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ABSTRACT

Developing an Architecture Framework for Cloud-Based,
Multi-User, Finite Element Pre-Processing

Jared C. Briggs
Department of Mechanical Engineering, BYU

Master of Science

This research proposes an architecture for a cloud-based, multi-user FEA pre-processing
system, where multiple engineers can access and operate on the same model in a parallel envi-
ronment. A prototype is discussed and tested, the results of which show that a multi-user pre-
processor, where all computing is done on a central server that is hosted on a high performance
system, provides significant benefits to the analysis team. These benefits include a shortened pre-
processing time, and potentially higher-quality models.

Keywords: finite element analysis, fea, cloud computing, multi-user, collaboration, collaborative
engineering, pre-processing, cae, cax, byu
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CHAPTER 1. INTRODUCTION

As part of any modern product design method, it is common practice to analyze a product

before it is produced in order to predict whether it will perform according to the required design

criteria. Products are commonly analyzed for conditions such as stress, strain, deflection, failure,

heat and mass transfer conditions, etc. Unfortunately, the vast majority of products have geome-

tries, materials, loads, environments, or a combination of these that are too complex to accurately

model using simple, closed-form solutions. Therefore, methods have been developed to facilitate

the numerical approximation of these products, thus enabling the computational simulation of their

real-world performance. These include the Finite Difference, Finite Volume, and Finite Element

methods, the uses of which are often very time-intensive—yet critical—in the product design pro-

cess. Throughout this paper, these methods will be referred to as Finite Element Analysis (FEA)

tools and processes, or simply, as the analysis process.

Modern engineering applications that facilitate the use of FEA methods are strictly single-

user [1]. This means that only a single engineer can work on an analysis model at a time, even

in cases where the model is extremely large or consisting of many parts. For example, when a

product is designed, a Computer-Aided Design (CAD) geometry model is delivered to a single

analyst who defeatures it, defines an appropriate mesh, refines the mesh, applies realistic boundary

conditions, and then submits the simulation model to be solved—often to a High Performance

Computing (HPC) cluster or other cloud-type environment. This work introduces an architecture

framework that allows multiple engineers to efficiently work on the same FEA model at the same

time, thereby shortening design cycle times.

1



1.1 An Introduction to Analysis Pre-Processing

The vast majority of the time in the analysis phase is spent building and refining the FEA

model (i.e., ”pre-processing”)1. According to a survey performed at Sandia National Labs, about

73% of the time spent developing an analysis model is consumed in this stage [2]. Regardless

of the software used, the main steps involved in pre-processing include: importing geometry, dis-

cretizing the geometry (”domain”), defining material properties, and applying loads and boundary

conditions [3, 4].

1. Importing geometry may include reading a kernel-neutral file-format (such as IGES or STEP),

or a kernel- or CAD-specific format (such as Parasolid®2, ACIS3, NX™4 part file, etc.). It

is often necessery to simplify (or ”clean up”) this geometry by removing small or insignifi-

cant artifacts such as fillets, chamfers, small holes, non-structural components, and any other

artifact that does not contribute to the intent of the analysis.

2. Discretizing the domain (also known as ”meshing”) is done in order to break up the complex

geometry into smaller shapes (”elements”) whose closed-form solutions are known, thus ren-

dering the problem easier to solve by summing the solutions of all of the smaller problems.

Discretization creates both nodes and elements, where elements are made up of neighboring

groups of nodes. If an automatic meshing algorithm is used, it is often necessary for the user

to manually fix elements that are either too small, too large, or whose geometry may render

them numerically unstable. In a large model, this process can take a considerable amount of

time.

3. Material properties are applied to the elements (be it individually, to a subset of elements, or

to all elements in the mesh). These properties may include Young’s Moduli, Poisson’s Ra-

tios, Density, etc. of the material with which each element is associated. Section properties

(beam, shell, solid) are also defined.
1For those unfamiliar with Solving or Post-Processing in FEA, or for more information about the overall FEA

process, see Appendix A.
2Parasolid is a registered trademark of Siemens Product Lifecycle Management Software, Inc.
3ACIS is owned by Spatial Corporation.
4NX is a trademark of Siemens Product Lifecycle Management Software, Inc.
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4. Loads and boundary conditions are applied. Loads may represent instances of structural

loads, displacements, temperatures, pressures, heat/mass flows, etc., and boundary condi-

tions are used to signify phenomena such as constraints (places of zero displacement), and

energy/heat sinks. This process can also be quite time-consuming if the analysis requires a

complex loading scenario, or a large number of loading scenarios.

This very serial workflow causes the single-user preparation of analysis models to frequently be-

come a substantial bottleneck in the product design process [5]. Even though much research has

been done to expedite the overall analysis process, little attention has been paid to enabling mul-

tiple concurrent users in the same pre-processing environment. It is the preprocessing phase that

holds the greatest potential for benefit gains from the research presented in this thesis; therefore,

this document does not propose any additions or modifications to the solver or post-processor

display phases.

1.2 Research Motivation

Modern computing power allows researchers and engineers to analyze much larger models

than in the past. For example, many recent simulations have in excess of tens of millions of nodes,

something that was much less common only a few years ago. Analyses this large are frequently

very difficult to set up, on account of the substantial number of manual corrections that need to be

made before the simulation is ready to solve, as well as other complications that are inherent with

complex geometries, materials, and loading conditions. A significant bottleneck in the analysis

process is the fact that today’s FEA software allows only a single user in a model at a time. This

inhibits the analysis team from working cooperatively on the same model. Parallelizing this pro-

cess so that multiple engineers can work together would expedite this time-sink, thus shortening

the overall product development cycle. Current research into collaborative engineering methods

focuses on CAD software, and although many of the same principles can be applied to analysis

modeling, the architectural differences of these two multi-user environments are significant.

In order to effectively utilize a multi-user pre-processor, the analysis team must standardize

and follow accepted modeling practices and techniques. For example, modeling conflicts can be

minimized if each team member works in a pre-defined section of the model (domain), or fills
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an assigned functional role. Doing so in a multi-user environment, these considerations will help

teams reduce modeling time by a significant amount. Also, due to the fact that the modeling load

is shared among users, it is expected that the final simulation quality will be greater than what is

currently achieved.

Multi-user CAx systems generally require significantly more resources in a more reliable

architecture than single-user systems. This is due to the linear increase in command frequency

resulting from the increased number of users per project, and is especially noticeable in FEA pre-

processing. Because of the high command-execution load associated with multi-user applications

(FEA processes in particular), a multi-user FEA pre-processor would be ideally implemented on

a cloud-type environment, enabling a high degree of reliability and accessibility for geographi-

cally distributed teams. This type of architecture would allow for dynamic scalability of system

resources as the number of users on the project changes, and would reduce the amount of resources

required on client machines.

1.3 Research Objective

FEA pre-processing is the most time- and labor-intensive step in the entire analysis process.

The duration of this step can be significantly shortened if the workflow is parallelized in a way

that allows multiple users to work collaboratively. No commercial FEA pre-processing software

currently has this capability.

This research proposes a finite element pre-processing architecture that includes a cen-

tralized, cloud-based server where all commands are executed in a dynamically-scalable system.

Aspects of this framework will be demonstrated by creating and implementing a simple, multi-

user pre-processor prototype on a networked system, where all commands are executed in parallel

on the server. The author originally intended to utilize the Microsoft®5 Azure Cloud as the host

for the server; however, due to the fact that many engineering companies already host their own

High Performance Computing (HPC) data centers, and may be hesitant to trust their data to cloud

services, the architecture presented in this research will be prototyped and tested using an in-house

cluster-style environment. It is important to note that this architecture could also be implemented

5Microsoft is a registered trademark of Microsoft Corporation.

4



in a public or private cloud with little or no modification, which would make it available to compa-

nies who don’t have the in-house resources to host such a system. For the purposes of this paper,

the term “cloud” is used to include implementations in public and private clouds, HPC systems

(including clusters), and other distributed architectures.

The main objectives for this thesis are:

1. Design a framework to facilitate cloud-based, multi-user pre-processing.

2. Create a simple, multi-user FEA pre-processor to test the framework.

3. Implement and test this software on a local, networked system.

1.4 Thesis Organization

This research couples new methods in multi-user applications with existing concepts for

cloud-based computing. The prior research and utilization of these technologies as well as a dis-

cussion regarding their relation to the current work is presented in Chapter 2. Chapter 3 gives a

general overview of the methods and architecture used for this research. A detailed description

of the prototype implementation and design rationale are included in Chapter 4. The results of a

demonstration of the implementation are presented in Chapter 5. Chapter 6 discusses conclusions

drawn from the research, as well as suggests possible future efforts to further this work.
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CHAPTER 2. BACKGROUND

Before the advent of engineering software such as computer-aided design (CAD), computer-

aided engineering (CAE), and other computer-aided technologies (CAx) the standard modes of

engineering design allowed for a great deal of collaboration. However, from the inception of CAx

software, this collaboration has been greatly limited by the single-user nature of the software.

Interest and research into applying collaborative methods to modern CAx software has recently

increased.

Also, the use of High Performance Computing (HPC) and other similar cloud-type archi-

tectures in engineering is increasing in popularity due to their speed, high reliability, easy access,

and relatively low cost. These systems are already being used to increase workflow for resource-

intensive operations (such as solving FEA models), and could be leveraged for other engineering

purposes.

2.1 Current Commercial FEA Pre-Processors

Many commercially-available FEA pre-processors exist and are in wide use in industry.

These include ANSYS®1 Mechanical™/CFD™/Fluent®/Structural™, Altair®HyperMesh®2, Siemens®3

Femap™4, CUBIT™5, and Simulia®6 Abaqus/CAE™7, as well as several that are integrated

1ANSYS is a registered trademark of ANSYS, Inc.
2Altair and HyperMesh are trademarks of Altair Engineering, Inc.
3Siemens is a registered trademark of Siemens AG.
4Femap is a trademark of Siemens Product Lifecycle Management Software, Inc.
5CUBIT is a trademark of Sandia National Laboratories.
6Simulia is a registered trademark of Dassault Systémes.
7Abaqus/CAE is a trademark of Dassault Systémes.
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within CAD systems such as Siemens NX™8, CATIA®9 SIMULIA™10, and Autodesk® Inven-

tor®11.

All commercial FEA pre-processors have similar basic functionality (discussed in Section

2.1.1), although levels of accuracy and granular control can vary widely among platforms. Some

systems are designed toward seasoned analysts, allowing more low-level manipulation and refine-

ment. Others are intended for more high-level use by designers, automating much of the usually

tedious pre-processing operations in the background at the sacrifice of direct fine control and, po-

tentially, some quality. Many pre-processors also support a variety of solvers, whereas some are

specific to a particular analysis code.

2.1.1 Basic Pre-Processing Functions

These systems all perform the same general pre-processing operations including the fol-

lowing:

• Import geometry: this may be in the form of a generic file-format (IGES, STEP, or STL), or

direct import from either a CAD system or kernel database file.

• Edit geometry: this includes the ability to remove fillets, chamfers, small holes, and other

extraneous geometry.

• Apply materials: including linear, nonlinear, and temperature-dependent isotropic, anisotropic,

and orthotropic materials. Depending on the pre-processor, these may be applied to either

the geometry or directly to the mesh.

• Discretize geometry: many mesh and element types are available. Some common element

types are 1D rigids, bars, beams, and springs; 2D triangles and quadrilaterals; and 3D tetra-

hedra, hexahedra, and pentahedra (prisms or pyramids). Most modern systems support at

least first- and second-order meshes (i.e., linear and quadratic elements).

8See Chapter 1, footnote 4.
9CATIA is a registered trademark of Dassault Systémes.

10See footnote 6.
11Autodesk and Inventor are registered trademarks of Autodesk, Inc.
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• Edit mesh: meshes can have various operations performed on them (either globally or lo-

cally) including refining or simplifying the mesh, changing element type or order, adding/editing/deleting

nodes and elements, and moving and connecting/disconnecting nodes.

• Apply loads and boundary conditions: loads and constraints (boundary conditions) are usu-

ally applied to nodes; however, most software allows these entities to also be applied to

geometry, which then distributes the load or constraint to the associated finite element nodes.

2.2 Current Multi-User Methods and Implementations

Many types of commercial collaborative technologies have been developed, such as screen

or application ”sharing” software like WebEx®12, Product Data Management (PDM) and Prod-

uct Life-cycle Management (PLM) software including Siemens Teamcenter™13, shared document

editing software like Google Docs™14, and others. Much research has been done in an attempt to

reduce the amount of time required for user-intensive CAx operations by parallelizing the work-

flow and allowing multiple users to work concurrently on the same model. However, no known

commercial engineering software exists that allows multiple users to simultaneously edit the same

file. Past research into various multi-user CAx systems has shown that increasing the number

of engineers in a particular model can greatly decrease production time [1, 6–8]. Several proto-

types have been made that successfully demonstrate this in CAD, and even a few in the CAE/FEA

pre-processing realm.

The need to create a collaborative FEA pre-processing environment has been prevalent for

some time. A paper from Sandia National Laboratories stated in 2001 that FEA pre-processing

“dominates the analysis time, accounting for over 90 per cent of that time in some cases” [9].

This issue can be traced back many more years. For example, in 1995 a joint paper between

researchers at Brigham Young University and Sandia pointed to the fact that pre-processing is “a

time consuming and often difficult manual task” [10]. Now, almost two decades later, this need is

still very real, as stated by Rashed [11], Weerakoon, et al. [6, 7], E. Red, C. G. Jensen, et al. [8],

12WebEx is a registered trademark of Cisco Systems, Inc.
13Teamcenter is a trademark of Siemens Product Lifecycle Management Software, Inc.
14Google Docs is a trademark of Google, Inc.
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Roensch [12], Yang [13], and others. It is the pre-processing phase that holds the greatest potential

for benefit gains from the research presented in this thesis.

2.2.1 Multi-User CAD

Recent multi-user prototypes (including Brigham Young University’s NX-Connect and

CATIA-Connect) have been developed that show the reduction in modeling time attained by mul-

tiple, concurrent users. For example, if a CAD task takes one engineer t1 time to complete, and

n number of engineers work collaboratively to accomplish that task, then the amount of time tn

ideally required to finish that task could be expressed with the following equation:

tn = t1/n (2.1)

Let’s imagine that a particular project takes t1 hours for one engineer to complete. If we

have n engineers working to complete this same task, then the time ideally required to complete

this task can be modeled as shown in the figure below.
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Figure 2.1: Time Required to Collaboratively Complete a CAD Task
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It is important to note that even though Figure 2.1 illustrates a significant reduction in

modeling time per engineer added to a collaborative CAD task, due to the law of diminishing

returns, there will come a point where adding more engineers to the task will not further reduce the

modeling time. The number of engineers at which this point comes into effect can be influenced

by the size and complexity of the model, and the collaborative techniques utilized by the design

team. This research does not consider the cause or effects associated with this phenomenon.

The current multi-user CAD prototypes require each command to be executed on every

user’s workstation [1, 9]. This means that as more engineers participate in the multi-user session,

more commands must be executed on each machine per unit of time. Since CAD operations often

require little time to execute, this method may be acceptable for multi-user CAD prototypes.

2.2.2 Multi-User FEA Pre-Processing

As mentioned earlier, a vast majority of the time spent in the analysis phase of product

design is spent merely building the model (i.e., “pre-processing”). According to a survey per-

formed at Sandia National Laboratories, about 73% of the time spent on an analysis is consumed

in this stage [2]. The remaining time is used solving the model and interpreting the results (i.e.,

“post-processing”).

FEA pre-processing algorithms can take considerably longer to execute than most CAD

methods. With that in mind, let’s assume that FEA pre-processing consumes 73% of the overall

time t1 required for a single user to complete a finite element analysis, and n engineers are engaged

in collaboratively pre-processing the model. Then, the ideal time tn needed to complete a full

analysis for a project can be modeled.

tn = t1

(
0.73

n
+0.27

)
(2.2)

Let’s recall the example project from Figure 2.1, and assume that 73% of the project time is

now spent pre-processing the model. Then, when we assign n engineers to the model-preparation

stage, we again see a significant decrease in the overall time required to complete the project, as is

shown in Figure 2.2.
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Figure 2.2: Time Required to Collaboratively Pre-Process a FEA Model

However, we note that for each engineer that we have pre-processing the FEA model, the

relative time-savings is less drastic than it would be with the same number of engineers assigned to

a CAD task. For example with seven engineers assigned to pre-processing, the ideal overall time

required to complete the entire process (solving included) is 37% of the original, single-user pre-

processing time. However, if seven engineers work together on a CAD task, than the task could

ideally be accomplished in approximately 14% of the single-user CAD time. This difference is

due to the fact that multi-user processes can only speed up the portion of the overall time that is

required to create the FEA model, not to solve it. This phenomenon is known as Amdahl’s law [10].

However, it is important to note that a cloud-based multi-user pre-processing server can access and

utilize a distributed solver, which would then have the potential to shorten the solving time as well.

Although the benefits of such a system are logical, this research will focus on parallelizing only

the pre-processing phase of analysis.

Again, it is necessary to note that the law of diminishing returns will ultimately limit the

effect of each additional engineer in relation to the complexity of the model and the collaborative

techniques employed by the modeling team. Therefore, the trend shown in Figure 2.2 might not

be fully realistic after a certain point, even in ideal cases. This issue will not be examined in this

research.
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Procedures in FEA pre-processing often require substantially longer amounts of time to ex-

ecute than those in CAD. These processes include commands such as geometry cleanup, meshing,

re-meshing, mesh morphing, etc., and can often take from a few seconds to many minutes to com-

plete. Similar to the current multi-user CAD architectures, existing multi-user FEA pre-processing

prototypes (like Brigham Young University’s CUBIT-Connect) require all commands to be exe-

cuted on each machine [6]. Therefore, as more engineers participate in a multi-user pre-processing

session, more of these often-time-consuming commands must be executed on each user’s com-

puter. This can cause the clients’ modeling GUIs to become unresponsive for extensive durations

of time. For example, if a group of engineers were using BYU’s CUBIT-Connect prototype, and

several of them simultaneously meshed complex parts, then the corresponding mesh commands

would be propagated to all of the other computers, making the client machines unresponsive until

they completed executing all of the commands.

Furthermore, it was found from the author’s HyperMesh-Connect prototype that even though

a mesh command is sent with the same parameters to all clients in a multi-user project, the result-

ing meshes can be slightly different on each machine [14]. This may be due to the fact that some

meshing algorithms use a random seed to determine where to start meshing or where nodes should

be placed [15, 16]. Some problems resulting from this anomaly may include differing numbering

sequences among the clients, loads that may sum to zero on one client but not on another, and other

issues. These can become severe problems when dealing with tasks such as free-body modeling,

topology optimization, etc.

2.3 Current Utilization of Cloud-style Architectures in Engineering

High Performance Computing (HPC) and other cloud-type architectures are commonly

used today in engineering for solving large numerical problems. Many companies currently have

in-house servers, server farms, or clusters on which they may run proprietary software and simu-

lations. Historically, these machines have been used mainly for solving numerical problems and

data-mining. More recently, small sections of these computers may have been allocated to per-

form other roles. For example, the advent of systems such as HP’s Remote Graphics Software

(RGS) allows a user to remotely connect and utilize the resources of a server as if it was a desktop
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workstation [17,18]. This setup emulates the terminal-mainframe configuration of past computing

systems.

2.3.1 HPC Use in Industry

The most common uses of HPC-type architectures in industry include anything that re-

quires highly calculation-intensive algorithms, such as computing the numerical solutions to large

models, data-mining large data sets, gene sequence matching, molecular modeling, weather fore-

casting, oil and gas exploration, etc. These systems are often accessed remotely via the local

network or internet, with the user submitting a job, logging off, and periodically checking until the

job is finished. Some jobs can last anywhere from a few minutes to days to weeks, depending on

the job type, the system running the job, and the system resources allocated to the job.

These architectures often allow for little user interaction. In the case of Finite Element

modeling, all pre-processing is typically done on the user’s local machine before the model is

submitted to be solved on one of these systems. Then, after the solution is found, the user must

download the results files (which can total in excess of terabytes) to his or her local machine for

post-processing.

2.3.2 Cloud-Based FEA Pre-Processors

Several software programs have been developed recently that allow a user to pre-process

FEA models on the cloud. However, these are often limited in model size and geometry type.

One example of this is NEi™15 Stratus, which allows someone to use a menu-based interface on

an iPad® or iPhone®16 to specify primitive shapes, meshing parameters, material properties, and

basic loading and constraint conditions for an FEA model. These parameters are then submitted to

the NEi cloud, where the model is created and solved. Static images of the resulting contour plots

are then sent back to the user’s device for viewing [19, 20].

Japanese software company Fujitsu™17 developed the Engineering Cloud, an environment

where a user can connect to a remote server, and perform FEA pre-processing on the server [21,22].

15NEi is a trademark of NEi Software, Inc.
16iPad and iPhone are registered trademarks of Apple Computer, Inc.
17Fujitsu is a trademark of Fujitsu Limited.
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Fujitsu originally developed proprietary CAD, FEA, and Product Data Management (PDM) soft-

ware. Then, the company integrated their software into their Engineering Cloud, thus enabling

manufacturers to access design and analysis software from anywhere with an internet connection,

even on low-resource machines. Fujitsu’s Engineering Cloud utilizes Remote Virtual Environment

Computing (RVEC), a proprietary high-speed image compression technology, to pass model view-

ing data to the user [23]. This means all data is retained on the server machines, allowing the client

to function without the risk of overloading its local resources.

The computational fluid dynamics (CFD) software by CD-adapco, STAR-CCM+™18, was

built on a client-server architecture, which means that the pre-processing computation can be done

remotely on a server, with the visualization done locally on the client [24]. This requires fewer

resources on the client than would be needed otherwise.

While these systems are a step in the right direction, they still only allow a single user to ex-

ecute one pre-processing command at a time on the server, thus limiting the systems’ collaborative

effectiveness. The research presented here proposes utilizing a dynamic system to host the server,

allowing it to execute incoming pre-processing commands in parallel, thus enabling an efficient

multi-user pre-processor.

2.3.3 Research into Cloud-Based, Multi-User Software

Over twenty years ago, it was stated that the ideal mode of engineering collaboration would

be “a network of computers/users” that share and pass information to one another through a cen-

tralized server [25]. There have been architectures proposed for multi-user CAx that utilize a single

server as the system’s main compute point. However, the failure of this server would disrupt work

for all users who utilize it [26]. This would mean that if something happened to the server which

inhibits its proper function, all collaborative progress would stop, and past data could potentially

be lost. Therefore, a single centralized server that is based on a standard client-server architecture,

upon which resides the entire load of the multi-user projects, would not be an ideal solution for

this type of application.

Cloud-based systems have access to a larger amount of more integrated hardware than most

other architectures, thereby allowing higher redundancy accross many aspects of the system. The
18STAR-CCM+ is a registered trademark of CD-adapco.
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availability and accessibility of a multi-user FEA pre-processing environment could be enhanced

by placing it in a cloud-type architecture, thus allowing for high up-time and easy accessibility

from potentially anywhere with an Internet connection. This would require that all commands

be executed only on the server, which would then propagate the resulting data to all of the clients.

Weerakoon, et al. [6] stated that in addition to the innate advantages of multi-user CAx, the benefits

of a cloud-based architecture for a finite element pre-processor would include the following:

1. Consistent numbering system (all clients are working with dependably identical models)

2. Thinner clients (low client-side resource requirement)

3. Scalability (enabling practically an unlimited number of engineers to work in the same multi-

user session)

No prototype is known to actually utilize the cloud for such a purpose. One U.S. patent has

been granted for a cloud-based chat system that enables users to interact in a virtual space using

avatars [27].

The author believes that this research will advance the state of the art in such a way that

companies who develop the leading FEA pre-/post-processors will take notice. Furthermore, it

has been communicated to the author by several industry professionals that this type of technology

would be revolutionary and is in great need. These professionals include engineers and engineering

managers from Altair Engineering, LSF Design Engineering, Alliant Techsystems Inc. (ATK),

General Atomics Aeronautical Systems, Pratt & Whitney, and others.
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CHAPTER 3. METHODS

In addition to standard FEA pre-processing operations, a cloud-based, multi-user pre-

processor requires several capabilities that are not commonly found in today’s commercial pack-

ages. These include the ability to support several concurrent multi-user sessions (completely sep-

arate and independent projects) residing and operating in the same hardware; the capability to

simultaneously execute any number of commands without freezing the clients or their User Inter-

faces (UIs); as well as the inherent high availability, accessibility, and scalability provided by the

cloud architecture.

This chapter describes an architecture that enables multi-user pre-processing. The proposed

system utilizess a dynamic number of processing servers, thus allowing execution of commands in

parallel without freeziing the clients’ user interfaces.

3.1 Overall Architecture

The ideal multi-user FEA pre-processor utilizes a strong, central, cloud-based server where

all commands are executed, and which sends all resulting data to the clients. The server’s residing

on the cloud allows it to have dynamic scalability and ready access for its users.

In order to most fully utilize the cloud-architecture, the pre-processing framework includes

(shown in Figure 3.1):

• A thin-client, where the user views the model and inputs commands

• A network connection through which the clients connect to the cloud server

• A method for validating users and their project assignments and rights

• A queue that transfers received commands to the Server Processing Instances (SPIs)

• Another queue that collects resulting data from the SPIs for distribution to the clients
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• A controller, which creates and destroys compute instances when necessary

• A database, or some other form of central, shared data repository

Figure 3.1: A Simplified, High-Level Framework

The cloud consists of a number of machines (either virtual or real), each dedicated and

specialized to a particular task. These machines (sometimes referred to as ”nodes”) contain all of

the software (libraries and applications) necessary to complete their assignments, communicating

with each other as necessary to accomplish the assigned task.

When demand increases to the point that there are fewer than a defined number of “waiting”

SPIs at any one time, the system will create new SPIs to accommodate. Furthermore, when demand

decreases, resulting in more non-productive SPIs than is preferred, the system will destroy the

SPIs that are no longer needed. This process ensures a more optimal balance of performance with

resource use.

17



3.1.1 Client

The client exists locally in the form of a thin-client, which is a piece of software that relies

on another computer (in this case the server) to function [28]. This client receives and displays the

data given by the server, collects inputs from the user and packages them as commands, and sends

these commands to the server. It also listens for data coming from the Server, and updates the local

database with the new information as appropriate. An example of dataflow in the Client is shown

in Figure 3.2.

Figure 3.2: An Example Client Dataflow

As can be see in Figure 3.2, no computation is done on the Client other than what is some-

times necessary to create a command. All processing is done for all Clients on the Server. This

allows for very light resource requirements on the Client, thus enabling a more cost-effective dis-

tribution of resources even for large analysis models [29].
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3.1.2 External Connectivity

The cloud-based server has a networking method for communicating with the clients. This

is done as a secure TCP network connection which, if not hosted in-house, allows for protected

and monitored external access by the users. Clients use this to connect to the server and check

user credentials, validating that the user has the appropriate rights to access the server. Figure 3.3

shows an example of this process.

Figure 3.3: An Example Validation Dataflow in the External Connection

According to the example shown in Figure 3.3, clients connect to the system using the

following process:

1. Each individual client connects to the cloud using the server’s exposed network connection

2. The user’s credentials are then checked to ensure that the he or she has sufficient rights to

access the requested project data:

(a) Upon successful validation, the associated client is marked as acceptable, and any ap-

propriate information is then both accepted from and shared with the client
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(b) Upon either logging out or disconnecting, the client loses this mark and will need to

re-validate at the next connection

Once user rights are established and the connection is secured, the connection is then used for

receiving commands from the clients as well as distributing resulting data, as shown in Figure 3.4.

Figure 3.4: An Example External Connection Dataflow (After Validation)

Once connected, users can operate on the model:

1. The user creates a command using the client’s user interface

2. The client sends this command to the server

3. The server checks to make sure that the client has already been validated

4. The client’s command is added to the incoming queue

5. The next available SPI removes the command from the queue, queries the central database

for appropriate model information, and starts processing the command

6. The queue waits for new commands and presents the next command to the next available

SPI
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3.1.3 Queue

The server prioritizes incoming commands, executing them in the order in which they

arrive. At least one Server Processing Instance (SPI) is assigned to each command that is received

(some processes allow the assigned SPI to utilize other slave SPIs during execution). The system

queues each command until an SPI is available to execute it. Once an SPI retrieves a command

from the queue, the next command is presented for processing on the next available SPI. This

allows the system to execute commands in parallel.

After a command is successfully executed, the resulting data is distributed to the clients.

Since these data sets can be large, it may take a significant amount of time to transmit across

the network. Therefore, if multiple commands are completed at the same time, the resulting data

is queued and transmitted in a consistent sequence in order to avoid message overlap or other

significant communication errors.

3.1.4 Server Processing Instance (SPI)

The central processing unit of the system is the Server Processing Instance (SPI), where

all commands are executed. The SPI is self-contained, needing only the incoming command and

the related model data in order to execute the command. Any number of SPIs can be running and

available at a given time.

When a command is presented to the SPI, it removes the command from the queue, queries

the central data storage for the necessary model information, and executes the command. Upon

successful completion of the command, the SPI updates the model data on the central data storage

database and puts the resulting data on the return queue. See Figure 3.5 for an example of this

process.

When an SPI successfully finishes execution, it:

1. Updates the central database with the new model data

2. Places the resulting data on the return queue

3. Clears its memory, returning to its original state

4. Waits for the next command
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Figure 3.5: An Example SPI Dataflow

5. If the return queue is not empty, its contents are chronologically removed (oldest to latest)

and distributed to the connected and approved clients

3.1.4.1 Canceling Commands and Undo

In the event that a user decides to cancel an executing command that he or she instigated,

each SPI has a background thread that periodically checks the controller to see if a command has

been sent that cancels the SPI’s current command. Such a cancel command would specify the

issuing user and the time at which the original command was sent. These data are tracked by the

controller, which can then direct the command to the appropriate SPI.

If an undo command is submitted, various scenarios can take place. Two possible examples

are:

• The last command that was submitted by any user is undone

• The last command that was submitted by the issuing user is undone

For the first case, the system would merely have to save a state prior to executing any

command. If a subsequent undo command from any user is received, the system merely reverts
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to the previous state. This would be difficult to use when many operations are happening quickly,

because there is no guarantee that sending the undo command will undo the intended operation.

The second case, although seemingly more intuitive, is more complicated. This is due

to the fact that a command by one user may be dependent on the data resulting from another

user’s command. For example, if User A meshes an object, User B creates loads on the resulting

mesh nodes, and then User A sends an undo command, the nodes on which User B’s command is

dependent would cease to exist because User A’s mesh was deleted.

This shows that in a real-time multi-user collaboration, the mode of correcting mistakes is

inherently more complex than in single-user environments. Although not included in this research,

further investigation is required in order to find feasible and reliable solutions to these problems

(see Section 6.2.9).

3.1.5 Controller and Multiple Available SPIs

In order to take advantage of the scalability of the cloud, a number of SPIs are always

“on call” for processing. As long as the system has available SPIs, each command is executed

immediately upon receipt by the cloud (barring modeling conflicts, which will not be discussed

here). The system monitors and dynamically changes its allocated resources according to several

criteria, which may include processing demand (number and types of incoming commands), model

size, number of active users, and the general availability of existing SPIs. As the demand increases,

the system allocates more resources. As demand decreases, those resources are then freed for other

uses. An example of this is shown in Figure 3.6.

When processing demand increases, the system spins up new virtual machines (VMs),

each with a single SPI due to the fact that each SPI uses multiple threads. This allows all of the

threads on the VM to be dedicated to the SPI. Operating costs could be reduced per SPI if multiple

instances are run per VM; however, this could potentially result in performance degradation. The

total number of running SPIs, as well as the number of SPIs per VM, can be tailored to optimal

performance depending on usage scenarios and desired performance characteristics of the system.

The SPI does not store any data. Once computation has finished and the central data storage

system is updated with any new data, the local memory on the SPI is cleared. This allows the
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Figure 3.6: An Example Controller Dataflow

same SPI to operate on other projects, utilizing other data sets, without intermixing project data or

carrying over old data to future computations.

3.1.6 Central Data Storage

Since a number of SPIs can be running at any time, a central storage system exists for

managing shared data. This allows multiple SPIs to access the model data. Data-locking schemes

are employed in order to keep the data from being written to by more than one SPI at a time.

3.2 Basic Pre-Processing Function in a Collaborative, Cloud Environment

The general pre-processing operations discussed in Chapter 1 are included. Some of these

functions are modified from their original form (see Section 2.1.1) in order to operate more effi-

ciently when used in a cloud-based or multi-user environment.

• Import geometry: when a client originates a command to import geometry, the command is

executed by the server. If the geometry file is local to the client that issues the command, the

client is able to read and send the file to the server along with the command for execution.

Otherwise, the geometry file must be accessible to the server, such as on a shared drive.
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• Edit geometry: the user can pick geometry that is displayed on the client for editing (in

accordance with any applicable decomposition methods). The subsequent command is sent

to and executed on the server, which then transmits the resulting changes to the clients. In

the case that a geometry-edit command requires a large amount of resources to compute, the

cloud can supply those according to demand.

• Apply materials: to define a new material, a user selects the material type (isotropic, or-

thotropic, linear, etc.) as well as the appropriate material properties (Young’s Moduli, Pois-

son’s Ratios, strengths, etc.). A material library is implemented, allowing a user to query

and see if the desired material is already included. If a new material needs to be created,

the corresponding parameters are sent to the server, and then distributed to the clients. The

application of the material to geometry/mesh is also packaged and sent to the server for

execution and dissemination.

• Discretize geometry: depending on the desired mesh type, the user selects the geometry to

be meshed and enters the desired parameters into the client. The command is then sent to the

server, where the geometry is meshed. Once the mesh is complete, the server then sends the

resulting mesh to all of the clients, including node and element definitions and information

describing the geometry to which the mesh is applied. In a cloud-based environment, this

operation is executed on the server in its own thread or group of threads, thus allowing

the server to continue executing other commands while the meshing is processed. Once

the mesher signals that it is successfully finished, the server thread then incorporates the

mesh into the server’s database (including the newly-created nodes and elements), and then

distributes the mesh to the clients. This process is further discussed in Section 3.4.1.

• Edit mesh: again, depending on the edit command being used, the user selects the nodes/elements

to be edited, and enters the appropriate parameters in to the client. This information is then

passed to the server. Due to the fact that many operations that edit meshes often take a sub-

stantial amount of time, editing meshes is accomplished on the server on a new thread, thus

allowing the server to continue executing other commands. This operates much in the same

way as creating a mesh (see above).
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• Apply loads and boundary conditions: the application of nodal loads and boundary condi-

tions doesn’t require any real computational effort, so this operation is processed serially on

the server. Furthermore, when calculating forces from pressure loads across a surface or a

line, minimal computation is usually required in comparison to meshing. However, if the

time to compute these is large, a new thread is created in order to allow the server to execute

other commands.

Mutual exclusion (mutex) is utilized in order to protect against race conditions when oper-

ating with multiple threads on the same data. Race conditions occur when separate computation

threads attempt to modify shared data at the same time, often causing unpredictable results [30].

Mutex protection is applied to all shared databases, as well as to all shared network communication

methods.

3.3 Multiple Concurrent Projects

It is rare that a design company has only one active project. Therefore, the server has

the capability to support multiple simultaneous sessions of collaborative projects (see Figure 3.7).

This includes maintaining data separation and integrity, as well as ensuring that each client gets

consistently updated with the data pertaining to its project. For example, many companies that

operate under the United States’ International Traffic in Arms Regulations (ITAR) are required

to keep ITAR-restricted data inaccessible to non-approved parties. This may include isolating

data from some of their own engineers. If a company has one ITAR-restricted multi-user project

and another non-restricted multi-user project, both projects are able to utilize the same hardware

without inappropriately exposing sensitive data [31].

Furthermore, the workload applied to the hardware due to executing a command for one

project doesn’t interfere with the operation or performance of another project. Means are estab-

lished that will detect, limit, and scale the load distribution in the event of high command traffic

and execution (see Section 3.1).
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Figure 3.7: An Example High-Level Dataflow with Multiple Concurrent Projects

3.4 Simultaneous Command Execution

In FEA pre-processing, some commands are dependent on data created by other commands.

For example, many operations including mesh clean-up and applying nodal loads and constraints

are impossible until the mesh is created. However, once meshed, an object can undergo many

parallel, simultaneous operations.

3.4.1 Parallel Meshing: Multi-Object, Multi-Thread

If an assembly consists of multiple discreet parts or objects, each part is independently

meshed on its own computation thread.

1. Meshes in adjacent parts have a surface mesh created at each interface

2. The solid volume of each part (if applicable) is meshed, using any existing interface meshes

as starting seeds
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3. The meshing thread signals the SPI’s main thread that it is finished, and returns the newly-

created mesh

This architecture allows the pre-processor to initiate meshing instances at the same time and to

utilize a continuous numbering sequence for all entities created (nodes, elements, etc.), thereby

retaining numbering consistency among all clients. This np number of parts can be meshed in

approximately one-np
th (1/np) the time required using a conventional pre-processor if np number

of threads are applied toward meshing (one thread for each part).

Some research has been done elsewhere on multi-threaded meshing algorithms, but these

are not studied in this research [32]. However, the author does not see any technical barrier to their

use in this architecture.

3.4.2 Other Parallel Commands

Once a model is meshed, it can be decomposed into individual workspaces according to the

needs of the design team [33]. Each user can then clean up the mesh and otherwise operate in his

or her assigned workspace. Potential issues and appropriate methods of resolving conflicts along

the workspace boundaries will not be studied as part of this research.

Applying loads and boundary conditions to the model can also occur simultaneously due to

the small amount of information and processing required to execute such commands. For example,

the information needed to create a new load includes the load type, an identifier for the node upon

which the load is placed, a magnitude, and vector components of the load application.
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CHAPTER 4. IMPLEMENTATION

This chapter presents two prototype implementations of the architecture proposed in Chap-

ter 3. Since the focus of this research involves cloud-based, multi-user FEA pre-processors, much

attention was placed on the multi-user server, and less on implementing a large variety of pre-

processing functionality. This is due to the fact that many pre-processing algorithms have already

been extensively researched and would not require significant modification (if any) when imple-

mented in this new architecture. Furthermore, due to time and energy constraints, several aspects

of the prescribed architecture were not included in these implementations, including a Controller,

Shared Database, and extensive User Verification. Since these technologies have already been

used and proven in various aspects of cloud-computing, this allowed more resources to be spent

developing the more interesting aspects of the system.

4.1 MUFE (Multi-User Finite Elements)

The author began developing a Multi-User Finite Element pre-processor (MUFE) in early

Fall of 2011 as a class project. It was intended to be a simple test-bed for new collaborative

technologies, in an effort to avoid the often cumbersome and inadequate Advanced Programming

Interfaces (APIs) found in currently-existing software [1]. Although MUFE has only basic func-

tionality1, it can be modified with relative ease in order to implement new collaborative prototypes

(see Section 4.1.5 for more description about MUFE’s current functionality). It was designed and

built with a strong-server/weak-client architecture. This allows all commands to be sent to the

server, where they are executed, and all resulting data to be sent back to the clients, thus guaran-

teeing data consistency among all clients.

Originally, MUFE was intended to be used either in stand-alone mode (single-user, no

server required), or in multi-user mode (where all computing is done on the server). This design

1See Appendix B for a description of MUFE’s current functionality and limitations.

29



required that largely the same code be implemented on both the client and the server. This was

done by allowing both the client and server to share the same source tree, with macros defining the

differences at compile time.

The MUFE program was written in C++, using Microsoft Visual Studio®2 and Qt™3 Cre-

ator. Multi-threading was done in C++ by utilizing the open-source Boost libraries. The C# net-

working software was written by James Wu in the Fall of 2011.

4.1.1 Client

The User Interface (UI) and the Graphical User Interface (GUI) were written using the

cross-platform C++ integrated development environment Qt Creator (which is included in the free

Qt SDK). Its main component is the Graphic Area, which draws the objects for viewing and ma-

nipulation using OpenGL®4. An image of the UI is shown in Figure 4.1, where the Graphic Area

is the large blue rectangle on the left of the image.

The Graphic Area acts as the main viewer for the model, as well as accepting input for

picking entities upon which to operate. Other components in the UI include a series of buttons

(along the top-right of the UI) that allow the user to modify display attributes of the GUI, as well

as a model tree (right side of the UI) that displays all of the entities currently in the model, and a

small text widget (bottom-right) that is used to output information.

Some user inputs are commands that are not necessary to share with other users (such as

view transformations, display changes, etc.). However, many commands define the creation or

editing of modeling entities, which are necessary for the successful completion of the model. A

command of this latter type is defined as a Collaborative Command (CC).

In single-user mode, the MUFE program waits for input from the user, then packages that

input and sends all collaborative commands to the MUFE Core (all non-collaborative commands

are sent straight to the GUI for processing). The Core then executes the necessary commands,

creates or edits the appropriate entities (if applicable), and signals the GUI to update its display.

Figure 4.2 shows how the MUFE program uses input data in single-user mode.

2Visual Studio is a registered trademark of Microsoft Corporation.
3Qt is a trademark of Nokia Corporation.
4OpenGL is a registered trademark of Silicon Graphics, Inc.
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Figure 4.1: Client User Interface

In multi-user mode, the Client waits for input from either the user or the Server. When

input is received from the user, it checks to see if the input is a CC. If so, it is packaged into a

command and sent to the networking client via a Named-Pipe; otherwise, the command is passed

directly to the appropriate local module (usually the rendering module). The Client then returns to

a waiting state.

When data is received from the server (via another Named-Pipe), the Client identifies the

data type represented by the command (geometry, mesh, load, etc.), then locally creates the ap-

propriate entity using the provided data. Once that is complete, the GUI is updated with the new

information. This process is shown in Figure 4.3.

Since all entity types are created on the Server before their data are distributed to the

Clients, the entities share the same integer identifier on all machines. This means that object

identifiers are uniform and unique for all users in the project. Therefore, when a user picks an en-
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Figure 4.2: Client Dataflow in Single-User Mode

tity upon which to operate, the entity is identified using its identifier, which is passed to the Server

as part of the command string.

The latest version of the Client consists of over 34,000 lines of code.

4.1.2 Server

The Server is a headless (without GUI) version of the MUFE Core. It maintains network

connections with the Clients, periodically checking to see if there are any new commands. When

new commands are received, it processes them in the order in which they were received. Figure

4.4 illustrates the flow of data in the MUFE server.

4.1.3 Command Structure

In order to maintain transparency and ease of modification, commands were encoded as

ASCII text for transmission between the Client and Server. The JSON text format was chosen

to represent the data structures in the commands. JSON (JavaScript Object Notation) is a data-

interchange format similar to, but slightly lighter than Extensible Markup Language (XML). JSON
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Figure 4.3: Client Dataflow in Multi-User Mode

allows for a command with somewhat shorter length than XML due to the lack of explicit close

tags. A sample JSON command specifying a material creation is shown in Figure 4.5.

Future implementations may encode the command and data strings differently. For exam-

ple, they may be further encrypted, or even kept in binary for transmission. The overall architecture

presented in this research is not dependent on JSON as the only method of data transmission.

Some commands and their resulting data are very similar. For example, the command in

Figure 4.5 doesn’t require any real computation, merely a material definition. This is because in

this case, the command string encapsulates the entire definition of the new material, which means

that the resulting data string that the Server sends back to all of the Clients would be the same.

Other commands that perform similarly are those that define nodal constraints and loads.
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Figure 4.4: Dataflow in Server

All command and definition strings have two main parts: a string specifying the command

type, which explains if this string is declaring a new command or defining an object that has

been created on the server; and a parameters section, which is where data specific to a particular

command or object type are stored. A command string that operates on a number of existing objects

will include in the parameters section a number selobjcount describing the number of objects upon

which the command operates, and a list selobjs giving the integer identifier for each of the selected

objects. Each command operates on a specific object type, so the integer identifiers in selobjs

relate to a specific object. For example, commands that call for the creation of a mesh operate on
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Figure 4.5: JSON String Defining a New Material

geometric objects. The command shown in Figure 4.6 creates a mesh on geometric object number

zero (indexing starts at zero for stored objects). If more objects were to be meshed in the same

command, selobjs would include a line for each one (as demonstrated in Figure 4.6).

Figure 4.6: JSON String Describing a Mesh Command

Some commands, such as the mesh command in Figure 4.6, are relatively simple, including

all of the necessary parameters that the Server needs to create the mesh. However, the resulting

data from such a command that the Server sends out to the Clients involves a considerably larger

amount of data, since it includes the definition for each newly-created Node in the mesh, as well

as the nodal connectivity for each Element (see Figure 4.7).
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Figure 4.7: Part of a JSON String Defining a Newly-Created Mesh

JSON-formatted strings are typically shorter than XML-formatted strings defining the same

object. The author compared the lengths of JSON and XML strings defining a mesh of various

sizes. Table 4.1 summarizes the results. As can be seen, these command strings may easily reach

lengths on the order of megabytes (MB). For example, a small mesh containing 131 Nodes and 380

4-Node Tetrahedral Elements is represented in JSON by a string with a length of 34.6 kilobytes
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Table 4.1: Comparison of String Lengths Using JSON and XML Formats

Element Type Number of
Nodes Number of Elements

Length of
JSON String

(MB)

Length of
XML String

(MB)
4-Node Tetrahedra 131 380 0.0346 0.0396
4-Node Tetrahedra 673 2,988 0.267 0.306
4-Node Tetrahedra 2,914 14,975 1.38 1.58
4-Node Tetrahedra 5,512 29,619 2.72 3.14
4-Node Tetrahedra 25,329 146,730 14.1 16.2

(KB). An XML string representing the same mesh would have a length of 39.6 KB. A considerably

larger mesh (but still relatively small in comparison to many industrial models) with 5,512 Nodes

and 29,619 Elements utilizes a JSON string of 2.72 MB, while the same mesh defined in XML

requires 3.14 MB of memory. This shows that JSON consistently produces a shorter string than

the comparable XML string storing the same data. For this reason, JSON was selected as the

format used for transferring data over the network.

The open-source C++ Boost5 libraries were used for parsing and creating JSON and XML

strings. Using existing and well-tested libraries such as Boost allowed code for other, more signif-

icant, parts of the software to be developed.

4.1.4 Network Communication Methods

In single-user mode, MUFE does not utilize any networking methods. However, in multi-

user mode, a command that originates in the UI in the form of a JSON-formatted string is sent via

Named-Pipe to an external C# process that was developed by James Wu for BYU’s Cubit-Connect

project.

4.1.5 Meshing and Other Functionality

As was stated in Section 4.1, the MUFE pre-processor was developed with only very basic

functionality, including operations such as read stereo-lithography-faceted (.stl) geometry, define

isotropic materials, create tetrahedral solid meshes, specify nodal forces and constraints, and set

5See http://www.boost.org/ for more information.
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up linear-static loadcases. It utilizes the open-source meshing program TetGen6 (compiled as

a separate executable) to mesh solid volumes with tetrahedral elements. MUFE can be easily

extended to utilize various solvers; for example, Altair Optistruct®7 and the open-source solver

CalculiX8 can currently be used with limited functionality.

For this basic implementation, no methods for mesh cleanup or decomposition were imple-

mented. This is not due to any limitation of the proposed architecture, but merely constrained by

resources available for exploring and writing the necessary code.

4.2 Small Server Implementation

The MUFE Server was originally designed to work only over the Local Area Network

(LAN), utilizing a local workstation as the server. This setup is not scalable, and only parallelizable

to the extent of the Server’s hosting hardware. This configuration was tested on a small scale, the

results of which are presented in Chapter 5.

4.2.1 Client

Other than connecting directly to the server instead of an external connection, the Client

for this implementation functions as described in Section 4.1.1. This includes creating command

strings and sending them to the Server, accepting model changes from the Server, and allowing the

user to view and select portions of the model as necessary to create commands.

4.2.2 External Connection

Since this server was tested only on the local network and all connections originated from

within the network, an externally-facing connection was not necessary on the server. However, an

external connection was temporarily simulated with a VPN connection, which allowed for secure

access from remote networks.
6See http://wias-berlin.de/software/tetgen/ for more information.
7OptiStruct is a registered trademark of Altair Engineering, Inc.
8CalculiX is a free three-dimensional structural finite element solver. See http://www.calculix.de/ for more infor-

mation.
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4.2.3 Queue, Controller, and Central Data Storage

Commands that are recieved by the server’s networker are placed in a queue for processing.

That queue is frequently checked by the MUFE Core (SPI). When a command is found by the SPI,

it executes the command (spawning a new thread if necessary), updates the data storage, and returns

the resulting changes to the networker for transmission to the clients.

Due to the fact that this particular implementation was not scalable, a Controller was not

necessary. Also, MUFE’s original central data storage system was sufficient for this implementa-

tion. Scalability would require significant changes to the way the SPI stores and uses data. Note

that even though the iplementation discussed here is not scalable, the architecture presented by this

research (as described in Chapter 3) is scalable.

4.3 Cluster Implementation

With a few architectural changes, the system was modified to work on a local cluster.

Figure 4.8 shows the high-level process flow for a cloud-based implementation. Note that due to

the inherent scalability of the cloud, a large number of Server Processing Instances (SPIs) could

potentially be spun up in order to support processing demand; however, only one SPI was used in

this implementation. A more thorough redefinition of the MUFE database storage system would

allow for multiple concurrent SPIs, but this was not attempted due to time constraints.
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Figure 4.8: High-Level Dataflow of the Entire System
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4.3.1 Client

The Client for this implementation functions exactly the same as for the local implemen-

tation (see Section 4.2.1), only it directs its network connection to the server’s externally-facing

connection on the cluster. See Section 4.1.1 for a full description of the Client.

4.3.2 External Connection

The cluster exposes an externally-facing connection to the hosted server. This allows users

to remotely access the server via standard network protocols such as TCP/IP. The TCP protocol

also supports the common communication methods HTTP and HTTPS [34].

All Clients connect directly to the exposed TCP connection on the Frontend, which is

dedicated to managing communication between the Clients (external to the cluster) and the server

processes (which are hosted in the cluster). This machine communicates with the external Clients,

as well as with the processes that are hosted on the compute machines, by receiving and distributing

information to and from them.

4.3.3 Queue and Controller

Once the Frontend receives a command from a Client, the command is entered into a queue.

The SPI then pulls the command from the queue for processing. Once the SPI finishes a computa-

tion, the resulting data are placed in another queue and sent back to the Clients via the Frontend.

If the size of the resulting data is large, the data set is placed on network-attached storage (NAS),

and a link to the data is entered into the return queue. The Frontend can then retrieve the data from

the NAS for transmission to the Clients.

4.3.4 Multiple Available Instances

Due to the fact that the use of an external database would require a drastic re-write of

the MUFE code, only one SPI was used for this implementation. This allowed MUFE to be

more immediately utilized in the cluster. However, this approach limited the prototype’s ability

to distribute and scale beyond a single machine.
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4.3.5 Central Data Storage

As stated in the previous section, this implementation did not utilize a central database.

Instead, the single SPI uses a custom data storage system that stores each data type (mesh, node,

element, geometry, etc.) in its own table. This structure uses a basic singleton class to protect

against multiple simultaneous writes to the database, thus enabling data consistency.
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CHAPTER 5. RESULTS

The prototype was developed to study the change in time required for a collaborative team

to pre-process an analysis model when all computation for the model is done on a remote server.

Three tests were accomplished: multiple simultaneous projects, modeling a wing section, and

modeling a pressure vessel with a single plane of symmetry. The goal of the first test was to

merely demonstrate that it was possible to maintain data integrity and consistency, even when

multiple projects share the same processing server. The next two tests studied the time benefits

gained when a multi-user pre-processor uses a central server for all computation.

5.1 Multiple Simultaneous Projects

The first test was performed on a very early version of the prototype. It consisted of one user

modeling a solid cylinder under compressive and tensile forces, and two other users collaboratively

modeling a solid cantilever beam, attached rigidly to a solid frustum. All three users were logged

into the server, which was running all of the computation for both projects (see Figures 5.1 and

5.2). This test was intended to find out if it was possible to utilize the same server for both projects

and maintain data separation and consistency while not creating any noticeable amount of lag at

the clients.

5.1.1 Developing the Test

The Server was hosted on a HP Z400 workstation with an Intel®1 Xeon®2 W3520 CPU (8

threads at 2.67 GHz) and 12 GB of RAM. The three Clients used various hardware configurations

for this test, including:

1Intel is a registered trademark of Intel Corporation.
2Xeon is a registered trademark of Intel Corporation.
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Figure 5.1: Screenshot of the Server from the Multi-Project Test

• Gateway®3 GT5432 desktop with an AMD Athlon™4 64 X2 5000+ CPU (2 threads at 2.6

GHz) and 3 GB of RAM

• HP xw4600 workstation with an Intel®5 Core™6 2 Quad CPU (4 threads at 2.5 GHz) and 6

GB of RAM

• HP xw4300 workstation with an Intel®7 Pentium®8 D 945 CPU (2 threads at 3.4 GHz) and

4 GB of RAM

Both models were simultaneously built. The cylinder model was created using the follow-

ing process:
3Gateway is a registered trademark of Gateway, Inc.
4AMD Athlon is a trademark of Advanced Micro Devices, Inc.
5See footnote 1.
6Core is a trademark of Intel Corporation.
7See footnote 1.
8Pentium is a registered trademark of Intel Corporation.
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Figure 5.2: Screenshot of a Client from the Multi-Project Test

1. Cylinder geometry was imported

2. A material was defined

3. The cylinder was meshed with tetrahedral elements

4. Loads and boundary conditions were applied

The team building the cantilever beam and frustum model performed the following proce-

dure:

1. Beam and frustum geometries were imported

2. Materials were defined

3. The geometries were independently meshed with tetrahedral elements
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4. Boundary conditions were applied to the base of the cantilever beam

5. Loads were applied to the top of the frustum

6. The tip of the cantilever beam was rigidly connected to the bottom of the frustum

This resulted in two separate and independent models, one single-user and one multi-user. These

were both simultaneously built using the same central server.

5.1.2 Test Results

The two simple models used in this test showed that even though the computation was done

for both models on the same central server hardware, data from one project were neither mixed

with nor available to the other project. This demonstrates that simultaneous multiple projects can

reliably be run on the same hardware without sacrificing data integrity. It may be necessary to fur-

ther study the effect on projects that share a server with a project that undergoes long computations

or transfers large data sets (see Section 6.2.3).

5.2 Wing Section

This project consisted of editing the geometry of a cantilevered wing section, then modeling

the wing for FEA. Since the ability to edit geometry inside of the prototype is quite limited, the

control points that define the wing geometry were manipulated, thereby modifying the geometry

itself. This study measured the time benefit gained by parallelizing the modeling process in a

multi-user environment.

5.2.1 Developing the Wing Section Test

The same Server that was described in Section 5.1.1 was used. The following hardware

configurations were used as Clients:

• HP Z400 workstation with an Intel Xeon W3520 CPU (8 threads at 2.67 GHz) and 12 GB

of RAM (two of these were used as clients)
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• HP xw4300 workstation with an Intel Pentium D 945 CPU (2 threads at 3.40 GHz) and 4

GB of RAM

• HP xw4300 workstation with an Intel Pentium 4 CPU (2 threads at 3.40 GHz) and 3.25 GB

of RAM

The wing was formed out of a 2nd-degree NURBS surface consisting of nine Bézier patches

(three in both directions), with a total of twenty-five control points.

The following process was used for the test:

1. Starting geometry was imported in the form of a flat sheet (see Figure 5.3)

Figure 5.3: Beginning Flat Sheet Geometry for the Wing Section Test

2. The geometry’s control points were manipulated to curve around the specified shape of the

wing (see Figure 5.4)

3. A material was created

4. The geometry was meshed

5. Pressure loads and boundary conditions were applied (see Figure 5.5, where the loads are

represented by red lines and the boundary conditions by yellow spheres)
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Figure 5.4: Final Shaped Geometry for the Wing Section Test

Figure 5.5: Final Model for the Wing Section Test

5.2.2 Wing Section Test Results

This test was executed in three ways:

1. An individual user performed all of the operations sequentially

2. A group of two users collaborated to perform the operations

3. A group of four users collaboratively performed all parallelizeable operations

On average, the two-person teams completed the project in about 51% of the time required

for the average individual user, where the four-person team finished it in about 20% of the same

time (or 40% of the two-person team average). Results from the wing test are recorded in Table

5.1 and can be seen in Figure 5.6.
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Table 5.1: Time Results from the Wing Section Test

Run # Individual User 2-User Team 4-User Team
1 31:48 16:08 5:17
2 31:44 10:04 –
3 27:25 – –
4 28:48 – –
5 22:36 – –
6 18:52 – –
7 22:31 – –
8 22:52 – –

Average: 25:49 13:06 5:17
Standard Deviation: 4:47 4:17 n/a

5.3 Symmetric Pressure Vessel

The third test was similar to the Wing Section experiment, only somewhat more compli-

cated. The finished model was one half of a vase-shaped prssure vessel with an outwardly-directed

pressure load.

5.3.1 Developing the Pressure Vessel Test

The same hardware was used for this test as was described in Section 5.2.1. The geometry

was made up of a 2nd-degree NURBS surface with twenty-five Bézier patches (five in each direc-

tion), with a total of forty-nine control points. A process similar to that described in Section 5.2.1

was followed here (see Figures 5.7 and 5.8). Also, the same types of tests as before were again

used to study the time benefit for this technology.

5.3.2 Pressure Vessel Test Results

The same three random tests as were described in Section 5.2.2 were executed here. How-

ever, for this experiment the tests were performed in random order, with three total repititions for

each test type. Also, the users for each test run were randomly selected from a pool of users. On

average, the two-person teams completed the project in about 65% of the time required by individ-

ual users, and the four-person teams completed it in approximately 61% of the two-person time.
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Figure 5.6: Average Time Results for Each Test Type Performed for the Wing Section Test

This means that the four-person teams completed the project in about 39% of the time required for

an average individual user. Results from the pressure vessel test are summarized in Table 5.2 and

shown graphically in Figure 5.9.

Table 5.2: Time Results from the Pressure Vessel Test

Run # Individual User 2-User Team 4-User Team
1 53:26 36:17 18:44
2 30:30 22:18 15:57
3 25:17 16:21 10:43

Average: 36:24 24:58 15:08
Standard Deviation: 14:58 10:13 4:04
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Figure 5.7: Final Shaped Geometry for Pres-
sure Vessel Test

Figure 5.8: Final Model for Pressure Vessel
Test

5.4 Results Summary

These tests demonstrated a substantial decrease in pre-processing time as additional users

are added to the collaborative environment. For simpler models, the time difference approaches

1/nth of the original, single-user pre-processing time, where n is the number of users collaborat-

ing on the model (see Section 2.2.1). Collaboratively pre-processing more complex models will

likely yield varied results, based on factors such as team size and experience, as well as equip-

ment, implementation, network connectivity, and distribution of workload. With the appropriate

management and forethought, a collaborative team could significantly decrease the time required

to pre-process any practical engineering model. This benefit (excluding the time required for the

solving process and post-processing) could theoretically approach that found in multi-user CAD

processes (see Section 2.2.1).
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Figure 5.9: Average Time Results for Each Test Type Performed for the Pressure Vessel Test
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

6.1 Conclusions

As stated in Section 1.3, the main objectives for this research were:

1. Design a framework to facilitate cloud-based, multi-user pre-processing.

2. Create a simple, multi-user FEA pre-processor to test the framework.

3. Implement and test this software on a local, networked system.

The methods and architecture presented in Chapter 3 fulfill the first objective by detailing

a framework that supports and facilitates cloud-based, multi-user FEA pre-processing. The design

and implementation of such a system can be accomplished without substantially greater difficulty

than that which would be encountered when creating a standard FEA pre-processor. Please note

that the focus and deliverable of this research is the framework design, not necessarily any partic-

ular implementation.

Section 4.1 introduces a simple FEA pre-processor prototype that was designed and built

with the sole purpose of testing a server-based, multi-user FEA pre-processing system. However,

because this implementation merely prototypes the framework that has been previously presented

(see Chapter 3), several aspects of the architecture were not implemented due to constraints on the

author’s time and coding abilities. Those parts that were not included in the prototype discussed in

Chapter 4 include the Controller, Shared Database, and a complete User Verification system. The

author chose not to focus the implementation on these components because they have already been

proven and used widely in various other related cloud-computing and distributed architectures. As

such, this preliminary implementation meets the second research objective.

Sections 4.2 and 4.3 present various network implementations of the software. Further-

more, Chapter 5 discusses several tests that were performed with the intent to evaluate the im-
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plemented system with a variety of users and modeling scenarios. The data for these tests are

presented in Sections 5.1.2, 5.2.2, and 5.3.2, thereby satisfying the last objective.

6.2 Future Work

Through the course of this research, the author has noticed several potential areas of further

study, including parallel algorithms applied to cloud-based FEA pre-processors, implementing this

technology using other cloud providers, and studying the economic effect of using this and other

related technology in real design situations.

6.2.1 Parallel Algorithms

It would be beneficial to consider algorithms for meshing, geometry importing/exporting,

data transfer, etc., that are more distributable. Doing so would more fully take advantage of the

scalable benefits of the cloud, thus potentially increasing overall performance of the system.

6.2.2 Distributed Cloud Implementation

The implementation tested as part of this research consisted of a non-distributed system.

The ideal method proposed in Chapter 3 includes multiple SPIs that can operate on the same central

database. This architecture should be implemented and tested in order to more fully explore and

demonstrate the benefits and challenges of cloud-based, multi-user FEA pre-processing.

In addition to local cluster implementations, research should be done considering Microsoft

Azure Cloud and other cloud providers such as Amazon EC2 and Google Cloud since these are

popular entry points into cloud computing.

6.2.3 Multi-User Server Performance Under Heavy Load

Study the effect that one heavily-loaded multi-user session would have on other sessions

that share the same server. This might consider the sensitivity of measures such as network lag,

client graphical interface responsiveness, server responsiveness, etc., to variables such as dataset
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size, computation type and length, Server Processing Instance (SPI) availability, server hardware,

user distribution, etc.

6.2.4 Hybrid Architectures for Distributing Computation to Both Server and Clients

Other potential architectures should be studied in an attempt to balance computation load

on the server with distributed computing on the clients when client resources permit. Systems

like this are already implemented in industry, which utililizes idle client hardware as a remote-

computing node. Extending the client’s capability to act as an extra Server Processing Instance

when idle would allow for a greater, system-wide ability to distribute resources.

6.2.5 Economic Costs and Benefits of Multi-User Collaboration in Engineering

It would be interesting to study the monetary effect of using multi-user CAx engineering

tools and paradigms in a typical product design environment. The potential costs and benefits of

the use of this type of software in a design company have never been established. The author

believes that this knowledge would be beneficial in garnering more industrial attention for these

new methods and practices.

6.2.6 Decomposition Methods and User Editing Rights

Methods for decomposing the modeling tasks in order to avoid user conflicts should be

studied. Possible methods include:

• Workspace decomposition: each user is assigned a finite workspace, beyond which they have

limited or no ability to edit the model

• Role decomposition: each user is assigned a task or specialty (for example, one user only

deals with materials, another with boundary conditions, another with non-linear loads, an-

other with optimization responses, etc.), and the user is responsible for that role throughout

the entire model

• Hybrid Workspace and Role decomposition: each user a specific role or task to perform as

part of a team that is assigned to a finite workspace in the model
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6.2.7 Conflict Resolution and General Multi-User Project Management

This research would include investigating methods to avoid user conflict through proper

management procedures (some methods of which are suggested in Section 6.2.6), as well as meth-

ods to successfully resolve modeling conflicts when they occur. Furthermore, research should look

into ways to automate conflict management and resolution, as well as to investigate possible modi-

fication to existing technology (geometry kernels, databases, etc.) that would more readily support

multi-user environments, and thereby a more conlict-tolerant model.

6.2.8 Undo/Redo Commands

Methods for reliably and predictably handling Undo and Redo commands in a multi-user

environment are imperative for successfull operation of any multi-user CAx tool. Further reserach

would include developing algorithms for gracefully handling such cases, as well as developing

architecture and database structures for efficiently manipulating the affected data.

6.2.9 Integration with Product Lifecycle Management (PLM)

Branching methods should be considered that will allow users to create a copy of the model

(associative or otherwise), in which they could try different operations or parameters without break-

ing the model for all of the other users. This methodology would help Producte Lifecycle Man-

agement (PLM) systems manage collaborative data, as well as handle design changes and other

similar modification scenarios.

6.2.10 Integrating Multi-User Design with Multi-User Analysis

Research into cross-discipline systems where multi-user CAD and multi-user analysis can

share the same central model, where all users are always working on the most up-to-date model.

This type of environment would greatly increase the amount of collaboration among disciplines,

thereby shortening the overall product development process by helping catch design errors and

minimizing potentially costly turn-backs later on. Furthermore, this environment could also be

extended to include other disciplines such as manufacturing, marketing, etc.
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APPENDIX A. AN INTRODUCTION TO THE ANALYSIS PROCESS

Methods have been produced and refined over the last seventy years in efforts to facili-

tate the numerical approximation of real-world problems [4]. These methods, including Finite

Element Analysis (FEA), are used to solve various types of complex problems in many areas in-

cluding structural, thermal, fluid, magnetic, electronic, nuclear, and chemical. In industry, FEA

is used in various stages of product design and development, ranging from preliminary design

to design optimization to post-release failure analysis. It is widely used to solve structural and

mass/heat transfer problems in aerospace, automotive, architecture, manufacturing, civil engineer-

ing, city planning, and many other industries. Figure A.1 shows an example where FEA was used

to simulate a vehicle crash. The FEA process consists of three main stages: pre-processing, where

Figure A.1: An Asymetrical Collision Analysis in FEA
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the model is setup and defined; solving, where the results of the problem are approximated; and

post-processing, where the results are examined [13].

A.1 Pre-Processing

A vast majority of the time spent in the Analysis phase is spent building the model (i.e.,

“pre-processing”). According to a survey performed at Sandia National Laboratories, about 73%

of the time spent developing an analysis model is consumed in this stage [2]. Regardless of the

software used, the main steps involved in pre-processing include: importing geometry, discretizing

the geometry (“domain”), defining material properties, and applying loads and boundary condi-

tions [3, 4].

1. Importing geometry may include reading a kernel-neutral file-format (such as IGES or STEP),

or a kernel- or CAD-specific format (such as Parasolid®1, ACIS™2, NX™3 Part, etc.). It is

often necessary to simplify (or “clean up”) this geometry by removing small or insignificant

artifacts such as fillets, chamfers, small holes, non-structural components, and any other ar-

tifact that does not contribute to the intent of the model. Figure A.2 shows an example CAD

model.

2. Discretizing the domain (also known as “meshing”), is done in order to break up the complex

geometry into smaller shapes (“elements”) whose closed-form solutions are known, thus ren-

dering the problem easier to solve by summing the solutions of all of the smaller problems.

Discretization creates both nodes and elements, where elements are made up of neighboring

groups of nodes. If an automatic meshing algorithm is used, it is often necessary for the user

to manually fix elements that are either too small, too large, or whose geometry may render

them numerically unstable. In a large model, this process can take a considerable amount

of time. Figure A.3 shows an example sports car body that has been discretized into many

smaller finite domains, or elements.
1Parasolid is a registered trademark of Siemens Product Lifecycle Management Software Inc.
2ACIS is a registered trademark of Spatial Technology, Inc.
3See Chapter 1, footnote 4.
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Figure A.2: Example CAD Geometry of the Liftfan for the USAF F-35B

Figure A.3: Example of a Car Body that has been Discretized into a Mesh

3. Material properties are applied to the elements (be it individually, to a subset of elements, or

to all elements in the model). These properties may include the Young’s Moduli, Poisson’s

Ratios, Density, etc. of the material with which each element is associated.

4. Loads and boundary conditions are applied to the model. Loads may represent instances of

structural loads, displacements, temperatures, pressures, heat/mass flows, etc., and boundary

conditions are used to signify phenomena such as constraints (places of zero displacement),

and energy/heat sinks. This process can also be quite time-consuming if the model requires
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a complex loading scenario, or a large number of loading scenarios. Figure A.4 shows an

example of a simple pre-processed part.

Figure A.4: A Simple Pre-Processed Part

This very serial workflow causes the single-user preparation of analysis models to frequently be-

come a substantial bottleneck in the product design process [6]. Once the model is built (i.e.,

“pre-processed”), it is often exported from the pre-processor as a file which contains definitions

for all of the nodes, elements, materials, loads, boundary conditions, and any other information

pertinent for the model. This file is then given to the solving routine.

A.2 Solving

In a simple explanation, the solver calculates the desired results (i.e., displacement, stress,

temperature, etc.) for each node and element by simultaneously solving many linear equations.

Other results such as temperature, fluid flow, energy, etc., can be also obtained from appropriate

models.
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In a little more detail, the input deck is read by the solver, which then calculates a stiffness

matrix for each element, based on the element’s geometry and material properties. All of these

elemental stiffness matrices are accumulated into a global stiffness matrix A, which is sparse and

symmetric positive definite. All of the loads are accumulated into a vector b. The rows and

columns of A and the rows of b that correspond to the constrained degrees of freedom (where the

nodal displacements, temperatures, etc. have been constrained to zero) are removed, and the vector

of nodal values (for example, nodal displacements in structural mechanics) x is found by solving

Equation A.1:

Ax = b (A.1)

Various numerical methods have been created to solve Equation A.1, including both direct

and iterative approaches, for both linear and nonlinear models. For the sake of simplicity, we will

assume that magic happens and x is found. If x represents displacements, then they are applied to

the corresponding elements to find the elemental stresses. The results are then exported from the

solver (generally as a file or a sequence of files) for post-processing.

A.3 Post-Processing

After the solver is finished, the results are read by the post-processor. Contour plots can

be generated and displayed on the model showing the selected results. These may be interpolated

across each element to allow for a smooth contour plot. The user can switch among loading

scenarios and associated results sets, and interrogate the contour plot at locations of interest. Figure

A.5 shows an example post-processing image which displays the results of a vorticity analysis in

a jet engine.

A.4 Other References for FEA and Related Methods

There are many good references on FEA and other related methods. These include books,

papers, journal articles, and various internet websites. More information about the overall FEA

process and other analysis methods can be obtained from [13,35–37]. For more information on the

mathematics of the Solving phase of FEA, [38–41] may be helpful. Other interesting alternatives
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Figure A.5: Image of Analysis Results Showing Fluid Vorticity due to Jet Engine Blades

to traditional FEA include methods in Isogeometric Analysis (IGA), more information for which

can be found in [42–44].
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APPENDIX B. MUFE USER’S MANUAL

This chapter introduces the basic controls and commands for Multi-User Finite Elements

(MUFE). The User Interface (UI) is shown in Figure B.1, where the Graphical User Interface

(GUI) consists of the large blue rectangle on the left side of the UI. Buttons for controlling entity

display are located along the top of the UI, a tree displaying information about various entities is

on the right-center of the UI, and a screen where information and errors are displayed is located at

the bottom-right.

Figure B.1: MUFE User Interface
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B.1 Starting MUFE

B.1.1 Single-User Mode (No Server)

To use MUFE in stand-alone configuration, where all processing is done on the local ma-

chine, the user can start MUFE using either of the following ways:

• Double-click directly on the MUFE client executable MUFE client VS2.exe.

• Double-click on the MUFE client batch file MUFE client.bat.

B.1.2 Utilizing a Remote Server

In order to have command execution performed on a remote machine, or to work in multi-

user mode, MUFE will need to be started on the server (the remote machine) as well as on each

client. In both cases, MUFE will have to be started along with the networking agent. PLEASE

NOTE: the MUFE server networking agent expects to have the IP address 10.2.114.65. To change

this, the agent will have to be recompiled (C# project WuNetworkServer) with a new address en-

tered on line 81 of file CubitConnectServer.cs. Also, the MUFE client networker (C# project Mod-

efiedClient) will need to be recompiled with the same address inserted at line 135 of file Client.cs.

B.1.2.1 Starting MUFE on the Server

The server version of MUFE does not have a UI. Instead, it has two command-style win-

dows: one displaying information about the CubitConnect Server (which acts as a networking

agent for MUFE), the other displays information about the MUFE processing server.

The MUFE server must be started and running before the MUFE clients can access it. To

do so, double-click on the MUFE server batch file MUFE server.bat. The user should see the two

windows appear, displaying no errors. If not, check to make sure the batch file is pointing to both

the WuNetworkServer.exe and the MUFE server.exe (in that order), and that they have executable

permissions.
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B.1.2.2 Starting MUFE on the Client

Once the MUFE server is up and running, start each MUFE client by double-clicking on

the MUFE client batch file MUFE client.bat. The MUFE UI should appear. Under the Multi-User

menu at the top of the screen, click on Login. This instructs the client networking agent to make

a connection with the server’s networking agent. If the connection is successful, the user will see

notification of such in the output display at the bottom-right of the MUFE UI.

B.2 MUFE Control Overview

• To Rotate: Hold Ctrl + Left Mouse Button while moving the mouse within the blue graphics

window.

• To Pan: Hold Ctrl + Right Mouse Button while moving the mouse within the blue graphics

window.

• To Zoom: Hold Ctrl while scrolling with the Middle Mouse Wheel in the blue graphics

window.

• To Select an Entity: Click with the Left Mouse Button on the desired entitiy when selection

is necessary (you may need to rotate the model slightly first to force the GUI to redraw).

Most entities will highlight once selected (nodes might not, depending on the version of

MUFE).

• To Select a Group of Entities: While holding Shift, define the selection box by clicking

with the Left Mouse Button once where you want the two opposing corners (again, you may

need to first rotate the model slightly to force the GUI to redraw). Most entities will highlight

once selected (nodes might not, depending on the version of MUFE).

• To Toggle Datum Axes View: Click on the Datum Axes button to turn on and off the view-

able datum axes. Note that these are always centered at (0, 0, 0).

• To Toggle Geometry Shading: Clicking on the Geometry Display: Shaded button will turn

on and off geometry shading.
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• To Toggle Geometry Wireframe Edges: Clicking on the Geometry Display: Edges button

will turn on and off geometry wireframe edges.

• To Toggle Mesh Shading: Click on the Mesh Display: Shaded button to turn on and off

mesh element shading.

• To Toggle Mesh Edges: Click on the Mesh Display: Edges button to turn on and off mesh

edges.

• To Toggle Contour Shading: Click on the Contour Display: Shaded button to turn on and

off contour element shading (if there is no active contour, nothing will happen).

• To Toggle Contour Edges: Click on the Contour Display: Edges button to turn on and off

contour edges (if there is no active contour, nothng will happen).

B.3 Model Import and Export

MUFE supports importing geometry as ASCII-based stereolithography (.STL) format, where

the geometry is defined as a tessellated surface. MUFE can also read many NURBS curve and sur-

face definitions from an IGES file, as well as save and read a MUFE log file that can be used to

re-create the current model.

B.3.1 Importing a .STL File

To import an ASCII text-based STL file, go to the File drop-down menu, go to the Import

sub-menu, and click on .STL (text). A window will appear where the user can select the appropriate

file, then click OK. A dialog will appear allowing the user to name the geometry being imported.

Enter a name and click OK.

B.3.2 Importing NURBS from an IGES File

To import a NURBS definition via IGES file, go to the File drop-down menu, go to the

Import sub-menu, and click on IGES (v. 6) (or press Ctrl + I). A window will appear where the
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user can select the appropriate file, then click OK. A dialog will appear allowing the user to name

the geometry being imported. Enter a name and click OK.

B.3.3 Saving a MUFE Log File

To save a MUFE file, go to the File drop-down menu, and click on Save Model (or press

Ctrl + S). A window will appear where the user can specify the file to use, then click OK.

B.3.4 Opening a MUFE Log File

To open a previously-saved MUFE file, go to the File drop-down menu, and click on Open

Model (or press Ctrl + O). A window will appear where the user can select the appropriate file,

then click OK. A dialog might appear asking if it is okay to discard any changes in the current

model. If that is acceptable, click Yes.

B.4 Creating and Editing Geometry

MUFE currently does not have any methods for creating geometry. Geometry can only be

imported via the methods explained in Section B.3.

NURBS geometry can be edited by modifiying individual control points. To do this:

1. Go to the Design drop-down menu, and click on Edit Control Point (or press Ctrl + E). A

dialog will appear.

2. In the GUI, click on the control point to be moved (depicted as a blue sphere). If the control

point doesn’t immediately turn white (highlight) upon selection, try rotating the view slightly

and then selecting the control point again.

3. Once the control point is highlighted, click on Refresh in the Edit Nurbs dialog. This will

populate the X, Y, and Z fields with the current location of the selected control point.

4. Enter the new location for the control point and click OK (click Cancel to cancel the opera-

tion without any changes).
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B.5 Materials

MUFE currently only supports linear, isotropic materials.

B.5.1 Creating a Material

To create a material:

1. Go to the Analysis drop-down menu, go to the Materials sub-menu, and click on Create

Material (or press Ctrl + M).

2. Enter a name for the material.

3. Enter a value for Young’s Modulus (E).

4. Enter a value for Poisson’s Ratio (ν).

5. (Optional) Enter a value for Density (ρ).

6. (Optional) Enter a value for Shear Modulus (G). If a value for shear modulus is entered,

MUFE will calculate a value for Poisson’s ratio to replace the one given earlier.

Note that MUFE currently does not support editing an existing material.

B.6 Meshes

A mesh is a discritization of geometry, for the purpose of approximating the behavior of

the geometry under certain loading environments.

B.6.1 Supported Mesh Types

MUFE currently supports the following mesh types:

• Quad4Node: This is a structured surface mesh made by evenly dividing the parameter space

of a NURBS surface into 4-node squares, where the smallest edge in each u and v paremeter-

space determines the number of elements in that direction. This is done by dividing the

shortest edge by the given mesh size and rounding to the nearest integer value.
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• Tri3Node: This is a structured surface mesh made in a similar manner to Quad4Node, except

each square is divided once more into 3-node triangles.

• Tet4Node: This is the only solid mesh that MUFE currently supports. It is an unstructured

mesh consisting of 4-node tetrahedra. This mesh is created by calling the open-source mesh

generator TetGen (as a separate executable), and giving it the solid’s .STL geometry.

• BezierPatch: This is a surface mesh created specifically for Isogeometric Analysis (IGA).

It consists of subdividing a NURBS surface into its respective Beziér patches, each of which

corresponds to an element. The order of the element depends on the order of the underlying

Beziér patches.

B.6.2 Creating a Mesh

To create a mesh:

1. Go to the Analysis drop-down menu, go to the Meshes sub-menu and select Create Mesh (or

press Ctrl + T). A dialog will appear.

2. Select the material to use for the mesh from the Materials to Use drop-down menu.

3. Select the mesh type to create from the Mesh Type drop-down menu (see Section B.6.1 for

information about the mesh types that MUFE supports).

4. If a surface mesh was selected, enter a desired thickness to be represented by the mesh in

the Thickness field. If a the selected mesh type is Quad4Node, Tri3Node, or Tet4Node, then

enter a desired mesh size in the Mesh Size field.

5. Enter other options as appropriate: max Rad/Edge ratio and 2nd-Order Elements only apply

to Tet4Node meshes, and are only partially supported.

MUFE does not currently support editing existing meshes.

B.7 Load Collectors

Load collectors bunch multiple and distinct loads into groups for applying to a particular

loading scenario or boundary condition set.
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To create a load collector, go to the Pre-Processing drop-down menu, enter the Load Col-

lectors sub-menu, and select Create Load Collector. Enter a name for the collector and click OK.

MUFE does not currently support editing existing load collectors.

B.8 Loads

MUFE represents each load as a red line, one end of which is connected to the affected

node. The magnitude and direction of the load are represented by the length and orientation of the

line, respectively.

B.8.1 Creating Loads

MUFE only currently supports nodal loads. To create a load on a node or a number of

nodes:

1. Go to the Pre-Processing drop-down menu, enter the Loads sub-menu, and select Create

Loads (or press Ctrl + L).

2. Choose the load collector in which you want this new load to be included from the Collector

drop-down box.

3. Set the Magnitude and X, Y, and Z direction components to the desired values.

4. Click OK.

5. In the blue graphics window, select the desired nodes (you may need to rotate the model

slightly to force the GUI to redraw).

6. Click the Send Command button (near the bottom of the GUI).

MUFE does not currently support editing existing loads.

B.9 Constraints

MUFE represents each constraint as a yellow sphere, centered on the affected node.
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B.9.1 Creating Boundary Conditions (Constraints)

To create a displacement constraint on a node or a number of nodes:

1. Go to the Pre-Processing drop-down menu, enter the Constraints sub-menu, and select Cre-

ate Constraints.

2. Choose the load collector in which you want this new constraint to be included from the

Collector drop-down box.

3. Check the degrees of freedom (DOFs) to which you want to enforce zero displacement.

4. Click OK.

5. In the blue graphics window, select the desired nodes (you may need to rotate the model

slightly to force the GUI to redraw).

6. Click the Send Command button (near the bottom of the GUI).

MUFE does not currently support editing existing constraints.

B.10 Loadcases

A loadcase is a specific loading scenario, consisting of exacly two load collectors:

1. A load collector with loads.

2. A load collector with constraints.

This pairing tells the solver how to load and constrain the model, in order to achieve a useful

solution.

There can exist any number of loadcases, each with a different pairing of loads and con-

straints, as grouped in load collectors.

B.11 Creating a Loadcase

To create a loadcase:
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1. Go to the Pre-Processing drop-down menu, enter the Loadcases sub-menu, and click on

Create Loadcase.

2. Enter a name for the loadcase (note that MUFE does not currently check if the name is valid

or already in use).

3. Select the analysis type from the Type drop-down list (currently only ”Linear” is supported,

so there are no other options).

4. Select the load collector that contains the desired boundary conditions in the Constraint(s)

box.

5. Select the load collector that contains the desired loads in the Load(s) box.

6. Click OK.

MUFE does not currently support editing existing loadcases.

B.12 Rigid 1D Elements

A rigid element is used to rigedly connect distinct meshes, or to simulate welds, fasteners,

or other rigid bodies. The user can specify what degrees of freedom are considered rigid, leaving

the others free. MUFE represents each of these elements as a set of blue lines, where one end of

each is connected to the associated dependent nodes, and the other ends all join at the independent

node (which is either designated by the user or calculated as the average position of the dependent

nodes). This is commonly referred to as a rigid ”spider” element, due to the radiating effect of the

element’s ”legs”.

B.12.1 Creating a Rigid Element

To create a rigid element:

1. Go to the Pre-Processing drop-down menu, enter the Rigids sub-menu, and select Create

Rigid.
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2. If you want MUFE to place the independent node at the average location of all of the depen-

dent nodes, click on the Calculate Ind. Node tab. If you wish to designate an independent

node, click on the Select Ind. Node tab.

3. (If selecting the independent node) In the blue graphics window, select the independent node

(you may need to rotate the model slightly to force the GUI to redraw).

4. (If selecting the independent node) In the Define Rigid dialog box, select the first Selected

button.

5. In the blue graphics window, select the dependent nodes (you may need to rotate the model

slightly to force the GUI to redraw).

6. In the Define Rigid dialog box, select the Selected button.

7. Click OK.

MUFE does not currently support editing existing rigid elements.

B.13 Solving

MUFE orignially supported exporting models with a limited set of functionality to, and

reading results from, both Altair Engineering’s OptiStruct and the open-source, Abaqus-style

solver CalculiX. However, due to various changes in the code without proper attention being paid

to the associated methods, the solving and post-processing capability of MUFE is currently broken

(as of September, 2013).
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