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ABSTRACT

A Hybrid Method for Sensitivity Optimization with 
Application to Radio-Frequency Product Design

Abraham D. Lee
Department of Mechanical Engineering, BYU

Master of Science

A  method  for  performing  robust  optimal  design  that  combines  the  efficiency  of
experimental designs and the accuracy of nonlinear programming (NLP) has been developed,
called Search-and-Zoom. Two case studies from the RF and communications industry, a high-
frequency micro-strip band-pass filter (BPF) and a rectangular, directional patch antenna, were
used to show that sensitivity optimization could be effectively performed in this industry and
to compare the computational efficiency of traditional NLP methods (using fmincon solver in
MATLAB R2013a) and they hybrid method  Search-and-Zoom. The sensitivity of the BPF's  S11

response  was  reduced  from 0.06666  at  the  (non-robust)  nominal  optimum to  0.01862  at  the
sensitivity  optimum.  Feasibility  in  the  design was  improved  by  reducing the likelihood  of
violating constraints from 20% to nearly 0%, assuming RSS (i.e.,  normally-distributed) input
tolerances  and  from  40%  to  nearly  0%,  assuming  WC  (i.e.,  uniformly-distributed)  input
tolerances. The sensitivity of the patch antenna's S11 function was also improved from 0.02068 at
the  nominal  optimum  to  0.0116  at  the  sensitivity  optimum.  Feasibility  at  the  sensitivity
optimum was estimated to be 100%, and thus did not need to be improved. In both cases, the
computation effort to reach the sensitivity optima, as well as the sensitivity optima with RSS
and WC feasibility robustness, was reduced by more than 80% (average) by using Search-and-
Zoom, compared to the NLP solver.

Keywords:  NLP,  Monte  Carlo,  feasibility  robustness,  sensitivity  optimization,  sensitivity
robustness, Taguchi method, tolerance, orthogonal array, Search-and-Zoom
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CHAPTER 1    INTRODUCTION

In the communications industry,  engineers seek to develop high performance Radio

Frequency  (RF)  equipment  that  pushes  technology  limits  in  areas  such  as  antenna  range,

pointing accuracy and bandwidth (capacity of the data stream). These devices need to work in a

wide range of environmental conditions, sometimes including military conditions. Functional

requirements push technology to the edges of its capability, so understanding the limitations of

a technology and the related manufacturing processes drives this work. A major challenge is

dealing with the different sources of variation that creep into a design at its various life stages.

For engineers and designers, the process for accounting for this variation, and reducing its

effect, is called robust design.

When we speak of  robustness, this can have different meanings to different people. In

this thesis,  we will  define it  as  a design’s  ability to  function as  intended in the presence of

uncontrollable  variation.  Most  variation  is  controllable  to  some  degree,  but  eventually  it

becomes too expensive or simply impossible to control further. For example, changing from

one manufacturing operation to another may allow the designer to specify tighter tolerances,

reducing geometric variation. However, further tightening might require a new process and/or

manufacturing  machine  altogether,  and  this  may  not  be  possible  because  either  it  is  too

expensive or another machine with more precision simply doesn’t exist. Another example is

the  variation  of  material  properties.  When a  company  procures  a  batch  of  aluminum for

machining purposes,  there is  no guarantee that the each batch will  have exactly the same
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properties, such as elastic modulus or yield strength. They may be close, but controlling the

exact make-up of the aluminum is often beyond the capabilities of the manufacturing processes

that produce the aluminum.

In engineering, there are two kinds of robustness that are of usually of most interest:

feasibility robustness and sensitivity robustness. They are related, but have important differences

and goals.

1.1    Feasibility Robustness

When a design has feasibility robustness, it means that all of the designs constraints or

requirements  will  remain satisfied even when subjected to variation.  Most  engineers make

their designs robust in this way by performing  worst-case analysis. This involves identifying

worst-case conditions (such as maximum material condition (MMC) and least material condition

(LMC) in an assembly), and then combining them in such a way to give the most extreme case

that  could  possibly  happen.  If  the  extreme  combinations  do  not  violate  the  design

requirements, then the design is considered acceptable with no further regard for the variation

within those limits. At this level,  since these are the extreme conditions, no design is ever

expected to fail. However, this approach to feasibility robustness can have detrimental financial

consequences, usually making the product more expensive than is necessary.

Applying a common statistical approach to characterize the expected variation almost

always yields a less stringent design that is often easier to make and cheaper to produce. In this

thesis,  we will  use a reasonable statistical approach for variation analysis (also called  error

propagation or uncertainty analysis). More details regarding the usage and background of this

approach will be given in Chapter 2.
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1.2    Sensitivity Robustness

Assume that an antenna has been made that has a known maximum broadcasting range

that can vary from 10 to  0 miles. To the engineer, who was focused on making a design that is

able  to  broadcast  a  minimum  of  10  miles,  this  may  seem  acceptable  since  the  design

requirement is met in all cases, but to a soldier who needs to transmit important information to

a UAV for re-transmission,  the antenna that only is  capable  of  broadcasting 10 miles  may

appear defective compared to the antenna that can broadcast  0 miles. Comparably, it would be

more desirable that ALL antennas of this design have a more consistent range of 2  ± 3 miles

rather than 30 ± 20 miles because the perceived quality is better and the user can depend on

the product’s specified capabilities.

If it is discovered that a product’s performance or assembly variation is too excessive,

then  the  engineer  may  need  to  consider  designing  for  sensitivity  robustness.  This  kind  of

robustness is more concerned with reducing the influence of “input” variations to performance

variations.  This  can  be  done  in  a  variety  of  ways,  but  ultimately,  all  methods  focus  on

identifying a “location” in the design space where the derivatives (sensitivities) are small. If,

mathematically,  the  performance  or  assembly  stack-up  is  relatively  linear,  then  sensitivity

robustness  may not  be  possible.  However,  many engineering performance  metrics  are  not

linear in nature and therefore can likely benefit from this design practice. Not only does this

improve product consistency, but it may even allow for the increase of controllable tolerances,

which usually makes the product cheaper and easier to produce.

The greatest benefit of feasibility and sensitivity robustness comes from designing for

both to exist. The result is a design that is minimally affected by input variation while still

satisfying constraints when subject to variation. Unfortunately, this can come at a potentially

significant computational cost when using simulation tools to predict product performance. For
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engineers, using numerical models that are not analytical in nature is quite common. Finite

element analysis (FEA) and computational fluid dynamics (CFD) are well known examples of

this kind of model. With the advent of more powerful computers, simulation time has certainly

decreased, but this has encouraged engineers and designers to consider more realistic models

which, in turn, increases the complexity of their analysis. Using these models in optimization

routines presents challenges that have to be weighed between schedule, cost, and performance.

However,  since robustness is  often most effectively realized using optimization methods,  it

either gets neglected altogether, or a simpler analysis involving only one or two extreme cases

instead that helps serve to envelope all other cases.

1.3    Research Objectives and Thesis Outline

There  are  two  main  purposes  of  this  thesis.  The  first  is  to  show  how  sensitivity

optimization may be done in the communications/RF industry. The second is to address the

important issue related to how efficiently an engineer or designer can perform robust design

on complex, non-analytical models. Although the application focus will be on communications-

based designs, modeled numerically, it is equally applicable to other engineering disciplines.

To reach the goal of a more efficient robust design methodology, this thesis will explore

two main areas that are used effectively for this purpose: experimental design methods (e.g.,

Taguchi methods) and nonlinear programming (NLP) or optimization methods. Each has its

strengths and weaknesses for the kinds of problems they can solve. Experimental  methods

work very well for non-continuous, or discrete, variable options (like choosing to use steel or

aluminum).  They are  also  usually  quite  efficient,  with a  minimum amount of  experiments.

Then, through statistical techniques, approximation models are used to predict optimal variable

combinations  that  provide  the  most  robustness.  However,  for  many  common  engineering
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problems, some experimental methods don’t provide the modeling flexibility to account for

design constraints. NLP methods, on the other hand, are known for their flexibility and allow

for  the  analysis  of  virtually  any kind  of  model.  This  provides  an  excellent  framework for

complex  design optimization.  Unfortunately,  the  flexibility  and  accuracy  of  the  underlying

mathematical methods can come at a potentially high computational cost, particularly when

trying to design for sensitivity robustness. More details related to these two methods will be

explained in Chapter 2.

To overcome the weaknesses of these two methods, we propose a hybrid methodology

that combines the efficiencies of experimental methods with the flexibility and accuracy of NLP

methods. The details of the development of this method will  be described in Chapter 3. In

Chapter 4, the practical use of the hybrid method will be demonstrated on two relevant case

studies: a micro-strip band-pass filter and a PCB-mounted patch antenna. In these cases, we

will compare the efficiency of traditional NLP methods with this hybrid method by seeking a

nominal optimal design (no robustness considered), and then combinations of feasibility and

sensitivity robustness. The results of these two cases show the benefits for its usage in robust

design,  particularly  when  applied  to  sensitivity  robustness.  Although  any  kind  of  design

variation can theoretically be included in this analysis (with proper quantification), we will

focus on the sole effects of geometric tolerances on design performance. Chapter   will then

offer some concluding remarks and recommendations for further work. The end result of this

thesis is a method that gives designers and engineers the ability to perform robust design in a

way that might not otherwise be possible, given the complexity of the design requirements and

the associated time-cost of the design process. 
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CHAPTER 2    LITERATURE REVIEW

In this chapter, we will briefly discuss two common approaches that designers use to

achieve design robustness. We will first discuss a kind of experimental method, called Taguchi

methods, followed by a discussion of a computational method, called  nonlinear programming

(NLP).

2.1 Taguchi Methods

In order to understand the hybrid method that will be developed in Chapter (3), we

must  first  understand  how experimental  methods,  commonly  called  Taguchi  methods,  and

nonlinear programming (NLP), or optimization techniques, are used to do robust design.

2.1.1    Basic Concepts

In  Taguchi  methods,  pioneered  by  Genichi  Taguchi  (1987),  there  are  two  kinds  of

factors that help define the system that we are interested in. The first kind of factor is called a

control factor (CF), for which we will use the notation  x. These factors are variables that are

input to the system that the engineer can specify freely. Each control factor can take multiple

values, called levels, which can be continuous or discrete. An example of a control factor might

be the diameter of a pipe or the thickness of a beam. The engineer’s main job is to determine an

appropriate  level  for  each  control  factor  that  will  allow the  design to  meet  some kind  of

performance goal. 
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The second kind of factor is also an input to the system, called a noise factor (NF), which

we  will  denote  as  z.  Noise  factors  are  present  in  all  systems  and  cause  the  system’s

performance to deviate from the desired value.  This deviation is  often the cause of design

failure and product unreliability. Input factors may be put in this category when they cannot be

controlled directly by the designer or are too expensive to control. In Taguchi methods, part of

the intent of the experiments is to understand which noise factors cause the variability in

system performance, and how much, so extra efforts are made to control  them during the

experiments.  Common  examples  of  noise  factors  include  manufacturing  tolerances,

environmental effects, and user error.

The output,  y,  of  the  system is  called  the  response.  There  may  be  multiple  system

responses of interest to the designer. These will often have pre-specified requirements that the

designer is trying to meet and will be used to determine the quality of the design. In Taguchi

methods, these are called quality characteristics (Phadke (1989)). Examples of system responses

include weight, gain, cost, speed, strength, and electrical resistance—to name just a few.

Taguchi  methods  have  been  used  in  many  industries,  but  most  notably  in  the

improvement of manufacturing processes.  An early example is  recounted by Phadke (1989)

where Taguchi was asked to help the Ina Tile Company because of excess variability in the

final dimensions of the tiles it produced. An analysis of the process showed a non-uniform

temperature distribution within the kiln. There were two options for solving this problem: 1)

redesign the kiln for more uniform temperature, which would be very expensive, or 2) use

inexpensive experiments to identify process parameters that would allow the tiles to be less

sensitive to the temperature’s non-uniformity. Following the second route, Taguchi found that

increasing the lime content  from 1% to   % would reduce dimensional  variation.  Thus,  the

problem of  non-uniform tile  size  was  solved by minimizing the  effect  of  the  non-uniform

8



temperature distribution without changing the kiln design at all. This particular change also

turned out to be the least expensive to implement.

The  purpose  of  the  experiments  in  Taguchi  methods  is  two-fold.  The  first  is  to

determine which control factor levels result in the desired response. The second is to determine

which control factor levels reduce variability in the response. Historically, Taguchi methods

have been used where the system being analyzed had no analytical model (i.e., there was no

f(x, z) =  y to relate x,  z, and y). The only option was to run a set of experiments, called trial

conditions or simply trials, and construct a statistical model rather than an analytical one. With

this  statistical  model,  designers  would then hope to  be  able  to determine a  robust  design.

Common models take into consideration first-order (linear) influences of the input factors:

y = β1 x+β2 z+ε (2.1)

where βi are the main effects of x and z, and ε is the error in the statistical model. Other models

include second-order (quadratic) influences:

y = β1 x+β2 z+β3 x
2
+β4 x z+β5 z

2
+ε (2.2)

The effectiveness of the statistical model depends upon how the various input factor

levels are combined and how many experiments are performed. In order to get a “good” model,

the designer will run these experiments at carefully chosen values, arranged in a design matrix.

9

Table 2.1 - The L-4 orthogonal array.

Trial Factor A Factor B Factor C

1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1



For example, the L-4 orthogonal array in Table 2.1 would be appropriate for the linear model in

Equation 2.1.

Taguchi  methods  focus  on  constructing  a  design  matrix  that  has  the  property  of

orthogonality (strength 2), which means you can take any pair of columns and you will see that

all combinations of factor levels occur exactly one time. For example, if we look at the columns

for Factor  A and Factor  B in Table (2.1), we see that (1, 1), (1, 2), (2, 1), and (2, 2) are all the

possible ordered pairs of the two element set and each appears exactly once. For an array to be

orthogonal, this relation must hold for all column combinations. Orthogonality is a balancing

property  which makes it possible for the designer to mathematically estimate the individual

influences of each of the input factors (called main effects), and sometimes interactions between

input factors (requires strength 3 or 4 design). In robust design, it is often important to estimate

the interactions between control factors and noise factors and find control factor levels that

minimize these interactions. 

The other important property of design matrices that Taguchi methods exploit is the

minimization of  the  number  of  experiments  needed to  estimate  these  effects.  In  statistical

experimental design, there are three common kinds of design matrices:

1. Full-factorial  designs:  An  experiment  is  done  for  all  possible  factor  level

combinations. This allows for all CF main effects and all CF-CF interaction effects to be

statistically estimated.

2. Fractional-factorial designs: A sub-set of trials from a full-factorial is selected. This is

done to estimate the CF main effects and only some, if any, CF-CF interaction effects,

depending on the resolution of the design matrix.

3. Response surface designs: A more complex (and typically longer) design that allows

for estimation of first- and second-order CF effects, including interaction effects.

10



For Taguchi methods, the most common choice are fractional-factorial designs that are

still orthogonal because they minimize the number of experiments while allowing at least the

first-order effects to be estimated. Taguchi most often referred to these as  orthogonal arrays

(OA).

Since it is important to understand the CF-NF interactions for robust design, Taguchi

methods will  cross a control factor OA (the  inner array) with a noise factor array (the  outer

array,  not  necessarily  an  OA).  This  means  that  each  trial  condition  of  the  inner  array  is

evaluated at each noise condition in the outer array, which provides full information about CF-

NF interactions.

Once we have a model, we use it to search for values of control factors in order to

achieve the two objectives of Taguchi methods: reach some desired response while minimizing

variability  around  the  response.  To  make  the  optimization  easier,  we  combine  these  two

objectives into a single statistic, called the Mean Squared Deviation or MSD, often referred to by

Taguchi as the Loss Function:

MSD=( μ− y t)
2+σ2 (2.3)

This concept is convenient because it allows for great flexibility in its definition, depending on

what  kind of  objective  yt we are trying to achieve:  stay on target,  minimize,  or  maximize.

Mathematically, we can tailor the definition of MSD in the following ways. If we wish to keep

the response at some  target  value while minimizing variability,  we choose CF settings that

minimize Equation 2.4, which is mathematically equivalent to Equation 2.3 for large  n. If we

wish to minimize the response (i.e., yt = 0) while minimizing variability, we choose CF settings

that minimize Equation 2. . And finally, if we want to maximize the response while minimizing

variability, we choose CF settings that minimize Equation 2.6.
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MSDT=
1
n
∑
i=1

n

( y i− y t)
2 (2.4)

MSDS=
1
n
∑
i=1

n

y i
2 (2. )

MSDL=
1
n
∑
i=1

n
1
y i

2 (2.6)

One downside to the basic definitions for  MSDS and MSDL is that they do not provide

natural  support  for  some kinds  of  responses.  For  example,  if  a  response  y can  have  both

positive and negative values, and we want a value that is as close to -∞ as possible, the above

definition for MSDS doesn’t behave as we would expect—it actually penalizes responses closer

to -∞. To remedy this, Ku (1998) offers an alternative formulation that works more like the

traditional forms of minimize (i.e., as close to -∞ as possible) and maximize (i.e., as close to +∞

as possible), which also make them more useful in modern computer algorithms:

MSDS={
1
n
∑
i=1

n

(1+ y i
2
) , y i>0

1
n
∑
i=1

n

( 1
1+ y i

2 ) , y i≤0
(2.7)

MSDL={
1
n
∑
i=1

n

( 1
1+ y i

2 ) , y i>0

1
n
∑
i=1

n

(1+ y i
2
) , y i≤0

(2.8)

Once the respective MSD is calculated, this value is then used to calculate the signal-to-

noise ratio (S/N), given by Taguchi (1987), which is measured in decibels (dB):

S /N=−10 log10(MSD) (2.9)
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When S/N is maximized, the corresponding  MSD is minimized, which means that the

difference between the desired value of the response yt and the actual value is minimized and

the variation about yt due to the noise is also minimized.

2.1.2    A Simple Example

We now illustrate  how  Taguchi  methods  can  be  used  to  optimize,  for  example,  a

contrived machining process. The goal here is to improve (i.e., minimize) the surface finish of

the metal being worked, in microns, by selecting optimal settings for three factors, each with

two levels:

The smallest OA we can use for three 2-level factors is the L-4 array found in Table 2.1. Each

trial  condition  is  carried  out,  repeated  three  times  each  to  estimate  the  variability  in  the

manufacturing process  (the  noise  factor),  using the level  combinations indicated.  Since we

want the surface finish to be as small as possible, we use Equation 2.  to calculate MSDS and we

end up with the et of results in Table 2.3.

In order to determine the optimal level combination, we calculate the S/N averages at

each of the respective factor levels. For example, the level averages for factor A (tool type) are

calculated as follows: 
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Table 2.2 - Control factor levels for example 
manufacturing process to be optimized.

Factor Level 1 Level 2

A: Tool type High Carbon Carbide Tip

B: Cutting speed 1500 rpm 2000 rpm

C: Feed rate 2 mm/sec 5 mm/sec



A1 =
(−24.6785)+(−21.6037)

2

 = −23.1411

A2 =
(−24.1609)+(−26.0423)

2

 = −25.1016

The factor level averages are summarized in Table 2.4:

To determine the optimal configuration of levels from each factor, we simply select the factor

levels that have the largest average S/N (i.e., levels A1, B2, and C2), as shown in Figure 2.1. This

assumes  that  the  differences  between  factor  levels  is  not  due  to  chance,  that  there  is  no

difference in the cost of each level, and that there are no interactions between A, B, and C.
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Table 2.4 – Factor level averages of S/N for example
manufacturing process.

Level A B C
1 -23.14161 -24.41967 -2 .36064

2 -2 .10166 -23.82360 -22.88263

Table 2.3 – Experimental results of example manufacturing process.

Factor Surface Finish [micron]
Trial # A B C Rep.1 Rep. 2 Rep. 3 MSD S/N [dB]

1 1 1 1 15 16 20 293.6667 -24.6785
2 1 2 2 13 11 12 144.6667 -21.6037
3 2 1 2 13 17 18 260.6667 -24.1609
4 2 2 1 22 19 19 402 -26.0423



Even though we didn’t construct an experiment for every possible combination of the

factor  levels,  we  can estimate  the  expected  performance  in  surface  finish  at  the  optimum

condition. To do this,  we need the grand average of all  four trial  conditions,  T = -24.12163

(shown as the horizontal dashed line in Figure 2.1).  Then, assuming an additive model, the

predicted optimum S/N is calculated as

Y opt = T +(A1−T )+(B2−T )+(C 2−T )

 = (−24.1213)+[(−23.1411)−(−24.1213)]

  +[(−23.8230)−(−24.1213)]

  +[(−22.8823)−(−24.1213)]

 = −21.6037

In a real situation, a confirmation experiment (or multiple experiments) should be done at the

optimal factor levels to verify the prediction. At this point, the design would be considered

optimized.
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Figure 2.1 - Main effects plot for example manufacturing process factors, with optimal
levels indicated.



It is sometimes found that certain factors exhibit a strong influence on the mean value

of the response while having a weak influence on S/N, and vice versa. When this is the case,

Taguchi recommends a two-step method for system optimization:

1. Maximize S/N: In this step, we choose factor levels that maximize S/N while ignoring

the target objective yt.

2. Adjust the mean on target: During this step, we utilize those factors that have less

effect on S/N and more effect on the mean to adjust the mean to be closer to its target

objective yt without changing S/N. These factors are called adjustment factors.

2.1.3    Multiple Objectives: The Desirability Function

In real-world design problems, we may find that there is more than a single objective to

be optimized. For example, a mechanical engineer might want to minimize the stresses in a

truss,  but  is  also  concerned  with  minimizing  the  total  weight  of  the  truss.  To  do  this  in

experimental  methods,  we  can  utilize  desirability  functions,  as  explained  by  Derringer  and

Suich (1980). Desirability functions are used to translate the designer’s intent of what is and

isn’t acceptable in the response metrics and also how that acceptability changes between them.

In other words, each objective is given a range of acceptable values that allows the designer to

find a suitable compromise when any objectives compete with each other.

In mathematical terms, we define a design’s desirability as follows. For some response

yi, a desirability function  di(yi) assigns a value between 0 and 1 to the possible values of  yi.

When  di=0,  the  corresponding  yi is  considered  completely  unacceptable.  When  di=1,  the

corresponding  yi is considered to be completely acceptable. Then, to get the overall design’s

desirability, D, for k objectives, we take each objective’s individual desirability di and combine

them using a geometric mean:
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D=(∏
i=1

k

d i)
1
k (2.10)

From Equation 2.10, we observe that when any di = 0, then the overall D = 0 as well, implying

that if any of the k response functions is completely undesirable, the whole design is also.

Like the MSD equations,  Derringer and Suich classify the desirability functions into

three classes: nominal-is-best (NTB), smaller-the-better (STB), and larger-is-better (LTB). Each is

defined by at least two of the following values: a lower bound L, a target value T, and an upper

bound U, as shown in Figure 2.2.
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Figure 2.2 - Graphical representation of desirability functions.



If we want to achieve some target value (a NTB kind of quality characteristic), then the

desirability function is:

d NTB={(
y−L
T−L )

s

L≤ y≤T

( y−U
T−U )

t

T≤ y≤U

0 otherwise

(2.11)

with exponents  s and  t determining how important it is to hit the target value  T (not to be

confused with the grand average  T in the Taguchi example above). For  s =  t = 1,  di changes

linearly towards T. For s, t < 1, the function is convex. For s, t > 1, the function is concave. If we

want to minimize a response (STB), we define d as:

d STB={
0 y>U

( y−U
T−U )

t

T≤ y≤U

1 y<T

(2.12)

with T denoting a small enough value to be acceptable. In contrast, if we want to maximize the

response (LTB), then we define d as:

d LTB={
0 y<L

( y−L
T−L )

s

L≤ y≤T

1 y>T

(2.13)

with T denoting a large enough value for y to be acceptable. A downside to these equations is

that the designer must be able to provide appropriate values for L, T, and U, which may not be

known. Wu and Hamada (2000) suggest a double-exponential formulation for NTB, STB, and

LTB, shown in Equations 2.14 – 2.16, respectively:
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d NTB={exp {−c1|y−mα|}, −∞< y≤m
exp {−c2|y−mα|}, m≤ y<∞

(2.14)

d STB=exp {−c∣y−aα∣} , a≤ y<∞ (2.1 )

d LTB={1−
exp {−c yα

}

exp {−c Lα}
, L< y≤∞

0, y<L
(2.16)

where  c is the scale constant of the desirability function. Wu (2008) notes that, in practical

applications,  L,  U,  and  a can  be  treated  as  the  lower  specification  limit  (LSL),  upper

specification limit (USL) and 0, respectively, and m is the ideal target value for y.

2.1.4    Weaknesses of Taguchi Methods

In  addition  to  manufacturing  applications,  Taguchi  methods  have  also  been  used

successfully in electronic circuit design, heat exchanger design, cash flow optimization, and

many others.  With so many benefits from utilizing Taguchi methods for robust design, we

must  ask  the  question,  why  wouldn’t  we?  Although  Taguchi  methods  are  experimentally

efficient and allow the simultaneous consideration of many more variables than other methods,

there are some mathematical and statistical problems that arise from their use.

Interactions are part of the real world. It is often criticized that Taguchi methods tend to

neglect the CF-CF interactions because the usage of the more common OA doesn’t provide

enough information from the experiments to estimate them. In statistical terms, this means

that the CF-CF interactions are confounded with the CF main effects. 

Critics of Taguchi methods also tout the inefficiency of using outer arrays to quantify

the noise conditions. Crossing the inner array (with Nx trial conditions) with the outer array

(with  Nz noise  conditions)  requires  a  total  number  of  N =  NxNz experiments.  N can  be

19



prohibitively large, especially when dealing with physical experiments. To be more efficient,

Buyske  (2000)  argued  that  we  should  first  perform  a  screening  design for  the  purpose  of

identifying a subset of noise factors that exhibit a more significant contribution to the overall

system variation. A similar screening design would also be done to eliminate less significant

control factors. Once we have identified the smaller set of control factors and noise factors, a

single, simpler array that allows us to estimate the relevant interactions can then be used to

drive the experiments for determining the final robust design.

Another situation that makes Taguchi methods awkward to use is the need to account

for system constraint functions. Ku (1998) used penalty functions in the place of constraints,

which  converted  the  problem  to  an  unconstrained  optimization  problem.  This,  however,

eliminates the ability to estimate a design’s feasibility. When desirability functions are used to

represent  constraints,  they  impose  “soft”  boundaries,  again  making  it  difficult  to  estimate

feasibility.

Thus, we can conclude that Taguchi methods have excellent qualities, particularly when

experiments are physical in nature, and when there isn’t an underlying analytical relation that

is  understood.  However,  when we do have an understanding of  the  analytical  relationship

between the input factors and the response  f(x,  z) =  y,  and we need to account for design

constraints, then using other methods (specifically, NLP methods) may provide a more suitable

means for doing robust design.

2.2    Nonlinear Programming

Another method that has been used for robust design is Nonlinear Programming (NLP).

NLP, in the general sense, is the mathematical process of solving an optimization problem

where the model exhibits nonlinearity in the relationship between the input and output values.
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The designer creates a model that interacts with the NLP optimizer, as shown in Figure 2.3. The

model accepts input values from the NLP optimizer, computes the outputs of the model, then

returns these values so the optimizer can determine what to do next.

The inputs to the model are comprised of design variables and design parameters. Design

variables are free to be set by the designer to improve the design (e.g., the length of a beam).

These are the optimization analog to Taguchi’s control factors. Design parameters, on the other

hand, are also inputs to the model, but remain constant throughout the optimization process.

These are held constant for a variety of reasons, but usually it is because the designer has little

control over what values they can take on (e.g., material properties like elastic modulus and

density). The set of all unique designs defined by the inputs constitutes the design space.

The input values are used by the optimization routines to calculate two kinds of output

function values: objective function values and constraint function values. The objective function

(there can be more than one) is the output that the designer is trying to improve as much as

possible. The constraint functions determine the subset of designs in the design space that are

considered  feasible.  The values of the design variables that yield the best objective function

value within the feasible region give the optimal design.

The  design  problem  can  be  stated  in  mathematical  terms  of  a  multiple  objective

optimization problem of the form:
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Figure 2.3 - Interaction between optimizer and model.



Minimize fk(x, p) k = 1, …, q
subject to gi(x, p) ≤ bi i = 1, …, r

L ≤ x ≤ U

where x = n-dimensional vectors of design variables
L, U = lower and upper limits on x, respectively
p = m-dimensional vector of fixed design parameters
fk = kth objective function
gi = ith inequality constraint function
bi = ith inequality constraint allowable value

In words, this means that our optimization problem has q objective functions fk we wish

to minimize. There are r inequality constraint functions, gi, and allowable values, bi, which we

will simply denote as the vector b. Since we are focused on applying NLP methods to develop

robust  designs,  we  do  not  include  equality  constraint  functions  since  they  are  virtually

guaranteed to never be satisfied in the presence of variation. Also, although we specify the goal

of  minimizing the  objectives  with  less-than inequality  constraints,  we  maintain  definition

generality since any optimization problem, with minimize/maximize/target objectives and less-

than/greater-than inequality constraints, can be represented in the above form. The vector x is

an n-dimensional vector of design variables whose values are selected within the range of the

lower and upper bounds, given by L and U, respectively. These variables comprise the variables

that can be directly controlled and modified in order to obtain the optimal design. The vector p

is an m-dimensional vector of fixed parameters. These are considered constants to the system.

2.2.1    Including Model Tolerances

Conventional optimization algorithms help find the nominal optimum, but this doesn’t

take into account the presence of variability. To make the optimization problem more realistic,

we need a way to incorporate variation. Thus, in addition to the nominal values of x, p, and b,

we include corresponding tolerance values Δx,  Δp, and Δb that will be used to represent the

expected  variation for  each  kind of  value.  These tolerances  can come from manufacturing
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tolerances or any other sources of variation that are generally beyond the designer’s control,

but still need to be considered. For example, a material’s density is usually specified with a

nominal value, but in actuality has natural variation around that value. For the sake of this

thesis, we will assume that the designer can determine appropriate tolerance values for x,  p,

and b.

We will  specify tolerances in two different ways:  worst-case (WC) and  statistical (or

root-sum-squared, RSS). In both cases we will assume the tolerances are symmetric about the

nominal values, making it the mean value. In WC analysis, we assume that the tolerances Δx,

Δp, and Δb are represented by Uniform distributions. Thus, for design variables, the minimum

and maximum values are x – Δx and x + Δx, respectively. The goal for WC analysis is to create

a design that  never violates the constraints (i.e.,  100% feasibility). For the RSS analysis,  the

designer must know the variance (denoted by σx
2, σp

2, σb
2) or standard deviation (denoted by σx,

σp,  σb) of the distribution of the inputs. It is most common to assume, for RSS analysis, the

distribution  is  a  Normal or  Gaussian distribution.  The  specified  tolerance  values  are  then

chosen to represent ±1σ, ±2σ, or ±3σ of the distribution (i.e., ±Δx=±3σ). In this thesis, where

RSS tolerances are concerned, we will use ±3σ to represent the tolerance limits. RSS tolerance

conditions tend to be more realistic and are less conservative than WC tolerances. Figure  2.4

shows how RSS and WC tolerances may be specified.

Much  work  has  been  done  to  show  how  to  include  tolerances  as  part  of  design

optimization. Balling (1986) and Michael and Siddall (1981, 1982) devised a method that placed

a “tolerance box” around the design variables using primarily WC assumptions. The design was

then adjusted until the tolerance box fit completely within the feasible region. This method can

run into trouble when it isn’t  possible to fit the entire box within the feasible region. The

methods also have trouble extending the problem to include design parameter tolerances.
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Gunawan and Azarm (200 ) avoid this problem of distinction between design variables

and design parameters by including all variables that have uncontrollable variation into the p

term, even if they are part of  x. Then, the design's feasibility robustness is determined via a

sub-optimization, performed at each design point. This helps identify the worst-case sensitivity

region (WCSR) within the sensitivity region (SR, i.e., the feasible region). Figure 2.  illustrates

that  this  WCSR  is  defined  as  the  largest  hypersphere  around  the  point  x that  remains

completely feasible. The sub-optimization solves for the radius of this hypersphere caused by

all  the contributing  Δp.  Although this can be an excellent tool for designing for feasibility

robustness, calculating the WCSR is also too computationally expensive because it requires

many calculations of the constraint functions at each design point. It doesn't, however, require

any gradient evaluations.

Parkinson (1993) has done work on a linear tolerance model that works well with NLP

methods. In his research, there are two main assumptions made. The first is that, for the RSS

method,  the  transmitted  variation  to  the  design  functions  is  normally  distributed.  This  is

mostly  for  the  sake  of  simplicity  since  statistical  error  propagation  is  well  suited  to

symmetrically distributed variables. This is a direct result of the Central Limit Theorem, which

states that under certain (fairly common) conditions, sums or differences of random variables
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Figure 2.4 - Illustration of input tolerance distributions for RSS (Normal) and WC 
(Uniform) variables.



will have an approximately normal distribution. The second assumption is that second order

effects are small (i.e., a Taylor series linear approximation for the mean and variance of the

constraint  functions is  adequate  for  analysis).  This  is  generally  accurate  enough when the

tolerances are small (i.e.,  % or less of the nominal values of the design variables) or when the

input-output relationship is relatively linear. However, when tolerances get larger on nonlinear

models,  this  assumption breaks down and higher order tolerance methods may need to be

used, such as the second-order method developed by Lewis (1994).

Lee and Park (2001)  suggest a multi-objective formulation to balance the objective's

optimality (or mean value, μ) when tolerances are not considered and the objective's robustness

(or standard deviation,  σ) when the tolerances are considered. This is done by combining the

two objectives into a weighted sum, Φ(x):

Φ(x) = α⋅
μ f (x )
μ ' f

+ (1−α)⋅
σ f ( x)
σ ' f

, 0≤α≤1 (2.17)
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Figure 2.5 - Worst case representation of a sensitivity region (SR).



where  μ'f, σ'f are the mean and standard deviation of the objective at the nominal optimum and

μf(x), σf(x) are the mean and standard deviation of the objective evaluated at x. α is used as the

weight factor to control how much the designer seeks a more optimal objective value or a more

robust objective. Because this formulation requires the evaluation of σf(x) at each design point,

unless the underlying model can be evaluated easily, this method can be too computationally

expensive for many modern engineering problems.

Another  field  that  is  growing  in  popularity  is  stochastic  optimization.  Stochastic

optimization refers  to directly  incorporating statistically  distributed design variables  rather

than deterministic (i.e.,  a single-value) design variables as part of the optimization problem

definition.  Once  defined  non-deterministically,  the  problem  is  then  transformed  into  an

equivalent deterministic one to be used with other more common numerical methods that can

solve the transformed problem. One benefit of stochastic optimization is that the optimum will

be found that will satisfy the constraints to a specified percentage, (e.g., 9 %). This allows the

designer  to  determine  the  feasibility  robustness  of  the  design  from  the  start.  A  good

introduction to stochastic optimization is given by Rao (1979). Many researchers have applied

this  technique  to  the  optimization  of  a  variety  of  mechanical  designs,  including  four-bar

mechanisms,  cam design,  aircraft wing structures,  etc.  (Rao,  1986b;  Rhyu and Kwak,  1988;

Agarwal, 1981; Beohar and Rao, 1980; Rao and Gavan, 1980). This research has tended to take

two main avenues, as noted by Eggert (1990), with one avenue being Monte Carlo simulation

and the other being analytical methods.  Monte Carlo simulation is very popular due to its

modeling  flexibility  and  accuracy,  but  it,  as  well  as  other  types  of  simulation,  can  be

computationally  expensive  (Sundaresan  et.  al.,  1991).  Although  powerful,  stochastic

optimization hasn’t been used to actively control transmitted variation.

26



Another technique for optimizing for robustness is through the dual-response surface

approach first suggested for computer-based experiments by Sacks (1989). Alternate proposals

were given more recently by Lehman (2004), Bates (200 ), and Giovagnoli (2008). A surrogate

model is developed that is simpler to model and easier to evaluate for the underlying response

function’s mean value and its variance, then used simultaneously in an optimization model,

like the following simple model:

Minimize Var(y)
subject to E[y] ≤ yspec

where  Var(y)  is  the  variance  regression  function,  E[y]  is  the  Expectation or  mean-value

regression function and yspec is some design specification for the response function that should

not  be  exceeded.  This  is  done  using  response-surface  techniques  which  provide  accurate

approximations, provided the underlying response function isn’t too nonlinear. To determine

the variance regression parameters, the response function’s variance (or standard deviation)

must  be  calculated  at  multiple  points  within  the  design  space.  This  can  be  estimated

stochastically using Monte Carlo simulation. The usefulness of  this method comes at a much

increased computational cost from the need to evaluate the actual response function at more

than its mean value. For an in-depth discussion of response surface techniques, see Myers and

Montgomery (2002).

2.2.2    Linear Uncertainty Propagation

Since  we  will  be  considering  relatively  small  tolerances  in  this  thesis,  the  linear

approximation for calculating the variance of the constraint functions should be sufficient. Cox

(1986)  and Bjorke (1989)  present  the theory of  linear  uncertainty  propagation (or  tolerance

analysis), which is the general statistical term for describing how variation in the input values
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translates to variation in the output values. We will now examine how to consider both the WC

and RSS input tolerance cases.

WC tolerance analysis assumes that all the input variations may occur simultaneously

in  the  worst  possible  combinations.  The effect  of  variation  on  the  constraint  functions  is

estimated with the first-order Taylor series:

Δg i=∑
j=1

n

∣∂ g i

∂ x j

Δ x j∣+ ∑
j=1

m

∣∂ g i

∂ p j

Δ p j∣ (2.18)

where Δgi represents the transmitted variation to the constraint function gi for a WC analysis.

We see that the variation only adds positively (as shown by the absolute value signs). Although

Δgi is almost always overly conservative, there are instances, such as with thermal expansion,

that it is appropriate for use. However, if the tolerances on the inputs are independent of each

other, it is very unlikely they will simultaneously occur in the worst possible combinations.

In a statistical RSS analysis, we allow for a small number of  rejects, i.e. designs which

are not feasible, out of a theoretical population set of designs. This allows the designer to use

larger tolerances or back away from the optimal design a smaller amount than a WC analysis.

For a linear RSS analysis, the variations in x and p sum, in terms of independent component

variances, to result in an output variance σgi
2 for function gi according to the expression

σ g i
2
=∑

j=1

n

(∂ g i

∂ x j

σ x j)
2

+ ∑
j=1

m

( ∂ g i

∂ p j

σ p j)
2

(2.19)

Equations  2.18  and  2.19  show  how  variation  from  the  input  design  variables  and

parameters are propagated to the constraint functions. In addition, we can include variation

from the constraint values, bi, to get a total transmitted variation

Δ i = Δb i + Δg i (2.20)
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where Δi is the total WC variation for the ith constraint function and Δbi is the tolerance on the

constraint right hand side (RHS) value. For RSS analysis, we have a similar expression,

σi
2
= σb i

2
+ σg i

2 (2.21)

where σi
2 is the total statistical variance for the ith constraint function and σbi

2 is the variance on

the constraint RHS value. In this thesis, we will neglect σbi
2 for the most part and refer to Δgi

and  σgi
2 as the  constraint variation or simply  transmitted variation  and Δi and  σi

2 as the  total

constraint variation.

2.2.3    Robust Design Method for Linear Analysis

With an understanding of how variation in the input design variables and parameters is

transmitted to the constraint and objective functions, we are now prepared to discuss how the

designer can use this to control the number of designs that will be infeasible when variability is

present. For WC design, the designer would like to have 100% feasibility. For RSS optimization,

the designer chooses the desired probability level that the robust optimum is to remain feasible.

Because  the  assumptions  for  the  RSS  method are  not  always  valid  (i.e.,  our  functions  are

normally distributed and second-order effects can be ignored), it is important to realize that the

goal of RSS analysis to allow the designer to estimate the order of magnitude of the number of

expected infeasible designs (i.e.,  rejects), such as 10%, 1%, 0.1%, etc., for a given set of input

tolerances.  This  level  of  accuracy  is  adequate  for  many  design  situations  and  is  usually

consistent with the tentative  nature  of  most information available during the design stage

regarding the actual statistical distribution types and variances.

The “order of magnitude” range calculation is easily demonstrated. For example, if the

designer wants the actual number of rejects to about 3%, we first calculate log 10(3)=0.477. Then,

to get the range lower bound by 0.477 – 0.  = –0.023. For the upper bound we calculate 0.477 +
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0.  = 0.977. Finally, we take the antilog of these two values to get 10-0.023 = 0.948% and 100.977 =

9.48% respectively. Thus, if the predicted percentage of rejects falls between 0.948% and 9.48%,

we have order of magnitude agreement.

2.2.3.1    Feasibility Robustness

During design optimization, it is common to have the nominal optimum lie on one or

more constraint boundaries. We would like to ensure that the input variable and parameter

tolerances  do  not  cause  the  design  to  be  infeasible.  A  design  is  said  to  have  feasibility

robustness when it  can be  characterized  by  a  definable  probability,  set  by  the  designer,  to

remain feasible, given the variations in x, p, and b.

Feasibility robustness can be achieved by reducing the feasible region to account for the

tolerances. Specifically, we increase the constraint right-hand-side for less-than constraints, or

decrease the constraint right-hand-side for greater-than constraints by an amount chosen by

the designer, typically equal to the total constraint variation. This adjustment will always make

the feasible region smaller and, if the optimum is constrained, will make the objective worse.

For WC analysis, this shift for less-than constraints is represented by

g i + Δi ≤ b i (2.23)

An equivalent expression is made by adjusting the constraint right-hand-side (RHS) instead

g i ≤ b i − Δi (2.24)

We can apply a similar shift for linear RSS analysis by simply changing Δ i to kσi. The value of k

is a constant that reflects the probability that the design will remain feasible with respect to the

ith constraint. 
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For example, since we assume the constraint variation to be approximately normally

distributed, k = 3 means that for a large number of sampled designs, the constraint should be

satisfied approximately 99.86% of the time if the constraint is currently binding. Other values

for k and the corresponding percentages are shown below in Table 2. . These values are based

on  a  one-sided  percentile  calculation  of  the  standard  normal  distribution  since,  usually,  a

design  only  violates  a  constraint  on  one  side.  The  kσi-shift of  the  constraint  to  maintain

feasibility is illustrated in Figure 2.6. When more than one constraint is binding at the nominal

optimum, the total predicted feasibility becomes the product of the feasibility of each kσi-shift.

For example, if we apply a 3σ-shift to two binding constraints, the total predicted feasibility

changes to approximately 0.99866*0.99866 = 0.99761 or 99.71%.
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Table 2.5 – Relation of k to constraint feasibility

k (number of standard deviations) Percentage of Feasible Designs (based
on standard normal distribution)

1 84.13

2 97.73

3 99.8 6

4 99.99668

 99.9996971

6 99.9996999



2.2.3.2    Two-Step Solution for Feasibility Robustness

Gradient-based optimization algorithms require the calculation of first derivatives of

the  objective  function  and  constraint  functions.  When  the  transmitted  variation  equation,

which is comprised of derivatives, is used in optimization models, this requires calculating the

derivatives of derivatives, or second derivatives of the original functions . For many problems,

calculating  second derivatives can be computationally expensive. A  two-step method can be

performed to reduce the need for continuous evaluation of transmitted variation and function

second derivatives.

The first step is to optimize the design as usual, subject to the un-shifted constraints. At

this point, the transmitted variation for each constraint is calculated according to Equations

2.20 or 2.21. If the designer doesn’t have access to the partial derivatives from the optimization

routine, then they must be calculated separately using finite difference equations, automatic

differentiation, or any other suitable method.

The second step is to shift each constraint by kσi or Δi and re-optimize subject to the new

constraints, starting at the nominal optimum. This step assumes that the transmitted variation

is constant through the shift (for RSS), which should be adequate provided the tolerances are

small.  The nominal  optimum will  always  be  infeasible  with respect  to the  shifted  binding
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Figure 2.6 - Application of kσ-shift to binding constraint function to control 
feasibility.



constraints,  so an algorithm that  can start  at  an infeasible design should be  used,  such as

sequential quadratic programming (SQP). 

2.2.4    Example of Feasibility Optimization

Parkinson (1993) demonstrates the two-step method with several design problems. For

each problem, the robust optimum was identified and verified with Monte Carlo simulation.

For the case where tolerances were assumed to be ±3σ = ± % of the nominal value, the amount

of  predicted infeasibility of  the linear tolerance analysis  matched the simulated number of

rejects from the Monte Carlo simulation within an order of magnitude. In fact, typically the

Monte Carlo simulation showed a significantly better feasibility than was predicted using the

two-step method.

Recall the previous two-bar truss example. This was optimized for minimum weight,

subject to two stress constraints and one deflection constraint. At the nominal optimum, the

weight  was  calculated  to  be   6.9  N,  with  the  yield  stress  and  buckling  stress  constraints

binding. After calculating the transmitted variation and shifting each of the constraints, the

optimal weight increased to 63.0 N. With two binding constraints, the estimated feasibility for

the design was 99.7%. Using Monte Carlo simulation,  the actual  feasibility was 99.8%,  well

within the order of magnitude limit. Similar results were obtained for several other design

problems.

2.2.5    Sensitivity Optimization

Sometimes the designer not only wants to stay feasible when the design is subject to

variation, but also wishes to reduce the sensitivity of the objective to variation. The designer

can perform  sensitivity optimization for  the purpose of finding a design that has minimum
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sensitivity to the input variation and still satisfies the design constraints. The goal of this form

of optimization is to find a design where the objective is insensitive to variation (i.e., where the

transmitted variation is small). By examination of Equation 2.21, we see that this will happen

when the partial derivatives of the variables and parameters are small, when the tolerances

themselves are small, or a combination of the two. Since tolerance reduction can become costly,

requiring more expensive manufacturing processes and more quality control, it is desirable to

find  a  design  with  less  sensitivity  to  given  tolerances  without  changing  the  tolerances

themselves. Indeed, if the sensitivity is reduced enough, it may even be possible to increase the

tolerances.

Formulation of the design problem for sensitivity optimization will generally follow two

options:  make  the  transmitted  variation  of  the  objective  another objective,  or  define  a

reasonable limit for the original objective function (turning it into a constraint function) and

setting  the  transmitted  variation  as  the  only  objective.  The  latter  option  will  be  used

throughout  this  thesis  to maintain the simplicity  of  a  single  objective.  Then,  it  becomes a

regular optimization design problem; if we wish, feasibility robustness can also be included in

the process.

2.2.6    Benefits and Drawbacks of NLP

We have discussed many uses and benefits for using NLP methods, but they will be

summarized here. The requirement of gradient-based optimizers to have derivatives is easily

met if we assume the functions are continuous. These derivatives can be calculated using a

variety  of  techniques.  Unlike  Taguchi  methods,  NLP  methods  can  easily  accommodate

problems with constraints. NLP methods can also handle single and multiple objectives with

flexibility in the kind of objectives allowed (i.e., minimize, maximize, or target).
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However, NLP methods have drawbacks. Because NLP methods require the calculation

of  derivatives  at  each  iteration  for  each  function  with  respect  to  each  input  variable,  the

computational effort required to determine the optimum can grow considerably as the number

of  input  design variables  grows.  When performing sensitivity  optimization,  the  number of

required function evaluations compounds on the order of O([n + m]2) for n design variables and

m parameters with tolerances. For analytical functions (i.e., “simple” mathematical equations),

this may not be a hindrance, but when the designer is using numerical simulation tools, such as

finite element analysis (FEA), computational fluid dynamics (CFD), etc., the computational cost

of calculating second derivatives can be very prohibitive.  Other well  understood issues are

characteristic of NLP methods, including the potential for sub-optimal designs if the objective’s

topology has multiple minima within the design space.

2.3 Conclusions

We have addressed the development and use of experimental methods in Section 2.1

and NLP methods in Section 2.2 and discussed why both of these methodologies may not be

suitable for robust optimal design (i.e., feasibility and sensitivity optimization). In Chapter 3, a

hybrid  optimization  method  will  be  presented  that  combines  some  of  the  efficiencies  of

experimental methods and the accuracies of NLP methods.
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CHAPTER 3 PROPOSED SOLUTION

In order to address the aforementioned limitations and utilize the benefits of both DOE

and NLP methods, we propose the following solution. This solution is a hybrid algorithm that

blends NLP and DOE methods. When computational expense is relatively low, we use the NLP

approach to robust design; when it is high, we build a statistical model using DOE methods and

apply NLP methods to the statistical model.

3.1    The Search-and-Zoom Algorithm

The hybrid algorithm, which is designated the Search-and-Zoom algorithm for reasons

that will be described shortly, is of most practical use when performing sensitivity optimization

(i.e., minimizing transmitted variation). It maximizes the use of the statistical model for the

calculation of derivatives rather than by using the actual model. The Search-and-Zoom iterative

algorithm is outlined in Figure 3.1 and described in the following steps:

1. Start from a convenient point.  This can be the nominal  optimum or something else

since there are no presumptions about the proximity of the sensitivity and nominal

optimums.

2. Set the starting variable bounds to be approximately 20% of the full variable bounds.

This is somewhat arbitrarily chosen, but is designed to give the algorithm a “head-start”

and should still  provide opportunities for the algorithm to move around the design

space.
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3. Construct a combinatorial set of input variable values that allows for the construction

of a statistical model that includes the estimation of second-order effects. These could

be Central-Composite Designs (CCD), Box-Behnken designs (BB), etc.

4. Simulate each trial condition using the actual model and collect all outputs.

5. Construct statistical models to approximate the system for all output functions.

6. (Search)  Perform an NLP optimization on the statistical  model  where the goal  is  to

minimize the objective's sensitivity using either Equation 2.20 or 2.21, subject to any

constraints, over the input variable bounds.

7. Evaluate the optimal design from step 6 using the actual  model  (fopt)  and check for

convergence between the optimum of the previous iteration and the current one. If the

change in fopt is below the tolerance, stop. The optimal design has been reached.
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Figure 3.1 - Flowchart diagram of the Search-and-Zoom optimization algorithm.



8. (Zoom) If convergence has not been reached, reduce the allowable search space around

the current iteration's optimum using a zoom factor (0<γ<1), typically between 0.5 and

0.85, with the current iteration's optimum at the center of the new ranges. If necessary,

apply  shifts  to  the  new  variable  ranges  in  order  to  maintain  the  original  variable

bounds.  For  example,  if  the  original  bounds of  a  variable  were [1,  3]  and the new

iteration bounds were calculated to be [2.75, 3.25], then, in order to remain entirely

within the original design space, we would shift BOTH values down by 0.25 to get [2.5,

3] to keep the range of the bounds. This is checked for each variable before moving on.

9. Repeat steps 3-8 until the optimum converges at step 7.

Once the sensitivity optimum is found with this process, it may be necessary to further

optimize for feasibility robustness. Since the feasibility optimums tend to be near the nominal

optimum, we can continue using Search-and-Zoom to our advantage:

1. Estimate the transmitted variation to the constraint functions using the actual model

(3σ for RSS conditions, Δ for WC conditions).

2. Shift constraints by their respective transmitted variation.

3. Increase the variable bounds by α = 1/γ3. Since γ is less than 1.0, this makes α have an

expansion  effect  on  the  variable  bounds,  once  again  giving  the  algorithm  more

opportunity to search.

4. Re-instate Search-and-Zoom starting at the sensitivity optimum until it converges to the

RSS and WC feasibility optimums.

The algorithm will now be explained via a simple analytical example using the design of

the two-bar truss. We start with just two design variables, truss height H and tube diameter d.

A suitable DOE for two variables that allows for excellent second-order approximation comes

from a Central Composite Design (CCD). These designs are comprised of  corner points,  star
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points, and center points. In physical experiments, the center point is replicated numerous times

to  capture  the  variability  in  the  system.  However,  analytical  equations  provide  consistent

output for a given set of input values, so we only need a single center point. We will also scale

the  design down so the  star  points  are  located at  the  design variable  bounds  rather  than

traditionally extending outside them, creating an inscribed CCD. 

The design matrix for this set of trials is outlined in Table 3.1. We notice that there are 9

total trial conditions. The first four trials are the corner points, trials 5-8 are the star points, and

trial 9 is the center point. These values (Xscaled), ranging from -1 to +1, are related to the actual

lower  and  upper  bound values  of  the  design  variable  ranges  (Xunscaled)  using  the  following

equations,

X scaled=
X unscaled−X average

X hw
(3.1)

or

X unscaled=X average+X hw X scaled (3.2)

where,

X average=
X max +X min

2
(3.3)

X hw=
X max−X min

2
(3.4)
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The min/max values for H and d are [10, 30] and [1, 3], respectively. Using Equations 3.3

and 3.4,  we  first  calculate  the  average and  half-width (hw)  values.  These  are  then used  in

Equation 3.2 to transform each value in the design matrix to be real values that are supplied to

the design equations. Table 3.2 shows the same design matrix but with the values transformed

into the actual design values using their min/max values. The output functions we will use in

this analysis are weight, stress, buckling stress, and deflection, as defined in Equations 3.5 – 3.8.
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Table 3.2 – Inscribed CCD using actual two-bar
truss design variable values

Trial H d
1 12.92899 1.29299
2 27.07191 1.29299
3 12.92899 2.70791
4 27.07191 2.70791
5 10 2
6 30 2
7 20 1
8 20 3
9 20 2

Table 3.1 – Inscribed central composite design 
for two variables and no variability

(values are normalized)

Trial x1 x2

1 -0.7079106678 -0.7079106678
2 0.7079106678 -0.7079106678
3 -0.7079106678 0.7079106678
4 0.7079106678 0.7079106678
5 -1 0
6 1 0
7 0 -1
8 0 1
9 0 0



Weight=2⋅π⋅ρ⋅d⋅t⋅√(B
2 )

2

+H 2 (3.5)

Stress=
P⋅√( B

2 )
2

+H 2

2⋅π⋅d⋅t⋅H

(3.6)

Buckling Stress=π
2
⋅E⋅(d 2

+t 2
)

8[(B
2 )

2

+H 2] (3.7)

Deflection=

P⋅[(B
2 )

2

+H 2]
3
2

2⋅π⋅d⋅t⋅H 2
⋅E

(3.8)

The parameters other than H and d are held constant at the following values:

t = 0.15 ρ = 0.3 E = 306000  B = 60 P = 66

If we start from the nominal optimum, we know we have both a feasible and favorable design.

Thus, we define the starting optimization model as

Minimize f = Weight
Subject to Stress ≤ 100 gs = 100 – Stress ≥ 0

Stress ≤ Buckling Stress or gb = Buckling Stress – Stress ≥ 0
Deflection ≤ 0.25 gd = 0.25 – Deflection ≥ 0

In this example, we will use f and gx to simplify the notation for the objective function

and the  design constraint  functions,  respectively.  We can now begin  the  Search-and-Zoom

algorithm. (Step 1) Using NLP methods, the nominal optimum is discovered at the following

design  (we  will  consider  any  constraint  value  that  is  relatively  close  to  zero  a  binding

constraint, shown in italics):
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Now that we have the nominal optimum, we reformulate the optimization model to improve

the design's  sensitivity robustness of  the  Stress function.  Thus,  we add a new constraint on

Weight (via gw) to stay near the same performance level as the nominal optimum:

Minimize f = σStress

Subject to Weight ≤ 17 gw = 17 – Weight ≥ 0
Stress ≤ 100 or gs = 100 – Stress ≥ 0
Stress ≤ Buckling Stress gb = Buckling – Stress ≥ 0
Deflection ≤ 0.25 gd = 0.25 – Deflection ≥ 0

(Step  2) We  will  assume  the  tolerances  for  H and  d are  ±0.05  and  ±0.005,  respectively

(equivalent to ±Δ and ±3σ, here). The starting variable bounds around the nominal optimum

are then set to have a width of approximately 20% of the full original bounds. Thus, we get:

[14.2149895 – 2.0, 14.2149895 + 2.0] = [12.2149895, 16.2149895] for H and [1.6909574 – 0.2, 1.6909574 +

0.2] = [1.4909574, 1.8909574] for d. (Step 3) Following the same procedure as described above, we

construct  a  set  of  experiments  that  provide  the  right  information  to  construct  quadratic

regression functions, in this case, an inscribed CCD. (Step 4) Each of the output functions is

then evaluated  at  each trial  condition, except  for  f,  since  this  will  be  estimated using the

corresponding regression  equation  (i.e.,  gs).  Table  3.4  shows  each  of  the  calculated  output

values (the response matrix) to the right of the given input trial conditions of H and d.
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Table 3.3 - Two-bar truss nominal optimum before sensitivity optimization

Design Variable Value Design Function Value

H 14.2149895 f 15.8689277

d 1.6909574 gs 3.2619734

gb 7.3941ee-6
gd 5.7481ee-4



(Step  5) We  construct  a  quadratic  approximation  yk for  each  output  function’s

responses. For two factors, this function is comprised of a constant, two linear terms, two pure

quadratic terms, and one interaction term, 

yk = β0 k + β1k H + β2k d + β3k H 2
+ β4k H d + β5k d2 (3.9)

The coefficients βi are determined using statistical regression techniques. Using a least-squares

fit, for example, we get the coefficients for each function’s quadratic approximation as found in

Table 3.5.

During sensitivity optimization, we could include more factors that have tolerances and

create a regression model to support that number of factors, but we will keep it to two factors

in this example for simplicity.
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Table 3.4 – Two-bar truss starting design matrix and response matrix

Trial H d gw gs gb gd

1 12.80097 1.54992 2.71394 -15.18297 -30.90996 -0.06991

2 15.62991 1.54992 2.18393 2.16198 -19.48793 0.01192

3 12.80097 1.83290 0.10590 2.60094 20.14398 -0.01998

4 15.62991 1.83290 -0.52199 17.26791 26.55093 0.04891

5 12.21499 1.69096 1.51790 -9.84496 -8.23296 -0.06495

6 16.21499 1.69096 0.69995 12.88396 4.55993 0.04197

7 14.21499 1.49096 3.00990 -9.71892 -34.34697 -0.03395

8 14.21499 1.89096 -0.74595 13.49595 34.28792 0.02694

9 14.21499 1.69096 1.13197 3.26198 0.00091 0.00090



(Step 6) Substituting the coefficients from Table 3.5 into Equation 3.9 for each function,

we  then  run  an  NLP  optimization  on  the  transmitted  variation  function  of  the  regression

objective.  That  is,  we  use  Equation  3.9  to  approximate  gs near  the  iteration  optimum and

Equation 2.20 or 2.21 estimate the WC or RSS transmitted variation, respectively, and minimize

that function. Here, we will use the RSS transmitted variation (σ) as the objective function. For

the starting value, we will use the mean value of the variable bounds,  x0 = [14.21499, 1.69096],

which, in this case, is the nominal optimum found using NLP methods in Step 1. This leads us

to the sensitivity optimum of the first iteration, with the design variable and actual response

values shown in Table 3.6.
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Table 3.5 – Initial quadratic regression coefficients for 
the two-bar truss output functions along with the

corresponding goodness-of-fit values (R2)

yk k = 1, gw k = 2, gs k = 3, gb k = 4, gd

β0 15.8169867 -441.6429133 -580.3759424 -1.8279579

β1 0.1679213 23.6859287 26.8029116 0.1339267

β2 -7.6709076 221.4159521 262.9369181 0.6689574

β3 -0.0059879 -0.4349615 -0.4589242 -0.0029838

β4 -0.1209979 -3.3479281 -6.2699800 -0.0159501

β5 -0.0009006 -34.2339217 -0.6519297 -0.0879873

R2 0.9999999 0.9999997 0.9999998 0.9999952



(Step 7) At this point,  we check for convergence between consecutive iteration optimums,

which we can calculate using Equation 3.10:

|f opt , i − f opt , i−1|≤ ε , (3.10)

where, again, fopt,i is the objective value at the optimum for the current iteration and fopt,i-e and is

that  of  the  previous iteration.  For this  problem, we’ll  assume  ε  = 1e-4.  At  the end of  this

iteration, fopt,i = 0.1032 and fopt,i-1 = 0.13299. Since |0.10392-0.13299| = 0.02997 > ε, we continue on to

Step 8.

(Step 8) Using a zoom factor of  γ = 0.75, we reduce the search-able space, noting that

the prior iteration’s optimal factor values act as the center point of the next DOE. Thus, the

new bounds for H are [16.2149886 – 2.0*0.75, 16.2149886 + 2.0*0.75] = [14.7149886, 17.7149886] and

d are [1.7639179 – 0.2*0.75, 1.7639179 + 0.2*0.75] = [1.6139179, 1.9139179]. Since these bounds fall

completely within the original bounds ([10, 30] for H and [1, 3] for d), there is no need to make

any further adjustments to the new ranges. Thhe new design matrix is found in Table 3.7.
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Table 3.6 - Two-bar truss sensitivity optimum after the first iteration

Design Variable Value Design Function Value

H 16.2149886 f 0.3989832

d 1.7639179 gw -5.9e816e-4
gs 16.4709860

gb 16.1279150

gd 5.03e1ee-e



This process continues with steps 3 through 8 until we either meet the convergence

criteria in step 7 or a maximum number of allowable iterations pre-set by the designer. If we

continue the above steps for  9 iterations (111 total actual function calls), we converge to the

following design:

We see  that  the  sensitivity  function  f has  been reduced  from 0.3989832 to  0.2549791,  a  36%

decrease, as estimated using the first-order Equation 2.21. As we will see in Sections 3.2.1 and

3.2.2,  the improvement is actually greater, in this case, when we validate this design using

Monte Carlo simulation.
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Table 3.7 – Design matrix for second iteration
of two-bar truss sensitivity optimization.

Trial H d
1 15.1549226 1.6579113
2 17.2759546 1.6579113
3 15.1549226 1.8699245
4 17.2759546 1.8699245
5 14.7149886 1.7639179
6 17.7149886 1.7639179
7 16.2149886 1.6139179
8 16.2149886 1.9139179
9 16.2149886 1.7639179

Table 3.8 - Two-bar truss sensitivity optimum

Design Variable Value Design Function Value

H 21.1869979 f 0.2549791

d 1.6379075 gw e.e081ee-7
gs 25.8479952

gb -e.67517e-6
gd 9.26395e-2



3.2    Feasibility Optimization

Because at least one constraint is  binding,  we know that variation around the input

variable  nominal  values  will  cause  the  design  to  become  infeasible.  The  Search-and-Zoom

algorithm  will  now  be  used  for  improving  the  design's  feasibility  robustness while  still

maintaining the sensitivity robustness we've already achieved. This is done by following the

two-step method described in Section 2.2. We will first estimate the transmitted variation to the

constraints. 

3.2.1    Calculation of Transmitted Variation

To estimate the transmitted variation for each constraint, we utilize Equation 2.21 for

RSS tolerances and Equation 2.20 for WC tolerances, both of which require the calculation of

first  derivatives.  These are  estimated using first-order  forward-difference derivatives  at  the

nominal  optimum using the actual  model.  Table 3.9 shows the partial  derivatives for  each

constraint function. 

For  this  calculation,  we  assumed  a  perturbation  of  1e-4  in  the  finite  difference

derivatives.  Recall  that the two design variables  H and  d have the tolerances of  ±0.05 and
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Table 3.9 – Partial derivatives for constraint 
functions at the nominal optimum

gw gs gb gd

H -0.2679019 2.3359169 0.0059759 0.0079440

d -10.3849374 45.2929682 135.1329102 0.0969120



±0.005, respectively. The RSS transmitted variation for the Stress constraint (assuming tolerance

= 3σ or rather, σ = tolerance/3) can then be calculated with σH = 0.0169667 and σd = 0.0019667,

σ gs
2

= (∂ g s

∂H
σH)

2

+ (∂ g s

∂d
σd)

2

 = ((2.3359170)(0.0169667 ) )
2
+ ((45.2929685)(0.0019667 ) )

2

 = 0.0299969

(3.11)

or,

3σgs = 3√0.0299969

 = 0.2549791

(3.12)

The value for 3σgs represents the amount of statistical transmitted variation we expect from the

input tolerances. Likewise, we calculate WC transmitted variation for Stress as,

Δgs = |∂ g s

∂ H
ΔH|+|∂ g s

∂d
Δd|

 = |(2.3359170)(0.05)|+|(45.2929685)(0.005)|

 = 0.3439222

(3.13)

One thing to notice is that Δgs is greater than 3σgs. This will always be the case, and as

more variables are added to the transmitted variation equations, the difference becomes more

pronounced.  Because  of  this,  it  becomes  more  obvious  that  WC  analysis  can  be  overly

conservative. 

Following the same procedure, we can calculate similar transmitted variation values for

gw, gb and gd. Table 3.10 shows the tabulated values for both RSS and WC transmitted variation.
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With these values calculated, the original model constraint right-hand-sides are adjusted to

take into account the transmitted variation, according to the desired feasibility.

3.2.2    Statistical Feasibility Optimization

The new statistical (RSS) feasibility optimization model is then re-formulated to include

the amount of expected 3σ transmitted variation on each constraint function gx:

Minimize f = σStress

Subject to Weight ≤ 17 – 0.0539611 gw = 16.9469389 – Weight ≥ 0
Stress ≤ 100 – 0.2549791 or gs = 99.7859209 – Stress ≥ 0
Stress ≤ Buckling Stress – 0.675966 gb = (Buckling – 0.675966) – Stress ≥0 
Deflection ≤ 0.25 – 0.0009608 gd = 0.2499392 – Deflection ≥ 0

The optimization  is  now  re-run,  starting  at  the  sensitivity  optimum  with  the  new

constraints. Since we expect the feasibility optimum to be close to the sensitivity optimum,

rather  than use  the full  variable  bounds  as  the starting range  for  constructing the design

matrix,  we  simply  expand  the  final  bounds.  After  the  9 iterations  it  took  to  reach  the

sensitivity optimum, and starting at a half-width of 20% or 0.2, each variable range has been

reduced to  0.2*0.759 =  0.0159017, or roughly 1.5% the original bound widths. If we zoom-out

three steps, we get α = 1/(0.753) = 2.37094, so 0.0159017*α = 0.0159017*(2.37094) = 0.0359596 or about

3.6% the width of the original bounds. Again, shifts to the new bounds may be necessary to
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Table 3.10 – RSS and WC transmitted variation to 
constraint functions at the sensitivity optimum

Constraint RSS, 3σ WC, Δ

gw 0.0539611 0.0659273

gs 0.2549791 0.3439222

gb 0.6759661 0.6759948

gd 0.0009608 0.0009853



keep them within the original bounds, but since the newly calculated bounds lie entirely within

the original, this is not the case here.

The  Search-and-Zoom algorithm  is  re-instated  at  this  point,  subject  to  the  new

constraints and leads to the following new robust optimum after 3 iterations (39 total actual

function calls):

To confirm the feasibility robustness, we will use Monte Carlo simulation. Since this is

an RSS analysis, we assume the tolerances are normally distributed, notated as N(µ, σ) with a

mean µ and standard deviation σ, and that the tolerance values represent ±3σ. Thus, we assume

that  H ~  N(20.7879097, 0.0169667) and d ~  N(1.6429161, 0.0019667). Taking 106000 random samples

from these distributions (since this is a computationally “cheap” model) and evaluating the

model against the original constraints (from when we started the sensitivity optimization), and

knowing that  there  are  two  binding constraints (gw and  gb)  at  the  sensitivity  optimum,  we

expect the feasibility to be roughly the product of the feasibilities of the number of binding

constraints. For each constraint’s 3σ-transmitted variation we estimate the one-sided feasibility

to be 0.99896 or 99.86%. Multiplying together gives us a total feasibility of 0.99896*0.99896 = 0.997
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Table 3.11 - Two-bar truss sensitivity optimum with RSS feasibility

Design Variable Value Design Function Value

H 20.7879097 f 0.0869134

d 1.6429161 gw e.75514e-7
gs 24.8709996

gb e.e3e14e-5
gd 8.94592e-2



or 99.7%. From the 10,000 samples, only 23 samples violated any constraints, which indicate an

approximate 1 – 23/106000 = 99.77% feasibility—almost exactly the desired amount.

3.2.3    Worst-Case Feasibility Optimization

We expect  the  result  of  RSS  feasibility  optimization  to  have  a  small  percentage  of

infeasibility,  but  for  worst-case  (WC)  feasibility  optimization,  we  use  a  more  conservative

representation of  the input tolerances in hopes that we can find an optimal design that is

always feasible. Following the same process as we did for RSS feasibility optimization, we start

by applying the WC transmitted variation, Δ, from Table 3.10 to the constraint right-hand-sides

to get the following model:

Minimize f = σStress

Subject to Weight ≤ 17 – 0.0659273 gw = 16.9349727 – Weight ≥ 0
Stress ≤ 100 – 0.3439222 or gs = 99.6569778 – Stress ≥ 0
Stress ≤ Buckling Stress – 0.675995 gb = (Buckling – 0.675995)– Stress ≥ 0 
Deflection ≤ 0.25 – 0.0.0009853 gd = 0.2499148 – Deflection ≥ 0

The starting  input  values  to  the  Search-and-Zoom algorithm,  again,  come  from the

sensitivity  optimum,  where  we  calculated  the  transmitted  variation.  We  set  the  starting

variable bounds to be the same as for the RSS feasibility optimization which, in turn, takes us

to the WC robust optimum after 3 iterations (39 function calls):
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Table 3.12 - Two-bar truss sensitivity optimum with WC feasibility

Design Variable Value Design Function Value

H 20.7419812 f 0.0869327

d 1.6429191 gw e.99017e-8
gs 24.6739457

gb e.e6e14e-5
gd 8.88592e-2



To simulate WC variability conditions in the confirmation Monte Carlo simulations, we

assume the input tolerances are uniformly distributed, and that the lower and upper bounds of

the distributions are [µ –  Δ,  µ +  Δ], respectively, where  µ is the nominal value and  Δ is the

tolerance. Thus, we define the design variables as H ~ U(20.7419812 – 0.05, 20.7419812 + 0.05) =

U(20.6919812, 20.7919812)  and d ~ U(1.6429191 – 0.005, 1.6429191 + 0.005) = U(1.6379191, 1.6479191).

After simulating 10,000 samples from these two distributions at the WC feasibility optimum,

against the original constraints, the number of designs that violate at least one constraint is 70

for  a  feasibility  of  99.3%.  This  is  not  quite  what  we  would  expect  from a  WC feasibility

optimization. Figure 3.2 shows a zoomed-in contour plot of the two-bar truss's design space,

with the feasible region shaded for clarity. Since the WC sensitivity optimum is so close to an

acute intersection of the  Weight and Buckling constraints, this is the most likely cause of the

feasibility being less than 100%. This is because the 2-step method for feasibility optimization

makes  the  assumption  that  the  constraints  are  independent  of  each  other  (i.e.,  they  are

perpendicular), which is clearly not the case here. Table 3.13 summarizes the feasibility of the

sensitivity, RSS and WC optimums.
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Table 3.13 – Monte Carlo estimated feasibility of sensitivity optimum, and 
sensitivity optima with RSS and WC feasibility using RSS and WC to-

lerances on input variables after Search-and-Zoom optimizations.

Tolerance Type Sensitivity
Optimum (SO)

SO with RSS
Feasibility

SO with WC
Feasibility

RSS 4.04% 99.77% –

WC 3.10% – 99.3%



It is interesting and important to see how the variability in  Stress was reduced from

0.1329943 at the nominal optimum and to that in the three sensitivity optima. This can be seen

in the histograms in Figure 3.3 from the Monte Carlo simulations at each of the respective RSS

tolerances and WC tolerances.  Because the mean values are so different from the nominal

optimum to the sensitivity optima, the histograms in Figure 3.3 have been centralized for easier

comparison. Although we can see the difference in the numeric values, the histogram makes it

much more apparent how much the variability has been reduced.

3.3    Conclusions

The Search-and-Zoom algorithm has been presented with an example for performing

robust optimal design. Efficient methods for achieving feasibility robustness and sensitivity
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Figure  3.2  –  2D contour  plot  of  the  two-bar  truss  design space.  The dashed  lines
indicate the feasible side of the constraints (only the original constraints are shown).



robustness are also explained. Although not directly addressed previously, the efficiency of the

Search-and-Zoom algorithm will diminish with an increase in input design variables. This is

because the full CCD's number of trial conditions required for the quadratic approximations

increases exponentially with the number of design variables, as shown in Figure 3.4. There may

be other experimental designs that provide better efficiency for larger numbers of variables, but

that is not addressed in this thesis.

In Chapter 4, we will demonstrate the benefit of using the Search-and-Zoom algorithm

by way of two applications in the communications engineering industry:  a high-frequency

micro-strip band-pass filter and a small rectangular patch antenna.
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Figure 3.3 - Centralized histograms of  Stress  comparing the nominal optimum (top
row)  and sensitivity  optima with RSS and WC feasibility  (bottom row)  using  RSS
tolerances (left column) and WC tolerances (right column).
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Figure 3.4 - The relationship between the number of design variables and the number
of  trial  conditions  of  an  inscribed  CCD  required  for  a  quadratic  regression
approximation for up to 10 variables.



CHAPTER 4    CASE STUDY RESULTS

In  the  previous  chapter,  we  introduced  the  Search-and-Zoom algorithm  for  solving

robust  optimal  design  problems.  In  this  chapter,  we  will  demonstrate  the  algorithm's

computational benefit by applying it to two design problems from the communications/radio

(RF) industry. The first problem is for a high-frequency micro-strip filter and the second is a

rectangular patch antenna. It is helpful, first, to understand some aspects of RF design, which

we will discuss now.

4.1    Introduction to RF Design

The purpose of products in RF design is to manage the transmission of electromagnetic

(EM) waves that propagate through materials and space. When an EM wave impacts a material,

the signal can either reflect back or continue to propagate through the material. The effect that

a material has on this reflection or propagation is dependent upon material properties and the

geometry of the material.

These  effects  are  modeled  in  the  form  of  a  transmission  line  model,  which  helps

determine how a material's  in-port and  out-port behave when an EM wave is introduced at

each  port.  Figure  4.1  shows  a  2-port  network  that  has  four  metrics,  called  scattering

parameters, or  S-parameters. The notation Sij refers to the S-parameter of the  ith out-port and

the jth in-port of the material. Thus, S21 refers to the proportion of the EM wave that enters port

1 and exits from port 2 and S11 is the amount of the signal that enters at port 1 and is reflected
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back out of port 1. When an RF network is symmetric, like the micro-strip filter presented later

in Section 4.2, it generally behaves symmetrically as well, which means S11=S22 and S21=S12. The

only possible values for S-parameters are between 0 and 1, on a linear scale,  but they are

usually reported in decibels (dB) with the transformation ydB =20 log10(ylinear). The basic theory

for how S-parameters are calculated can be found in any introductory Microwave RF textbook,

so this will not be addressed here. In the case studies in this chapter, these values are calculated

automatically by simulation software.

RF products, in general, are designed to work at one of two conditions: at a specific,

target EM frequency (like 2.4 GHz) or over a frequency range (like 12GHz to 14GHz in the Ku

band). In the case studies below, the micro-strip filter is designed to work over a frequency

range and the patch antenna is designed to work at a target frequency. In addition to frequency

requirements,  the  patch  antenna,  as  with  all  other  antennas,  also  has  spatial,  or  angular,

requirements  that  define  an  acceptable  transmission  profile  for  the  EM  waves  as  they

propagate through space away from the antenna.
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Figure 4.1 - Scattering parameters for 2-port RF network.



4.2    Case Study 1 – High Frequency Micro-strip Band-pass Filter

4.2.1    Design Background

The first case we will present is a high-frequency micro-strip band-pass filter. To create

the  micro-strip  transmission line,  metal  is  chemically  deposited  onto  a  dielectric  substrate

material.  Then  the  geometry  is  formed  using  a  manufacturing  process  called   photo-

lithography,  which  uses  light  to  etch  away  the  unwanted  metal  strip  geometry.  A  cross-

sectional view is shown in Figure 4.2. The precision of the photo-lithography process is highly

dependent on factors that control the focus of the light and the duration the light is allowed to

etch away material. 

In this  case  study,  we will  assume that  the manufacturing tolerance for the photo-

lithography process is approximately ±0.1 mils (1/10,000 inch). We will see that even with this

kind  of  precision,  which  is  beyond  the  capability  of  many  manufacturing  processes,  the

performance of the filter can be sensitive to very high frequency EM waves. Figure 4.3 shows a

bird's-eye view of the filter's topology. Even though the metal strips are not in physical contact

with  each  other,  the  EM  waves  can  propagate  when  the  strips  are  caused  to  electrically

resonate.  This  is  one  of  the  design  challenges  of  micro-strip  devices—to  determine  the
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Figure 4.2 - Cross-section view of micro-strip transmission line.



appropriate geometry that controls the strips' resonant frequencies.

A band-pass filter normally has at least four performance metrics based on the four

major constraint zones of influence for the filter.  Figure 4.4 shows where these four zones

apply,  corresponding  to  the  respective  frequency  ranges.  These  zones  define  the  desired

behavior of certain S-parameters. For example, S21 has a zone below the pass-band frequencies

(S21 lowstop) which is minimized or constrained to be below some minimum value, one within

the  pass-band  frequencies  (S21  pass)  which  is  maximized,  and  one  above the  pass-band

frequencies (S21 highstop) which is also minimized or constrained, as shown in Figure 4.4a.

Within the pass-band frequencies, EM waves are supposed to be able to propagate through the

filter. Outside the pass-band, EM waves are not supposed to propagate. The corresponding S11

within the passband frequencies (S11 pass) is constrained to be as small low as possible, which
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Figure 4.4 - Typical band-pass filter constraint zones.

Figure 4.3 - Topology of micro-strip band-pass filter.



correlates to better transmission of the EM waves. Each section of the filter provides a filtering

effect at some target frequency.  By combining the sections in a configuration like Figure 4.3 we

can then create a filtering effect over a frequency range.

The dimensions of the strips are defined with five design variables, as well as values for

some other dimensions (assumed constant),  as shown in Figure 4.3. These five variables, with

their respective nominal value and lower and upper bounds (all in units of mils), are:

4.2.2 Constraint Formulation

We now need to define suitable constraint and objective functions for the optimization

problem. Since the filter is designed to deal with EM waves over a frequency range, creating a

multiplicity of output values, we need a metric that can account for each of the above metrics

at  each  sampled  frequency  point  within  their  respective  ranges.  Equation  4.1  shows  the

formulation for constraint functions used in this thesis: 

Y con , j=min
i∈n (α j

y i , j−y d , j

|y d , j| ) (4.1)

where αj is -1 for less-than constraints and +1 for greater-than constraints, yi,j is the constraint

function value at the ith frequency point of the jth constraint over n frequency points, and yd,j is
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Table 4.1 – Micro-strip band-pass filter design variables 
and variable bounds

Variable Name Nominal Value Lower Bound Upper Bound

Length1 62.2 61.0 64.0

Length2 67.5 67.0 68.0

Gap1 1.7 1.0 2.5

Gap2 6.8 6.0 8.5

Gap3 8.0 7.0 10.0



the  jth constraint  RHS.  The actual  values  for  y are  normalized by the  respective  reference

constraint value since values for y are given in units of dB. By inspection, we see that Equation

4.1 calculates the  worst value within the  jth constraint's frequency range, where feasibility is

defined by  Ycon,j  ≥ 0 (i.e., more negative values indicate greater constraint violation and more

positive  values  indicate  greater  design  constraint  feasibility).  For  example,  if  we  have  the

constraint Ycon,1 ≤ -5 (i.e., α = -1, yd,1 = -5) and yi,1 = {-3, -5.1, -6.2} and , then we calculate:

Y con ,1 = min ((−1)⋅
{−3,−5.1,−6.2}−(−5)

|(−5)| )
 = min{−0.4,0.02,0.24 }

 = −0.4

(4.2)

We see that the function for  Ycon,1 determined the worst value of the set. Since the result is a

negative value, we know that the constraint is violated for that data point. 

4.2.3 Objective Formulation

Equation 4.3 is an alternative form that is useful for representing an objective function

that applies over a range of values:

Y obj=
α
n ∑

i=1

n

( y i−y d

|yd| ) (4.3)

It  calculates  the average scaled value of  all  output  values  within the objective's  frequency

range. For example, if the above three values were used, we would get the following for the

objective function, which we then minimize. For example, using the same values as above:
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Y obj =
(−1)

3 ∑ ( {−3,−5.1,−6.2}−(−5)
|(−5)| )

 = −
1
3 ∑ {0.4,−0.02,−0.24}

 = −0.047

(4.4)

This result provides an average value over the sampled points, normalized by the reference

value of -5. The nominal optimization model for this design problem is therefore defined as

follows:

Maximize f = Yobj (S21 pass)
subject to g1 = Ycon,1 (S21 lowstop ≤ -45 dB)

g2 = Ycon,2 (S21 pass ≥ -3 dB)
g3 = Ycon,3 (S21 highstop ≤ -40 dB)
g4 = Ycon,4 (S11 pass ≤ -10 dB)

For the case studies, the nominal optimum was found using NLP methods. Then, in

order to reduce the variability in filter performance and keep S21 pass high across the band-

width,  both  NLP  methods  (e.g.  Matlab's  fmincon  solver  with  the  SQP  algorithm)  and  the

Search-and-Zoom algorithm  were  used  to  perform  a  sensitivity  optimization  on  the  filter,

including optimizing for both RSS and WC feasibility using the manufacturing tolerances in
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Figure 4.5 – Actual band-pass filter optimization constraint zones.



Section 4.1. The simulations were performed using the software Advanced Design System (ADS)

2011. All optimization results are given in Table 4.2.

4.2.4    Optimization Results

The nominal optimum was found, using fmincon, at the design:

which improved Yobj(S21 pass) from 0.65722 to 0.99824. This correlates to an improvement in S21

pass from -2.54729 dB to -0.04228 dB, which is nearly a 2x improvement on a linear scale (a

perfect  filter's  S21  pass is  0  dB).  However,  since  S11  pass exhibited  the  most  transmitted

variation at the nominal optimum (σS11 pass=0.06626), this was chosen to be the objective for the

sensitivity optimization, with the following model:

Minimize f = σS11 pass

subject to g1 = S21 lowstop ≤ -45 dB
g2 = S21 pass ≥ -3 dB
g3 = S21 highstop ≤ -40 dB
g4 = S11 pass ≤ -10 dB

Because we already have a constraint on S21 pass, a new constraint is not necessary. 

There were three steps in the sensitivity optimization: first, minimize the transmitted

variation of  S11 pass (σS11 pass), then do one additional step for adding feasibility robustness of

64

Table 4.2 - Nominal optimum of micro-strip band-pass filter

Design Variable Optimal Value Design Function Optimal Value

Length1 62.94927 Yobj(S21 pass) 0.99824

Length2 67.35225 S21 lowstop -45.00020

Gap1 1.65426 S21 pass -0.04228

Gap2 8.17926 S21 highstop -40.45526

Gap3 9.82725 S11 pass -20.08924



RSS tolerances and one additional step for WC tolerances. As shown in Table 4.3, we can see

that the variation in S11 pass was reduced from 0.06626 to 0.01622 (fmincon) and 0.01822 (Search-

and-Zoom),  nearly  a  75%  decrease  in  sensitivity  in  both  cases.  Then,  after  adjusting  the

constraints for RSS feasibility, we see that the sensitivity objective (and the original) changed

only  slightly  with  a  large  jump  in  feasibility  (from  80%  to  100%).  The  Search-and-Zoom

algorithm actually improved slightly, partially because it didn't have any binding constraints to

begin with at the sensitivity optimum. Similar results were achieved for WC feasibility.

We see that there is considerable difference between the number of required actual

simulator calls  between using fmincon and using  Search-and-Zoom.  Starting with the same

design as the nominal optimization, fmincon required 1749 calls to the simulator while Search-

and-Zoom required only 559—a 68% reduction in computational effort—to reach the sensitivity

optimum (σS11  pass = 0.01822). We note that even though the starting design has a comparable

objective value, it is unacceptable because the constraints are not satisfied.

Of the two feasibility optimization steps, we see that Search-and-Zoom took just under

1000 simulator calls less than fmincon for RSS constraints—a 61% reduction—and over 1800

simulator calls less than fmincon for WC constraints—an 89% effort reduction in computational

effort. The feasibility is also approximately what we would hope from the shifted constraints,

even though the WC constraints weren't enough to drive to 100% feasibility. The feasibility was

estimated using 4,000 samples in a Monte Carlo simulation based on the original constraints.

Comparing the actual Monte Carlo simulation data of the Nominal Optimum and the

RSS and WC Feasible Sensitivity Optimums, we see that the variation of  S11 pass has been

successfully reduced, as shown in Figure 4.6. The x-axis is in linear units, which makes the

constraint RHS value of -10dB ≈ 0.316, so the majority of the histogram should lie below this

value, and each histogram does.
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4.3    Case Study 2 – Rectangular Patch Antenna

4.3.1    Design Background

We now present  the second case—a rectangular patch antenna.  Similar  to the filter

above, a metal patch is cut to shape using any suitable process and then mounted to a dielectric

slab and electrically connected via a feed wire through the back of the dielectric. A grounding

plane is mounted on the opposite side of the dielectric and is insulated from the feed wire, as

shown in Figure 4.7. When an EM wave makes contact with the metal patch through the feed,

the patch resonates and radiates the EM wave away from the dielectric into the surrounding

medium. The geometry of the patch and the location of the feed determines the frequency at
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Figure 4.6 - Monte Carlo histograms of  S11 pass at filter  Search-and-Zoom  nominal
optimum (top row) and sensitivity optimums (bottom row) using RSS tolerances (lef
column) and WC tolerances (right column). Values less than 0.316 are “feasible”.



which the patch will resonate.

In this case study, we will use the four design variables shown in Figure 4.8 to optimize

a patch antenna for maximum transmission at a target frequency of f0 = 2.98 GHz. The nominal

values, as well as the lower and upper bounds for each design variable, are listed in Table 4.4.

Like  the filter  in Section 4.2,  this  device  also has an S-parameter constraint.  To attain the

largest proportion of the signal out of the patch, we will constrain the output value of  S11 @

2.98 GHz. A typical frequency response curve for a patch antenna's S11 is shown in Figure 4.9.

Since antennas radiate into the surrounding medium, it is common to also have directional

radiation constraints. When an antenna is designed to broadcast in all directions (e.g., omni-

directional, like from a radio tower), the constraints are less restrictive. When an antenna is

designed to transmit a signal in a specific direction only, this is called a directional antenna (like

a satellite dish antenna). Directional antennas are designed for a particular radiation profile

that maximizes the energy transmitted in the desired directions and minimizes the energy

transmitted in all other unwanted directions. 

The patch antenna in this case study is a kind of directional antenna. Figure 4.10 shows

a 360° slice of a directional antenna's radiation  gain profile, measured in dB. We notice two

main features of the gain profile. The main beam is the region that is maximized (specifically,
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Figure 4.7 - Components of a simple patch antenna design.
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Table 4.4 - Patch antenna design variables and variable bounds (all in cm).

Variable Name Nominal Value Lower Bound Upper Bound

Patch Length 3.0 1.75 3.5

Patch Width 3.0 1.75 4.0

X-shift 0.5 0.0 1.5

Y-shift 0.5 0.0 0.8

Figure 4.9 – Typical S11 response curve for a patch antenna with target
frequency, f0

Figure 4.8 - Design variables for a rectangular patch antenna



the peak value), where the desired transmission peak is located at 0°. On either side of the main

beam are numerous side lobes. Side lobes are radiation in undesired directions, which can never

be  completely  eliminated.  Thus,  they  are  designed  so  that  the  maximum side  lobe  is  at  a

minimum acceptable level. 

The patch antenna in this case study thus has the following design goals:

Maximize f = Peak Main Beam Gain (dB)
subject to g1 = S11 @ 2.98 GHz ≤ -10 dB

g2 = Max Side Lobe Level ≤ -15 dB

4.3.2    Optimization Results

We proceed  with  the  sensitivity  optimizations  in  a  similar  manner  as  the  filter  in

Section 4.2, assuming a general tolerance of ±0.1 cm for each design variable. The nominal

optimization was first carried out to give a baseline design using fmincon, resulting at the

following design:
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Figure 4.10 - Typical gain profile for a directional antenna.



At this design, we see an improvement in f(Peak Main Beam Gain) from 6.04926 to 9.26521

dB. However, similar to the filter problem, this design was most sensitive to the S11 constraint

(g1) at the nominal optimum (σS11 @ 2.98 GHz = 0.006293). Thus, we chose to formulate the sensitivity

optimization model by making the transmitted variation of  S11 @ 2.98 GHz the objective and

also add a constraint to the Peak Main Beam Gain to keep it high, if possible:

Minimize f = σS11 @ 2.98 GHz

subject to g1 = S11 @ 2.98 GHz ≤ -10 dB
g2 = Max Side Lobe Level ≤ -15 dB
g3 = Peak Main Beam Gain ≥ 8.75 dB

Both  RSS  and  WC feasibility  optimizations  were  also  performed  on  the  sensitivity

optimization  model.  The feasibility  of  all  six  cases  was  confirmed  using 500  Monte  Carlo

simulations at each optimum. The number of simulations was smaller than the filter problem in

Section 4.2 because each call to the antenna simulator took much more computation time than

with  the  filter  simulator.  Table  4.6  gives  the  results  of  the  three  sensitivity  optimizations,

comparing the efficiency of fmincon and Search-and-Zoom.

We see that the sensitivity optimum must be relatively close to the nominal optimum

because  none  of  the  subsequent  design  variables  changed  significantly  and  the  original

objective maintained a high margin above the g3 constraint. The main difference between the

two algorithms is seen in the amount of required simulator calls, with Search-and-Zoom only
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Table 4.5 - Nominal optimum of rectangular patch antenna

Design Variable Optimal Value Design Function Optimal Value

Patch Length 3.14426 f (Peak Main Beam Gain) 9.26521

Patch Width 4.00020 g1(S11 @ 2.98 GHz) -9.99929

X-shif 0.84223 g2(Max Side Lobe Level) -18.73827

Y-shif 0.15829
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requiring  305  actual  simulator  calls  to  drive  to  the  sensitivity  optimum,  where  fmincon

required 1880 actual simulator calls—a 84% reduction in computation cost. However, it should

be noticed that the sensitivity optimum found by Search-and-Zoom (σS11 @ 2.98 GHz=0.01125) is not as

good a design as that found by fmincon (σS11 @ 2.98 GHz=0.00827). Once again, the Search-and-Zoom

algorithm likely terminated too early, indicated by the lack of binding constraints at any of its

optimums. And although the percent feasibility at each optimum is better than fmincon's, none

of the σS11 @ 2.98 GHz values are as good.

Using  the  Monte  Carlo  simulation  data,  we  can  build  histograms  to  compare  the

variation in S11 @ 2.98 GHz at the starting and final designs. In Figure 4.11 we see a reduction in

variability, comparing the RSS and WC tolerances at the nominal optimum and the RSS and

WC feasibility sensitivity optimums.
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Figure 4.11 – Monte Carlo histograms of S11 @ 2.98 GHz at patch antenna Search-
and-Zoom nominal optimum (top row) and sensitivity optimums (bottom row) using
RSS tolerances (lef column) and WC tolerances (right column).



CHAPTER 5    CONCLUSIONS AND RECOMMENDATIONS

5.1    Conclusions

In this thesis, our primary objective was to apply robust design methodology to the

communications (RF/EM) industry.  As a result,  we have shown how to develop robustness

against variation, wherever it comes from, be it material properties, manufacturing tolerances,

etc., while maintaining good nominal performance. Two main methods were explored that are

commonly  used  for  this  purpose:  Taguchi  Methods  and  Nonlinear  Programming.  Taguchi

Methods, though they can be efficient, proved difficult to work with since they couldn't handle

constraints  appropriately.  Nonlinear  Programming  provided  the  accuracy  and  flexibility  to

formulate any problem with constraints,  but suffered from potential  excessive computation

cost.  This  led  to  research  into  a  hybrid  method  that  combined  the  efficiency  of  Taguchi

Methods with the flexibility and accuracy of Nonlinear Programming. The result is called the

Search-and-Zoom algorithm.

It is shown that the Search-and-Zoom algorithm for robust optimal design can be used

as a computationally cost-effective method to optimize for sensitivity objectives for cases with

a small number of variables. In the two case studies in Chapter 4, the algorithm found designs

that were comparable to, though not as good as, those found using Matlab's  fmincon (SQP)

algorithm, with a significant reduction in computational cost. When optimizing for statistical

(RSS) feasibility, both algorithms successfully found designs that provided over 99% feasibility,
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but the computation requirement of the Search-and-Zoom algorithm required, on average, 78%

less calls to the actual simulator. For all optimization cases (Sensitivity, Sensitivity with RSS

Feasibility, and Sensitivity with WC Feasibility), the average reduction in computation cost was

79%, ranging from 61% to 95%. Although this thesis does not exercise the algorithm on more

cases to prove the consistency of such reductions, having applied it on two different kinds of

problems gives us confidence that this algorithm can be effective at reducing the computation

cost of sensitivity optimization design problems.

It is also shown that a confirmation set of Monte Carlo simulation calls verified the

predicted amount of transmitted variation when optimizing for feasibility robustness for both

objective and constraint functions. During the optimization of the patch antenna, for example,

the WC tolerances at the  fmincon sensitivity optimum for WC feasibility caused many more

infeasible designs than expected—approximately 28% (or 71.8% feasibility, as shown in Table

4.4). We expected that number to be close to zero. If the infeasibility were close to zero, we

could still  accept the design,  but this  result  may hint to more nonlinearity in the model's

tolerance region than the first-order transmitted variation equation takes into account.  We

could use a higher-order tolerance model for more accurate estimation, but this would further

increase the computational expense. We could use Stochastic optimization techniques for more

accurate feasibility estimates, but this would also add to the computational cost with hundreds

or thousands of extra simulation calls that we are trying to avoid here.

5.2    Future Work

The  Search-and-Zoom algorithm appears to work well  when a design problem has a

small number of design variables, but more work should be done to determine its effectiveness

when the number of design variables is increased. As was shown in Chapter 3, when using
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Central-Composite  experimental  designs  to  construct  the  response  surface,  the  number  of

unique experiments required tends to increase exponentially, which may mean that there may

be a limit when the cost of running the experiments becomes prohibitive, but this surely is also

dependent upon the actual computation cost of running the actual simulations. We think that

there will likely be a point of intersection between the effort required for NLP methods and the

Search-and-Zoom algorithm.  Other experimental  designs  such  as saturated second-order

designs,  etc.  may  provide  an  even  greater  reduction  in  computational  cost  than  the  full

Central-Composite  designs  (like  those  used  in  this  thesis),  but  may  not  provide  suitable

regression  approximations  which  are  necessary  for  estimating  the  derivatives  in  the

transmitted variation equation.

Another  way  to  construct  response  surfaces  is  by  using  space-filling designs  (e.g.,

Kriging methods)  for  modeling  data.  These  have  the  benefit  of  not  requiring  any  specific

structure or polynomial “order” within the underlying experiments, but, just like Monte Carlo

simulation,  becomes more accurate as the number of  experiments increases.  Using Kriging

methods when a normal response surface experimental design becomes too costly may prove

beneficial, but was not explored.

A method that is  rising in popularity for calculating derivatives is  called  automatic

differentiation.  This  method  has  the  accuracy  of  symbolic  differentiation,  but  with  the

computational effort of numerical differentiation. Using a knowledge of the calculation steps

and how derivatives propagate through them using the chain rule, derivatives of any arbitrary

order can be calculated to machine precision. This, however, requires access to the source code

functions  and  doesn't  work  with  “black-box”  functions.  In  this  thesis,  since  we  used

commercial applications to perform the simulations, this wasn't an available option.
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A comparison with other  optimization routines  could also be informative.  The SQP

algorithm was chosen due to its well-known efficiency, but it is not suitable for all kinds of

optimization  problems.  An  understanding  of  how  other  optimization  algorithms,  such  as

Interior-Point  method,  Genetic  Algorithms (or  other  global-optimization routines),  etc.,  could

show that the Search-and-Zoom algorithm is more useful only for a few select cases or that it is

generally more useful than other more common routines.

The focus of the application of the  Search-and-Zoom algorithm in this thesis has been

specifically within the RF industry. Further study could be done to understand the industrial

applicability  of  the  algorithm  in  structural,  fluid  dynamics,  heat  transfer,  etc.  design

applications.  As the algorithm has  been effective  in RF design,  we expect  it  to  also  prove

effective in other industries to reduce computation time, while yielding robust designs. 
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