
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2014-07-01

A Computational Hybrid Method for Self-
Intersection Free Offsetting of CAD Geometry
Garrett Clark Bodily
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Bodily, Garrett Clark, "A Computational Hybrid Method for Self-Intersection Free Offsetting of CAD Geometry" (2014). All Theses
and Dissertations. 5293.
https://scholarsarchive.byu.edu/etd/5293

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5293&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5293&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F5293&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5293&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5293&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F5293&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5293?utm_source=scholarsarchive.byu.edu%2Fetd%2F5293&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A Computational Hybrid Method for Self-Intersection Free

Offsetting of CAD Geometry

Garrett Bodily

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

C. Greg Jensen, Chair
Christopher A. Mattson

David T. Fullwood

Department of Mechanical Engineering

Brigham Young University

July 2014

Copyright © 2014 Garrett Bodily

All Rights Reserved

ABSTRACT

 A Computational Hybrid Method for Self-Intersection Free
Offsetting of CAD Geometry

Garrett Bodily

Department of Mechanical Engineering, BYU
Master of Science

Surface offsetting is a valuable tool used in Computer Aided Design (CAD). An offset

surface is a collection of points that are at a constant distance from another surface. An offset
surface is created in CAD by selecting a surface and then specifying the distance that the surface
is to be offset. If a surface is selected and a distance of D is specified, then the resulting offset
surface should always be distance D from the original surface.

The surface offset tool can be used for many applications. Modeling of composites or
other layered manufacturing processes rely heavily on offset surfaces. Thin walled parts such as
injection molded components are often modeled using the offset tool. Coating processes can also
be modeled using the offset tool.

Modern CAD systems have surface offsetting tools and are widely used throughout
industry. However, CAD systems often fail to produce valid results. The process of surface
offsetting can often result in surface self-intersections as well as surface degeneracies. Self-
intersections and degeneracies make the surfaces invalid because they are physically impossible
to create and CAD systems cannot use these invalid surfaces to represent solid bodies. The
surface offset tool is therefore, one of the most challenging CAD tools to implement. The
process of avoiding, detecting and removing surface self-intersections is extremely challenging.
Much research in the field of CAD is dedicated to the detection and removal of surface self-
intersections. However, the methods proposed in the literature all suffer from robustness
problems.
The purpose of this research is to introduce a method that creates valid offset surfaces and does
not suffer from the problem of creating surface self-intersections. This method uses a numerical
approach that approximates the offset surface and avoids all self-intersections. Because no self-
intersections are created, the method does not require intersection tests of any kind. The value of
this method is demonstrated by comparing its results with results from leading CAD systems.

Keywords: offset surface, self-intersection

ACKNOWLEDGEMENTS

I would like to thank my committee chair Dr. Jensen for helping this thesis become a

reality. I would also like to thank my dear wife, Merilee, for supporting me and taking such good

care of me while I pursued this goal.

iv

TABLE OF CONTENTS

LIST OF TABLES ..vii

LIST OF FIGURES ...viii

1 Introduction ... 1

 Problem Statement .. 1

 Thesis Objectives .. 2

 Research Delimitations ... 3

 Document Organization .. 3

2 Background ... 5

 CAD Basics ... 5

2.1.1 BREP Topology Structure .. 5

2.1.2 Geometric Data ... 6

2.1.3 Parametric Geometric Data ... 7

2.1.4 Bezier and NURBS ... 7

2.1.5 Derivatives of NURBS ... 8

 Surface Offsetting ... 8

2.2.1 Offset Surface Definition .. 9

2.2.2 Self-Intersections .. 10

 Tessellated Surfaces .. 13

 Computational Methods .. 13

2.4.1 Computational Offset Surfaces ... 14

2.4.2 Volumetric Offsets and Distance Fields ... 15

2.4.3 Surface Contouring ... 16

2.4.4 Surface Reconstruction ... 17

v

 Pros and Cons of Offset Methods ... 17

3 Method ... 19

 Introduction ... 19

 Geometric Method .. 19

 Computational Method ... 21

 Hybrid Method .. 22

 Original Research ... 23

 Convert Parametric CAD Geometry to Tessellated Geometry 24

 Create Tessellated Offset Surface ... 24

 Convert Offset Back to CAD .. 25

3.8.1 Project Geometry Onto Offset .. 25

3.8.2 Recreation of Basic Parametric CAD Geometry .. 26

3.8.3 Recreation of Free-Form Parametric CAD Geometry .. 26

 Conclusion .. 27

4 Implementation ... 29

 Implementation in 2D ... 29

4.1.1 Conversion of 2D Parametric CAD Geometry to Tessellated Geometry 30

4.1.2 Signed Distance Field Creation .. 31

4.1.3 Marching Triangles ... 32

4.1.4 Geometry Projection ... 34

4.1.5 Line Segment Splitting ... 34

4.1.6 Recreation of Curves ... 36

4.1.7 Final Product ... 38

 Implementation in 3D ... 39

4.2.1 Conversion of 3D Parametric CAD Geometry to Tessellated Geometry 39

vi

4.2.2 Tessellation Storage in Half-Edge Data Structure .. 39

4.2.3 Signed Distance Field Creation .. 41

4.2.4 Marching Tetrahedron .. 42

4.2.5 Geometry Projection ... 43

4.2.6 Face Subdivision by Modified Ear Clipping .. 45

4.2.7 Recreation of Vertices ... 47

4.2.8 Recreation of Edges .. 48

4.2.9 Recreation of Faces ... 49

 Putting it All Together .. 54

 Accuracy of the Hybrid Method ... 54

5 Results .. 57

 Test Parts ... 57

 Commercial CAD Systems ... 59

5.2.1 NX Results .. 59

5.2.2 Pro Engineer Results ... 63

5.2.3 CATIA Results .. 67

5.2.4 SolidWorks Results ... 71

5.2.5 Inventor Results .. 75

 Summary of CAD System Results .. 79

 Offset Tool Results ... 80

 Summary of Hybrid Method Results .. 84

 Test Case 7 .. 85

 Conclusion .. 88

6 Conclusions .. 89

REFERENCES .. 91

vii

LIST OF TABLES

Table 4-1: Surface Offset Methods ..49

Table 5-1: Accuracy of CAD Results ..80

Table 5-2: Summary of All Results ...85

viii

LIST OF FIGURES

Figure 2-1: Local Self-Intersection ..11

Figure 2-2: Global Self-Intersection ..11

Figure 3-1: CAD Offset Method ..20

Figure 3-2: Computational Method ...21

Figure 3-3: Hybrid Method ..23

Figure 4-1: Curve Tessellation ...30

Figure 4-2: Signed Distance Field ...32

Figure 4-3: Marching Triangles ...33

Figure 4-4: Contouring ..34

Figure 4-5: Geometry Projection ...35

Figure 4-6: Tessellation to CAD ..38

Figure 4-7: Surface Tessellation ..39

Figure 4-8: Half-Edge Data Structure ..41

Figure 4-9: Marching Tetrahedron ...42

Figure 4-10: Geometry Projection ...43

Figure 4-11: Modified Ear Clipping ..46

Figure 4-12: Vertex Creation ...48

Figure 4-13: Parameterization of Tessellated Surface ...50

Figure 4-14: Surface Genus ...51

Figure 4-15: Control Point Grid ...52

Figure 4-16: Extrapolating Point Locations ...53

Figure 4-17: Tessellated Surface to NURBS ...54

Figure 4-18: Error Introduced by Contouring ..55

ix

Figure 5-1: Simple Test Parts ..58

Figure 5-2: Complex Test Parts ...58

Figure 5-3: NX Part 1 ..60

Figure 5-4: NX Part 2 ..60

Figure 5-5: NX Part 3 ..61

Figure 5-6: NX Part 4 ..61

Figure 5-7: NX Part 5 ..62

Figure 5-8: NX Part 6 ..62

Figure 5-9: NX Part 7 ..63

Figure 5-10: Pro/E Part 1 ...64

Figure 5-11: Pro/E Part 2 ...64

Figure 5-12: Pro/E Part 3 ...65

Figure 5-13: Pre/E Part 4 ...65

Figure 5-14: Pro/E Part 5 ...66

Figure 5-15: Pro/E Part 6 ...66

Figure 5-16: Pro/E Part 7 ...67

Figure 5-17: CATIA Part 1 ..68

Figure 5-18: CATIA Part 2 ..68

Figure 5-19: CATIA Part 3 ..69

Figure 5-20: CATIA Part 4 ..69

Figure 5-21: CATIA Part 5 ..70

Figure 5-22: CATIA Part 6 ..70

Figure 5-23: CATIA Part 7 ..71

Figure 5-24: SolidWorks Part 1 ...72

Figure 5-25: SolidWorks Part 2 ...72

x

Figure 5-26: SolidWorks Part 3 ...73

Figure 5-27: SolidWorks Part 4 ...73

Figure 5-28: SolidWorks Part 5 ...74

Figure 5-29: SolidWorks Part 6 ...74

Figure 5-30: SolidWorks Part 7 ...75

Figure 5-31: Inventor Part 1 ...76

Figure 5-32: Inventor Part 2 ...76

Figure 5-33: Inventor Part 3 ...77

Figure 5-34: Inventor Part 4 ...77

Figure 5-35: Inventor Part 5 ...78

Figure 5-36: Inventor Part 6 ...78

Figure 5-37: Inventor Part 7 ...79

Figure 5-38: Hybrid Method Part 1 ...81

Figure 5-39: Hybrid Method Part 2 ...81

Figure 5-40: Hybrid Method Part 3 ...82

Figure 5-41: Hybrid Method Part 4 ...82

Figure 5-42: Hybrid Method Part 5 ...83

Figure 5-43: Hybrid Method Part 6 ...83

Figure 5-44: Hybrid Method Part 7 ...84

Figure 5-45: Hybrid Method Part 7 ...86

Figure 5-46: Genus 1 Surface ..86

Figure 5-47: Cutting the Surface ..87

Figure 5-48: Cutting the Surface ..87

Figure 5-49: Test Part 7 Modified ...88

1

1 INTRODUCTION

In the last few decades, the engineering industry has been revolutionized by the advent of

computers and more specifically by Computer Aided-Design (CAD). CAD systems have

transitioned from simple 2D drafting programs to fully 3D solid modeling environments in

which a designer can use a variety of tools to quickly and accurately design products. Sketched

based tools, Boolean operations, advanced surfacing techniques and many other powerful tools

allow the designer to create virtually anything. One of the tools that can be used in the design

process is an offset surface. Surface offsetting is a valuable tool in the disciplines of engineering

and manufacturing. It is also, however, one of the most difficult and problematic geometric

operations to perform. State-of-the-art CAD systems that are used by even the most advanced

engineering companies often fail to produce offset surfaces.

 Problem Statement

Offset surfaces are required for many engineering and manufacturing steps and

applications within the design process. State-of-the-art commercial CAD systems can produce

offset surfaces of single sheets or of solid bodies. These CAD systems, however, often fail to

produce the offset of a complex object once the offset distance has passed a critical value. This

lack of robustness for offset generation among commercial CAD systems greatly limits their

capabilities and can often lead to extensive “work-arounds” and secondary solutions that result in

lost productivity and lower quality CAD models.

2

 Thesis Objectives

The goal of this research is to demonstrate a new method of creating offset surfaces that

is general enough that it can create a valid offset surface for any geometry at any distance. The

author has yet to find a CAD system with offset capabilities robust enough to do this, and such a

tool would be of great value to engineers and product designers. In order for this method to

successfully overcome the challenges presented by offset surfaces, several key issues will need

to be addressed. Self-intersections of individual surfaces will need to be detected or avoided,

global intersections will also need to be detected or avoided, and a method for trimming and

sewing the offset surfaces together will also need to be presented.

In the process of researching this topic, methods have been found that address these

different issues. Each of the existing methods solves a very specific problem of the offset process

but none of them are considered to be a general solution. These known methods, which will be

discussed in greater detail in the following chapter, are the groundwork of this research. The

objective of this thesis is to show that by combining known methods and creating a few new

methods a powerful and robust general solution can be created.

The objectives of this research are:

1. Develop a robust general method for error free surface offsetting.

2. Use this general method to show how it addresses the different problems that are

inherent to surface offsetting.

3. Demonstrate the value of this method by creating offsets for several parts that

cannot be offset by leading CAD systems.

3

 Research Delimitations

In order to limit the scope of this project, only a small set of geometric elements will be

used to demonstrate the usefulness of the tool. CAD systems can create many different types of

curves and surfaces, but for this project the geometric entities will be limited to the following.

Curves: Arcs, Lines, NURBS curves

Surfaces: Planes, Cylinders and NURBS surfaces

This may seem like a very small sample of the geometric entities but this list represents

both the easiest elements to offset and also the most difficult to offset. By proving the method on

the easiest and also the most difficult it can be assumed that all other geometric elements can be

handled. The research will also be limited in scope by implementing the tool in only one CAD

system. The tool will be created in such a way that it will only interact with the CAD system to

extract the input geometry and then to display the result but all calculations in between are

independent of the CAD system. This tool could in theory be easily ported to any other CAD

system.

 Document Organization

In the following chapters this thesis will first discuss what methods have already been

created and the benefits and drawbacks to each one. Next the idealized method will be discussed.

Chapter four will cover the actual implementation of this method. Chapter five will demonstrate

that the implemented method works and has value. Chapter six will discuss what conclusions can

be drawn from the results of this research and will also suggest what future work is needed.

5

2 BACKGROUND

 CAD Basics

In order to better understand the process of offsetting and the complexities it involves, it

is valuable to first understand the inner workings of a modern CAD system. In order for a CAD

system, or a computer in general, to be able to represent and perform operations on geometry, it

must be represented in a numerical format. Points, curves and surfaces must be stored in way that

they can be represented as a set of numbers and the relationship between the various geometric

entities must also be stored. For the purposes of this research both 2D and 3D shapes are

considered.

2.1.1 BREP Topology Structure

Modern CAD systems rely on a data structure known as a Boundary Representation or

BREP (Braid 1975). The BREP model is a topological structure that stores the geometric

information of a solid model in an organized way that is best suited for CAD. A solid object in

CAD is represented by its boundary that bounds a closed volume. This boundary, or shell, is a

collection of faces (Braid 1975). Each face is a region of a surface that is defined by a geometric

surface (e.g. plane, sphere, cylinder, etc.) and a set of edges known as a loop (Braid 1975)

(Forsyth 1995). A loop is a closed set of one or more edges that bound a region of the surface.

Outside of this region the surface is not used. A face must have at least one loop but can have

6

more than one if the face contains holes. Edges are portions of curves (e.g. line, arc, etc.) that are

bounded by vertices and vertices are just points in space (Braid 1975).

Topology does not define the actual shape of the solid object; it only defines how the

various pieces of the object are connected. The actual shape of the object is defined by the

various geometric entities associated with the topology. Faces are associated with surfaces, edges

are associated with curves and vertices are associated with points.

2.1.2 Geometric Data

These various geometric entities must be stored by the CAD system in a mathematical

form that is easy for the CAD system to work with. The easiest piece of geometry to store is the

point which is just a vector of two values (x, y coordinates) in 2D and three values (x, y, z

coordinates) in 3D. Curves are more complex to store and surfaces are more complex still. For

curves and surfaces there are various ways to mathematically represent them, two common forms

of curve and surface equations are the explicit and the implicit forms. The explicit form takes the

form of y = f(x) in 2D and z = f(x, y) in 3D and the implicit form is f(x, y) = 0 in 2D and f(x, y,

z) = 0 in 3D. These two forms are known as non-parametric because the individual coordinates

depend on each other (Piegl 1997) (Rogers 2001) (Shah 1995) (Faux 1984). These forms of

equations have many uses are commonly used in mathematical fields but in the field of CAD

there are several limitations that make them sub-optimal. Explicit and implicit forms are

coordinate system dependent which makes it difficult to apply geometric transformations (e.g.

rotating) (Rogers 2001) (Shah 1995). Multi-valued functions cannot be represented easily and

even simple shapes such as a circle would need to be broken into multiple functions in order to

capture the entire curve (Faux 1984) (Rogers 2001). It is also difficult to compute consecutive

points on a curve in order to render it on a computer, because of the relationship between the

7

coordinates in explicit and implicit functions point locations may be difficult to solve for or may

even be un solvable (Shah 1995) (Faux 1984).

2.1.3 Parametric Geometric Data

Equations that are better suited for CAD systems are known as parametric equations

(Faux 1984) (Piegl 1997). Parametric equations separate each coordinate to depend on an

independent variable known as a parameter (Shah 1995) (Piegl 1997) (Faux 1984) (Rogers

2001). The range of these parameters is typically normalized to 0 to 1 but is not required to be so

(Shah 1995) (Rogers 2001) (Piegl 1997). The parameter range can be scaled to any value without

changing the shape of the curve or surface, therefore the parameterization and the equation for a

curve or surface in parametric form is not unique (Rogers 2001) (Piegl 1997). Only one

parameter is required for a curve but two parameters are required for a surface (Piegl 1997)

(Rogers 2001) (Piegl 1987). Unlike the explicit and implicit equations, geometric

transformations can easily be applied to parametric equations (Faux 1984) and it is easy to

compute points in order along a curve or surface which makes it easier for a CAD system to

display the geometry (Shah 1995) (Faux 1984).

2.1.4 Bezier and NURBS

A very useful parametric curve and surface equation that is used heavily in CAD is the

Bezier curve and also the non-uniform rational b-spline, or NURBS, curve. The Bezier curve

was developed by Pierre Bezier and also Paul De Casteljau who were both looking for a way for

designers to easily define a freeform shape in engineering drawings (Shah 1995). NURBS were

first investigated by Ken Versprille (Piegl 1987) and are a more flexible version of a Bezier

curve. A NURBS curve as well as a NURBS surface can be made to exactly represent a Bezier

8

curve and Bezier Surface respectively (Piegl 1987) (Coquillart 1987), therefore, CAD systems

mainly support NURBS curves and are a vital part of CAD systems (Farin 1983) (Floater 1991)

(Rogers 2001) (Piegl 1987) (Shah 1995). NURBS are more flexible than Bezier curves because

they are not constrained to a specific number of control points but can have any number of

control points (Shah 1995), and despite having any number of control points are easily evaluated

(De Boor 1972) particularly for low degrees, the most common degree found in CAD being

degree three.

Part of the reason that NURBS are so vital to CAD is that not only can they represent any

free from shape, they can also represent common shapes exactly. NURBS curves can be made to

represent lines, arcs, circles, and conic sections (Coquillart 1987) (Piegl 1987) (Shah 1995)

(Rogers 2001). Also, NURBS surfaces can be made to represent common surface types such as

planes, cylinders, spheres and cones (Rogers 2001).

2.1.5 Derivatives of NURBS

NURBS curves and surfaces can also be derived like other curve and surface equations.

These derivatives are important because from them, key properties of the curve or surface can be

determined. Properties that are valuable to know for a NURBS curve or surface are the tangent

vectors, normal vectors and curvature.

 Surface Offsetting

Offset surfaces are an important geometric operation and have many applications. Offset

surfaces can be used for Rapid Prototyping (Liu 2009) (Kumar 2002) (Shen 2010), Tolerance

Analysis (Liu 2009), CNC Path generation (Liu 2009) (Pottman 1995) (Forsyth 1995)(Piegl

1999)(Kumar 2002) (Maekawa 1999)(Shen 2010) (Rossignac 1986) (Zhang 2011)(Faux

9

1984)(Seong 2005), Shelled models (Liu 2009) (Forsyth 1995) (Maekawa 1999), Filleting (Liu

2009) (Rossignac 1986), Thick Plates/sheet metal (Pottman 1995)(Faux 1984), Mold Creation

(Forsyth 1995), Clearance/tolerance checking (Forsyth 1995) (Maekawa 1999) (Shen 2010)

(Rossignac 1986)(Pavic 2008) (Zhang 2011)(Shah 1995), Is useful in both 2D and 3D

(Coquillart 1987), Modeling of composites (Kumar 2002) (Zhang 2011), Robot path planning

(Kumar 2002) (Maekawa 1999) (Shen 2010) (Rossignac 1986) (Zhang 2011)(Seong 2005),

Coating processes (Rossignac 1986). Mathematically it is a very simple geometric operation but

in reality is very complex. Offsetting of 2D shapes is very well understood and many CAD/CAM

systems can offset 2D profiles robustly but it is valuable to examine 2D offsetting because it

offers a comparison between established methods and the method presented in this paper. Also, it

is much easier to demonstrate methods in 2D.

2.2.1 Offset Surface Definition

Offset surfaces, also referred to in the literature as parallel surfaces (Maekawa

1999)(Forsyth 1995), are collections of points at a fixed distance from an object. These points

may be inside or outside of the object (Liu 2011). The offset surface is also a special case of the

Minkowski sum (Rossignac 1986) (Liu 2011) (Pavic 2008) (Varadhan 2004). The mathematical

definition of the offset surface is very simple, however, it has proven to be a very difficult and

complex operation (Liu 2011)(Tiller 1984).

ሻ࢚ሺࡻ ൌ ሻ࢚ሺ࡯ ൅ ࢾ	 ∗ ሻ (2-1)࢚ሺࡺ

,࢛ሺࡻ ሻ࢜ ൌ ,࢛ሺࡿ ሻ࢜ ൅ ࢾ	 ∗ ,࢛ሺࡺ ሻ (2-2)࢜

The offset surface is itself a parametric equation, O is the offset surface, S is the original

surface, d is the offset distance and N is the normal vector of the surface (Faux 1984) (Piegl

1999) (Pottman 1995) (Tiller 1984) (Farin 1989) (Seong 2005) (Elber 1991) (Kumar 2002)

10

(Piegl 1997) (Forsyth 1995). This equation is very simple and for many surfaces is trivial. For

common curve and surface types such as lines, arcs, planes, spheres, cylinders and also a very

special type of curve known as a Pythagorean Hodograph the offset curve or surface can be

offset and represented exactly (Farin 1989) (Tiller 1984) (Kumar 2002) (Elber 1991) (Maekawa

1999)(Shen 2010). For freeform curves and surfaces that are represented by NURBS curves or

surfaces, the offset curve or surface, in general, cannot be represented exactly or in the same

form as the original shape and instead must be approximated (Piegl 1999) (Seong 2005)

(Pottman 1995) (Tiller 1984) (Farin 1989) (Forsyth 1995) (Elber 1991) (Kulczycka 2002) (Jang

2005) (Piegl 1997). A large portion of the research with regards to offset curves and surfaces of

NURBS revolves around approximating the offset within a specified tolerance while using the

lowest number of control points and knots to do so.

The offset operation can be applied to single curves or surfaces or to entire 3D models

(Liu 2011). For offsetting a solid body, each individual face must be offset and then the

individual offset surfaces must be trimmed against each other in order to reconstruct a closed

volume (Yoo 2009) (Forsyth 1995) (Liu 2011). As the surfaces are trimmed against each other

changes in the topology can occur (Liu 2011). This process of trimming the offset surfaces

together can be difficult when surfaces meet at very low angles; however, this problem is small

compared to the problem of self-intersections.

2.2.2 Self-Intersections

Another area where much research is focused is the area of self-intersections. Self-

intersections are the reason that even though the offset equation is very simple, creating robust

offset surfaces is extremely complex. A self-intersection is when a curve, or surface, folds back

on itself creating a physically impossible shape, this behavior is undesirable (Seong 2005)(Tiller

11

1984). There are two types of self-intersections discussed in the literature, these are local and

global. Local self-intersections occur when the curvature of a surface is less than the offset

distance (Forsyth 1995) (Seong 2005) (Tiller 1984) (Elber 1991) (Maekawa 1999) (Kumar 2002)

(Faux 1984) (Pekerman 2008). Even in smooth and relatively simple curve or surfaces self-

intersections can occur when the offset distance has passed the critical value defined by the

curvature (Rossignac 1986). Figure 2.1 shows a simple curve that has been offset at two different

values; the larger offset has passed the maximum curvature causing it to intersect itself. Global

self-intersections can occur when two different points on a curve or surface offset to the same

location even with relatively low curvature (Seong 2005) (Elber 1991) (Maekawa 1999). Figure

2.2 shows a curve that globally self-intersects, which occurs even though the offset distance has

not passed the maximum curvature.

Figure 2-1: Local Self-Intersection

Figure 2-2: Global Self-Intersection

12

Self-intersections are difficult to locate (Elber 1991) (Thomassen 2001) (Elber 2009) and

even more difficult to avoid or remove (Coquillart 1987) (Seong 2005). Various methods have

been documented for locating and removing self-intersections from free-form curves and

surfaces. In the case of planar curves, locating and trimming self-intersections has become very

well understood and many robust algorithms have been developed. However, surfaces are a

different story. It is much more difficult to find/trim self-intersections in surfaces than curves

(Seong 2005) (Piegl 1999) (Pekerman 2008) (Thomassen 2001) (Jang 2005). In general methods

that have been developed for detecting self-intersections in curves do not, or are difficult to,

apply to surfaces. Algebraic methods have been developed for determining parameter values for

the surface where S(u0, v0) = S(u1, v1) and u0 != u1 and/or v0 != v1 (Maekawa 1999)

(Pekerman 2008) (Elber 2009) (Thomassen 2001) (Kumar 2002). This process is

computationally expensive to locate a single point of the self-intersection. Rarely do self-

intersections result in a single point but are in general typically a curve that must be discovered

through numerical marching techniques (Seong 2005) (Elber 1991) (Thomassen 2001). Another

method proposed in literature is a distance map between the original surface and the offset

surface. The offset surface should be at a constant distance from the original surface but if self-

intersections have occurred this distance can be less than the offset distance. This method is

fairly robust and like the previous mentioned method can detect both local and global self-

intersections (Seong 2005). Not all methods can detect both types of intersections (Elber 1991).

By checking the direction of the tangent vectors in the original surface and the offset surface and

checking for vectors that have reversed directions local intersections can be detected but not

global intersections (Pekerman 2008). A method is also presented to locate self-intersections in

13

surfaces by looking for self-intersections of the iso-curves of the surface (Kumar 2002). This

method is in general limited to very few surfaces. Most surfaces that intersect themselves do not

do so in such a clean and easily treatable manner.

If any self-intersections are detected, there is still additional work that must be done in

order to create a desirable offset surface. These self-intersections must be trimmed away leaving

only the valid region of the offset (Elber 1991)(Forsyth 1995)(Kumar 2002). This step of the

offsetting process can also be difficult for CAD systems to handle.

 Tessellated Surfaces

In contrast to the parametric curves and surfaces used in CAD to represent geometry, a

method for approximating geometry is a tessellated representation. Tessellated surfaces are

collections of points and faces, where each face is a triangle. Triangle meshes are the most

common method for approximating shapes (Jung 2004)(Jones 2006). Due to advancements in

computing power and memory, tessellated surfaces can be very highly accurate (Flutter 2001)

(Treece 1999). Tessellated surfaces are used widely in CAM, computer graphics, rapid

prototyping, robotics, reverse engineering and FEA (Flutter 2001) (Yoo 2009) (Jung 2004).

 Computational Methods

Computational methods are the process of taking very complex mathematical operations

and approximating them with much simpler mathematical operations. These simpler operations

must be performed many times over so the tradeoff is simpler operations but more of them. A

large portion of the research surrounding computational methods focuses on finding ways or

shortcuts to reduce memory usage (Pavic 2008) and also to increase the speed (Wang 2013).

14

However, the focus of this research is not on optimizing the computational routines but instead

focuses on the robustness of the method.

2.4.1 Computational Offset Surfaces

Due to the widespread use of tessellated surface approximations, computational methods

for calculating offset surfaces have evolved. Some methods are focused only on rendering the

offset surface but not actually calculating the tessellated body (Dziegielewski 2010). Methods for

calculating the tessellated offset have also been researched and involve moving the vertices of

the original tessellated surface along the normals of the surface (Malosio 2009) (Pavic 2008).

The normals can be calculated at the vertices by averaging the normals of the faces that connect

to the vertex (KIM 2004). These methods do not avoid self-intersections but because the

resulting surface is triangulated, more robust methods for finding and removing self-intersections

have been created. The self-intersections can be removed from 2D slices of the offset (KIM

2004) or the individual faces of the offset surface can be intersected and trimmed using triangle-

triangle intersection methods (Jung 2004) (Moeller 1997). However, even triangle-triangle

intersections tests, although more easily computed than NURBS self-intersections, can become

unstable in areas of cusps. Other methods for calculating offset approximations include a method

in which each vertex is offset to a solid sphere, each edge is offset to a cylinder and each face is

offset to a solid prism and all of these solids are united together to create the offset solid (Pavic

2008), fitting offset surfaces to scan data or point clouds (Liu 2009)(Zhang 2011), and also

“Shrink-wrapping” the object (Overveld 2003).

15

2.4.2 Volumetric Offsets and Distance Fields

The most robust method for creating a tessellated version of the offset surface is a

volumetric approach. In the volumetric approach, self-intersections are trivial (Jang 2005) (Shen

2010) (Liu 2011). In order to calculate an offset surface via the volumetric approach, a distance

field first needs to be computed. A distance field is a grid of points in which at each point the

minimum distance to the object is known, this distance can also be signed with negative

generally indicating the point is inside the object and positive as the point is outside the object

(Frisken 2006) (Yin 2011) (Jang 2005) (Jones 2006) (Varahan 2003). A distance field is

essentially an approximation of the implicit function of the object (Frisken2006). As with many

computational methods the smaller the spacing in the grid the higher the accuracy is (Shen

2010). In order to achieve higher accuracy and still maintain high speeds and low memory lots of

research regarding distance fields is focused on developing methods for calculating the distance

field quickly (Yin 2011) and also methods for storage and higher resolution (Pavic 2008) (Jones

2006) (Yin 2011).

Distance fields are used in many applications other than just offset surface calculations.

Distance fields have found use in digital design (Frisken2006) (Yin 2011), boolean operations

(Frisken2006) (Jones 2006), collision detection (Yin 2011) (Jones 2006), visualization (Yin

2011)(Jones 2006), round/fillet calculations (Frisken2006), medical imaging (Frisken2006), fluid

simulations (Frisken2006) (Jones 2006), robotics (Frisken2006), and FEA mesh generation

(Jones 2006).

Distance fields offer several advantages for creating offset surfaces. As mentioned before

volumetric approaches (i.e. distance fields) make handling self-intersections trivial (Jang 2005)

16

(Shen 2010) (Liu 2011). Furthermore, changes to topology are also handled robustly and

multiple offset surfaces can be generated from a single distance field (Frisken2006).

2.4.3 Surface Contouring

Once a distance field has been defined for a particular object, a method is needed in order

to extract the offset surface. It is desirable that the extracted surface be closed and self-

intersection free (Ju 2006). This process of extracting a surface from a distance field is known in

the literature as contouring (Treece 1999) (Ju 2006) (Varahan 2003). The most well-known

method of contouring is the marching cubes algorithm (Lorensen 1987). The marching cube

algorithm considers a cell comprised of 8 vertices and each vertex may be either inside the offset

surface or outside. This leads to a total of 256 (2^8 = 256) possible configurations for any given

cube. These 256 possible cases can then be combined by symmetry into only 15 unique cases

(Lorensen 1987) (Treece 1999) (Yoo 2009). However, some flaws have been found in the

marching cubes algorithm and other contouring methods have been developed to address these

flaws (Chernyaev 1995) (Treece 1999) (Varahan 2004). One weakness of marching cubes

algorithm is the difficulty in capturing sharp features (Varahan 2003) (Ju 2006). A proposed

solution to the sharp feature problem is the algorithm Dual Contouring that introduces the use of

hermite data to recreate sharp features (Ju 2002). Another weakness of marching cubes is the

occurrence of ambiguous cases where a surface may pass through a cube in multiple ways. This

ambiguity can leave holes in the surface which is undesirable. Variations of marching cubes have

been proposed to address this weakness (Varahan 2003) (Varahan 2004) (Yoo 2009) (Treece

1999) (Ju 2006) (Chernyaev 1995).

17

2.4.4 Surface Reconstruction

Of all of the methods for creating tessellated offset surfaces only one paper addressed the

idea of recreating parameterized geometry. The method presented slices the triangulated offset

surface using parallel planes and fits splines to the slices. These slices are then used to create

skinned surfaces that fit to the offset surface (Jang 2005).

 Pros and Cons of Offset Methods

Of the various offset methods presented, the two main areas are offsetting the individual

faces of the solid and attempting to locate and trim away self-intersections, and approximating

the offset using a distance field and a tessellated surface. The first method has the benefit of

producing actual CAD geometry which is desirable because the geometry can be used in further

modeling operations in the CAD system. The biggest draw back to the first method is that

dealing with self-intersections is extremely complex and CAD systems have very limited

capabilities to do so. The second method presents the exact opposite pros and cons. The

volumetric approach can handle self-intersections, both locally and globally, as well as

topological changes without issue but only produce tessellated surfaces. Tessellated surfaces are

valuable for visualization and some engineering applications such as CAM and FEA but cannot

be used to perform additional modeling operations in the CAD system. The purpose of this

research is to draw on both areas of research and create a hybrid method that has both the

advantages of dealing with self-intersections and topology changes robustly but also produces

parameterized CAD geometry.

19

3 METHOD

 Introduction

This chapter describes the steps that are taken to produce a self-intersection free offset

surface. As mentioned in the background section, there are two main offset methods that are

covered in the literature. These two methods are the geometric method and the computational

method. In order to understand the hybrid method proposed by this research it is best to review

the geometric and computational methods.

 Geometric Method

Figure 3.1 shows the overall geometric method. This method begins with parametric

CAD geometry and offsets each geometric element that comprises the shape (curves for 2D

shapes and surfaces for 3D shapes). Equations 2.1 and 2.2 are used to generate the offset for each

element. This equation does not avoid self-intersections. Therefore, depending of the complexity

of the geometry self-intersections can occur. These self-intersections must be located and

eliminated. Once the offset of each element has been produced, they are then trimmed against

each other to create the offset shape. The trimming portion of the process can also be difficult

and cause the process to fail.

20

The benefit of this method is that the final output is parameterized CAD geometry. This

is advantageous because it allows designers and engineers to work with parametric CAD

geometry and allowing further modeling steps to be taken in the CAD system. However, this

method has the disadvantage of having to locate and eliminate self-intersections in parametric

curves and surfaces. As mentioned in the previous chapter, locating self-intersections in 2D

profiles is well understood and CAD systems have this capability, but locating self-intersections

in 3D surfaces is extremely challenging and often prevents the CAD system from producing an

offset surface.

Figure 3-1: CAD Offset Method

21

 Computational Method

The computational approach is described in figure 3.2. This method begins with a

tessellated version of the geometry. From this tessellated model a signed distance field is created.

The signed distance field is a grid of points where at each point the minimum distance to the

object is known along with whether the point is inside or outside of the object. Once the signed

distance field is created a process known as contouring is used to extract a tessellated surface that

approximates the offset surface.

Figure 3-2: Computational Method

Unlike the geometric method, the computational method does not run the risk of creating

self-intersections. Using a signed distance field with contouring guarantees that no self-

`

22

intersections will occur. Errors arising from trimming are avoided by the computational method.

The disadvantage to this method is that the output a tessellated surface which is only an

approximation of the offset and has no actual geometric entities associated with it. This

disadvantage greatly limits the usefulness of the computational method because it cannot be used

for further geometric modeling operations in the CAD system.

 Hybrid Method

This research combines both the geometric and computational methods together to create

a more robust general method. This hybrid method is illustrated in figure 3.3. In order to make

this method fit into the work flow of CAD users both the input and output must be parametric

CAD geometry. The first step, therefore, of the hybrid method is to convert the parametric CAD

geometry into tessellated geometry. With this approximated form the computational method can

then be used to create a tessellated offset surface. This approximated version now is no longer in

the work flow of the CAD user therefore it must be converted back to parametric CAD

geometry. The last step of the hybrid method is converting tessellated geometry back to

parametric CAD geometry that CAD systems can use.

The hybrid method can be summarized as follows:

Step 1 – Convert parametric CAD geometry to tessellated geometry.

Step 2 – Create tessellated offset using computational approach.

Step 3 – Convert tessellated offset back into parametric CAD geometry.

23

Figure 3-3: Hybrid Method

 Original Research

In the above summery of the hybrid method, steps 1 and 2 are carried out by established

methods described in the literature. However, step 3 is where the true value of this research lies.

24

The process of converting a tessellated offset surface back to parametric CAD geometry is the

most challenging and important step of this process.

 Convert Parametric CAD Geometry to Tessellated Geometry

CAD systems rely on the ability to convert geometric entities to simple representations in

order to render the objects to the screen. Curves are approximated with line segments and

surfaces are approximated with triangles. Modern graphics hardware on computers can draw

lines and triangles very efficiently. Therefore, any part that is displayed by a CAD system is a

demonstration of tessellated geometry. This method relies on the built in functionality of CAD

systems to tessellate the geometry.

 Create Tessellated Offset Surface

The computational method is now followed to create a tessellated offset surface. As

described earlier, a signed distance field is a regular grid of points that surround the object. At

each point the minimum distance to the object is known. It is also known if the point lies inside

or outside of the object. Grid points that are located inside the object have a negative sign for

their distance. Once a distance field is created the tessellated offset surface can be created using

contouring. This method relies on a variation of the Marching Cubes algorithm known as

Marching Tetrahedron. Marching tetrahedron groups the grid points into sets of four thereby

forming tetrahedron shaped cells. Each cell is analyzed individually and based on the distances

measured at each grid point the cell can be classified as one of three possible cases.

It is important to point out that the Marching tetrahedral algorithm is guaranteed to

produce a self-intersection free offset surface. This is due to the fact that each cell is disjoint

25

from one another and the triangular faces generated by the algorithm are always contained within

the cells.

 Convert Offset Back to CAD

The final step of the hybrid method is to convert the tessellated offset surface back to

parametric CAD geometry. This is the most difficult and most important step of the process.

Methods do exist in the literature for converting tessellated geometry to parametric CAD

geometry but these typically involve reverse engineering and tessellated models that do not have

CAD models associated with them. Because the tessellated offset generated in this method has a

CAD model associated with it, the geometric entities of the original shape can be used to help in

the process of converting back to CAD.

3.8.1 Project Geometry Onto Offset

First, every point on the tessellated offset surface is projected back to the original shape.

Or in other words, the nearest point is found on the original shape that corresponds to each point

on the offset. The nearest point is used to determine which points on the offset belong to which

geometric entity of the original shape. Once all points on the tessellated offset surface are

associated with a geometric entity of the original shape the elements of the tessellated offset are

analyzed for changes in geometry.

In 2D the tessellation is comprised of line segments where each segment is defined by

two nodes. If the two nodes have different geometry then the line segment is split. In 3D the

tessellation is comprised of triangular faces that are defined by three nodes. If the nodes do not

all share the same geometry then the face is subdivided.

26

3.8.2 Recreation of Basic Parametric CAD Geometry

Once every element of the tessellated offset has been analyzed and split accordingly, the

elements are grouped together based on the geometric entity they are associated with. For

geometric entities that are simple geometry (e.g. lines, arcs, planes, cylinders, spheres, etc.) the

offset can be calculated exactly and that portion of the tessellated offset surface can be replaced

with the exact geometric representation.

3.8.3 Recreation of Free-Form Parametric CAD Geometry

As was mentioned in the chapter 2, offsets of free-form geometry must be approximated.

Therefore, portions of the tessellated offset surface that correspond to free-form geometry must

be fit with a NURBS curve or surface.

In 2D the line segments of the tessellated offset are replaced with NURBS curves that are

fit to tessellated data. This process involves placing equally spaced points along the line

segments and then using these points as control points to create a NURBS curve.

In 3D this process is more complex. Now the tessellated offset must be fit with a NURBS

surface. In order to fit a NURBS surface to a region of the tessellated offset surface, the region

must first be parameterized, or in other words, represented in 2D. The parameterization is

accomplished with a method known as Least Squares Conformal Maps (Levy 2002).

Once the surface has a 2D representation, a regular grid of points is placed on the surface.

For grid points that lie inside the boundary of the offset their 3D position is determined by

placing the point on the tessellated face.

For grid points that lie outside of the tessellated region their 3D position must

extrapolated using a technique that extends the grid lines using the points that lie inside the

region as references. This method approximates where the points outside of the surface should be

27

positioned. The exact position of the points outside of the boundary is not critical because that

portion of the surface will be trimmed away, but a regular grid of points is needed for a NURBS

surface to be created. Once all faces have been fit with a surface and trimmed by their bounding

curves they are combined together in the CAD system to create a solid body and the offset is

complete.

 Conclusion

As can be seen by the overall process, by combining various aspects of existing offsetting

methods, a general hybrid method can be created. This method has the potential to become

general enough and robust enough that any geometric object or any parametric CAD model

could be offset to any distance, regardless of its complexity. The main contribution of this

research is the process of using the original geometry to convert the tessellated offset surface

back to parametric CAD geometry. This will allow the process to be inserted into the work flow

of CAD users and allow them to create offsets that were not previously possible in CAD.

29

4 IMPLEMENTATION

In order to test the value of the proposed method it is necessary to create a working

prototype of the software. This chapter details how the proposed method was implemented. The

implementation was created using C++ in Microsoft Visual Studio 10, an open source library

known as the Computational Geometry Algorithms Library (CGAL) and the CAD system NX

6.0. Two versions of the software were created and tested, the first applies the method to 2D

shapes and the second applies the method to 3D shapes.

 Implementation in 2D

As mentioned in previous chapters, CAD systems are capable of offsetting 2D shapes.

Self-intersections and trimming in 2D is handled robustly by modern CAD systems. Therefore, it

may seem unnecessary to implement the method in 2D. It is worth discussing the 2D version of

the software strictly for demonstration purposes. The method is much simpler and easier to

understand in only two dimensions.

30

4.1.1 Conversion of 2D Parametric CAD Geometry to Tessellated Geometry

In order to create a tessellated offset, the 2D profile must first be converted to tessellated

geometry. The tessellation of the input curves in done in NX 6.0. The curves (lines, arcs, splines,

etc.) of the profile are converted to a series of line segments as shown in figure 4.1.

Figure 4-1: Curve Tessellation

Line segments are defined by two nodes and each node is defined by 2D coordinates (x,

y). Both the line segments and the nodes also store information about which geometric entity

they are associated with. The geometric information is necessary for later steps of the process.

Class Node2D
{
 Double x;
 Double y;
 Geometry2D* geometry;
};

Class Segment2D
{
 Node2D* node0;
 Node2D* node1;
 Geometry2D* geometry;
};

31

4.1.2 Signed Distance Field Creation

Once the geometry is converted to tessellated form and read into the software, the signed

distance field is created. The distance field is created by computing the bounding box of the

shape, increasing the size of the bounding box to accommodate the offset, and then filling the

bounding box with a regular grid of points.

CreateGrid
{
 Box = Shape->GetBoundingBox();
 Box->IncreaseBoxSize(OffsetDistance*1.25);
 N = Box->LengthInX / GridSize;
 M = Box->LengthInY / GridSize;
 For(i=0; i<N; i++)
 {
 For(j=0; j<M; j++)
 {
 X = Box->MinX + i* GridSize;
 Y = Box->MinY + j* GridSize;
 GridPoint = New Point(X, Y);
 SetGridPointData(GridPoint);
 }
 }
}

At each grid point the minimum distance is calculated as well as whether the point is

inside or outside the shape. If the point is inside the shape the distance is set to be negative. A

value, alpha, is set for each grid node by subtracting the desired offset distance from the

minimum distance. Alpha will therefore be positive for points that are outside the offset and

negative for points that lie inside the offset.

SetGridPointData(Point)
{
 Distance = Shape->GetMinDist(Point);
 If(Shape->IsPointInSide(Point))
 Distance = - Distance;
 Point->Alpha = Distance - OffsetDistance;
}

32

Grid points are combined into groups of three forming triangle shaped cells. Figure 4.2

shows the distance field process. The grid points are created, the distance and sign is computer

for each grid point, and cells are created from the grid points.

Figure 4-2: Signed Distance Field

4.1.3 Marching Triangles

Once the distance field is created, the tessellated offset can be created by contouring the

distance field. The software relies on the algorithm Marching Triangles, which is a simplified

33

version of Marching Cubes. Because a triangle only has three points and each point can be in or

out, there are only eight possible configurations which by symmetry can be paired down to just

two. Figure 4.3 shows the two possible configurations for marching triangles.

Figure 4-3: Marching Triangles

Each cell of the distance field is processed independently of the others to create the

tessellated offset. As can be seen in figure 4.4, cells that have the same sign for all three nodes

(i.e. all inside or all outside) do not contain the offset. Cells, however, with different signs at the

nodes are used to create line segments that define the tessellated offset.

34

Figure 4-4: Contouring

4.1.4 Geometry Projection

At this point in the software, the tessellated offset has been created and is now ready to be

converted back to parametric CAD geometry. The first step of converting back to parametric

curves is to project each node of the tessellated offset back to the original shape as in figure 4.5.

The geometry closest to the node is stored in the node.

ProjectNodes()
{
 For(i=0; i<AllOffsetNodes; i++)
 {
 ClosestElement = Shape->GetClosestElement(Node(i));
 Node(i)-> geometry = ClosestElement-> geometry;
 }
}

4.1.5 Line Segment Splitting

After the geometry of each offset node has been set, each line segment of the tessellated

offset can be analyzed. The two nodes of a line segment are compared to each other. If both

nodes have the same geometry the line segment is assumed to have that geometry as well.

However, if the nodes of a line segment have different geometries then the line segment is split

35

and a new node is created. This new node is marked as a vertex and the two new line segments

are marked with the geometry of the original nodes they connected to as shown in figure 4.5.

SplitLineSegment()
{
 For(i=0; i<AllOffsetSegments; i++)
 {
 Node0 = Segment(i)->Node0;
 Node1 = Segment(i)->Node1;
 If(Node0->Geometry == Node1->Geometry)
 Segment(i)->Geometry = Node0->Geometry;
 Else
 Vertex = (Node0 + Node1) / 2;
 NewSegment0 = CreateSegment(Node0, Vertex, Node0->Geometry);
 NewSegment1 = CreateSegment(Node1, Vertex, Node1->Geometry);
 }
}

Figure 4-5: Geometry Projection

36

4.1.6 Recreation of Curves

At this point in the software, all nodes and line segments of the tessellated offset have

been analyzed and assigned a geometric entity. The line segments can now be grouped together

into regions. If two line segments share a node and that node is not marked as a vertex then the

two line segments are part of the same region corresponding to a geometric entity.

GroupSegmentsTogether(Segment)
{
 SegmentGroup->Geometry = Segment->Geometry;

 While(true)
 {
 If(Node0->IsVertex)
 Break;
 Else
 SegmentGroup->AddFront(Segment);
 Segment = Segment->Previous;
 }

 While(true)
 {
 If(Node1->IsVertex)
 Break;
 Else
 SegmentGroup->AddBack(Segment);
 Segment = Segment->Next;
 }
}

For regions of line segments that came from simple geometric entities such as lines or

arcs, the offset is easily created. The region of line segments is simply replaced by the true offset

of the entity and the bounding vertices of the region are used to bind the parametric curve. The

offset for a line is obtained by simply translating the line in the offset direction, and the offset of

an arc/circle is obtained by simply increasing or decreasing its radius. For a free-form curve,

however, the true offset cannot be used and must be approximated.

37

ReplaceLineSegmentRegionWithGeometry()
{
 For(i=0; i<AllLineSegmentRegions; i++)
 {
 Type = Regions(i)->GetGeometry->GetType;
 If(Type == SPLINE)
 ApproximateSpline(Regions(i));
 Else
 Offset(Regions(i));
 }
}

The region of line segments corresponding to the free-from curve can be used to create a

NURBS curve that approximates the offset. The line segments are first converted into a degree

one NURBS curve with knot vector spacing that corresponds to the lengths of the line segments.

This allows for equally spaced points to be created from equally spaced parameters. These points

are then used as the control points of a degree 3 curve that approximates the offset curve as

shown in figure 4.6. The software uses the equally spaced points as control points but it is

possible to create a NURBS curve that interpolates all of the equally spaced points. Using the

points as control points was implemented because it results in a similar curve if there are

sufficient points and also has the advantage of reducing noise in the curve.

ApproximateSpline()
{
 Spline->Degree = 1;
 Spline->NumberOfControlPoints = RegionNodes.Size;
 Length = 0.0;
 For(i=0; i<RegionNodes.Size; i++)
 {
 Length = Length + RegionNodes(i)->Distance(RegionNodes(i-1));
 Spline->Knots(i) = Length;
 Spline->Poles(i) = RegionNodes(i);
 }

 ApproxSpline->Degree = 3;
 ApproxSpline->NumberOfControlPoints = N;
 ApproxSpline->Poles = Spline->GetEvenlySpacedPoints(N);
 ApproxSpline->Knots->Uniform;
}

38

Figure 4-6: Tessellation to CAD

4.1.7 Final Product

Once all regions of line segments have been replaced by parametric CAD geometry the

offset is complete. The end result is a self-intersection free offset comprised of parametric

curves. No self-intersection tests were performed and no trimming was required either. The

results of the software can be seen in chapter 5.

39

 Implementation in 3D

The 3D version of the offset method is significantly more challenging to implement.

Some aspects of the software are easily transferred from 2D to 3D however in general the 3D

method is more complex. Instead of creating planar offset curves, 3D offset surfaces must now

be created.

4.2.1 Conversion of 3D Parametric CAD Geometry to Tessellated Geometry

In order to generate the tessellated offset surface in 3D, it is first necessary to convert the

3D parametric CAD geometry to tessellated geometry. For the purpose of this research the built

in functionality of the CAD system NX 6.0 is used to create this tessellation. As previously

mentioned, tessellating of CAD geometry is a well understood process that all CAD systems rely

on to display geometric data to the computer’s monitor.

Figure 4-7: Surface Tessellation

4.2.2 Tessellation Storage in Half-Edge Data Structure

Both the original tessellated geometry and the tessellated offset surface must be stored in

an efficient manner that allows for easy querying of the data. There are many methods for storing

40

tessellated data but the method that has proven the most useful for this project is the Half-Edge

Data Structure (HEDS). The HEDS model breaks the tessellation down into three primitives.

First, the node, which is a point location in space. Second, the half-edge which is an edge that

connects two nodes. And third, a face that is the collection of three half edges. Half-edges are

able to have a direction associated with them. As seen in figure 4.8 in order for faces A and B to

have consistent winding the shared edge must point in two different directions. By splitting the

edge in two, each edge can have the correct direction for its corresponding face.

Node
{
 X,Y,Z;
 U,V;
 Edges;
 Geometry;
}

HalfEdge
{
 Node;
 NextEdge;
 PrevEdge;
 OppositeEdge;
 Face;
 Geometry;
}

Face
{
 Edge;
 Geometry;
}

41

Edge 1 Data:
 Node = N2
 Opposite = E5
 Next = E0
 Prev = E2
 Face = FaceA

Edge 5 Data:
 Node = N0
 Opposite = E1
 Next = E4
 Prev = E3
 Face = FaceB

Figure 4-8: Half-Edge Data Structure

4.2.3 Signed Distance Field Creation

A volumetric approach, similar to the 2D method, is used to create the tessellated offset

surface. The volumetric approach can easily handle topological changes and self-intersections

making it the most robust method. This method relies on the creation of a signed distance field.

The distance field is a set of points equally spaced around the part. The distance and sign of each

one of these points is then calculated. Unlike the 2D method that only requires a planar grid, the

3D method must add another dimension.

CreateGrid()
{
 Box = Shape->GetBoundingBox();
 Box->IncreaseBoxSize(OffsetDistance*1.25);
 N = Box->LengthInX / GridSize;
 M = Box->LengthInY / GridSize;
 P = Box->LengthInZ / GridSize;
 For(i=0; i<N; i++)
 {
 For(j=0; j<M; j++)
 {

42

 For(k=0; k<P; k++)
 {
 X = Box->MinX + i*GridSize;
 Y = Box->MinY + j*GridSize;
 Z = Box->MinZ + k*GridSize;
 GridPoint = New Point(X, Y, Z);
 SetGridPointData(GridPoint);
 }
 }
 }

4.2.4 Marching Tetrahedron

Once the distance and sign of all points in the grid have been calculated, the signed

distance field can be contoured. In 2D the distance field consists of triangle shaped cells and

relies on Marching Triangles to create line segments. Now the Marching Tetrahedron algorithm

is used to extract a tessellated offset surface from the distance field.

Figure 4-9: Marching Tetrahedron

43

This is done by grouping grid points into groups of four (forming tetrahedron) and

comparing the signs at each point. Because there are four points and each point can be either in

or out, there are 16 possible configurations. These configurations can be combined through

symmetry down to just three cases. These cases are shown in figure 4.9.

4.2.5 Geometry Projection

Now that the tessellated offset surface is created, the geometry of the original shape can

be projected onto the offset. Each node of the offset surface is projected back to the original

shape, or in other words, the minimum distance is found between the node and the original

shape. The nearest primitive is found and its geometry is stored in the node of the offset surface.

Figure 4-10: Geometry Projection

Once the closest geometry of all nodes has been set, each face of the offset surface is

analyzed. For faces where all three nodes have the same geometry, the face is also assumed to

have that same geometry. However, faces where the three nodes do not share the same geometry,

additional analysis is required.

44

AnalyzeFaces()
{
 For(i=0; i<AllFaces; i++)
 {
 Node0 = AllFaces(i)->Edge->Node;
 Node1 = AllFaces(i)->Edge->NextEdge->Node;
 Node2 = AllFaces(i)->Edge->NextEdge->NextEdge->Node;
 If(Node0->Geometry == n1->Geometry && Node1->Geometry == Node2->Geometry)
 AllFaces(i)->Geometry = Node0->Geometry;
 Else
 SplitEdge(Node0, Node1);
 SplitEdge(Node1, Node2);
 SplitEdge(Node2, Node0);
 SplitFace(AllFaces(i));
 }
}

Each edge of the face is checked to see if there is a change in geometry, if so, the

bisection method is used to determine where the edge should be split. It is possible for the edge

to have more than one location where its geometry changes. These changes are associated with

that edge and stored. Once all three edges of the face have been analyzed the face can be

subdivided.

SplitEdge(NodeA, NodeB)
{
 While(true)
 {
 If(NodeA->Distance(NodeB) < EdgeTolerance)
 Break;
 TestNode = (NodeA + NodeB)/2.0;
 TestNode->Geometry = Shape->GetClosestElement->Geometry;
 If(TestNode->Geometry = NodeA->Geometry)
 NodeA = TestNode;
 Else If(TestNode->Geometry = NodeB ->Geometry)
 NodeB = TestNode;
 Else
 SplitEdge(NodeA, TestNode);
 SplitEdge(TestNode, NodeB);
 }
 Crossing->Node = (NodeA + NodeB)/2.0;
 Crossing->GeometryA = NodeA->Geometry;
 Crossing->GeometryB = NodeB->Geometry;
}

45

4.2.6 Face Subdivision by Modified Ear Clipping

The method for splitting the face into sub triangles is a modified version of the ear

clipping algorithm. The ear clipping algorithm is the process of taking a polygon and

triangulating the interior by forming triangles from three consecutive points on the polygon. In

the regular ear clipping method care must be taken that the formed triangles do not contain any

other point on the polygon. Because the face being divided is completely convex this cannot

happen. Instead, the criteria for creating sub triangles is that three consecutive nodes must have

the same geometry. Each edge crossing corresponds to a change in geometry. Each crossing,

therefore, has two geometries associated with it. The algorithm now searches the nodes in order

and when three consecutive nodes are found that have the same geometry a triangle is formed

and the middle node is removed from the list. This process is illustrated in figure 4.11.

SplitFace()
{
 Node0 = AllFaces(i)->Edge->Nod
 Node1 = AllFaces(i)->Edge->NextEdge->Node;
 Node2 = AllFaces(i)->Edge->NextEdge->NextEdge->Node;

 Crossings.Add(GetCrossings(Node0, Node1));
 Crossings.Add(GetCrossings(Node1, Node2));
 Crossings.Add(GetCrossings(Node2, Node0));

 While(TRUE)
 {
 For(i=0; i<Crossings.Size; i++)
 {
 NodeA = Crossings(i);
 NodeB = Crossings(i+1);
 NodeC = Crossings(i+2);
 If(FindCommonGeometry(NodeA, NodeB, NodeC, Geom))
 {
 NewFace = CreateFace(NodeA, NodeB, NodeC);
 NewFace->Geometry = Geom;
 Crossings.Erase(i+1);
 Break;
 }

46

 }

 If(Crossings.size < 3)
 Break;
 If(NewFace == NULL)
 CreateVertex(Crossings);
 Break;
 }
}

Figure 4-11: Modified Ear Clipping

The ear clipping process continues until either the list is empty, or until no more triangles

can be created. If no more triangles can be created and the list is not empty a vertex must be

created. This is done by inserting a node into the remaining region. A node is created at the

average location of all the remaining nodes and a triangle fan is created using the new node and

the list of nodes. The geometry of each face is set by comparing two consecutive nodes and

finding which geometry they have in common.

47

InsertVertex(Crossings)
{
 Vertex(0.0, 0.0, 0.0);
 For(i=0; i<Crossings.Size; i++)
 Vertex = Vertex + Crossings(i);
 Vertex = Vertex / Crossings.Size;
 Vertex->Geometry = Vertex->Point;

 For(i=0; i<Crossings.Size; i++)
 {
 NodeA = Crossings(i);
 NodeB = Crossings(i+1);
 Face = NewFace(NodeA, NodeB, Vertex);
 Face->Geometry = CommonGeometry(NodeA, NodeB);
 }
}

Once all faces have been analyzed and split, the tessellated offset surface is ready to be

converted back to parametric CAD geometry. Parametric CAD geometry is stored in the BREP

model as detailed in chapter 2. There are three types of geometry required to construct the BREP

model, points, curves and surfaces. Therefore, in order to fully define the geometry, all three

geometry types must be created.

4.2.7 Recreation of Vertices

The first type of geometry to be recreated is a vertex. What identifies a vertex of the

surface is a node that has more than two geometries associated with its neighboring faces.

However, this only occurs at the new nodes that were inserted by the Ear Clipping algorithm. By

storing the new nodes that were created, all vertices have already been found. These nodes are

marked as vertices of the BREP model and the geometry of the vertex is simply the point

location of the node.

48

Figure 4-12: Vertex Creation

4.2.8 Recreation of Edges

All half-edges of the offset surface are examined, if the opposing faces have the same

geometry the half-edges are marked with that geometry. If the opposing faces have different

geometry then the half-edges are marked as a geometric edge. These half-edges are combined

end to end to form half-edge groups. These groups are used to create parametric curves. Using

the same algorithm detailed in the 2D section, the edges are converted to a degree one NURBS

49

curve that has a knot vector corresponding to the half-edge lengths. Equally spaced points are

then created and used as control points to create a degree three NURBS curve. As mentioned in

previously, using these points as control points has an advantage over interpolating the points.

4.2.9 Recreation of Faces

By far the most challenging portion of the process is the recreation of surfaces. Similar to

how simple curves in the 2D case can be offset directly, simple curves and surfaces in the 3D

case can also be offset directly. Below is a table of showing how simple shapes are offset

directly.

For free-form surfaces, the underlying offset surface cannot be calculated directly and

must be approximated. Unlike simple geometric surfaces, where the corresponding tessellated

offset is not needed, the tessellated offset is of great value to the free-form surface

reconstruction. The tessellated offset provides a guide of where the free-form surface should

exist.

Table 4-1: Surface Offset Methods

Element Offset

Vertex Sphere with vertex as center and offset distance as radius.

Line Cylinder with line as axis and offset distance as radius.

Arc/Circle Torus with Arc/Circle as major radius and offset distance as minor radius.

Plane Plane moved in direction of normal the offset distance.

Cylinder Cylinder with radius +/‐ offset distance depending on if offset is inside or
outside the cylinder.

Sphere Sphere with radius +/‐ offset distance depending on if offset is inside or
outside the sphere.

Cone Cone with apex translated +/‐ depending on if offset is inside or outside
of cone.

Torus Torus with minor radius +/‐ offset distance depending on if offset is
inside or outside the torus.

NURBS Surface Approximated NURBS surface.

NURBS Spline Approximated NURBS surface.

50

In order to create a NURBS surface a rectangular grid of control points is needed. The

simplest way to apply a rectangular grid of points to the tessellated offset surface is to first

convert the tessellated surface to two dimensions. Several methods were attempted but the most

robust method is by using what is called a Least Squares Conformal Map (Levy 2002). This

process takes a tessellated surface in 3D and flattens it to 2D with a minimum amount of

distortion. Implementing a custom version of the Least Squares Conformal Map is beyond the

scope of this research, therefore, the open source library CGAL was used to implement this

method.

Figure 4-13: Parameterization of Tessellated Surface

It is important to note that not any tessellated surface can be converted to 2D. For a

surface to be represented in 2D the surface must have a genus of 0. The genus of a surface may

be thought of as the number of times a surface must be cut in order to lay it flat. Figure 4.14

shows two surfaces. Part A shows a surface of genus 0, this surface may be converted to 2D

using the Least Squares Conformal Map method. Part B shows a surface that has a genus of 1

and cannot be converted to 2D. In order for the Least Squares Conformal Map method to work

on this surface, it must first be cut and made into a surface of genus 0.

51

Figure 4-14: Surface Genus

In order to cut the surface, the underlying geometry is required. The points of the mesh

are projected back to the underlying surface and the parameter values of each point are stored.

The edges are then analyzed and the edge with the largest 2D length is marked as part of the

global intersection. The edge is then used as a starting point and a marching algorithm is used to

create the cut.

Once the tessellated surface is parameterized, each node contains both a 3D location

(x,y,z) as well as a 2D location (u,v). With a 2D location defined for each node the tessellated

surface can be drawn to a plane. From the 2D points a 2D bounding box is calculated. Grid

spacing is chosen based on the average length of the half-edges. From this bounding box and

grid size, a regular grid is created over the 2D domain. Each point is checked to see if the point

lies inside or outside the surface boundaries. For points that lie inside the boundaries the 3D

position may be calculated.

52

Figure 4-15: Control Point Grid

In order to create a NURBS surface all points of the grid must be positioned. For points

that lie outside of the boundaries their positions must be extrapolated from their neighboring

points. If a neighboring face is completely defined it can be used to calculate the location of the

point. The point location is set by mapping its 2D relationship to its neighboring faces into 3D.

This allows the grid of points to be extended in order for a complete NURBS surface to be

defined.

ExtrapolatePointLocation(Node)
{
 AvgPoints;
 For(i=0; i<Node->Edges.Size; i++)
 {
 Face = Node->Edges(i)->NextEdge->OppositeEdge->Face;
 NodeA = Face->Edge->Node;
 NodeB = Face->Edge->NextEdge->Node;
 NodeC = Face->Edge->NextEdge->NextEdge->Node;

 If(NodeA->IsSet && NodeB->IsSet && NodeC->IsSet)
 {
 Vector01 = NodeB – NodeA;
 Vector02 = NodeC – NodeA;
 Normal = Vector01.Cross(Vector02);
 Direction = Vector01.Cross(Normal);
 Param = Vector01.Dot(Node - NodeA)/ Vector01.Dot(Vector01);

53

 BasePoint = NodeA + (NodeB – NodeA)*Param;
 Length2d = NodeA.Distance2D(NodeB);
 Length3d = NodeA.Distance3D(NodeB);
 Distance2d = Node.Distance(BasePoint);
 Distance3d = Distance2d * Length3d / Length2d;
 NewPoint = BasePoint + Direction*Distance3d;
 }
 }
}

In many cases the extended portion of the surface becomes very poorly shaped. This

however, is not a problem because the BREP model trims away the portion of the surface that

lies outside the border. This algorithm generally results in a well-conditioned surface inside the

boundaries and a poorly conditioned surface outside.

Figure 4-16: Extrapolating Point Locations

54

Figure 4-17: Tessellated Surface to NURBS

 Putting it All Together

With all three geometric entities created, vertices, curves and surfaces, the BREP can be

created. The vertices are used to define the end points of curves. The curves are used to trim the

surfaces into faces. The faces can then be combined into a solid model. The results of this

implementation will be discussed in the next chapter.

 Accuracy of the Hybrid Method

Before discussing the results of this method, however, it is important to point out that this

method is not without errors. This method introduces error at several key steps. The first place in

the method where error is introduced is the tessellated body that is used to represent the part

being offset. It is not necessary to use a tessellated version for distance queries but it is much

faster. The error introduced by this approximation can be reduced by increasing the accuracy of

the tessellation, or by performing distances queries directly on the original CAD geometry; both

of these routes will increase the accuracy but will also increase the computation time.

55

Figure 4-18: Error Introduced by Contouring

Once the distances are computed and stored in the nodes of the distance field, the offset

surface is then approximated by contouring. Contouring will also introduce error into the

approximation. Figure 4.18 demonstrates how error is introduced by contouring. As the

tessellated offset is created in each cell of the distance field, the offset is approximated by

straight lines (planar faces in 3D). In reality, the ideal offset surface (Figure 4.18 dashed line)

may be curved (Figure 4.18 left) or may have a sharp corner (Figure 4.18 right) but is being

approximated by a straight line. This is one of the draw backs to the Marching Tetrahedron

method is that it does not do a good job of preserving sharp features. This error can be

minimized by increasing the resolution of the distance field. An increase in resolution of the

distance field, however, will also result in longer computation times.

With the surface contoured and subdivided, the individual surface patches can be

recreated. Surface patches that are offsets of simple geometry (e.g. planes, cylinders, etc.) can be

replaced with the actual offset surface which is trivial to calculate. The offset surface of the

simple geometry therefore has no error. However, for the free-form surfaces, the surface patches

are created by fitting a NURBS surface to the tessellated patch. More error is introduced by this

fitting process, particularly near the borders of the patch where the surface will be trimmed. This

56

error can be minimized in the same way as before, by increasing the resolution. This time

however, not only will increasing the resolution increase the computation time but will also

increase the number of poles of the surface. This increase in poles leads to a much more complex

surface, and much more data that must be stored by the part.

57

5 RESULTS

In order to demonstrate the value of the hybrid method, a series of tests were conducted.

A set of test parts were created to be offset by the method. For comparison purposes, the same

parts were offset by several commercial CAD systems. These test parts range from very simple

parts that all CAD systems are able to offset to rather complex parts that none of the CAD

systems are able to offset. The test parts are shown and the offsets generated by the various CAD

systems are also presented. The results of the hybrid method are then shown and compared to the

CAD system results.

 Test Parts

The following figures show the CAD models that were used as the test cases for this

method. Part 1 is a simple L shaped block that has been extruded. The second part is similar but

has an added feature. Both test parts 1 and 2 do not contain any free-form surfaces. These test

parts are the least complex and it was anticipated that all CAD systems and the hybrid method

would be capable of successfully offsetting them.

58

Figure 5-1: Simple Test Parts

Figure 5-2: Complex Test Parts

59

The true measure of the offset function, however, is how the method deals with free-form

surfaces. The complex test parts all have free-form surfaces and it was anticipated that they could

not successfully be offset by the various CAD systems. Test parts 3, 4 and 5 all contain regions

of high curvature with varying geometry. Test part 6 contains areas of high curvature but also

will experience topological changes due to the added features. Test part 7 contains a free-form

surface that will encounter a global self-intersection. These test parts provide a good sample of

what problematic areas an offset tool will have to deal with in order to be robust.

 Commercial CAD Systems

The CAD systems that were used in order to bench mark the hybrid method are: NX, Pro

Engineer, CATIA, SolidWorks, and Inventor. These CAD systems represent the most recognized

and widely used CAD systems in industry. All test parts are approximately 2 inches cubed in

size. They are all tested at an offset distance of 0.5 inches, approximately 25%, which is a large

offset distance.

5.2.1 NX Results

The following images show the results of offsetting the test parts by way of NX. As

expected the two simple test cases were offset correctly. Test cases 3, 5, and 6 all failed to

produce results for the specified offset distance. Test case 4 did produce a result but upon

inspection, it can be seen that the offset surface intersects the original shape which makes for a

very poor result. Test part 7 was offset correctly even with the global intersection.

60

Figure 5-3: NX Part 1

Figure 5-4: NX Part 2

61

Figure 5-5: NX Part 3

Figure 5-6: NX Part 4

62

Figure 5-7: NX Part 5

Figure 5-8: NX Part 6

63

Figure 5-9: NX Part 7

5.2.2 Pro Engineer Results

The following images show the results of offsetting the test parts by way of Pro Engineer.

For Pro Engineer, the basic test cases were offset correctly, however, all five complex text cases

failed to produce any results for the given offset distance. The complex parts resulted in the

Failure Diagnostics Window appearing.

64

Figure 5-10: Pro/E Part 1

Figure 5-11: Pro/E Part 2

65

Figure 5-12: Pro/E Part 3

Figure 5-13: Pre/E Part 4

66

Figure 5-14: Pro/E Part 5

Figure 5-15: Pro/E Part 6

67

Figure 5-16: Pro/E Part 7

5.2.3 CATIA Results

The following images show the results of offsetting the test parts by way of CATIA. Like

Pro Engineer, CATIA also only succeeded on the basic test cases. All other test cases resulted in

an error message that read, “Current offset value leads to a local degeneration on a surface.”

68

Figure 5-17: CATIA Part 1

Figure 5-18: CATIA Part 2

69

Figure 5-19: CATIA Part 3

Figure 5-20: CATIA Part 4

70

Figure 5-21: CATIA Part 5

Figure 5-22: CATIA Part 6

71

Figure 5-23: CATIA Part 7

5.2.4 SolidWorks Results

The following images show the results of offsetting the test parts by way of SolidWorks.

SolidWorks was able to offset not only the basic parts but also a few of the complex parts as

well. All five of the complex parts produced a result but three of them are very poor

approximations. Part 3 resulted in a very noisy surface where the degeneracy was removed. Part

4 produced an offset similar to NX, the offset surface is produced but it folds back and intersects

the original part which is undesirable. Part 6 also produced a result but completely removed the

free-form surface resulting in a simple block that does not accurately reflect the true offset

surface.

72

Figure 5-24: SolidWorks Part 1

Figure 5-25: SolidWorks Part 2

73

Figure 5-26: SolidWorks Part 3

Figure 5-27: SolidWorks Part 4

74

Figure 5-28: SolidWorks Part 5

Figure 5-29: SolidWorks Part 6

75

Figure 5-30: SolidWorks Part 7

5.2.5 Inventor Results

The following images show the results of offsetting the test parts by way of Inventor.

Inventor was the most successful CAD system for offsetting parts 3 and 4. Inventor correctly

removed the self-intersections and in the case of part 3 more accurately approximated the offset

surface than SolidWorks. SolidWorks was the only other CAD system that produced an offset

surface for part 3 but the approximation was very poor.

76

Figure 5-31: Inventor Part 1

Figure 5-32: Inventor Part 2

77

Figure 5-33: Inventor Part 3

Figure 5-34: Inventor Part 4

78

Figure 5-35: Inventor Part 5

Figure 5-36: Inventor Part 6

79

Figure 5-37: Inventor Part 7

 Summary of CAD System Results

In order to compare the results of the CAD systems’ offset surfaces, a measure of

accuracy is used. For many of the test cases, no offset was produced, therefore, no measurement

can be taken. For test cases where results were produced, the free-form surface of the test part is

examined. The simple faces are not measured because they were offset directly and therefore

have no error. The free-form surfaces are measured for accuracy by choosing a sufficiently large

number of points on the surface and calculating their minimum distance back to the original

surface. The distance for each point should in theory always be equal to the offset distance.

However, there is some variability in these distances. The following table summarizes the

accuracy of the offset surfaces by comparing their maximum and average errors.

80

Table 5-1: Accuracy of CAD Results

 Table 5.1 show that some of the CAD systems were able to produce very accurate offsets

for some of the test cases. Many of the tests, however, could not be offset at all. In some cases an

offset was produced but was very inaccurate.

 Offset Tool Results

The following images display the results of the hybrid method. The results are different

from the CAD systems, instead of extending and trimming the offset faces the hybrid method

naturally creates rounded corners between faces. The results also show that the self-intersections

and changes in topology were handled correctly. These results demonstrate the value of this new

process for creating offset surfaces of complex CAD geometry.

CAD System Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7
NX Max: % 0.0 Max: % 0.0 NA Max: % 100.0 NA NA Max: % 0.0

Avg: % 0.0 Avg: % 0.0 Avg: % 46.3 Avg: % 0.0

Pro/E Max: % 0.0 Max: % 0.0 NA NA NA NA NA

Avg: % 0.0 Avg: % 0.0

CATIA Max: % 0.0 Max: % 0.0 NA NA NA NA NA

Avg: % 0.0 Avg: % 0.0

SolidWorks Max: % 0.0 Max: % 0.0 Max: % 34.8 Max: % 100.0 Max: % 39.5 NA Max: % 0.0

Avg: % 0.0 Avg: % 0.0 Avg: % 3.5 Avg: % 46.3 Avg: % 9.1 Avg: % 0.0

Inventor Max: % 0.0 Max: % 0.0 Max: % 17.7 Max: % 3.3 NA NA NA

Avg: % 0.0 Avg: % 0.0 Avg: % 1.7 Avg: % 0.0

81

Figure 5-38: Hybrid Method Part 1

Figure 5-39: Hybrid Method Part 2

82

Figure 5-40: Hybrid Method Part 3

Figure 5-41: Hybrid Method Part 4

83

Figure 5-42: Hybrid Method Part 5

Figure 5-43: Hybrid Method Part 6

84

Figure 5-44: Hybrid Method Part 7

 Summary of Hybrid Method Results

As can be seen from the above images, the hybrid method was successful in producing a

result for each of the seven test cases. The following table summarizes both the CAD system

results and also adds the results of the Hybrid Method. Each of the test cases was run with a grid

resolution of 0.01, interestling enough many of the results are more accurate than the grid

resolution. As can be seen from table 5.2, the hybrid method produces results that are more

accurate that the CAD systems in many of the cases. In cases 3 and 5 the hybrid method

produces results that are more accurate those produced by SolidWorks or Inventor. In case 4 the

hybrid method produces an accurate offset surface but Inventor’s results were better. In case 6

the hybrid method was the only method to return a measurable result. NX and SolidWorks both

produced more accurate results for case 7 but again, the hybrid method produced results that are

accurate.

85

Table 5-2: Summary of All Results

 Test Case 7

Test part 7 requires additional attention. This part was created to demonstrate the

handling of global intersections. This test part produces a genus 1 surface and must be cut to

become a genus 0 surface as was mentioned in chapter 4. Figures 46, 47, and 48 show the

process of cutting the surface. However, It is extremely rare to find parts that exhibit this

behavior and the global intersection can easily be avoided by modifying the part. Figure 49

shows the modified test part that was used to generate the offset surface.

CAD System Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7
NX Max: % 0.0 Max: % 0.0 NA Max: % 100.0 NA NA Max: % 0.0

Avg: % 0.0 Avg: % 0.0 Avg: % 46.3 Avg: % 0.0

Pro/E Max: % 0.0 Max: % 0.0 NA NA NA NA NA

Avg: % 0.0 Avg: % 0.0

CATIA Max: % 0.0 Max: % 0.0 NA NA NA NA NA

Avg: % 0.0 Avg: % 0.0

SolidWorks Max: % 0.0 Max: % 0.0 Max: % 34.8 Max: % 100.0 Max: % 39.5 NA Max: % 0.0

Avg: % 0.0 Avg: % 0.0 Avg: % 3.5 Avg: % 46.3 Avg: % 9.1 Avg: % 0.0

Inventor Max: % 0.0 Max: % 0.0 Max: % 17.7 Max: % 3.3 NA NA NA

Avg: % 0.0 Avg: % 0.0 Avg: % 1.7 Avg: % 0.0

Hybrid Method Max: % 0.0 Max: % 0.0 Max: % 2.3 Max: % 2.5 Max: % 2.2 Max: % 2.2 Max: % 2.3

Avg: % 0.0 Avg: % 0.0 Avg: % 0.2 Avg: % 0.2 Avg: % 0.1 Avg: % 0.1 Avg: % 0.1

86

Figure 5-45: Hybrid Method Part 7

Figure 5-46: Genus 1 Surface

87

Figure 5-47: Cutting the Surface

Figure 5-48: Cutting the Surface

88

Figure 5-49: Test Part 7 Modified

 Conclusion

The hybrid offset method has produced offset surfaces for complex models that

commercial CAD systems could not handle. Based on these results, it can be certain that the

hybrid method is of great value. There are of course drawbacks to this method. The speed at

which the offsets were created was not an objective of this research. Therefore, the amount of

time that it took to complete these offsets was not recorded. The total time to create an offset was

on the order of magnitude of 30-45 minutes. The extremely long computation is a result of a high

accuracy grid, computationally expensive calculations (e.g. minimum distance queries), and no

optimization techniques. These results highlight the difference between the conventional

parametric offset method and the computational method hybrid. The parametric method is faster,

but the hybrid method is more robust.

89

6 CONCLUSIONS

As was discussed in the introductory chapter of this document, the goal of this research

was to demonstrate a new method of creating offset surfaces. This method was to be validated by

comparing the results of this new method with the results of leading CAD systems. As shown in

the previous chapter, the hybrid method can offset surfaces that commercial CAD systems

cannot. This method, however, is not perfect. There are many areas in which this method could

be improved. The area of biggest improvement would be the speed. Applying optimizations that

are found in the literature could greatly improve the performance of this new method. Multi-

threading could also greatly improve the performance of this method. This process lends itself

well to multi-threading, the Marching Tetrahedron portion of the method can be multi-threaded

and the rebuilding of the individual faces could also be multi-threaded.

It is also important to note that this methods produces results that are different from CAD

system offset tools. CAD systems produce offset surfaces, then extend and trim the surfaces

against each other, where the hybrid method produces rounded corners. This is a drawback

because many times the design requires a sharp corner and not a round. This difference however

can also be an advantage. In certain applications, such as layered manufacturing (e.g.

composites) or coating processes (e.g. investment casting shell) the rounded corners are more

representative of reality. Future work could be focused on how to extend the hybrid method that

90

sharp corners could be persevered, thereby allowing the user to choose between corners and

rounds.

Another area where the method could be improved is the type of surfaces the method can

produce. NURBS surfaces represent the standard for free-form surfaces in CAD systems and

were therefore the focus of this research. However, a new surface type known as T-Splines is

gaining popularity in the CAD industry. This new surface type has a distinct advantage over

NURBS surfaces. NURBS surfaces must be four sided, whereas T-Splines can take on any shape

and any number of sides without having to be trimmed. By using T-Splines with this process, the

generated offset faces could be represented by T-Splines and would not require any extrapolation

of extra points.

These various improvements were outside the scope of this research, the goal was to

prove the robustness of this method. Now that it has proven to be a valuable method, it can be

improved upon.

91

REFERENCES

Braid, I., (1975) “The Synthesis of Solids Bounded by Many Faces” Association of Computing
Machinery, 209-216

Cheernyaev, E., (1995) “Marching Cubes 33: Construction of Topologically Correct Isosurfaces”

Institute for High Energy Physics

Coquillart, S., (1987) “Computing Offsets of B-Spline Curves” Computer Aided Design, 19(6),

305-309

De Boor, C., (1972) “On Calculating with B-Splines” Journal of Approximation Theory, 6, 50-62

Dziegielewski, A., Erbes, R., Schomer, E., (2010) “Real-Time Offset Surfaces” In EuroCG

Workshop On Computational Geometry

Elber, G., Cohen, E., (1991) “Error Bounded Variable Distance Offset Operator for Free Form

Curves and Surfaces” International Journal of Computational Geometry & Applications,
1(1)

Elber, G., Grandine, T., Kim, M., (2009) “Surface Self-Intersection Computation Via Algebraic

Decomposition” Computer Aided Design, 41, 1060-1066

Farin, G., (1983) “Algorithms for Rational Bezier Curves” Computer Aided Design, 15(2), 73-77

Farin, G., (1989) “Curvature Continuity and Offsets for Piecewise Conics” ACM Transactions

on Graphics, 8(2), 89-99

Farin, G., (2002) Curves and Surfaces for Computer Aided Geometric Design – A Practical

Guide, London

Faux, I., Pratt, M., (1984) Computational Geometry for Design and Manufacture

Floater, M., (1992) “Evaluation and properties of the Derivatives of a NURBS Curve”

Mathematical Methods in CAGD and Image Processing, 1-15

Floater, M., (1991) “Derivatives of Rational Bezier Curves” Computer Aided Geometric Design,

9(3), 161-174

92

Flutter, A., Todd, J., (2001) “A Machining Strategy for Toolmaking” Computer Aided Design,

33, 1009-1022

Forsyth, M., (1995) “Shelling and Offsetting Bodies” Solid Modeling 95, 373-381

Frisken, S., Perry, R., (2006) “Designing with Distance Fields” ACM SIGGRAPH 2006, 249-254

Jang, D., Park, H., Kim, K., (2005) “Surface Offsetting Using Distance Volumes” International

Journal of Advanced Manufacturing Technology, 26, 102-108

Jones, M., Baerentzen, J., Sramek, M., (2006) “3D Distance Fields: A Survey of Techniques and

Applications” Visualization and Computer Graphics, 12(4), 581-599

Ju, T., Losasso, F., Schaefer, S., Warren, J., (2002) “Dual Contouring of Hermite Data”

Association of Computing Machinery, 339-346

Ju, T., Udeshi, T., (2006) “Intersection-Free Contouring on an Octree Grid” Pacific Graphics

Jung, W., Shin, H., Choi, B., (2004) “Self-Intersection Removal in Triangular Offsetting”

Computer Aided Design and Applications, 1(1-4), 477-484

Kim, S., Lee, D., Yang, M., (2004) “Offset Triangular Mesh Using the Multiple Normal Vectors

of a Vertex” Computer Aided Design and Applications, 1(1-4), 285-291

Kulczycka, M., Nachman, L., (2002) “Qualitative and Quantitative Comparisons of B-Spline

Offset Surface Approximation Methods” Computer Aided Design, 34, 19-26

Kumar, G., Shastry, K., Prakash, B., “Computing Non-Self-Intersecting Offsets of NURBS

Surfaces” Computer Aided Design, 34, 209-228

Levy, B., Petitjean, S., Ray, N., Maillot, J. (2002) “Least Squares Conformal Maps for

Automatic Texture Atlas Generation” ACM Transactions on Graphics (TOG), 21(3),
362-371

Liu, S., Wang, C., (2009) “Duplex Fitting of Zero-Level and Offset Surfaces” Computer Aided

Design, 41, 268-281

Liu, S., Wang, C., (2011) “Fast Intersection-Free Offset Surface Generation From Free-Form

Models with Triangular Meshes” IEEE Transactions on Automation Science and
Engineering, 8(2), 347-360

Lorensen, W., Cline, H., (1987) “Marching Cubes: A High Resolution 3D Surface Construction

Algorithm” Computer Graphics, 21(4), 163-169

93

Maekawa, T., (1999) “An Overview of Offset Curves and Surfaces” Computer Aided Design,
31, 165-173

Malosio, M., Pedrocchi, N., Tosatti, L., (2009) “Algorithm to Offset and Smooth Tessellated

Surfaces” Computer Aided Design and Applications, 6(3), 351-363

Overveld, K., Wyvill, B., (2004) “Shrinkwrap: An Efficient Adaptive Algorithm for

Triangulating an Iso-surface” The Visual Computer 20, 362-379

Pavic, D., Kobbelt, L., (2008) “High-Resolution Volumetric Computation of Offset Surfaces

with Feature Preservation” EUROGRAPHICS, 27(2)

Pekerman, D., Elber, G., Kim, M., (2008) “Self-Intersection detection and elimination in

Freefrom Curves and Surfaces” Computer Aided Design, 40, 150-159

Piegl, L., Tiller, W., (1999) “Computing Offsets of NURBS Curves and Surfaces” Computer

Aided Design, 31, 147-156

Piegl, L., Tiller, W., (1987) “Curve and Surface Constructions Using Rational B-Splines”

Computer Aided Design, 19(9), 485-498

Piegl, L., Tiller, W., (1997) The NURBS Book, Germany

Pottman, H., (1995) “Rational Curves and Surfaces with Rational Offsets” Computer Aided

Geometric Design, 12, 175-192

Rogers, D., (2001) An Introduction to NURBS – With Historical Perspective, London

Rossignac, J., Requicha, A., (1986) “Offsetting Operations in Solid Modelling” Computer Aided

Geometric Design, 3, 129-148

Seong, J., Elber, G., Kim, M., (2006) “Trimming Local and Global Self-Intersections in Offset

Curves/Surface Using Distance Maps” Computer Aided Design, 38, 183-193

Shah, J., Mantyla, M., (1995) Parametric and feature-based CAD/CAM, New York, NY

Shen, H., Fu, J., Chen, Z., Fan, Y., (2010) “Generation of Offset Surface for Tool Path in NC

Machining Through Level Set Methods” International Journal of Advanced
Manufacturing Technology, 46, 1043-1047

Thomassen, J., () “Self-Intersection Problems and Approximate Implicitization” Computational

Methods for Algebraic Spline Surfaces, 155-170

Tiller, W., Hanson, E., (1984) “Offsets of Two-Dimensional Profiles” IEEE CG&A, 36-46

94

Treece, G., Prager, R., Gee, A., (1999) “Regularised Marching Tetrahera: Improved Iso-Surface
Extraction” Computers And Graphics, 23, 583-598

Varadhan, G., Manocha, D., (2006) “Accurate Minkowski Sum Approsimation of Polyhedral

Models” Graphical Models, 68(4), 343-355

Varadhan, G., Krishnan, S., Kim, Y., Manocha, D., (2003) “Feature-Sensitive Subdivision and

Isosurface Reconstruction” Proceedings of the 14th IEEE Visualization Conference, 99-
106

Wang, C., Manocha, D., (2013) “GPU-Based Offset Surface Computation Using Point Samples”

Computer-Aided Design, 45, 321-330

Yin, K., Liu, Y., Wu, E., (2011) “Fast Computing Adaptively Sampled Distance Field on GPU”

Pacific Graphics 2011

Yoo, D., (2009) “General 3D Offsetting of a Triangular Net Using an Implicit Function and the

Distance Fields” International Journal of Precision Engineering and Manufacturing,
10(4), 131-142

Zhang, Y., Yu, M., (2011) “Computing Offsets of Point Clouds using Direct Point Offsets For

Tool-Path Genreation” IMechE, 226(B), 52-65

