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ABSTRACT 

 

 Application of Variation of Parameters to Solve Nonlinear 

Multimode Heat Transfer Problems 

Travis J. Moore 

Department of Mechanical Engineering, BYU 

Doctor of Philosophy 

 

The objective of this work is to apply the method of variation of parameters to various 

direct and inverse nonlinear, multimode heat transfer problems. An overview of the general 

method of variation of parameters is presented and applied to a simple example problem. The 

method is then used to obtain solutions to three specific extended surface heat transfer problems: 

1. a radiating annular fin, 2. convective and radiative exchange between the surface of a 

continuously moving strip and its surroundings, and 3. convection from a fin with temperature-

dependent thermal conductivity and variable cross-sectional area. The results for each of these 

examples are compared to those obtained using other analytical and numerical methods. 

 

The method of variation of parameters is also applied to the more complex problem of 

combined conduction-radiation in a one-dimensional, planar, absorbing, emitting, non-gray 

medium with non-gray opaque boundaries. Unlike previous solutions to this problem, the 

solution presented here is exact. The model is verified by comparing the temperature profiles 

calculated from this work to those found using numerical methods for both gray and non-gray 

cases. 

 

The combined conduction-radiation model is then applied to determine the temperature 

profile in a ceramic thermal barrier coating designed to protect super alloy turbine blades from 

large and extended heat loads. Inverse methods are implemented in the development of a non-

contact method of measuring the properties and temperatures within the thermal barrier coating. 

Numerical experiments are performed to assess the effectiveness of this measurement technique. 

 

  The combined conduction-radiation model is also applied to determine the temperature 

profile along the fiber of an optical fiber thermometer. An optical fiber thermometer consists of 

an optical fiber whose sensing tip is coated with an opaque material which emits radiative energy 

along the fiber to a detector. Inverse methods are used to infer the tip temperature from spectral 

measurements made by the detector. Numerical experiments are conducted to assess the 

effectiveness of these methods. Experimental processes are presented in which a coating is 

applied to the end of an optical fiber and connected to an FTIR spectrometer. The system is 

calibrated and the inverse analysis is used to infer the tip temperature in various heat sources.  

 

 

 

 

 

Keywords:  variation of parameters, multimode heat transfer, inverse heat transfer, conduction-

radiation, thermal barrier coating, optical fiber thermometer 
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1 INTRODUCTION 

The three physical mechanisms, or modes, by which thermal energy is transferred are 

conduction, convection, and radiation. In most practical heat transfer applications, multiple 

modes of heat transfer must be accounted for simultaneously. In such cases, the energy equation 

often reduces to a nonlinear differential equation. The method of variation of parameters is a 

relatively simple and easy to implement technique for solving many nonlinear differential 

equations. In this work, variation of parameters is used to solve the nonlinear equations that 

govern direct and inverse multimode heat transfer problems. 

1.1 Multimode Heat Transfer 

When the effects of two or three modes of heat transfer are significant in a system, the 

problem is said to be a multimode, or conjugate, heat transfer problem.  This is the case for most 

practical heat transfer applications. There are conduction problems in which convection and 

radiation provide the thermal boundary conditions, such as the analysis of extended surfaces, or 

fins. Some problems deal with heat transfer by simultaneous convection and conduction, such as 

that which occurs in heat exchangers. Multimode heat transfer can also occur in radiatively 

participating media combined with conduction, such as in translucent coatings, or combined with 

convection, such as in boundary layers in flows at high temperatures. 
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1.2 Nonlinear Heat Transfer Problems 

In multimode heat transfer problems, the governing equations are often highly nonlinear. 

The nonlinearity of these problems can be caused by a number of phenomena. If the temperature 

is one of the unknowns in the problem, the fundamental radiation terms involve temperature to 

the fourth power while conduction depends on the first power of temperature and its derivatives. 

Modeling the dependence of the convective heat transfer coefficient on temperature can 

introduce nonlinearities. Variations in the system properties and parameters with temperature can 

add further nonlinearities. When a radiatively participating medium is analyzed, the energy 

equation must be coupled with the total radiative heat flux resulting in a nonlinear integro-

differential equation. 

Almost all multimode heat transfer problems are solved numerically because of the 

highly nonlinear nature of the governing equations [1]. Examples of the traditional numerical 

methods used to solve these problems include finite-difference methods, finite-element methods, 

the zonal method, and the Monte Carlo method [2]. More recent techniques used to solve 

nonlinear problems include the variational iteration method, the homotopy perturbation method, 

and the parameter expansion method [3]. Each of these methods has advantages and drawbacks. 

The method of variation of parameters is a relatively simple, analytical method for solving some 

nonlinear differential equations that has the potential to be very useful in many heat transfer 

analyses. 

1.3 Variation of Parameters 

In many multimode heat transfer applications, the energy equation reduces to a second 

order differential equation with a nonlinear forcing function that is a function of both the 

independent variable and the dependent variable and its derivatives. Specifically, application of 
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an energy balance to a system frequently results in a nonlinear differential equation that governs 

the temperature field in the system. A common method of obtaining analytical solutions to 

second order, nonhomogeneous differential equations is the method of variation of parameters in 

which the particular solution is assumed to be the sum of the products of unknown variable 

parameters and functions that make up a fundamental solution set to the corresponding 

homogeneous equation. The method entails determining these unknown variable parameters. 

This common method can be extended to differential equations in which the nonhomogeneity is 

nonlinear. Variation of parameters can provide analytical solutions to nonlinear equations and its 

relative simplicity and ease of implementation make it an attractive alternative to traditional 

numerical methods. This method has not previously been applied to nonlinear heat transfer 

problems. In this work, variation of parameters is used to solve the nonlinear governing 

equations associated with various extended surface applications as well as applications of 

radiatively participating media. 

1.4 Radiatively Participating Media 

The interaction of thermal radiation with an absorbing, emitting, and scattering medium 

is often significant in the analysis of a system. Such a medium is said to be radiatively 

participating. Examples of these media include molecular gases such as water vapor and carbon 

dioxide, particulate media such as smoke and ash, and semitransparent media such as ceramics 

and foams. Modeling the radiative heat transfer through radiatively participating media is 

important in analyzing and optimizing engineering systems in which these media play a 

significant role. 

Analysis of the radiative transfer in participating media involves the coupling of two 

objectives; 1. determining the radiative properties of the medium, and 2. deriving and solving the 
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governing equations for radiative transport in such media [4]. Once these objectives are 

achieved, a system can be modeled and analyzed. For example, when the radiative properties are 

known, the governing equations can be used to find other important parameters of the system 

such as the temperature field in the medium, the properties of surfaces surrounding the medium, 

or the heat flux through the medium. Because it is generally difficult to directly measure the 

radiative properties of a medium, they must be calculated based on parameters that are more 

easily measured. In order to deduce radiative properties from measureable parameters, an inverse 

analysis is required [5]. 

1.5 Inverse Radiative Heat Transfer Problems 

A forward, or direct, radiative heat transfer problem is one in which the necessary 

geometry, temperatures, and properties of the system are known, allowing for the direct 

calculation of radiative intensity and fluxes. Inverse radiative problems are those in which 

unknown system parameters are found from a known intensity field. The goal of inverse analyses 

is to deduce parameters that are difficult to measure (such as radiative properties and temperature 

distributions) based on radiative measurements that are easier to obtain (such as radiative 

intensity or flux) [5]. The solution to an inverse problem is generally found by using 

optimization methods to minimize an objective function, which compares measured data values, 

such as radiative intensity or flux, with the corresponding values estimated from the direct, or 

forward, analysis. The difference between these values is minimized based on an optimized set 

of unknown parameters such as radiative properties. The method of variation of parameters can 

be a useful tool in efficiently solving the forward problem associated with inverse radiative heat 

transfer problems. In this work, variation of parameters will be implemented in inverse analyses 
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to determine the properties and parameters of two examples of radiatively participating media: 

thermal barrier coatings and optical fiber thermometers. 

1.5.1 Thermal Barrier Coatings 

There is a growing reliance on the use of thermal barrier coatings (TBCs) as insulation of 

metallic components, such as vanes and blades, from large and extended heat loads in power 

generation and aerospace turbines. These coatings allow for an increased inlet temperature, 

which is accompanied by an increased efficiency, and results in a reduction in the requirements 

for cooling air [6]. Thermal barrier coatings consist of a thin layer of ceramic oxide which 

adheres to the super alloy turbine component [7]. The ceramic topcoat is exposed to the hot 

combustion gases in the turbine, shielding the super alloy substrate from the elevated 

temperatures. Knowledge of the system properties and the temperature profile within the TBC is 

critical for evaluating the TBC performance and monitoring its health [8]. Non-contact, non-

destructive techniques for finding these temperature profiles are highly desirable. Inverse 

radiative heat transfer methods can be used to determine the system properties and temperatures 

from measurements of the radiative intensity from the TBC. In this work, the method of variation 

of parameters is used to calculate the temperature profile in a thermal barrier coating and inverse 

methods are then used in the development of a non-contact method of measuring the properties 

and temperatures within the TBC. Numerical experiments are conducted to assess the 

effectiveness of the method. 

1.5.2 Optical Fiber Thermometers 

A blackbody optical fiber thermometer (OFT) consists of an optical fiber whose sensing 

tip is coated with a highly conductive, opaque material. This forms an isothermal cavity at the tip 
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of the fiber. The tip temperature can be inferred from the cavity emission, which is transmitted 

along the optical fiber to a detector [9]. The radiation detected also includes the effects of 

emission and absorption by the fiber itself and the standard two-color approach cannot be used to 

accurately determine the temperature of the sensing tip [10, 11]. The temperature of the tip can 

be inferred from measurements of the radiative intensity incident on the detector using an inverse 

analysis. In this work, variation of parameters is used to determine the temperature profile along 

the fiber. Inverse methods are then used to infer the tip temperature from spectral measurements 

of the radiative intensity from the fiber. Numerical experiments are conducted to assess the 

accuracy with which the tip temperature can be determined. Finally, preliminary experiments are 

performed in the development of a high temperature OFT system. 

1.6 Overview 

This dissertation presents the solutions to nonlinear analytical models of direct and 

inverse multimode heat transfer problems solved using the method of variation of parameters. 

The direct problems include extended surface applications and the combined conduction-

radiation problem in a radiatively participating medium. The inverse problem applications 

include the analysis and numerical experimentation of a problem designed to determine the 

properties of a thermal barrier coating and the theoretical and experimental evaluation of a 

problem designed to measure the sensing tip temperature of an optical fiber thermometer. 

Relevant prior work and research in these topics is addressed in Chapter 2. Chapter 3 outlines the 

method of variation of parameters for linear and nonlinear differential equations. In Chapter 4, 

the method of variation of parameters is used to solve the nonlinear equations governing three 

extended surface applications: 1. a radiating annular fin, 2. convective and radiative exchange 

between the surface of a continuously moving strip and its surroundings, and 3. convection from 
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a fin with temperature-dependent thermal conductivity and variable cross-sectional area. Chapter 

5 discusses the principles of radiatively participating media and introduces the relevant 

mathematical formulas, governing equations, and methods used to model these media. In 

Chapter 6, the method of variation of parameters is used to analytically solve the nonlinear 

governing equations presented in Chapter 5 to determine the temperature profile in a planar, 

emitting/absorbing, non-gray medium surrounded by non-gray boundaries. Chapter 7 discusses 

the basic concepts of inverse radiative heat transfer problems and the optimization methods used 

in their implementation. Chapters 8 and 9 present the inverse analyses used to determine the 

properties and parameters of a thermal barrier coating and an optical fiber thermometer, 

respectively, and show the results of numerical experimentation performed using these models. 

Chapter 10 includes the methods and results of experiments designed to determine the 

temperature of an optical fiber thermometer system using the model developed in Chapter 9. 

Finally, Chapter 11 presents a summary of the research presented in this work and the 

contributions made. 
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2 PRIOR WORK 

This chapter provides a general overview of previous research conducted in the field of 

solutions to nonlinear equations that govern multimode heat transfer problems. It also addresses 

the research done for thermal barrier coatings and optical fiber thermometers. 

2.1 Nonlinear Multimode Heat Transfer Problems 

This work focuses on solutions to second order, nonlinear, nonhomogeneous differential 

equations. Such equations are prevalent in multimode heat transfer applications due to the second 

order spatial derivatives that represent diffusion terms in the differential energy equation [12]. In 

many cases, these equations have a nonhomogeneous forcing function that results from the 

effects of radiation and/or convection. Phenomena that give rise to nonlinear differential 

equations include radiative exchange between surfaces, temperature-dependent properties, 

modeling the dependence of a convective heat transfer coefficient on temperature, and the 

coupling of the energy equation with the total radiative heat flux in radiatively participating 

media. One of the most common nonlinear heat transfer problems comes from the analysis of 

extended surfaces. Abbasbandy and Shivanian [13] obtained an exact analytical solution to the 

convective fin problem in which the local convection coefficient along the fin surface has a 

power-law-type dependence on the local temperature difference between the fin and the 

surrounding fluid. Arslanturk [14] used the Adomian decomposition method (ADM) to analyze a 
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convective fin with temperature-dependent thermal conductivity while Moradi and Ahmadikia 

[15] solved a similar problem for fins of variable cross-sectional area using the differential 

transformation method (DTM). Aziz and Khani [16] used the homotopy analysis method (HAM) 

to solve the nonlinear equation describing the temperature distribution in a continuously moving 

radiating-convective fin with temperature-dependent thermal conductivity. The temperature 

distribution in convective annular fins with temperature-dependent thermal conductivity has been 

found by Ganji et al. [17] using the homotopy perturbation method (HPM) while that of radiating 

annular fins has been found using a Green’s function approach by Jones and Solovjov [18] and 

Liechty et al. [19]. 

In addition to extended surfaces, nonlinear differential equations arise when solving the 

energy equation in a radiatively participating medium. These problems are highly nonlinear 

because the energy equation requires the total radiative heat flux, which is found by solving the 

integro-differential radiative transfer equation [5]. These problems are encountered in the 

analysis of combustion chambers, rocket nozzles, high-temperature heat exchangers, translucent 

glass or ceramic coatings, porous insulation, heat treatment of glass plates, and the drawing of 

optical fibers. Applications in this work include the simultaneous conduction and radiation in a 

radiatively participating medium. The combined conduction-radiation problem has been solved 

using an integral transformation method [20, 21], the finite element method [22, 23], the finite 

difference method [24, 25], the finite volume method [26, 27], the lattice Boltzmann method [28-

30], and finite strip theory [31]. 

2.2 Variation of Parameters for Nonlinear Problems 

The method of variation of parameters, or variation of constants, is a general method that 

has been used to solve nonhomogeneous, linear, ordinary differential equations since the 
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beginning of the 19th century [32]. More recently, it has been shown that this method can also be 

used to solve nonlinear differential equations [33-37]. In 1946, Kečkić first showed that variation 

of parameters could be extended to certain nonlinear differential equations [35]. In 2010, 

Mohyud-Din et al. [33] successfully applied the method of variation of parameters to various 

initial and boundary value problems and in 2013, Rahmatullah and Mohyud-Din [34] used 

variation of parameters to solve nonlinear diffusion equations. The method has been extended to 

apply to nonlinear equations of higher order [36]. The method of variation of parameters has not 

been applied previously to nonlinear heat transfer applications. 

2.3 Inverse Heat Transfer Problems 

The earliest inverse heat transfer problems date back to about 1960 and were only 

concerned with heat conduction [38-40]. It wasn’t until the late 1980’s that investigations into 

inverse radiative heat transfer began to appear [5]. Most of these papers deal with radiative 

transfer in participating media in which radiation is the only mode of heat transfer treated. 

Inverse methods were used to determine the temperature profile and properties of participating 

media [41-43]. Fewer inverse analyses have dealt with problems in which conduction are 

combined with radiative heat transfer [44, 45]. Most of these methods require knowledge of the 

temperature profile or heat flux, are only applicable to gray media, and require the use of 

numerical methods such as the Lattice Boltzmann method and the finite volume method [46-48]. 

Even fewer studies have investigated the combined convection and radiation problem [49]. 

2.4 Thermal Barrier Coatings 

Various experimental methods have been employed to determine the temperatures within 

thermal barrier coatings. Infrared pyrometry has been used to determine the topcoat surface 
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temperature [50]. This process is complicated by the fact that the pyrometer will measure 

radiation from the hot environment reflected off of the TBC surface [51]. In addition, the 

translucency of the TBC at conventional pyrometer wavelengths allows radiation from well 

below the TBC surface to reach the pyrometer [51]. It has been proposed that Raman 

spectroscopy be used as a non-contact method of determining the temperature in thermal barrier 

coatings [50]. This, however, becomes increasingly difficult as the temperature increases because 

of the low intensity of the anti-Stokes Raman signal [50]. Luminescence spectroscopy is used to 

measure the temperature at the surface or at any desired depth of the TBC by utilizing the 

temperature dependence of the fluorescence decay time [52, 53]. Current techniques are limited 

in that they cannot measure the entire temperature profile of the TBC along with its radiative 

properties. Efforts have been made to measure various radiative properties of TBC systems [54-

65]. These measurement techniques rely on reflectance and transmittance measurements of TBC 

samples and require carefully controlled experimental setups with known sample temperatures 

and, therefore, cannot be made in situ. 

2.5 Optical Fiber Thermometers 

The concept of the optical fiber thermometer was initially proposed in 1977 [66] and 

successfully proved in 1982 [9]. Since then, various investigations have been made in an attempt 

to advance the technology [67, 68]. These OFTs are either restricted to relatively low 

temperatures or require the use of two color pyrometry to determine the sensing tip temperature. 

If only the sensing tip and a small length of the optical fiber are exposed to the high temperature 

environment, then it may be an acceptable approximation to assume that all of the radiation 

detected is emitted by the blackbody cavity [9]. However, if a significant portion of the optical 

fiber is exposed to elevated temperatures, then the radiation detected also includes the effects of 
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emission and absorption by the fiber itself and the standard two-color approach cannot be used to 

accurately determine the temperature of the sensing tip [11, 69]. Barker and Jones have shown 

that inverse heat transfer methods can be used to accurately determine the temperature profile 

along the optical fiber of an OFT [70]. They used inverse heat transfer methods to account for 

the emission and absorption of the optical fiber and obtained accurate temperature measurements 

of the sensing tip as well as the temperature profile along the fiber [71]. Their model did not 

account for multiple modes of heat transfer in the fiber. 
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3 THE METHOD OF VARIATION OF PARAMETERS 

The method of variation of parameters, or variation of constants, is a general technique 

taught in elementary differential equations courses that is used to solve nonhomogeneous, linear, 

ordinary differential equations [72]. It has been shown that this method can also be used to solve 

nonlinear differential equations [33-37]. This method has not previously been used to solve 

nonlinear heat transfer problems. 

3.1 Method Overview 

The method of variation of parameters [72] is generally used to solve nonhomogeneous 

second-order, linear, ordinary differential equations of the form  

 𝑦 ′′(𝑥) + 𝐴𝑦 ′(𝑥) + 𝐵𝑦(𝑥) = 𝑓(𝑥) (3-1) 

If the complementary, or general, solution to the associated homogeneous equation is 

 𝑦𝑐(𝑥) = 𝑐1𝑦𝑐,1(𝑥) + 𝑐2𝑦𝑐,2(𝑥) (3-2) 

where 𝑐1 and 𝑐2 are constants and 𝑦𝑐,1 and 𝑦𝑐,2 form a fundamental set of solutions of the 

homogeneous equation, then a particular solution to Equation (3-1) with the following form is 

desired. 

 𝑦𝑝(𝑥) = 𝑣1(𝑥)𝑦𝑐,1(𝑥) + 𝑣2(𝑥)𝑦𝑐,2(𝑥) (3-3) 
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If Equation (3-3) and its derivatives are substituted into Equation (3-1), then Equation (3-1) has 

the following form. 

𝑦𝑝
′′(𝑥) + 𝐴𝑦𝑝

′ (𝑥) + 𝐵𝑦𝑝(𝑥) =
𝑑

𝑑𝑥
(𝑦𝑐,1𝑣1

′ + 𝑦𝑐,2𝑣2
′ ) + 𝐴(𝑦𝑐,1𝑣1

′ + 𝑦𝑐,2𝑣2
′ ) + 𝑦𝑐,1

′ 𝑣1
′ + 𝑦𝑐,2

′ 𝑣2
′ = 𝑓(𝑥) (3-4) 

Two equations are required to find the two unknown functions 𝑣1 and 𝑣2. By setting 

𝑦𝑐,1𝑣1
′ + 𝑦𝑐,2𝑣2

′ = 0 in Equation (3-4), the two required equations are 

 𝑦𝑐,1𝑣1
′ + 𝑦𝑐,2𝑣2

′ = 0 (3-5) 

 𝑦𝑐,1
′ 𝑣1

′ + 𝑦𝑐,2
′ 𝑣2

′ = 𝑓(𝑥) (3-6) 

Solving these equations for the unknowns gives 

 𝑣1(𝑥) = − ∫
𝑓(𝑥)𝑦𝑐,2(𝑥)

𝑊(𝑦𝑐,1, 𝑦𝑐,2)
𝑑𝑥 (3-7) 

 𝑣2(𝑥) = ∫
𝑓(𝑥)𝑦𝑐,1(𝑥)

𝑊(𝑦𝑐,1, 𝑦𝑐,2)
𝑑𝑥 (3-8) 

In Equations (3-7) and (3-8), 𝑊(𝑦𝑐,1, 𝑦𝑐,2) is the Wronskian of 𝑦𝑐,1 and 𝑦𝑐,2. 

 𝑊(𝑦𝑐,1, 𝑦𝑐,2) = |
𝑦𝑐,1 𝑦𝑐,2

𝑦𝑐,1
′ 𝑦𝑐,2

′ | (3-9) 

The general solution to Equation (3-1) is 

 𝑦(𝑥) = 𝑦𝑐(𝑥) + 𝑦𝑝(𝑥) (3-10) 

The constants of integration from the indefinite integrals in Equations (3-7) and (3-8) are 

incorporated into the constants in the complementary solution. Because of the presence of the 

indefinite integrals in Equations (3-7) and (3-8), it may appear that the method of variation of 

parameters is only applicable to problems in which the antiderivatives can be computed 

analytically. However, recall that the antiderivatives of 𝐺(𝑡) are simply obtained by ∫ 𝐺(𝑤)𝑑𝑤
𝑡

𝑡0
, 

where (𝑡0, 𝑡) is in the domain of 𝐺 [73]. Therefore, variation of parameters can be used to find a 
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particular solution even when the integrals cannot be evaluated analytically. In such cases, 

Equations (3-7) and (3-8) become 

 𝑣1(𝑥) = − ∫
𝑓(𝑥′)𝑦𝑐,2(𝑥′)

𝑊(𝑦𝑐,1, 𝑦𝑐,2)
𝑑𝑥′

𝑥

𝑥1

 (3-11) 

 𝑣2(𝑥) = ∫
𝑓(𝑥′)𝑦𝑐,1(𝑥′)

𝑊(𝑦𝑐,1, 𝑦𝑐,2)
𝑑𝑥′

𝑥

𝑥1

 (3-12) 

where the definite integrals are performed from a fixed point 𝑥1 to an arbitrary point 𝑥. 

Although historically this method has been primarily used to solve linear differential 

equations, the method of variation of parameters can be extended to solve nonlinear differential 

equations, particularly those in which the nonhomogeneity is a function of the dependent 

variable and its derivative in addition to the independent variable [33-37]. The general form of 

the nonlinear equation is 

 𝑦 ′′(𝑥) + 𝐴𝑦 ′(𝑥) + 𝐵𝑦(𝑥) = 𝑓(𝑥, 𝑦, 𝑦 ′) (3-13) 

The solution procedure is the same as that outlined above for the linear equation such that 

 𝑦(𝑥) = 𝑐1𝑦𝑐,1(𝑥) + 𝑐2𝑦𝑐,2(𝑥) + 𝑣1𝑦𝑐,1(𝑥) + 𝑣2𝑦𝑐,2(𝑥) (3-14) 

where 

 𝑣1 = − ∫
𝑓(𝑥′, 𝑦, 𝑦 ′)𝑦𝑐,2(𝑥′)

𝑊(𝑦𝑐,1, 𝑦𝑐,2)
𝑑𝑥′

𝑥

𝑥1

 (3-15) 

 𝑣2 = ∫
𝑓(𝑥′, 𝑦, 𝑦 ′)𝑦𝑐,1(𝑥′)

𝑊(𝑦𝑐,1, 𝑦𝑐,2)
𝑑𝑥′

𝑥

𝑥1

 (3-16) 

Because 𝑦 appears on both sides of Equation (3-14), an iterative approach is required to 

solve for 𝑦. Although not a closed-form solution because of the iteration required, the solution 

can still be considered exact if 𝑓 is only a function of 𝑥 and 𝑦 because the numerical integration 

required by Equations (3-15) and (3-16) can be performed to an arbitrary degree of accuracy. If 𝑓 
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is also a function of the derivatives of 𝑦, finite difference equations must be used to approximate 

these derivatives. 

3.2 Verification of the Method of Variation of Parameters with a Simple Problem 

The method will be demonstrated on a simple example which will be solved using 

traditional methods and using the method of variation of parameters. Consider the differential 

equation 

 𝑦 ′′ − 𝑦 = 𝑥 (3-17) 

subject to the boundary conditions 

 𝑦(𝑥1) = 𝑦1 (3-18) 

 𝑦(𝑥2) = 𝑦2 (3-19) 

Note that Equation (3-17) is a linear, nonhomogeneous differential equation. However, if the 𝑦 

term is moved to the right side of the equation, the nonhomogeneity becomes a function of both 

the dependent variable, 𝑦, and the independent variable, 𝑥. 

 𝑦 ′′ = 𝑥 + 𝑦 = 𝑓(𝑥, 𝑦) (3-20) 

First, Equation (3-17) will be solved using traditional methods and the solution will be compared 

to the solution of Equation (3-20) using variation of parameters. The complementary function of 

Equation (3-17) can be found using an auxiliary equation and a particular solution can be found 

using the method of undetermined coefficients. The auxiliary equation is 

 𝑚2 − 1 = 0 (3-21) 

The roots of the auxiliary equation are 𝑚 = ±1 and the general solution of the homogeneous 

equation is 

 𝑦𝑐 = 𝑐1 cosh 𝑥 + 𝑐2 sinh 𝑥 (3-22) 
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The method of undetermined coefficients yields a particular solution 𝑦𝑝 = −𝑥. The general 

solution is, therefore, given by the following equation. 

 𝑦 = 𝑦𝑐 + 𝑦𝑝 = 𝑐1 cosh 𝑥 + 𝑐2 sinh 𝑥 − 𝑥 (3-23) 

Applying the boundary conditions and solving for the constants 𝑐1 and 𝑐2 gives 

 𝑐1 =
1

cosh 𝑥2 − coth 𝑥1 sinh 𝑥2
(𝑦2 + 𝑥2 − (𝑦1 + 𝑥1)

sinh 𝑥2

sinh 𝑥1
) (3-24) 

and 

 𝑐2 =
𝑦1 + 𝑥1

sinh 𝑥1
− 𝑐1 coth 𝑥1 (3-25) 

The method of variation of parameters is now used to solve Equation (3-20). The 

corresponding homogeneous equation is 

 
𝑑2𝑦

𝑑𝑥2
= 0 (3-26) 

Equation (3-26) can be separated and integrates twice, yielding the following complementary 

function. 

 𝑦𝑐 = 𝑐3𝑥 + 𝑐4 (3-27) 

Therefore, according to Equation (3-2), 

 𝑦𝑐,1 = 𝑥 (3-28) 

 𝑦𝑐,2 = 1 (3-29) 

and the Wronskian is  

 𝑊(𝑥, 1) = |
𝑥 1
1 0

| = −1 (3-30) 

The particular solution given by Equations (3-3) through (3-8) is 

 𝑦𝑝 = 𝑥 ∫ (𝑥′ + 𝑦)𝑑𝑥′
𝑥

𝑥1

− ∫ 𝑥′(𝑥′ + 𝑦)𝑑𝑥′
𝑥

𝑥1

 (3-31) 
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This can be expanded to 

 𝑦𝑝 =
1

6
𝑥3 −

1

2
𝑥𝑥1

2 +
1

3
𝑥1

3 + 𝑥 ∫ 𝑦𝑑𝑥′
𝑥

𝑥1

− ∫ 𝑥′𝑦𝑑𝑥′
𝑥

𝑥1

 (3-32) 

The general solution is the sum of the complementary and particular solutions and is given by 

 𝑦 = 𝑐3𝑥 + 𝑐4 +
1

6
𝑥3 −

1

2
𝑥𝑥1

2 +
1

3
𝑥1

3 + 𝑥 ∫ 𝑦𝑑𝑥′
𝑥

𝑥1

− ∫ 𝑥′𝑦𝑑𝑥′
𝑥

𝑥1

 (3-33) 

The constant 𝑐3 and 𝑐4 are found by applying the boundary conditions given in Equations (3-18) 

and (3-19). 

 𝑐3 =
1

𝑥2 − 𝑥1
(𝑦2 − 𝑦1 −

1

6
𝑥2

3 +
1

2
𝑥2𝑥1

2 −
1

3
𝑥1

3 − 𝑥2 ∫ 𝑦𝑑𝑥′
𝑥2

𝑥1

+ ∫ 𝑥′𝑦𝑑𝑥′
𝑥2

𝑥1

) (3-34) 

 𝑐4 = 𝑦1 − 𝑐3𝑥1 (3-35) 

Equation (3-33) is then solved iteratively as follows. An initial guess for 𝑦 is made over 

the desired domain. This guess is used to numerically integrate the integrals on the right side of 

Equation (3-33). Equation (3-33) is then used to calculate a new 𝑦 function. This process is 

repeated until convergence is achieved. Figure 3-1 and Figure 3-2 compare the results of the 

solution to Equation (3-20) using the method of variation of parameters described above to those 

of the traditional methods used to solve Equation (3-17) given by Equation (3-23) over different 

domains. Two different solutions with different boundary conditions are shown in each figure. 

This solution was calculated from a MATLAB program which can be found in Appendix A.1. 

While the method of variation of parameters is certainly excessive for a simple case such as 

that demonstrated above, it is a useful tool when solving many nonlinear differential governing 

equations that arise in heat transfer applications. 
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Figure 3-1: Comparison of traditional method and variation of parameters over 𝒙 = 𝟐 to 𝒙 = 𝟔 

 

 

Figure 3-2: Comparison of traditional method and variation of parameters over 𝒙 = 𝟕 to 𝒙 = 𝟏𝟐 
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4 SOLVING NONLINEAR EXTENDED SURFACE HEAT TRANSFER PROBLEMS 

USING VARIATION OF PARAMETERS 

 The method of variation of parameters is shown to be useful for solving nonlinear 

differential equations that arise in multimode heat transfer problems. These types of problems 

frequently occur in the analysis of extended surfaces, or fins. In this chapter, variation of 

parameters is used to solve the energy equation for three specific applications: 1. a radiating 

annular fin, 2. convective and radiative exchange between the surface of a continuously moving 

strip and its surroundings, and 3. convection from a fin with temperature-dependent thermal 

conductivity and variable cross-sectional area. The results for each of these examples are 

compared to those obtained using other analytical and numerical methods and excellent 

agreement between them was found in all cases. The method of variation of parameters is less 

complex and relatively easy to implement compared to these other methods. 

In Section 3.1, variation of parameters was shown to be useful for solving some nonlinear 

differential equations. In the following sections, the method of variation of parameters will be 

used to solve nonlinear differential equations that arise from the analysis of extended surfaces in 

various applications. The solutions to each of these problems are not closed-form analytical 

solutions because an iterative approach and numerical iteration are required. However, since 

numerical integration can be performed to an arbitrary degree of precision, the solutions to the 

first two problems are exact. The last example requires finite difference approximations of 

derivatives. For each example, the accuracy of the solution methodology is verified by 
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comparing the results to those of the direct numerical solution as well as other analytical 

methods. 

4.1 Radiating Annular Fin 

Heat flux measurements are important in many processes and procedures. These include 

monitoring ovens, furnaces, and kilns, flammability testing, measuring the thermal properties of 

materials, assessing heating, ventilation, and air conditioning systems, and validation of 

numerical models of combustion processes. Circular foil heat flux gauges can be modeled as 

radiating annular fins. Liechty et al. [19] presented a thermal model of a copper-constantan 

circular foil heat flux gauge exposed to a blackbody source in a vacuum environment. Such a 

setup is typically used to calibrate the heat flux gauge. A schematic of a typical copper-

constantan circular foil heat flux gauge is shown in Figure 4-1. 

 

 

Figure 4-1: Schematic diagram of a typical circular foil heat flux gauge. 
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 A circular constantan foil is attached to an oxygen-free, high-conductivity (OFHC) 

copper heat sink, which is maintained at a constant temperature. The constantan foil has a 

diffuse, highly absorbing coating. The design of the gauge is such that the heat loss from the 

back of the foil is minimized. The gauge is press-fit or threaded and screwed into a wall. Copper 

leads are attached to the center of the foil and to the copper heat sink. This results in copper-

constantan thermocouple junctions at the center of the foil and at the interface between the foil 

and the heat sink. The voltage difference between the leads is proportional to the temperature 

difference between the center and the edge of the foil. A model of the heat transfer occurring in 

the foil can be used to develop a relationship between the measured temperature difference and 

the incident radiative heat flux. With the assumptions that a one-dimensional, radial temperature 

profile exists in the foil, the irradiation, 𝐺, is uniform over the gauge, the heat losses from the 

back of the gauge are negligible, the temperature gradients across the thickness, 𝑡, of the foil are 

negligible, the thermal conductivity, 𝑘, is constant, and the surface of the foil is diffuse and gray, 

the governing equation and boundary conditions for the temperature profile are given as follows 

[19]. 

 
1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑇

𝑑𝑟
) =

𝜀𝜎

𝑘𝑡
(𝑇4 −

𝐺

𝜎
) (4-1) 

 𝑇(𝑅) = 𝑇𝑅 (4-2) 

 
𝑑𝑇

𝑑𝑟
|

𝑟=0
= 0 (4-3) 
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The nondimensional governing equation for the dimensionless temperature profile and the 

boundary conditions for this model are given below. 

 
1

𝜌

𝑑

𝑑𝜌
(𝜌

𝑑𝜃

𝑑𝜌
) = 𝐴𝜃4 − 𝐴𝐵 (4-4) 

 𝜃(1) = 1 (4-5) 

 
𝑑𝜃

𝑑𝜌
|
𝜌=0

= 0 (4-6) 

In Equation (4-4), 𝜃 = 𝑇 𝑇𝑅⁄  is the dimensionless temperature, 𝜌 = 𝑟 𝑅⁄  is the 

dimensionless radial coordinate, 𝐴 = 𝜀𝜎𝑅2𝑇𝑅
3 𝑘𝑡⁄  is the dimensionless gauge parameter, and 

𝐵 = 𝐺 𝜎𝑇𝑅
4⁄  is the dimensionless irradiation. The solution to the homogeneous equation 

corresponding to Equation (4-4) is found by separating and integrating twice. 

 𝜃𝑐 = 𝑐1 ln 𝜌 + 𝑐2 (4-7) 

The particular solution is found by using the method of variation of parameters as outlined in 

Section 3.1. The solutions that form a fundamental set of solutions to the homogeneous equation 

are 

 𝜃𝑐,1 = ln 𝜌 (4-8) 

 𝜃𝑐,2 = 1 (4-9) 

The unknown parameters are 

 𝑣1(𝜌) = − ∫
𝑓(𝜌′)𝜃𝑐,2(𝜌′)

𝑊(𝜃𝑐,1, 𝜃𝑐,2)
𝑑𝜌′

𝜌

0

= ∫ 𝜌′(𝐴𝜃4 − 𝐴𝐵)𝑑𝜌′
𝜌

0

 (4-10) 

 𝑣2(𝜌) = ∫
𝑓(𝜌′)𝜃𝑐,1(𝜌′)

𝑊(𝜃𝑐,1, 𝜃𝑐,2)
𝑑𝜌′

𝜌

0

= − ∫ 𝜌′(𝐴𝜃4 − 𝐴𝐵)(ln 𝜌′)𝑑𝜌′
𝜌

0

 (4-11) 
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Therefore, the particular solution is 

𝜃𝑝(𝜌) = 𝜃𝑐,1𝑣1 + 𝜃𝑐,2𝑣2 = ln 𝜌 ∫ 𝜌′(𝐴𝜃4 − 𝐴𝐵)𝑑𝜌′
𝜌

0

− ∫ 𝜌′(𝐴𝜃4 − 𝐴𝐵)(ln 𝜌′)𝑑𝜌′
𝜌

0

 (4-12) 

The dimensionless temperature profile is the sum of the complementary and particular solutions.  

 
𝜃 = 𝑐1 ln 𝜌 + 𝑐2 + ln 𝜌 ∫ 𝜌′(𝐴𝜃4 − 𝐴𝐵)𝑑𝜌′

𝜌

0

− ∫ 𝜌′(𝐴𝜃4 − 𝐴𝐵)(ln 𝜌′)𝑑𝜌′
𝜌

0

 (4-13) 

Applying the boundary conditions provides expressions for the constants 𝑐1 and 𝑐2. Applying the 

boundary condition given by Equation (4-5) yields 

𝜃(1) = 1 = 𝑐2 − ∫ 𝜌′(𝐴𝜃4 − 𝐴𝐵)(ln 𝜌′)𝑑𝜌′
1

0

⇒ 𝑐2 = 1 + ∫ 𝜌′(𝐴𝜃4 − 𝐴𝐵)(ln 𝜌′)𝑑𝜌′
1

0

 (4-14) 

The first derivative of Equation (4-13) is 

 
𝑑𝜃

𝑑𝜌
=

𝑐1

𝜌
+

1

𝜌
∫ 𝜌(𝐴𝜃4 − 𝐴𝐵)𝑑𝜌′

𝜌

0

 (4-15) 

Note that in differentiating the integral terms of Equation (4-13), a useful way of stating the 

fundamental theorem of calculus is 
𝑑

𝑑𝑥
∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
= 𝑓(𝑥). Applying the boundary condition given 

in Equation (4-6) gives 

 
𝑑𝜃

𝑑𝜌
|
𝜌=0

= 0 =
𝑐1

0
⇒ 𝑐1 = 0 (4-16) 

Substituting the constants into Equation (4-13) provide the final expression for the dimensionless 

temperature profile in the foil. 

 

𝜃(𝜌) = 1 + ∫ 𝜌′(𝐴𝜃4 − 𝐴𝐵)(ln 𝜌′)𝑑𝜌′
1

0

+ ln 𝜌 ∫ 𝜌′(𝐴𝜃4 − 𝐴𝐵)𝑑𝜌′
𝜌

0

− ∫ 𝜌′(𝐴𝜃4 − 𝐴𝐵)(ln 𝜌′)𝑑𝜌′
𝜌

0

 

(4-17) 

Because 𝜃 appears on both sides of Equation (4-17), an iterative approach is required. An 

initial guess for the temperature profile is plugged into the right side of Equation (4-17). The 
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integrals are evaluated numerically and a new temperature profile is computed. This process is 

repeated until convergence is achieved. Because numerical integration can be performed to an 

arbitrary degree of precision, the solution can be considered exact. Figure 4-2 shows a 

comparison of the dimensionless temperature profiles calculated from Equation (4-17) to those 

found using the Green’s function method used by Liechty et al. [19] and to those found from a 

direct numerical solution using commercial software [74] for various values of the parameters 𝐴 

and 𝐵. This solution was calculated from a MATLAB program which can be found in Appendix 

A.2. 

 

 
Figure 4-2: Comparison of the dimensionless temperature profiles found from variation of parameters to 

those found from a Green’s function approach and numerical methods for various values of the parameters 𝑨 

and 𝑩. 

 



29 

4.2 Continuously Moving Convective-Radiating Pin Fin 

In processes such as extrusion, hot rolling, and casting, the manufactured material loses 

heat to its surroundings by convection and radiation while in continuous motion. This heat 

transfer process is designed to cool the material to a specified temperature before it is spooled or 

removed. Aziz and Khani [16] used the homotopy analysis method (HAM) to find an analytic 

solution for heat transfer in a continuously moving strip which is losing heat to its surrounding 

by simultaneous convection and radiation. 

Consider a solid bar with a cross-sectional area 𝐴 and perimeter 𝑃 that is moving 

horizontally at a constant speed 𝑈. The bar emerges from a die or furnace at a constant 

temperature 𝑇𝑏 and is exposed to a colder surrounding medium at 𝑇𝑎 and loses heat by radiation 

and convection. With the assumptions that the thermal conductivity, 𝑘, is constant, the material 

is gray and diffuse with a constant emittance, 𝜀, and a constant heat transfer coefficient, ℎ, over 

the entire surface of the moving material, the steady state energy balance may be written as [16] 

 
𝑑2𝑇

𝑑𝑥2
−

ℎ𝑃

𝑘𝐴
(𝑇 − 𝑇𝑎) −

𝜀𝜎𝑃

𝑘𝐴
(𝑇 − 𝑇𝑎

4) −
1

𝛼
𝑈

𝑑𝑇

𝑑𝑋
= 0 (4-18) 

where 𝛼 = 𝑘 𝜌𝑐⁄  is the thermal diffusivity of the material, 𝜌 is the density, and 𝑐 is the specific 

heat. The axial coordinate 𝑥 is measured from the slot from which the material emerges. The 

following dimensionless variables are introduced. 

 𝜃 =
𝑇

𝑇𝑏
 𝜃𝑎 =

𝑇𝑎

𝑇𝑏
 𝐿∗ =

𝑃𝐿

𝐴
 𝑋 =

𝑥𝐿∗

𝐿
 (4-19) 

 𝑎 = 𝛽𝑇𝑏 𝑁𝑐 =
ℎ𝐴

𝑃𝑘
 𝑁𝑟 =

𝜀𝜎𝑇𝑏
3

𝑃𝑘
 𝑃𝑒 =

𝑈𝐴

𝛼𝑃
 (4-20) 

where 𝐿 is the length between the point of emergence and the point where the temperature 

gradient is zero, 𝑁𝑐 is the convection-conduction number (commonly known as the Biot 

number), 𝑁𝑟 is the radiation-conduction number, 𝑃𝑒 is the Peclet number (which represents the 
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dimensionless speed of the moving strip), and 𝐿∗ is a parameter that allows the length of the strip 

exposed to the surrounding fluid to be adjusted. The nondimensional governing equation and 

boundary conditions to this problem are given as follows. 

 
𝑑2𝜃

𝑑𝑋2
− 𝑁𝑐(𝜃 − 𝜃𝑎) − 𝑁𝑟(𝜃4 − 𝜃𝑎

4) − 𝑃𝑒
𝑑𝜃

𝑑𝑋
= 0 (4-21) 

 𝜃(0) = 1 (4-22) 

 
𝑑𝜃

𝑑𝑋
|
𝑋=𝐿∗

= 0 (4-23) 

Equation (4-21) can be rearranged so that it has a nonlinear, nonhomogeneous function as 

specified by Equation (3-1). 

 
𝑑2𝜃

𝑑𝑋2
− 𝑃𝑒

𝑑𝜃

𝑑𝑋
− 𝑁𝑐𝜃 = 𝑁𝑟(𝜃4 − 𝜃𝑎

4) − 𝑁𝑐𝜃𝑎 (4-24) 

The procedure used to solve this equation is exactly the same as that used to solve the 

heat flux gauge problem in Section 4.1, and so the details are omitted here. The homogeneous 

equation corresponding to Equation (4-24) can be solved using an auxiliary equation [72] such 

that 

 𝜃𝑐 = 𝑐1𝑒𝑚1𝑋 + 𝑐2𝑒𝑚2𝑋 (4-25) 

where the roots of the auxiliary equation are given by 

 𝑚1 =
𝑃𝑒 + √(𝑃𝑒)2 + 4𝑁𝑐

2
 (4-26) 

 𝑚2 =
𝑃𝑒 − √(𝑃𝑒)2 + 4𝑁𝑐

2
 (4-27) 

Variation of parameters is used as outlined in Section 3.1 to find the particular solution, which is 

𝜃𝑝(𝑋) = −𝑒𝑚1𝑋 ∫
(𝑁𝑟(𝜃4 − 𝜃𝑎

4) − 𝑁𝑐𝜃𝑎)𝑒𝑚2𝑡

(𝑚2 − 𝑚1)𝑒(𝑚1+𝑚2)𝑡
𝑑𝑡

𝑋

0

+ 𝑒𝑚2𝑋 ∫
(𝑁𝑟(𝜃4 − 𝜃𝑎

4) − 𝑁𝑐𝜃𝑎)𝑒𝑚1𝑡

(𝑚2 − 𝑚1)𝑒(𝑚1+𝑚2)𝑡
𝑑𝑡

𝑋

0

 (4-28) 
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The dimensionless temperature profile is the sum of the complementary and particular solutions. 

Applying the boundary conditions provides expressions for the constants and the dimensionless 

temperature profile is 

𝜃(𝑋) = 𝑐1𝑒𝑚1𝑋 + 𝑐2𝑒𝑚2𝑋 − 𝑒𝑚1𝑋 ∫
(𝑁𝑟(𝜃4 − 𝜃𝑎

4) − 𝑁𝑐𝜃𝑎)𝑒𝑚2𝑡

(𝑚2 − 𝑚1)𝑒(𝑚1+𝑚2)𝑡
𝑑𝑡

𝑋

0

+ 𝑒𝑚2𝑋 ∫
(𝑁𝑟(𝜃4 − 𝜃𝑎

4) − 𝑁𝑐𝜃𝑎)𝑒𝑚1𝑡

(𝑚2 − 𝑚1)𝑒(𝑚1+𝑚2)𝑡
𝑑𝑡

𝑋

0

 

(4-29) 

where 

𝑐1 =
1

𝑚2𝑒𝑚2𝐿∗
− 𝑚1𝑒𝑚1𝐿∗ (𝑚2𝑒𝑚2𝐿∗

− 𝑚1𝑒𝑚1𝐿∗
∫

(𝑁𝑟(𝜃4 − 𝜃𝑎
4) − 𝑁𝑐𝜃𝑎)𝑒𝑚2𝑡

(𝑚2 − 𝑚1)𝑒(𝑚1+𝑚2)𝑡
𝑑𝑡

𝐿∗

0

+ 𝑚2𝑒𝑚2𝐿∗
∫

(𝑁𝑟(𝜃4 − 𝜃𝑎
4) − 𝑁𝑐𝜃𝑎)𝑒𝑚1𝑡

(𝑚2 − 𝑚1)𝑒(𝑚1+𝑚2)𝑡
𝑑𝑡

𝐿∗

0

) 

(4-30) 

 𝑐2 = 1 − 𝑐1 (4-31) 

Although not a closed-form solution because it requires an iterative approach, Equation 

(4-29) is exact. Figure 4-3 shows a comparison of the dimensionless temperature profiles 

calculated from Equation (4-29) to those found using HAM used by Aziz and Khani [16] and to 

those found from a direct numerical solution using commercial software [74] for 𝑁𝑐 = 4, 𝑁𝑟 =

4, 𝑃𝑒 = 3, and 𝐿∗ = 1. This solution was calculated from a MATLAB program which can be 

found in Appendix A.3. 

4.3 Exponential Convective Fin with Temperature-Dependent Thermal Conductivity 

Heat transfer through extended surfaces is used in many industrial applications. An 

extensive review of this subject is given by Kraus et al. [75]. The use of fins with constant cross-

sectional area and the assumption of constant thermophysical properties over the length of the fin 

allow for some closed-form analytical solutions to the energy equation [75]. However, fins 
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optimized for specific purposes often have variable cross-sectional area and, if a large 

temperature difference exists within the fin, the thermal conductivity of the fin may vary over the 

length of the fin as a function of the temperature. These complexities can significantly 

complicate the governing energy balance, which becomes a nonlinear differential equation. 

Moradi and Ahmadikia [15] used the differential transformation method (DTM) to find an 

analytical solution to the energy equation for fins with different profiles and with temperature-

dependent thermal conductivity. 

 

 
Figure 4-3: Comparison of dimensionless temperature profiles found from variation of parameters to those 

found from HAM and numerical methods for 𝑵𝒄 = 𝟒, 𝑵𝒓 = 𝟒, 𝑷𝒆 = 𝟑, and 𝑳∗ = 𝟏. 

 

Here, variation of parameters is used to calculate the temperature profile in a fin with an 

exponential profile and a thermal conductivity that varies linearly with temperature. Consider a 

fin of length 𝐿 and with a cross-sectional area 𝐴(𝑥) that varies as a function of axial position, 𝑥. 
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The fin surface is exposed to a convective environment at temperature 𝑇∞. The heat transfer 

coefficient, ℎ, is constant over the length of the fin and the thermal conductivity,  𝑘,  varies with 

the fin temperature. The one-dimensional energy equation reduces to [15] 

 
𝑑

𝑑𝑥
(𝑘(𝑇)𝐴(𝑥)

𝑑𝑇

𝑑𝑥
) − 𝐴𝑠ℎ(𝑇 − 𝑇∞) = 0 (4-32) 

where 𝐴𝑠 is the total surface area of the fin. The thermal conductivity of the fin varies linearly 

with temperature according to 

 𝑘(𝑇) = 𝑘∞[1 + 𝜆(𝑇 − 𝑇∞)] (4-33) 

where 𝑘∞ is the thermal conductivity of the fin at the ambient temperature and 𝜆 is a constant. If 

𝑏 is the width of the fin, then the cross-sectional area of an exponentially varying fin is given by 

 𝐴(𝑥) = 𝑏𝑡𝑏𝑒𝑎(𝑥 𝐿⁄ ) (4-34) 

where 𝑥 is measured from the tip of the fin, 𝑡𝑏 is the thickness at the base of the fin and 𝑎 is a 

constant. The following dimensionless parameters are introduced 

 𝜃 =
𝑇 − 𝑇∞

𝑇𝑏 − 𝑇∞
 𝑋 =

𝑥

𝐿
 𝑁 = (

ℎ𝐴𝑠𝐿2

𝑘∞𝐴𝑏
)

1
2

 (4-35) 

where 𝐴𝑏 is the area of the base of the fin and 𝑇𝑏 is the base temperature. If 𝛽 = 𝜆(𝑇𝑏 − 𝑇∞) and 

the base temperature is known and the tip is insulated, then the nondimensional governing 

equation and boundary conditions are given by 

 
𝑑

𝑑𝑋
(𝑒𝑎𝑋(1 + 𝛽𝜃)

𝑑𝜃

𝑑𝑋
) − 𝑁2𝜃 = 0 (4-36) 

 𝜃(1) = 1 (4-37) 

 
𝑑𝜃

𝑑𝑋
|
𝑋=0

= 0 (4-38) 
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Equation (4-36) can be expanded and rearranged such that it is in the form of Equation (3-1). 

 
𝑑2𝜃

𝑑𝑋2
=

1

𝑒𝑎𝑋(1 + 𝛽𝜃)
(𝑁2𝜃 − 𝑒𝑎𝑋𝛽 (

𝑑𝜃

𝑑𝑋
)

2

) − 𝑎
𝑑𝜃

𝑑𝑋
 (4-39) 

Note that the 𝑎(𝑑𝜃 𝑑𝑋⁄ ) term could remain on the left side of the equation as part of the 

homogeneous equation which could be solved using an auxiliary equation as was done in Section 

4.2. However, this would make finding the particular solution using variation of parameters 

much more complicated and gives no added benefit because of the presence of the (𝑑𝜃 𝑑𝑋⁄ )2 

term in the nonhomogeneity, which will have to be solved using finite difference methods. 

Because the derivative is approximate, this solution cannot be considered exact, unlike the first 

two extended surface applications. The procedure used to solve Equation (4-39) is exactly the 

same as that used to solve the heat flux gauge problem in Section 4.1, and so the details are 

omitted here. The homogeneous equation corresponding to Equation (4-39) is separated and 

integrated twice, yielding the complementary solution.  

 𝜃𝑐 = 𝑐1𝑋 + 𝑐2 (4-40) 

The particular solution is found using the method of variation of parameters and is given as 

 𝜃𝑝(𝑋) = 𝑋 ∫ 𝑓(𝑡, 𝜃, 𝜃′)𝑑𝑡
𝑋

0

− ∫ 𝑡𝑓(𝑡, 𝜃, 𝜃′)𝑑𝑡
𝑋

0

 (4-41) 

where 

 𝑓(𝑋, 𝜃, 𝜃′) =
1

𝑒𝑎𝑋(1 + 𝛽𝜃)
(𝑁2𝜃 − 𝑒𝑎𝑋𝛽(𝜃′)2) − 𝑎𝜃′ (4-42) 
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The dimensionless temperature profile is the sum of the complementary and particular solutions. 

The constants in Equation (4-40) are found by applying the boundary conditions so that the 

nondimensional temperature profile is given as follows. 

 

𝜃(𝑋) = 1 − ∫ 𝑓(𝑡, 𝜃, 𝜃′)𝑑𝑡
1

0

+ ∫ 𝑡𝑓(𝑡, 𝜃, 𝜃′)𝑑𝑡
1

0

+ 𝑋 ∫ 𝑓(𝑡, 𝜃, 𝜃′)𝑑𝑡
𝑋

0

− ∫ 𝑡𝑓(𝑡, 𝜃, 𝜃′)𝑑𝑡
𝑋

0

 

(4-43) 

Like the first two fin examples, an iterative approach is necessary to find 𝜃. However, in 

this example finite difference methods must be used approximate 𝜃′, so the solution is not exact. 

Figure 4-4 compares the temperature profile calculated from Equation (4-43) to that calculated 

using DTM [15] and that found from the direct numerical solution of Equation (4-36) [74] for 

various values of 𝛽 with 𝑎 = 1 and 𝑁 = 1. This solution was calculated from a MATLAB 

program which can be found in Appendix A.4. 

4.4 Conclusion 

 The method of variation of parameters was shown to be a useful tool for solving 

nonlinear differential equations that arise in extended surface problems. It was used to solve the 

energy equation for three specific applications: 1. a radiating annular fin, 2. convective and 

radiative exchange between the surface of a continuously moving strip and its surroundings, and 

3. a convective fin with temperature-dependent thermal conductivity and variable cross-sectional 

area. Although the method requires an iterative approach and numerical integration, the solutions 

to the first two examples can be considered exact because numerical integration can be 

performed to an arbitrary degree of precision. The last example requires finite difference 

approximations of derivatives. The results for each of these examples were compared to those of 
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other analytical and numerical methods and there is excellent agreement between them. The 

method is relatively easy to implement and generally less involved than other analytical and 

numerical solutions. 

 

 

Figure 4-4: Comparison of the dimensionless temperature profiles found from variation of parameters to 

those found from DTM and numerical methods for 𝒂 = 𝟏 and 𝑵 = 𝟏 for various values of 𝜷. 
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5 RADIATIVELY PARTICIPATING MEDIA 

In addition to the analyses of extended surfaces, as shown in the Chapter 4, nonlinear 

equations also arise when solving the overall energy balance in radiatively participating media 

because the energy equation requires the total radiative heat flux, which is dependent on the 

temperature profile of the medium. This chapter describes the fundamental concepts of radiative 

heat transfer in participating media and the mathematical formulas and governing equations that 

are used when analyzing such media. 

5.1 Semitransparent Media 

When an electromagnetic wave penetrates a medium, attenuation of the wave may occur. 

If there is complete attenuation such that none of the penetrating radiation reemerges, the 

medium is said to be opaque. If the wave passes through the medium with no attenuation, the 

medium is referred to as transparent or radiatively non-participating. Many substances can be 

approximated as transparent in order to simplify analysis. However, in many cases the 

interaction of thermal radiation with the medium is significant. A radiatively participating 

medium is one in which the absorption, emission, and/or scattering of thermal radiation by the 

medium is significant. Examples of participating media include smoke, combustion gases, 

fibrous insulating layers, and foams. This research will apply to a particular class of radiatively 

participating media, namely, semitransparent media. A semitransparent medium is any solid or 

liquid into which electromagnetic waves are allowed to penetrate a significant distance. The two 
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semitransparent media that are investigated in this research are ceramics that are used in thermal 

barrier coatings and crystalline media (such as SiO2) that optical fibers are made of in optical 

fiber thermometers. 

5.2 Radiative Properties 

The extent to which a radiatively participating medium interacts with thermal radiation is 

dependent upon the characteristics of the medium. Naturally, the thickness of the medium affects 

the degree to which incident radiation is attenuated. Additionally, the absorption and scattering 

characteristics of a participating medium can be described by its radiative properties such as its 

absorption coefficient, 𝜅, scattering coefficient, 𝜎𝑠,𝜆, and scattering phase function, Φ. The 

absorption coefficient represents the fraction of energy absorbed by a participating medium. 

Similarly, the scattering coefficient is the fraction of energy scattered by the medium. The 

scattering phase function describes the probability that a ray from one direction will be scattered 

into a specific direction in a participating medium. The emittance of a medium, 𝜀, is the fraction 

of blackbody energy emitted by the medium at a given temperature. The reflectance, 𝜌, 

absorptance, 𝛼, and transmittance, 𝜏, represent the fraction of radiation incident on a medium 

that will be reflected, absorbed, and transmitted, respectively. The refractive index, 𝑛, dictates 

the degree to which radiation is refracted by a medium. 

5.3 Radiative Transfer Equation (RTE) 

Accurate prediction of the heat transfer of a system with a radiatively participating 

medium requires simultaneously the solution to the governing equations and the determination of 

the radiative properties of the medium [76]. The equation that governs the behavior of radiative 

heat transfer in the presence of an absorbing, emitting, and/or scattering medium is known as the 



39 

Radiative Transfer Equation (RTE). This equation describes the radiative intensity field as a 

function of location, direction (fixed by a unit direction vector 𝒔̂), and spectral variable (such as 

wavelength, 𝜆) [5]. The RTE is an integro-differential equation that can be derived by 

performing a radiative energy balance on a differential volume element along a single line of 

site. The radiative transport equation can be expressed in terms of the spectral intensity 𝐼𝜆 of 

radiation propagating in the direction 𝑠̂ as [5]  

 
1

𝑐

𝜕𝐼𝜆

𝜕𝑡
+

𝜕𝐼𝜆

𝜕𝑠
= 𝜅𝜆𝐼𝑏,𝜆 − (𝜅𝜆 + 𝜎𝑠,𝜆)𝐼𝜆 +

𝜎𝑠,𝜆

4𝜋
∫ 𝐼𝜆(𝒔̂𝒊)Φ𝜆(𝒔̂𝒊, 𝒔̂)𝑑Ω𝑖

 

4𝜋

 (5-1) 

The first term on the left side of Equation (5-1) is the transient term where c is the speed 

of light. The first term on the right side represents emission from the participating medium in the 

direction 𝒔̂ where 𝜅𝜆 is the spectral absorption coefficient. The second term represents 

attenuation of the intensity in the direction 𝒔̂ by absorption and “out-scattering” (scattering away 

from the direction of consideration) where 𝜎𝑠,𝜆 is the spectral scattering coefficient. The last term 

represents “in-scattering” (augmentation of the intensity in the direction of interest due to 

scattering from all directions) and contains the scattering phase function Φ which represents the 

probability that the radiation propagating in a direction 𝒔̂𝒊 will be scattered into the direction 𝒔̂. 

There are a number of simplifying assumptions that were applied in the development of Equation 

(5-1): 1. the participating medium is at rest (as compared to the speed of light), 2. the medium is 

nonpolarizing and the state of polarization is neglected, 3. the medium is at local thermodynamic 

equilibrium and 4. the medium has a constant index of refraction [5]. 

5.4 Overall Energy Conservation 

In a semitransparent medium, energy can be transferred internally by conductive and 

convective heat transfer in addition to thermal radiation. In order to determine the temperature 
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profile in the semitransparent medium, the energy conservation equation must include all three 

modes of heat transfer. In a semitransparent medium, radiative energy is deposited locally by 

absorption and leaves by local emission. The net energy transfer by radiative effects can be 

treated as a local energy source in a control volume. Therefore, the overall energy conservation 

equation for a stationary semitransparent medium is given by [5, 2] 

 𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
= ∇ ∙ (𝑘∇𝑇) − ∇ ∙ 𝒒𝑹

′′ + Q̇′′′ (5-2) 

The left side of Equation (5-2) represents the energy storage term. The first term on the 

right side is the divergence of the conduction flux vector, which is given by Fourier’s law, and 

represents the net contribution to the control volume by heat conduction. Similarly, the net 

contribution of radiant energy is given by the negative of the divergence of the total radiative 

heat flux vector, 𝒒𝑹
′′. Finally, Q̇′′′ is the local energy generation term. 

5.5 Total Radiative Heat Flux 

The radiative intensity depends on the temperature profile and so the energy equation 

(Equation (5-2)) and the RTE (Equation (5-1)) must be solved simultaneously. The radiative 

intensity is related to the total radiative heat flux vector inside a radiatively participating 

medium, 𝒒𝑹
′′, by the following equation [5]. 

 𝒒𝑹
′′ = ∫ ∫ 𝐼𝜆(𝒔̂)𝒔̂𝑑Ω

 

4𝜋

𝑑𝜆
∞

0

 (5-3) 

The total radiative heat flux is expressed in terms of the incident and outgoing spectral intensity 

integrated over all directions and over all wavelengths. 
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6 TEMPERATURE PROFILE IN A NON-GRAY MEDIUM SURROUNDED BY NON-

GRAY BOUNDARIES 

In a radiatively participating medium, the energy equation contains the divergence of the 

total radiative heat flux vector, as shown in Equation (5-2). The total radiative heat flux is a 

function of the intensity field, which is dependent upon the temperature profile in the medium to 

the fourth power. Therefore, the energy equation becomes a nonlinear, nonhomogeneous 

differential equation. In this chapter, an exact solution to the conduction-radiation problem in a 

one-dimensional, planar, absorbing, emitting, non-gray medium between non-gray boundaries is 

presented. The method uses an integrating factor to solve the Radiative Transfer Equation and 

variation of parameters is used to solve the energy equation. The model is verified by comparing 

the temperature profiles calculated from the presented approach to those found using numerical 

methods for both gray and non-gray cases. 

6.1 Introduction 

Systems in which both conduction and radiation are the dominant modes of heat transfer 

can be found in many practical engineering applications. These include fiber and foam 

insulations, the manufacture of glass, the study and design of furnaces and internal-combustion 

engines, filler and cover for windows and solar collectors, thermal barrier coatings, and many 

others. The wide variety of applications has resulted in several numerical and experimental 

studies of methods for analyzing systems with simultaneous conduction and radiation. 
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The analysis of such systems is inherently difficult because of the integro-differential 

nature of the radiative transfer equation [5]. The pioneering theoretical analysis for this problem 

was presented by Viskanta and Grosh in 1962 in which the temperature profile of a one-

dimensional, gray medium bounded on both sides by opaque surfaces was obtained by 

transforming the governing integro-differential equation into a non-linear integral equation that 

was solved iteratively [20]. The same authors investigated the effects of different emittances of 

the bounding surfaces on the heat transfer in the gray medium [21]. The results of these analyses 

are often used as benchmark solutions to which other methods are compared. 

More recent approaches to solving the combined conduction-radiation problem include 

the use of the finite element method [22, 23], the finite difference method [24, 25], the finite 

volume method [26, 27], and the lattice Boltzmann method [28-30]. The radiation portion of the 

problem has been solved using the discrete ordinates method [29], the discrete transfer method 

[5, 30], the method of spherical harmonics [5, 77], the Monte Carlo method [78], and the finite 

volume method [28, 79]. Each of these methods has advantages and disadvantages. 

Most of the published solutions deal with heat transfer in gray media [31]. Fewer 

investigations have been conducted for the case of combined conduction-radiation heat transfer 

in non-gray media. Heinemann et al. used theoretical and experimental methods to analyze 

conduction-radiation heat transfer in non-gray silica aerogels [80] while Manohar et al. 

investigated conduction-radiation heat transfer in non-gray plastics [81]. More recently, Marques 

et al. developed a computationally efficient numerical model based on finite strip theory to 

determine the temperature profile and heat flux in absorbing, emitting, non-scattering, non-gray 

media [31]. 
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Previous efforts to solve combined conduction and radiation heat transfer problems have 

relied on numerical methods to solve the governing equations. This chapter outlines an exact 

solution to the equations governing the simultaneous conduction and radiation heat transfer in a 

one-dimensional, plane parallel, absorbing, emitting, non-scattering, non-gray medium 

surrounded by diffuse, opaque surfaces. The particular solution to the governing differential 

equation is obtained using the method of variation of parameters while the spectral intensities 

required to calculate the total radiative heat flux are found by solving the RTE using an 

integrating factor. This approach results in an integral equation that is solved for the temperature 

profile. The temperature profile is obtained using iterative, numerical integration, and a closed-

form solution is not obtained. However, since numerical integration can be performed to an 

arbitrary degree of precision, the solution is exact. The model is verified by comparing the 

results for various cases to those calculated using different numerical methods and to CFD 

simulations performed using commercial software [82], which employs the discrete ordinates 

method to model the radiative heat transfer. 

6.2 Problem Formulation 

A one-dimensional, plane-parallel, homogeneous, isotropic, non-gray, participating 

medium bounded by two surfaces is shown in Figure 6-1. The medium is absorbing, emitting, 

and non-scattering and the bounding surfaces are opaque and diffuse. The temperature of the 

boundaries are denoted by 𝑇0 and 𝑇𝐿 at 𝑧 = 0 and 𝑧 = 𝐿, respectively. The material properties of 

both the participating medium and the boundaries are independent of temperature. 
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Figure 6-1: Absorbing-emitting medium between two diffuse boundaries. Coordinates used in the theoretical 

analysis are shown 

 

Heat transfer in the medium occurs by both conduction and radiation. The energy equation for 

simultaneous conduction and radiation in a participating medium is [5] 

 𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
= ∇ ∙ (𝑘∇𝑇) − ∇ ∙ 𝒒𝑹

′′ + Q̇′′′ (6-1) 

For a one-dimensional, planar medium at steady state with constant thermal conductivity and 

without internal heat generation, Equation (6-1) reduces to 

 
𝑑2𝑇

𝑑𝑧2
=

1

𝑘

𝑑𝑞𝑅
′′

𝑑𝑧
 (6-2) 
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This equation is subject to the following boundary conditions. 

 𝑇(0) = 𝑇0 (6-3) 

 𝑇(𝐿) = 𝑇𝐿 (6-4) 

This differential equation can be solved to determine the temperature profile in the participating 

medium. In order to solve the differential equation, the total radiative heat flux, 𝑞𝑅, must be 

determined. This heat flux is given by [1] 

 𝑞𝑅
′′ = ∫ ∫ 𝐼𝜆(𝒔̂)𝒔̂𝑑Ω𝑑𝜆

 

4𝜋

∞

0

 (6-5) 

Using the definition of the solid angle, 𝑑Ω = sin 𝜃 𝑑𝜃𝑑𝜙, and expressing the direction vector, 𝒔̂ 

in terms of  𝑧 and 𝜃, Equation (6-5) becomes 

 𝑞𝑅
′′ = ∫ ∫ ∫ 𝐼𝜆(𝑧, 𝜃) cos 𝜃 sin 𝜃 𝑑𝜃

𝜋

0

𝑑𝜙
2𝜋

0

𝑑𝜆
∞

0

 (6-6) 

Integrating over 𝜙, employing the direction cosine, 𝜇 = cos 𝜃, and noting that sin θ 𝑑𝜃 = −𝑑𝜇, 

Equation (6-6) becomes 

 𝑞𝑅
′′ = 2𝜋 ∫ ∫ 𝐼(𝑧, 𝜇)𝜇𝑑𝜇

+1

−1

𝑑𝜆
∞

0

 (6-7) 

 = 2𝜋 ∫ [∫ 𝐼𝜆
−(𝑧, 𝜇)𝜇𝑑𝜇

0

−1

+ ∫ 𝐼𝜆
+(𝑧, 𝜇)𝜇𝑑𝜇

+1

0

] 𝑑𝜆
∞

0

 (6-8) 

 = 2𝜋 ∫ [∫ 𝐼𝜆
+(𝑧, 𝜇)𝜇𝑑𝜇

1

0

− ∫ 𝐼𝜆
−(𝑧, −𝜇)𝜇𝑑𝜇

1

0

] 𝑑𝜆
∞

0

 (6-9) 

6.3 Analytical Solution 

The Radiative Transfer Equation (RTE) can be used to find 𝐼+(𝑧, 𝜇) and 𝐼−(𝑧, −𝜇) 

required by the equation for the total radiative heat flux shown in Equation (6-9). The RTE 
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represents the conservation of energy along a line of sight in a radiatively participating medium. 

The RTE is given by [5] 

 1

𝑐

𝜕𝐼𝜆

𝜕𝑡
+

𝜕𝐼𝜆

𝜕𝑠
= 𝜅𝜆𝐼𝑏,𝜆 − (𝜅𝜆 + 𝜎𝑠,𝜆)𝐼𝜆 +

𝜎𝑠,𝜆

4𝜋
∫ 𝐼𝜆(𝒔̂𝒊)Φ𝜆(𝒔̂𝒊, 𝒔̂)𝑑Ω𝑖

 

4𝜋

 (6-10) 

For a non-scattering medium and looking in the 𝑧𝑠 direction, Equation (6-10) reduces to 

 𝑑𝐼𝜆
+

𝑑𝑧𝑠
= 𝜅𝜆𝐼𝑏,𝜆(𝑧𝑠) − 𝜅𝜆𝐼𝜆

+ (6-11) 

Note that the + superscript on the spectral intensity indicates that the intensity is traveling in the 

“positive” direction (for which 0 < 𝜃 < 𝜋 2⁄ ). Multiplying both sides of Equation (6-11) by the 

integrating factor 𝑒𝜅𝜆𝑧𝑠 and rearranging gives 

 𝑑𝐼𝜆
+

𝑑𝑧𝑠
𝑒𝜅𝜆𝑧𝑠 + 𝜅𝜆𝐼𝜆

+𝑒𝜅𝜆𝑧𝑠 = 𝜅𝜆𝐼𝑏,𝜆(𝑧𝑠)𝑒𝜅𝜆𝑧𝑠 (6-12) 

Taking advantage of the product rule of differentiation, Equation (6-12) becomes 

 𝑑

𝑑𝑧𝑠

(𝑒𝜅𝜆𝑧𝑠𝐼𝜆
+) = 𝜅𝜆𝐼𝑏,𝜆(𝑧𝑠)𝑒𝜅𝜆𝑧𝑠 (6-13) 

Integrating both sides of Equation (6-14) from the left boundary to an arbitrary point 𝑧𝑠 gives 

 
𝑒𝜅𝜆𝑧𝑠𝐼𝜆

+(𝑧𝑠) − 𝐼𝜆
+(0) = ∫ 𝜅𝜆𝐼𝑏,𝜆(𝑧𝑠

′)𝑒𝜅𝜆𝑧𝑠
′
𝑑𝑧𝑠

′
𝑧𝑠

0

 (6-14) 

Finally, Equation (6-14) can be solved for the intensity at an arbitrary point 𝑧𝑠 as follows. 

 
𝐼𝜆

+(𝑧𝑠) = 𝐼𝜆
+(0)𝑒−𝜅𝜆𝑧𝑠 + 𝜅𝜆 ∫ 𝐼𝑏,𝜆(𝑇(𝑧𝑠

′))𝑒−𝜅𝜆(𝑧𝑠−𝑧𝑠
′)𝑑𝑧𝑠

′
𝑧𝑠

0

 (6-15) 

This equation is put in terms of 𝑧 and 𝜃 by using the relation 𝑧𝑠 = 𝑧 cos 𝜃⁄  such that 

 
𝐼𝜆

+(𝑧, 𝜃) = 𝐼𝜆
+(0, 𝜃)𝑒−𝜅𝜆𝑧 cos 𝜃⁄ + 𝜅𝜆 ∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆(𝑧−𝑧′) cos 𝜃⁄

𝑑𝑧′

cos 𝜃

𝑧

0

 (6-16) 
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In order to find 𝐼𝜆
−(𝑧, 𝜃), the same process as outlined above is followed except that the 

integration is now performed from an arbitrary point 𝑧𝑠 to the right boundary. This results in the 

following equation. 

 
𝐼𝜆

−(𝑧, 𝜃) = 𝐼𝜆
−(𝐿, 𝜃)𝑒𝜅𝜆(𝐿−𝑧) cos 𝜃⁄ − 𝜅𝜆 ∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒𝜅𝜆(𝑧′−𝑧) cos 𝜃⁄

𝑑𝑧′

cos 𝜃

𝐿

𝑧

 (6-17) 

Note that, in this case, the intensity is traveling in the “negative” direction (for which 𝜋 2⁄ < 𝜃 <

𝜋). Equations (6-16) and (6-17) can be written in terms of the direction cosine 𝜇 = cos 𝜃 as 

follows. 

 𝐼𝜆
+(𝑧, 𝜇) = 𝐼𝜆

+(0, 𝜇)𝑒−𝜅𝜆𝑧 𝜇⁄ +
𝜅𝜆

𝜇
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆(𝑧−𝑧′) 𝜇⁄ 𝑑𝑧′

𝑧

0

           0 < 𝜇 < 1 (6-18) 

 𝐼𝜆
−(𝑧, 𝜇) = 𝐼𝜆

−(𝐿, 𝜇)𝑒𝜅𝜆(𝐿−𝑧) 𝜇⁄ −
𝜅𝜆

𝜇
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆(𝑧−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

𝑧

   − 1 < 𝜇 < 0 (6-19) 

In order for 𝐼𝜆
−(𝑧, 𝜇) to have limits of integration from 0 to 1 as required in Equation (6-9), 𝜇 

must be negative in Equation (6-19). 

𝐼𝜆
−(𝑧, −𝜇) = 𝐼𝜆

−(𝐿, −𝜇)𝑒−𝜅𝜆(𝐿−𝑧) 𝜇⁄ +
𝜅𝜆

𝜇
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆(𝑧′−𝑧) 𝜇⁄ 𝑑𝑧′

𝐿

𝑧

         0 < 𝜇 < 1 (6-20) 

The unknowns in Equations (6-18) and (6-20) are 𝐼𝜆
+(0, 𝜇) and 𝐼𝜆

−(𝐿, −𝜇), respectively. 

𝐼𝜆
+(0, 𝜇) represents the intensity coming from the left boundary, which is due to both emission 

and reflection and is represented by Equation (6-21). 

 𝐼𝜆
+(0, 𝜇) = 𝜀𝜆,0𝐼𝑏,𝜆(𝑇(0)) + 𝜌𝜆,0𝐼𝜆

−(0, −𝜇) (6-21) 

The first term on the right side of Equation (6-21) represents the diffuse emission from the wall 

while the second term is the diffuse reflection of the incident intensity on the wall where 𝜌𝜆,0 is 

the spectral, directional-hemispherical reflectance. The incident intensity, 𝐼𝜆
−(0, −𝜇), is a result 

of the emission and reflection from the opposite wall as well as the emission from the medium 
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itself and is therefore dependent on direction. 𝐼𝜆
−(0, −𝜇) is found by letting 𝑧 = 0 in Equation 

(6-20). 

 
𝐼𝜆

−(0, −𝜇) = 𝐼𝜆
−(𝐿, −𝜇)𝑒−𝜅𝜆𝐿 𝜇⁄ +

𝜅𝜆

𝜇
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′

𝐿

0

 (6-22) 

𝐼𝜆
−(𝐿, −𝜇) represents the intensity emitted and reflected by the right surface. 

 𝐼𝜆
−(𝐿, −𝜇) = 𝜀𝜆,𝐿𝐼𝑏,𝜆(𝑇(𝐿)) + 𝜌𝜆,𝐿𝐼𝜆

+(𝐿, 𝜇) (6-23) 

The intensity incident on the left boundary, 𝐼𝜆
+(𝐿, 𝜇), is found by letting 𝑧 = 𝐿 in Equation 

(6-18). 

 
𝐼𝜆

+(𝐿, 𝜇) = 𝐼𝜆
+(0, 𝜇)𝑒−𝜅𝜆𝐿 𝜇⁄ +

𝜅𝜆

𝜇
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆(𝐿−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

 (6-24) 

Making the appropriate substitutions results in expressions for 𝐼𝜆
+(0, 𝜇) and 𝐼𝜆

−(𝐿, −𝜇). 

𝐼𝜆
+(0, 𝜇) =

1

(1 − 𝜌𝜆,0𝜌𝜆,𝐿𝑒−2𝜅𝜆𝐿 𝜇⁄ )
[𝜀𝜆,0𝐼𝑏,𝜆(𝑇(0)) + 𝜌𝜆,0𝜀𝜆,𝐿𝐼𝑏,𝜆(𝑇(𝐿))𝑒−𝜅𝜆𝐿 𝜇⁄

+
𝜌𝜆,0𝜌𝜆,𝐿𝜅𝜆

𝜇
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆(2𝐿−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

+
𝜌𝜆,0𝜅𝜆

𝜇
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′

𝐿

0

] 

(6-25) 

 

𝐼𝜆
−(𝐿, −𝜇) = 𝜀𝜆,𝐿𝐼𝑏,𝜆(𝑇(𝐿))

+
𝜌𝜆,𝐿𝑒−𝜅𝜆𝐿 𝜇⁄

(1 − 𝜌𝜆,0𝜌𝜆,𝐿𝑒−2𝜅𝜆𝐿 𝜇⁄ )
[𝜀𝜆,0𝐼𝑏,𝜆(𝑇(0)) + 𝜌𝜆,0𝜀𝜆,𝐿𝐼𝑏,𝜆(𝑇(𝐿))𝑒−𝜅𝜆𝐿 𝜇⁄

+
𝜌𝜆,0𝜌𝜆,𝐿𝜅𝜆

𝜇
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆(2𝐿−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

+
𝜌𝜆,0𝜅𝜆

𝜇
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′

𝐿

0

]

+
𝜌𝜆,𝐿𝜅𝜆

𝜇
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆(𝐿−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

 

(6-26) 
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Substituting Equations (6-25) and (6-26) into Equations (6-18) and (6-20), respectively, provides 

expressions for 𝐼𝜆
+(𝑧, 𝜇) and 𝐼𝜆

−(𝑧, −𝜇). 

𝐼𝜆
+(𝑧, 𝜇) = 𝑅𝜆,𝜇𝑒−𝜅𝜆𝑧 𝜇⁄ [𝜀𝜆,0𝐼𝑏,𝜆(𝑇(0)) + 𝜌𝜆,0𝜀𝜆,𝐿𝐼𝑏,𝜆(𝑇(𝐿))𝑒−𝜅𝜆𝐿 𝜇⁄

+
𝜌𝜆,0𝜌𝜆,𝐿𝜅𝜆

𝜇
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆(2𝐿−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

+
𝜌𝜆,0𝜅𝜆

𝜇
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′

𝐿

0

] +
𝜅𝜆

𝜇
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆(𝑧−𝑧′) 𝜇⁄ 𝑑𝑧′

𝑧

0

 

(6-27) 

 

𝐼𝜆
−(𝑧, −𝜇) = 𝜀𝜆,𝐿𝐼𝑏,𝜆(𝑇(𝐿))𝑒−𝜅𝜆(𝐿−𝑧) 𝜇⁄

+ 𝑅𝜆,𝜇𝜌𝜆,𝐿𝑒−𝜅𝜆(2𝐿−𝑧) 𝜇⁄ [𝜀𝜆,0𝐼𝑏,𝜆(𝑇(0)) + 𝜌𝜆,0𝜀𝜆,𝐿𝐼𝑏,𝜆(𝑇(𝐿))𝑒−𝜅𝜆𝐿 𝜇⁄

+
𝜌𝜆,0𝜌𝜆,𝐿𝜅𝜆

𝜇
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆(2𝐿−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

+
𝜌𝜆,0𝜅𝜆

𝜇
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′

𝐿

0

]

+
𝜌𝜆,𝐿𝜅𝜆

𝜇
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆(2𝐿−𝑧−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

+
𝜅𝜆

𝜇
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆(𝑧′−𝑧) 𝜇⁄ 𝑑𝑧′

𝐿

𝑧

 

(6-28) 

where 

 𝑅𝜆,𝜇 =
1

(1 − 𝜌𝜆,0𝜌𝜆,𝐿𝑒−2𝜅𝜆𝐿 𝜇⁄ )
 (6-29) 

The total radiative heat flux, 𝑞𝑅, is found by substituting Equations (6-27) and (6-28) into 

Equation (6-9), which can be expressed as 

 𝑞𝑅
′′ = 2𝜋 ∑ 𝐴𝑖

12

𝑖=1

 (6-30) 

where 

 𝐴1 = ∫ ∫ 𝑅𝜆,𝜇𝜀𝜆,0𝐼𝑏,𝜆(0)𝑒−𝜅𝜆𝑧 𝜇⁄ 𝜇𝑑𝜇
1

0

𝑑𝜆
∞

0

 (6-31) 

 𝐴2 = ∫ ∫ 𝑅𝜆,𝜇𝜌𝜆,0𝜀𝜆,𝐿𝐼𝑏,𝜆(𝑇(𝐿))𝑒−𝜅𝜆(𝐿+𝑧) 𝜇⁄ 𝜇
1

0

𝑑𝜆
∞

0

 (6-32) 
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 𝐴3 = ∫ ∫ 𝑅𝜆,𝜇𝜌𝜆,0𝜌𝜆,𝐿𝜅𝜆𝑒−𝜅𝜆(2𝐿+𝑧) 𝜇⁄ ∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

𝑑𝜇
1

0

𝑑𝜆
∞

0

 (6-33) 

 𝐴4 = ∫ ∫ 𝑅𝜆,𝜇𝜌𝜆,0𝜅𝜆𝑒−𝜅𝜆𝑧 𝜇⁄ ∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

𝑑𝜇
1

0

𝑑𝜆
∞

0

 (6-34) 

 𝐴5 = ∫ ∫ 𝜅𝜆𝑒−𝜅𝜆𝑧 𝜇⁄ ∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′
𝑧

0

𝑑𝜇
1

0

𝑑𝜆
∞

0

 (6-35) 

 𝐴6 = − ∫ ∫ 𝜀𝜆,𝐿𝐼𝑏,𝜆(𝑇(𝐿))𝑒−𝜅𝜆(𝐿−𝑧) 𝜇⁄ 𝜇𝑑𝜇
1

0

𝑑𝜆
∞

0

 (6-36) 

 𝐴7 = − ∫ ∫ 𝑅𝜆,𝜇𝜌𝜆,𝐿𝜀𝜆,0𝐼𝑏,𝜆(𝑇(0))𝑒−𝜅𝜆(2𝐿−𝑧) 𝜇⁄ 𝜇𝑑𝜇
1

0

𝑑𝜆
∞

0

 (6-37) 

 𝐴8 = − ∫ ∫ 𝑅𝜆,𝜇𝜌𝜆,0𝜌𝜆,𝐿𝜀𝜆,𝐿𝐼𝑏,𝜆(𝑇(𝐿))𝑒−𝜅𝜆(3𝐿−𝑧) 𝜇⁄ 𝜇𝑑𝜇
1

0

𝑑𝜆
∞

0

 (6-38) 

 𝐴9 = − ∫ ∫ 𝑅𝜆,𝜇𝜌𝜆,0𝜌𝜆,𝐿
2 𝜅𝜆𝑒−𝜅𝜆(4𝐿−𝑧) 𝜇⁄ ∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′

𝐿

0

𝑑𝜇
1

0

𝑑𝜆
∞

0

 (6-39) 

 𝐴10 = − ∫ ∫ 𝑅𝜆,𝜇𝜌𝜆,0𝜌𝜆,𝐿𝜅𝜆𝑒−𝜅𝜆(2𝐿−𝑧) 𝜇⁄ ∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

𝑑𝜇
1

0

𝑑𝜆
∞

0

 (6-40) 

 𝐴11 = − ∫ ∫ 𝜌𝜆,𝐿𝜅𝜆𝑒−𝜅𝜆(2𝐿−𝑧) 𝜇⁄ ∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

𝑑𝜇
1

0

𝑑𝜆
∞

0

 (6-41) 

 𝐴12 = − ∫ ∫ 𝜅𝜆𝑒𝜅𝜆𝑧 𝜇⁄ ∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

𝑧

𝑑𝜇
1

0

𝑑𝜆
∞

0

 (6-42) 

 

Equation (6-30) is then substituted into Equation (6-2) which is the equation governing the 

temperature profile in the participating medium. 

 𝑑2𝑇

𝑑𝑧2
=

2𝜋

𝑘
∑

𝑑𝐴𝑖

𝑑𝑧

12

𝑖=1

= 𝑓(𝑧, 𝑇) (6-43) 
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Equation (6-43) is a second order, linear, non-homogeneous differential equation. This 

equation can be solved for the temperature profile 𝑇(𝑧) in the medium by finding both the 

complementary and particular solutions. 

 𝑇(𝑧) = 𝑇𝑐 + 𝑇𝑝 (6-44) 

The complementary solution is the solution to the homogeneous equation. 

 𝑑2𝑇

𝑑𝑧2
= 0 (6-45) 

Separating and integrating Equation (6-45) twice results in the following complementary 

solution. 

 𝑇𝑐 = 𝑐1𝑧 + 𝑐2 (6-46) 

The particular solution to Equation (6-43) is solved using the method of variation of parameters 

as described in Chapter 3. From the complementary solution, 

 𝑇1 = 𝑧 (6-47) 

 𝑇2 = 1 (6-48) 

The particular solution is given by 

 𝑇𝑝 = 𝑢1𝑇1 + 𝑢2𝑇2 = 𝑢1𝑧 + 𝑢2 (6-49) 

where 

 𝑢1 = ∫
2𝜋

𝑘
∑

𝑑𝐴𝑖

𝑑𝑧

12

𝑖=1

𝑑𝑧 ⟹ 𝑢1 =
2𝜋

𝑘
∑ 𝐴𝑖

12

𝑖=1

 (6-50) 

 𝑢2 = − ∫
2𝜋

𝑘
𝑧 ∑

𝑑𝐴𝑖

𝑑𝑧

12

𝑖=1

𝑑𝑧 (6-51) 
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To find 𝑢2, integration by parts is employed on Equation (6-51), resulting in the following 

equation. 

 𝑢2 = −
2𝜋

𝑘
𝑧 ∑ 𝐴𝑖

12

𝑖=1

+ ∫
2𝜋

𝑘
∑ 𝐴𝑖

12

𝑖=1

𝑑𝑧 (6-52) 

Equations (6-50) and (6-52) are substituted into Equation (6-49), so the particular solution is 

 

𝑇𝑝 =
2𝜋

𝑘
𝑧 ∑ 𝐴𝑖

12

𝑖=1

−
2𝜋

𝑘
𝑧 ∑ 𝐴𝑖

12

𝑖=1

+ ∫
2𝜋

𝑘
∑ 𝐴𝑖

12

𝑖=1

𝑑𝑧 =
2𝜋

𝑘
∫ ∑ 𝐴𝑖

12

𝑖=1

𝑑𝑧 (6-53) 

An equation for the temperature profile of the participating medium is found by 

substituting Equations (6-46) and (6-53) into Equation (6-44). 

 

𝑇(𝑧) = 𝑐1𝑧 + 𝑐2 +
2𝜋

𝑘
∫ ∑ 𝐴𝑖

12

𝑖=1

𝑑𝑧 (6-54) 

Each of the 𝐴 terms in Equation (6-54) is integrated with respect to 𝑧 so that the temperature 

profile has the following form. 

 

𝑇(𝑧) = 𝑐1𝑧 + 𝑐2 +
2𝜋

𝑘
∑ 𝐵𝑖

12

𝑖=1

(𝑧) (6-55) 

where 

 𝐵1 = − ∫ ∫
𝑅𝜆,𝜇𝜀𝜆,0

𝜅𝜆
𝐼𝑏,𝜆(𝑇(0))𝑒−𝜅𝜆𝑧 𝜇⁄ 𝜇2𝑑𝜇

1

0

𝑑𝜆
∞

0

 (6-56) 

 𝐵2 = − ∫ ∫
𝑅𝜆,𝜇𝜌𝜆,0𝜀𝜆,𝐿

𝜅𝜆
𝐼𝑏,𝜆(𝑇(𝐿))𝑒−𝜅𝜆(𝐿+𝑧) 𝜇⁄ 𝜇2𝑑𝜇

1

0

𝑑𝜆
∞

0

 (6-57) 

 𝐵3 = − ∫ ∫ 𝑅𝜆,𝜇𝜌𝜆,0𝜌𝜆,𝐿𝑒−𝜅𝜆(2𝐿+𝑧) 𝜇⁄ 𝜇 ∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

𝑑𝜇
1

0

𝑑𝜆
∞

0

 (6-58) 

 𝐵4 = − ∫ ∫ 𝑅𝜆,𝜇𝜌𝜆,0𝑒−𝜅𝜆𝑧 𝜇⁄ 𝜇 ∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

𝑑𝜇
1

0

𝑑𝜆
∞

0

 (6-59) 
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Evaluating the integral of 𝐴5 is not as straightforward as the previous terms because the 

variable 𝑧 is in the definite integral. The integration is performed as follows. 

𝐵5 = ∫ ∫ ∫ ∫ 𝜅𝜆𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆(𝑧−𝑧′) 𝜇⁄ 𝑑𝑧′
𝑧

0

𝑑𝜇
1

0

𝑑𝜆
∞

0

𝑑𝑧 = ∫ ∫ ∫ 𝜅𝜆𝑒−𝜅𝜆𝑧 𝜇⁄ 𝑔(𝑧, 𝜆, 𝜇)𝑑𝜇
1

0

𝑑𝜆
∞

0

𝑑𝑧 (6-60) 

 

In the above equation, 

 
𝑔(𝑧, 𝜆, 𝜇) = ∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′

𝑧

0

 (6-61) 

The order of integration in Equation (6-60) is changed such that 

 
𝐵5 = ∫ ∫ ∫ 𝜅𝜆𝑒−𝜅𝜆𝑧 𝜇⁄ 𝑔(𝑧, 𝜆, 𝜇)𝑑𝑧 𝑑𝜇

1

0

𝑑𝜆
∞

0

 (6-62) 

and integration by parts is used on the inner integral of Equation (6-62) with 

 𝑢 = 𝑔(𝑧, 𝜆, 𝜇) (6-63) 

 𝑑𝑢 =
𝜕𝑔

𝜕𝑧
𝑑𝑧 (6-64) 

 𝑑𝑣 = 𝜅𝜆𝑒−𝜅𝜆𝑧 𝜇⁄ 𝑑𝑧 (6-65) 

 𝑣 = ∫ 𝜅𝜆𝑒−𝜅𝜆𝑧 𝜇⁄ 𝑑𝑧 = −𝜇𝑒−𝜅𝜆𝑧 𝜇⁄  (6-66) 

so that 

 𝐵5 = ∫ ∫ 𝜇 [−𝑔(𝑧, 𝜆, 𝜇)𝑒−𝜅𝜆𝑧 𝜇⁄ + ∫ 𝑒−𝜅𝜆𝑧 𝜇⁄
𝜕𝑔

𝜕𝑧
𝑑𝑧] 𝑑𝜇

1

0

𝑑𝜆
∞

0

 (6-67) 

𝜕𝑔 𝜕𝑧⁄  is now evaluated. 

 𝜕𝑔

𝜕𝑧
=

𝜕

𝜕𝑧
∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′

𝑧

0

 (6-68) 

 

 



54 

If the function 𝑓(𝑧′, 𝑧) is defined as 

 𝑓(𝑧′, 𝑧) = 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒𝜅𝜆𝑧′ 𝜇⁄  (6-69) 

then  

 𝜕𝑔

𝜕𝑧
=

𝜕

𝜕𝑧
∫ 𝑓(𝑧′, 𝑧)𝑑𝑧′

𝑧

0

 (6-70) 

From the fundamental theorem of calculus, 

 𝜕𝑔

𝜕𝑧
= 𝐼𝑏,𝜆(𝑇(𝑧))𝑒𝜅𝜆𝑧 𝜇⁄  (6-71) 

Finally, Equations (6-61) and (6-71) are substituted into Equation (6-67). 

𝐵5 = − ∫ ∫ ∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒𝜅𝜆(𝑧′−𝑧) 𝜇⁄ 𝜇𝑑𝑧′
𝑧

0

𝑑𝜇
1

0

𝑑𝜆
∞

0

+ ∫ ∫ ∫ 𝜇𝐼𝑏,𝜆(𝑇(𝑧))𝑑𝜇
1

0

𝑑𝜆
∞

0

𝑑𝑧 (6-72) 

Continuing with the integration of the 𝐴 terms from Equation (6-54), 

 𝐵6 = − ∫ ∫
𝜀𝜆,𝐿

𝜅𝜆
𝐼𝑏,𝜆(𝑇(𝐿))𝑒−𝜅𝜆(𝐿−𝑧) 𝜇⁄ 𝜇2𝑑𝜇

1

0

𝑑𝜆
∞

0

 (6-73) 

 𝐵7 = − ∫ ∫
𝑅𝜆,𝜇𝜌𝜆,𝐿𝜀𝜂,0

𝜅𝜆
𝐼𝑏,𝜆(𝑇(0))𝑒−𝜅𝜆(2𝐿−𝑧) 𝜇⁄ 𝜇2𝑑𝜇

1

0

𝑑𝜆
∞

0

 (6-74) 

 𝐵8 = − ∫ ∫
𝑅𝜆,𝜇𝜌𝜆,0𝜌𝜆,𝐿𝜀𝜆,𝐿

𝜅𝜆
𝐼𝑏,𝜆(𝑇(𝐿))𝑒−𝜅𝜆(3𝐿−𝑧) 𝜇⁄ 𝜇2𝑑𝜇

1

0

𝑑𝜆
∞

0

 (6-75) 

 𝐵9 = − ∫ ∫ 𝑅𝜆,𝜇𝜌𝜆,0𝜌𝜆,𝐿
2 𝑒−𝜅𝜆(4𝐿−𝑧) 𝜇⁄ 𝜇 ∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′

𝐿

0

𝑑𝜇
1

0

𝑑𝜆
∞

0

 (6-76) 

 𝐵10 = − ∫ ∫ 𝑅𝜆,𝜇𝜌𝜆,0𝜌𝜆,𝐿𝑒−𝜅𝜆(2𝐿−𝑧) 𝜇⁄ 𝜇 ∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

𝑑𝜇
1

0

𝑑𝜆
∞

0

 (6-77) 

 𝐵11 = − ∫ ∫ 𝜌𝜆,𝐿𝑒−𝜅𝜆(2𝐿−𝑧) 𝜇⁄ 𝜇 ∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

𝑑𝜇
1

0

𝑑𝜆
∞

0

 (6-78) 
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Because 𝑧 is in the definite integral in 𝐴12, the same process used to integrate 𝐴5 is to evaluate 

the integral of 𝐴12. The result is 

𝐵12 = − ∫ ∫ ∫ 𝐼𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆(𝑧′−𝑧) 𝜇⁄ 𝜇𝑑𝑧′
𝐿

𝑧

𝑑𝜇
1

0

𝑑𝜆
∞

0

− ∫ ∫ ∫ 𝜇𝐼𝑏,𝜆(𝑇(𝑧))𝑑𝜇
1

0

𝑑𝜆
∞

0

𝑑𝑧 (6-79) 

Note that in the summation of Equation (6-55), the second term of 𝐵5 cancels with the second 

term of 𝐵12 and that all constants of integration are combined with those of the complementary 

solution. The constants c1 and c2 in Equation (6-55) are found by applying the boundary 

conditions shown in Equations (6-3) and (6-4). 

After finding the constants and multiplying the 𝜋 term by the spectral intensities 

according to the equation 𝜋𝐼𝑏,𝜆 = 𝐸𝑏,𝜆, the final expression for the temperature profile in a one-

dimensional, plane-parallel, non-gray, absorbing, emitting, and non-scattering medium bounded 

by two opaque surfaces can be written as 

 

𝑇(𝑧) = (
𝑇𝐿

𝐿
−

𝑇0

𝐿
) 𝑧 + 𝑇0 +

2

𝑘
∑ ∫ ∫ 𝐶𝑖(𝑧, 𝜆, 𝜇)𝑑𝜇

1

0

𝑑𝜆
∞

0

12

𝑖=1

 (6-80) 

where 

 𝐶1 =
𝑅𝜆,𝜇𝜀𝜆,0

𝜅𝜆
𝐸𝑏,𝜆(𝑇(0))𝑃(𝑧, 𝜆, 𝜇)𝜇2 (6-81) 

 𝐶2 =
𝑅𝜆,𝜇𝜌𝜆,0𝜀𝜆,𝐿

𝜅𝜆
𝐸𝑏,𝜆(𝑇(𝐿))𝑒−𝜅𝜆𝐿 𝜇⁄ 𝑃(𝑧, 𝜆, 𝜇)𝜇2 (6-82) 

 𝐶3 = 𝑅𝜆,𝜇𝜌𝜆,0𝜌𝜆,𝐿𝑒−2𝜅𝜆𝐿 𝜇⁄ 𝑃(𝑧, 𝜆, 𝜇)𝜇 ∫ 𝐸𝑏,𝜆(𝑇(𝑧′))𝑒𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

 (6-83) 

 𝐶4 = 𝑅𝜆,𝜇𝜌𝜆,0𝑃(𝑧, 𝜆, 𝜇)𝜇 ∫ 𝐸𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

 (6-84) 

 𝐶5 =
𝑧

𝐿
𝑒−𝜅𝜆𝐿 𝜇⁄ 𝜇 ∫ 𝐸𝑏,𝜆(𝑇(𝑧′))𝑒𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′

𝐿

0

 (6-85) 
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 𝐶6 = −𝑒−𝜅𝜆𝑧 𝜇⁄ 𝜇 ∫ 𝐸𝑏,𝜆(𝑇(𝑧′))𝑒𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′
𝑧

0

 (6-86) 

 𝐶7 = 𝑅𝜆,𝜇

𝜀𝜆,𝐿

𝜅𝜆
𝐸𝑏,𝜆(𝑇(𝐿))𝑄(𝑧, 𝜆, 𝜇)𝜇2 (6-87) 

 𝐶8 =
𝑅𝜆,𝜇𝜌𝜆,𝐿𝜀𝜆,0

𝜅𝜆
𝐸𝑏,𝜆(𝑇(0))𝑒−𝜅𝜆𝐿 𝜇⁄ 𝑄(𝑧, 𝜆, 𝜇)𝜇2 (6-88) 

 𝐶9 = 𝑅𝜆,𝜇𝜌𝜆,𝐿𝑒−𝜅𝜆𝐿 𝜇⁄ 𝜇𝑄(𝑧, 𝜆, 𝜇) ∫ 𝐸𝑏,𝜆(𝑇(𝑧′))𝑒𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

 (6-89) 

 𝐶10 = 𝑅𝜆,𝜇𝜌𝜆,𝐿𝜌𝜆,0𝑒−𝜅𝜆𝐿 𝜇⁄ 𝑄(𝑧, 𝜆, 𝜇)𝜇 ∫ 𝐸𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

 (6-90) 

 𝐶11 = (1 −
𝑧

𝐿
) ∫ 𝐸𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆𝑧′ 𝜇⁄ 𝜇𝑑𝑧′

𝐿

0

 (6-91) 

 𝐶12 = −𝑒𝜅𝜆𝑧 𝜇⁄ 𝜇 ∫ 𝐸𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

𝑧

 (6-92) 

In Equations (6-81) through (6-92), recall that 𝑅𝜆,𝜇 is given by Equation (6-29) and 𝑃(𝑧, 𝜆, 𝜇) 

and 𝑄(𝑧, 𝜆, 𝜇) are given by 

 𝑃(𝑧, 𝜆, 𝜇) =
𝑧

𝐿
(𝑒−𝜅𝜆𝐿 𝜇⁄ − 1) + (1 − 𝑒−𝜅𝜆𝑧 𝜇⁄ ) (6-93) 

 𝑄(𝑧, 𝜆, 𝜇) =
𝑧

𝐿
(1 − 𝑒−𝜅𝜆𝐿 𝜇⁄ ) + 𝑒−𝜅𝜆𝐿 𝜇⁄ (1 − 𝑒𝜅𝜆𝑧 𝜇⁄ ) (6-94) 

6.4 Evaluation 

The solution for the temperature profile given in Equation (6-80) is not a closed-form 

solution, so evaluation of the temperature profile requires an iterative approach involving the 

numerical integration of the 𝐶𝑖(𝑧, 𝜆, 𝜇) terms over direction and wavelength. Although numerical 

integration is used in the iterative approach, it can be performed to an arbitrary degree of 

precision, so the solution is exact.  
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The iterative solution begins with an initial guess of the temperature profile. In this study, 

the linear temperature profile that results from neglecting the radiative transfer is used as the 

initial guess. With this initial guess, the spectral emissive power is calculated, and the 

temperature profile is updated using Equation (6-80). This updated temperature profile is then 

used to recalculate the spectral emissive power as needed and the process is repeated until 

convergence is obtained. Convergence is considered achieved when the Euclidean norm of the 

difference between the calculated temperature profile of the current iteration and that of the 

previous iteration reaches a specified tolerance. In cases where the radiation heat transfer is 

dominant, under-relaxation is required to obtain convergence. 

When numerically evaluating the integrals in Equation (6-80), both the spatial dimension, 

𝑧, and the direction cosine, 𝜇, are discretized and each integral is expressed as a summation. For 

example, the eleventh term in the summation is approximated as 

 
𝐶11 = (1 −

𝑧

𝐿
) ∫ ∫ ∫ 𝐸𝑏,𝜆(𝑇(𝑧′))𝑒−𝜅𝜆𝑧′ 𝜇⁄ 𝜇𝑑𝑧′

𝐿

0

𝑑𝜇
1

0

𝑑𝜆
∞

0

≈ (1 −
𝑧

𝐿
) ∫ ∑ ∑ 𝐸𝑏,𝜆(𝑇(𝑧𝑛))𝑒−𝜅𝜆𝑧𝑛 𝜇𝑚⁄ 𝜇𝑚

𝑛

Δ𝑧Δ𝜇

𝑚

𝑑𝜆
∞

0

 

(6-95) 

Again, although numerical integration is used to evaluate the integrals, the degree of 

precision is based on the step sizes Δ𝑧 and Δ𝜇 and, therefore, the solution can still be considered 

exact. For gray media, the Stefan-Boltzmann Law [5] may be used to evaluate the integral of the 

spectral blackbody emissive power over all wavelengths. For non-gray media, the spectrally 

varying properties are discretized into bands and assumed to be constant over each band. The 

spectral emissive power in each band is calculated using a curve fit to the fractional blackbody 

emissive power function [5, 83]. 
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6.5 Results and Discussion 

The evaluation methodology discussed in Section 6.4 was implemented as a program in 

Matlab, which can be found in Appendix A.5. The accuracy of the method is verified by 

comparing the results for various cases to those calculated using different numerical methods and 

to CFD simulations in which the discrete-ordinates method is used to model the radiative heat 

transfer [82]. The conduction-to-radiation parameter is defined as 

 𝑁 =
𝑘𝜅

4𝜎𝑇0
3 (6-96) 

For optically thick slabs, this parameter provides a good estimate for the relative 

importance of conduction heat transfer relative to radiation heat transfer [5]. The simplest case 

presented here is a gray material with 𝜅 = 1 m−1 surrounded by black surfaces (𝜀0 = 𝜀𝐿 = 1) 

with 𝑇𝐿 = 0.5𝑇0. For this simple case, the non-dimensional temperature profiles calculated using 

Equation (6-80) are compared to those calculated using a finite difference method [5], the 

collapsed dimension method implemented by Talukdar and Mishra [84], and the discrete 

ordinates method [82]. Figure 6-2 shows these comparisons for different values of 𝑁. The 

average difference between the results of the present method and the numerical methods is 

0.89%. The number of iterations required by the collapsed dimension method for 𝑁 = 0.1 and 

𝑁 = 0.01 was 80 and 120 [84], respectively, while that of the method presented here was 7 and 

37, respectively. The computational time required for the present method was, on average, about 

3.5 times faster than that of the finite element method but was, on average, about three times 

slower than that of the CFD simulations. 

A somewhat more complicated case is a gray medium surrounded by non-black surfaces. 

Figure 6-3 compares the temperature profiles found using the present method to those found 

using finite strip theory [31] for a gray medium with 𝜅 = 1 m−1 and  𝑁 = 0.001 with boundary 
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emittances of 𝜀0 = 𝜀𝐿 = 1 and 𝜀0 = 𝜀𝐿 = 0.1. Figure 6-4 and Figure 6-5 compare the results 

from this work to those found from CFD simulations for cases in which the boundary emittances 

are different. Figure 6-4 shows the case of a gray medium with 𝜅 = 0.1 m−1 and boundary 

emittances of  𝜀0 = 0.75 and 𝜀𝐿 = 0.1 while Figure 6-5 shows the case of a gray medium with 

𝜅 = 1 m−1 and boundary emittances of  𝜀0 = 0.2 and 𝜀𝐿 = 0.9. The bounding surfaces are 

assumed to be diffuse, so 𝜌 = 1 − 𝜀 in each of these cases. The average difference between the 

results of the present method and the numerical methods is 1.2%. The computational time 

required for the present method was, on average, about eight times greater than that of the CFD 

simulations. 

 

 

Figure 6-2: Comparison of present method to numerical methods for case of gray medium (𝜿 = 𝟏) with black 

boundaries for various conduction-to-radiation parameters 
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Figure 6-3: Comparison of present method to finite strip method for case of gray medium (𝜿 = 𝟏) with 𝜺𝟎 =
𝜺𝑳 = 𝟏 and 𝜺𝟎 = 𝜺𝑳 = 𝟎. 𝟏 for 𝑵 = 𝟎. 𝟎𝟎𝟏 

 

Finally, the most complex case is that of a non-gray medium bounded by spectrally 

selective surfaces. Two scenarios are considered. The spectrally dependent properties of the 

medium and boundaries are divided into three bands over each of which the properties are 

assumed to be constant.  Table 6-1 shows the values of these spectrally dependent properties for 

the two cases and the results of these cases are compared to CFD simulations and shown in 

Figure 6-6 and Figure 6-7 for various values of the thermal conductivity. Again, the bounding 

surfaces are assumed to be diffuse, so 𝜌𝜆 = 1 − 𝜀𝜆. The average difference between the results of 

the present method and the CFD solutions is 1.67%. The computational time required for the 

present method was, on average, about 55 times greater than that of the CFD simulations. 

 



61 

 

Figure 6-4: Comparison of present method to CFD solutions for case of gray medium (𝜿 = 𝟎. 𝟏) with 𝜺𝟎 =
𝟎. 𝟕𝟓 and 𝜺𝑳 = 𝟎. 𝟏 for various conduction-to-radiation parameters 

 

 

Figure 6-5: Comparison of present method to CFD solutions for case of gray medium (𝜿 = 𝟏) with 𝜺𝟎 = 𝟎. 𝟐 

and 𝜺𝑳 = 𝟎. 𝟗 for various conduction-to-radiation parameters 
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Table 6-1: Spectral properties for two non-gray cases. 

 

 

 

Figure 6-6: Comparison of present method to CFD solutions for various thermal conductivities with non-gray 

properties corresponding to Case 1 in Table 6-1 
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Figure 6-7: Comparison of present method to CFD solutions for various thermal conductivities with non-gray 

properties corresponding to Case 2 in Table 6-1 

 

As can be seen from the figures above, there is excellent agreement between the model 

presented in this work and other methods for determining the temperature profile in a gray or 

non-gray one-dimensional, plane-parallel medium surrounded by two gray or non-gray diffuse, 

opaque surfaces. The average difference between the results of the present method and the 

numerical methods tested was 1.25%. The time required for the present model to reach 

convergence was often greater than that required for the other methods, especially the CFD 

simulations. This was most apparent in the non-gray cases. This was, in part, due to the need to 

use an under-relaxation factor that decreased as the conduction-to-radiation parameter decreased 

and as the thermal conductivity of the medium decreased. The time required for convergence 

may be improved by using a dynamic under-relaxation factor. Additionally, a large number of 

points were required in the discretization of the spatial coordinate in order to fully capture the 
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effects of the radiative heat transfer at the left boundary, which significantly increased the time 

required to achieve convergence. The use of a non-uniform spatial discretization would 

significantly improve the computational efficiency of the exact solution. The model presented 

here is, in theory, more accurate than the numerical methods and may be used as a benchmark 

solution for validation of other numerical methods. 

6.6 Conclusion 

An exact, analytical method of determining the temperature profile in a one-dimensional, 

planar, absorbing, emitting, non-gray medium in which both radiation and conduction heat 

transfer are significant has been presented. The method utilizes an integrating factor to solve the 

Radiative Transfer Equation to determine the spectral intensities required in the total radiative 

heat flux. The method of variation of parameters is employed to solve the energy equation in 

which the divergence of the radiative heat flux is the source of thermal energy. Comparison of 

results obtained using the proposed method with results obtained using various numerical 

techniques has verified the method. Cases with gray and non-gray media and gray and non-gray 

boundaries were considered. Since the proposed method is exact, it may be used to obtain 

benchmark solutions. 
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7 INVERSE RADIATIVE HEAT TRANSFER ANALYSES 

In the preceding chapters, the method of variation of parameters was used to solve direct 

heat transfer problems. A direct, or forward, heat transfer analysis is one in which the required 

geometry, radiative properties, and temperatures are known, allowing for the calculation of 

radiative intensities and fluxes [5]. For example, one might wish to find the rate at which 

radiation is transferred from a surface based on knowledge of the surface properties. In contrast, 

the corresponding inverse problem would entail determining the properties of the surface based 

on measurements of the radiative intensity or flux emerging from the surface. There are many 

important problems in which one or more unknown input parameters which cause a certain 

radiative intensity field are desired. The goal of inverse radiative analyses is to deduce 

parameters that are difficult to measure (such as radiative properties and temperature 

distributions) based on various types of radiation measurements (such as radiative intensity or 

flux) [5]. 

In general, the solution to an inverse problem is found by minimizing an objective 

function which is a weighted least squares norm representing the difference between measured 

data values and corresponding values calculated from a direct analysis. The measured data values 

are radiation measurements such as radiative flux or intensity. The solution to the direct problem 

requires the unknown parameters, such as temperature distribution or radiative properties, which 
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are to be determined. Various optimization techniques can be used to find these unknown 

parameters such that the objective function is minimized. 

7.1 Genetic Algorithm 

One optimization method that has been used to solve inverse heat transfer problems is the 

genetic algorithm [85]. Genetic algorithms are based on the principle of natural selection or 

survival of the fittest. Figure 7-1 shows a simple flowchart representing the steps taken in a 

genetic algorithm. 

 

 

Figure 7-1: Basic flowchart of a genetic algorithm 

 

In this research, the population consists of sets of the unknown parameters that are to be 

determined. The forward problem is solved for each of these sets, or individuals, resulting in 

theoretical measurements of the radiative intensity. The fitness of each individual is evaluated by 
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comparing the theoretical measurements calculated from the forward problem to actual 

measurements made experimentally. The individuals in the population with the best fitness 

values are used to create a new population. This process is repeated until some convergence 

criterion is met. The optimum provides a set of parameters that correspond to the measurements 

made. 

7.2 Generalized Reduced Gradient Algorithm 

Another optimization method used in this research is the Generalized Reduced Gradient 

(GRG) Algorithm which is implemented as a solver tool in Microsoft Excel. This is an iterative 

numerical approach for optimizing nonlinear problems. The constraint and optimum cells are 

functions of the adjustable cells. Finite difference methods are used to approximate the 

derivatives of the optimum value with respect to each of the adjustable values, which represents 

the gradient of the function. The gradient information at each iteration is used to determine the 

values of the adjustable cells for the following iteration. When the gradient is nominally zero and 

all the constraints are satisfied, the optimum has been achieved. In this research, the adjustable 

cells represent the unknown parameters to be determined while the optimum cell is the least 

squares norm representing the difference between the measured data values and the 

corresponding values calculated from the direct analysis. 

7.3 Ill-Posed Problems 

One of the major difficulties associated with inverse problems is that they are often ill-

posed or ill-conditioned. An inverse problem is not well posed if a solution to the problem does 

not exist, the solution is not unique, or the solution is unstable (i.e., small changes in the problem 

parameters cause large changes in the solution) [5]. Efforts can be made in the optimization 
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process to regularize the problem or to stabilize the problem by adding more constraints. 

However, the inverse solution may be insensitive to some of the system parameters. If this is the 

case, changes in these parameters will have little or no effect on the solution and the inverse 

problem will not be able to accurately predict them. 
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8 A NON-CONTACT METHOD OF MEASURING THE PROPERTIES OF 

THERMAL BARRIER COATINGS 

In this chapter, an experimental, non-contact method of measuring the bond coat 

temperature of a thermal barrier coating (TBC) is proposed. The forward problem models the 

spectral measurements of the radiation coming from the TBC surface. The energy equation is 

solved using the method of variation of parameters to determine the temperature profile in the 

TBC in an analysis similar to that shown in Chapter 6. A genetic algorithm is used to solve the 

inverse problem. Numerical experiments are performed to assess the accuracy of the model. 

8.1 Introduction 

There is a growing reliance on the use of thermal barrier coatings (TBCs) as insulation of 

metallic components, such as vanes and blades, from large and extended heat loads in power 

generation and aerospace turbines. These coatings allow for increased inlet temperatures, which 

are accompanied by an increased efficiency, and result in a reduction in the requirements for 

cooling air [6]. They can also extend part life by reducing oxidation and thermal fatigue [86]. 

Thermal barrier coatings are generally composed of two layers: a ceramic oxide top layer 

followed by a metallic bond coat which adheres to the super alloy turbine component [87]. The 

ceramic topcoat is exposed to the hot combustion gases in the turbine. It is usually composed of 

yttria-stabilized zirconia (YSZ) which, because of its low thermal conductivity, provides thermal 

insulation. The metallic bond coat, located between the ceramic top and the super alloy substrate, 
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is most commonly made of MCrAlY (M=Ni, Co) and improves adherence to the ceramic topcoat 

while providing environmental protection from hot corrosion and oxidation [87]. 

Knowledge of the temperature gradients through the coating and the properties of the 

TBC and bond coat are critical for evaluating TBC performance and monitoring its health, as 

well as for accurate simulation and modeling. Of particular interest is the temperature at the 

interface of the bond coat and the super alloy substrate. Non-contact, non-destructive techniques 

for finding these temperatures and properties are highly desirable. Infrared pyrometry has been 

employed to determine the topcoat surface temperature [50]. This process is complicated by the 

fact that the pyrometer will measure radiation from the hot environment reflected from the TBC 

surface [51]. In addition, the translucency of the TBC at conventional pyrometer wavelengths 

allows radiation from well below the TBC surface to reach the pyrometer [51]. Luminescence 

spectroscopy is used to measure the temperature at the surface or at a desired depth of the TBC 

by utilizing the temperature dependence of the fluorescence decay time [52, 53]. This requires 

the use of thermal barrier sensor coatings [59 - 61]. 

In this chapter, a method of determining the bond coat temperature and other TBC 

properties by measuring the radiative intensity from the TBC surface is proposed. This method 

requires a mathematical model of the heat transfer in the TBC. Various models of thermal barrier 

coatings have been developed in order to study the effects of thermal radiation on the coating and 

substrate. Both Siegel [88] and Lim [89] combined radiation and conductive heat transfer models 

to determine the steady-state temperature profile in YSZ coatings. Siegel used the two-flux 

method to model the radiative heat flux in the TBC while Lim incorporated the radiative 

intensities into a differential control volume. In this chapter, the top coat of the TBC is modeled 

as a one-dimensional, absorbing and emitting layer. Radiative intensity measurements from the 
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TBC are found by solving the Radiative Transfer Equation using an integrating factor. The 

temperature profile in the top coat is found by solving the energy equation using the method of 

variation of parameters. 

The proposed method uses the developed mathematical model, or forward problem, with 

inverse heat transfer techniques to infer the desired TBC temperatures and properties from the 

measured intensities. An inverse problem is solved by iteratively solving the forward problem in 

order to optimize the objective function. This chapter demonstrates the use of a genetic algorithm 

to determine the bond coat temperature as well as the TBC refractive index and bond coat 

emittance by minimizing the error between measured TBC surface intensities and those 

calculated from the forward problem. A spectral band over which measurements are to be made 

is determined based on TBC properties and a sensitivity analysis. Numerical experiments are 

performed to assess the accuracy of the proposed method. 

8.2 Problem Overview 

 An inverse heat transfer problem is generally solved by iteratively solving a forward 

problem in order to optimize some objective function. The forward problem is a mathematical 

model of the phenomenon of interest. In this investigation, the forward problem consists of a 

model of the spectral measurements, 𝑀𝜈, of the radiative intensity, 𝐼𝜈, exiting the top surface of 

the thermal barrier coating. A schematic of the basic experimental setup is shown below in 

Figure 8-1.  
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Figure 8-1: Schematic of the proposed experimental setup 

 

 A thermal barrier coating is a radiatively participating medium. Therefore, the intensity 

exiting the TBC accounts for the emission from the bond coat as well as the emission, absorption, 

and scattering of the TBC itself. The exiting intensity is intercepted by a detector and converted to a 

spectral signal, 𝑀𝜈. The forward problem is an equation which relates this signal to the TBC 

parameters. The inverse problem is solved by using optimization techniques to determine the 

desired parameters such that the error between the experimentally measured signals and those 

calculated from the forward problem is minimized. Because the forward problem deals with 

radiative energy propagating through materials with different indices of refraction, frequency is 

used as the spectral variable. Unlike wavelength or wavenumber, frequency does not change with 

changes in the refractive index. 

8.3 Temperature Profile 

 In order to calculate 𝑀𝜈 from the forward problem, the temperature profile in the TBC, 

𝑇(𝑧), must be known. The temperature profile depends on both conduction and radiation in the 

TBC. Determining the temperature profile in the TBC is very similar to the problem solved in 

Chapter 6. The difference is at the right boundary. While the right boundary was an opaque 



73 

surface in the problem in Chapter 6, here it is an interface between the TBC and air. Therefore, if 

the radiation from the combustion gases is neglected, the boundary condition at the right 

boundary is 

 𝐼𝜈
−(𝐿, −𝜇) = 𝜌𝜈,𝐿𝐼𝜈

+(𝐿, 𝜇) (8-1) 

Note that Equation (8-1) is similar to Equation (6-23), except that emission from the boundary 

surface is not present. The same procedure that was used in Chapter 6 was used here, resulting in 

the following equation for the temperature profile in the TBC. 

 𝑇(𝑧) = (
𝑇𝐿

𝐿
−

𝑇0

𝐿
) 𝑧 + 𝑇0 +

2

𝑘
∑ 𝐷𝑖(𝑧)

10

𝑖=1

 (8-2) 

where 

 𝐷1 = ∫ ∫
𝜀𝜈,0

𝜅𝜈
𝐸𝑏,𝜈(𝑇(0))𝑃(𝑧, 𝜈, 𝜇)𝜇𝑑𝜇

1

0

𝑑𝜈
∞

0

 (8-3) 

 𝐷2 = ∫ ∫ 𝜌𝜈,0𝜌𝜈,𝐿𝑒−2𝜅𝜈𝐿 𝜇⁄ 𝑃(𝑧, 𝜈, 𝜇) ∫ 𝐸𝑏,𝜈(𝑇(𝑧′))𝑒𝜅𝜈𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (8-4) 

 𝐷3 = ∫ ∫ 𝜌𝜈,0𝑃(𝑧, 𝜈, 𝜇) ∫ 𝐸𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (8-5) 

 𝐷4 =
𝑧

𝐿
∫ ∫ ∫ 𝐸𝑏,𝜈(𝑇(𝑧′))𝑒𝜅𝜈(𝑧′−𝐿) 𝜇⁄ 𝜇𝑑𝑧′

𝐿

0

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (8-6) 

 𝐷5 = − ∫ ∫ ∫ 𝐸𝑏,𝜈(𝑇(𝑧′))𝑒𝜅𝜈(𝑧′−𝑧) 𝜇⁄ 𝜇𝑑𝑧′
𝑧

0

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (8-7) 

 𝐷6 = ∫ ∫
𝜌𝜈,𝐿𝜀𝜈,0

𝜅𝜈
𝐸𝑏,𝜈(𝑇(0))𝑄(𝑧, 𝜈, 𝜇)𝜇𝑑𝜇

1

0

𝑑𝜈
∞

0

 (8-8) 

 𝐷7 = ∫ ∫ 𝜌𝜈,0𝜌𝜈,𝐿𝑄(𝑧, 𝜈, 𝜇) ∫ 𝐸𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (8-9) 

 𝐷8 = ∫ ∫ 𝜌𝜈,𝐿𝑄(𝑧, 𝜈, 𝜇) ∫ 𝐸𝑏,𝜈(𝑇(𝑧′))𝑒𝜅𝜈𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (8-10) 
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 𝐷9 = (1 −
𝑧

𝐿
) ∫ ∫ ∫ 𝐸𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈𝑧′ 𝜇⁄ 𝜇𝑑𝑧′

𝐿

0

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (8-11) 

 𝐷10 = − ∫ ∫ ∫ 𝐸𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝑧′−𝑧) 𝜇⁄ 𝜇𝑑𝑧′
𝐿

𝑧

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (8-12) 

and 

 
𝑃(𝑧, 𝜈, 𝜇) = 𝑅𝜈,𝜇𝜇 (

𝑧

𝐿
(𝑒−𝜅𝜈𝐿 𝜇⁄ − 1) + (1 − 𝑒−𝜅𝜈𝑧 𝜇⁄ )) (8-13) 

 
𝑄(𝑧, 𝜈, 𝜇) = 𝑅𝜈,𝜇𝜇𝑒−𝜅𝜈𝐿 𝜇⁄ (

𝑧

𝐿
(1 − 𝑒−𝜅𝜈𝐿 𝜇⁄ ) + 𝑒−𝜅𝜈𝐿 𝜇⁄ (1 − 𝑒𝜅𝜈𝑧 𝜇⁄ )) (8-14) 

where 

 
𝑅𝜈,𝜇 =

1

(1 − 𝜌𝜈,0𝜌𝜈,𝐿𝑒−2𝜅𝜈𝐿 𝜇⁄ )
 (8-15) 

Note that this equation is almost identical to that found in Chapter 6, except for the absence of 

two of the terms, namely, those associated with emission from the right boundary. 

8.3.1 Interfacial Reflectance at a Diffuse Boundary 

The spectral reflectance at the interface between the thermal barrier coating and the air, 

𝜌𝜈,𝐿, is required to determine the temperature profile. The reflectance at the interface between 

two media is determined by the indices of refraction of the media. When electromagnetic waves 

propagate from a medium of a given index of refraction into a second medium with a different 

refractive index, both reflection and refraction of the wave may occur. Figure 8-2 shows a ray 

traveling in the 𝑠 direction from a semi-transparent medium 𝑎 with refractive index 𝑛𝑎 to another 

semi-transparent 𝑏 with refractive index 𝑛𝑏. 
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Figure 8-2: Reflection and transmission of radiation at the interface of two semi-transparent media 

 

The Fresnel equations describe what fraction of the radiation is reflected and what 

fraction is refracted. The interface reflectance on side 𝑎 represents the fraction of incident energy 

transferred from 𝑠 to 𝑠𝜌 and is given by Equation (8-16) [5]. 

 
𝜌𝑎(𝑠) =

1

2
(

𝑛𝑎 cos 𝜃𝑏 − 𝑛𝑏 cos 𝜃𝑎

𝑛𝑎 cos 𝜃𝑏 + 𝑛𝑏 cos 𝜃𝑎
)

2

+
1

2
(

𝑛𝑎 cos 𝜃𝑎 − 𝑛𝑏 cos 𝜃𝑏

𝑛𝑏 cos 𝜃𝑏 + 𝑛𝑏 cos 𝜃𝑏
)

2

 (8-16) 

A convenient assumption is that the reflected radiation is diffuse, or that it is reflected with the 

same intensity in all directions. For diffuse reflection, the interfacial reflectance is equal to the 

hemispherically averaged value shown in Equations (8-17) and (8-18) where 𝑛 = 𝑛𝐴 𝑛𝐵⁄ > 1 

[90]. 

 𝜌𝑎 = 1 −
(1 − 𝜌𝑏)

𝑛2
 (8-17) 

where 

𝜌𝑏 =
1

2
+

(3𝑛 + 1)(𝑛 − 1)

6(𝑛 + 1)2
+

𝑛2(𝑛2 − 1)2

(𝑛 + 1)3
ln (

𝑛 − 1

𝑛 + 1
) −

2𝑛3(𝑛2 + 2𝑛 − 1)

(𝑛2 + 1)(𝑛4 − 1)
+

8𝑛4(𝑛4 + 1)

(𝑛2 + 1)(𝑛4 − 1)2
ln(𝑛) (8-18) 

The diffuse reflections given in Equations (8-16) through (8-18) are not given on a 

spectral basis. Therefore, the spectral reflectance at the right boundary of the thermal barrier 
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coating must be assumed to be constant over the entire spectrum. This assumption is consistent 

with the fact that the Planck function is only valid if the index of refraction is spectrally 

independent [5]. 

8.3.2 Verification of Temperature Profile Model 

In order to verify the mathematical model used to calculate the temperature profile in a 

thermal barrier coating, temperature profiles found using this model with various parameters 

were compared to those found from CFD simulations [82]. Table 8-1 shows the different 

parameters used in three cases and the results are shown in Figure 8-3. In Case A, the TBC was 

treated as gray while in Cases B and C, some of the properties were considered constant over 

three spectral bands. The Matlab source code used to calculate the temperature profiles can 

found in Appendix A.6. 

 

Table 8-1: Properties used in three cases to verify the model 
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Figure 8-3: Comparison of present method to CFD solutions for properties shown in Table 8-1 

 

8.3.3 Temperature Profile of an Actual TBC 

Efforts have been made to measure various radiative properties of TBC systems [62-65]. 

Using these measured properties and typical TBC thicknesses to solve Equation (8-2) reveals 

that the temperature profile within the top coat of a thermal barrier coating is linear. This finding 

is consistent with other analyses of TBCs [62, 88, 89, 91-93]. This knowledge removes the 

thermal conductivity of the TBC as a variable in the forward problem and makes the boundary 

temperatures, 𝑇0 and 𝑇𝐿, the only unknowns required for the temperature profile. 

8.4 Forward Problem 

 The forward problem is a mathematical model of the physical phenomenon of interest. In 

order to infer the desired properties of a thermal barrier coating from the radiative intensity at the 
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TBC surface, a forward problem, which relates the intensity to these properties, is required. This 

section shows the development of the forward problem. The TBC is modeled as a one-

dimensional, plane-parallel medium of thickness L bounded by two surfaces, as shown in Figure 

8-5. The goal of this work is to determine if TBC properties and parameters can be accurately 

determined from measurements of the surface intensity. Therefore, for the purposes of this work, 

the hot gases between the detector and the TBC are neglected and it is assumed that the space 

beyond the TBC is a cold vacuum. The primary temperature of interest is that of the super alloy 

substrate. The temperature difference across the metallic bond coat is small and it will be 

assumed that the substrate is at the same temperature as the bond coat [88, 54]. 

 

 
Figure 8-4: Coordinates used in the theoretical analysis of a TBC 
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The left boundary (𝑧 = 0) is the interface between the bond coat and the TBC while the 

right boundary (𝑧 = 𝐿) represents the outer surface of the TBC. The objective is to relate the 

spectral signal from the detection system, 𝑀𝜈, to the spectral irradiation incident on the detector, 

𝐺𝜈,𝐷. 

 𝑀𝜈 = 𝑓(𝐺𝜈,𝐷) (8-19) 

The irradiation is equal to the portion of the spectral intensity incident on the right TBC 

boundary, 𝐼𝜈
+(𝐿, 𝜃), that is transmitted through the surface, integrated over the hemisphere. 

 𝐺𝜈,𝐷 = ∫ 𝜏𝜈,𝐿𝐼𝜈
+(𝐿, 𝜃) cos 𝜃𝐷 𝑑Ω

 

2𝜋

 (8-20) 

Note that in Equation (8-20) there are two angles: 𝜃 is measured from the normal to the TBC 

surface while 𝜃𝐷 is the acceptance angle of the detector and is measured from the normal to the 

detector. If it is assumed that radiation from the TBC is the only source of radiation on the 

detector and that the solid angle from which the TBC surface is viewed by the detector, 

∆Ω𝐷−𝑇𝐵𝐶, is small, then Equation (8-20) reduces to 

 𝐺𝜈,𝐷 = 𝜏𝜈,𝐿𝐼𝜈
+(𝐿, 𝜃)∆Ω𝐷−𝑇𝐵𝐶 (8-21) 

The approach used to find 𝐼𝜈
+(𝐿, 𝜃) here is exactly the same as that used in Chapter 6. The only 

difference is that the boundary condition at 𝑧 = 𝐿 does not include emission from the boundary 

surface (as shown in Equation (8-1)). The resulting expression for 𝐼𝜈
+(𝐿, 𝜇) is given by 

𝐼𝜈
+(𝐿, 𝜇) = 𝑅𝜈,𝜇𝜀𝜈,0𝐼𝑏,𝜈(𝑇(0))𝑒−𝜅𝜈𝐿 𝜇⁄ + 𝑅𝜈,𝜇

𝜌𝜈,0𝜅𝜈

𝜇
∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝐿+𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

+ 𝑅𝜈,𝜇

𝜅𝜈

𝜇
∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝐿−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

 

(8-22) 
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In the above equation,  𝑅𝜈,𝜇 is given by 

 𝑅𝜈,𝜇 =
1

(1 − 𝜌𝜈,0𝜌𝜈,𝐿𝑒−2𝜅𝜈𝐿 𝜇⁄ )
 (8-23) 

Equation (8-22) is substituted into Equation (8-21) to provide an expression for the spectral 

irradiation on the detector. 

𝐺𝜈,𝐷 = 𝜏𝜈,𝐿 (𝑅𝜈,𝜇𝜀𝜈,0𝐼𝑏,𝜈(𝑇(0))𝑒−𝜅𝜈𝐿 𝜇⁄ + 𝑅𝜈,𝜇

𝜌𝜈,0𝜅𝜈

𝜇
∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝐿+𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

+ 𝑅𝜈,𝜇

𝜅𝜈

𝜇
∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝐿−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

) ∆Ω𝐷−𝑇𝐵𝐶 

(8-24) 

If it is assumed that the acceptance angle of the detector is small, then the approximation 𝜇 ≈ 1 

can be made in Equation (8-24) so that 𝐼𝜈
+(𝐿, 𝜇) ≈ 𝐼𝜈

+(𝐿, 1). Equation (8-21) becomes 

𝐺𝜈,𝐷 = 𝜏𝜈,𝐿𝑅𝜈 (𝜀𝜈,0𝐼𝑏,𝜈(𝑇(0))𝑒−𝜅𝜈𝐿 + 𝜌𝜈,0𝜅𝜈 ∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝐿+𝑧′)𝑑𝑧′
𝐿

0

+ 𝜅𝜈 ∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝐿−𝑧′)𝑑𝑧′
𝐿

0

) ∆Ω𝐷−𝑇𝐵𝐶 

(8-25) 

The irradiation on the detector, 𝐺𝜈,𝐷, is related to the detection system measurements, 𝑀𝜆, 

by a spectral instrument response function, 𝐼𝑅𝐹𝜈. The instrument response function is dependent 

on the detection system and is determined by a calibration procedure. Equation (8-26) is the 

forward problem, which is a model of the measurements made by a detection system of the 

spectral radiative intensity exiting the surface of the thermal barrier coating. Note that the solid 

angle, ∆Ω𝐷−𝑇𝐵𝐶, the spectral transmittance at the end of the fiber, 𝜏𝜈,𝐿, and the 𝑅𝜈 term have 

been combined with the instrument response function and that the spectral reflectance of the 

bond coat is written in terms of the spectral emittance as 𝜌𝜈,0 = 1 − 𝜀𝜈,0. 

𝑀𝜈 = 𝐼𝑅𝐹𝜈 (𝜀𝜈,0𝐼𝑏,𝜈(𝑇(0))𝑒−𝜅𝜈𝐿 + (1 − 𝜀𝜈,0)𝜅𝜈 ∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝐿+𝑧′)𝑑𝑧′
𝐿

0

+ 𝜅𝜈 ∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝐿−𝑧′)𝑑𝑧′
𝐿

0

) (8-26) 



81 

In Equation (8-26), the first term in the parentheses represents emission from the bond 

coat, the second term represents the sum of the radiative intensity emitted by the TBC which is 

reflected off of the bond coat back to the surface, and the third term represents the sum of the 

radiative intensity emitted by the TBC to the surface. 

8.5 Unknown Parameters 

 There are five unknowns in the forward problem: 1. the bond coat temperature, 𝑇0, 2. the 

top coat surface temperature, 𝑇𝐿, 3. the index of refraction of the top coat, 𝑛, which is required in 

the Planck function to calculate the spectral intensities in Equation (8-26), 4. the spectral 

absorption coefficient of the top coat, 𝜅𝜈, and 5. the spectral emittance of the bond coat, 𝜀𝜈,0. The 

number of spectral measurements must be equal to or greater than the number of unknowns to be 

determined. Therefore, it must be assumed that the spectral absorption coefficient of the top coat 

and the spectral emittance of the bond coat can be approximated as constant over the spectral 

band at which measurements are made. 

8.6 Measurement Band Selection 

 In order to determine the best frequencies at which measurements should be taken, 

available date of thermal barrier coating properties were examined. Figure 8-5 shows 

measurements of the spectral absorption coefficient of 8YSZ [55] at room temperature, YSZ 

TBCs at 1633 K [56] and 1573 K [57], and zirconia [8]. On the secondary vertical axis, the 

spectral emittance of a NiCrAlY bond coat is shown [58]. Measurements at a single frequency 

show that the bond coat emittance is essentially constant over a wide temperature range [64]. The 

spectral refractive index of YSZ is nominally a constant over a band from 6×1013 to 3×1014 Hz (1 

to 5 m) [92, 65]. 
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Figure 8-5: Measured spectral absorption coefficients of YSZ, 8YSZ, zirconia, and the spectral emittance of a 

NiCrAlY bond coat 

 

A sensitivity analysis was performed to determine how sensitive the spectral signals are 

to changes in each of the five parameters. A single parameter was adjusted while all other 

parameters were held constant. The forward problem was solved for each case and the changes in 

the spectral irradiation on the detector were plotted. Figure 8-6 and Figure 8-7 show the 

sensitivity of the spectral irradiation on the detector to changes in the bond coat temperature and 

TBC surface temperature, respectively. The sensitivity plots for the other parameters were 

similar. 
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For all of the parameters, the maximum sensitivity occurs between 7.5×1013 and 1.5×1014 

Hz (2 to 4 m). The spectral signals were largely insensitive over all frequencies to changes in 

the TBC surface temperature, 𝑇𝐿, and the spectral absorption coefficient of the TBC, 𝜅𝜈. The 

insensitivity of the spectral measurements to changes in some of the system parameters shows 

that the inverse problem is not well posed. In other words, there are multiple solutions to the 

forward problem that will result in the same set of spectral measurements. Based on the data 

available in the literature and the sensitivity analysis, the best spectral band over which the 

spectral properties can be assumed to be constant lies between 1.2×1014 and 1.5×1014 Hz (2 to 

2.5 m). 

 

 
Figure 8-6: Sensitivity of spectral irradiation on detector to changes in the substrate temperature 
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Figure 8-7: Sensitivity of spectral irradiation on detector to changes in the TBC surface temperature 

 

8.7 Inverse Problem 

 The forward problem consists of calculating the spectral signals from the detection 

system based on known values of the system parameters, 𝑇0, 𝑇𝐿, 𝜅𝜈, 𝑛, and 𝜀𝜈,0. The 

corresponding inverse problem involves inferring these system parameters from known spectral 

measurements. The inverse problem is solved by using optimization methods to determine the 

unknown parameters of the system by minimizing the error between the experimentally measured 

signals and those calculated from the forward problem. 

A genetic algorithm was used to solve the inverse problem. In the genetic algorithm, a 

population of sets of the parameters to be determined is created. The forward problem is solved for 

each set in the population. The resulting spectral signals for each set are compared to the measured 
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signals. The parameter sets that result in spectral signals which are closest to the measured signals 

are used to create a new population of sets of parameters. This process is repeated until the error 

between the experimentally measured signals and those calculated from the forward problem is 

minimized. 

Each parameter in a set is represented by a binary string. The strings for every parameter 

in a given set are concatenated to from a single binary string which represents that set of 

parameters, or individual, in the population. An initial population of a specified number of 

individuals is created by randomly generating binary strings. Each individual in the population is 

converted from a binary string into a set of real valued parameters. The spectral measurements 

corresponding to each of the sets of parameters are calculated from the forward problem using 

Equation (8-26). The fitness of each individual in the population is evaluated by calculating the 

Euclidean norm of the differences between the spectral signals calculated from the forward 

problem and the measured spectral signals. 

The individual with the best fitness from the entire population is copied directly into the 

new generation of individuals. The rest of the individuals in the new generation are created by 

tournament selection as follows. Two subsets of the initial population are selected as groups of 

potential pools of “mothers” and “fathers.” Each subset consists of a group of randomly selected 

individuals. The size of the subset is specified as a percentage of the entire population. The 

individuals in both pools with the best fitness are selected as the mother and father. Segments of 

the binary strings of the mother and father are used at a specified number of arbitrarily selected 

crossover points to create a new individual. This process is repeated until the new generation is 

filled. In order to promote diversity in the population, mutation may occur in some individuals 

by changing random bits in the binary strings. The fitness of the individuals in the new 
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population are calculated and the process is repeated until either the best fitness reaches a 

specified value or the best fitness value does not change significantly over a specified number of 

generations. Once one of these criteria is met, the parameters corresponding to the individual 

with the best fitness value in the current generation are considered the optimized solution to the 

inverse problem. 

8.8 Results of Numerical Experiments 

 Because the objective of this work was only to develop and assess the method by which 

the inverse problem can be solved, no actual physical experiments were conducted. Simulated 

measurements were used to assess the accuracy of the method. In order to determine the 

simulated measurements, the forward problem was solved at five selected frequencies for a 

theoretical TBC for which the five system parameters, 𝑇0, 𝑇𝐿, 𝜅𝜈, 𝑛, and 𝜀𝜈,0 were assumed to be 

known. The selected frequencies were in the spectral band between 1.2×1014 and 1.5×1014 Hz (2 

to 2.5 m), over which the spectral properties are assumed to be constant. The inverse problem 

was then solved using the genetic algorithm to determine the accuracy with which the system 

parameters could be inferred from the simulated measurements.  In order to assess the robustness 

of the inverse problem, it was solved for various theoretical TBCs with different properties and 

thicknesses. The source code for the genetic algorithm can be found in Appendix A.7. Table 8-2 

shows the settings used in the genetic algorithm in one of the cases. 
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Table 8-2: Example of setting used in the genetic algorithm 

 
 

 

Some example results are shown in Table 8-3. Because the problem is ill-posed, the 

optimum parameter sets found from the inverse problem are never exactly the same. This issue 

can be addressed to some extent by putting tighter upper and lower bounds on the possible values 

of the parameters for which data is available. Examples of these bounds are shown in Table 8-2 

for each of the unknowns. As expected, the parameters to which changes in the spectral signals 

are most sensitive were determined with greater accuracy. The bond coat temperature was found 

with excellent accuracy in every case tested. The average error between the optimum value and 

the actual value for the bond coat temperature was about 0.2%. This corresponds to an average 

error of about 3.5 K. The index of refraction and spectral emittance of the bond coat were 

calculated from the inverse problem with a reasonable level of accuracy with average errors of 

about 7% and 18%, respectively. The measurements were insensitive to the TBC surface 

temperature and the spectral absorption coefficient. Therefore, the accuracy with which they 
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were found by the inverse problem was very low. The average error of the absorption coefficient 

was 88%. The average error of the TBC surface temperature was about 5%, which represents an 

average deviation of 85 K from the actual temperature value. However, because the temperature 

profile is linear, the TBC surface temperature could be calculated using the bond coat 

temperature if the thermal conductivity of the top coat is known. 

 

Table 8-3: Example of optimum parameter values found from the genetic algorithm 

 

 

In order to assess the potential impact of measurement error on the results of the inverse 

problem, error was introduced into the simulated measurements. Table 8-4 and Table 8-5 show 

typical results for cases in which 10% and 20% error were added to the measurements, 

respectively. Even with 20% measurement error, the bond coat temperature was inferred from 

the inverse problem with an average error of only about 0.2%. 

 

Table 8-4: Example of optimum parameter values found from the genetic algorithm 

with 10% measurement error 
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Table 8-5: Example of optimum parameter values found from the genetic algorithm 

with 20% measurement error 

 

 

8.9 Future Work 

The results of the numerical experiments show that the proposed experimental method is 

capable of accurately predicting the bond coat temperature of a thermal barrier coating based on 

measurements of the radiative intensity from the TBC surface. The primary limitation of the 

analytical model described here comes from neglecting the radiation from the combustion gases 

that are present between the surface of the TBC and the detection system. These hot gases are 

radiatively participating and their effects on the detector signal described by the forward problem 

would likely be significant. These effects include the emission from the gases into the detection 

system, absorption and scattering of the radiation coming from the TBC surface, and reflection 

off of the TBC surface. Each of these effects should be investigated by adding another 

participating medium into the forward problem between the TBC surface and the detector that 

represents the combustion gases. Scattering of radiation within the TBC top coat may also be 

significant and should be added to the analysis. 
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8.10 Conclusion 

 An inverse radiative heat transfer method capable of accurately determining the bond 

coat temperature, the bond coat emittance, and the top coat refractive index of a thermal barrier 

coating has been proposed.  The forward problem is a mathematical model of the measurements 

of the intensity from the TBC surface and accounts for the emission from the bond coat as well as 

the emission and absorption of the TBC itself. The TBC was approximated as a one-dimensional, 

plane-parallel, non-scattering medium. The RTE was solved using an integrating factor and the 

temperature profile in the top coat was found by solving the energy equation using the method of 

variation of parameters. The inverse method consists of using a genetic algorithm to determine the 

desired TBC parameters by minimizing the error between actual intensity measurements and those 

calculated from the forward problem. The spectral band over which measurements should be made 

was determined. Numerical experiments were performed using a number of simulated 

measurements calculated from the forward problem based on theoretical TBCs with known 

properties. The inverse problem was solved with and without simulated measurement error. Even 

with 20% measurement error introduced, the bond coat temperature was determined with only an 

average error of 0.2% while the average error in the refractive index was 7% and that in the 

spectral emittance of the bond coat was 18%. The spectral measurements were insensitive to 

changes in the spectral absorption coefficient and the TBC surface temperature and, therefore, 

cannot be determined by the inverse method with any accuracy.  
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9 OPTICAL FIBER THERMOMETER: THEORETICAL ANALYSIS 

This chapter discusses the development of an analytical model that can be used to 

determine the temperature of the sensing tip of an optical fiber thermometer. This model includes 

the forward problem, which relates the properties and temperature profile of the fiber to spectral 

measurements of the radiant energy from the OFT made by a detection system. The temperature 

profile is calculated using the method of variation of parameters to solve the overall energy 

equation. An inverse model is developed to infer the unknown temperature and properties of the 

OFT system from known spectral measurements. Numerical experiments are performed to assess 

the accuracy of the model. 

9.1 Introduction 

An optical fiber thermometer (OFT) consists of an optical fiber whose sensing tip is 

coated with a highly conductive, opaque material. This forms an isothermal cavity at the tip of 

the fiber. The tip temperature can be inferred from the cavity emission, which is transmitted 

along the optical fiber to a detector [9]. Some advantages of OFTs include long-term stability, 

wider dynamic range, high sensitivity, fast response, the ability to withstand harsh environments, 

and imperviousness to electromagnetic interference [94]. These advantages make OFT’s a more 

attractive option than existing temperature measurement techniques, such as thermocouples, for 

many applications such as measuring the temperature in oxy-coal combustion environments. 
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An optical fiber is a radiatively participating medium and, as such, the radiation detected 

from the fiber includes the effects of emission and absorption of the fiber itself in addition to the 

emission from the cavity and conduction in the fiber. If only the sensing tip and a small length of 

the optical fiber are exposed to the high temperature environment, then it is an acceptable 

approximation to assume that all of the radiation detected is emitted by the blackbody cavity [9]. 

However, if a significant portion of the optical fiber is exposed to elevated temperatures, then the 

standard two-color approach cannot be used to accurately determine the temperature of the 

sensing tip [10, 11]. 

In this chapter, an equation for the spectral irradiation from an OFT incident on a 

detection system is found by solving the RTE using an integrating factor. This equation requires 

knowledge of the temperature profile along the fiber. A differential equation that can be solved 

for the temperature profile is developed from an energy balance on a differential element of the 

optical fiber. This energy balance includes conduction along the fiber, emission and absorption 

of radiation within the fiber, convection heat transfer between the fiber and the surrounding gas, 

and radiation heat transfer between the outer surface of the fiber and the surroundings. Various 

simplifications to the model are made and their effects are analyzed. It is shown that for the small 

diameters of optical fibers, a constant thermal conductivity in the fiber can be assumed, the 

internal radiation component of the heat rate down the fiber is negligible, and the nonlinear 

portion of the governing differential equation can be linearized with little loss in accuracy. The 

inverse problem is solved using the GRG optimization algorithm that is implemented by the 

Solver application in Microsoft Excel. Numerical experiments are performed to assess the 

accuracy of the model. 



93 

9.2 Forward Problem 

 The forward problem is a mathematical model of the physical phenomenon of interest. 

This section shows the development of an equation representing the signal from a detection 

system as a function of the system parameters. Figure 9-1 shows the geometry and coordinate 

system used in the development of the forward problem. The left boundary consists of the cavity 

while the right boundary is the interface between the fiber and the air. Because the fiber is thin, 

variations of the properties and temperature in the radial direction are neglected and the optical 

fiber is modeled as a one-dimensional medium of length 𝐿. 

 

 

Figure 9-1: Coordinates used in the theoretical analysis of the optical fiber thermometer 

 

 Optical fibers consist of a core and a cladding. The refractive index of the core is greater 

than that of the cladding. As illustrated in Figure 9-2, when light passes from a medium with one 
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refractive index to another medium with a lower refractive index, it refracts away from the 

normal (the line perpendicular to the interface of the two media). As the angle of the incident 

beam decreases, the refracted light bends further away from the normal. At some critical angle, 

𝜃𝑖, the refracted light will travel along the interface. Radiant energy incident at an angle smaller 

than the critical angle is not refracted but entirely reflected back into the core. This is known as 

total internal reflection. Radiation that enters the fiber within the acceptance cone of the critical 

angle will experience total internal reflection and be transmitted along the fiber. 

 

 

Figure 9-2: Illustration of total internal reflection 

 

 In order to account for the multiple reflections of a beam which occur within the fiber, it 

is easier to consider the intensity at a given point 𝑧 in the 𝑠̂ direction from a point source in the 

fiber as that coming from an image of this point projected onto the boundary a distance 𝑧𝑠 from 

the reception point, as shown in Figure 9-1 [95]. Just like the thermal barrier coating problem, 



95 

the spectral variable here will be frequency because frequency remains constant when moving 

between media with different refractive indices. 

The objective is to determine the spectral irradiation incident on the detector, 𝐺𝜈,𝐷 in 

terms of the parameters of the system. This irradiation is equal to the portion of intensity incident 

on the right boundary, 𝐼𝜈
+(𝐿, 𝜃), that is transmitted through the outer surface of the fiber at 𝑧 = 𝐿 

integrated over the solid angle from which the end of the fiber is viewed by the detector, ∆Ω𝐷−𝐹. 

 𝐺𝜈,𝐷 = ∫ 𝜏𝜈,𝐿𝐼𝜈
+(𝐿, 𝜃) cos 𝜃𝐷 𝑑Ω

 

∆Ω𝐷−𝐹

 (9-1) 

Note that in Equation (9-1) there are two angles: 𝜃 is measured from the normal to the fiber face 

while 𝜃𝐷 is the acceptance angle of the detector and is measured from the normal to the detector. 

If this angle is assumed to be small, then cos 𝜃𝐷 ≈ 1 and Equation (9-1) becomes 

 𝐺𝜈,𝐷 ≈ 𝜏𝜈,𝐿𝐼𝜈
+(𝐿, 𝜃)∆Ω𝐷−𝐹 (9-2) 

In order to find 𝐼𝜈
+(𝐿, 𝜃), the same process as that used in Chapter 6 is followed. The only 

difference is at the boundaries. In the Chapter 6 problem, the boundaries were opaque surfaces 

that emitted and reflected radiation. Here, the left boundary consists of the cavity at the end of 

the fiber which only emits radiation such that 

 𝐼𝜈
+(0, 𝜇) = 𝜀𝐶𝐼𝑏,𝜈(𝑇𝐶) (9-3) 

In Equation (9-3), 𝜀𝐶 is the effective emittance of the cavity. If the space beyond the right 

boundary of the fiber is approximated as a cold vacuum, the intensity coming from the right 

surface consists only of the intensity reflected off of that surface as shown below. 

 𝐼𝜈
−(𝐿, −𝜇) = 𝜌𝜈,𝐿𝐼𝜈

+(𝐿, 𝜇) (9-4) 
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Continuing the process as outlined in Chapter 6 yields the following expressions for 𝐼𝜈
+(𝑧, 𝜇) and 

𝐼𝜈
−(𝑧, −𝜇). 

 𝐼𝜈
+(𝑧, 𝜇) = 𝜀𝐶𝐼𝑏,𝜈(𝑇𝐶)𝑒−𝜅𝜈𝑧 𝜇⁄ +

𝜅𝜈

𝜇
∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝑧−𝑧′) 𝜇⁄ 𝑑𝑧′

𝑧

0

 (9-5) 

𝐼𝜈
−(𝑧, −𝜇) = 𝜌𝜈,𝐿𝜀𝐶𝐼𝑏,𝜈(𝑇𝐶)𝑒−𝜅𝜈(2𝐿−𝑧) 𝜇⁄ +

𝜌𝜈,𝐿𝜅𝜈

𝜇
∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(2𝐿−𝑧−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

+
𝜅𝜈

𝜇
∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝑧′−𝑧) 𝜇⁄ 𝑑𝑧′

𝐿

𝑧

 

(9-6) 

Evaluating Equation (9-5) at 𝑧 = 𝐿 and substituting it into Equation (9-1) provides the following 

expression for the spectral irradiation on the detector. 

𝐺𝜈,𝐷 = 𝜏𝜈,𝐿 (𝜀𝐶𝐼𝑏,𝜈(𝑇𝐶)𝑒−𝜅𝜈𝐿 𝜇⁄ +
𝜅𝜈

𝜇
∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝐿−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

) ∆Ω𝐷−𝐹 (9-7) 

The spectral intensity at 𝑧 = 𝐿 depends on the path that the radiation follows within the 

optical fiber, as indicated by the presence of the direction cosine 𝜇 = cos 𝜃 in Equation (9-7). 

Here, the total radiant energy incident on the detector is desired, so the spectral intensity exiting 

the fiber in all directions must be considered. This can be done by integrating over the direction 

cosine in Equation (9-7). The shortest possible distance traveled by a beam is the length of the 

fiber, 𝐿, when the angle of the incident beam is zero. The longest possible distance traveled by a 

beam in the fiber occurs when the angle of the incident beam is the critical angle. Integrating 

over this range of direction cosines from 𝜇𝑖 = cos 𝜃𝑖 to 𝜇0 = cos 0 = 1, 

𝐺𝜈,𝐷 = 𝜏𝜈,𝐿∆Ω𝐷−𝐹 ∫ (𝜀𝐶𝐼𝑏,𝜈(𝑇𝐶)𝑒−𝜅𝜈𝐿 𝜇⁄ +
𝜅𝜈

𝜇
∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝐿−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

) 𝑑𝜇
1

𝜇𝑖

 (9-8) 

Just as in Chapter 6 and Chapter 8, the integral over 𝜇 requires numerical integration. 
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The irradiation on the detector is related to the detection system measurements, 𝑀𝜈, by a 

spectral instrument response function, 𝐼𝑅𝐹𝜈, as shown in Equation (9-9). The instrument 

response function is dependent on the detection system and includes the solid angle ∆Ω𝐷−𝐹 as 

well as the spectral transmittance at the end of the fiber, 𝜏𝜈,𝐿. It is determined by a calibration 

procedure. The spectral signal from the detector is 

 𝑀𝜈 = 𝐼𝑅𝐹𝜈 [∫ (𝜀𝐶𝐼𝑏,𝜈(𝑇𝐶)𝑒−𝜅𝜈𝐿 𝜇⁄ +
𝜅𝜈

𝜇
∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝐿−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

) 𝑑𝜇
1

𝜇𝑖

] (9-9) 

Equation (9-9) models the measurements made by a detection system of the spectral radiative 

intensity exiting the optical fiber. 

9.3 Temperature Profile along the Fiber 

 In order to calculate 𝑀𝜈 using the forward problem in Equation (9-9) for a given 

frequency, the temperature profile along the fiber, 𝑇(𝑧), must be known. The temperature profile 

depends on both conduction and radiation within the fiber as well as convection and radiation at 

the fiber’s outer surface. The temperature profile can be found by performing a total energy 

balance (both thermal and radiaitve) on a differential volume of the fiber. Temperature variations 

in the radial direction of the fiber are neglected. All of the heat transfer interactions with the 

cylindrical differential volume are shown in Figure 9-3. These include the heat transfer at the 

outer surface of the fiber due to convection, 𝑞𝑐𝑜𝑛𝑣, and radiation exchange with the surrounding 

environment, 𝑞𝑟𝑎𝑑, as well as the total heat rate along the fiber, 𝑞𝑧. It is assumed that both 

convection and radiation transfer heat out of the control volume. 
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Figure 9-3: Differential volume of optical fiber with energy interactions 

 

The thermal energy balance has the form 

 𝐸̇𝑖𝑛 − 𝐸̇𝑜𝑢𝑡 + 𝐸̇𝑔𝑒𝑛 = 𝐸̇𝑠𝑡 (9-10) 

There is no stored energy because the system is assumed to be in steady state and there is no 

energy generated. Substituting the heat transfer interactions shown in Figure 9-3 into the energy 

balance results in the following equation. 

 𝑞𝑧 − 𝑞𝑧+𝑑𝑧 = 𝑞𝑐𝑜𝑛𝑣 + 𝑞𝑟𝑎𝑑 (9-11) 

The rate of heat transferred by convection is 

 𝑞𝑐𝑜𝑛𝑣 = ℎ̅𝐴(𝑇(𝑧 + 𝑑𝑧 2⁄ ) − 𝑇∞) (9-12) 

where ℎ̅ is the average heat transfer coefficient over the fiber and 𝐴 = 𝜋𝐷𝑑𝑧 is the surface area 

of the differential volume that is exposed to the surroundings. Similarly, the rate of radiation 

exchange between the outer fiber surface and the surroundings can be expressed as follows 

where 𝜀𝑓 is the emittance of the fiber. 

 𝑞𝑟𝑎𝑑 = 𝐴𝜀𝑓𝜎(𝑇4(𝑧 + 𝑑𝑧 2⁄ ) − 𝑇𝑠𝑢𝑟
4 ) (9-13) 
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This equation carries the assumption that the surroundings are isothermal and large compared to 

the optical fiber. Substituting Equations (9-12) and (9-13) into Equation (9-11) and dividing both 

sides by 𝑑𝑧 gives 

−
𝑞𝑧+𝑑𝑧 − 𝑞𝑧

𝑑𝑧
= 𝜋𝐷ℎ̅(𝑇(𝑧 + 𝑑𝑧 2⁄ ) − 𝑇∞) + 𝜋𝐷𝜀𝑓𝜎(𝑇4(𝑧 + 𝑑𝑧 2⁄ ) − 𝑇𝑠𝑢𝑟

4 ) (9-14) 

Making use of the difference quotient by taking the limit of Equation (9-14) as 𝑑𝑧 approaches 

zero gives 

 −
𝑑

𝑑𝑧
(𝑞) = 𝜋𝐷ℎ̅(𝑇(𝑧) − 𝑇∞) + 𝜋𝐷𝜀𝑓𝜎(𝑇4(𝑧) − 𝑇𝑠𝑢𝑟

4 ) (9-15) 

The total heat rate along the fiber results from both conduction, 𝑞𝑐𝑜𝑛𝑑, and from radiation within 

the fiber, 𝑞𝑅. The 𝑞𝑅 term represents the net radiative energy deposited into (or withdrawn from) 

the volume element due to emission and absorption within the volume. 

 −
𝑑

𝑑𝑧
(𝑞𝑐𝑜𝑛𝑑 + 𝑞𝑅) = 𝜋𝐷ℎ̅(𝑇(𝑧) − 𝑇∞) + 𝜋𝐷𝜀𝑓𝜎(𝑇4(𝑧) − 𝑇𝑠𝑢𝑟

4 ) (9-16) 

The conduction rate is given by Fourier’s law. 

 −
𝑑

𝑑𝑧
(−𝑘𝐴𝑐

𝑑𝑇

𝑑𝑧
) −

𝑑

𝑑𝑧
(𝐴𝑐𝑞𝑅

′′) = 𝜋𝐷ℎ̅(𝑇(𝑧) − 𝑇∞) + 𝜋𝐷𝜀𝑓𝜎(𝑇4(𝑧) − 𝑇𝑠𝑢𝑟
4 ) (9-17) 

In Equation (9-17), 𝑘 is the thermal conductivity of the optical fiber, 𝑞𝑅
′′ is the total radiative heat 

flux in the fiber, and 𝐴𝑐 = 𝜋𝐷2 4⁄  is the cross-sectional area normal to the direction of heat 

transfer. If the thermal conductivity is assumed to be constant over 𝑧, the resulting equation is 

 
𝑑2𝑇

𝑑𝑧2
=

1

𝑘

𝑑𝑞𝑅
′′

𝑑𝑧
+

4

𝑘𝐷
(ℎ̅(𝑇(𝑧) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧) − 𝑇𝑠𝑢𝑟

4 )) (9-18) 

In order to solve this differential equation for the temperature profile in the fiber, the total 

radiative heat flux, 𝑞𝑅
′′, must be determined. This heat flux is given by [5] 

 𝑞𝑅
′′ = ∫ ∫ 𝐼𝜈(𝒔̂)𝒔̂𝑑Ω𝑑𝜈

 

4𝜋

∞

0

 (9-19) 
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Using the definition of the solid angle, 𝑑Ω = sin 𝜃 𝑑𝜃𝑑𝜙, and expressing the direction vector, 𝒔̂ 

in terms of  𝑧 and 𝜃, Equation (9-19) becomes 

 𝑞𝑅
′′ = ∫ ∫ [∫ 𝐼𝜈

+(𝑧, 𝜃) cos 𝜃 sin 𝜃 𝑑𝜃
𝜃𝑖

0

+ ∫ 𝐼𝜈
−(𝑧, 𝜃) cos 𝜃 sin 𝜃 𝑑𝜃

𝜋

𝜋−𝜃𝑖

] 𝑑𝜙
2𝜋

0

𝑑𝜈
∞

0

 (9-20) 

In this equation, 𝜃𝑖 represents the critical angle below which total internal reflection occurs in the 

optical fiber, as shown in Figure 9-1. Integrating over 𝜙, employing the direction cosine, 𝜇 =

cos 𝜃, and noting that sin θ 𝑑𝜃 = −𝑑𝜇, Equation (9-20) becomes 

 𝑞𝑅 = 2𝜋 ∫ [∫ 𝐼𝜈
+(𝑧, 𝜇)𝜇𝑑𝜇

1

𝜇𝑖

+ ∫ 𝐼𝜈
−(𝑧, −𝜇)𝜇𝑑𝜇

1

𝜇𝑖

] 𝑑𝜈
∞

0

 (9-21) 

where 𝜇𝑖 = cos 𝜃𝑖. The total radiative heat flux is found by substituting Equations (9-5) and (9-6) 

into Equation (9-21). 

 𝑞𝑅
′′ = 2𝜋 ∑ 𝐴𝑖

5

𝑖=1

 (9-22) 

where 

 𝐴1 = ∫ ∫ 𝜀𝜈,𝐶𝐼𝑏,𝜈(𝑇𝐶)𝑒−𝜅𝜈𝑧 𝜇⁄ 𝜇𝑑𝜇
1

0

𝑑𝜈
∞

0

 (9-23) 

 𝐴2 = ∫ ∫ 𝜅𝜈 ∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝑧−𝑧′) 𝜇⁄ 𝑑𝑧′
𝑧

0

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (9-24) 

 𝐴3 = − ∫ ∫ 𝜌𝜈,𝐿𝜀𝜈,𝐶𝐼𝑏,𝜈(𝑇𝐶)𝑒−𝜅𝜈(2𝐿−𝑧) 𝜇⁄ 𝜇𝑑𝜇
1

0

𝑑𝜈
∞

0

 (9-25) 

 𝐴4 = − ∫ ∫ 𝜌𝜈,𝐿𝜅𝜈 ∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(2𝐿−𝑧−𝑧′) 𝜇⁄ 𝑑𝑧′
𝐿

0

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (9-26) 

 𝐴5 = − ∫ ∫ 𝜅𝜈 ∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝑧′−𝑧) 𝜇⁄ 𝑑𝑧′
𝐿

𝑧

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (9-27) 

 



101 

Equation (9-21) is then substituted into Equation (9-18). 

 
𝑑2𝑇

𝑑𝑧2
=

2𝜋

𝑘
∑

𝑑𝐴𝑖

𝑑𝑧

5

𝑖=1

+
4

𝑘𝐷
(ℎ̅(𝑇(𝑧) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧) − 𝑇𝑠𝑢𝑟

4 )) (9-28) 

This second order, nonlinear, nonhomogeneous differential equation can be solved for the 

temperature profile 𝑇(𝑧) in the fiber by finding both the complementary and particular solutions. 

 𝑇(𝑧) = 𝑇𝑐 + 𝑇𝑝 (9-29) 

The complementary solution is the solution to the homogeneous equation. 

 
𝑑2𝑇

𝑑𝑧2
= 0 (9-30) 

which is found by separating and integrating twice. 

 𝑇𝑐 = 𝑐1𝑧 + 𝑐2 (9-31) 

The particular solution is solved using the method of variation of parameters and is given by 

 𝑇𝑝 = 𝑢1𝑇1 + 𝑢2𝑇2 = 𝑢1𝑧 + 𝑢2 (9-32) 

where 

 𝑢1 = ∫ (
2𝜋

𝑘
∑

𝑑𝐴𝑖

𝑑𝑧′

5

𝑖=1

+
4

𝑘𝐷
(ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 ))) 𝑑𝑧′
𝑧

0

 (9-33) 

 𝑢2 = ∫ (−
2𝜋

𝑘
𝑧′ ∑

𝑑𝐴𝑖

𝑑𝑧′

5

𝑖=1

−
4𝑧′

𝑘𝐷
(ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 ))) 𝑑𝑧′
𝑧

0

 (9-34) 

Integration by parts is used on Equation (9-34) and the particular solution reduces to 

 

𝑇𝑝 =
2𝜋

𝑘
∫ ∑ 𝐴𝑖

5

𝑖=1

𝑑𝑧′
𝑧

0

+
4𝑧

𝑘𝐷
∫ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝑧

0

−
4

𝑘𝐷
∫ 𝑧′ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝑧

0

 

(9-35) 
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An equation for the temperature profile along the fiber is found by substituting Equations (9-31) 

and (9-35) into Equation (9-29). 

𝑇(𝑧) = 𝑐1𝑧 + 𝑐2 +
2𝜋

𝑘
∫ ∑ 𝐴𝑖

5

𝑖=1

𝑑𝑧′
𝑧

0

+
4𝑧

𝑘𝐷
∫ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝑧

0

−
4

𝑘𝐷
∫ 𝑧′ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝑧

0

 

(9-36) 

Each of the 𝐴 terms in Equation (9-36) is integrated with respect to 𝑧 and evaluated from 0 to 𝑧 

so that the temperature profile has the following form. 

𝑇(𝑧) = 𝑐1𝑧 + 𝑐2 +
2𝜋

𝑘
∑ 𝐵𝑖

5

𝑖=1

(𝑧) +
4𝑧

𝑘𝐷
∫ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝑧

0

−
4

𝑘𝐷
∫ 𝑧′ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝑧

0

 

(9-37) 

where 

 𝐵1 = ∫ ∫
𝜀𝜈,𝐶

𝜅𝜈
𝐼𝑏,𝜈(𝑇𝐶)(1 − 𝑒−𝜅𝜈𝑧 𝜇⁄ )𝜇2𝑑𝜇

1

0

𝑑𝜈
∞

0

 (9-38) 

 𝐵2 = − ∫ ∫ ∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒𝜅𝜈(𝑧′−𝑧) 𝜇⁄ 𝜇𝑑𝑧′
𝑧

0

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (9-39) 

 𝐵3 = ∫ ∫
𝜌𝜈,𝐿𝜀𝜈,𝐶

𝜅𝜈
𝐼𝑏,𝜈(𝑇𝐶)𝑒−𝜅𝜈2𝐿 𝜇⁄ (1 − 𝑒𝜅𝜈𝑧 𝜇⁄ )𝜇2𝑑𝜇

1

0

𝑑𝜈
∞

0

 (9-40) 

 𝐵4 = ∫ ∫ 𝜌𝜈,𝐿𝜇𝑒−𝜅𝜈2𝐿 𝜇⁄ (1 − 𝑒𝜅𝜈𝑧 𝜇⁄ ) ∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒𝜅𝜈𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (9-41) 

𝐵5 = − ∫ ∫ ∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝑧′−𝑧) 𝜇⁄ 𝜇𝑑𝑧′
𝐿

𝑧

𝑑𝜇
1

0

𝑑𝜈
∞

0

+ ∫ ∫ ∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈𝑧′ 𝜇⁄ 𝜇𝑑𝑧′
𝐿

0

𝑑𝜇
1

0

𝑑𝜆
∞

0

 (9-42) 

The terms 𝐵2 and 𝐵5 were calculated using the same method as terms 𝐵5 and 𝐵12 in Section 6.3. 

The constants c1 and c2 in Equation (9-37) are found by applying the boundary conditions. 
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At 𝑧 = 0, the temperature of the fiber is that of the cavity, 𝑇𝐶 so that 

 𝑐2 = 𝑇𝐶 (9-43) 

At 𝑧 = 𝐿 the temperature is assumed to be that of the ambient air, 𝑇∞ which gives 

𝑐1 =
𝑇∞ − 𝑇𝐶

𝐿
−

2𝜋

𝑘𝐿
∑ 𝐵𝑖

5

𝑖=1

(𝐿) −
4

𝑘𝐷
∫ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝐿

0

+
4

𝑘𝐿𝐷
∫ 𝑧′ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝐿

0

 

(9-44) 

These constants are substituted into Equation (9-37) and the 𝜋 term is multiplied by the spectral 

intensities so that 𝜋𝐼𝑏,𝜈 = 𝐸𝑏,𝜈. Adding all of the summation terms provides the following 

expression for the temperature profile in the fiber. 

𝑇(𝑧) = (
𝑇∞

𝐿
−

𝑇𝐶

𝐿
) 𝑧 + 𝑇𝐶 + 𝑘 ∑ 𝐻𝑖(𝑧)

7

𝑖=1

−
4𝑧

𝑘𝐷
∫ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝐿

0

+
4𝑧

𝐿𝑘𝐷
∫ 𝑧′ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝐿

0

+
4𝑧

𝑘𝐷
∫ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝑧

0

−
4

𝑘𝐷
∫ 𝑧′ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝑧

0

 

(9-45) 

where 

 𝐻1 = ∫ ∫
𝜀𝜈,𝐶

𝜅𝜈
𝐸𝑏,𝜈(𝑇𝐶)𝑃(𝑧, 𝜈, 𝜇)𝑑𝜇

1

0

𝑑𝜈
∞

0

 (9-46) 

 𝐻2 =
𝑧

𝐿
∫ ∫ ∫ 𝐸𝑏,𝜈(𝑇(𝑧′))𝑒𝜅𝜈(𝑧′−𝐿) 𝜇⁄ 𝜇𝑑𝑧′

𝐿

0

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (9-47) 
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 𝐻3 = − ∫ ∫ ∫ 𝐸𝑏,𝜈(𝑇(𝑧′))𝑒𝜅𝜈(𝑧′−𝑧) 𝜇⁄ 𝜇𝑑𝑧′
𝑧

0

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (9-48) 

 𝐻4 = ∫ ∫
𝜌𝜈,𝐿𝜀𝜈,𝐶

𝜅𝜈
𝐸𝑏,𝜈(𝑇𝐶)𝑄(𝑧, 𝜈, 𝜇)𝜇𝑑𝜇

1

0

𝑑𝜈
∞

0

 (9-49) 

 𝐻5 = ∫ ∫ 𝜌𝜈,𝐿𝑄(𝑧, 𝜈, 𝜇) ∫ 𝐸𝑏,𝜈(𝑇(𝑧′))𝑒𝜅𝜈𝑧′ 𝜇⁄ 𝑑𝑧′
𝐿

0

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (9-50) 

 𝐻6 = (1 −
𝑧

𝐿
) ∫ ∫ ∫ 𝐸𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈𝑧′ 𝜇⁄ 𝜇𝑑𝑧′

𝐿

0

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (9-51) 

 𝐻7 = − ∫ ∫ ∫ 𝐸𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝑧′−𝑧) 𝜇⁄ 𝜇𝑑𝑧′
𝐿

𝑧

𝑑𝜇
1

0

𝑑𝜈
∞

0

 (9-52) 

In the above equations, 𝑃(𝑧, 𝜈, 𝜇) and 𝑄(𝑧, 𝜈, 𝜇) are given as follows. 

 𝑃(𝑧, 𝜈, 𝜇) = 𝜇2 (
𝑧

𝐿
(𝑒−𝜅𝜈𝐿 𝜇⁄ − 1) + (1 − 𝑒−𝜅𝜈𝑧 𝜇⁄ )) (9-53) 

 𝑄(𝑧, 𝜈, 𝜇) = 𝜇𝑒−𝜅𝜈𝐿 𝜇⁄ (
𝑧

𝐿
(1 − 𝑒−𝜅𝜈𝐿 𝜇⁄ ) + 𝑒−𝜅𝜈𝐿 𝜇⁄ (1 − 𝑒𝜅𝜈𝑧 𝜇⁄ )) (9-54) 

Equation (9-45) is used to determine the temperature profile along the fiber. Because the 

temperature profile is found in the integrals on the right side of Equation (9-45), an iterative 

solution approach is required. 

9.4 Heat Source Temperature 

It is important to note that the temperature of the cavity may differ significantly from the 

temperature of the heat source which is to be measured. The relationship between the cavity 

temperature and the heat source temperature can be found by performing an energy balance on 

the cavity. Figure 9-4 shows all of the energy interactions with the cavity. These include 

convection heat transfer between the heat source and the outer surface of the cavity, 𝑞𝑐𝑜𝑛𝑣, 

radiation exchange between the large, isothermal surroundings and the outer surface of the 
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cavity, 𝑞𝑟𝑎𝑑, conduction down the optical fiber, 𝑞𝑐𝑜𝑛𝑑, and emission from the cavity down the 

fiber, 𝑞𝑐𝑎𝑣. 

 

 

Figure 9-4: Energy interactions with the OFT sensing tip 

 

An energy balance on the cavity reduces to 

 𝐸̇𝑖𝑛 = 𝐸̇𝑜𝑢𝑡 (9-55) 

or 

 𝑞𝑐𝑜𝑛𝑣 + 𝑞𝑟𝑎𝑑 = 𝑞𝑐𝑜𝑛𝑑 + 𝑞𝑐𝑎𝑣 (9-56) 

The rate of heat transferred by convection is 

 𝑞𝑐𝑜𝑛𝑣 = ℎ̅𝐻𝐴𝑠(𝑇𝐻 − 𝑇𝐶) (9-57) 

where ℎ̅𝐻 is the average convection heat transfer coefficient between the hot surroundings and 

the outer cavity surface, 𝑇𝐻 is the temperature of the heat source, and 𝐴𝑠 is the surface area of the 

cavity. If the surroundings are considered large and isothermal compared to the cavity, the rate of 

radiation exchange between the outer cavity surface and the surroundings can be expressed as 

 𝑞𝑟𝑎𝑑 = 𝐴𝑠𝜀𝑐𝑎𝑣𝜎(𝑇𝑠𝑢𝑟
4 − 𝑇𝐶

4) (9-58) 
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In the above equation, 𝜀𝑐𝑎𝑣 is the emittance of the outer surface of the cavity. The conduction 

term at the tip is given by Fourier’s Law. 

 𝑞𝑐𝑜𝑛𝑑 = −𝐴𝑐𝑘
𝑑𝑇

𝑑𝑧
|

𝑧=0
 (9-59) 

where 𝐴𝑐 is the cross-sectional area of the fiber and 𝑘 is the fiber thermal conductivity. The 

cavity emission is given by 

 𝑞𝑐𝑎𝑣 = 𝐴𝑐𝜀𝐶𝜎𝑇𝐶
4 (9-60) 

where 𝜀𝐶 is the effective emittance of the cavity. Substituting these four heat rates into the 

energy balance gives 

 ℎ̅𝐻𝐴𝑠(𝑇𝐻 − 𝑇𝐶) + 𝐴𝑠𝜀𝑐𝑎𝑣𝜎(𝑇𝑠𝑢𝑟
4 − 𝑇𝐶

4) = −𝐴𝑐𝑘
𝑑𝑇

𝑑𝑧
|

𝑧=0
+ 𝐴𝑐𝜀𝐶𝜎𝑇𝐶

4 (9-61) 

The derivative at 𝑧 = 0 can be approximated as 

 
𝑑𝑇

𝑑𝑧
|

𝑧=0
≈

𝑇(∆𝑧) − 𝑇𝐶

∆𝑧
 (9-62) 

Therefore, the heat source temperature, 𝑇𝐻, can be calculated from the following equation. 

 𝑇𝐻 = 𝑇𝐶 +
𝜀𝑐𝑎𝑣𝜎

ℎ̅𝐻

(𝑇𝐶
4 − 𝑇𝑠𝑢𝑟

4 ) +
𝐴𝑐𝑘

ℎ̅𝐻𝐴𝑠∆𝑧
(𝑇𝐶 − 𝑇(∆𝑧)) +

𝐴𝑐

ℎ̅𝐻𝐴𝑠

𝜀𝐶𝜎𝑇𝐶
4 (9-63) 

9.5 Simplifications to the Forward Problem 

The forward problem is given by Equation (9-9), which is an expression for the signal 

output by a detector due to irradiation on the detector from an optical fiber. This expression 

requires knowledge of the temperature profile along the fiber, which can be calculated from 

Equation (9-45). This section describes various simplifications that are made in calculating the 

temperature profile along the fiber. 
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9.5.1 Constant Thermal Conductivity 

One of the primary approximations made in solving Equation (9-17) was that the thermal 

conductivity of the fiber was constant over the length of fiber. Because of the large range of 

temperatures that could exist within the fiber, the thermal conductivity could vary significantly 

over the fiber and, therefore, the effects of this approximation on the temperature profile must be 

assessed. The temperature profile was calculated for a set of system properties and parameters 

over a wide range of thermal conductivity values. These parameters are shown in Table 9-1. 

 

Table 9-1: System parameters for hypothetical OFT system. 

 

 

The temperature profile for these system parameters are shown Figure 9-5 and Figure 9-6  for 

various fiber diameters and at relatively low and relatively high thermal conductivity values. 

The results in Figure 9-5 and Figure 9-6 show that as the diameter of the fiber decreases, 

differences in the fiber thermal conductivity have a smaller impact on the temperature profile in 

the fiber. The average percent error between the signals calculated from Equation (9-9) for the 

two cases shown in Figure 9-5 was 14% while the average error between the signals of the two 

cases shown in Figure 9-6 was 0.3%. Because optical fibers generally have very small diameters 

(optical fiber diameters range from 10 to 500 m), it is a reasonable approximation to assume a 

constant thermal conductivity. 
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Figure 9-5: Temperature profiles in a fiber of diameter 0.01m at two different values of 𝒌 for the parameters 

shown in Table 9-1 

 

 

Figure 9-6: Temperature profiles in a fiber of diameter 0.0001m at two different values of 𝒌 for the 

parameters shown in Table 9-1 
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The iterative approach to finding the temperature profile along with the high number of 

terms and numerical integrations required in Equation (9-45) make solving the forward problem 

computationally expensive. This computational cost is heightened by the use of small under 

relaxation factors required in the iterative process. For example, convergence of the temperature 

profile shown in Figure 9-6 with a thermal conductivity value of 10 W/m·K required an under 

relaxation factor of 0.0003 and over 22,000 iterations in 11 minutes. 

9.5.2 Neglect Internal Radiation 

Because the inverse problem calls for the forward problem to be solved many times, it 

would be computationally beneficial to simplify the forward problem. The effects of the radiative 

component of the heat rate down the optical fiber were assessed solving Equation (9-18) without 

the radiative component and comparing the results to those found from Equation (9-18). Without 

the radiative transfer within the optical fiber, the differential equation required to find the 

temperature profile becomes 

 
𝑑2𝑇

𝑑𝑧2
=

4

𝑘𝐷
(ℎ̅(𝑇(𝑧) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧) − 𝑇𝑠𝑢𝑟

4 )) (9-64) 

The complementary solution is again found by separating and integrating the homogeneous 

equation twice. 

 𝑇𝑐 = 𝑐3𝑧 + 𝑐4 (9-65) 

As before, the particular solution can be solved using the method of variation of parameters and 

is given by 

 𝑇𝑝 = 𝑢1𝑇1 + 𝑢2𝑇2 = 𝑢1𝑧 + 𝑢2 (9-66) 
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In this equation, 

 𝑢1 =
4

𝑘𝐷
∫ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝑧

0

 (9-67) 

 𝑢2 = −
4

𝑘𝐷
∫ 𝑧′ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝑧

0

 (9-68) 

Combining the complementary and particular solutions provides the following equation for the 

temperature profile in the fiber. 

 

𝑇 = 𝑐3𝑧 + 𝑐4 +
4𝑧

𝑘𝐷
∫ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝑧

0

−
4

𝑘𝐷
∫ 𝑧′ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝑧

0

 

(9-69) 

The constants are found by applying the boundary conditions 𝑇(0) = 𝑇𝐶 and 𝑇(𝐿) = 𝑇∞. 

 𝑐4 = 𝑇𝐶 (9-70) 

 

𝑐3 =
𝑇∞

𝐿
−

𝑇𝐶

𝐿
−

4

𝑘𝐷
∫ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝐿

0

+
4

𝐿𝑘𝐷
∫ 𝑧′ (ℎ̅(𝑇(𝑧′) − 𝑇∞) + 𝜀𝑓𝜎(𝑇4(𝑧′) − 𝑇𝑠𝑢𝑟

4 )) 𝑑𝑧′
𝐿

0

 

(9-71) 

Figure 9-7 and Figure 9-8 compare the temperature profiles found using Equation (9-69) 

to those found using Equation (9-45) for various fiber diameters. The system properties and 

parameters used are those found in Table 9-1 and the thermal conductivity was 10 W/m·K. The 

results in Figure 9-7 and Figure 9-8 show that as the diameter of the fiber decreases, the effects 

of the internal radiation component of the heat rate down the fiber become negligible. Physically, 

this means that for small diameters, the temperature profile is primarily dependent upon the 

convection and radiation heat transfer between the outer surface of the fiber and the 

environment. 
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The average percent error between the signals calculated from Equation (9-9) for the two 

cases shown in Figure 9-7 was 0.09% while the average error between the signals of the two 

cases shown in Figure 9-8 was 8.3×10-5%. Again, because optical fibers generally have very 

small diameters it is a reasonable approximation to exclude the internal fiber radiation to increase 

the computational efficiency of the forward problem. In Figure 9-8, the temperature profile 

calculated with the internal fiber radiation took about 11 minutes to converge while the profile 

without internal radiation took about 21 seconds to converge. Both profiles required an under 

relaxation factor of 0.0003 and about 22,000 iterations for convergence. 

 

 

Figure 9-7: Temperature profiles in a fiber of diameter 0.01m with and without internal radiation 
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Figure 9-8: Temperature profiles in a fiber of diameter 0.0001m with and without internal radiation 

 

9.5.3 Linearized Solution 

Even without the effects of radiation within the fiber, the model still requires an iterative 

solution because of the nonlinear nature of the external radiation term and very small under 

relaxation factors are still required for convergence to be achieved. Therefore, in order to further 

simplify the forward problem, the nonlinear term is linearized using the surroundings 

temperature as shown in Equation (9-72) so that Equation (9-64) can be solved exactly without 

iteration. 

 𝑇4(𝑧) ≈ 𝑇𝑠𝑢𝑟
3 𝑇(𝑧) (9-72) 

Substituting the linearized term into Equation (9-72) and rearranging results in the following 

linear differential equation. 

 
𝑑2𝑇

𝑑𝑧2
−

4

𝑘𝐷
(ℎ̅ + 𝜀𝑓𝜎𝑇𝑠𝑢𝑟

3 )𝑇(𝑧) = −
4

𝑘𝐷
(ℎ̅𝑇∞ + 𝜀𝑓𝜎𝑇𝑠𝑢𝑟

4 ) (9-73) 
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The complementary solution is found by solving the following homogeneous equation. 

 
𝑑2𝑇

𝑑𝑧2
−

4

𝑘𝐷
(ℎ̅ + 𝜀𝑓𝜎𝑇𝑠𝑢𝑟

3 )𝑇 = 0 (9-74) 

Equation (9-74) can be written as 

 
𝑑2𝑇

𝑑𝑧2
− 𝑝2𝑇 = 0 (9-75) 

where 

 𝑝 = √
4

𝑘𝐷
(ℎ̅ + 𝜀𝑓𝜎𝑇𝑠𝑢𝑟

3 ) (9-76) 

The auxiliary equation associated with Equation (9-75) is 

 𝑚2 − 𝑝2 = 0 (9-77) 

and the roots of the auxiliary equation are 𝑚 = ±𝑝, so the complementary solution is 

 𝑇𝑐(𝑧) = 𝑐5𝑒𝑝𝑧 + 𝑐6𝑒−𝑝𝑧 (9-78) 

The particular solution can be found using the method of undetermined coefficients and is given 

by 

 𝑇𝑝 =
ℎ̅𝑇∞ + 𝜀𝑓𝜎𝑇𝑠𝑢𝑟

4

ℎ̅ + 𝜀𝑓𝜎𝑇𝑠𝑢𝑟
3

 (9-79) 

The solution to Equation (9-73) is 

 𝑇(𝑧) = 𝑐5𝑒𝑝𝑧 + 𝑐6𝑒−𝑝𝑧 + 𝑇𝑝 (9-80) 

The constants are found by applying of the boundary conditions 𝑇(0) = 𝑇𝐶 and 𝑇(𝐿) = 𝑇∞. 

 𝑐5 = 𝑇𝐶 − 𝑇𝑝 −
𝑇∞ − 𝑇𝑝 + (𝑇𝑝 − 𝑇𝐶)𝑒𝑝𝐿

𝑒−𝑝𝐿 − 𝑒𝑝𝐿
 (9-81) 

 𝑐6 =
𝑇∞ − 𝑇𝑝 + (𝑇𝑝 − 𝑇𝐶)𝑒𝑝𝐿

𝑒−𝑝𝐿 − 𝑒𝑝𝐿
 (9-82) 
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Figure 9-9 and Figure 9-10 compare the temperature profiles found using Equation (9-80) 

to those found using Equation (9-45) for different fiber diameters. The system properties and 

parameters used are again those found in Table 9-1. 

The results in Figure 9-9 and Figure 9-10 show that as the diameter of the fiber decreases, 

the linearized model becomes more accurate. The average percent error between the signals 

calculated from Equation (9-9) for the two cases shown in Figure 9-9 was 2% while the average 

error between the signals of the two cases shown in Figure 9-10 was 0.0006%. It is therefore a 

reasonable approximation to use Equation (9-80) in order to determine the temperature profile in 

the forward problem. In Figure 9-10, the temperature profile calculated with the internal fiber 

radiation took about 11 minutes to converge while the linearized profile is calculated from an 

exact, closed-form solution that was calculated in 0.01 seconds. 

 

 

Figure 9-9: Temperature profiles in a fiber of diameter 0.01m with linearized and non-linearized models 
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Figure 9-10: Temperature profiles in a fiber of diameter 0.0001m with linearized and non-linearized models 

 

9.6 Summary of the Forward Problem 

The forward problem is given by Equation (9-9), which provides a relation between the 

spectral signal from the detector and the parameters and properties of the OFT system. The 

forward problem requires the temperature profile along the fiber. For fibers with small diameters, 

a simplified model for the temperature profile is given in Equation (9-80). This model assumes a 

constant fiber thermal conductivity at an elevated temperature, neglects the internal radiation in 

the fiber, and linearizes the nonlinear external radiation term. The temperature of the heat source 

can be calculated from the cavity temperature and other system parameters using Equation 

(9-63). 
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9.7 Measurement Band Selection 

The forward problem requires various properties and parameters of the optical fiber 

thermometer system in order to calculate the signal from the detector. These include the effective 

emittance of the cavity, the emittance of the outer surface of the cavity, the absorption 

coefficient, thermal conductivity, refractive index, and emittance of the fiber, as well as the 

convection heat transfer coefficient along the fiber. Spectral variations in the absorption 

coefficient can have a significant impact on the calculations of the forward problem in Equation 

(9-9). Therefore, a measurement band must be specified over which the spectral properties can 

be considered constant. 

Optical fibers can be made of a number of materials, such as fluorozirconate, 

fluoroaluminate, and chalcogenide glasses [96]. However, they are primarily made from silicon 

dioxide (SiO2), commonly known as silica. For higher temperature applications, other crystalline 

materials, like aluminum oxide (Al2O3), also known as sapphire, can be used. The spectral 

absorption coefficient of silica is low and relatively constant at frequencies lower than about 

1.2×1014 Hz (above 2.5 m) and similar trends are seen for sapphire at frequencies lower than 

about 8.6×1013 Hz (above 3.5 m) [97-99]. It is important to note that, in Equation (9-9), as the 

spectral absorption coefficient 𝜅𝜈 increases, the contribution of the radiation from the cavity to 

the spectral signal decreases exponentially. Therefore, in order to accurately predict the cavity 

temperature, it is important to make measurements over frequencies at which the absorption 

coefficient of the fiber is as low as possible. Numerical experiments with the forward problem 

show that the spectral measurements become insensitive to the cavity temperature at absorption 

coefficients above about 𝜅𝜈 = 10 m−1. From measurements reported in the literature, the 

spectral absorption coefficient of silica increases above 10 m−1 at about 1.15×1014 Hz (2.6 m) 
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[99, 100]. The refractive index of silica varies from 1.43 at 1.2×1014 Hz (2.5 m) to 1.5 at 

1.2×1015 Hz (0.25 m) [101]. 

A sensitivity analysis was performed to determine how sensitive the spectral signals 

calculated from Equation (9-9) are to changes in the system properties and parameters. A single 

parameter was adjusted while all other parameters were held constant. The forward problem was 

solved for each case and the changes in the spectral irradiation on the detector were plotted.  

Figure 9-11 and Figure 9-12 show the sensitivity of the spectral irradiation on the detector to 

changes in the cavity temperature and the convection coefficient at the heated section of the 

fiber, respectively. The sensitivity plots for the other parameters were similar. 

 

 

Figure 9-11: Sensitivity of spectral irradiation on detector to changes in the cavity temperature 
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Figure 9-12: Sensitivity of spectral irradiation on the detector to changes in the convection coefficient in the 

heated section of the fiber 

 

The sensitivity analysis revealed that detector measurements are highly sensitive to the 

cavity temperature, the absorption coefficient of the fiber, and the refractive index of the fiber 

and that the sensitivity is greater at higher frequencies (lower wavelengths). The measurements 

are largely insensitive to changes in the thermal conductivity and emittance of the fiber as well as 

to the convection coefficient along the fiber. Based on the spectral properties of the fiber and on 

the sensitivity analysis, measurements should be made in a small band anywhere between 

1.0×1014 Hz and 3×1014 Hz (1 to 3 m). The spectral range of the detector might also limit the 

band over which measurements can be made. 
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9.8 Inverse Problem 

 The forward problem consists of calculating the spectral signals from the detection 

system based on known values of the system parameters. The corresponding inverse problem 

entails determining these system parameters from known spectral measurements. The inverse 

problem is solved by using optimization methods to determine the unknown parameters of the 

system by minimizing the error between the experimentally measured signals and those calculated 

from the forward problem. 

 The inverse problem was solved using the Solver application in Microsoft Excel, which uses 

the Generalized Reduced Gradient (GRG) Algorithm as explained in Section 7.2. The forward 

problem was implemented in Excel as outlined in Section 9.6. The integral terms were evaluated 

numerically. The optimum cell was the Euclidean norm of the difference between the actual 

spectral measurements and those calculated from the forward problem. The adjustable cells 

included the cavity temperature, the average convection coefficients along the fiber, and the 

absorption coefficient, emittance, refractive index, and thermal conductivity of the optical fiber. 

The optimization algorithm minimizes the optimum cell by changing the values in the adjustable 

cells. 

9.9 Numerical Experiments 

Simulated measurements were used to assess the accuracy of the inverse solution and to 

address the feasibility of using inverse methods to determine OFT sensing tip temperature from 

experimental measurements of the spectral radiative intensity from the fiber. In order to 

determine the simulated measurements, the forward problem was solved over the spectral band 

between 1.33×1014 Hz and 1.5 ×1014 Hz (2 to 2.25 m) for a theoretical OFT system for which 

the system properties and parameters were assumed to be known. In order to assess the 
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robustness of the inverse solution, various values of the system properties and parameters were 

used. The GRG algorithm in the Excel solver was used to minimize the error between the 

spectral measurements calculated from the forward problem and the simulated measurements 

from the theoretical OFT system. Table 9-2 shows the known parameters used in the GRG 

algorithm in one of the cases. The only constraint applied to the optimization algorithm was that 

the refractive index of the fiber be greater than one. 

 

Table 9-2: Example of known parameters used in 

the GRG algorithm 

 
 

The GRG algorithm requires an initial guess for each of the adjustable cells. Table 9-3 

shows example results from the optimization algorithm for two sets of initial values. As 

demonstrated by the sensitivity analysis in Section 9.7, the inverse problem was insensitive to 

changes in the emittance and thermal conductivity of the fiber as well as the convection 

coefficient along the fiber. These parameters did not change significantly from the initial guessed 

values during the optimization process. Therefore, these values cannot be accurately predicted by 

the inverse analysis. Because the problem is ill-posed, the optimum parameter sets found from 
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the inverse problem are somewhat dependent upon the initial guess values of the parameters. The 

average error between the optimum value and the actual value for the cavity temperature was 

0.05%. The average error for the absorption coefficient was 3.5% and that of the refractive index 

was 52%. 

 

Table 9-3: Example of optimum unknown parameter values found from the GRG algorithm 

 

 

In order to assess the potential impact of measurement error on the results of the inverse 

problem, error was introduced into the simulated measurements. Table 9-4 and Table 9-5 show 

typical results for cases in which 10% and 20% error were added to the measurements, 

respectively. 

 

Table 9-4: Example of optimum unknown parameter values found from the GRG algorithm with 10% 

measurement error 
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Table 9-5: Example of optimum unknown parameter values found from the GRG algorithm with 20% 

measurement error 

 

 

As would be expected, increases in the length of the fiber decreases the accuracy with 

which the unknown parameters can be predicted using the inverse problem. Table 9-6 compares 

the results of the inverse problem for two cases in which all of the parameters are the same 

except the fiber has a length of 1 meter in the first case and 2 meters in the second case. 

 

Table 9-6: Comparison of optimums found with differing fiber lengths 

 

 

Table 9-7 shows the average error between the parameter values determined from the 

inverse problem and the actual parameter values for all cases run with and without measurement 

error.  
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Table 9-7: Average error between optimum 

values and actual values with and without 

measurement error 

 

 

Based on the numerical experiments conducted above, the tip temperature of the optical 

fiber thermometer can be accurately inferred from spectral measurements of the radiant energy 

from the fiber using the inverse methods described. 

9.10 Determining the Heat Source Temperature 

As demonstrated in Section 9.9, the inverse analysis can accurately predict the cavity 

temperature of the optical fiber thermometer system. However, as shown in Section 9.4, the 

temperature of the cavity can differ significantly from the temperature of the heat source which 

is to be measured. The relationship between the cavity temperature and the heat source 

temperature is shown in Equation (9-63). It is dependent upon the convection heat transfer 

coefficient at the cavity, the surface emittance of the cavity, the effective emittance of the cavity, 

and the thermal conductivity of the fiber. A sensitivity analysis was performed in order to assess 

the effects of each of these parameters on the calculation of the heat source temperature. For a 

known cavity temperature of 𝑇𝐶 = 1050 𝐾, Equation (9-63) was used to calculate the heat 

source temperature 𝑇𝐻 for different values of ℎ𝐻, 𝜀𝐶, 𝜀𝑐𝑎𝑣, and 𝑘. Some of the results are plotted 

in Figure 9-13 and Figure 9-14. 
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Figure 9-13: Sensitivity of the heat source temperature to changes in the convection coefficient and the 

surface emittance of the cavity at k = 10 W/mK 

 

 

Figure 9-14: Sensitivity of the heat source temperature to changes in the convection coefficient and the 

surface emittance of the cavity at k = 50 W/mK 
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The sensitivity analysis shows that the heat source temperature is highly dependent on the 

values of ℎ𝐻, 𝜀𝑐𝑎𝑣, and 𝑘. The calculated heat source temperature can vary significantly (up to 

hundreds of degrees) based on the values of these parameters. Therefore, in order to accurately 

measure the temperature of the heat source, accurate estimates of these parameters must be 

determined. Thermal conductivity measurements as functions of temperature for silica are well 

documented [102]. Measurements of the emittance of the cavity surface depend on the cavity 

material. Lower values of the emittance of the cavity surface result in less heat lost to radiation 

exchange with the surroundings and smaller variations in the heat source temperature with 

changes in the other parameters. The convection coefficient may be evaluated from a correlation 

or experimentally. Changes in the effective emittance of the cavity 𝜀𝐶 had almost no impact on 

the heat source temperature. 

9.11 Heated Fiber 

The analysis described in Sections 9.2 through 9.8 above applies to an optical fiber 

thermometer system in which only the cavity which forms the sensing tip is heated. This analysis 

can be extended to the case in which a significant portion of the fiber is also exposed to an 

elevated temperature. In this case, the heated part of the fiber will provide a greater contribution 

to the total radiant energy exiting the fiber. In the following sections, the analysis described in 

the sections above will be extended to account for a heated section and an unheated section as 

shown in Figure 9-15. An application of this case could be inserting the OFT into a furnace or a 

reactor. 
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Figure 9-15: Schematic of two-zone OFT system 

 

9.11.1 Forward Problem 

The forward problem is exactly the same as that developed in Section 9.2 and is given by 

Equation (9-9). This equation requires knowledge of the temperature profile in the fiber. As was 

done in Section 9.3, an energy balance is performed on a differential volume of the fiber. In this 

case, however, there are two zones which have different convection and radiation exchange rates 

with the surroundings. An energy balance on the differential volumes in both the heated and 

unheated sections of the fiber gives the following differential equations that govern the 

temperature profiles. 

 
𝑑2𝑇1

𝑑𝑧1
2 −

4

𝑘1𝐷
(ℎ̅1 + 𝜀𝑓,1𝜎𝑇𝑠𝑢𝑟,1

3 )𝑇1(𝑧) = −
4

𝑘1𝐷
(ℎ̅1𝑇∞,1 + 𝜀𝑓,1𝜎𝑇𝑠𝑢𝑟,1

4 ) (9-83) 

 
𝑑2𝑇2

𝑑𝑧2
2 −

4

𝑘2𝐷
(ℎ̅2 + 𝜀𝑓,2𝜎𝑇𝑠𝑢𝑟,2

3 )𝑇2(𝑧) = −
4

𝑘2𝐷
(ℎ̅2𝑇∞,2 + 𝜀𝑓,2𝜎𝑇𝑠𝑢𝑟,2

4 ) (9-84) 
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Note that two coordinate systems are used for convenience and the same simplifications that 

were made in Section 9.5 were used. Solving these equations using the methods described in 

Section 9.5.3 results in the following expressions for the temperature profiles. 

 𝑇1(𝑧1) = 𝑐7𝑒𝑝1𝑧1 + 𝑐8𝑒−𝑝1𝑧1 + 𝑇𝑝,1 (9-85) 

 𝑇2(𝑧2) = 𝑐9𝑒𝑝2𝑧2 + 𝑐10𝑒−𝑝2𝑧2 + 𝑇𝑝,2 (9-86) 

where 

 𝑝1 = √
4

𝑘1𝐷
(ℎ̅1 + 𝜀𝑓,1𝜎𝑇𝑠𝑢𝑟,1

3 ) (9-87) 

 𝑝2 = √
4

𝑘2𝐷
(ℎ̅2 + 𝜀𝑓,2𝜎𝑇𝑠𝑢𝑟,2

3 ) (9-88) 

 𝑇𝑝,1 =
ℎ̅1𝑇∞,1 + 𝜀𝑓,1𝜎𝑇𝑠𝑢𝑟,1

4

ℎ̅1 + 𝜀𝑓,1𝜎𝑇𝑠𝑢𝑟,1
3

 (9-89) 

 𝑇𝑝,2 =
ℎ̅2𝑇∞,2 + 𝜀𝑓,2𝜎𝑇𝑠𝑢𝑟,2

4

ℎ̅2 + 𝜀𝑓,2𝜎𝑇𝑠𝑢𝑟,2
3

 (9-90) 

The matching boundary conditions given below require that the temperature and the temperature 

gradient be the same at the point where the two sections meet. 

 𝑇1(𝐿1) = 𝑇2(0) (9-91) 

 
𝑑𝑇1

𝑑𝑧1
|

𝑧1=𝐿1

=
𝑑𝑇2

𝑑𝑧2
|

𝑧2=0

 (9-92) 

The other boundary conditions are the same as those used in the previous analysis. 

 𝑇1(0) = 𝑇𝐶 (9-93) 

 𝑇2(𝐿2) = 𝑇∞,2 (9-94) 
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The following system of equations was found by applying the boundary conditions given in the 

above equations. and can be solved for the constants in Equations (9-85) and (9-86). 

 𝑐8 = 𝑇𝐶 − 𝑇𝑝,1 − 𝑐7 (9-95) 

 𝑐9 = (𝑇∞,2 − 𝑇𝑝,2)𝑒−𝑝2𝐿2 − 𝑐10𝑒−2𝑝2𝐿2 (9-96) 

 𝑐7𝑒𝑝1𝐿1 + 𝑐8𝑒−𝑝1𝐿1 + 𝑇𝑝,1 = 𝑐9 + 𝑐10 + 𝑇𝑝,𝐶 (9-97) 

 𝑐7𝑝1𝑒𝑝1𝐿1 − 𝑐8𝑝1𝑒−𝑝1𝐿1 = 𝑐9𝑝2 − 𝑐10𝑝2 (9-98) 

This set of four equations and four unknowns can be solved for the constants found in Equations 

(9-85) and (9-86). An example of the temperature distribution calculated from the model 

described above for the system parameters given in Table 9-8 is shown in Figure 9-16. Note that 

the temperature profile is primarily a function of the surrounding temperatures in both the heated 

and unheated zones. The small diameter of the fiber results in a steep temperature gradient 

between the heated portion and the cooler surroundings. 

 

Table 9-8: Parameters used in example temperature distribution 

in two-zone system 
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Figure 9-16: Example of a two-zone temperature distribution with parameters shown in Table 9-8 

 

9.11.2 Inverse Problem 

The inverse problem was solved using the Solver application in Microsoft Excel, which uses 

the Generalized Reduced Gradient (GRG) Algorithm as explained in Section 7.2. The forward 

problem was implemented in Excel as outlined in Section 9.11.1. The integral terms were evaluated 

numerically. The optimum cell was the Euclidean norm of the difference between the actual 

spectral measurements and those calculated from the forward problem. The adjustable cells 

included the cavity temperature, the convection coefficients in the heated and unheated sections 

of the fiber, the thermal conductivity and emittance of the fiber in the heated and unheated 

sections, and the absorption coefficient and the refractive index of the fiber. The optimization 

algorithm minimizes the optimum cell by changing the values in the adjustable cells. 
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9.11.3 Numerical Experiments 

As was done in Section 9.9, simulated measurements were used to assess the accuracy of 

the inverse solution. In order to determine the simulated measurements, the forward problem was 

solved over the spectral band between 1.15×1014 Hz and 1.5 ×1014 Hz for a theoretical OFT 

system for which the system properties and parameters were assumed to be known. In order to 

assess the robustness of the inverse solution, various values of the system properties and 

parameters were used. The GRG algorithm in the Excel Solver was used to minimize the error 

between the spectral measurements calculated from the forward problem and the simulated 

measurements from the theoretical OFT system. 

A sensitivity analysis revealed that, as was the case for the system in Section 9.7, the 

detector measurements are highly sensitive to the cavity temperature, the absorption coefficient 

of the fiber, and the refractive index of the fiber and insensitive to the other system parameters. 

Accordingly, the inverse problem can very accurately predict the absorption coefficient and the 

refractive index. Its ability to predict the cavity temperature was not as accurate as the case when 

only the cavity was heated. As the length of the heated portion of the fiber increases, the 

accuracy with which the inverse problem can predict the cavity temperature decreases. Table 9-9 

shows a comparison of the optimums found for a given OFT system with different lengths of the 

heated portion of the fiber. The values of the other parameters correspond to those shown in 

Table 9-8. Because heating a significant portion of the fiber decreases the accuracy with which 

the sensing tip temperature is determined, it is better that only the sensing tip be exposed to the 

heat source to be measured. In some applications, this could require a heat shield or a cooled 

sheath around the fiber. 
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Table 9-9: Comparison of optimums found with differing lengths of the heated portion of the fiber 

 

 

As mentioned before, the cavity temperature may differ significantly from that of the heat 

source that is to be measured, 𝑇∞,1, depending on the heat transferred between the cavity and the 

surroundings. Therefore, accurate prediction of 𝑇∞,1 is dependent upon knowledge of the 

emittance of the cavity surface, the convection heat transfer coefficient, and the thermal 

conductivity of the fiber. 

9.12 Conclusion 

This chapter presented a rigorous mathematical model of an optical fiber thermometer 

system. This included a model of the temperature profile along the fiber, which accounted for 

conduction and radiation within the fiber as well as convection and radiation exchange with the 

surroundings. It was shown that as the fiber diameter decreases, a simplified model is as accurate 

as the full model. A forward problem was developed which relates the properties and 

temperature profile of the fiber to the spectral measurements of the radiant energy from the OFT 

made by a detection system. An inverse model was used to infer the unknown temperature and 
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properties of the OFT system from known spectral measurements. Numerical experiments were 

performed in which the OFT sensing tip temperature and properties were inferred from simulated 

measurements. The results of these experiments show that an inverse analysis can be used to 

accurately measure the temperature of an optical fiber thermometer if the fiber properties are 

known. 
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10 OPTICAL FIBER THERMOMETER: EXPERIMENTAL METHODS 

This chapter outlines the preliminary experimental methods required for the development 

of an optical fiber thermometer system. This includes a discussion of the materials used to coat 

the sensing tip of the fiber and the process by which the coating is applied. A calibration 

procedure is outlined in which a blackbody radiator is the source and an FTIR spectrometer is 

used to detect the radiant energy from the OFT. The inverse problem developed in Chapter 9 was 

used to determine the sensing tip temperature of the OFT in the blackbody radiator and to 

measure the temperature of the OFT heated by a heat gun, a candle flame, and a Bunsen burner 

flame. 

10.1 Introduction 

A number of optical fiber thermometer systems have been proposed and developed [9, 

66-68]. These have used a sapphire rod with a thin film of platinum or iridium sputtered on the 

end to form the sensing tip. Sputtering deposition is a process in which atoms are ejected from a 

target source material due to bombardment of the target by energetic particles onto a substrate 

material. In this case, the target is the platinum or iridium and the substrate is the sapphire rod. 

Sputtering can be expensive and the sputtering chambers are generally small and cannot 

accommodate long optical fibers. In addition to verifying the inverse analysis developed in 

Chapter 9, the primary purpose of the experiments performed in this research was to determine a 
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more cost effective and practical coating material and method of coating to create the sensing tip 

of the optical fiber thermometer. 

10.2 Optical Fiber 

 For the purposes of this research, standard silica fibers were used to test the coating 

materials and processes. The fibers used were purchased from FiberTech Optica. As shown in 

the schematic in Figure 10-1, the optical fibers used in this research consist of three layers: 1. a 

400 m diameter pure fused silica core, 2. a 440 m diameter fluorine doped fused silica 

cladding, and 3. a 470 m diameter coating made of either polyamide which can withstand 

temperatures up to 385ºC or Acrylate, which can withstand temperatures up to 85ºC. The fused 

silica core has a refractive index of 1.43 over the measurement band [104]. The numerical 

aperture of the fiber is 0.22, which results in an acceptance cone angle of 8.8º. The fibers are 

classified as having low OH content. 

 

 

Figure 10-1: Schematic of the layers of an optical fiber 
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10.3 Cavity 

 In order for the radiation emitted by a cavity at the end of the fiber to experience total 

internal reflection and travel along the fiber, the cavity must be adhered to the fiber core. 

Therefore, the coating and the cladding must be removed from the end of the fiber before the thin 

coating which forms the cavity is applied. As the length of the cavity increases, the emission 

from the cavity approaches that of a blackbody [2]. This is independent of the emittance of the 

inside surface of the cavity. In order for the effective emittance of the cavity to approach unity, 

the length of the cavity must be at least ten times the cavity diameter [2]. The cavity wall must be 

thick enough to be opaque to incident radiation, but thin enough to be isothermal and to reach a 

steady state temperature quickly. 

10.4 Coating Material 

 The ideal material used to form the sensing tip of an optical fiber thermometer has a high 

thermal conductivity, is opaque even when very thin, has a high melting temperature, is easily 

applied to the end of the fiber, and remains adhered to the fiber through many thermal cycles. 

Sauereisen Electrotemp Cement No. 8 [106] is a zircon based cement primarily used for 

electrical insulation where high thermal conductivities are desired. The thermal conductivity 

varies from 0.97 – 1.2 W/m·K. The cement cures by a chemical-set and is designed to withstand 

high temperatures and thermal shock. The maximum service temperature is 1426ºC. It is non-

corrosive and is compatible for applications with ceramics, glass, and most metals. In order to 

increase the opacity and the thermal conductivity of the cement, it is mixed with nickel oxide 

(NiO). The thermal conductivity of NiO at elevated temperatures varies from 3 – 10 W/m·K 

[107]. 
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10.5 Coating Process 

 Sauereisen No. 8 is supplied in powder form and can be mixed with nickel oxide powder.  

Water is mixed with the powder mixture which causes the cement to begin to set. Trial and error 

experimentation was performed to determine the proper amount of Sauereisen No. 8 powder, 

NiO powder, and water required to create a mixture that could successfully be applied as thin 

coatings to the ends of optical fibers.  Prior to mixing, both the Sauereisen No. 8 powder and the 

NiO powder are sifted through a sieve with 43.2 m openings to prevent clumping. One gram of 

the Sauereisen No. 8 powder is thoroughly mixed with 0.1 grams of the nickel oxide powder in a 

clean mixing container. Five drops of water are added to the powder and mixing is continued 

until a smooth, uniform consistency is obtained. The end of the fiber is inserted horizontally into 

the mixture and rotated and then pulled out. This process is repeated multiple times until there is 

a thin, even coating on the end of the fiber. Failure of the cement to adhere to the fiber indicates 

that setting has begun and the cement can no longer be used. 

10.6 Detection System 

 The optical fiber with a cavity at the sensing tip must be coupled with a detection system 

to measure the radiant energy from the fiber. In this work, the coated fiber was connected to a 

coupler/collimator by an SMA connector. The coupler/collimator collimates the radiative energy 

from the coated end of the fiber and directs it into an external port on an FTIR spectrometer. This 

optical path is shown in Figure 10-2. 
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Figure 10-2: Optical path used to direct radiant energy from fiber to detection system 

 

10.6.1 FTIR Spectrometer 

In the experimental research discussed in this chapter, a Fourier transform infrared 

(FTIR) spectrometer was used to detect the radiative energy from the OFT system. An FTIR 

spectrometer is an instrument which collects the entire radiant energy from a source [103]. A 

schematic of the components inside an FTIR spectrometer is shown in Figure 10-3. 

 

 

Figure 10-3: Basic components in an FTIR spectrometer 
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The energy from the radiation source enters the spectrometer through an external port and 

enters the interferometer. An interferometer consists of a beam splitter, a stationary mirror and a 

moving mirror. The incoming radiant energy is divided by the beam splitter. The intensity 

measured by the detector depends on the position of the moving mirror based on the constructive 

and destructive interference of the combined radiant energy returning from the mirrors [103]. 

The result is an interferogram, which represents the intensity of the recombined light as a 

function of the position of the moving mirror. The interferogram is the Fourier transform of the 

light intensity as a function of wavenumber. The FTIR spectrometer performs the required 

inverse Fourier transform calculations and provides a plot of the detector signal as a function of 

wavenumber. The spectral variable can be changed to frequency as required by the forward 

analysis in Section 9.2. 

There are two detectors in the FTIR spectrometer, the MCT detector and the DTGS 

detector. The mercury cadmium telluride (HgCdTe), or MCT [105], detector consists of a 

semiconductor made from an alloy of mercury, cadmium, and telluride. Photons are absorbed by 

the detector element resulting in electrons being promoted from the valence band to the 

conduction band. Electrons in the conduction band respond to an applied voltage, resulting in an 

electrical current. This current is directly proportional to the number of photons hitting the 

detector and is, therefore, a direct measure of the radiative intensity. One major drawback of the 

MCT detector is that heat given off by the detector element itself is detected, resulting in a large 

noise signal. Therefore, the element must be cooled with liquid nitrogen. The MCT detector used 

in this work has a spectral range from about 2×1013 Hz (15 m) to 2×1014 Hz (1.5 m). 

The other detector in the FTIR spectrometer is a deuterated triglycine sulfate, or DTGS 

[105], pyroelectric detector. Infrared radiation incident on the detector increases the detector 
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temperature which changes the dielectric constant of the deuterated triglycine sulfate. The 

change in capacitance with temperature is measured as a voltage across the detector element 

[108]. The DTGS detector has a greater spectral range than the MCT detector but is much less 

sensitive. 

10.6.2 Experimental Characterization of the Detector Response 

An experimental procedure was performed in order characterize the spectral response of 

both the DTGS and MCT detectors. A relationship between the spectral irradiation on the 

detector, 𝐺𝜈,𝐷, and the spectral signal output by the FTIR spectrometer, 𝑀𝜈, is desired.  

 𝐺𝜈,𝐷 = 𝑓(𝑀𝜈) (10-1) 

A blackbody radiator was placed in front of the external access port of the FTIR spectrometer so 

that the blackbody radiation entered the FTIR optical path as shown in Figure 10-4. A blackbody 

radiator was used because its temperature can be accurately controlled and its spectral emittance 

is known to nominally equal unity. 

 

 

Figure 10-4: Experimental setup used to characterize the response of the FTIR detectors 
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The spectral irradiation on the detector is given by 

 𝐺𝜈,𝐷 = 𝑃𝜈 ∫ 𝐼𝜈(𝑇𝑆) cos 𝜃𝐷 𝑑Ω
 

2𝜋

 (10-2) 

where 𝑇𝑆 is the temperature of the source, 𝜃𝐷 is the angle measured from the normal to the 

detector, and 𝑃𝜈 represents the spectral variation of the source intensity due to the optical path 

inside of the FTIR spectrometer. The spectral radiative intensity incident on the detector can be 

modeled according to the following equation. 

 𝐼𝜈(𝑇𝑆) = {
𝐼𝑏,𝜈(𝑇𝐵)     if   ∆Ω = ∆Ω𝐷→𝐵

      0           if   ∆Ω ≠ ∆Ω𝐷→𝐵
 (10-3) 

Equation (10-3) states that the radiative intensity incident on the detector is equal to the 

blackbody radiative intensity at the temperature of the blackbody radiator, 𝑇𝐵, over the solid 

angle with which the radiator is seen from the detector, ∆Ω𝐷→𝐵. It is assumed that outside of this 

solid angle, there are no other sources of radiation incident on the detector. Therefore, Equation 

(10-2) reduces to 

 𝐺𝜈,𝐷 = 𝑃𝜈 ∫ 𝐼𝑏,𝜈(𝑇𝐵) cos 𝜃𝐷 𝑑Ω
 

∆Ω𝐷→𝐵

 (10-4) 

If the solid angle of the blackbody radiator seen by the detector is small, then the spectral 

irradiation incident on the detector can be approximated as 

 𝐺𝜈,𝐷 ≈ 𝑃𝜈𝐼𝑏,𝜈(𝑇𝐵)∆Ω𝐷→𝐵 (10-5) 

Spectra were collected using both DTGS and MCT detectors over a wide range of 

blackbody temperatures (from 300ºC to 1100ºC). For a given frequency, the spectral intensity of 

the blackbody source, 𝐼𝑏,𝜈, which can be calculated using the Planck function for the specified 

blackbody temperature, can be plotted as a function of the FTIR signal, 𝑀𝜈. A curve fit to the 
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data provides a relationship between 𝐼𝑏,𝜈 and 𝑀𝜈 for a given frequency. Figure 10-5 shows the 

data and the corresponding curves for five different frequencies for the DTGS detector. 

 

 

Figure 10-5: Spectral blackbody emissive power at various temperatures as a function of the FTIR signal 

from the DTGS detector for five different frequencies 

 

Based on the curves fit to the data shown in Figure 10-5, the response of the DTGS 

detector can be approximated as linear. This is consistent with the results of experiments found 

in the literature [109-111]. Therefore, the relationship between the spectral irradiation on the 

DTGS detector, 𝐺𝜈,𝐷, and the spectral signal output by the FTIR spectrometer, 𝑀𝜈, from 

Equation (10-1) can be written as 

 𝐺𝜈,𝐷 = 𝐶𝜈,1𝑀𝜈 + 𝐶𝜈,2 (10-6) 
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In the above equation, 𝐶𝜈,1 and 𝐶𝜈,2 are functions of the detector. Substituting Equation (10-5) 

into Equation (10-6) gives the relationship between the spectral blackbody intensity and the 

spectral FTIR signal, 

 𝐼𝑏,𝜈 = (
𝐶𝜈,1

𝑃𝜈∆Ω𝐷→𝐵
) 𝑀𝜈 +

𝐶𝜈,2

𝑃𝜈∆Ω𝐷→𝐵
= 𝐴𝜈𝑀𝜈 + 𝐵𝜈 (10-7) 

where 

 𝐴𝜈 =
𝐶𝜈,1

𝑃𝜈∆Ω𝐷→𝐵
 (10-8) 

 𝐵𝜈 =
𝐶𝜈,2

𝑃𝜈∆Ω𝐷→𝐵
 (10-9) 

In Equation (10-7), 𝐴𝜈 is the slope of the line for a given frequency in Figure 10-5 and 𝐵𝜈 is the 

offset from the origin. The offset term includes the radiation emitted by the collecting optical 

system and by the detector itself [109-111]. Equation (10-7) is the instrument response function 

for the experimental setup shown in Figure 10-4 for the DTGS detector. Calibration consists of 

determining 𝐴𝜈 and 𝐵𝜈 for each frequency. To test the instrument response function, Equation 

(10-7) was used to calculate the blackbody spectral intensity based on the spectral FTIR signal 

collected from the blackbody radiator at a temperature that was not used in the determination of 

𝐴𝜈 and 𝐵𝜈. Figure 10-6 shows a comparison of the spectral intensity calculated using Equation 

(10-7) from an FTIR signal using the DTGS detector collected from the blackbody radiator at 

969°C to that calculated from the Planck function at 969°C. To illustrate the importance of the 

offset term in the instrument response function, Figure 10-6 also shows the spectral intensity 

calculated from Equation (10-7) without the 𝐵𝜈 term. Figure 10-7 shows the spectral intensity of 

the blackbody source, 𝐼𝑏,𝜈, as a function of the FTIR signal, 𝑀𝜈, using the MCT detector for four 

frequencies. The curves fit to the data are also shown. 
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Figure 10-6: Comparison of the blackbody spectral intensity at 969°C calculated from the instrument 

response function of the DTGS detector to that calculated from the Planck function 

 

 

Figure 10-7: Spectral blackbody emissive power at various temperatures as a function of the FTIR signal 

from the MCT detector for four different frequencies 
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Unlike the response of the DTGS detector, the MCT detector cannot be approximated as 

linear [112-114]. As shown in Figure 10-7, a second order polynomial is a good fit to the data 

[112, 115]. Therefore, the relationship between the FTIR signal and the irradiation on the MCT 

detector from Equation (10-1) can be written as 

 𝐺𝜈,𝐷 = 𝐶𝜈,3𝑀𝜈
2 + 𝐶𝜈,4𝑀𝜈 + 𝐶𝜈,5 (10-10) 

where 𝐶𝜈,3, 𝐶𝜈,4, and 𝐶𝜈,5 are functions of the detector. Substituting Equation (10-5) into 

Equation (10-10) gives the relationship between the spectral blackbody intensity and the spectral 

FTIR signal, 

 𝐼𝑏,𝜈 = (
𝐶𝜈,3

𝑃𝜈∆Ω𝐷→𝐵
) 𝑀𝜈

2 + (
𝐶𝜈,4

𝑃𝜈∆Ω𝐷→𝐵
) 𝑀𝜈 +

𝐶𝜈,5

𝑃𝜈∆Ω𝐷→𝐵
= 𝐶𝜈𝑀𝜈

2 + 𝐷𝜈𝑀𝜈 + 𝐸𝜈 (10-11) 

where 

 𝐶𝜈 =
𝐶𝜈,3

𝑃𝜈∆Ω𝐷→𝐵
 (10-12) 

 𝐷𝜈 =
𝐶𝜈,4

𝑃𝜈∆Ω𝐷→𝐵
 (10-13) 

 𝐸𝜈 =
𝐶𝜈,5

𝑃𝜈∆Ω𝐷→𝐵
 (10-14) 

In Equation (10-11), 𝐶𝜈, 𝐷𝜈, and 𝐸𝜈 are the spectrally dependent coefficients of the second order 

polynomial curves in Figure 10-7 for a given frequency. Equation (10-11) is the instrument 

response function for the experimental setup shown in Figure 10-4 for the MCT detector. In 

order to assess the accuracy of the instrument response function shown in Equation (10-11), it 

was used to calculate the blackbody spectral intensity based on the spectral FTIR signal collected 

from the blackbody radiator at a temperature that was not used in the determination of 𝐶𝜈, 𝐷𝜈, 

and 𝐸𝜈. Figure 10-8 compares the blackbody spectral intensity calculated using Equation (10-11) 

from the FTIR signal using the MCT detector collected from the blackbody radiator at 353°C to 
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that calculated from the Planck function at 353°C. Figure 10-8 also shows the blackbody spectral 

intensity calculated if the MCT detector response was approximated as linear. 

 

 

Figure 10-8: Comparison of the blackbody spectral intensity at 353°C calculated from the instrument 

response function of the MCT detector to that calculated from the Planck function 

 

10.7 Verification of Cavity Formation 

To determine if the coating process described in Section 10.5 above successfully formed 

an opaque cavity that emits like a blackbody at the end of the fiber, various tests were performed. 

Figure 10-9 shows a picture of the cavity taken with a microscope. Based on visual inspection, 

the cavity appears to fully cover the end of the fiber. The length of the cavity is at least ten times 



146 

the diameter of the fiber core as required for the effective emittance of the cavity to approach 

unity [2]. 

 

 

Figure 10-9: Magnified photo of the sensing tip of an optical fiber thermometer 

 

To test if the coating is opaque to incident radiation, spectra from the FTIR spectrometer 

were collected when the coated end of the fiber was placed inside the cavity of a blackbody 

radiator and when it was placed in front of the blackbody. When inside the radiator, the 

temperature of the coating will increase and the OFT cavity will emit radiation down the fiber to 

the detector. When the cavity on the end of the fiber is placed in front of the blackbody radiator, 

it is irradiated by the blackbody radiation and, if the cavity is opaque, this radiation will not enter 

the optical fiber. In Figure 10-10, the spectral signal from the FTIR spectrometer collected when 

the coated end of the fiber was placed inside the cavity of a blackbody radiator at 975ºC is 

compared to a spectrum collected when the coated end of the fiber was placed in front of the 

opening of the blackbody radiator at the same temperature. The low signal seen in Figure 10-10 
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for the case where the fiber is placed in front of the blackbody can be attributed to the heating of 

the cavity due to the irradiation from the radiator. When there is no cavity on the end of the fiber, 

the spectral signal is essentially the same when the end of the fiber is inside or in front of the 

blackbody radiator. The opacity of the coating to visible radiation was tested by shining a laser 

through the fiber. The laser could not be seen through the coating. 

 

 

Figure 10-10: Spectral signals from coated and bare fibers inside and in front a blackbody radiator at 975ºC. 

 

10.8 OFT Calibration 

 The forward problem that provides the desired relationship between the cavity 

temperature and the spectral signal from the detection system was found in Section 9.2. It is 

repeated below for convenience. A calibration procedure is required to determine the instrument 
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response function, 𝐼𝑅𝐹𝜈, which describes the spectral response of the detection system to the 

irradiation from the optical fiber thermometer system. This section describes the detection 

system and the method used to determine the instrument response function. 

 𝑀𝜈 = 𝐼𝑅𝐹𝜈 [∫ (𝜀𝐶𝐼𝑏,𝜈(𝑇𝐶)𝑒−𝜅𝜈𝐿 𝜇⁄ +
𝜅𝜈

𝜇
∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝐿−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

) 𝑑𝜇
1

𝜇𝑖

] (10-15) 

10.8.1 Spectral Absorption Coefficient of the Fiber 

Equation (10-15) requires knowledge of the spectral absorption coefficient of the optical 

fiber. An experiment was performed to measure the spectral absorption coefficient of the silica 

fibers used in the OFT. The experimental setup is shown in Figure 10-11. Radiative energy from 

a blackbody calibration source was directed into an optical fiber through a reflective collimator. 

The collimator consists of a 90º off-axis parabolic mirror with a protected silver coating which 

collects collimated radiant energy and directs it into the end of the optical fiber. The average 

reflectance of the mirror is greater than 96% between the wavelengths 0.45 and 20 m. The fiber 

connects to the collimator by as SMA connector. The other end of the optical fiber was 

connected by an SMA connector to another reflective collimator, which collimated the radiation 

from the fiber and directed it into the external access port of the FTIR spectrometer. 

 

 

Figure 10-11: Experimental setup used to determine the spectral absorption coefficient of the silica optical 

fiber 



149 

Based on the detector characterization discussed in Section 10.6.2, the instrument response 

function for the DTGS detector is given by 

 𝐺𝜈,𝐷 = 𝐶𝜈,1𝑀𝜈 + 𝐶𝜈,2 (10-16) 

where 𝐺𝜈,𝐷 is the spectral irradiation incident on the detector.  The detector irradiation can be 

found from the forward analysis performed in Section 9.2. The difference here is that the 

boundary condition at 𝑧 = 0 is the spectral intensity from the blackbody radiator instead of from 

the sensing tip cavity. Therefore, the irradiation on the detector reduces to 

𝐺𝜈,𝐷 = 𝑃𝜈𝜏𝜈,𝐿 [∫ (𝐼𝑏,𝜈(𝑇𝐵)𝑒−𝜅𝜈𝐿 𝜇⁄ +
𝜅𝜈

𝜇
∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝐿−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

) 𝑑𝜇
1

𝜇𝑖

] ∆Ω𝐷−𝐹 (10-17) 

where 𝑇𝐵 is the temperature of the blackbody radiator and 𝑃𝜈 represents the spectral variation due 

to the optical path. This path includes the coupler/collimators as well as all of the components 

inside of the FTIR spectrometer. The entire fiber is at room temperature, 𝑇∞, so Equation (10-17) 

can be reduced to 

 𝐺𝜈,𝐷 = 𝑃𝜈𝜏𝜈,𝐿 [∫ (𝐼𝑏,𝜈(𝑇𝐵)𝑒−𝜅𝜈𝐿 𝜇⁄ + 𝐼𝑏,𝜈(𝑇∞)(1 − 𝑒−𝜅𝜈𝐿 𝜇⁄ )) 𝑑𝜇
1

𝜇𝑖

] ∆Ω𝐷−𝐹 (10-18) 

Substituting Equation (10-18) into Equation (10-16) provides the following relationship between 

the spectral blackbody intensity 𝐼𝑏,𝜈(𝑇𝐵) and the spectral FTIR measurements 𝑀𝜈. 

 ∫ (𝐼𝑏,𝜈(𝑇𝐵)𝑒−𝜅𝜈𝐿 𝜇⁄ + 𝐼𝑏,𝜈(𝑇∞)(1 − 𝑒−𝜅𝜈𝐿 𝜇⁄ )) 𝑑𝜇
1

𝜇𝑖

= 𝑋𝜈𝑀𝜈 + 𝑌𝜈 (10-19) 

Note that 𝑃𝜈, 𝜏𝜈,𝐿, and ∆Ω𝐷−𝐹 have been incorporated into the instrument response function to 

form the new spectrally and path dependent terms 𝑋𝜈 and 𝑌𝜈. Equation (10-19) can be rearranged 

as 

𝐼𝑏,𝜈(𝑇𝐵) =
𝑋𝜈

∫ 𝑒−𝜅𝜈𝐿 𝜇⁄ 𝑑𝜇
1

𝜇𝑖

𝑀𝜈 +
𝑌𝜈

∫ 𝑒−𝜅𝜈𝐿 𝜇⁄ 𝑑𝜇
1

𝜇𝑖

−
𝐼𝑏,𝜈(𝑇∞)

∫ 𝑒−𝜅𝜈𝐿 𝜇⁄ 𝑑𝜇
1

𝜇𝑖

∫ (1 − 𝑒−𝜅𝜈𝐿 𝜇⁄ )𝑑𝜇
1

𝜇𝑖

 (10-20) 
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This equation can be simplified to 

 𝐼𝑏,𝜈(𝑇𝐵) = (
𝑋𝜈

∫ 𝑒−𝜅𝜈𝐿 𝜇⁄ 𝑑𝜇
1

𝜇𝑖

) 𝑀𝜈 + 𝑍𝜈 (10-21) 

where 

 𝑍𝜈 =
𝑌𝜈

∫ 𝑒−𝜅𝜈𝐿 𝜇⁄ 𝑑𝜇
1

𝜇𝑖

−
𝐼𝑏,𝜈(𝑇∞)

∫ 𝑒−𝜅𝜈𝐿 𝜇⁄ 𝑑𝜇
1

𝜇𝑖

∫ (1 − 𝑒−𝜅𝜈𝐿 𝜇⁄ )𝑑𝜇
1

𝜇𝑖

 (10-22) 

is an offset term which varies with frequency and with the length of the fiber. The spectral 

absorption coefficient can be determined by taking spectral measurements through two different 

lengths of optical fibers at different temperatures of the blackbody radiator. For each fiber, lines 

are fit through the blackbody emissive power and FTIR measurement data to determine 

𝑋𝜈 ∫ 𝑒−𝜅𝜈𝐿 𝜇⁄ 𝑑𝜇
1

𝜇𝑖
⁄  and 𝑍𝜈. At a given frequency, the ratio of the slopes of the lines for the 

different lengths of fibers is 

 𝑅𝜈 =

𝑋𝜈

∫ 𝑒−𝜅𝜈𝐿1 𝜇⁄ 𝑑𝜇
1

𝜇𝑖

𝑋𝜈

∫ 𝑒−𝜅𝜈𝐿2 𝜇⁄ 𝑑𝜇
1

𝜇𝑖

=
∫ 𝑒−𝜅𝜈𝐿2 𝜇⁄ 𝑑𝜇

1

𝜇𝑖

∫ 𝑒−𝜅𝜈𝐿1 𝜇⁄ 𝑑𝜇
1

𝜇𝑖

 (10-23) 

If both fibers have the same spectral absorption coefficient, then Equation (10-23) can be 

solved to find the absorption coefficient. Optical fibers of lengths 0.5, 1, 1.5, and 2 meters were 

used in the experimental setup shown in Figure 10-11 to determine the spectral absorption 

coefficient of the fibers. Spectral signals were collected through each of these fibers at six 

blackbody temperatures ranging from 500ºC to 1200ºC using the DTGS detector. Each of these 

spectra represents an average of 32 scans taken by the FTIR spectrometer at a resolution of 32 

cm-1. In order to account for variability in the experiments, at each blackbody temperature each 

of the fibers was secured between the two reflective collimators and measurements made five 
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separate times. The average of these five signals at each temperature was used to create the 

instrument response function for each fiber length. Figure 10-12 shows the average FTIR signals 

collected from each of the four fibers at a blackbody radiator temperature of 1144 ºC. As the 

fiber length increases, the signal strength decreases due to absorption within the fiber. 

 

 

Figure 10-12: Spectral signals from blackbody radiator at 1144 ºC through different fiber lengths 

 

An instrument response function was calculated for each of the fibers by fitting linear 

curves to the spectral blackbody intensity as a function of the average FTIR measurement data. 

The Solver function in Microsoft Excel was used to find the spectral absorption coefficient of the 

optical fibers by minimizing the Euclidean norm of the difference between the ratio of slopes 
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calculated from Equation (10-23) and those found from the curve fits. The absorption coefficient 

was calculated using the ratios of the slopes from all combinations of the different fiber lengths. 

Figure 10-13 shows the average absorption coefficient of the fused silica optical fibers. Error 

bars indicate one standard deviation from the average. The spectral measurements were made 

between 1.2×1014 Hz (2.5 m), which is the lower limit of the transmission range of the fibers, 

and 2×1014 Hz (1.5 m), which is the upper limit of the detector range. Figure 10-13 also shows 

spectral absorption coefficient measurements of low OH fused silica made by Izawa [116, 117], 

which compare favorably with those made in this work. The measurements made in this work are 

also consistent with the measured value of 0.0018 m-1 at 2.83×1014 Hz (1.06 m) made by 

Yoshida et al [118] and the reported value of 0.001 m-1 at 3×1014 Hz (1 m) [119]. 

For reference, Figure 10-13 also shows measured values of the spectral absorption 

coefficient of K1 silica glass at 1400ºC [99], quartz at 700ºC [100], and fused quartz at 500ºC 

[120] as reported in the literature. The absorption coefficient of the low OH fused silica fibers 

measured here follows the same trends as that of the quartz and fused quartz but is significantly 

lower. This is most likely due to the water content in the glass. Moister present in the 

manufacturing process results in hydroxyl groups chemically bonded to the silica network 

(SiOH), which increase the transmission loss in the fibers [121]. Additionally, as shown by 

research performed on fused quartz, the spectral absorption coefficient of glasses increases with 

increasing temperature [120, 122]. 
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Figure 10-13: Experimental value of the spectral absorption coefficient of fused silica optical fibers compared 

to reported measured values of silica glass 

 

10.8.2 Instrument Response Function for the OFT 

An instrument response function similar to that given in Equation (10-11) is required to 

calibrate the optical fiber thermometer system. Because of the small size of the optical fiber, the 

radiative intensity from the optical fiber thermometer to the FTIR spectrometer detector is 

relatively weak. Therefore, the MCT detector was used because it is much more sensitive to 
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incident radiation than the DTGS detector. From Equation (9-8), the spectral irradiation on the 

detector is given by 

𝐺𝜈,𝐷 = 𝑃𝜈𝜏𝜈,𝐿∆Ω𝐷−𝐹 ∫ (𝜀𝐶𝐼𝑏,𝜈(𝑇𝐶)𝑒−𝜅𝜈𝐿 𝜇⁄ +
𝜅𝜈

𝜇
∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝐿−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

) 𝑑𝜇
1

𝜇𝑖

 (10-24) 

From Equation (10-10), the relationship between the irradiation on the detector and the output 

signal is 

 𝐺𝜈,𝐷 = 𝐶𝜈,3𝑀𝜈
2 + 𝐶𝜈,4𝑀𝜈 + 𝐶𝜈,5 (10-25) 

Substituting Equation (10-24) into Equation (10-25) and simplifying yields 

∫ (𝜀𝐶𝐼𝑏,𝜈(𝑇𝐶)𝑒−𝜅𝜈𝐿 𝜇⁄ +
𝜅𝜈

𝜇
∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝐿−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

) 𝑑𝜇
1

𝜇𝑖

= 𝑄𝜈𝑀𝜈
2 + 𝑅𝜈𝑀𝜈 + 𝑆𝜈 (10-26) 

where 𝑃𝜈, 𝜏𝜈,𝐿, and ∆Ω𝐷−𝐹 have been combined with the detector spectral response coefficients, 

𝐶𝜈,3, 𝐶𝜈,4, and 𝐶𝜈,5 to form the new coefficients 𝑄𝜈, 𝑅𝜈, and 𝑆𝜈. These constants can be 

determined for the optical fiber thermometer using the experimental setup shown in Figure 

10-14. 

 

 

Figure 10-14: Experimental setup used to calibrate the optical fiber thermometer 
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The sensing tip of the OFT is placed into the cavity of a blackbody radiator. A 

thermocouple is also placed in the blackbody radiator close to the sensing tip of the OFT. The 

thermocouple is coated in the Sauereisen #8 cement so that it has the same emittance as the OFT 

sensing tip. The blackbody radiator is set to a wide range of temperatures and spectra are 

collected using the MCT detector in the FITR spectrometer. It is assumed that the OFT sensing 

tip and the thermocouple are at the same temperature. The left side of Equation (10-26) can be 

calculated for each cavity temperature and a second-order polynomial curve can be fit to this 

data as a function of the FTIR measurements for each frequency. The coefficients of the 

polynomial are the calibration constants 𝑄𝜈, 𝑅𝜈, and 𝑆𝜈 in Equation (10-26). 

10.8.3 Measuring Temperature using the OFT 

Once the instrument response function is calculated according to the procedure described 

above, the inverse problem described in Section 9.8 can be used to determine the temperature of 

the cavity from any given spectral signal. The Solver function in Microsoft Excel is used to 

minimize the Euclidean norm of the difference between the measured FTIR signal and that 

calculated from the forward problem. From Equation (10-26), the forward problem can be solved 

for the spectral measurements using the quadratic equation. 

𝑀𝜈 = −
𝑅𝜈

2𝑄𝜈

+
1

2𝑄𝜈

(𝑅𝜈
2 − 4𝑄𝜈 (𝑆𝜈 − ∫ (𝜀𝐶𝐼𝑏,𝜈(𝑇𝐶)𝑒−𝜅𝜈𝐿 𝜇⁄ +

𝜅𝜈

𝜇
∫ 𝐼𝑏,𝜈(𝑇(𝑧′))𝑒−𝜅𝜈(𝐿−𝑧′) 𝜇⁄ 𝑑𝑧′

𝐿

0

) 𝑑𝜇
1

𝜇𝑖

))

1
2

 (10-27) 

10.9 Experiments 

 Experiments were performed to assess the effectiveness of the optical fiber thermometer. 

A high temperature optical fiber of length 1.9 meters was connected by an FC connector to a low 

temperature fiber of length 1 meter. The high and low temperature optical fibers differ only in 
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the coating material. The coating and cladding were removed from the end of the high 

temperature fiber and a Sauereisen #8 coating was placed on the fiber core to form the cavity 

according to the procedure described in Section 10.5. The end of the low-temperature fiber was 

connected by an SMA connector to the coupler/collimator, which directs the radiant energy from 

the fiber into the FTIR spectrometer. 

 The Sauereisen OFT sensing tip and a coated thermocouple were placed inside the cavity 

of the blackbody radiator as shown in Figure 10-14. In order to determine the instrument 

response function, the blackbody radiator was heated to five different temperatures between 

300ºC and 1100ºC. On average, the thermocouple measured about 30ºC cooler than the 

blackbody radiator cavity. Figure 10-15 shows an example of the spectral signals from the FTIR 

at different blackbody temperatures during the calibration process. A program written in Matlab 

was used to determine the calibration constants 𝑄𝜈, 𝑅𝜈, and 𝑆𝜈 in Equation (10-26) according to 

the procedure outlined in the previous section. The Matlab code can be found in Appendix A.8. 

 In order to calculate the left side of Equation (10-26) in determining the calibration 

constants, the absorption coefficient of the fiber and the temperature profile along the fiber are 

required. The spectral absorption coefficient of the fiber was measured in Section 10.8.1 and a 

value of  𝜅𝜈 = 0.01 m−1 was used. It was assumed that the spectral absorption coefficient was 

constant over the measurement band. The temperature profile along the fiber was calculated from 

the linearized model given in Equation (9-80). This model requires values for the cavity 

temperature, the emittance of the fiber, the average convection coefficient along the fiber, and 

the thermal conductivity of the fiber. The Planck function, which requires knowledge of the 

refractive index of the fiber, was used to calculate the spectral intensity required in the left side 

of Equation (10-26). Measured values from the literature were used for the thermal conductivity 
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and refractive index of the silica fiber.  A thermal conductivity of 2 W/m·K was assumed for the 

fiber [123-126]. The refractive index of the fiber was assumed to be 1.43 [104, 127-128]. The 

sensitivity analysis performed in Section 9.7 revealed that the values of the fiber emittance and 

the average convection coefficient along the optical fiber had little to no impact on the 

temperature profile of the fiber. A value of 0.5 was used for the fiber emittance and a typical low 

value for free convection of 2 W/m2·K was used for the average convection coefficient along the 

fiber length [12]. 

 

 

Figure 10-15: Spectral signals from the OFT at different temperatures 

 

 Spectral measurements were made at six frequencies within the measurement band 

specified in Section 9.7: 1.33×1014 Hz (2.25 m), 1.36×1014 Hz (2.2 m), 1.39×1014 Hz (2.15 

m), 1.43×1014 Hz (2.1 m), 1.46×1014 Hz (2.05 m), and 1.5×1014 Hz (2 m). This 
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measurement band was used because the spectral properties are relatively constant and the 

sensitivity is high. After the spectral calibration constants 𝑄𝜈, 𝑅𝜈, and 𝑆𝜈 were determined by 

fitting the calculated values of the left side of Equation (10-26) to the FTIR signal for each 

frequency, the OFT and coated thermocouple were placed back into the blackbody radiator and 

spectra were collected at various blackbody temperatures over a wide temperature range. 

Optimization methods were used to determine the OFT sensing tip temperature based on the 

measured spectral signal by solving the inverse problem outlined in Section 9.8. The Solver 

function in Microsoft Excel was used to minimize the difference between the spectral 

measurements taken by the FTIR and those calculated from Equation (10-27) by adjusting the 

value of the OFT sensing tip temperature, 𝑇𝐶. To assess the accuracy of the OFT, the temperature 

calculated from the inverse problem was compared to the temperature measured by the coated 

thermocouple. The average difference between the thermocouple temperature and the OFT 

temperature was 5ºC. The maximum difference was 10ºC. 

 To further test the accuracy of the optical fiber thermometer outside of the controlled 

environment of the blackbody cavity, both the OFT sensing tip and the coated thermocouple 

were heated with a heat gun and placed in a candle flame and a Bunsen burner flame. Spectra 

were collected from the OFT and time-dependent thermocouple measurements were recorded 

simultaneously. The OFT sensing tip temperature was inferred from the spectral measurements 

using the inverse problem and compared to the thermocouple measurements. It is difficult to 

compare the OFT and thermocouple measurements because of the significant variation of 

temperature with position in front of the heat gun and in the candle and Bunsen burner flames. 

Very small changes in the position of the OFT sensing tip resulted in significant changes in the 

FTIR signal strength, indicating large spatial temperature variations. The fact that the 
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thermocouple was close to, but not at, the same position as the OFT sensing tip most likely 

resulted in the two being at different temperatures. Furthermore, there were large variations in 

the temperature over time while spectra were being collected in the candle and Bunsen burner, 

due to the unsteady nature of the flames. This, along with the fact that the temporal response of 

the OFT is different than that of the thermocouple, make it difficult to compare their measured 

temperatures. Figure 10-16 shows some examples of the time-dependent temperature of the 

thermocouple temperature measurement in the candle flame. The temperatures shown in the 

legend are the corresponding temperatures calculated from the OFT. Figure 10-17 shows similar 

examples from the Bunsen burner flame. The average difference between the time-averaged 

thermocouple measurement and the OFT temperature measurement being heated by the heat gun 

was 30ºC. The average temperature difference in the candle flame was 46ºC and the average 

temperature difference in the Bunsen burner flame was 31ºC. 

 

 

Figure 10-16: Time-dependent thermocouple measurements in candle flame 
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Figure 10-17: Time-dependent thermocouple measurements in Bunsen burner flame 

 

 The results of the sensitivity analysis performed in Section 9.7 were confirmed by 

assuming different values of the fiber emittance and the average convection coefficient along the 

fiber. Changes in these parameters had no impact on the results of the inverse analysis. 

Assuming different values for the spectral absorption coefficient of the fiber below 𝜅𝜈 = 5 m−1  

had no effect on the OFT temperature inferred from the inverse problem. As the absorption 

coefficient was increased above 𝜅𝜈 = 5 m−1, there began to be significant error in the inferred 

OFT temperature. This is far out of the range of any variability in the absorption coefficient 

measurements made in Section 10.8.1. 
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10.10 Conclusion and Future Work 

 The purpose of the experiments described in this chapter was to demonstrate the 

feasibility of a relatively inexpensive optical fiber thermometer system and to test the theoretical 

analysis and inverse problem developed in Chapter 9. The results of the experiments have shown 

that an optical fiber thermometer can be made from a standard inexpensive silica optical fiber 

coated on the end with a high-temperature cement. This is significantly simpler and cheaper than 

the large diameter sapphire fibers with a sputtered metallic sensing tip that have been used in 

previous OFT research. The analytical model developed in Chapter 9 was verified in this chapter 

and the inverse analysis was successfully applied to determine the temperature OFT. 

 While the basic OFT concept has been proven, more research and development of the 

system described in this chapter is required to make a sturdy, reliable optical fiber thermometer 

capable of making accurate temperature measurements in various high-temperature 

environments. The maximum service temperature of the Sauereisen Electrotemp Cement No. 8 

as a cement is 1426ºC. It is not known if the Sauereisen sensing tip would remain a viable 

coating material for the OFT tip above this temperature. Measuring temperatures above this may 

require a material with a higher service temperature. The primary difficulty associated with the 

OFT developed in this research is the brittle nature of the core of the optical fiber. The coating 

must be applied directly to the core of the optical fiber in order for the radiant energy from the 

cavity to experience total internal reflection and be transmitted along the fiber. This requires that 

the fiber coating and cladding at the tip be removed before the cavity is applied. The fiber core is 

very brittle and becomes even more brittle and susceptible to breaking after being heated. This 

issue must be addressed if the OFT is to be used in a harsh environment such as that found in an 

oxy-coal combustion environment. 
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 During the calibration procedure, it was assumed that the OFT sensing tip was at the 

same temperature as the coated thermocouple. However, this may not be an accurate assumption 

due to the geometry differences between the sensing tip and thermocouple that will affect the 

convection and radiation heat exchange with the surroundings. Therefore, a more accurate 

method of calibrating the OFT in which the temperature of the sensing tip is precisely 

controllable and more accurately known is desired. Finally, using an FTIR spectrometer as a 

detection device is obviously not ideal because of the high cost and large size. It was used in this 

research because of the large spectral band over which radiant energy can be collected. A 

smaller, simpler detection system which collects radiant energy only over the small measurement 

band would be ideal. 
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11 SUMMARY AND CONTRIBUTIONS 

This work has described the application of the method of variation of parameters to 

various direct and inverse nonlinear, multimode heat transfer problems. The method of variation 

of parameters has not previously been used in the evaluation of nonlinear heat transfer 

applications. This work provides a significant contribution because the methods presented here 

can provide exact solutions to the overall energy equation for many applications for which only 

approximate solutions have previously been calculated. Additionally, the methods described in 

this work are generally less complex and relatively easy to implement compared to other 

analytical and approximate approaches. 

The method of variation of parameters was used to solve the overall energy equation in 

order to determine the temperature profile in six nonlinear, multimode heat transfer applications: 

1. a radiating annular fin, 2. convective and radiative exchange between the surface of a 

continuously moving strip and its surroundings, 3. convection from a fin with temperature-

dependent thermal conductivity and variable cross-sectional area, 4. combined conduction and 

radiation in a non-gray, plane-parallel medium surrounded by non-gray opaque boundaries, 5. 

combined conduction and radiation in a ceramic thermal barrier coating, and 6. combined 

conduction and radiation in an optical fiber with convective and radiative exchange with the 

surroundings. The temperature profiles calculated in these applications using variation of 

parameters were compared to those computed using other numerical and analytical methods. 
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The solution to the thermal barrier coating application was used in conjunction with 

inverse methods to develop a non-contact technique for measuring the properties and 

temperatures within the thermal barrier coating from measurements of the radiative intensity 

exiting the coating surface. Numerical experiments were performed to assess the effectiveness of 

this measurement technique. The method could accurately predict the substrate temperature of 

the thermal barrier coating. 

The solution to the optical fiber application was used with inverse methods to develop an 

optical fiber thermometer capable of making accurate temperature measurements in high 

temperature environments by measuring the radiative energy from a sensing tip that is 

transmitted along the fiber. Numerical experiments were conducted to assess the effectiveness of 

the optical fiber thermometer system. Experimental procedures were presented in which the 

optical fiber thermometer analysis was verified by accurately inferring the sensing tip 

temperature in various heat sources. 
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APPENDIX A. SOURCE CODE 

This Appendix contains all of the MATLAB code used in this research. 

A.1   Variation of Parameters Example Problem, Section 3.2 

Source code file:  VOP_example.m 

 

User inputs:   system parameters 

 

Source code: 

 
clear all; 
format('longg'); 

  
%This program solves the differential equation solves y'' = y + x 
%using variation of parameters 

  
%Travis J. Moore, Brigham Young University, 2013 

  
%user inputs 
x1 = 2;                 %domain start 
x2 = 6;                 %domain end 
y1 = 6;                 %boundary condition at x = x1 
y2 = 1;                 %boundary condition at x = x2 
N = 100;                %number of points in x vector 
relax = 0.01;           %under-relaxation factor 

 
dx = (x2-x1)/(N-1);     %length of x divisions 

compare = 1;            %initialize compare 

  
%create x vector 
for i = 1 : N 
    x(i,1) = x1 + (i-1)*dx; 
end 

  
%initial guess is a line from (x1,y1) to (x2,y2) 
y_guess = ((y2-y1)/(x2-x1))*x - ((y2-y1)/(x2-x1))*x1 + y1; 

  
%calculate y_vector staring with y_guess 
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while compare > 0.0000001 

     
    %numerical integration 
    for i = 1 : N 
        num_int1(i) = y_guess(i,1)*dx; 
        num_int2(i) = x(i,1)*y_guess(i,1)*dx; 
    end 

     
    A = (1/(x2-x1))*(y2-y1-(1/6)*(x2^3)+(1/2)*(x1^2)*x2-(1/3)*(x1^3)-... 
        x2*sum(num_int1)+sum(num_int2)); 
    B = y1-A*x1; 

     
    %calculate higher order terms 
    for i = 1 : N 
        y_new(i,1) = A*x(i,1) + B + (1/6)*x(i,1)^3 -(x1^2)*((1/2)*x(i,1)-... 
            (1/3)*x1) + x(i,1)*sum(num_int1(1:i)) - sum(num_int2(1:i)); 
    end 

  
    %compare ynew and yold 
    compare = norm(y_new - y_guess); 
    disp(compare); 

  
    y_guess = y_guess + relax*(y_new - y_guess); 
end 

  
y_final(:,1) = y_guess; 

  
%Solution by traditional methods 

  
%coefficients 
A_actual = (1/(cosh(x2)-coth(x1)*sinh(x2)))*... 
    (y2+x2-(y1 + x1)*sinh(x2)/sinh(x1)); 
B_actual = ((y1 + x1)/sinh(x1)) - A_actual*coth(x1); 

  
for i = 1 : N 
    y_actual(i,1) = A_actual*cosh(x(i,1))+B_actual*sinh(x(i,1))-x(i,1); 
end 

  
plot(x,y_actual,x,y_final); 

 

A.2   Flux Gauge Problem, Section 4.1 

Source code file:  heat_flux_gauge.m 

 

User inputs:   system parameters 

 

Source code: 
 

clear all; 
format('longg'); 
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%This program calculates the temperature profile in a circular foil heat 
%flux gauge 

  
%Travis J. Moore, Brigham Young University, 2014 

  
%user inputs 
T0 = 5; 
T1 = 1; 
L = 1; 
A = 0.01; 
B = 100; 
N = 1000; 

relax = 0.1;        %under-relaxation factor 

 
dr = L/(N-1);       %length of z divisions 
compare = 10; 
iterations = 0; 

  
%create z vector 
for i = 1 : N 
    r(i,1) = (i-1)*dr; 
end 

  
%intital linear temperature profile guess 
Tguess = T0 + ((T1-T0)/L)*r; 

  
while compare > 0.0000001 
    iterations = iterations + 1; 

     
    %calculate T(z) from model 
    num_int1(1) = 0; 
    num_int2(1) = 0; 

     
    for i = 2 : N 
        num_int1(i) = (r(i,1))*(A*(Tguess(i,1)^4)-A*B)*dr; 
        num_int2(i) = (r(i,1))*log(r(i,1))*(A*(Tguess(i,1)^4)-A*B)*dr; 
    end 

     
    T(1,1) = 1 + sum(num_int2); 
    for i = 2 : N 
        T(i,1) = 1+sum(num_int2)+log(r(i,1))*sum(num_int1(1:i))-... 
            sum(num_int2(1:i));     
    end 

     
    compare = norm(T - Tguess); 
    disp(compare); 

  
    Tguess = Tguess + relax*(T - Tguess); 
end 
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A.3   Continuously Moving Fin, Section 4.2  

Source code file:  moving_fin.m 

 

User inputs:   system parameters 

 

Source code: 

 
clear all; 
format('longg'); 

  
%This program calculates the temperature profile in a moving 
%convective-radiaiting fin  

  
%Travis J. Moore, Brigham Young University, 2014 

  
%user inputs 
T0 = 1; 
Ta = 0.2; 
Lstar = 1; 
Nc = 4; 
Nr = 4; 
Pe = 3; 
N = 100; 
relax = 0.01;      %under-relaxation factor 

  
dX = Lstar/(N-1);  %length of z divisions 
compare = 10; 
iterations = 0; 

  
%create X vector 
for i = 1 : N 
    X(i,1) = (i-1)*dX; 
end 

  
%roots of auxiliary equation 
m1 = (Pe+sqrt((Pe^2)+4*Nc))/2; 
m2 = (Pe-sqrt((Pe^2)+4*Nc))/2; 

  
%intital linear temperature profile guess 
Tguess = T0 + 0*X; 

  
while compare > 0.0000001 
    iterations = iterations + 1; 

     
    %numerical integration 
    for i = 1 : N 
        num_int1(i) = ((Nr*((Tguess(i,1)^4)-(Ta^4))-Nc*Ta)*... 
            exp(m2*X(i,1)))/((m2-m1)*exp((m1+m2)*X(i,1)))*dX; 
        num_int2(i) = ((Nr*((Tguess(i,1)^4)-(Ta^4))-Nc*Ta)*... 
            exp(m1*X(i,1)))/((m2-m1)*exp((m1+m2)*X(i,1)))*dX; 
    end 
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    %calculate constants 
    c1 = (1/((m2*exp(m2*Lstar))-(m1*exp(m1*Lstar))))*... 
        ((m2*exp(m2*Lstar))-m1*exp(m1*Lstar)*... 
        sum(num_int1)+m2*exp(m2*Lstar)*sum(num_int2)); 
    c2 = 1 - c1; 

     
    for i = 1 : N 
        T(i,1) = c1*exp(m1*X(i,1))+c2*exp(m2*X(i,1))-exp(m1*X(i,1))*... 
            sum(num_int1(1:i))+exp(m2*X(i,1))*sum(num_int2(1:i));     
    end 

     
    compare = norm(T - Tguess); 
    disp(compare); 

  
    Tguess = Tguess + relax*(T - Tguess); 
end 

 

A.4   Exponential Fin with Variable Thermal Conductivity, Section 4.3 

Source code file:  exponential_fin.m 

 

User inputs:   system parameters 

 

Source code: 

 
clear all; 
format('longg'); 

  
%This program calculates the temperature profile in an exponential 
%convective fin with temperature dependent thermal conductivity 

  
%Travis J. Moore, Brigham Young University, 2014 

  
%user inputs 
beta = 1; 
N = 1; 
a = 1; 
M = 700; 
L = 1; 
relax = 0.1;      %under-relaxation factor 

  
dx = L/(M-1);      %length of z divisions 
compare = 10; 
iterations = 0; 

  
%create x vector 
for i = 1 : M 
    x(i,1) = (i-1)*dx; 
end 

  
%intital linear temperature profile guess 
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Tguess = 0.5 + 0*x; 

  
while compare > 0.00001 
    iterations = iterations + 1; 

     
    %numerical integration 
    %first point uses forward difference approximation of the derivative 
    num_int1(1) = (((N*N*Tguess(1,1)-exp(a*x(1,1))*beta*((((Tguess(2,1)-... 
        Tguess(1,1))/dx))^2))/(exp(a*x(1,1))*(1+beta*Tguess(1,1))))-... 
        a*((Tguess(2,1)-Tguess(1,1))/dx))*dx; 
    num_int2(1) = (x(1,1)*(((N*N*Tguess(1,1)-exp(a*x(1,1))*beta*... 
        ((((Tguess(2,1)-Tguess(1,1))/dx))^2))/(exp(a*x(1,1))*... 
        (1+beta*Tguess(1,1))))-a*((Tguess(2,1)-Tguess(1,1))/dx)))*dx; 

     
    %middle points use central difference approximation of the derivative 
    for i = 2 : M-1 
        num_int1(i) = (((N*N*Tguess(i,1)-exp(a*x(i,1))*beta*... 
            ((((Tguess(i+1,1)-Tguess(i-1,1))/(2*dx)))^2))/... 
            (exp(a*x(i,1))*(1+beta*Tguess(i,1))))-... 
            a*((Tguess(i+1,1)-Tguess(i-1,1))/(2*dx)))*dx; 
        num_int2(i) = (x(i,1)*(((N*N*Tguess(i,1)-exp(a*x(i,1))*beta*... 
            ((((Tguess(i+1,1)-Tguess(i-1,1))/(2*dx)))^2))/... 
            (exp(a*x(i,1))*(1+beta*Tguess(i,1))))-... 
            a*((Tguess(i+1,1)-Tguess(i-1,1))/(2*dx))))*dx; 
    end 

     
    %last point uses backward difference approximation of the derivative 
    num_int1(M) = (((N*N*Tguess(M,1)-exp(a*x(M,1))*beta*((((Tguess(M,1)-... 
        Tguess(M-1,1))/dx))^2))/(exp(a*x(M,1))*(1+beta*Tguess(M,1))))-... 
        a*((Tguess(M,1)-Tguess(M-1,1))/dx))*dx; 
    num_int2(M) = (x(M,1)*(((N*N*Tguess(N,1)-exp(a*x(M,1))*beta*... 
        ((((Tguess(M,1)-Tguess(M-1,1))/dx))^2))/(exp(a*x(M,1))*... 
        (1+beta*Tguess(M,1))))-a*((Tguess(M,1)-Tguess(M-1,1))/dx)))*dx; 

     
    for i = 1 : M 
        T(i,1) = 1-sum(num_int1)+sum(num_int2)+x(i,1)*... 
            sum(num_int1(1:i))-sum(num_int2(1:i));     
    end 

     
    compare = norm(T - Tguess); 
    disp(compare); 

  
    Tguess = Tguess + relax*(T - Tguess); 
end 

 

A.5   Non-gray Medium Surrounded by Non-Gray Boundaries, Section 6.4 

Source code file:  radiation_conduction_parallel_plates.m 

 

User inputs:   properties of the participating medium and the boundaries 
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Source code: 

 
clear all; 
format('longg'); 
tic; 

  
%This program computes the temperature profile for the combined conduction- 
%radiation problem in a plane-parallel, absorbing, emitting, non-gray medium 
%surrounded by non-gray boundaries  

  
%Travis J. Moore, Brigham Young University, 2013 

  
%INPUTS 
L = 0.1;            %length of medium 
k = 1;              %thermal conductivity of medium 
n = 1;              %refractive index of medium 
T0 = 1000;          %left boundary temperature 
TL = 250;           %right boundary temperature 
N = 100;            %number z points (including ends) 
M = 30;             %number of mu divisions (including ends) 
relax = 0.7 ;       %under-relaxation factor 
 

%spectral properties 
%the spectrum is divided into three bands with constant properties 
lambda1 = 10;       %band A is lambda = 0 to lambda1 
                    %band B is lambda1 to lambda2 
lambda2 = 20;       %band C is lambda2 to lambda = infinity 
%left boundary properties 
e0A = 0.5;          %emittance in band A 
e0B = 0.5;          %emittance in band B 
e0C = 0.5;          %emittance in band C 
%right boundary properties 
eLA = 0.5;          %emittance in band A 
eLB = 0.5;          %emittance in band B 
eLC = 0.5;          %emittance in band C 
%spectral absorption coefficient 
kapA = 10;          %absorption coefficient in band A (m-1) 
kapB = 10;          %absorption coefficient in band B (m-1) 
kapC = 10;          %absorption coefficient in band C (m-1) 

      

     
%calculate other parameters 
dz = L/(N-1);       %length of z divisions in section 
dmu = 1/(M-1);      %length of mu divisions 
%left boundary 
r0A = 1-e0A;        %reflectance in band A 
r0B = 1-e0B;        %reflectance in band B 
r0C = 1-e0C;        %reflectance in band C 
%right boundary 
rLA = 1-eLA;        %reflectance in band A 
rLB = 1-eLB;        %reflectance in band B 
rLC = 1-eLC;        %reflectance in band C 
sigma = 5.67E-8;    %stefan-boltzmann constant 
compare = 10; 
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iterations = 0; 

  
%Preallocate arrays 
z = zeros(N,1); 
mu = zeros(M,1); 
RA = zeros(M,1); 
RB = zeros(M,1); 
RC = zeros(M,1); 
int_H6_1_A = zeros(N,M,N); 
int_H6_1_B = zeros(N,M,N); 
int_H6_1_C = zeros(N,M,N); 
int_H6_2_A = zeros(N,N); 
int_H6_2_B = zeros(N,N); 
int_H6_2_C = zeros(N,N); 
int_H12_1_A = zeros(N,M,N); 
int_H12_1_B = zeros(N,M,N); 
int_H12_1_C = zeros(N,M,N); 
int_H12_2_A = zeros(N,N); 
int_H12_2_B = zeros(N,N); 
int_H12_2_C = zeros(N,N); 
int_P_A = zeros(N,M); 
int_Q_A = zeros(N,M); 
int_P_B = zeros(N,M); 
int_Q_B = zeros(N,M); 
int_P_C = zeros(N,M); 
int_Q_C = zeros(N,M); 
int_H1_A = zeros(N,M); 
int_H2_A = zeros(N,M); 
int_H3_1_A = zeros(N,M); 
int_H4_1_A = zeros(N,M); 
int_H5_1_A = zeros(M,1); 
int_H7_A = zeros(N,M); 
int_H8_A = zeros(N,M); 
int_H9_1_A = zeros(N,M); 
int_H10_1_A = zeros(N,M); 
int_H11_1_A = zeros(M,1); 
int_H1_B = zeros(N,M); 
int_H2_B = zeros(N,M); 
int_H3_1_B = zeros(N,M); 
int_H4_1_B = zeros(N,M); 
int_H5_1_B = zeros(M,1); 
int_H7_B = zeros(N,M); 
int_H8_B = zeros(N,M); 
int_H9_1_B = zeros(N,M); 
int_H10_1_B = zeros(N,M); 
int_H11_1_B = zeros(M,1); 
int_H1_C = zeros(N,M); 
int_H2_C = zeros(N,M); 
int_H3_1_C = zeros(N,M); 
int_H4_1_C = zeros(N,M); 
int_H5_1_C = zeros(M,1); 
int_H7_C = zeros(N,M); 
int_H8_C = zeros(N,M); 
int_H9_1_C = zeros(N,M); 
int_H10_1_C = zeros(N,M); 
int_H11_1_C = zeros(M,1); 
int_z1_3_A = zeros(N,M); 
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int_z1_3_B = zeros(N,M); 
int_z1_3_C = zeros(N,M); 
int_z1_5and9_A = zeros(N,M); 
int_z1_5and9_B = zeros(N,M); 
int_z1_5and9_C = zeros(N,M); 
int_z2_A = zeros(N,M); 
int_z2_B = zeros(N,M); 
int_z2_C = zeros(N,M); 
int_H3_2_A = zeros(N,M); 
int_H4_2_A = zeros(N,M); 
int_H9_2_A = zeros(N,M); 
int_H10_2_A = zeros(N,M); 
int_H3_2_B = zeros(N,M); 
int_H4_2_B = zeros(N,M); 
int_H9_2_B = zeros(N,M); 
int_H10_2_B = zeros(N,M); 
int_H3_2_C = zeros(N,M); 
int_H4_2_C = zeros(N,M); 
int_H9_2_C = zeros(N,M); 
int_H10_2_C = zeros(N,M); 
int_H5_2_A = zeros(M,1); 
int_H11_2_A = zeros(M,1); 
int_H5_2_B = zeros(M,1); 
int_H11_2_B = zeros(M,1); 
int_H5_2_C = zeros(M,1); 
int_H11_2_C = zeros(M,1); 
TA = zeros(N,1); 
TB = zeros(N,1); 
TC = zeros(N,1); 
T = zeros(N,1); 

  
%create z vector 
for i = 1 : N 
    z(i,1) = (i-1)*dz; 
end 

  
%create mu vector 
for j = 1 : M 
    mu(j,1) = (j-1)*dmu; 
end 

  
%intital temperature profile guess (linear) 
Tguess = T0 + ((TL-T0)/L)*z; 

  
%calculate R for all values of mu 
for j = 1 : M 
    RA(j,1) = 1/(1-r0A*rLA*exp(-2*kapA*L/mu(j,1))); 
    RB(j,1) = 1/(1-r0B*rLB*exp(-2*kapB*L/mu(j,1))); 
    RC(j,1) = 1/(1-r0C*rLC*exp(-2*kapC*L/mu(j,1))); 
end 

  
%perform integrations that only depend on z and mu (not on T) 
for i = 1 : N-1 
    for j = 2 : M %start at 2 because the integral will be 0 when mu is 0 
        int_P_A(i,j) = RA(j,1)*((z(i,1)/L)*(exp(-kapA*L/mu(j,1))-1)+(1-... 
            exp(-kapA*z(i,1)/mu(j,1))))*mu(j,1)*dmu; 
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        int_Q_A(i,j) = RA(j,1)*((z(i,1)/L)*(1-exp(-kapA*L/mu(j,1)))+... 
            exp(-kapA*L/mu(j,1))-exp(-kapA*(L-z(i,1))/mu(j,1)))*mu(j,1)*dmu; 

         
        int_P_B(i,j) = RB(j,1)*((z(i,1)/L)*(exp(-kapB*L/mu(j,1))-1)+(1-... 
            exp(-kapB*z(i,1)/mu(j,1))))*mu(j,1)*dmu; 
        int_Q_B(i,j) = RB(j,1)*((z(i,1)/L)*(1-exp(-kapB*L/mu(j,1)))+... 
            exp(-kapB*L/mu(j,1))-exp(-kapB*(L-z(i,1))/mu(j,1)))*mu(j,1)*dmu; 

         
        int_P_C(i,j) = RC(j,1)*((z(i,1)/L)*(exp(-kapC*L/mu(j,1))-1)+(1-... 
            exp(-kapC*z(i,1)/mu(j,1))))*mu(j,1)*dmu; 
        int_Q_C(i,j) = RC(j,1)*((z(i,1)/L)*(1-exp(-kapC*L/mu(j,1)))+... 
            exp(-kapC*L/mu(j,1))-exp(-kapC*(L-z(i,1))/mu(j,1)))*mu(j,1)*dmu; 
    end 
end 

  
for j = 2 : M 
    int_H1_A(:,j) = (e0A/kapA)*mu(j,1)*int_P_A(:,j); 
    int_H2_A(:,j) = (r0A*eLA/kapA)*exp(-kapA*L/mu(j,1))*mu(j,1)*int_P_A(:,j); 
    int_H3_1_A(:,j) = (r0A*rLA)*int_P_A(:,j); 
    int_H4_1_A(:,j) = r0A*int_P_A(:,j); 
    int_H5_1_A(j,1) = mu(j,1)*dmu; 
    int_H7_A(:,j) = (eLA/kapA)*mu(j,1)*int_Q_A(:,j); 
    int_H8_A(:,j) = (rLA*e0A/kapA)*exp(-kapA*L/mu(j,1))*mu(j,1)*int_Q_A(:,j); 
    int_H9_1_A(:,j) = rLA*int_Q_A(:,j); 
    int_H10_1_A(:,j) = (rLA*r0A)*exp(-kapA*L/mu(j,1))*int_Q_A(:,j); 
    int_H11_1_A(j,1) = mu(j,1)*dmu; 

     
    int_H1_B(:,j) = (e0B/kapB)*mu(j,1)*int_P_B(:,j); 
    int_H2_B(:,j) = (r0B*eLB/kapB)*exp(-kapB*L/mu(j,1))*mu(j,1)*int_P_B(:,j); 
    int_H3_1_B(:,j) = (r0B*rLB)*int_P_B(:,j); 
    int_H4_1_B(:,j) = r0B*int_P_B(:,j); 
    int_H5_1_B(j,1) = mu(j,1)*dmu; 
    int_H7_B(:,j) = (eLB/kapB)*mu(j,1)*int_Q_B(:,j); 
    int_H8_B(:,j) = (rLB*e0B/kapB)*exp(-kapB*L/mu(j,1))*mu(j,1)*int_Q_B(:,j); 
    int_H9_1_B(:,j) = rLB*int_Q_B(:,j); 
    int_H10_1_B(:,j) = (rLB*r0B)*exp(-kapB*L/mu(j,1))*int_Q_B(:,j); 
    int_H11_1_B(j,1) = mu(j,1)*dmu; 

     
    int_H1_C(:,j) = (e0C/kapC)*mu(j,1)*int_P_C(:,j); 
    int_H2_C(:,j) = (r0C*eLC/kapC)*exp(-kapC*L/mu(j,1))*mu(j,1)*int_P_C(:,j); 
    int_H3_1_C(:,j) = (r0C*rLC)*int_P_C(:,j); 
    int_H4_1_C(:,j) = r0C*int_P_C(:,j); 
    int_H5_1_C(j,1) = mu(j,1)*dmu; 
    int_H7_C(:,j) = (eLC/kapC)*mu(j,1)*int_Q_C(:,j); 
    int_H8_C(:,j) = (rLC*e0C/kapC)*exp(-kapC*L/mu(j,1))*mu(j,1)*int_Q_C(:,j); 
    int_H9_1_C(:,j) = rLC*int_Q_C(:,j); 
    int_H10_1_C(:,j) = (rLC*r0C)*exp(-kapC*L/mu(j,1))*int_Q_C(:,j); 
    int_H11_1_C(j,1) = mu(j,1)*dmu; 
end 

  
%start while loop 
while compare > 1 
    iterations = iterations + 1; 

     
    %calculate T(z) 



187 

     
    %first calculate the integrals over z for each value of mu 
    %creates matrices where rows correspond to discrete z values and 
    %columns dicrete values of mu 
    for i = 1 : N - 1 
        for j = 2 : M  %start at 2 because the full integral 
                       %will be 0 when mu is 0 
            %Band A 
            int_z1_3_A(i,j) = 0.5*n*n*sigma*(((Tguess(i,1))^4)*... 
                (F_lambda(lambda1,Tguess(i,1),n))*(exp(-kapA*((2*L)-... 
                z(i,1))/mu(j,1)))+((Tguess(i+1,1))^4)*... 
                (F_lambda(lambda1,Tguess(i,1),n))*(exp(-kapA*((2*L)-... 
                z(i,1))/mu(j,1))))*dz; 
            int_z1_5and9_A(i,j) = 0.5*n*n*sigma*(((Tguess(i,1))^4)*... 
                (F_lambda(lambda1,Tguess(i,1),n))*(exp(-kapA*(L-... 
                z(i,1))/mu(j,1)))+((Tguess(i+1,1))^4)*... 
                (F_lambda(lambda1,Tguess(i,1),n))*... 
                (exp(-kapA*(L-z(i,1))/mu(j,1))))*dz; 
            int_z2_A(i,j) = 0.5*n*n*sigma*(((Tguess(i,1))^4)*... 
                (F_lambda(lambda1,Tguess(i,1),n))*... 
                (exp(-kapA*z(i,1)/mu(j,1)))+((Tguess(i+1,1))^4)*... 
                (F_lambda(lambda1,Tguess(i,1),n))*... 
                (exp(-kapA*z(i+1,1)/mu(j,1))))*dz; 

             
            %Band B 
            int_z1_3_B(i,j) = 0.5*n*n*sigma*(((Tguess(i,1))^4)*... 
                (F_lambda(lambda2,Tguess(i,1),n)-... 
                F_lambda(lambda1,Tguess(i,1),n))*(exp(-kapB*((2*L)-... 
                z(i,1))/mu(j,1)))+((Tguess(i+1,1))^4)*... 
                (F_lambda(lambda2,Tguess(i,1),n)-... 
                F_lambda(lambda1,Tguess(i,1),n))*(exp(-kapB*((2*L)-... 
                z(i,1))/mu(j,1))))*dz; 
            int_z1_5and9_B(i,j) = 0.5*n*n*sigma*(((Tguess(i,1))^4)*... 
                (F_lambda(lambda2,Tguess(i,1),n)-... 
                F_lambda(lambda1,Tguess(i,1),n))*... 
                (exp(-kapB*(L-z(i,1))/mu(j,1)))+((Tguess(i+1,1))^4)*... 
                (F_lambda(lambda2,Tguess(i,1),n)-... 
                F_lambda(lambda1,Tguess(i,1),n))*... 
                (exp(-kapB*(L-z(i,1))/mu(j,1))))*dz; 
            int_z2_B(i,j) = 0.5*sigma*(((Tguess(i,1))^4)*... 
                (F_lambda(lambda2,Tguess(i,1),n)-... 
                F_lambda(lambda1,Tguess(i,1),n))*... 
                (exp(-kapB*z(i,1)/mu(j,1)))+((Tguess(i+1,1))^4)*... 
                (F_lambda(lambda2,Tguess(i,1),n)-... 
                F_lambda(lambda1,Tguess(i,1),n))*... 
                (exp(-kapB*z(i+1,1)/mu(j,1))))*dz; 

             
            %Band C 
            int_z1_3_C(i,j) = 0.5*n*n*sigma*(((Tguess(i,1))^4)*... 
                (1-F_lambda(lambda2,Tguess(i,1),n))*... 
                (exp(-kapC*((2*L)-z(i,1))/mu(j,1)))+... 
                ((Tguess(i+1,1))^4)*(1-F_lambda(lambda2,Tguess(i,1),n))*... 
                (exp(-kapC*((2*L)-z(i,1))/mu(j,1))))*dz; 
            int_z1_5and9_C(i,j) = 0.5*n*n*sigma*(((Tguess(i,1))^4)*... 
                (1-F_lambda(lambda2,Tguess(i,1),n))*... 
                (exp(-kapC*(L-z(i,1))/mu(j,1)))+((Tguess(i+1,1))^4)*... 
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                (1-F_lambda(lambda2,Tguess(i,1),n))*... 
                (exp(-kapC*(L-z(i,1))/mu(j,1))))*dz; 
            int_z2_C(i,j) = 0.5*n*n*sigma*(((Tguess(i,1))^4)*... 
                (1-F_lambda(lambda2,Tguess(i,1),n))*... 
                (exp(-kapC*z(i,1)/mu(j,1)))+((Tguess(i+1,1))^4)*... 
                (1-F_lambda(lambda2,Tguess(i,1),n))*... 
                (exp(-kapC*z(i+1,1)/mu(j,1))))*dz; 
        end 
    end 

     
    for h = 1 : N 
        for i = 1 : N-1 
            for j = 2 : M   %start at 2 because first column is always 
                            %zero because multiplied by mu = 0 
                int_H6_1_A(i,j,h) = sigma*n*n*((Tguess(i,1))^4)*... 
                    (F_lambda(lambda1,Tguess(i,1),n))*... 
                    mu(j,1)*exp(-kapA*(z(h,1)-z(i,1))/mu(j,1))*dz*dmu; 
                int_H6_1_B(i,j,h) = sigma*n*n*((Tguess(i,1))^4)*... 
                    (F_lambda(lambda2,Tguess(i,1),n)-... 
                    F_lambda(lambda1,Tguess(i,1),n))*... 
                    mu(j,1)*exp(-kapB*(z(h,1)-z(i,1))/mu(j,1))*dz*dmu; 
                int_H6_1_C(i,j,h) = sigma*n*n*((Tguess(i,1))^4)*... 
                    (1-F_lambda(lambda2,Tguess(i,1),n))*mu(j,1)*... 
                    exp(-kapC*(z(h,1)-z(i,1))/mu(j,1))*dz*dmu; 
                int_H12_1_A(i,j,h) = sigma*n*n*((Tguess(i,1))^4)*... 
                    (F_lambda(lambda1,Tguess(i,1),n))*... 
                    mu(j,1)*exp(-kapA*(z(i,1)-z(h,1))/mu(j,1))*dz*dmu; 
                int_H12_1_B(i,j,h) = sigma*n*n*((Tguess(i,1))^4)*... 
                    (F_lambda(lambda2,Tguess(i,1),n)-... 
                    F_lambda(lambda1,Tguess(i,1),n))*... 
                    mu(j,1)*exp(-kapB*(z(i,1)-z(h,1))/mu(j,1))*dz*dmu; 
                int_H12_1_C(i,j,h) = sigma*n*n*((Tguess(i,1))^4)*... 
                    (1-F_lambda(lambda2,Tguess(i,1),n))*... 
                    mu(j,1)*exp(-kapC*(z(i,1)-z(h,1))/mu(j,1))*dz*dmu; 
            end 
        end 
    end 

     
    for h = 1 : N 
        for i = 1 : N 
            int_H6_2_A(i,h) = sum(int_H6_1_A(i,:,h)); 
            int_H6_2_B(i,h) = sum(int_H6_1_B(i,:,h)); 
            int_H6_2_C(i,h) = sum(int_H6_1_C(i,:,h)); 
            int_H12_2_A(i,h) = sum(int_H12_1_A(i,:,h)); 
            int_H12_2_B(i,h) = sum(int_H12_1_B(i,:,h)); 
            int_H12_2_C(i,h) = sum(int_H12_1_C(i,:,h)); 
        end 
    end 

         
    %calcualte integrals over mu 

     
    for i = 1 : N 
        for j = 2 : M 
            int_H3_2_A(i,j) = int_H3_1_A(i,j)*sum(int_z1_3_A(:,j)); 
            int_H4_2_A(i,j) = int_H4_1_A(i,j)*sum(int_z2_A(:,j)); 
            int_H9_2_A(i,j) = int_H9_1_A(i,j)*sum(int_z1_5and9_A(:,j)); 
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            int_H10_2_A(i,j) = int_H10_1_A(i,j)*sum(int_z2_A(:,j)); 

             
            int_H3_2_B(i,j) = int_H3_1_B(i,j)*sum(int_z1_3_B(:,j)); 
            int_H4_2_B(i,j) = int_H4_1_B(i,j)*sum(int_z2_B(:,j)); 
            int_H9_2_B(i,j) = int_H9_1_B(i,j)*sum(int_z1_5and9_B(:,j)); 
            int_H10_2_B(i,j) = int_H10_1_B(i,j)*sum(int_z2_B(:,j)); 

         
            int_H3_2_C(i,j) = int_H3_1_C(i,j)*sum(int_z1_3_C(:,j)); 
            int_H4_2_C(i,j) = int_H4_1_C(i,j)*sum(int_z2_C(:,j)); 
            int_H9_2_C(i,j) = int_H9_1_C(i,j)*sum(int_z1_5and9_C(:,j)); 
            int_H10_2_C(i,j) = int_H10_1_C(i,j)*sum(int_z2_C(:,j)); 
        end 
    end 

  
    for j = 1 : M 
        int_H5_2_A(j,1) = int_H5_1_A(j,1)*sum(int_z1_5and9_A(:,j)); 
        int_H11_2_A(j,1) = int_H11_1_A(j,1)*sum(int_z2_A(:,j)); 

         
        int_H5_2_B(j,1) = int_H5_1_B(j,1)*sum(int_z1_5and9_B(:,j)); 
        int_H11_2_B(j,1) = int_H11_1_B(j,1)*sum(int_z2_B(:,j)); 

         
        int_H5_2_C(j,1) = int_H5_1_C(j,1)*sum(int_z1_5and9_C(:,j)); 
        int_H11_2_C(j,1) = int_H11_1_C(j,1)*sum(int_z2_C(:,j)); 
    end 

  
    for i = 1 : N 

         
        TA(i,1) = (2/k)*n*n*(sigma*(T0^4)*F_lambda(lambda1,T0,n)*... 
            sum(int_H1_A(i,:))+sigma*n*n*(TL^4)*F_lambda(lambda1,TL,n)*... 
            sum(int_H2_A(i,:))+sum(int_H3_2_A(i,:))+sum(int_H4_2_A(i,:))+... 
            (z(i,1)/L)*sum(int_H5_2_A)-sum(int_H6_2_A(1:i,i))+... 
            sigma*n*n*(TL^4)*F_lambda(lambda1,TL,n)*sum(int_H7_A(i,:))+... 
            sigma*n*n*(T0^4)*F_lambda(lambda1,T0,n)*sum(int_H8_A(i,:))+... 
            sum(int_H9_2_A(i,:))+sum(int_H10_2_A(i,:))+... 
            (1-(z(i,1)/L))*sum(int_H11_2_A)-sum(int_H12_2_A(i:N,i)));    

         
        TB(i,1) = (2/k)*(sigma*n*n*(T0^4)*(F_lambda(lambda2,T0,n)-... 
            F_lambda(lambda1,T0,n))*sum(int_H1_B(i,:))+sigma*n*n*(TL^4)*... 
            (F_lambda(lambda2,TL,n)-F_lambda(lambda1,TL,n))*... 
            sum(int_H2_B(i,:))+sum(int_H3_2_B(i,:))+sum(int_H4_2_B(i,:))+... 
            (z(i,1)/L)*sum(int_H5_2_B)-sum(int_H6_2_B(1:i,i))+... 
            sigma*n*n*(TL^4)*(F_lambda(lambda2,TL,n)-... 
            F_lambda(lambda1,TL,n))*sum(int_H7_B(i,:))+sigma*n*n*(T0^4)*... 
            (F_lambda(lambda2,T0,n)-F_lambda(lambda1,T0,n))*... 
            sum(int_H8_B(i,:)) + sum(int_H9_2_B(i,:))+... 
            sum(int_H10_2_B(i,:))+(1-(z(i,1)/L))*sum(int_H11_2_B)... 
            -sum(int_H12_2_B(i:N,i)));  

         
        TC(i,1) = (2/k)*(sigma*n*n*(T0^4)*(1-F_lambda(lambda2,T0,n))*... 
            sum(int_H1_C(i,:))+sigma*n*n*(TL^4)*... 
            (1-F_lambda(lambda2,TL,n))*sum(int_H2_C(i,:))+... 
            sum(int_H3_2_C(i,:))+sum(int_H4_2_C(i,:))+... 
            (z(i,1)/L)*sum(int_H5_2_C)-sum(int_H6_2_C(1:i,i))+... 
            sigma*n*n*(TL^4)*(1-F_lambda(lambda2,TL,n))*... 
            sum(int_H7_C(i,:))+sigma*n*n*(T0^4)*... 
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            (1-F_lambda(lambda2,T0,n))*sum(int_H8_C(i,:))+... 
            sum(int_H9_2_C(i,:))+sum(int_H10_2_C(i,:))+... 
            (1-(z(i,1)/L))*sum(int_H11_2_C)-sum(int_H12_2_C(i:N,i))); 

         
        T(i,1) = ((TL/L)-(T0/L))*z(i,1)+T0+(TA(i,1)+TB(i,1)+TC(i,1)); 

         
    end 

     
    T(1,1) = T0; 
    T(N,1) = TL; 

     
    compare = norm(T - Tguess); 
    disp(compare); 

   
    Tguess = Tguess + relax*(T - Tguess); 
end 

  
time = toc; 

 

 

Source code file:  F_lamda.m 

 

User inputs: None. The function is called by 

“radiation_conduction_parallel_plates.m.” 

 

Source code: 

 
function [F_lambda] = F_lambda(lambda, T, n) 

  
%this function gives the percent of emissive power (in W/m^2 sr) 
%of a black body between 0 and the given wavelength at the given 
%temperature and refractive index 

 

%Travis J. Moore, Brigham Young University, 2014 

  
%constants 
terms = 5;  %number of terms in the summation 
C2 = 14388; 

  
x = C2/(n*lambda*T); 

  
if x > 2 
    for m = 1 : terms 
        summation_terms(m) = ((exp(-m*x)/(m^4))*(((m*x+3)*m*x+6)*m*x+6)); 
    end 
    F_lambda = (15/(pi^4))*sum(summation_terms); 
else 
    F_lambda = 1 - (15/(pi^4))*(x^3)*((1/3)-(x/8)+(x^2/60)-... 
        (x^4/5040)+(x^6/272160)-(x^8/13305600)); 
end 
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A.6   Non-gray Thermal Barrier Coating, Section 8.3.2 

Source code file:  TBC_temp.m 

 

User inputs:   system parameters 

 

Source code: 
 

clear all; 
format('longg'); 
tic; 

  
%This program computes the temperature profile for the combined conduction- 
%radiation problem in a plane-parallel, absorbing, emitting, non-gray medium 
%surrounded by non-gray emitting with one reflecting boundary and the other 
%reflecting/emitting boundary 

  
%Travis J. Moore, Brigham Young University, 2014 

  
%INPUTS 
L = 1;              %length of TBC 
k = 0.5;            %thermal conductivity of TBC 
T0 = 300;           %substrate temperature 
TL = 150;           %interface temperature 
N = 200;            %number z points (including ends) 
M = 30;             %number of mu divisions (including ends) 

  
%spectral properties 
%the spectrum is divided into three bands with constant properties 
lambda1 = 0;        %band A is lambda = 0 to lambda1 
lambda2 = 4;        %band B is lambda2 to lambda3 
lambda3 = 6;        %band C is lambda3 to lambda = infinity 
lambda4 = 100;      %assume band C is between lambda3 and lambda4 

  
%use a step approximation of properties in each band 
%substrate properties 
e0A = 0.4;          %emittance in band A 
e0B = 0.9;          %emittance in band B 
e0C = 0.7;          %emittance in band C 
r0A = 1-e0A;        %reflectance in band A 
r0B = 1-e0B;        %reflectance in band B 
r0C = 1-e0C;        %reflectance in band C 

  
%interface properties 
nA = 2;             %refractive index in band A MUST BE SAME IN ALL BANDS 
nB = 2;             %refractive index in band B 
nC = 2;             %refractive index in band C 

  
%compute reflectance at TBC/vacuum interface 
r1 = 0.5 + (((3*nA+1)*(nA-1))/(6*((nA+1)^2))) + ... 
    ((nA*nA*((nA*nA-1)^2)/((nA*nA+1)^3))*log((nA-1)/(nA+1))) - ... 
    (2*(nA^3)*(nA*nA+2*nA-1)/((nA*nA+1)*((nA^4)-1))) + ... 
    ((8*(nA^4)*((nA^4)+1))/((nA*nA+1)*(((nA^4)-1)^2)))*log(nA); 
rLA = 1-((1-r1)/(nA^2)); 
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rLB = rLA; 
rLC = rLA; 

  
tLA = 1 - rLA;  %transmitance in band A 
tLB = 1 - rLB;  %transmitance in band B 
tLC = 1 - rLC;  %transmitance in band C 

  
%absorption coefficient 
kapA = 5;           %absorption coefficient in band A (m-1) 
kapB = 20;          %absorption coefficient in band B (m-1) 
kapC = 15;          %absorption coefficient in band C (m-1) 

  
%calculate other parameters 
dz = L/(N-1);       %length of z divisions 
dmu = 1/(M-1);      %length of mu divisions 
sigma = 5.67E-8;    %stefan-boltzmann constant 
relax = 0.3 ;       %under-relaxation factor 
compare = 10; 
iterations = 0; 

  
%Preallocate arrays 
z = zeros(N,1); 
mu = zeros(M,1); 
RA = zeros(M,1); 
RB = zeros(M,1); 
RC = zeros(M,1); 
int_P_A = zeros(N,M); 
int_Q_A = zeros(N,M); 
int_G5_1_A = zeros(N,M); 
int_G10_1_A = zeros(N,M); 
int_P_B = zeros(N,M); 
int_Q_B = zeros(N,M); 
int_G5_1_B = zeros(N,M); 
int_G10_1_B = zeros(N,M); 
int_P_C = zeros(N,M); 
int_Q_C = zeros(N,M); 
int_G5_1_C = zeros(N,M); 
int_G10_1_C = zeros(N,M); 
int_G1_A = zeros(N,M); 
int_G2_1_A = zeros(N,M); 
int_G3_1_A = zeros(N,M); 
int_G4_1_A = zeros(M,1); 
int_G6_A = zeros(N,M); 
int_G7_1_A = zeros(N,M); 
int_G8_1_A = zeros(N,M); 
int_G9_1_A = zeros(M,1); 
int_G1_B = zeros(N,M); 
int_G2_1_B = zeros(N,M); 
int_G3_1_B = zeros(N,M); 
int_G4_1_B = zeros(M,1); 
int_G6_B = zeros(N,M); 
int_G7_1_B = zeros(N,M); 
int_G8_1_B = zeros(N,M); 
int_G9_1_B = zeros(M,1); 
int_G1_C = zeros(N,M); 
int_G2_1_C = zeros(N,M); 
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int_G3_1_C = zeros(N,M); 
int_G4_1_C = zeros(M,1); 
int_G6_C = zeros(N,M); 
int_G7_1_C = zeros(N,M); 
int_G8_1_C = zeros(N,M); 
int_G9_1_C = zeros(M,1); 
int_z1_A = zeros(N,M); 
int_z2_A = zeros(N,M); 
int_z1_B = zeros(N,M); 
int_z2_B = zeros(N,M); 
int_z1_C = zeros(N,M); 
int_z2_C = zeros(N,M); 
int_G2_2_A = zeros(N,M); 
int_G3_2_A = zeros(N,M); 
int_G5_2_A = zeros(N,M); 
int_G7_2_A = zeros(N,M); 
int_G8_2_A = zeros(N,M); 
int_G10_2_A = zeros(N,M); 
int_G2_2_B = zeros(N,M); 
int_G3_2_B = zeros(N,M); 
int_G5_2_B = zeros(N,M); 
int_G7_2_B = zeros(N,M); 
int_G8_2_B = zeros(N,M); 
int_G10_2_B = zeros(N,M); 
int_G2_2_C = zeros(N,M); 
int_G3_2_C = zeros(N,M); 
int_G5_2_C = zeros(N,M); 
int_G7_2_C = zeros(N,M); 
int_G8_2_C = zeros(N,M); 
int_G10_2_C = zeros(N,M); 
int_G4_2_A = zeros(M,1); 
int_G9_2_A = zeros(M,1); 
int_G4_2_B = zeros(M,1); 
int_G9_2_B = zeros(M,1); 
int_G4_2_C = zeros(M,1); 
int_G9_2_C = zeros(M,1); 
TA = zeros(N,1); 
TB = zeros(N,1); 
TC = zeros(N,1); 
T = zeros(N,1); 
int_H2_A = zeros(N,1); 
int_H3_A = zeros(N,1); 
int_H2_B = zeros(N,1); 
int_H3_B = zeros(N,1); 
int_H2_C = zeros(N,1); 
int_H3_C = zeros(N,1); 

  
%create z vector 
for i = 1 : N 
    z(i,1) = (i-1)*dz; 
end 

  
%create mu vector 
for j = 1 : M 
    mu(j,1) = (j-1)*dmu; 
end 
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%intital temperature profile guess (linear) 
Tguess = T0 + ((TL-T0)/L)*z; 

  
%calculate R for all values of mu 
for j = 1 : M 
    RA(j,1) = 1/(1-r0A*rLA*exp(-2*kapA*L/mu(j,1))); 
    RB(j,1) = 1/(1-r0B*rLB*exp(-2*kapB*L/mu(j,1))); 
    RC(j,1) = 1/(1-r0C*rLC*exp(-2*kapC*L/mu(j,1))); 
end 

  
%perform integrations that only depend on z and mu (not on T) 
for i = 1 : N 
    for j = 2 : M %start at 2 because the integral will be 0 when mu is 0 
        int_P_A(i,j) = RA(j,1)*mu(j,1)*((z(i,1)/L)*... 
            (exp(-kapA*L/mu(j,1))-1)+(1-exp(-kapA*z(i,1)/mu(j,1))))*dmu; 
        int_Q_A(i,j) = RA(j,1)*mu(j,1)*(exp(-kapA*L/mu(j,1)))*... 
            ((z(i,1)/L)*(1-exp(-kapA*L/mu(j,1)))+... 
            exp(-kapA*L/mu(j,1))*((1-exp(kapA*z(i,1)/mu(j,1)))))*dmu; 
        int_G5_1_A(i,j) = exp(-kapA*z(i,1)/mu(j,1))*mu(j,1)*dmu; 
        int_G10_1_A(i,j) = exp(kapA*z(i,1)/mu(j,1))*mu(j,1)*dmu; 

         
        int_P_B(i,j) = RB(j,1)*((z(i,1)/L)*(exp(-kapB*L/mu(j,1))-1)+... 
            (1-exp(-kapB*z(i,1)/mu(j,1))))*mu(j,1)*dmu; 
        int_Q_B(i,j) = RB(j,1)*mu(j,1)*(exp(-kapB*L/mu(j,1)))*... 
            ((z(i,1)/L)*(1-exp(-kapB*L/mu(j,1)))+... 
            exp(-kapB*L/mu(j,1))*((1-exp(kapB*z(i,1)/mu(j,1)))))*dmu; 
        int_G5_1_B(i,j) = exp(-kapB*z(i,1)/mu(j,1))*mu(j,1)*dmu; 
        int_G10_1_B(i,j) = exp(kapB*z(i,1)/mu(j,1))*mu(j,1)*dmu; 

         
        int_P_C(i,j) = RC(j,1)*((z(i,1)/L)*(exp(-kapC*L/mu(j,1))-1)+... 
            (1-exp(-kapC*z(i,1)/mu(j,1))))*mu(j,1)*dmu; 
        int_Q_C(i,j) = RC(j,1)*mu(j,1)*(exp(-kapC*L/mu(j,1)))*... 
            ((z(i,1)/L)*(1-exp(-kapC*L/mu(j,1)))+... 
            exp(-kapC*L/mu(j,1))*((1-exp(kapC*z(i,1)/mu(j,1)))))*dmu; 
        int_G5_1_C(i,j) = exp(-kapC*z(i,1)/mu(j,1))*mu(j,1)*dmu; 
        int_G10_1_C(i,j) = exp(kapC*z(i,1)/mu(j,1))*mu(j,1)*dmu; 
    end 
end 

  
for j = 2 : M 
    int_G1_A(:,j) = (e0A/kapA)*mu(j,1)*int_P_A(:,j); 
    int_G2_1_A(:,j) = (r0A*rLA)*exp(-2*kapA*L/mu(j,1))*int_P_A(:,j); 
    int_G3_1_A(:,j) = r0A*int_P_A(:,j); 
    int_G4_1_A(j,1) = exp(-kapA*L/mu(j,1))*mu(j,1)*dmu; 
    int_G6_A(:,j) = (rLA*e0A/kapA)*mu(j,1)*int_Q_A(:,j); 
    int_G7_1_A(:,j) = (r0A*rLA)*int_Q_A(:,j); 
    int_G8_1_A(:,j) = rLA*int_Q_A(:,j); 
    int_G9_1_A(j,1) = mu(j,1)*dmu; 

     
    int_G1_B(:,j) = (e0B/kapB)*mu(j,1)*int_P_B(:,j); 
    int_G2_1_B(:,j) = (r0B*rLB)*exp(-2*kapB*L/mu(j,1))*int_P_B(:,j); 
    int_G3_1_B(:,j) = r0B*int_P_B(:,j); 
    int_G4_1_B(j,1) = exp(-kapB*L/mu(j,1))*mu(j,1)*dmu; 
    int_G6_B(:,j) = (rLB*e0B/kapB)*mu(j,1)*int_Q_B(:,j); 
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    int_G7_1_B(:,j) = (r0B*rLB)*int_Q_B(:,j); 
    int_G8_1_B(:,j) = rLB*int_Q_B(:,j); 
    int_G9_1_B(j,1) = mu(j,1)*dmu; 

     
    int_G1_C(:,j) = (e0C/kapC)*mu(j,1)*int_P_C(:,j); 
    int_G2_1_C(:,j) = (r0C*rLC)*exp(-2*kapC*L/mu(j,1))*int_P_C(:,j); 
    int_G3_1_C(:,j) = r0C*int_P_C(:,j); 
    int_G4_1_C(j,1) = exp(-kapC*L/mu(j,1))*mu(j,1)*dmu; 
    int_G6_C(:,j) = (rLC*e0C/kapC)*mu(j,1)*int_Q_C(:,j); 
    int_G7_1_C(:,j) = (r0C*rLC)*int_Q_C(:,j); 
    int_G8_1_C(:,j) = rLC*int_Q_C(:,j); 
    int_G9_1_C(j,1) = mu(j,1)*dmu; 
end 

  
%start while loop 
while compare > 1 
    iterations = iterations + 1; 

     
    %calculate T(z) 

     
    %first calculate the integrals over z for each value of mu 
    %creates matrices where rows correspond to discrete z values and 
    %columns discrete values ofmu 
    for i = 1 : N-1 
        for j = 2 : M  %start at 2 because the the full integral 
                       %will be 0 when mu is 0 
            %Band A 
            int_z1_A(i,j) = 0.5*(nA*nA)*sigma*(((Tguess(i,1))^4)*... 
                (F_lambda(lambda2,Tguess(i,1),nA))*... 
                (exp(kapA*z(i,1)/mu(j,1)))+((Tguess(i+1,1))^4)*... 
                (F_lambda(lambda2,Tguess(i,1),nA))*... 
                (exp(kapA*z(i+1,1)/mu(j,1))))*dz; 
            int_z2_A(i,j) = 0.5*(nA*nA)*sigma*(((Tguess(i,1))^4)*... 
                (F_lambda(lambda2,Tguess(i,1),nA))*... 
                (exp(-kapA*z(i,1)/mu(j,1)))+((Tguess(i+1,1))^4)*... 
                (F_lambda(lambda2,Tguess(i,1),nA))*... 
                (exp(-kapA*z(i+1,1)/mu(j,1))))*dz; 

             
            %Band B 
            int_z1_B(i,j) = 0.5*(nB*nB)*sigma*(((Tguess(i,1))^4)*... 
                (F_lambda(lambda3,Tguess(i,1),nB)-... 
                F_lambda(lambda2,Tguess(i,1),nB))*... 
                (exp(kapB*z(i,1)/mu(j,1)))+((Tguess(i+1,1))^4)*... 
                (F_lambda(lambda3,Tguess(i,1),nB)-... 
                F_lambda(lambda2,Tguess(i,1),nB))*... 
                (exp(kapB*z(i+1,1)/mu(j,1))))*dz; 
            int_z2_B(i,j) = 0.5*(nB*nB)*sigma*(((Tguess(i,1))^4)*... 
                (F_lambda(lambda3,Tguess(i,1),nB)-... 
                F_lambda(lambda2,Tguess(i,1),nB))*... 
                (exp(-kapB*z(i,1)/mu(j,1)))+((Tguess(i+1,1))^4)*... 
                (F_lambda(lambda3,Tguess(i,1),nB)-... 
                F_lambda(lambda2,Tguess(i,1),nB))*... 
                (exp(-kapB*z(i+1,1)/mu(j,1))))*dz; 

             
            %Band C 
            int_z1_C(i,j) = 0.5*(nC*nC)*sigma*(((Tguess(i,1))^4)*... 
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                (1-F_lambda(lambda3,Tguess(i,1),nC))*... 
                (exp(kapC*z(i,1)/mu(j,1)))+((Tguess(i+1,1))^4)*... 
                (1-F_lambda(lambda3,Tguess(i,1),nC))*... 
                (exp(kapC*z(i+1,1)/mu(j,1))))*dz; 
            int_z2_C(i,j) = 0.5*(nC*nC)*sigma*(((Tguess(i,1))^4)*... 
                (1-F_lambda(lambda3,Tguess(i,1),nC))*... 
                (exp(-kapC*z(i,1)/mu(j,1)))+((Tguess(i+1,1))^4)*... 
                (1-F_lambda(lambda3,Tguess(i,1),nC))*... 
                (exp(-kapC*z(i+1,1)/mu(j,1))))*dz; 
        end 
    end 

     
    %calcualte integrals over mu 
    for i = 1 : N 
        for j = 2 : M 
            int_G2_2_A(i,j) = int_G2_1_A(i,j)*sum(int_z1_A(:,j)); 
            int_G3_2_A(i,j) = int_G3_1_A(i,j)*sum(int_z2_A(:,j)); 
            int_G5_2_A(i,j) = int_G5_1_A(i,j)*sum(int_z1_A(1:i,j)); 
            int_G7_2_A(i,j) = int_G7_1_A(i,j)*sum(int_z2_A(:,j)); 
            int_G8_2_A(i,j) = int_G8_1_A(i,j)*sum(int_z1_A(:,j)); 
            int_G10_2_A(i,j) = int_G10_1_A(i,j)*sum(int_z2_A(i:N,j)); 

             
            int_G2_2_B(i,j) = int_G2_1_B(i,j)*sum(int_z1_B(:,j)); 
            int_G3_2_B(i,j) = int_G3_1_B(i,j)*sum(int_z2_B(:,j)); 
            int_G5_2_B(i,j) = int_G5_1_B(i,j)*sum(int_z1_B(1:i,j)); 
            int_G7_2_B(i,j) = int_G7_1_B(i,j)*sum(int_z2_B(:,j)); 
            int_G8_2_B(i,j) = int_G8_1_B(i,j)*sum(int_z1_B(:,j)); 
            int_G10_2_B(i,j) = int_G10_1_B(i,j)*sum(int_z2_B(i:N,j)); 

         
            int_G2_2_C(i,j) = int_G2_1_C(i,j)*sum(int_z1_C(:,j)); 
            int_G3_2_C(i,j) = int_G3_1_C(i,j)*sum(int_z2_C(:,j)); 
            int_G5_2_C(i,j) = int_G5_1_C(i,j)*sum(int_z1_C(1:i,j)); 
            int_G7_2_C(i,j) = int_G7_1_C(i,j)*sum(int_z2_C(:,j)); 
            int_G8_2_C(i,j) = int_G8_1_C(i,j)*sum(int_z1_C(:,j)); 
            int_G10_2_C(i,j) = int_G10_1_C(i,j)*sum(int_z2_C(i:N,j)); 
        end 
    end 

  
    for j = 1 : M 
        int_G4_2_A(j,1) = int_G4_1_A(j,1)*sum(int_z1_A(:,j)); 
        int_G9_2_A(j,1) = int_G9_1_A(j,1)*sum(int_z2_A(:,j)); 

         
        int_G4_2_B(j,1) = int_G4_1_B(j,1)*sum(int_z1_B(:,j)); 
        int_G9_2_B(j,1) = int_G9_1_B(j,1)*sum(int_z2_B(:,j)); 

         
        int_G4_2_C(j,1) = int_G4_1_C(j,1)*sum(int_z1_C(:,j)); 
        int_G9_2_C(j,1) = int_G9_1_C(j,1)*sum(int_z2_C(:,j)); 
    end 

     

     
    for i = 1 : N 

         
        TA(i,1) = (2/k)*((nA*nA)*sigma*(T0^4)*F_lambda(lambda2,T0,nA)*... 
            sum(int_G1_A(i,:))+sum(int_G2_2_A(i,:))+sum(int_G3_2_A(i,:))+... 
            (z(i,1)/L)*sum(int_G4_2_A)-sum(int_G5_2_A(i,:))+... 
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(nA*nA)*sigma*(T0^4)*F_lambda(lambda2,T0,nA)*sum(int_G6_A(i,:))+... 
            sum(int_G7_2_A(i,:))+sum(int_G8_2_A(i,:))+... 
            (1-(z(i,1)/L))*sum(int_G9_2_A)-sum(int_G10_2_A(i,:)));  

         
        TB(i,1) = (2/k)*((nB*nB)*sigma*(T0^4)*(F_lambda(lambda3,T0,nB)-... 
            

F_lambda(lambda2,T0,nB))*sum(int_G1_B(i,:))+sum(int_G2_2_B(i,:))+... 
            sum(int_G3_2_B(i,:))+(z(i,1)/L)*sum(int_G4_2_B)-... 
            sum(int_G5_2_B(i,:))+(nB*nB)*sigma*(T0^4)*... 
            (F_lambda(lambda3,T0,nB)-F_lambda(lambda2,T0,nB))*... 
            sum(int_G6_B(i,:))+sum(int_G7_2_B(i,:))+ sum(int_G8_2_B(i,:))+... 
            (1-(z(i,1)/L))*sum(int_G9_2_B)-sum(int_G10_2_B(i,:))); 

         
        TC(i,1) = (2/k)*((nC*nC)*sigma*(T0^4)*(1-F_lambda(lambda3,T0,nC))*... 
            sum(int_G1_C(i,:))+sum(int_G2_2_C(i,:))+sum(int_G3_2_C(i,:))+... 
            (z(i,1)/L)*sum(int_G4_2_C)-sum(int_G5_2_C(i,:))+... 
            (nC*nC)*sigma*(T0^4)*(1-F_lambda(lambda3,T0,nC))*... 
            sum(int_G6_C(i,:))+sum(int_G7_2_C(i,:))+sum(int_G8_2_C(i,:))+... 
            (1-(z(i,1)/L))*sum(int_G9_2_C)-sum(int_G10_2_C(i,:))); 

         
        T(i,1) = ((TL/L)-(T0/L))*z(i,1) + T0 + (TA(i,1) + TB(i,1) + TC(i,1)); 

         
    end 

     
    T(1,1) = T0; 
    T(N,1) = TL; 

     
    compare = norm(T - Tguess); 
    disp(compare); 

  
    Tguess = Tguess + relax*(T - Tguess); 
end 

 

A.7   Genetic Algorithm for TBC, Section 8.8 

Source code file:  genetic_algorithm_TBC.m 

 

User inputs:   System parameters and genetic algorithm parameters 

 

Source code: 

 
clear all; 
format('longg'); 
tic; 

  
%This program find the optimum parameters of a thermal barrier coating 
%system using a genetic algorithm based on measured data 

  
%Travis J. Moore, Brigham Young University, 2014 
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%user inputs 
M = 5;              %number of unknown properties to be determined: 
                    %T0, TL, kappa, e0, n, k 
N = 100;            %number of points in temperature profile 
P = M;              %total number of genes in each individual 
Q = 4;              %number of frequencies in band 
                    %(IT WILL ACTUALLY BE ONE MORE THAN THIS) 
L = 0.00015;        %thickness of TBC (meters) 
lambda1 = 2;        %lower wavelength of measurement band 
lambda2 = 2.4;      %upper wavelength of measurement band 
string = 10;        %number of bits in each binary string 
lower_T0 = 1700;    %lower bound of substrate temp for binary string 
upper_T0 = 2000;    %upper bound of substrate temp for binary string 
lower_TL = 1500;    %lower bound of surface temp for binary string 
upper_TL = 1900;    %upper bound of surface temp for binary string 
lower_e0 = 0.1;     %lower bound of emittance for binary string 
upper_e0 = 1;       %upper bound of emittance for binary string 
lower_n = 1.6;      %lower bound for refractive index for binary string 
upper_n = 2.2;      %upper bound for refractive index for binary string 
lower_kap = 0.1;    %lower bound of absorption coefficient for binary string 
upper_kap = 150;    %upper bound of absorption coefficient for binary string 
pop_size = 201;     %number of individuals in each generation 
                    %MUST BE ODD NUMBER 
tourn_size = 10;    %percent of population size used in tournament selection 
mut_rate = 70;      %percent chance of mutation for each chromosome 
cross_times = 3;    %number of times crossover is performed 
prec = 0.001;       %parameter precision 
meas_error = 0;     %percent measurement error added to measured signals 

  

  
%constants and initialization 
sigma = 5.67E-8;    %stefan-boltzmann constant 
dz = L/(N-1);       %length of z divisions 
iteration = 0; 
min_f = 10; 

  
%Preallocate arrays 
z = zeros(N,1); 
frequencies = zeros(Q+1,1); 
wavelengths = zeros(Q+1,1); 
calculated_signals = zeros(N+Q+1,pop_size); 
minimum_fitness = zeros(11,1); 
T0 = zeros(1,pop_size); 
TL = zeros(1,pop_size); 
e0 = zeros(1,pop_size); 
n = zeros(1,pop_size); 
kappa = zeros(1,pop_size); 
k = zeros(1,pop_size); 
total_error = zeros(pop_size,1); 
fitness = zeros(pop_size,1); 

  
%instrument response function: 2 - 2.4 new IRF 
IRF = [29480000000; 26970000000; 24910000000; 22730000000; 20540000000]; 

  
%simulated measurements 
%N = 100, kap = 100, T0=1500, TL=1300,e=0.8, n =2.1 L = 0.0002 2 - 2.4??? 
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measured_signals = [6.22E-11; 6.49E-11; 6.71E-11; 6.88E-11; 7.00E-11]; 
measured_signals = measured_signals.*IRF; 

  
%add measurement error 
measured_signals = (meas_error/100)*(measured_signals)+measured_signals; 

  
%create z vector 
for i = 1 : N 
    z(i,1) = (i-1)*dz; 
end 

  
%create wavelength vector 
for i = 1 : Q + 1 
    wavelengths(i,1) = lambda1 + ((lambda2 - lambda1)/Q)*(i-1); 
end 

  
%create frequency vector 
for i = 1 : Q + 1 
    frequencies(i,1) = wavelength_to_freq(wavelengths(i,1),1); 
end 

  
%create initial population 

  
%create random array of zeros and ones and convert it to string 
current_gen_bin_array = num2str(randi([0 1],pop_size,string*P)); 
%remove spaces from string 
for i = 1 : pop_size 
    current_gen_bin(i,:) = strrep(current_gen_bin_array(i,:), '  ', ''); 
end 

  
%start genetic algorithm 
for count = 1 : 1000 
    iteration = iteration + 1; 

     
    %forward problem 
    for i = 1 : pop_size 
        %convert the binary string to real TL 
        TL(i) = round(bin2real(current_gen_bin(i,1:string), lower_TL,... 
            upper_TL, string)/prec)*prec; 
        %convert the binary string to real e0 
        e0(i) = round(bin2real(current_gen_bin(i,1*string+1:2*string),... 
            lower_e0, upper_e0, string)/prec)*prec; 
        %convert the binary string to real T0 
        T0(i) = round(bin2real(current_gen_bin(i,2*string+1:3*string),... 
            lower_T0, upper_T0, string)/prec)*prec; 
        %convert the binary string to real kappa 
        kappa(i) = round(bin2real(current_gen_bin(i,3*string+1:4*string),... 
            lower_kap, upper_kap, string)/prec)*prec; 
        %convert the binary string to real n 
        n(i) = round(bin2real(current_gen_bin(i,4*string+1:5*string),... 
            lower_n, upper_n, string)/prec)*prec; 

         
        %if T0 < TL, switch them around 
        if T0(i) < TL(i) 
            T0_temp = T0(i); 
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            T0(i) = TL(i); 
            TL(i) = T0_temp; 
            T0_string_temp = current_gen_bin(i,2*string+1:3*string); 
            current_gen_bin(i,2*string+1:3*string)=... 
                current_gen_bin(i,1:string); 
            current_gen_bin(i,1:string) = T0_string_temp; 
        end 

         
        %call forward problem function to calculate the signal and 
        %temperature profile for each individual 
        calculated_signals(:,i) = forward_problem_TBC(T0(i),TL(i),... 
            kappa(i),e0(i),n(i),L,N,Q,lambda1,lambda2); 
    end 

    

  
    %the fitness of each idividual is the Euclidean norm of the error 
    %between the calculated and measured error 
    for i = 1 : pop_size 
        fitness(i,1)=norm(measured_signals-... 
            calculated_signals(N+1:N+Q+1,i).*IRF); 
    end 

     
    %find the best fit individual 
    [min_f, min_f_index] = min(fitness); 
    disp(min_f); 
    minimum_fitness(count+11,1) = min_f; 

     
    %break the loop if the best fit does not change after 11 generations 
    if minimum_fitness(count+11,1) == minimum_fitness(count,1) 
        break; 
    end 

         
    %elitism: put the best fit in the new generation 
    new_gen_bin(1,:) = current_gen_bin(min_f_index,:); 

     
    %use tournament selection for the rest of the new generation 
    for i = 2 : (pop_size+1)/2 
        for j = 1 : cross_times 
        %tournament selection 
        %create pool of mothers and fathers 
        mother_pool = randi(pop_size, round((tourn_size/100)*pop_size), 1); 
        father_pool = randi(pop_size, round((tourn_size/100)*pop_size), 1); 

         
        %pick the most fit mother 
        [mother_fit, mother_index] = min(fitness(mother_pool));  
        mother_index = mother_pool(mother_index); 

         
        %pick the best fit father 
        [father_fit, father_index] = min(fitness(father_pool)); 
        father_index = father_pool(father_index); 

         
            for j = 1 : cross_times 
                %crossover at gene corresponding to a parameter 
                chromosome_crossover_point = randi(P-1)*string; 
                new_gen_bin(i,1:chromosome_crossover_point)=... 
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                    current_gen_bin(mother_index,1:... 
                    chromosome_crossover_point); 
                new_gen_bin(i,chromosome_crossover_point+1:string*P)=... 
                    current_gen_bin(father_index,... 
                    chromosome_crossover_point+1:string*P); 
                new_gen_bin(((pop_size+1)/2)-1+i,1:... 
                    chromosome_crossover_point)=current_gen_bin(... 
                    father_index,1:chromosome_crossover_point); 
                new_gen_bin(((pop_size+1)/2)-1+i,... 
                    chromosome_crossover_point+1:string*P)=... 
                    current_gen_bin(mother_index,... 
                    chromosome_crossover_point+1:string*P); 
            end 
        end 
    end 

     
    %mutation - one in each parameter 
    for i = 2 : pop_size 
        for j = 1 : P 
            if rand(1) < mut_rate/100 
                rand_point = randi(string); 
                if new_gen_bin(i,(j-1)*string + rand_point) == '0' 
                    new_gen_bin(i,(j-1)*string + rand_point) = '1'; 
                else 
                    new_gen_bin(i,(j-1)*string + rand_point) = '0'; 
                end 
            end 
        end 
    end 

     
    %replace old generation with new 
    current_gen_bin = new_gen_bin; 
end 

  
%optimum parameter set 
[final_min_fit, final_min_fit_index] = min(fitness); 
TL_final = bin2real(current_gen_bin(final_min_fit_index,1:string),... 
    lower_TL,upper_TL,string); 
e0_final = bin2real(current_gen_bin(final_min_fit_index,... 
    1*string+1:2*string), lower_e0, upper_e0, string); 
T0_final = bin2real(current_gen_bin(final_min_fit_index,... 
    2*string+1:3*string),lower_T0, upper_T0, string); 
kappa_final = bin2real(current_gen_bin(final_min_fit_index,3*string+1:... 
    4*string), lower_kap, upper_kap, string); 
n_final = bin2real(current_gen_bin(final_min_fit_index,... 
    4*string+1:5*string),lower_n, upper_n, string); 

  
final_chromosome = forward_problem_TBC(T0_final,TL_final,... 
    kappa_final,e0_final,n_final,L,N,Q,lambda1,lambda2); 
final_parameters = [T0_final; TL_final; e0_final; n_final; kappa_final]; 
final_signals = final_chromosome(N+1:N+Q+1).*IRF; 

  
time = toc; 
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Source code file:  forward_problem_TBC.m 

 

User inputs: None. The function is called by “genetic_algorithm_TBC.m.” 

 

Source code: 

 
function [forward_problem_TBC] = forward_problem_TBC(T0,TL,kappa,e0,n,L,... 
                                    N,num_waves,lambda1,lambda2) 

  
%this function computes the irradiation on a detector from a TBC system 

  
%Travis J. Moore, Brigham Young University, 2014 

  
%define all of the constants 
dz = L/(N-1);                   %length of z divisions 
thetaA = 15;                    %acceptance angle of detector in degrees 
thetaArad = thetaA*(pi/180);    %acceptance angle of detector in radians 
sigma = 5.67E-8;                %stefan-boltzmann constant 

  
%Preallocate arrays 
z = zeros(N,1); 
int_1 = zeros(N,1); 
int_2 = zeros(N,1); 
wavelengths = zeros(num_waves,1); 
frequencies = zeros(num_waves,1); 
detector = zeros(num_waves,1); 

  
%create z vector 
for i = 1 : N 
    z(i,1) = (i-1)*dz; 
end 

  
%substrate interface 
r0 = 1-e0;          %reflectance 

  
%TBC surface 
rb = 0.5+((3*n+1)*(n-1)/(6*((n+1)^2)))+... 
    ((n*n*((n*n-1)^2)/((n*n+1)^3))*log((n-1)/(n+1)))-... 
    (2*(n^3)*(n*n+2*n-1)/((n*n+1)*((n^4)-1)))+... 
    ((8*(n^4)*((n^4)+1))/((n*n+1)*(((n^4)-1)^2)))*log(n); 
rL = 1-(1-rb)/(n^2);   %reflectance 
tL = 1 - rL;           %transmitance 

  
%assume a linear temperature profile 
T = T0 + ((TL-T0)/L)*z; 

  
%once the temperature profile is calculated, the signal to the detector can 
%be calculated over the spectrum 

  
%discretize the spectrum over which measurements will be made 
for i = 1 : num_waves + 1 
    wavelengths(i,1) = lambda1 + ((lambda2 - lambda1)/num_waves)*(i-1); 
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end 

  
for i = 1 : num_waves + 1 
    frequencies(i,1) = wavelength_to_freq(wavelengths(i,1),1); 
end 

  
%calculate detector signals 

  
%calculate R terms with mu = 1 
Rlam = 1/(1-r0*rL*exp(-2*kappa*L)); 

  
%perform numerical integrals over z at and compute irradiation at discrete 
%frequencies 
for j = 1 : num_waves + 1 
    for i = 1 : N 
        int_1(i,1) = planck_freq(frequencies(j,1),T(i,1),n)*... 
            exp(-kappa*(L+z(i,1)))*dz; 
        int_2(i,1) = planck_freq(frequencies(j,1),T(i,1),n)*... 
            exp(-kappa*(L-z(i,1)))*dz; 
    end 
    detector(j,1) = tL*Rlam*(e0*planck_freq(frequencies(j,1),T0,n)*... 
        exp(-kappa*L)+r0*kappa*sum(int_1)+... 
        kappa*sum(int_2))*(1-cos(thetaArad)); 
end 

  
%put the temp profile and signals in a vector 
forward_problem_TBC = cat(1,T,detector); 

 

 

Source code file:  planck_freq.m 

 

User inputs: None. The function is called by the “forward_problem_TBC.m” 

function which is called by “genetic_algorithm_TBC.m.” 

 

Source code: 

 
function [planck_freq] = planck_freq(freq, T, n) 

  
%this function gives the spectral emissive power of a black body based 
%on the Planck Function 
%units: W/(m^2 Hz) 

  
%Travis J. Moore, Brigham Young University, 2014 

  
%constants 
c0 = 2.998E8; 
h = 6.626E-34; 
k = 1.3807E-23; 

  
planck_freq = (2*pi*h*(freq^3)*n*n)/((c0*c0)*(exp((h*freq)/(k*T))-1)); 
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A.8  Instrument Response Function for OFT, Section 10.9 

Source code file:  IRF_OFT.m 

 

User inputs: Properties and parameters of optical fiber thermometer system. 

 

Source code: 

 
clear all; 

  
%This program finds the instrument response function using the FTIR signals 
%collected from a blackbody radiator at different temperatures 

  
%Travis J. Moore, Brigham Young University, 2014 

  
%user inputs 
L = 2.23;       %length of fiber 
D = 0.0004;     %fiber diameter 
Tinf = 300;     %ambient temperature 
Tsur = 300;     %surroundings temperature 
e = 0.5;        %coating emittance 
k = 2;          %thermal conductivity of fiber 
h = 2;          %average convection coefficient along fiber 
n = 1.5;        %refractive index of fiber 
kappa = 0.15;   %spectral absorption coefficient 
N = 100;        %points along fiber 
num_temps = 6;  %number of temperatures in calibration 
num_freqs = 6;  %number of frequency 

  
%constants 
C1 = 0.59552137E-16;    %Wm^2/sr 
C2 = 0.014387752;       %mK 
c0 = 299792458;         %speed of light, m/s 

  
dz = L/(N-1);   %length of z divisions in fiber 
%create z vector 
for i = 1 : N 
    z(i,1) = (i-1)*dz; 
end 

  
%black body temperatures (K) 
TC(1) = 628; 
TC(2) = 704; 
TC(3) = 847; 
TC(4) = 923; 
TC(5) = 992; 
TC(6) = 1122; 

  
%import CSV files 
load BB_628.csv; 
load BB_704.csv; 
load BB_847.csv; 
load BB_923.csv; 
load BB_992.csv; 
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load BB_1122.csv; 

  
%create a single matrix of the wavenumbers 
wavenumbers = BB_628(:,1);                          %inverse centimeters 

  
%convert to wavelength 
wavelengths = (1./wavenumbers).*10000;              %micrometers 

  
%convert to frequency 
frequency = (c0./(wavelengths./1000000));           %Hertz 
frequency_TH = (c0./(wavelengths./1000000)).*1E-12; %Tera-Hertz 

  
freq(1) = frequency(247); 
freq(2) = frequency(254); 
freq(3) = frequency(260); 
freq(4) = frequency(268); 
freq(5) = frequency(275); 
freq(6) = frequency(283); 

  
%concatenation of signal files into a single matrix 
signals = [BB_628(247,2) BB_704(247,2) BB_847(247,2) BB_923(247,2)... 
    BB_992(247,2) BB_1122(247,2); 
    BB_628(254,2) BB_704(254,2) BB_847(254,2) BB_923(254,2) BB_992(254,2)... 
    BB_1122(254,2); 
    BB_628(260,2) BB_704(260,2) BB_847(260,2) BB_923(260,2) BB_992(260,2)... 
    BB_1122(260,2); 
    BB_628(268,2) BB_704(268,2) BB_847(268,2) BB_923(268,2) BB_992(268,2)... 
    BB_1122(268,2); 
    BB_628(275,2) BB_704(275,2) BB_847(275,2) BB_923(275,2) BB_992(275,2)... 
    BB_1122(275,2); 
    BB_628(283,2) BB_704(283,2) BB_847(283,2) BB_923(283,2) BB_992(283,2)... 
    BB_1122(283,2)]; 

  
%calculate temperature profile 
for i = 1 : num_temps 
    T(:,i) = temp_profile(TC(i)+273.15,Tinf,Tsur,e,k,h,L,D,N); 
end 

  
%numerical integration terms 
for i = 1 : N 
    for j = 1 : num_temps 
        for l = 1 : num_freqs 
            num_int(i,j,l) = (planck_freq(freq(l),T(i,j),n)*... 
                exp(-kappa*(L-z(i,1))))*dz; 
        end 
    end 
end 

  
%calculate G term 
for i = 1 : num_temps 
    for j = 1 : num_freqs 
        G(i,j) = (planck_freq(freq(j),TC(i)+273.15,n))*exp(-kappa*L)... 
            +kappa*sum(num_int(:,i,j)); 
    end 
end 
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%compute first order curve fit to data pairs 
for i = 1 : num_freqs 
    p(i,:) = polyfit(signals(:,i),G(i,:)',2); 
end 

  
%IRF for each frequency 
A = p(:,1); 
B = p(:,2); 

C = p(:,3); 

 

 

Source code file:  temp_profile.m 

 

User inputs: None. The function is called by the “IRF_OFT.m” 

 

Source code: 

 
function [temp_profile] = temp_profile(TC,Tinf,Tsur,e,k,h,L,D,N) 

  
%This function uses the parameters of an OFT system and outputs the 
%temperature profile along the fiber 

  
%Travis J. Moore, Brigham Young University, 2014 

  
dz = L/(N-1);       %length of z divisions in fiber 
sigma = 5.67E-8;    %stefan-boltzmann constant 

  
%create z vector 
for i = 1 : N 
    z(i,1) = (i-1)*dz; 
end 

  
%select which temps will be used to linearize the T^4 terms 
Tlin = Tsur; 

  
%particular solution 
Tp = ((h*Tinf)+(e*sigma*(Tsur^4)))/(h+(e*sigma*(Tlin^3))); 

  
%roots of auxliary equation 
p = ((4/(k*D))*(h+(e*sigma*(Tlin^3))))^(1/2); 

  
%constants 
c1 = TC-Tp-((Tinf-Tp+(Tp-TC)*exp(p*L))/(exp(-p*L)-exp(p*L))); 
c2 = (Tinf-Tp+(Tp-TC)*exp(p*L))/(exp(-p*L)-exp(p*L)); 

  
for i = 1 : N 
    T(i,1) = (c1*exp(p*z(i,1)))+(c2*exp(-p*z(i,1))) + Tp; 
    if T(i,1) < Tinf 
        T(i,1) = Tinf; 
    end 
end 
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for i = 2 : N 
    if T(i,1) > T(i-1,1) 
        T(i,1) = Tinf; 
    end 
end 

  
temp_profile = T; 

 


