold and move.  For this reason several of the hinges were cut and taped with Duct 
Tape.  See Appendix 7.1.1 for more details.   

In an initial pretest, just after assembly was complete, one of the middle layers 
became inverted, see appendix 7.1.3.    

Testing was done on the 14” by 19.75” prototype to verify the energy absorption of the 
pad and compare it to the aforementioned tests done on a standard crash pad. The tested 
prototype consists of only 3 layers due to the difficulty of fastening the layers. The prototype 
Tessapad was tested in the same manner by placing it on a force plate and dropping a 6.35 kg 
(14 lb) bowling ball from a height of 2.13 m (7ft). The test bowling ball bottomed out and 
experienced an acceleration force of 11000 N, twice the acceleration force of the benchmark for 
a standard crash pad. The test was unable to be repeated due to the limitations of the prototype 
and force plate, therefore it was impossible to test deviations in the acceleration for repeated 
drops. As for the other set benchmarks, the Tessapad has a density of 6.99 lb/ft3 and it requires 
> 5lbs for compression to its compacted state. On the other hand the Tessapad is 50-60% 
compactable and is stable in its deployed state. The current prototype does not meet all of our 
desired goals on the performance metrics, but it is highly compactable and shows potential for 
energy absorption.  
 
Section of results of the drop test.  Maybe a plot of the data like the one in the goals section… 
 

90



After the testing was completed the prototype was examined.  It was found that the bistable 
inverting accrued where the bowling ball had impacted, and failures in the hinges were also 
visible.  See the figures below. 

 

 
 
 

6. Conclusion 

 
 The current Tessapad prototype does not meet all the desired metrics as described in 
Table 1. The Tessapad prototype did not sufficiently accelerate a load, is not durable, the 
density is twice as that of the average crash pad,and requires larger than projected force for 
compression. On the plus side the Tessapad is stable in its deployed state and overshoots the 
benchmark for compactability at being able to compress 50-60% of its deployed state.  

Many of the variables in the Tessapad design that affect these metrics are adjustable 
and need to be modified in the right combination to make to pad work for it desired function.  
There seems to be several tradeoffs that still need to be looked at.  For example, increased joint 
strength and increased compactibility are two desired improvements for future prototypes but 
they seems two require opposite actions.  Increasing the joint strength requires that the joints be 
make thick enough not to break but decreasing the force to compact the pad to make it more 
compactible requires thinner, more flexible joint.  Please see the appendix for more tradeoffs to 
be solved.  

91



 Further research is needed to solve the above mentioned tradeoffs and to select 
material to make it more lightweight and efficient, hinge type to improve energy absorption and 
compression force, fastening methods to make it more durable and easier to manufacture. Still 
the miura ori pattern shows great potential as a compactable energy absorber with the correct 
implementation. In conclusion, the Tessapad’s method of using a combination of miura ori and 
elastic membrane layers has not been eliminated as viable energy absorber and further 
research is needed.  
 

7. Appendix 

 

 
7.1 Challenges 
 

Many challenges presented themselves during the design of the Tessapad including the 
hinge selection and implementation, constructing the Miura-ori design and achieving energy 
absorption. 
 
7.1.1 Hinges 
 

Hinges are used to mimic the folds of Miura-ori pattern in paper. Many different types of 
hinges are possible in the design to give the necessary shape of Miura-ori. The hinges in the 
Tessapad need to be able to move through a full range of motion thus living hinges were 
selected. Living hinges provide ease of motion and are simpler to fabricate with limited facilities.  
Fabricating the living hinges in the Miura-ori pattern still proved to be difficult. For the Tessapad, 
the hinges needed to be about eight thousandths of an inch thick in order to be a true living 
hinge. The machine of choice to provide the most accuracy was a CNC mill. Despite the CNC 
mill’s capabilities, tolerances were only able to create hinges between twenty and thirty 
thousandths of an inch, causing the hinges to be much thicker and stiffer than desired.  
 
7.1.2 Construction 

 
Early on, it was discovered that the Miura-ori pattern exhibited more desirable motion 

when stacked in multiple layers as seen in Figure 4. The resulting challenge was how to attach 
multiple layers. With two layers, attachment is simple by sewing corresponding ridges together. 
When attaching three or more layers together, conventional sewing becomes difficult. Some 
considerations in solving this problem included the use of rivets and even velcro between 
layers. For the Tessapad prototype, the use of a curved hook needle was necessary to attach 
subsequent layers. Other fastening methods were considered but not possible to implement 
with limited time and resources.  
 
7.1.3 Bistable Buckling 
 

Another difficulty of the Miura-ori pattern is buckling. The living hinges in the Miura-ori 
pattern form bistable cells, making it possible for the mountains in the pattern to pop into 
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valleys. Once in its other stable state it is difficult to push back into its original stable position 
especially when stacked in layers. The buckling also makes it difficult to compact. Buckling 
factors should be implemented into the design of the crash pad.  
 

7.2 Material Selection 
 
7.2.1 Miura-ori layer 
 

The Tessapad is an application that requires materials to be strong and flexible; in 
choosing the material for the Miura-ori pattern, polymers seemed the most likely candidates. 
Because the design employs the use of living hinges, polypropylene is our best choice due to its 
high fatigue limit. 

 
7.2.2 Elastic Membrane layer 
 

When the design included the use of an elastic membrane, fabrics took precedent over 
rubbers and foams because it was known that the Miura-ori layers would be attached by 
sewing. In early tests, fabrics with high elasticity (such as spandex) were considered but were 
ultimately discarded because the material stretched easily under minimal tensile forces. After 
further research, neoprene fabric (the primary material used in wetsuits) seemed to offer good 
stretch coupled with strength under tensile loads and became our primary membrane for 
prototyping. 
 Instron tests were performed on the neoprene fabric to determine its modulus of 
elasticity and if it would be a suitable energy absorber in our application. The average modulus 
found from the tests from our 2 mm thick neoprene fabric was 0.1151075 MPa.  However, 
neoprene fabric is not perfectly elastic; each time the fabric is stretched, its shape deforms 
slightly, effectively losing some of its stretch with each use. As such, further material 
investigation is needed in finding a suitable membrane material for the Tessapad. 
 

7.3 Manufacturing Ideas  
 

There are several possible solutions to manufacturing the Tessapad that will help to 
overcome some of the challenges presented previously. As for the polypropylene etched with 
the Miura-ori pattern, conventional machining proved too inaccurate and time consuming to 
create effective living hinges. Injection molding also seems unlikely due to the pad’s necessary 
size and features. A plausible solution is to heat the polypropylene then stamp or roll the desired 
shapes. This method is more time efficient and makes other hinges types possible for the 
design of the pad.  

These are some possible manufacturing ideas for producing the Miura-ori pattern of 
parallelogram. Creating a manufacturing process will help with the design and functionality of 
the crash pad, making it a very marketable product. 
 

7.4 Assembly Ideas  
 

93



Another manufacturing difficulty is attaching multiple layers of polypropylene and elastic 
membrane together. During development, the use of one-sided push rivets were considered. 
This was not a feasible option for prototyping because the large and flat rivet heads impeded 
the folding motion of the Miura-ori. However, in actual fabrication, special push rivets could be 
developed with heads made to conform and move along with the folded polypropylene. Another 
possible method of attaching the layers, is to place ears in the polypropylene layers where the 
rivets can be placed.  For more information see Memo to Terri 8-12-13.  

 

 
 

7.5 Mathematical Model 
 
7.5.1 Kinematic Model for Miura-ori Unit Cell 
ଶߛ  = ߨ − ݏ݋ܿܽ ൤ܿߞݏ݋ − ଶߙ݊݅ݏଵߙ݊݅ݏଶߙ	ଵcosߙݏ݋ܿ ൨ 

ߞ  = 2acos	൬ℎܽ൰ 
ଵߛ  = ݏ݋ܿܽ ቈܿߛݏ݋ଶ + ଶ1ߛଶ݊݅ݏଶߙ݊݅ݏଵߙ݊݅ݏ − ߞݏ݋ܿ ቉ 
ଵܮ  = ݊݅ݏ2ܽ ൬2ߞ൰ 
ଶܮ  = ݊݅ݏ2ܾ ൬2ߠ൰ 
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Figure 9 – Labeling of dihedral angles. (From Robert Lang Manuscript) 

 
 
7.5.2 Energy Model for Miura-ori Unit Cell with Membrane 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 – Parameters for Energy Model Based on Virtual Work Model 
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ܨ = ൬݀ℎ݀ߞ൰ିଵ ൬−݇ଵ(ܮଵ − (ଵ௢ܮ ߞଵ݀ܮ݀ − ݇ଶ(ܮଶ − (ଶ௢ܮ ߞଶ݀ܮ݀ ൰ 
ߞଵ݀ܮ݀  = ܽ ∗ ݏ݋ܿ ൬2ߞ൰ 
ߞଶ݀ܮ݀  = ܾ ∗ ݏ݋ܿ ൬2ߠ൰݀ߞ݀ߠ 

ߞ݀ߠ݀  = 1√1 − ߠଶݏ݋ܿ ൭ܿݏ݋ଶ߶൫ߨ)݊݅ݏ − ଵ)൯ߛ ߞଵ݀ߛ݀ + ൫1 − ߨ)ݏ݋ܿ −  ଵ)൯൱ߛ

 
 
7.6 Future Tradeoffs 
 

o Joint strength and compactability  
o Optimal deployed angle 
o Strength and weight  
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