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ABSTRACT

Estimated Instability and Breaking of Internal Waves
due to Time-dependent Shear

Leonardo A. Latorre
Department of Mechanical Engineering, BYU

Master of Science

The effects of propagation of a short internal gravity wave through an inertia wave on in-
ternal wave stability is analyzed and parameterized. The interactions are specifically between a
short wave packet and a large inertia wave packet. The short wave packet is a wave bounded with
a Gaussian envelope with high frequencies and scales in the hundreds of meters horizontally and
tens of meters vertically. The inertia wave packet is also an enveloped wave but with frequencies
close to the rotation of the earth and scales in the thousands of meters in the horizontal and hun-
dreds of meters in the vertical. The wave-wave interactions are modeled using ray theory and 2d
non-linear numerical models. Ray tracing is used because it is less computationally expensive,
however it fails at regions of strong refraction also known as caustics. To measure stability the
steepness is calculated from the 2d non-linear methods and it is compared with estimates found in
the linear theory. It is determined that the estimates of the short wave steepness from linear the-
ory are qualitatively comparable. A quantifiable comparison, although more difficult, resulted in
adjustment factors to the ray tracing results. It is also found that for the particular cases modeled,
convective instabilities are predominant and the influence of the shear exerted by the large inertia
wave is insignificant. Instability timescales are included in the stability analysis and estimates of
overturning and wave-breaking are developed for different wave-wave interactions. From the sta-
bility analysis it is found that in general the faster the short wave propagates the more likely it is
to conform to both of the conditions required for wave breaking (i.e presence of instabilities and
instability timescales longer than the timescale of the short wave).

Keywords: Internal gravity waves instability, oceanic energy dissipation, stratified fluids, Leonardo
Latorre, Julie Vanderhoff
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Vertical mixing is a dominant factor of global oceanic energy equilibrium. The breaking of

internal gravity waves produces significant fluxes of momentum and heat making it an important

contributor to oceanic turbulence and vertical mixing. Hence, it is of general interest to quantify the

energy related to internal gravity wave propagation and breaking as a potential source of renewable

energy and to understand the global effects of energy dissipation due to internal waves breaking.

Internal gravity waves are common in the ocean and the atmosphere because of their stably-

stratified characteristics. A stably-stratified medium is one characterized by a density distribution

that increases with decreasing elevation. The generation of waves occurs when disturbances to the

density field are introduced and the perturbation occurs at a frequency lower than the buoyancy fre-

quency (natural frequency) of the medium. This buoyancy frequency depends on the stratification

of the medium N = f (dρ/dz). When particles are displaced from their neutrally buoyant position

as seen in figure 1.1, buoyancy forces will work to restore the particles to their initial location. Iner-

tial forces drive the particle past its neutral location and once again buoyancy forces act to restore

the particle back to the neutral state. This cyclic process continues and consequently generates

internal gravity waves. Internal gravity waves, unlike surface waves, are not confined to a fluid in-

terface. These waves propagate in the vertical and horizontal planes (i.e. three dimensions). Thus,

internal waves have wavelengths and corresponding wave-numbers in all three dimensions. The

perturbations to the density field which cause internal waves occur in diverse forms since virtually

any disturbance can generate internal waves. Some common forms of internal wave generation

are air or water currents moving over topography, vortices, windshear at the ocean surface or the

breakdown of internal waves.

Although internal waves exist in the atmosphere and oceans, in this study the attention is on

oceanic waves. Ocean waves range in magnitude from inertia waves induced by the frequency of
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Figure 1.1: This is a representation of a density gradient for a stratified fluid. A force balance is
performed on the particle that has been displaced from its neutral position to derive the buoyancy
frequency of the medium

the rotation of the earth to short waves generated by the types of mechanisms mentioned previously.

Large inertia waves have typical vertical wavelengths of hundreds of meters, limited by the depth of

the ocean floor, and horizontal wavelengths of thousands of meters, limited by ocean basin scales.

Short waves have vertical wavelengths of tens to hundreds of meters and horizontal wavelength

scales of hundreds of meters.

Internal waves, in the same manner as surface waves, have significant energy and momen-

tum associated with their propagation. The energy of internal waves propagates with the group

velocity, perpendicular to the phases of the wave as seen in figure 1.2. When waves interact with

other fluid phenomena their energy may be exchanged or dissipated. If this energy dissipation is in

the form of wave breaking it results in turbulence. The turbulence induces vertical mixing which is

an essential mechanism in the oceans which transports organisms, pollutants, nutrients and heat to

deep ocean (Garrett [4]). In fact, diapycnal mixing (mixing across lines of constant density) in the

ocean interior is primarily driven by internal wave breaking. Egbert and Ray [5] show with satellite

altimeter data that approximately one Terawatt of tidal energy dissipation occurs in the open ocean

through the scattering of surface tides into internal waves by ocean-bottom topography. Munk and

Wunsch [6] also agree on the significant influence of internal wave breaking in the oceanic en-

2



ergy balance. The authors conclude that turbulence resulting from internal wave breaking provides

potential energy that drives the global ocean circulation.

Current global scale models employed to describe energy budgets in the oceans lack the

necessary resolution to define the influence of internal wave interactions and their related energy

dissipation. Large scale models have inadequate resolution because turbulent mixing is typically

represented by a diffusivity that is constant everywhere except right below the surface mixed layer.

However, it has been shown that mixing in the real ocean is non-uniform in space and time, which

in turn has profound implications in the ocean circulation (Simmons et al. [7]).

Figure 1.2: Internal waves generated by cylinder oscillating. The phases C and group velocity
cg are labeled and signaled by the arrows moving perpendicular to each other. The energy for
internal waves moves with cg perpendicular to the phases of the wave. In this picture, the dark
and light rays propagating diagonally are the troughs and crests of the internal waves. Taken from
http://www.gfd-dennou.org/library/gfd$_$exp/exp$_$e/exp/iw/1/res.htm.

• The first objective is to use a 2d fully non-linear model to compare and improve the linear

model’s amplitude approximations at regions of strong refraction where non-linearities exist.

The improved amplitude approximations will be used in a stability analysis to define some

of the short wave instabilities.

• The second objective is to perform a stability analysis and use short wave steepness and

inertia wave shear to define convective and shear instabilities, which will be explained in the

next chapter.

3

http://www.gfd-dennou.org/library/gfd$_$exp/exp$_$e/exp/iw/1/res.htm


• The third objective is to use the linear model to simulate a spectrum of short internal waves

interacting with an inertia wave and develop a map that demonstrates estimates of wave

breaking as a function of initial wave properties such as steepness (vertical displacement

with respect to depth) and wave group speed.

1.2 Literature review

The study and observation of internal gravity waves is difficult due to their non-linear na-

ture, their range of scales, and because they coexist with many other phenomena in the oceans. An

efficient alternative to observations is to simulate internal waves using linear and non-linear mod-

els, which has been common practice among researchers for the past 20 years. Numerical models

are more accessible if the physics of the waves can be simplified, otherwise the models would be

computationally prohibitive. These simplifications, though, result in limitations to both linear and

non-linear models. Linear model assumptions break down with the presence of instabilities, which

are inherently non-linear. Non-linear two-dimensional models lose validity when the waves break

and the onset of turbulence appears. Whereas non-linear three-dimensional models will resolve

initial wave breaking and some aspects of turbulence but at a much higher computational expense,

depending on the resolution.

This research studies the interaction among internal waves and the resulting effects of these

interactions on waves overturning and breaking. Linear and 2d non-linear models are used to sim-

ulate and analyze the connection between internal wave group speed, steepness (vertical displace-

ment with respect to depth) and wave stability. In this literature review, common types of wave

interactions are introduced, followed by previous work of other researchers on wave stability and

breaking.

1.2.1 Internal gravity wave interactions

Early studies of internal gravity waves directed attention to the simpler case when internal

gravity waves interact with a time-independent shear. During this type of interaction the vertical

speed of the wave goes to zero as it propagates into an increasing velocity. Simultaneously, the

horizontal component of the wave speed matches the ambient flow speed, thus the motion of the

4



wave is no longer upwards but only forward in the direction of the flow. This is defined as a

critical level and a diagram of this type of interaction is presented in figure 1.3. These interactions

are interesting because the momentum of the internal wave is transferred to the time-independent

shear. Bretherton [8] used ray theory to examine interactions of packets of internal gravity waves

Figure 1.3: Interaction between an internal wave packet and a steady shear, which results in the
energy of the wave being absorbed by the steady shear at an absorbing layer called critical level.
Taken from Winters and D’Asaro [1]

in a shear flow. He concluded that a critical level may act as an effective energy absorbing layer to

the waves preventing further vertical propagation of the waves. Winters and D’Asaro [1] used a 2d

non-linear model to analyze these interactions and found that, for moderate wave amplitudes, the

interaction portrays a critical level beyond which internal waves do not propagate. In the case of

higher amplitude waves, the inertia waves overturn and break when encountering the steady shear.

The topic of waves developing statically unstable conditions leading to breaking will be covered

in more detail in the following subsection of the literature review.

A more complex interaction is that of an internal gravity wave with a time-dependent shear

in the form of an inertia wave. In this case the short internal wave exhibits cyclical changes in

the frequency and vertical wavenumber as it refracts throughout the interaction. No critical levels
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are present during the encounter with inertia waves due to the time dependence of the interaction.

Instead the short wave undergoes strong refractions that can alter the energy of the internal wave

after it interacts. Broutman and Young [9] and Vanderhoff, Nomura, Rottman and Macaskill [10],

using ray theory, demonstrated that wave packets are not absorbed but instead propagate through

and may leave the inertia wave with permanent energy changes. These energy changes were de-

noted by significant variation in the short wave frequency and vertical group speed. Bruhwiler and

Kaper [11] examined this scattering of the small scale internal waves. Their study was based on

the ray tracing prototype developed by Broutman and Young [9]. In their analysis, Bruhwiler and

Kaper, found a dramatic transport of wave energy from lower (inertia waves) to higher frequency

(small scale) waves. Vanderhoff, Rottman and Broutman [12] found that a spectrum of incident

narrow-banded short-waves approaching a short inertia wave packet, results in the spectrum broad-

ening more quickly and more fully than when refracted by a large inertia wave packet. Therefore

the time dependence of the shear has a significant effect on the dynamics of the interaction, since

the momentum flux is generally from the time-dependent shear to the internal wave. Vanderhoff,

et al. [10] expanded on the effects of time-dependence on wave-wave interactions using ray theory

and non-linear models. They concluded that in order to understand and model correctly the role

of Doppler spreading in realistic oceanic and atmospheric waves, critical levels observed in time-

independent shears should not be assumed for inertia waves because the behavior of the waves is

drastically different. Thus, making the result of the interaction considerably different between a

steady shear and an inertia wave. In some cases when the short waves encounter the inertia wave

with large initial amplitudes, they may overturn and break. Sartelet [13] utilized linear and non-

linear models to simulate internal gravity wave packets with different frequencies, wavenumbers

and amplitudes approaching a localized inertia wave. From this study Sartelet concluded that the

effects of time-dependence of the inertia wave on wave breaking is only perceived when the wave

packets have large initial amplitudes.

1.2.2 Stability and breaking of internal gravity waves

Internal gravity waves may propagate for long distances, but eventually if not absorbed

they will grow or interact and overturn and break. The breaking of many internal waves signifi-

cantly contributes to the overall energy balance in the oceans mixing and nutrient distribution as

6



mentioned in the introduction. These waves contain significant amounts of energy, which is ev-

ident due to their large scales ranging from tens of meters to hundreds of meters in the vertical

direction and thousands of meters in the horizontal direction. Thus, it is crucial to comprehend the

mechanisms leading to wave breaking, namely instabilities, in order to understand the significance

of energy dissipation from internal waves.

Internal wave instabilities primarily exist in two forms: convective instabilities and shear

instabilities. Convective instabilities occur when lines of constant density (isopycnals) become

vertical generating an inverse density gradient, with heavier fluid over lighter. Figure 1.4 shows

an overturning and breaking process driven by convective instabilities. Shear instabilities cause

disturbances to the internal wave amplitude and wavenumber forcing the short wave to steepen

because of the velocity gradient, resulting in wave overturning. Figure 1.5 shows a shear (Kelvin

Helmholtz) instability between two fluids. A similar instability mechanism affects the short waves

when they interact with the inertia wave. Typical parameters used to analyze these instabilities are

the steepness of the waves and the Richardson number. Steepness is a measurement of the internal

wave vertical displacement with respect to depth, which if greater than one indicates overturning.

The Richardson number is a non-dimensional parameter that accounts for the influence of shear

forces with respect to the strength of the stratification. When the Richardson number is less than 1/4

the wave is unstable. Thorpe [14] utilized analytical and numerical techniques to simulate inertia

waves propagating in a thin, high density-gradient layer. As the inertia waves propagated through

the thin layer, shear instabilities were formed in the same manner as when two layers with different

velocities interact. Thorpe found that the minimum Richardson number for both the x-direction

flow and the y-direction flow may be less than 1/4, provided that the ratio σ/ f is sufficiently close

to unity, where σ is the wave frequency and f is the Coriolis frequency-frequency of the rotation

of the earth. This was a significant conclusion since the critical value of the Richardson number

is defined as 1/4. Nonetheless, for waves with higher frequencies than the Coriolis frequency, the

stability condition of the Richardson number being less than 1/4 still applies.

Interactions between an internal wave and a steady shear may result in the internal wave

being absorbed (critical level discussed in previous section). However, instabilities may develop

before the wave transfers its energy to the mean flow. In this case, steepness and the Richardson

number can be used to parameterize instability. Winters and D’Asaro [1] performed simulations
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Figure 1.4: These four plots show the evolution in time of a convective instability that grows and
results in overturning and wave breaking. At time t=4T (T=inertia periods) the wave begin to
overturn while at t=4.7T some of the waves are breaking. Taken from Liu et al. [2]

using a high-resolution non-linear model to examine the interaction between a short wave packet

and a mean shear. They showed that if the amplitude of the waves is sufficiently large, the energy

of the wavepacket is not transfered to the shear, but is maintained by the short wave packet for

several buoyancy periods. As these waves approach the critical level they steepen, overturn and

break. During this breaking process energy is lost to turbulence and viscous dissipation. The

instabilities leading to wave breaking were parameterized using a gradient Richardson number,
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Figure 1.5: This is a Kelvin Helmholtz instability, which occurs when two fluids with different
speeds interact and wavelike motions form, which subsequently overturn and break. Shear in-
stabilities affecting the short waves behave very similar to Kelvin Helmholtz instabilities. The
inertia wave streches the short wave and induces overturning. Taken from NOAA forecast systems
laboratory(http://www-frd.fsl.noaa.gov/mab/scatcat/).

demonstrating that the instabilities were mostly due to shear instabilities. Lombard and Riley [15]

performed further research in the subject of instabilities in internal gravity waves interacting with

shear flows. Their studies agree with previous work in that internal waves are unstable at any

amplitude and that the Richardson number is limited by the critical value of 1/4. In their research

Lombard and Riley also found that at low amplitudes, the unstable modes are similar to wave-wave

resonance interactions (i.e convective instabilities). In contrast, at larger wave amplitudes, other

modes of instability with comparable growth rate appear in different spatial planes making wave

instability a three-dimensional problem. In both cases Lombard and Riley found that instability

can be linked to the angle of propagation of the wave and that instability gains energy from two

routes: instability kinetic energy from interactions with a shear and instability potential energy

through the interaction with a wave density field.

Internal gravity waves may also develop instabilities when interacting with large scale iner-

tia waves. During these interactions, the short waves do not behave the same as when encountering

a shear flow. Thus it is paramount to understand the effects of time dependence, due to the pres-

ence of an inertia wave, on wave instabilities. Sartelet [13] concluded for waves propagating in

the same direction, that when the shear is time-dependent, whether or not wave breaking occurs at

regions of strong refraction depends on the initial amplitude of the short wave and not on the time-

dependence of the shear. Liu. W, Bretherton, Liu. Z, Smith, Rutland. C and Rutland. H [2] utilized
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a non-linear pseudo-spectral model, which included a pre-defined local gradient Richardson num-

ber to parameterize and separate convective and shear instabilities. From this parameterization Liu,

et al. found, consistent with linear theory, that convective instabilities have a maximum between

crests and troughs of the inertia wave, where the greatest density perturbations are induced by the

wave. On the other hand, shear instabilities had double the maxima around wave troughs and crests

saddled by a minimum in the middle.

In a stability analysis of internal waves, it is important to parameterize and identify the

presence of shear and convective instabilities. However, it is known from previous work (Winters

and D’Asaro [1], Lelong and Dunkerton [16]) that unstable internal waves may propagate for

many buoyancy periods before breaking. Therefore, a temporal dependence should be investigated

in the instability and wave breaking process. Sutherland [17] analyzed two-dimensional, large-

amplitude, non-hydrostatic internal wavepackets analytically and by numerical simulations. He

concluded that the breaking condition requires not only that the wave be statically unstable, but also

that the convective instability growth rate be greater than the frequency of the waves (1/ω < Tins).

The author of this thesis uses linear and 2d non-linear models similar to the models used

by previous researchers mentioned throughout this section to compare and create the best estimate

of steepness for convective instabilities. The effects of the time dependence are considered on the

dynamics and stability of waves during wave-wave encounters. A stability analysis is performed

where shear and convective instabilities are parameterized using a non-dimensional parameter the

gradient Richardson number. To include the temporal dependence in the stability analysis, we

compared the timescales of the instabilities to the timescales of the short wave. This process

concluded with a general idea of waves estimated to break as a function of initial group speed and

wave steepness. These estimates can be used to find the internal waves estimated to break from a

spectrum of waves.
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CHAPTER 2. METHODS

2.1 Idealized problem

The main scenario in this study is that of a small-scale internal wave packet (short wave)

propagating through a time-dependent idealized inertial wave (long wave, see figure 2.1). The short

wave packet is bounded with a Gaussian envelope containing short waves with high frequencies

and scales in the hundreds of meters horizontally and tens of meters in the vertical. The inertia wave

has vertical wavelengths that range in the hundreds and horizontal wavelengths in the thousands of

meters. The frequency of the inertial wave is equal to the Coriolis frequency and the group velocity

(~Cg) of the inertia wave packet is treated as negligible, since k and l (horizontal wavenumbers) are

approximately zero. The inertia wave vertical wavenumber is defined as M = 2π/λz where λz is the

vertical wavelength. The phases of the inertia wave propagate upward with a vertical phase speed

C = ω/M where ω = f (Coriolis frequency), which is common for the ocean and atmosphere.

The inertial wave can be defined as either an infinite wave-train or as a wave packet bounded by

an ideal Gaussian envelope, as shown in equation 2.1.

U + iV =U0e−(z/L)2
ei(Mz− f t). (2.1)

where L is the length-scale of the envelope, U0 is the maximum horizontal velocity at the center,

and z is the vertical location of the packet taken from the center of the envelope. A simplified

diagram of the interaction is represented in figure 2.1. Initially the short wave packet and the

inertia wave packet are spatially separated and a Cartesian coordinate system is selected as a frame

of reference. In this frame of reference (z) is positive upwards and (x, y) are the axes on the

horizontal plane. The buoyancy frequency N is assumed to have no spatial or temporal dependence,

which is reasonable because in the deep ocean the density does not change significantly with depth.

The Coriolis frequency is assumed constant. This frequency is defined as f = πsin(φ), where φ is
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Figure 2.1: This cartoon is a simplified representation of the specific wave-wave interactions re-
searched in this study. The large inertia wave packet is assumed fixed in space with phases propa-
gating upward. The short wave packet is translating towards the large wave packet and its phases
are propagating downwards

the latitude. Assuming a constant Coriolis frequency is a reasonable assumption considering the

latitude in the interactions modeled does not change drastically. The short wave packet propagates

in the vertical and horizontal directions with wavenumbers m and k respectively. Since the short

wave packet energy is propagating upwards with respect to depth (z), the vertical wavenumber m

is negative. The horizontal wavenumber k is defined positive, thus propagating in the positive (x)

direction.

The short wave packet exhibits dispersion during propagation due to enveloping. The equa-

tion dictating the wave dispersion of these internal gravity waves will be derived and introduced in

more detail later in this section. Appendix A shows a physical representation of wave dispersion

and its relationship to the length scale of the wave envelope. The Navier-Stokes equations govern

the dynamics of these enveloped short internal waves and are shown by equations 2.2 through 2.5.

To simplify the equations it is assumed that the fluid is incompressible and inviscid, which are

acceptable assumptions for internal waves studied in the ocean with horizontal and vertical scales
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in the hundreds to thousands of meters.

ρ
Du′

Dt
=−∂ p′

∂x
+ρgx (2.2)

ρ
Dv′

Dt
=−∂ p′

∂y
+ρgy (2.3)

ρ
Dw′

Dt
=−∂ p′

∂ z
+ρgz (2.4)

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂ z
= 0, (2.5)

Pressure and density are defined in this particular case as follows: p = p̄+ p′, where p′ is the

perturbation pressure and the hydrostatic pressure p̄ = ρgh. ρ = ρ0 + ρ̄ + ρ ′, where ρ ′ is the

perturbation density, ρ0 is a reference density and the average density (ρ̄ = f (z)) is a function of

elevation. From these definitions of pressure and density and doing a small-particle force balance,

the buoyancy frequency N can be derived as follows.

If a particle in a stratified fluid is displaced from its equilibrium position as seen in figure

1.1 buoyancy and gravitational forces will act on it. Summing the forces generating the parti-

cle acceleration, assuming the fluid is incompressible and knowing that ζ0 is a small amplitude

perturbation, yields:

m
∂ 2ζ

∂ t2 = ρ1g∀−ρ0g∀. (2.6)

Since m = ρ0∀, the terms (∀) in equation 2.6 cancel out. Solving for ∂ 2ζ/∂ t2 yields.

∂ 2ζ

∂ t2 =

(
ρ1−ρ0

ρ0

)
g. (2.7)

Expanding ρ1 about ρ0 using a Taylor’s series yields ρ1 = ρ0 + ζ (dρ/dz)+ higher order terms.

Using the the Taylor’s expansion in equation 2.7, results in a partial differential equation of the

form:
∂ 2ζ

∂ t2 −
(

dρ

dz
g
ρ0

)
ζ = 0. (2.8)

Solving the differential equation presented above, results in the following solution form.

ζ = aei
(
− dρ

dz
g

ρ0

) 1
2 t

+be−i
(
− dρ

dz
g

ρ0

) 1
2 t

, (2.9)
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where the characteristic roots of this equation become the definition of the buoyancy frequency

(natural frequency of the fluid).

N2 =−dρ

dz
g
ρ0

. (2.10)

The Boussinesq approximation is used to simplify the governing equations and it states

that the density perturbations ρ ′ are small relative to the reference density ρ0. Hence ρ ′ is only

important when multiplied by gravity. This approximation is reasonable for ocean waves because

the density does not change significantly with respect to depth. Employing this approximation and

assuming ρ ′D~u′/Dt is approximately ρ0D~u′/Dt, the momentum equations become:

∂u′

∂ t
+u′

∂u′

∂x
+ v′

∂u′

∂y
+w′

∂u′

∂ z
=− 1

ρ0

∂ p′

∂x
(2.11)

∂v′

∂ t
+u′

∂v′

∂x
+ v′

∂v′

∂y
+w′

∂v′

∂ z
=− 1

ρ0

∂ p′

∂y
(2.12)

∂w′

∂ t
+u′

∂w′

∂x
+ v′

∂w′

∂y
+w′

∂w′

∂ z
=− 1

ρ0

∂ p′

∂ z
+

ρ ′

ρ0
gz (2.13)

dρ

dt
= 0 =

∂ρ

∂ t
+u′

∂ρ

∂x
+ v′

∂ρ

∂y
+w′

∂ρ

∂ z
=

∂ρ ′

∂ t
+w′

dρ̄

∂ z
, (2.14)

The equations are linearized, assuming that u’, v’, and w’, are small and any products of these

terms will be removed from the equations.

∂u′

∂ t
=− 1

ρ0

∂ p′

∂x
(2.15)

∂v′

∂ t
=− 1

ρ0

∂ p′

∂y
(2.16)

∂w′

∂ t
=− 1

ρ0

∂ p′

∂ z
− ρ ′

ρ0
gz (2.17)

∂ρ ′

∂ t
+w′

dρ̄

∂ z
= 0, (2.18)

These are referred to as the linear Boussinesq equations. These equations can be rearranged to

relate all of them to w′ to find the perturbation density, pressure, and particle velocities. These

expressions are the polarization relations which are included in Appendix B.
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The derivation of the dispersion relation (intrinsic frequency of the short waves, equation

2.19) is presented in Appendix C.

ω
2 =

N2 (k2 + l2)+ f 2m2

k2 + l2 +m2 . (2.19)

In the particular interactions studied in this research l = 0 for the short waves or in other words,

the short waves are two-dimensional. If the intrinsic frequency (ω) of the short wave is assumed

to be much higher than the Coriolis frequency but much lower than the buoyancy frequency, the

dispersion relation 2.19 can be simplified in the following manner:

ω
2 (k2 +m2)= N2k2 + f 2m2. (2.20)

(
ω

2−N2)k2 =
(

f 2−ω
2)m2. (2.21)

Since ω is much greater than f then f 2−ω2 ≈−ω2. On the other hand since ω is much smaller

than N then ω2−N2 ≈−N2. Using these simplifications on expression 2.21 yields:

ω =
Nk
m

. (2.22)

One important parameter in this study, in particular for the stability analysis, is the steep-

ness. The steepness is defined as the difference of the vertical displacement ζ with respect to depth

z. Figure 2.2 shows lines of constant density (isopycnals) from which steepness can be found by

calculating the vertical displacement with respect to depth or the slope of the isopycnals. In the

numerical simulations performed for this research, a vertical displacement field is initialized at

time t = 0 which is of the form:

ζ (x,z,0) = Re

{
ζ0e

−(z−z0)
2

b2 ei(kx+mz)

}
. (2.23)

The real part of this expression is used to describe the vertical displacement field. In equation 2.23,

b is the length scale of the short wave packet and z0 is the initial position of the short wave packet.
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Figure 2.2: Lines of constant density (isopycnals) with a vertical slope as signaled by the black
arrow. Once the isopycnals become vertical a state of static instability develops and overturning
may occur. However this instability has to last long enough to evolve into a breaking wave. Taken
from Liu et al. [2].

2.2 2D Non-linear model

The 2D non-linear model is used in this study as a basis of comparison and to test the

validity of the amplitude estimates found in the ray theory (linear theory). Since the main interest

of this research is to analyze instabilities, which are non-linear, a non-linear model is imperative.

However, the non-linear model is limited to small initial amplitudes because breaking, an adverse

effect of large initial amplitudes, is undesirable since the non-linear model is two dimensional. In

addition, by preventing wave breaking, measures of wave steepness changes are captured providing

more information about wave instabilities and breaking in the non-linear model being used. The

non-linear model is governed by the Navier-Stokes equations in their vorticity-stream form. In this

model the stream function is defined as follows:

u′ =−∂ψ

∂ z
. (2.24)

w′ =
∂ψ

∂x
(2.25)
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The velocity field has components in the horizontal and vertical directions such that u = (u′,0,w′).

To simplify the equations of motion the fluid is assumed incompressible, inviscid and the Boussi-

nesq approximation is employed. After applying these simplifications, the governing equations are

reduced to the following form.
∂ 2ψ

∂x2 +
∂ 2ψ

∂ z2 =−q (2.26)

∂q
∂ t

+ J(ψ,q)− ∂σ

∂x
− f

∂v
∂ z

= 0 (2.27)

∂v
∂ t

+ J(ψ,v)+ f u = 0 (2.28)

∂σ

∂ t
+ J(ψ,σ)−N2w = 0, (2.29)

where q is the y-component of vorticity and J(ψ,q) is the Jacobian with respect to (x,z). In these

equations σ = gρ ′/ρ0 is the reduced gravity term, where g is the gravitational constant and ρ ′ is the

density perturbation. The equations of motion (2.26)-(2.29) are solved using forth order Runge-

Kutta schemes inside a time stepping loop. The boundary conditions imposed on the equations are

periodic in the x and z directions. The grid is defined by 512 points in the vertical direction and 16

points in the horizontal. The size of the domain is specified as follows: The vertical limit is chosen

to fit the wave-wave interaction. The horizontal limit corresponds to the horizontal wavelength of

the short wave. This model has been validated for time spacing and and grid spacing with previous

test at higher resolution and smaller time-steps between a short internal wave interacting with a

steady shear and satisfactory results where attained. The model and its validation is described in

Vanderhoff et al. [10].

The vertical displacement is used to define the steepness which is the main parameter used

to study instabilities. In figure 1.1 the slope of the density gradient is defined as ∂ z/∂ρ which is

equivalent to ∂ z/∂ρ = ζ/ρ ′. Substituting this relationship into equation 2.10 and solving for ζ

gives an expression for the vertical displacement.

ζ =
ρ ′g

N2ρ0
, (2.30)
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The steepness is calculated from the vertical displacement equation 2.30 by taking the partial

derivative of the vertical displacement with respect to z.

ζz =
∂ζ

∂ z
=

g
N2ρ0

∂ρ ′

∂ z
, (2.31)

2.3 Linear model

2.3.1 Ray equations

The linear model (ray theory) is used along with the dispersion relation for simulating inter-

nal waves and internal wave interactions. In ray theory, internal waves or internal wave packets are

simplified and simulated as rays following the energy path of the wave, where the wavenumbers,

frequency, and group velocity are known to follow the energy only, though the individual particle

velocities are ignored. The ray equations describing the internal waves are given by expressions

2.32 and 2.33.
D~K
Dt

=−∂ω

∂~x
+~U~K (2.32)

~cg =
D~x
Dt

+~U . (2.33)

With these equations and the dispersion relation, 2.19, it is possible to simulate internal waves

through a background flow field. These equations are derived in the appendix D.

The ray equations 2.32 and 2.33 are discretized and a numerical model is developed in

MATLAB, which solves the equations using a fourth order Runge-Kutta method.

It is important to emphasize that ray tracing model uses linear WKBJ theory to calculate

the dynamic properties of the internal waves as they propagate through other flows. The WKBJ

approximation includes the following assumptions: the interaction of the small wave does not

affect or change the background flow field, the buoyancy frequency is constant, fluid viscosity is

neglected and the WKBJ approximation is valid prior to wave breaking or inflection. Hence the

wavenumbers and frequency of the short wave are slowly varying.
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2.3.2 Hayes equations

The amplitude of the short-waves must be calculated directly from a ray-tracing integration.

To do this a set of equations called the Hayes equations (See [18]) are used to relate the volume

of ray tubes (tubular surface made up of rays) to the amplitude (a) of the waves represented by the

ray tubes. One parameter used in this process is the wave action density, which is a relationship

between wave energy density over the wave frequency (Ad = E/ω).

In its simplest relevant form the ray equation for the wave action density, where Ad is the

amplitude square, is
dAd

dt
=−Ad

∂cg

∂ z
=−Ad

(
Gmm

∂m
∂ z

+Gmz

)
, (2.34)

where d/dt = ∂/∂ t + ~cg∂/∂ z, G(m,z, t) = ω(z, t) and Gmz = 0. The value of ∂m/∂ z in 2.34 is

calculated from a numerical integration of

d
dt

(
∂m
∂ z

)
=

∂

∂ z

(
dm
dt

)
−

∂cg

∂ z
∂m
∂ z

=−Gzz−Gmm

(
∂m
∂ z

)2

, (2.35)

The notation Gii refers to the second partial derivative of G with respect to i. The parameter ∂m/∂ z

indicates the local degree of focusing in a bundle of rays, which vanishes when the rays are parallel

in (z, t) and diverges at a caustic (Regions of strong refraction).

For this analysis it is important to understand that the wave action is constant across the

ray tubes, A =constant. Thus, if the wave action density is integrated across the ray volume the

following expression is obtained

∫
Ad d∀= cst along ray. (2.36)

From this integration the following relationship can be set

∀0

∀
=

Ad

Ad0

. (2.37)

Hence, in the amplitude approximations near caustics, one is interested in the changes of the ray

tube volume with respect to a reference initial volume (∀0/∀).
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Equations 2.34 and 2.35 are modified by using the wave action (Ad), which is related to the

volume of the rays such that ∀= 1/Ad . In addition if the vertical wavenumber and depth of the ray

path are written as functions of time and initial position z0 equations 2.34 and 2.35 become

d∀
dt

= ∀Gmm
∂m
∂ z

(2.38)

d
dt

(
∂ z
∂ z0

)
= Gmm

∂m
∂ z0

(2.39)

d
dt

(
∂m
∂ z0

)
=−Gzz

∂ z
∂ z0

, (2.40)

with
∂m
∂ z

=
∂m
/

∂ z0

∂ z
/

∂ z0
. (2.41)

These are the equations proposed by Hayes, who recognized their practical value when dealing

with caustics (Regions of strong refraction where closely spaced rays intersect). The integration of

equations 2.38 through 2.40 gives a sign change in the variable ∀ after the ray intersects a caustic.

Hence Ad can become negative. To keep the wave action density positive the relationship between

the volume of the ray tube and the amplitude is modified

Ad =
1
|∀|

(2.42)

The volume of the ray tube vanishes at caustics and thus the amplitude of the short wave is a

singularity. This result is not insightful to the stability analysis because steepness which is derived

from the amplitude will also be a singularity. These singularities at caustics are the result of the

linear theory (ray theory) failing because the amplitude and wavenumber of the short wave are

not slowly varying. Nonetheless, in the next section a more accurate estimate of the amplitude is

developed which can be used for stability analysis.

2.3.3 Caustics

Caustics are regions of strong refraction where closely spaced rays intersect, hence making

the volume of the tubular surface composed of these rays vanish (see figure 2.3). In addition at
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Figure 2.3: Simulation performed using ray tracing of a short wave interacting with an inertia
wave. The circled regions are caustics where closely spaced rays intersect and singularities to the
amplitudes of the wave occur.

these regions of strong refraction short wave properties such as amplitude and wavenumber are

not slowly varying which is one of the conditions necessary to simplify the governing equations in

ray theory. Recalling that the amplitude of the wave is related to the ray tube volume by equation

2.42, one notices that the amplitude may become a singularity when the volume (∀) of the ray tube

vanishes. A practical solution to estimate the amplitude at caustics is necessary and it is obtained

by combining the ray solution (φr) with an Airy function (φb) to form a valid result as seen in

Broutman and Young [3] and in Peregrine and Smith [19]. The Airy function is selected because

it resembles the ray solution very well near the caustic but it does not diverge as the ray solution

does. These solutions can be seen in figure 2.4 below. The solution φr = aei(α)±π/4 is obtained by

integrating the steady-state ray equations

∂m
∂ z

=−Ωz

Ωm
, (2.43)

for m, and
∂α

∂ z
= m, (2.44)

for α . Ω in equation 2.43 is defined for a steady background current U as Ω = ω + kU. The

integration begins at the caustic with initial conditions zc and mc, which are the location of the
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Figure 2.4: The wave solutions obtained from ray theory and the Airy function are contrasted in
this figure. Notice that close to the caustic at z/L≈0.8 the Airy function (φb) resembles the ray
solution (φr) except it does not diverge. Taken from Broutman, D. [3]

caustic and the vertical wavenumber of the short waves at the caustic. This vertical wavenumber is

defined as

mc =−
(

Nk
c

)1/2

. (2.45)

To avoid the caustic singularity in equation 2.43 the first integration step is taken analytically using

Ωm ≈ (m−mc)Ωmm, (2.46)

where Ωmm is evaluated at the caustic. From 2.43 and 2.46

m−mc ∼±(|zc− z|)1/2
(∣∣∣∣ 2Ωz

Ωmm

∣∣∣∣)1/2 (2.47)

To obtain the equation for the short wave amplitude valid near the caustic the operator

expansion technique outlined in Peregrine and Smith [19] is employed. Following their derivation,

a model equation is developed for the short wave amplitude starting from an equation of the type

H(ω,K,z) = ω−Ω(K,z), (2.48)

where ω is the dispersion relation. H may be expanded about its value at the caustic to obtain

H = (z− zc)Hz +
1
2
(m−mc)

2Hmm + ... (2.49)
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where Hz and Hmm are evaluated at the caustic, to which it is assigned the vertical wavenumber mc

and the depth zc. The term Hm does not appear in equation 2.49 because it vanishes at the caustic.

The expansion shown in 2.49 is substituted into the Fourier transformed wave equation

Haeiα = 0 (2.50)

with

ima≈ imca+
da
dz

(2.51)

to yield the Airy function governing the envelope of the short waves near the caustic

d2a
dz2 − (z− zc)

(
2Hz

Hmm

)
a = 0 (2.52)

The solution to equation 2.52 is

φb = A0Ai(δ )eimc(z−zc), (2.53)

where δ = (z− zc)(2Ωz/Ωmm)1/3. The constant A0 is found from matching φr = aeiα±π/4 with

equation 2.53. This is accomplished using

a≈ B1/2 (∣∣2ΩzΩ
2
mm
∣∣)−1/6(−δ )−1/4, (2.54)

for the ray solution, and

Ai(δ )≈−π
−1/2(−δ )−1/4 sin

[
2
3
(−δ )−1/4 +

π

4

]
(2.55)

for the Airy function. Equation 2.55 is valid as δ →∞. On the other hand equation 2.54 is valid as

δ → 0 and it is derived from 2.47 using B = Ωma2. The result of the matching is

A0 = (πB)1/2
(∣∣∣∣ 32

Ω2
mmΩz

∣∣∣∣)1/6. (2.56)
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Using the mid-frequency approximation (equation 2.22) the expression for A0 becomes

A0 =

(
2πB
Nk

)1/2

Ric1/12 |mc| , (2.57)

where Ric is the value of the Richardson number at the caustic defined as

Ric =
N2

UzC2 , (2.58)

where Uz is the partial derivative of the velocity profile of the background, equation 2.1,with respect

to depth.

This expression for the wave action density is derived for the case when the background is

an infinite wave-train. However it is expected that equations 2.56 and 2.57 will make reasonable

approximations in the case when the background inertial wave is bounded by a Gaussian envelope,

as long as the wave action flux (B) and the total frequency (Ω) vary slowly across the envelope

length-scale. Further simplification to equation 2.57 can be accomplished when the refraction is

strong enough to make |m| � |mc| on one side of the caustic, which is noticed when the short wave

approaches with a group speed slower than the phase speed of the inertia wave and with a group

speed faster than the phase speed of the inertia wave. During these two scenarios the conservation

of wave-action flux (B = (cg−C)A) forces A to be approximately constant. Let this constant value

be A∗. Substituting B ≈CA∗ into equation 2.57 and using definition 2.45, a relationship between

A∗ and the caustic amplitude A0 is found such

A0 = (2π)1/2Ric1/12(A∗)1/2. (2.59)

The value of the amplitude at the caustic (A0) depends on the local Richardson number at the

caustic (Ric) and A∗ which is the value of A away from the caustic in the direction along the short

wave ray of decreasing vertical group speed cg.
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2.3.4 Steepness

The steepness is a parameter of interest in the stability analysis because when ζz > 1 waves

are vertical and estimated to develop convective instabilities leading to breaking. This parameter

is derived in linear theory using the definition of potential energy found in Pedlosky [20], modified

to include the influence of the inertia frequency f , and the dispersion relation equation 2.19. The

energy for internal waves with vertical displacement ζ = ζ0eiθ is,

E =
1
2

ρ0ζ0
2N2

[
1+
(

fm
Nk

)2
]
, (2.60)

where ρ0 is the reference density. Solving for ζ0 in equation 2.60, substituting A = E/ω and

utilizing the assumptions used for the mid-frequency approximation (i.e. ω � N and f � ω), an

expression can be derived for the vertical displacement as a function of wave energy

ζ0 =

[
2Aω

ρ0N2

]1/2

. (2.61)

Recalling equation 2.30 and taking the partial derivative of this expression with respect to z gives

a relationship between the maximum steepness and initial vertical displacement ζzmax ≈ |mζ 0|.

Equation 2.61 is multiplied by m, then rearranging and noting that m2/N2k2 = 1/ω2 for the mid-

frequency approximation, the steepness in the linear model is

ζz = k
(

2A
ωρ0

)1/2

, (2.62)

which is applicable only within the mid-frequency approximation.

2.4 Stability analysis

The stability analysis is carried out for three different types of wave-wave interactions.

All of these interactions are defined according to the relationship between the group speed of the

short wave (cg) relative to the phase speed of the inertia waves (C). Thus, first kind encounters are

characterized by short waves approaching with group speeds greater than the phase speed of the

inertia wave. Second kind encounters are those with short waves approaching with group speeds
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approximately equal to the phase speed of the inertia wave, while third kind encounters feature

short waves with group speeds slower than the phase speed of the inertia wave.

It is important to mention that a linear model is being used to estimate instabilities which

are a non-linear phenomenon. Consequently, the use of approximations to estimate instabilities

are necessary. The linear model though, provides insight which leads to estimates of waves that

are expected to break. The 2D non-linear model is able to capture the onset of instabilities but not

the actual wave breaking. Thus, no estimates of breaking scales, or the extent of the breaking are

included in this study.

The stability analysis of this research begins with the steepness parameters found from the

non-linear and linear models, equations 2.62 and 2.31 respectively. The steepness is an important

variable because it will be used to parameterize convective instabilities detected in the short waves.

Convective instabilities occur when the propagating waves refract and subsequently develop large

vertical displacements relative to depth equal to and greater than unity (ζz ≥ 1). These large ver-

tical displacements induce lines of constant density to become vertical, overturn and break. This

instability is illustrated in figure 2.2 where the lines are the isopycnals and the arrow is pointing to

the line with a steepness equal to and greater than one (Taken from Liu et al. [2]).

The second variable important to the stability study is the total shear from the inertia wave,

which has the following form
dU
dz

=
∂U
∂ z

+
∂U
∂ t

1
C
. (2.63)

This expression describes mathematically the characteristics of the shear from the inertia wave and

it parameterizes the shear instabilities caused by the presence of the inertia wave. Shear instabilities

occur when the short waves are subjected to the shear due to the inertia wave. The amplitude of

the short wave increases, and its frequency and wavenumber approach zero, which may result in

wave breaking as shown in previous studies by Winters and D’Asaro [1], Lombard and Riley [15]

and Desaubies and Smith [21]. Both of the parameters mentioned above, steepness and total shear,

are combined into a single expression called the gradient Richardson number derived as follows.

Starting from the definition of the gradient Richardson number found in earlier works

Rig =
Ri
(

1− dρ
′

dz

)
(dU

dz

)2 . (2.64)
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Non-dimensionalizing 2.64 gives.

Rig =

(NL
U

)2
(

1− d
dz

[
ρ ′

L|dρ/dz|

]
L
)

(dU
dz

)2 ( L
U

)2 . (2.65)

Employing the chain rule knowing that that dρ/dz is not a function of z yields

Rig =
N2 ( L

U

)2
(

1− ∂ρ ′

∂ z

[
1

|dρ/dz|

])
(dU

dz

)2 ( L
U

)2 . (2.66)

Substituting equation 2.10 for dρ/dz and equation 2.31 for ∂ρ ′/∂ z makes the gradient Richardson

become

Rig =
N2 (1−ζz)(dU

dz

)2 , (2.67)

where the denominator dU/dz is the total derivative defined by equation 2.63 and ζz is the steep-

ness. The gradient Richardson number will specify if a wave field is unstable when a critical

threshold of 1/4 is surpassed.

Rig =
N2
(

1− ∂ζ

∂ z

)
(dU

dz

)2 <
1
4
. (2.68)

If the gradient Richardson number is separated into an angle following the method outlined in

Winters and D’Asaro [1], convective and shear instabilities can be identified.

θ = tan−1

 1
4

(dU
dz

)2

N2
(

1− ∂ζ

∂ z

)
 . (2.69)

This angle will fall into one of three stability regions: stable, shear unstable, or purely convectively

unstable. Thus, providing specific information about the type of instability.

It is important to know as well the temporal relationship between shear or convective in-

stabilities and wave breaking. As mentioned in the introduction, Sutherland [17] proposed that the

temporal dependence of instabilities must be included in an analysis of stability. The wave must

be unstable for long enough to have time to grow and cause the waves to overturn and break. This

hypothesis is based on the assumption that wave-wave resonant interactions amplify short waves in
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Figure 2.5: Magnitude of the timescale of the instability plotted in red circles and magnitude of
the timescale of the short wave plotted in blue solid line. These two magnitudes are compared at
the same time interval when the instability is captured. If the timescale of the instability is larger
than the timescale of the short wave, breaking is estimated to occur.

both the linear and non-linear regimes, which has been proven before by Grimshaw in 1977 [22].

Therefore, a practical expression to compare the timescales of the instability to the timescale of the

short wave is necessary. This relationship is presented in equation 2.70 and it is also shown graph-

ically in figure 2.5. In this figure the magnitude of the timescale of the instability is represented

by the circles. Note that the magnitude of the instability timescale is greater than the magnitude of

the timescale of the short wave (solid line) during the time interval when the instability occurred.

Tins

Ts.wave
> 1, (2.70)

where Tins is the timescale of the instability defined as the length of time (∆t) the instability per-

sisted, normalized by the inertia period (Ti = 2π/ f ) or

Tins =
∆t
Ti
, (2.71)

and Ts.wave is the timescale of the short wave defined as the period of the short wave, normalized

by the inertia period or

Ts.wave =
1

ωTi
. (2.72)
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Notice that equation 2.70 is coupled to an inequality. When the timescale of the instabilities is

larger than the timescale of the short wave, it is estimated that the instabilities persisted long

enough for wave breaking to occur.

29



CHAPTER 3. RESULTS

3.1 Validation of the Airy function amplitude approximations

Using the 2d non-linear model the interaction between an inertia wave with phases prop-

agating upwards and a short wave propagating upwards is developed. This interaction is shown

in figure 3.1(a) and 3.1(b). Figure 3.1(a) is the shear (dU/dz) from the inertia wave. Each black

and white successive elliptical region in this plot represents a phase of the inertia wave. Notice

how the ellipses fade near the upper and lower limits. This is an effect of the envelope surrounding

the wave. The slope of these regions depict the inertia wave phases propagating upwards with a

vertical wavelength of 75 m. The length-scale of the inertia envelope (L) is chosen to be 35 m,

which results in one full wavelength in the envelope. The maximum velocity of the inertia wave is

U0 = 0.02 m/s and the envelope of the inertia wave is centered in the middle of the computational

domain. Figure 3.1(b) presents the density perturbation field, which only corresponds to the short

wave since the inertia wave has no vertical displacement. In this particular case the short wave is

propagating towards the inertia wave at a group speed slower than the phase speed of the inertia

wave. This short wave characteristic can be seen by shallower slopes in the motion of the short

wave relative to the slopes of the inertia wave. This type of interaction (cg <C) has been previously

defined by other authors and it is known as a third kind encounter (See Vanderhoff et al. [10] and

Broutman et al. [23]). Note the short wave packet is initialized at a depth below the inertia wave

as seen in figure 3.1(b). This is done to make sure the short wave is not interacting with the inertia

wave when the simulation begins. If this practice is not followed carefully the short wave is not

resolved in the early times of the simulation and comparisons with ray theory are marginalized.

The simulation performed using the non-linear model is replicated as closely as possible

using the linear model (ray tracing). This step in the stability analysis is necessary to validate

qualitatively and quantitatively the results from the linear approximations. To duplicate the inter-

actions all the parameters for both waves are matched and set equal. Figure 3.1(c) is the ray tracing
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(a) Inertia shear that the small-scale wave encounters.

(b) Vertical displacement field (steepness), which portrays how
the short wave packet propagates upwards toward the inertia
wave.

(c) Ray tracing representation of the same interaction simulated
with the 2d non-linear model shown in figure 3.1(b).

Figure 3.1: The set of rays represent the short wave packet approaching the inertia wave. The
blue ellipses approximate the inertia wave location and they are outlined by the condition cgz0 =C
where caustics are observed. The short wave packet in this instance propagates with a group
velocity lower than the phase speed of the inertia wave.

approximation to the encounter portrayed in figure 3.1(b). Figures 3.2(a) and 3.2(b) represent a

first kind encounter simulated using the non-linear model and replicated using ray tracing. There

is wave dispersion which occurs in the non-linear model simulations, but it is not observed in the

ray tracing plots. This dispersion due to waves of different frequencies traveling at different group

velocities is explained in detail in Appendix A. It is important to choose an encounter from the non-
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(a)

(b)

Figure 3.2: Simulation performed using both models of a short wave approaching the same inertia
wave as in figure 3.1(a) with a group speed greater than the phase speed of the inertia wave (cg >C).

linear simulations that shows the short wave refracting almost in its entirety in a single phase of the

inertia wave to make the numerical simulations and ray theory simulations more comparable and

thus the adjusted amplitude estimates more accurate. The simulations will never be exact though,

because the non-linear model exhibits more realistic energy dispersion than the linear theory.

The two pairs of figures 3.3(a)-3.3(b) and 3.4(a)-3.4(b) present a specific case comparing

the maximum steepness from non-linear simulations and that found from ray tracing. The maxi-

mum steepness in the non-linear simulation is found within the entire domain at each time step and

is normalized by the initial steepness. Notice on figures 3.1(c) and 3.2(b) that the wave-packet in

ray tracing is represented by a group of rays. Each of those rays has an individual steepness, but a

single ray is chosen (highlighted green line in figures 3.1(c) and 3.2(b)) with a steepness compara-

ble to the maximum steepness found from the non-linear simulation. The overall decaying trends

and many of the maximum and minimum peaks are perceived in the plots from the non-linear

model and ray tracing. The peaks in figures 3.3(a) and 3.4(a) correspond to the locations where the
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short wave refracted against a phase of the inertia wave. In figures 3.3(b) and 3.4(b) the peaks co-

incide with the regions where the highlighted green rays from figures 3.1(c) and 3.2(b) refract with

the inertia wave. The valleys in figures 3.3(a)-3.3(b) and 3.4(a)-3.4(b) result from the propagation

of the short wave or the ray through a region of strong shear until the next inertia wave phase is

encountered. Note that the final steepness after the short wave leaves the encounter is different in

the non-linear and linear models. These differences between the two results are attributed to the

comparison of a finite wave packet to a single ray.

Notice that for the steepness plots of third and first kind encounters, figures 3.3(a)-3.3(b)

and 3.4(a)-3.4(b), the strong refractions occur at earlier times during the interactions. These strong

refractions are the factors that most likely result on instabilities leading to overturning and wave

breaking. The locations of strong refractions depend on the size of the envelope of the inertia

wave. In this study the size of the envelope of the inertia wave is only big enough to contain one

full wavelength of the inertia wave. Thus, any simulations performed in this model with an inertia

wave envelope less than L=35 m are invalid since the resultant wave packet is smaller than an

inertia wave.

(a) (b)

Figure 3.3: Figure 3.3(a) shows the maximum steepness at each time step normalized by the initial
steepness. Figure 3.3(b) is the normalized steepness of the short wave through time, obtained from
the highlighted ray seen in Figure 3.1(c)

3.2 Parameterization of instabilities

Using the information obtained from the steepness, the shear exerted by the large inertia

wave and the critical criteria for wave stability (1/4), the gradient Richardson number is separated
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(a) (b)

Figure 3.4: Steepness plots corresponding to the encounters shown in figures 3.2(a) and 3.2(b).
Figure 3.4(a) is the steepness calculated with the non-linear model. Figure 3.4(b) is the steepness
found using the linear model.

into an angle as explained in the methods section of this thesis (See also Winters [1]),

θ = tan−1

 1
4

(dU
dz

)2

N2
(

1− ∂ζ

∂ z

)
 . (3.1)

The angle (θ ) will fall into one of three stability regions: stable, shear unstable, or purely con-

vectively unstable. In the instability chart, figures 3.5 and refnum instability chart 3rd knd enc,

the dashed line corresponds to an angle θ = 45◦ which is the boundary that separates the stable

(below) and shear unstable (above) regions. The solid line corresponds to an angle θ = 90◦ which

is the borderline that differentiates between shear instabilities (below) and purely convective insta-

bilities (above). Since the short wave steepness (ζz0) and the inertia wave shear (dU/dz) are time

dependent, the angle θ is calculated at each time step and the results are plotted in the instability

chart (figure 3.5) represented by crosses for the 2d non-linear results and open circles for the linear

results. The instability chart corresponding to a first kind encounter is represented in figure 3.6.

The crosses are the instabilities calculated using the non-linear model and the circles are the insta-

bilities found from ray tracing. Notice that the instabilities captured for first kind encounters have

a time-span which is much longer than instabilities found in figure 3.5.

In the non-linear simulation a small initial steepness, ζz0 = 0.01, was chosen so the model

was stable throughout the interaction. However such a small initial steepness does not produce

any convective instabilities. Assuming the temporal changes in the steepness are similar for other
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initial steepnesses, although dynamics may change with increasing steepness, one can multiply the

ratio of maximum steepness by a value that will assure convective instabilities (i.e. 0.8). Therefore,

the original maximum steepness ratio is multiplied by a factor of 0.8 shifting the ratio upwards and

reaching values greater than unity at some inertial periods. When the maximum steepness ratio

is greater than unity convective instabilities are captured and noted, by the crosses in figure 3.5,

between inertia periods t/Ti = 0.6 to 1.75 and in figure 3.6, between inertia periods t/Ti = 0.1

to 0.9. The initial steepness in ray tracing is initialized to 0.8 matching the initial steepness in

the non-linear model. As a result the steepness from ray tracing reaches values greater than unity

between inertia periods t/Ti = 0.6 to 1.75 in third kind encounters, depicted in figure 3.5 with the

open circles and between inertia periods t/Ti = 0.1 to 1, depicted with the open circles in figure

3.6. Note that the same basic instabilities are expected from both models.

Figure 3.5: This is an instability chart separated into a convective instability (θ > 90◦), shear
instability (θ > 45◦) and stable region (θ < 45◦). For this particular encounter convective instabil-
ities are captured between inertia periods 0.6 to 1.75 in both models. The convective instabilities
for the 2d non-linear and linear models are signaled by the crosses and open circles respectively.
Note, that the inertia periods when the instabilities occur correspond to the inertia periods when
the steepness ratio was greater than unity.

3.3 Instability timescales

Sutherland [17] proposed that a second instability condition was required for waves to over-

turn and break; that the timescale of the convective instability is larger than the period of the short

wave. Looking at the instability chart, one can track how long instabilities will last by knowing
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Figure 3.6: This is an instability chart for an encounter when the short wave approaches with a
fast group speed. Convective instabilities are captured after inertia period 0.08 in both models.
The convective instabilities for the 2d non-linear and linear models are signaled by the crosses and
open circles respectively.

the beginning and ending inertia periods (∆t/Ti) of the instability. The timescale of the instability

is superimposed on the local timescale of the short wave (T = 2π/ω) in figures 3.7 and 3.8. The

instability threshold (figures 3.7 and 3.8) includes open circles, for the timescales of the instabil-

ities found in ray tracing, and crosses, for the timescales found in the 2d fully non-linear model.

The solid and dashed lines in these plots represent the timescale of the short wave calculated from

the non-linear and ray tracing simulations respectively. In figure 3.7 the timescale of the instability

is much larger than the timescale of the short wave between inertia periods of approximately 0.6

to 1.75 corresponding to the convective instabilities depicted in figure 3.5. In the same manner

in figure 3.8 the timescale of the instability is much larger than the timescale of the short wave

between inertia periods 0.1 to 1 corresponding to the convective instabilities depicted in figure 3.6.

Hence in theory instabilities had enough time to grow and develop into breaking waves. Note the

difference in scales between the instabilities from the non-linear model and the instabilities found

in the ray tracing model. In most encounters the ray tracing overestimates or underestimates the

timescales of the instabilities. This is observed because the Airy function approximations may

overestimate and in some instances underestimate the magnitude of the amplitude at the caustics.

Recall that the steepness is proportional to the amplitude. Thus, the deviations of the amplitude

are carried over to the steepness resulting in overestimates and/or underestimates of the instability

timescales.
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Figure 3.7: Instability threshold calculated from the instability results found in figure 3.5 from
both models. The y axis denotes the magnitude of the timescale normalized by the period of the
inertia wave. Comparing the magnitude of the normalized timescale of the instabilities (red), to
the timescales of the short waves (blue) one notices that at some time periods the timescale of the
instability is much larger. Hence the short wave is expected to overturn and break.

Figure 3.8: Instability threshold calculated from the instability results found in figure 3.5 from
both models. The y axis denotes the magnitude of the timescale normalized by the period of the
inertia wave. Comparing the magnitude of the normalized timescale of the instabilities (red), to
the timescales of the short waves (blue) one notices that at some time periods the timescale of the
instability is much larger. Hence the short wave is expected to overturn and break.

3.3.1 Instability timescale dependence on initial short wave steepness

The instabilities captured and their respective timescales are highly dependent on the initial

steepness of the short wave. Figure 3.9 presents a particular example of a short wave approaching

with a group speed much faster than the phase speed of the inertia wave (first kind encounter).

This plot shows the changes of the steepness in time normalized by the initial steepness of the

short wave. Notice the two cusps that occur at inertia periods 0.2 and 1.3. These cusps signal
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the locations in time where the short wave refracts with one of the phases of the inertia wave. In

the first cusp the steepness increases drastically (ζz = 10ζz0) and the large steepness persist and

increases reaching a maximum at inertia period 0.7. Afterwards the steepness decreases slightly

until the next refraction is observed at inertia period 1.3. Recall that the steepness is normalized

by the initial steepness, hence the value of the initial steepness will determine whether or not

instabilities will be present. Notice in figure 3.9 the three lines, one dashed, one dotted and one

solid. Each line has its associated initial steepness on the right hand side of the plot and the lines

represent the steepness ratio necessary for instability (ζz > 1) to occur. For an initial steepness of

0.07 a change in the steepness ratio from 1 to the maximum steepness ever reached is not large

enough for convective instabilities to develop. In contrast for initial steepness 0.09 a change in the

steepness ratio from 1 to the maximum steepness ever reached results in a convective instability,

which lasts about 1/4 of an inertia period. An initial steepness of 0.1 and a change in the steepness

ratio from 1 to the maximum steepness ever reached yields a convective instability with a timescale

long enough to estimate breaking. Although this example is particular to the interaction shown, all

first kind encounters behave very similar.

Figure 3.9: Steepness change for a short wave approaching at fast group speeds. When the initial
steepness is very small, the steepness is never greater than unity. As the initial steepness increases
the steepness grows past unity and in some instances it remains greater than unity for prolong
times.

For third kind encounters (short wave approaching with a group speed slower than the phase

speed of the inertia wave) the changes in the steepness are different than in first kind encounters.

In most third kind interactions the steepness, as shown in figure 3.10, does not change drastically
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Figure 3.10: Steepness change for a short wave approaching at slow group speeds. When the initial
steepness is very small, the steepness is never greater than unity. As the initial steepness increases
the steepness grows past unity and in some instances it remains greater than unity for prolong
times.

as observed in first kind encounters (See figure 3.9). In some instances the steepness increases

enough to result in convective instabilities, but the associated timescale is not long enough to

assume breaking may occur. In the same manner as in first kind encounters, the instabilities and

timescales depend on the initial steepness of the short wave in third kind encounters. Although

the following analysis is for this specific third kind encounter, most third kind interactions display

very similar steepness changes. If the short wave propagates with an initial steepness of 0.4 a

change in the steepness ratio from 1 to the maximum steepness ever reached is not sufficient for

convective instabilities to develop. For an initial steepness 0.5 a change in the steepness ratio from

1 to the maximum steepness ever reached results in a convective instability, which lasts about 1/3

of an inertia period. An initial steepness of 0.8 and a change in the steepness ratio from 1 to the

maximum steepness ever reached yields a convective instability with a timescale long enough to

estimate breaking. Therefore as stated earlier, the outcome of the instability and its timescale is

directly related to the initial steepness of the short wave.

3.4 Wave breaking estimates

3.4.1 Cut off and shifting factors

The stability analysis performed up to this point is comparing the refraction and steepness

changes of a single ray which is suppose to represent a short wave packet. To find a more accu-
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rate representation in the linear model of a short wave packet refracting, the following procedure

is followed. The results from the stability analysis performed in the non-linear simulations and

ray theory are contrasted to quantify the accuracy and precision of the linear approximations and

amplitude calculations relative to the non-linear model. The comparison is based on the steep-

ness parameter and the locations in time where the refractions match. The test is performed for a

spectrum of short waves spaced equally by the ratio (cgz/C) initialized at random z locations and

moving with group speeds slower, equal and greater than the phase speed of the inertia wave cor-

responding to third, second and first kind encounters respectively. The maximum steepness ratio

calculated from the non-linear model (i.e figure 3.3(a)) is matched to the refractions observed in the

corresponding perturbation density plots (i.e figure 3.1(b)). The comparison indicates what part of

the wave packet is being represented by the normalized steepness and how the steepness changes

in relation to the refractions. This information is used to specify, in the linear model, the rays and

their steepnesses at caustic regions that will be used for comparison with the non-linear results. To

support the selection of the particular group of rays in the linear model, the refractions correspond-

ing to the isolated rays are matched to the perturbation density from the numerical simulations and

an average of the steepnesses of the isolated rays is calculated. Once the steepnesses are averaged,

a single magnitude from ray tracing is compared to a single magnitude from the non-linear model.

When the short wave packet split and refractions occurred at different phases of the in-

ertia wave as in figure 3.11(a), it was noticed that the steepness in the non-linear model always

revealed large changes corresponding to the strong refractions occurring in the first phase (see

figure 3.11(b)). This phenomenon was taking place because the maximum steepness throughout

the entire vertical domain was computed for each time-step. Consequently, stronger refractions

dominate the result of the maximum steepness at each time-step. Additionally, for short waves

approaching with a group speed faster than the phase speed of the inertia wave (figure 3.12(a))

it was found that most of the short wave packet weakly refracted and continued propagating ver-

tically. The resulting normalized maximum steepness (figure 3.12(b)) associated with these fast

short waves reveals large changes in its steepness magnitude, around the inertia period, when the

short wave interacts with the inertia wave. Afterwards, the steepness decays to a value close to

the initial steepness ratio. To match either of these cases in ray tracing, the same procedure as
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Figure 3.11: Figure 3.11(a) is a short wave approaching the inertia wave with a slow group speed.
The short wave refracts in more than one phase of the inertia wave. Figure 3.11(b) is the corre-
sponding normalized steepness, which displays large changes matching with the inertia period of
the first refraction.

explained above is followed. A graphical representation of the comparison procedure is displayed

in figure 3.13(a) and 3.13(b).

Table 3.1: Summary of runs conducted to find cutoff and adjustment values. The heading on the
last column Ar/An is the average ratio of ray steepness calculations over non-linear steepness

calculations.

Interaction type Number of runs cgz0/C Hi cgz0/C Low Steepness range Ar/An
1st kind (1) 11 6 1.2 4.49-2.01 0.68
1st kind (2) 11 12 6 6.1-3.32 0.61
1st kind (3) 9 16 12 5.4-3.25 1.62
2nd kind 12 1.2 0.6 3.1-1.93 0.70
3rd kind 9 0.6 0.16 1.74-0.75 1.10
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Figure 3.12: Figure 3.12(a) is the density perturbation field revealing a short wave approaching an
inertia wave with a fast group speed. The short wave is not refracted strongly, but instead most of
it continues propagating upwards pass the inertia wave. Figure 3.12(b) is the normalized steepness
corresponding to the encounter shown in figure 3.12(a).

The results of the comparisons are outlined in table 3.1. These comparisons are used to

find cutoff and shifting values for the steepnesses from ray theory that are much larger than the

ones found in the non-linear model. The cutoff will cap the ray tracing steepness estimates. The

cutoff is taken from the largest value of the steepness found in the steepness ranges calculated in

the non-linear model individually for first, second and third kind encounters. These ranges are

displayed in the fifth column of table 3.1. The shifting factor, used after the steepnesses are cut

off, is utilized to correct common under predictions or over predictions noted between ray tracing

and the numerical simulations. The shifting factor will match the ray tracing steepness results

to the more accurate numerical simulations. These shifting factors are found in the last column

of table 3.1. In some instances after the shifting factor is employed, the steepness may increase

beyond the cutoff value for a particular interaction. In such cases the cutoff value is used once

again. The first kind encounters (short waves approaching rapidly) are grouped into three sub-
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Figure 3.13: Figure 3.13(a) shows a short wave approaching an inertia wave faster than the phases
of the inertia wave. The bold rays are selected because they simulate the non-linear behavior very
close. The steepnesses of these rays are presented in figure 3.13(b) with bold lines to easily relate
them to the ray tracing. The average of these bold steepness lines is taken and the resulting value
is used for comparison against the normalized steepness from the non-linear model. The dashed
lines in figure 3.13(b) show the steepness values before the Airy function is used to approximate
singularities.

segments, each delimited by an upper and lower velocity ratio cgz0/C. Each sub-segment has a

corresponding steepness range and the maximum value of the steepness range is used as the cutoff

to cap steepnesses found in the ray tracing model. These ranges are selected because they are

common results of all the simulations performed. A ratio of the steepness found from both models

(ζz,r/ζz,n), at regions of strong refraction, is calculated for each segment and these factors are used

to shift the steepnesses. For second kind encounters (short waves approaching at the phase speed

of the inertia wave) and third kind encounters (short waves approaching slowly), the exact same

procedure is followed.

3.4.2 Instability maps

Instability maps for a range of initial short waves and inertia wave conditions are created

in ray tracing. These maps use the timescale estimates previously discussed to display the waves

with instabilities and time-scales conducive to wave breaking. Figures 3.14(a) and 3.14(c) present

the instability maps before the cutoff and shifting factors are employed. Each of these maps show

multiple simulations represented by each of the squares in the plot. To randomize the results in

the maps, the short waves entered the inertia waves at different phases. The idea of this instability

map is to encompass a wide spectrum of encounters that may be seen in observations and have
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(a) (b)

(c) (d)

Figure 3.14: Instability maps for 1st, 2nd and 3rd kind encounters. Figures 3.14(a) and 3.14(c) are maps without any adjustments or
cutoffs. Figures 3.14(b) and 3.14(d) are maps with adjusted steepness values using the cutoffs and ratios presented in table 3.1.
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a general idea of the waves that may overturn and break when they interact with common inertia

waves. The vertical domain for the contour maps of first kind encounters in figures 3.14(a) and

3.14(b) is limited to a maximum of ζz/ζz0 = 0.7. This is because at a steepness ratio greater than

0.7 all simulated waves for first kind encounters refracted to a steepness greater than one for longer

than the timescale of the short wave and are estimated to break regardless of initial group speed.

The contour maps depend on the approximations of the steepness found from the linear

model, which is not as accurate as the non-linear model. Therefore, the comparison analysis

summarized in table 3.1 is used to plot more accurate instability maps. The resulting contour maps

are displayed in figures 3.14(b) and 3.14(d).

Notice in figure 3.14(a) that all the short waves approach the inertia wave with fast group

speeds and it seems that regardless of the initial magnitude of the steepness the waves are very

likely to break. In contrast in figure 3.14(c) all the short waves approach the inertia wave slowly

and with small initial steepness, resulting in short waves that are less likely to break. When the

short waves start with an initial steepness greater than approximately 0.3 and a group speed 6

times or greater than the phase speed of the inertia wave, the likelihood of these waves breaking

is extremely large. This occurs because waves with larger group speeds exhibit instabilities that

begin at locations of strong refraction and persist through the regions where the strongest shear is

located (between strong refractions).

These figures are divided into regions to better estimate the percentage of waves expected

to break as a function of the initial wave-field. A ratio of the number of encounters with timescales

(Tins/Tsw > 1) over the total number of encounters within each region is used to estimate the break-

ing percentages. Table 3.2 shows the corresponding divisions of the contour maps and their re-

spective percentages of waves estimated to break. The percentage breaking is zero for all steepness

values below the lower steepness limits in table 3.2. The percentage breaking is one hundred for

all steepness values above the upper steepness limits in table 3.2.

Notice regions (4, 5 and 6) in figures 3.14(a) and 3.14(b) and regions (2, 4 and 6) in figures

3.14(c) and 3.14(d). These regions changed drastically after the adjustments displayed in table

3.1 were implemented. The results of the simulations from the linear model shown in figures

3.14(a) and 3.14(c), severely overestimated the maximum steepnesses of a large number of short

waves, which yielded a larger estimate of waves breaking. After the cutoff and shifting factors
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Table 3.2: Percentage of waves expected to break without adjustments and with adjustments
found in the comparison of both models.

Interaction type cgz0/C range Steepness range Breaking % Breaking %
with adjustment without adjustment

1st kind (1) 12-16 0.19-0.7 92.37 92.56
1st kind (2) 6-12 0.17-0.7 89.57 87.59
1st kind (3) 1.2-6 0.36-0.7 94.26 96.84
1st kind (4) 12-16 0.01-0.19 21.03 0
1st kind (5) 6-12 0.01-0.17 5 0
1st kind (6) 1.2-6 0.01-0.36 60.05 4.66
2nd kind (1) 0.75-1.2 0.35-0.98 84.03 85.62
2nd kind (2) 0.75-1.2 0.01-0.35 30.8 0
3rd kind (3) 0.37-0.75 0.63-0.98 72.88 73.5
3rd kind (4) 0.37-0.75 0.01-0.63 34.35 0
3rd kind (5) 0.16-0.37 0.63-0.98 0.7 0.7
3rd kind (6) 0.16-0.37 0.01-0.63 0 0

were applied to the maximum steepnesses, an improved and validated estimate of wave breaking

was obtained (see figures 3.14(b) and 3.14(d)).

It is necessary to clarify that the results obtained in table 3.2 are approximations of the

percentages of wave breaking before and after the adjustments were made. These percentages are

found on two contour maps which are a little different. The contour map without the adjustments

is generated first and the map with the adjustments is developed. The two maps are not identical

because each interaction modeled has a random location in depth where the short wave starts.

Hence, the two maps differ in the locations where short waves start for each simulation.
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CHAPTER 4. SUMMARY AND CONCLUSION

4.1 Summary

Linear and 2d non-linear models were utilized to study the dynamics of an interaction

between a short internal wave and an inertia wave. Specifically, the effect of the interactions on the

stability and breaking of short waves was analyzed. The linear model was a good alternative to the

more computationally demanding 2d non-linear model. However, ray tracing (linear model) fails at

regions of strong refraction and singularities are present in the calculation of wave steepness. These

steepnesses were approximated using the Airy function, a procedure explained thoroughly in the

methods section. The 2d non-linear model was utilized to simulate the same wave interactions and

corresponding values for the steepness were calculated. These steepnesses values were compared

to the linear approximations to understand how well the Airy function estimated the steepness for

the singularities.

A stability analysis was carried out as the second major step in this research. The steep-

ness calculations from the linear and non-linear models in addition to the shear from the inertia

wave were used together to form the gradient Richardson number. This expression was used to

parameterize the relative influence of convective and shear instabilities during interactions. Since

steepness and shear are both functions of time, the instabilities were displayed through time. The

instability timescales were part of the stability analysis. Hence, the timescale of the instability was

contrasted to the scale of the short wave. The linear model was used to simulate interactions from

a spectrum of short waves and a fixed inertia wave. Each of the short waves in the spectrum was

given an initial steepness and group speed to find a relationship between instabilities and inertia

wave characteristics. A map was developed displaying the approximate number of waves estimated

to break from the initial spectrum of waves using ray tracing. Since these maps depended on the

accuracy of the approximations from the linear model, a statistical analysis was performed to find
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average cut-off and shifting factors to the steepness approximations. These cut-off and shifting

factors were applied to the instability maps resulting in an improved estimate of wave breaking.

4.2 Conclusions

The first objective of this research was to validate the Airy function approximations to

the short wave amplitudes by comparing the results to the 2d non-linear model. This objective was

accomplished by comparing the linear model to the non-linear model to have a better understanding

of how well the Airy function approximates the amplitudes. It was found that in general the Airy

function diverged the most when approximating first kind encounters with group speeds greater

than 12 times the phase speed of the inertia wave (C) and also when approximating third kind

encounters. For all other encounters the approximations deviated on average by 66%.

The maximum amplitude approximations found using the Airy function were compared to

the maximum amplitude calculated in the non-linear model. The comparison showed that the Airy

function approximations were deficient for wave interactions with group speeds greater than 12C.

For these interactions the average difference in the results was 162%. The Airy approximations

also lack accuracy when estimating the amplitude of third kind encounters (cg <C). For these type

of interactions the average difference in the results was 110%. The estimates of the amplitude for

second kind encounters and first kind encounters with group speeds less than 12C show an average

deviation of 66%. The estimates of the accuracy of the Airy function are an important contribution

for engineers, mathematicians and scientist who may use the Airy function to approximate the

results of another solution as it was used in this study.

The second objective was to perform a stability analysis and define instabilities using the

steepness and the inertia wave shear parameters. During the stability analysis and after performing

multiple simulations it was identified that convective instabilities had the largest influence on short

wave instability and when shear instabilities were present, their influence was very small. This

is because the strength of the shear from the inertia wave is very small relative to the strength

of overturned density gradients. Regardless of the strength of the shear, a forcing momentum

in the form of shear was present which increased the wave steepness, in some instances, by ten

times or more. These large changes in the wave steepness were definitely conducive to isopycnal

overturning and convective instabilities.

50



In the stability analysis, the temporal dependence of the instabilities was also accounted for.

To do this, the timescales of the instabilities were contrasted with the timescales of the short waves.

It was determined that in some cases instabilities were present, but their associated timescale was

not longer than the timescales of the short wave so they would not overturn. In these cases short

waves developed instabilities after the first interaction with the inertia wave. Then the unstable

short waves continued to propagate for a very short time until a second interaction occurred. In

this instance, when the second interaction was reached the amplitude of the wave decreased, elim-

inating the instabilities and allowing the wave to continue to propagate.

From the stability analysis it was noticed that instabilities behave according to the initial

steepness and group speed of the short wave. It was found for first kind encounters, that the

likelihood of meeting the theoretical conditions for wave breaking was high. This occurs because

the initial steepness of the wave changes significantly and it was sustained for long periods of time.

In general, the faster the short wave was approaching the inertia wave the larger the change in the

steepness magnitude observed, and the wave was more likely to become unstable.

The initial steepness also had a significant influence on the outcome of the instabilities,

as expected. Larger initial steepness magnitudes required smaller changes in wave properties for

the wave to cross the stability threshold, overturn and develop convective instabilities. The overall

behavior of the interactions showed that the percentage of waves estimated to break was the highest

when the group speed and initial steepness magnitudes were the largest. For encounters of waves

approaching slowly, it was found that below a group speed of about 0.37 C the estimated wave

breaking was zero regardless of the initial steepness magnitude. Thus, at these group speeds the

refractions were not strong enough to amplify the steepness for convective instabilities to appear.

The third objective was to use the linear model to develop a map that demonstrates es-

timates of wave breaking as a function of initial wave properties. A contour map was created

showing the breaking estimates for a large spectrum of short waves. These maps are shown in fig-

ures 3.14(a) through 3.14(d). The darkest squares in this plot show wave-wave interactions which

developed convective instabilities that persisted long enough to estimate wave breaking. The white

squares correspond to interactions with not instabilities and any other gray shade are those encoun-

ters with instabilities that do not have a timescale long enough to estimate breaking. These contour

maps are a significant contribution to the field of internal waves because the chart can provide a
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general idea of the percentage of waves estimated to break from an field of waves observed in

the ocean. It is important to mention that the length-scale of the inertia wave envelope in these

simulations is only big enough to capture one full wavelength of the inertia wave. Therefore if a

smaller envelope is surrounding the inertia wave packet this model is no longer valid, because a

smaller inertia wave envelope length-scale could not capture a full wavelength of the inertia wave.

First kind encounters show large changes in the steepness leading to convective instabilities.

In addition a significant number of simulations show that the large steepness persisted for a long

time with respect to the frequency of the short wave. First kind encounters with group speeds

between 1.2 to 6 C display an estimated percentage breaking of 96%. First kind encounters with

group speeds between 6 to 12 C show wave breaking percentage estimates of 87%. First kind

encounters with group speeds between 12 to 16 C show a percentage of wave estimated to break

of 92%. For second kind encounters it was found from the stability analysis that the steepness

changes develop convective instabilities but only 85% of those meet the timescale requirement to

estimate breaking. Third kind encounters with group speeds faster than 0.37 C display convective

instabilities with only 73% of the interactions displaying a long enough timescale to estimate

breaking. For both of these type of interactions the steepness changed less drastically than in

first kind encounters and the larger magnitude of the steepness was not always sustained for a time

period longer than the frequency of the short wave.

The bottom regions (4, 5 and 6) in figures 3.14(a) and 3.14(b) and regions (2, 4 and 6) in

figures 3.14(c) and 3.14(d) demonstrate the largest changes in the estimates of wave breaking after

the cut off and shifting factors are employed. For first kind encounters region (4) the percentage

breaking changed from 21% to 0 %, first kind encounters region (5) shows a change from 5% to 0%

and first kind encounters region (6) displays a change from 60% to 4%. Second kind encounters

region (2) shows a percentage change from 30% to 0%. Third kind encounters region (4) has a

change in the percentage of waves estimated to break from 34% to 0%

These large changes in the breaking percentage estimates take place because the approxi-

mations to the steepness in the linear model generally over predict the maximum magnitude of the

steepness, which results in more short waves developing convective instabilities with large enough

timescales to estimate breaking. Thus, the cutoff and shifting factors decrease the severity of the

overestimates found from the linear model.
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4.3 Future work

The effects of possible wave overturning on the interaction dynamics of short waves with

inertia waves, due to the time dependence of the inertia wave, has been analyzed. Nevertheless,

further studies are required to estimate the strength of internal wave breaking.

In addition further study of the regions boxed in the instability maps is necessary. A better

understanding of the physics involved with the interactions is needed to explain the boundaries that

exist between breaking and non-breaking estimates. This study would be better performed using a

3d non-linear model.

Lastly, it is recommended to use a 3d non-linear model to find the validity of our wave

breaking estimates. The 3d non-linear model will be able to capture the characteristics of the

breaking and the short waves that will actually break due to the interaction. The results of the

3d non-linear model can be used to further adjust the estimates of the linear model performed in

this study. This is recommended because ray tracing is the most versatile and quick model for

applications where multiple short waves interacting with inertia waves need to be modeled and

estimates of breaking are of interest, such as in oceanic observations of fields of internal waves.
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APPENDIX A. WAVENUMBER DISPERSION

A.1 Wavenumber dispersion

The wavenumber dispersion occurs because a wave is enveloped with a Gaussian. The

new wavepacket does not have a uniform wavelength as the original wave, instead it contains a

collection of wavelengths that approximate the original wavelength. Therefore, the energy of a

wavepacket is distributed among various wavenumbers (2π/λi, where λi is the wavelength). If

the envelope length-scale chosen to make the wavepacket is short the spectrum of wavelengths

representing the original wavelength is large and the energy will tend to spread among all wave-

lengths (wavenumbers). In contrary if the length-scale is long, the spectrum of wavelengths is

smaller because a more uniform wavelength can be maintained inside the envelope. Hence, less

energy is dispersed because there are less wavelengths (wavenumbers) to distribute it to. The ef-

fects of the length-scale of the envelope are observed in figures A.1(a) and A.2(a). Figure A.1(a)

corresponds to an envelope length-scale of 14 m, compared to the envelope length-scale of figure

A.2(a) which is 42 m. Notice the difference in dispersion which is more notorious for the enve-

lope length-scale of 14 m. Also notice the initial wavenumber spectrum for the smaller envelope,

figure A.1(b), originally has energy around the initial wavenumber m0 = 0.63 but it is distributed

in a broad bell curve around the vertical wavenumber (m0), which means the energy is distributed

among more wavenumbers with different vertical group speeds. The initial wavenumber spectrum

for the larger envelope, figure A.2(b), originally has most of its energy accumulated very close to

the initial wavenumber m0 = 0.63 with less wavenumbers sharing the energy at different vertical

group speeds.
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(a) (b)

Figure A.1: Figure A.1(a) is a freely propagating wave-packet with an envelope length-scale of
14 m. The small envelope length-scale of 14 m contains more wavelengths to approximate the
original wave. Thus the energy is distributed among multiple wavenumbers. Figure A.1(b) is
the wavenumber spectrum at the beginning of the simulation. This spectrum shows the energy
concentrated around m=0.63 in a bell curve.

(a) (b)

Figure A.2: Figure A.2(a) is a freely propagating wave-packet with an envelope length-scale of 42
m. The larger envelope length-scale of 42 m diminishes the dispersion of energy. Figure A.2(b)
is the wavenumber spectrum at the beginning of the simulation. This spectrum shows most of the
energy concentrated at m=0.63 with a small amount of the energy at other wavenumbers.
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APPENDIX B. POLARIZATION RELATIONS

The polarization relations, which define the perturbation density, pressure, and particle

velocities, are determined from the linear Boussinesq equations, dispersion relation, and continuity.

A waveform solution to the partial differential equations shown in section 2.1 is assumed

such

w′ = w0 cos(kx+ ly+mz−ωt). (B.1)

Take the relationship between ρ ′ and w′.

∂ρ ′

∂ t
+w′

dρ̄

dz
=

∂ρ ′

∂ t
+w0N2 cos(kx+ ly+mz−ωt) = 0, (B.2)

∂ρ
′ =−w0N2 ρ0

g
cos(kx+ ly+mz−ωt)∂ t. (B.3)

Integrate both sides

ρ
′ =−w0N2

ω

ρ0

g
sin(kx+ ly+mz−ωt). (B.4)

Follow the same procedure with the expression relating p′ and w′.

1
ρ0

∂ p′

∂ z
=−∂w′

∂ t
− ρ ′

ρ0
gz. (B.5)

Substituting equations B.1 and B.4

∂ p′

∂ z
= ρ0w0ω sin(kx+ ly+mz−ωt)+

w0ρ0N2

ω
sin(kx+ ly+mz−ωt). (B.6)

∂ p′ = ρ0w0 sin(kx+ ly+mz−ωt)
(

ω +
N2

ω

)
∂ z. (B.7)
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Integrate both sides and replace w′ and N2 = (ω2k2)/k2
h, where k2

h = k2 + l2

p′ =
w′ρ0ω

m

(
−m2

k2 + l2

)
=−w′ρ0ω

(
m

k2 + l2

)
. (B.8)

Use the equations derived for ρ ′, p′ and w′ to solve for the particle velocities u′ and v′.

∂u′

∂ t
=− 1

ρ0

∂ p′

∂x
. (B.9)

Substitute the partial derivative of equation B.8 with respect to x

∂u′

∂ t
=

ωm
k2 + l2

∂w′

∂x
. (B.10)

Plug ∂w′/∂x = w0k sin(kx+ ly+mz−ωt) and integrate both sides

u′ =− mkw′

k2 + l2 . (B.11)

∂v′

∂ t
=− 1

ρ0

∂ p′

∂y
. (B.12)

Plug the partial derivative of equation B.8 with respect to y

∂v′

∂ t
=

ωm
k2 + l2

∂w′

∂y
. (B.13)

Substitute ∂w′/∂y = w0l sin(kx+ ly+mz−ωt) and integrate both sides

v′ =− mlw′

k2 + l2 . (B.14)
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APPENDIX C. DISPERSION RELATION

The partial derivative of the z momentum with respect to time is taken and the following

equation is obtained:
∂ 2w′

∂ t2 +N2w′ =− 1
ρ0

∂ 2P′

∂ t∂ z
. (C.1)

Then the partial derivative of the x and y momentum is taken in the manner shown below.

∂

∂x

(
∂u′

∂ t

)
=− 1

ρ0

∂ 2P′

∂x2 (C.2)

∂

∂y

(
∂v′

∂ t

)
=− 1

ρ0

∂ 2P′

∂y2 . (C.3)

Adding these two equations results in the following expression:

∂

∂ t

(
∂u′

∂x
+

∂v′

∂y

)
=− 1

ρ0
∇H

2P′, (C.4)

where ∇2
H is ∂ 2/∂x2 +∂ 2/∂y2. Applying the ∇2

H to equation C.1 gives:

∂ 2 (∇H
2w′
)

∂ t2 +N2
∇H

2w′ =− 1
ρ0

∇H
2P′

∂ t∂ z
. (C.5)

Notice that the term −∇2
HP′/ρ0 is common in equations C.4 and C.5. Substituting equation C.4

into equation C.5 results in the following equation:

∂ 2 (∇H
2w′
)

∂ t2 +N2
∇H

2w′ =
1

∂ t∂ z

[
∂

∂ t

(
∂u′

∂x
+

∂v′

∂y

)]
. (C.6)

Using the continuity expression 2.5 in equation C.6 yields:

∂ 2 (∇2w′
)

∂ t2 +N2
∇H

2w′ = 0. (C.7)
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Assuming a wave form solution for this partial differential equation one can propose the following

answer.

w′ = w0cos(kx+ ly+mz−ωt). (C.8)

One can substitute this solution into equation C.7 and solving for ω yields:

ω
2 =

N2 (k2 + l2)
k2 + l2 +m2 . (C.9)

In the case of the inertia waves when the Coriolis force is significant, the dispersion relation

becomes

ω
2 =

N2 (k2 + l2)+ f 2m2

k2 + l2 +m2 . (C.10)
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APPENDIX D. RAY EQUATIONS

Starting with the waveform solution equation w′ = w0 cos(kx+ ly+mz−ωt) and letting

(kx+ ly+mz−ωt) =−α one can define the following expressions.

ω =
∂α

∂ t
(D.1)

−~K =
∂α

∂~x
, (D.2)

and the group speed which is defined as follows:

~cg =
∂ω

∂~K
=

dx
dt
, (D.3)

because ray theory follows the short wave energy in rays. Recalling that the dispersion relation

equation 2.19 is of the form ω = ω(k, l,m,x,y,z, t) and using expressions D.1 and D.2 to write ω

in a different form yields the following equation:

ω =
∂α

∂ t
= ω

(
−∂α

∂x
,−∂α

∂y
,−∂α

∂ z
,x,y,z, t

)
, (D.4)

The derivative with respect to~x of equation D.4 is taken which becomes:

∂ 2α

∂~x∂ t
=

∂ω

∂~K

(
− ∂ 2α

∂~x∂~x

)
+

∂ω

∂~x
. (D.5)

Using equations D.2 and D.3 to rewrite equation D.5 yields:

∂~K
∂ t

+~cg

(
∂~K
∂~x

)
=−∂ω

∂~x
. (D.6)
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Assuming a frame of reference in which the wavepacket is continually tracked while moving at its

group velocity, the position~x changes with respect to a stationary observer according to D~x/Dt = ~cg

as seen by ray equation 2.33. In contrast, the changes with respect to an observer moving with the

wavepacket will have the form of the material derivative described by the two elements on the left

hand side of equation D.6. This yields the other ray equation (equation 2.32)
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