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ABSTRACT 

 

 Application of high Resolution Electron Backscatter Diffraction (HR-

EBSD) Techniques to Twinning Deformation Mechanisms in AZ31 

Magnesium Alloy  

 

Ali Khosravani 

Department of Mechanical Engineering, BYU 

Master of Science 

 

 

The application of high resolution electron backscatter diffraction (HR-EBSD) techniques 

has been used in order to study the evolution of geometrically necessary dislocation (GND). The 

tested materials were taken from AZ31 magnesium sheet which had strong basal texture. 

Because of low symmetry of the magnesium crystal lattice, the von Mises criteria cannot be 

satisfied by the three independent, easily activated, basal slips. The strain along the c-axis of the 

crystal must be accommodated by either twinning and/or <c+a> slip systems. HR-EBSD data 

was taken in order to investigate these phenomena. The HR-EBSD results were post processed in 

order to resolve total GND density onto the observed possible slip systems. 

 

The first chapter of the investigation focused on the correlation between resolved GNDs 

with tensile twin nucleation, and the subsequent propagation path in the microstructure. For this 

purpose, 2.5 % strain was applied in a uniaxial compression test along the transverse direction 

(TD). Several fine scan were done at the boundaries where twin formed. The results show that in 

order for a twin to nucleate spontaneously at the grain boundaries, two criteria should generally 

be met: high angle grain boundaries (35-45°) and pile ups of basal slip system in neighboring 

grain at the other side of the boundary. Furthermore, once nucleation has initiated, twin 

propagation can occur through low angle grain boundaries (15-25°); if a twin reaches a high 

angle boundary, it will generally terminate at the boundary at low strain levels. A twin may pass 

through high angle boundaries with further deformation. 

 

In the second chapter, deformation of the AZ31 magnesium alloy was study for different 

strain paths. For this purpose, compression and tension in-situ tests were done and the texture 

and GND evolutions were investigated. The results show that the load paths, compression and 

tension, evolve the microstructure in different ways. Massive twin fractions were formed in 

compression, and higher GND contents were observed in tension tests. It was observed that at 

higher strain levels GND contents are roughly independent of the initial texture but the activation 

of slip systems at low strain strongly depends on initial structure. If the samples were loaded 

along RD, GND density increased sharply at low strain. In contrast, for the samples loaded along 

TD, GND increased moderately. A small amount of repetition is apparent in the two parts of the 

thesis due to them being formatted for individual publication as journal papers. 

 

Keywords:  Ali Khosravani, EBSD, AZ31 magnesium alloy, tension twins, in-situ tension and 

compression tests. 
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1 NUCLEATION AND PROPAGATION OF {   ̅ } TWINS IN AZ31 MAGNESIUM 

ALLOY  

Abstract 

Nucleation and propagation of tensile twins in AZ31 magnesium alloy are investigated using 

high-resolution electron backscatter diffraction (HREBSD) techniques. Both types of nucleation, 

slip-assisted and twin-assisted nucleation, have correlations with type <a> slip system activities. 

Slip-assisted nucleations mostly happen at high-angle grain boundaries where type <a> slip 

systems in an adjacent grain accumulate in the vicinity of that boundary. In contrast, twin-

assisted twinning is caused by twin propagation phenomena when one twin in a neighboring 

grain reaches a low-angle grain boundary and dislocation pile up at the twin tip can form another 

twin in the neighboring grain. However, at low strain levels, pile up of <a> slip systems at a twin 

tip is not sufficient to allow the twin to transmit from one grain to another one through high-

angle boundaries. 

1.1 Introduction 

Recent advantages in EBSD provide not only higher spatial resolution but more information 

about geometrically necessary dislocations (GND) from the surface of the material[1]. In this 
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study, this technique is used on AZ31 magnesium alloy to find correlations between tensile twin 

nucleation and propagation, with resolved GND content in the microstructure. 

Formability of Mg alloys at ambient temperature is poor due to the insufficient number of 

active slip systems in the HCP lattice [2-7]. According to the von-Mises criterion, five 

independent slip systems are required for plastic deformation of polycrystalline materials. Hence 

deformation twinning plays an important role in plastic deformation of magnesium alloys [3, 8-

11]. The most important available slip systems in magnesium alloys are basal <a> slip, prismatic 

<a> slip, pyramidal <a> (type I) slip and pyramidal <c+a> (type II) slip. Deformation studies on 

Mg alloy single crystals and polycrystals at room temperature showed that the critical resolved 

shear stress (CRSS) for basal slip is significantly lower than for non-basal slip [2, 8, 9, 12-15]. 

However, for strain accommodation along the c-axis, either <c+a> slip and / or mechanical 

twinning is required [2, 9, 16]. In contrast to dislocations which can move in two directions in 

the slip plane, twinning can happen in only one direction in the relevant plane; therefore, if the 

applied load is in an unfavorable condition for twin nucleation, <c+a> slip plays important role 

in deformation in order to arrive at the required five independent slip systems [2-5].  

Several researchers have been seen activity of non-basal slip at room temperature. Koike et 

al [4, 5] showed that non-basal slip is needed in the vicinity of grain boundaries in order to 

maintain strain compatibility, and this compatibility stress causes nucleation of twins or 

activation of <c+a> slip systems; otherwise fracture would occur along grain boundaries. 

Keshavarz et al [12] observed the presence of prismatic slip within the grain far from grain 

boundaries and showed that non-basal slip could happen, not only at the grain boundary, but also 

inside the grains. Agnew et al [14, 16], with experiments and simulations involving the ECAE 

process, showed that in AZ31 and AZ80 the dominant slip system is basal; and also that there 
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exists a small portion of <a> prismatic and <c+a> pyramidal modes. However, they reported that 

at room temperature prismatic slip is the most active non-basal slip system. 

1.2 Materials and methods 

1.2.1 Experimental procedure 

The material investigated in this study was a hot rolled AZ31 Mg alloy plate, which was 

homogenized at 350 C for 1 h and cooled to room temperature in the furnace. The twin-free equi-

axed grain microstructure and          ’            x                      Fig. 1-4(a)  T    v      

                                 10µm. A compression cube of             was machined 

from the homogenized plate by using wire EDM to avoid any residual stress during cutting; then 

for EBSD scan preparation the sample was mounted in cold resin and polished. The sample 

preparation procedure was mechanical polishing followed by OP-S colloidal silica slurry which 

provides high quality surface finishing for EBSD. The sample was etched with a solution of 60% 

ethanol, 20% distilled water, 15% acetic acid and 5% nitric acid. Using a focused ion beam 

(FIB), Platinum fiducial    k  w                           ’     f                               

the scan area. The sample was compressed along TD up to 2.5% strain. 

Automatic EBSD scans were performed using the FEI-Helios NanoLab
TM

 600i SEM 

equipped with OIM
TM

 data acquisition software and a high-speed Hikari
TM

 camera. In order to 

get dislocation maps, the EBSPs (electron backscattered patterns) were saved for all the scan 

points and later they were post-processed. Regular square grid scans were used to examine 

            with a 2                 T        w         fi          x      7 w    f        

out for texture analysis using TSL OIM software. For dislocation studies, several finer scans with 
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the step size of 100nm were performed at the border of the area in which twin nucleation 

occurred. 

1.2.2 Methodology 

Using high-resolution electron backscatter diffraction (HREBSD) techniques, near-surface 

geometrically necessary dislocation (density) tensors can be recovered from lattice distortion 

measurements. The principal and the method are described by Gardner et al [1].  The dislocation 

      ’                   extracted following the approach of Nye and Kr ̈ner [17, 18]: 

                   

    
  

   
         1-1  

Where                
     are the components of dislocation, lattice curvature, and the elastic 

strain tensors respectively [17]. If the elastic strain gradient term is considered to be negligible, 

this equation becomes 

                          1-2 

Having only 2-D scans, and hence only gradients in the plane of the surface of the sample, 

only 6 components of lattice curvature can be obtained. Using Eq. (2) only five components of 

dislocation tensor can be derived as shown in Eq. (3): 

    [

       

       

     

]           1-3 

The total dislocation density tensor may also be thought of as a sum over individual 

dislocation densities    from different dislocation types (t), each characterized by Burgers vector 

 ⃗   and line vector     by considering all possible independent-slip systems: 

    ∑   
   

    
              1-4 
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In order to solve for the dislocation activity on each slip system,    , an additional constraint 

must be added to this equation system, for example by minimizing the total dislocation density or 

line energy [17, 19]. 

In order to follow this process and subsequently attribute dislocation activity to <a> and 

<c+a> types, we first identify the independent slip systems that can be activated in magnesium 

alloys.  All possible slip systems are illustrated in Fig. 1-1. The numbers of slip systems are 

listed by type in Table 1.1. The number of possible dislocation types depends on the geometry of 

the crystalline lattice and the particular dislocation characters (edge, screw). It was observed that 

the <c+a> dislocations are stable in screw form but unstable in edge orientation; and it is 

reported that the number of independent <c+a> slip systems is 5 [20]. As shown in Table 1 there 

are four independent slip systems for which both screw type and edge type are stable. Therefore 

13 independent slip systems can be activated in magnesium alloys. Applying these 13 slip 

systems in Eq. (1-4) (i.e N=13), we obtain a set of 5 equations with 13 unknowns. A unique 

solution set for dislocation densities can be obtained only by adding additional constraints. In 

order to resolve total dislocation density in Eq. (1-4) into different slip systems, an additional 

function                is required to be minimized. 

 

Figure 1-1.                                                                                                          
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Table 1-1. Numbers of total and independent slip systems in magnesium 

Slip system Number of slip system Number of independent slip 

system 

Basal <a> 3 2 

Prismatic <a> 3 2 

Pyramidal <a> type I 6 4  

Pyramidal <c+a> type 

II 

6 2  

 

 

The two common forms of function   involve either an   or an    norm which are defined 

as [21, 22]: 

   ∑ |    
   | 

                  1-5 

   [∑ [    
   ]

  
   ]

 

 
         1-6 

where the quantity    is an appropriate weight factor for     
 . The idea is to minimize   and    

for a set of suitable   . The    norm does not have a fundamental physical interpretation, but 

may be more convenient to solve numerically [23]. In the case of the   norm, one choice for    

is the line energy of individual dislocation type; and if the line energy is isotropic and all 

dislocation types have the same line energy, the weights for all slip systems are identical and the 

total dislocation density is minimized [21, 24, 25]: 

     ∑    
              1-7 
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A second option for w                                f         v    B     ’  v         .  

Alternatively, in order to minimize the elastic energy present in the dislocation core, one might 

set            where   is the relevant elastic shear modulus [23].  

Another option for the weights is to consider the critical resolved shear stress (CRSS) for the 

relevant slip system. For example, in Mg the weight might be the CRSS for a slip system 

compared with that of basal slip,         
      

     ⁄ . If the macro-scale deformation strain is 

known, this might also be included in the weights by determining a Schmid factor,  , for the 

relevant slip systems. Then we might define weights by:        . One may also use 

combinations of these approaches, as is applied in this study: 

  ∑        
     
 

     
         

             1-8 

1.3 Results 

Two random small areas were chosen to study the relative activity of the basal, prismatic, 

and pyramidal slip systems at small strain of 0.5%. The IPF maps of the grains are shown in Fig. 

1-2(a) and schematic unit lattice cells are superimposed on the maps to provide a better visual 

sense of the crystal orientations. The Schmid factor maps of <a> basal, <a> prismatic, <a> and 

<c+a> pyramidal slips were plotted in Fig. 1-2 (b-e) respectively. The CRSS were not considered 

in generating the Schmid factor maps; hence activity of different slip systems cannot be 

predicted solely by comparing the Schmid maps. For example a grain with the high Schmid in 

the prismatic map does not necessarily have a higher probability of prismatic activation since the 

CRSS is higher than the basal slip system. However, each map by itself can represent relative 

activities for that slip system type in different grains. 
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Figure 1-3 shows total dislocation density and resolved dislocation maps for <11 ̅0> {0001} 

basal, <11 ̅0> {10 ̅0} prismatic, <11 ̅0> {10 ̅1} pyramidal, and <11 ̅2> {10 ̅ } pyramidal slip 

systems. In other ongoing research we have shown dependency of the measured dislocation 

density with scan step size [26]. Although the total and resolved dislocation densities are 

changed by step size, the ratios of resolved slip systems remain constant. Hence the magnitudes 

of the dislocation densities are not reported in this paper. In both scanned areas in Fig. 1-2, a 

slight increase in total dislocation density takes places even after 0.5% strain, and also different 

grain orientations and grain boundaries have different responses to the strain. As observed in the 

Fig. 1-3, the resolved dislocation density maps are in good agreement with Schmid factor levels 

for each slip system in each grain; for instance, in both areas the only two grains which have 

high Schmid factor for basal slip showed up with higher values in the <a> basal dislocation 

maps. Inasmuch as the material has highly basal texture, low <a>basal activity is detected in 

other grains, also for the same reason, negligible amounts of pyramidal <a>  activity present in 

both areas. Furthermore, the pyramidal <a> slip map has a poor agreement with the associated 

Schmid factor; i.e on both areas, the grains with the highest Schmid factor for pyramidal <a> 

          ’     w         v     f      5%       ; w                          w                 

Schmid factor shows some pyramidal <a> activities after 0.5% strain. Low activity of pyramidal 

<a> slip system is in agreement with previous experimental and simulated researches in which 

basal<a>, prismatic <a>, and pyramidal <c+a> were only observed or predicted [4, 5, 12, 14, 

16]. The absence of pyramidal <a> slip system might relate to high CRSS value for this type of 

dislocation. Although the possibility of presence of this type of slip system is undeniable, if the 

orientation evolution caused by that slip systems is less than noise threshold the activity of that 

type would be ignored. The noise threshold could be as a result of step size selection. One 
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possibility is to combine all <a> slip systems into one map and compare that with <c+a> 

pyramidal slip system. In this regards, slip systems with different magnitude of burgers vector, 

<a> and <c+a> types, are investigated in further maps. 

 

Figure 1-2. (a) Inverse pole figure maps,IPF, and related Schmid factor maps for (b) <11 ̅0> (0001) basal, (c) 

<11 ̅0> {10 ̅0} prismatic, (d) <11 ̅0> {10 ̅1} pyramidal, and (e) <11 ̅2> {10 ̅ } pyramidal slip systems. 

Based on the key bar next to the maps, the more reddish color represents the higher Schmid factor. 

 

Figure 1-3. T                        ’           v                     of area 1and 2 for 0% and 0.5% strain. 
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Figure 1-4(a) shows a wider view of the microstructure of the undeformed material with 

intense basal texture, in which the c-axes of most of the grains are aligned parallel to the ND 

direction. The (0001) pole figure contours are spread more towards the RD than TD. The {10 ̅0} 

pole figure indicates no preferred orientation for prismatic and pyramidal planes, and a-axes of 

the HCP lattice are randomly oriented in the rolling plane. Figure 1-4(b) shows the inverse pole 

figure (IPF) map after 2.5% compression strain along TD. Compression along TD will cause 

expansion along the ND / c-axes, which is favorable for tensile twin formation. The tensile twins 

re-orient the lattice by 86° toward the load direction which is evident from diminished basal 

texture and appearance of the component in the transverse direction on the (0001) pole figure.  

 

Figure 1-4.                                                                            and (b) 2.5% 

deformation AZ31 magnesium alloy. 
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Figure 1-5(a) and 1-5(b) show different boundary types in terms of misorientation on Image 

quality (IQ) maps of undeformed and 2.5% strain respectively. In undeformed sample almost 

6 %  f               ’     rientations are in the range of 13.2 to 39° and 18.6% in the range of 

39-53°while after 2.5% strain 31 % of the boundaries have misorientation of 80-90° which 

                       w  ’               

 

 

Figure 1-5. Grain boundaries on IQ maps showing different misorientations for undeformed (a) and 

deformed (b) material, and related distributions of misorientation angle (c and d). 
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Experimental detection of twin nuclei by EBSD is limited by the scan step size and poor IQ 

at the grain boundaries. It may happen that noise in highly deformed regions is confused for a 

twin, or a twin nucleus is overlooked as a result of choosing too large of a step size or due to low 

image quality.  Compressing the Mg samples by 2.5% strain causes tensile twins to form 

copiously across the microstructure, but at this strain level, twin thickening is not prevalent, and 

numbers of untwined grains can be found. In the case of Fig. 1-5(b), 17% of the total scan area is 

twinned. Since at 2.5% strain twinning has not been developed in all grains, it is possible to find 

some grains in which a tensile twin is spontaneously formed at a grain boundary or nucleation 

may be caused by another twin in a neighboring grain. In the rest of the paper these two 

nucleation types are referred to as slip-assisted and twin-assisted respectively.  Figure 1-6 show 

three tensile twins which appear to have formed independently at grain boundaries or triple 

junctions and have not passed through the parent grain. Each figure includes a total dislocation 

density map, <a> and <c+a> slip systems maps, and a boundary misorientation map. 

As one can see in Fig. 1-6 more than one twin can nucleate in any given grain at this 

deformation level. For instance in regions 2 and 3 multiple twins have started nucleating, as 

indicated by T1, T2, T3 and T4 in the figures. The grain boundary misorientations wherein twins 

nucleated all fall into the range of high angle boundaries. Figure 1-7 shows distribution of 

misorientation angle for 93 cases in which twinning happened spontaneously at grain boundaries. 

Slip-assisted twinning is more likely to nucleate at the grain boundaries with miorientation angle 

of 35-45°. The Total dislocation density map shows higher activity of slip systems close to these 

kinds of boundaries including twin boundaries. Resolved dislocation maps show more <a> slip 

contents in the vicinity of the high angle boundary in the grains labeled with a ‘ ’             
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neighboring the twinning nucleation site), and also less <c+a> content is observed. Moreover, 

the twinned regions have lower dislocation densities than parent grains. The split dislocation 

maps reveal that less total dislocation activity inside the twins is the result of less <c+a> slip 

content rather than <a> slip type; this is more evident in region 3, which has a larger twin.  The 

<a> slip map shows homogenous distribution inside and outside of the twin.  

 

 

Figure 1-6. IPF (a), IQ (b), and dislocation density maps ((c) total GND, (d) <a>-type, (e) <c+a>-type)  of the 

grains with the self nucleated twins. See Fig. 1-5 for the key to misorientation levels; the dislocation density 

level is a log scale. 
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Knowing the orientation of each grain, as well as the loading direction, permits the 

calculation of Schmid factors pertaining to the six possible {   ̅ } twin variants:    ̅  [ ̅   ], 

    ̅  [  ̅  ],   ̅    [  ̅  ],   ̅    [   ̅ ],    ̅   [   ̅ ], and    ̅   [ ̅   ].  

Theoretically, tensile {   ̅ } twin can be formed in six equivalent planes, with a specific shear 

direction. Twinning differs from slip activity by its polar nature; i.e. twins form in just one 

direction in the twin plane. Hence a shear vector is considered in the Schmid formula instead of a 

shear line; this leads to a negative Schmid factor for some of the twin variants. In other words, 

the twin variant with negative Schmid factor has no chance of being formed in the parent grain, 

even if it has a high absolute Schmid factor. In Fig. 1-8, the orientation of each of the G1, G2, 

and G3 grains shown in Fig. 1-6 are indicated in (0001) pole figures. The orientation of six 

possible twin variants with corresponding Schmid factors are plotted in the pole figure. The 

arrows indicate the twin variant formed during experiment. It is evident that twin variant 

selection obeys the Schmid factor; however twins with lower Schmid factors still have a 

possibility of nucleating.    

 

Figure 1-7. Misorientation angle distribution of the boundaries at which slip-assisted twinning formed. 
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Figure 1-8. The orientation location of G1 (a), G2 (b), and G3(c) grains in Fig. 1-6 and their corresponding six 

possible twin variants in (0001) pole figures. The experimental twin variant indicated by arrow and the 

Schmid factor value of each variant show twin nucleation obey Schmid factor law. 

 

The formation of a twin leads to shear in the grain, and when the twin grows and intersects 

grain boundaries, it could cause twin nucleation in another grain. To investigate which paths 

twins choose to propagate along in the microstructure, several scans were taken at the area where 

twins transmit from one grain to another one. Three of these scans are shown in Fig. 1-9; as one 

can see, twin growth in one grain can result in twinning in neighboring grains; however, as it is 

evident, twins appear to transmit from one grain into another one through certain types of 

boundary. The higher angle grain boundaries (highlighte          w     ’      w  w            

         f    x                                 ‘   ’             ;                    v       

misorientation.  In contrast, a twin can cause twinning in the neighboring grain at which 

misorientation is low (for example, the boundaries labeled by gb2). Figure 1-10 (a) and (b) show 

distributions  f                       f        w            ’                            k    

boundaries respectively. It is evident from Fig. 1-10 that most of the boundaries which allow the 

twinning to pass through have misorientation angle in the range of 15-25° and the misorietation 
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angles for the boundaries which block twin propagation fall in the range of 45-55°. In the scans 

of Fig. 1-9 higher total dislocation content is found at the twin tips, which is mostly <a> type slip  

 
Figure 1-9. IPF (a), IQ (b), and dislocation density maps ((c) total GND, (d) <a>-type, (e) <c+a>-type) of the 

grains with the twin-assisted nucleation. 
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(notice the twins labeled by T1 and T2). Also except in the vicinity of the twin boundary in 

parent grain, type <a> slip maps show identical distribution inside and outside of the twins. It is 

more evident in large twins that <c+a> slip shows less activity inside the twinned regions; when 

the twin grows and consumes its parent; the twin appears to decrease <c+a> slip type in the grain 

while the <a> slip type remain unchanged. Figure 1-11 represents the area in which a twin is 

blocked at a grain boundary even up to 7% strain. The boundary indicated by an arrow has 

misorientation angle of 57°. 

 

Figure 1-10. Misorientation angle distribution of the boundaries at which twin can propagated (a) and 

blocked (b) 
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The orientation of G1, G2, G3, and G4 grains in Fig. 1-9 are plotted in (0001) pole figures in 

Fig. 1-12 with the corresponding six possible twin variants in each grain. For this type of 

nucleation, which we call twin-assisted nucleation; twin variant selection still shows good 

agreement with Schmid factor. 

 

 

Figure 1-11. IPF map of small region during in-situ compression test at 1% (a), 3% (b), 5% (c), and 7% (d) 

strain showing a boundary, indicated by arrow, resist against twin propagation up to strain level of 7%. 

 

 

Figure 1-12. The orientation location of G1 (a), G2 (b), G3(c), and G4 (d) grains in Fig. 9 and their 

corresponding six possible twin variants in (0001) pole figures. The experimental twin variant indicated by 

arrow and the Schmid factor value of each variant show twin nucleation obey Schmid factor law. 

 

Figure 1-13 shows a larger scan, including several grains in which twinning (nucleation and 

propagation to various extents) has occurred in some grains, but other grains are twin-free. In 

promising agreement with the previous observations, the twins pass through boundaries whose 
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misorientation is less than 40° but they are not able to transmit through high angle-misoriented 

boundaries (T1 twin in Fig. 1-13); however slip-assisted twins can form at the higher angle 

boundaries (T2 twins in Fig. 1-13). The total dislocation map shows more activity of slip systems 

at grain boundaries as well as at twin boundaries. As it can be seen in the <a> and <c+a> 

dislocation maps, the grains with twins have less <c+a> slip contents but more <a> type. 

 

 

Figure 1-13. IPF (a), IQ (b), and dislocation density maps ((c) total GND, (d) <a>-type, (e) <c+a>-type) of the 

area in which the twins propagate through some of the grains. 

1.4 Discussions 

In this investigation we have used HR-EBSD techniques to study tensile twin nucleation in 

AZ31 Mg. The twin nucleation appears to relate to dislocation pile-up at neighboring grain in 

two ways: (a) twin nucleation which is the result of <a> slip type accumulation behind the high 
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angle-misoriented boundary (slip-assisted twinning) and (b) nucleation which is the result of 

dislocation pile up at the tip of a twin intersecting low angle-grain boundaries (twin-assisted 

twinning). 

1.4.1 Total and resolved dislocation densities 

The evolution of dislocations maps in Fig. 1-3 shows activation of slip systems at low strain 

level of 0.5 %. Once the deformation starts, dislocation sources increase the dislocation contents 

in the microstructure. Depending on boundary type, grain boundaries can act as a source for 

dislocation as well as a sink [27]. As is evident from Fig. 1-3, more dislocation content is 

observed at grain boundaries.  

Dislocation content in grains was compared with Schmid factors on the available slip 

systems. In the Schmid factor calculation we assumed that the local stress state was identical to 

the global one, which is only an approximation to reality. However, the resolved dislocation 

maps show good agreement with Schmid factor maps. Although the CRSS for <a> basal slip is 

the lowest relative to other slip systems [4, 5, 8, 13, 14, 16], less activition of <a> basal slip is 

observed in the two small scans compared with <a> prismatic slip.  This is the result of a strong 

basal texture of the material in which most of the grains are oriented in a more favorable 

direction for prismatic slip rather than basal.  The <a> Pyramidal slip type shows negligible 

levels in both scan areas even though it has relatively high Schmid factor; the same result is 

observed after 2.5 % strain in other scans. The high CRSS for <a> pyramidal slip system is 

clearly a convincing reason for this.  
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1.4.2 Correlation of twin nucleation sites with <a> slip systems 

As is evident in Fig. 1-6 and 1-9, the activities of <a> and <c+a> slip types differ for 

  ff                                          O      f                             ’     v         

each grain are generally based on Schmid factor and CRSS values for that type of slip system. 

The movement of dislocations is based on the strain field around the dislocation core and the 

magnitude of the Burgers vector. Lattice defects, such as twin and grain boundaries, vacancies, 

and stacking faults, can promote or impede dislocation movement. The split dislocation maps in 

Fig. 1-6 and Fig. 1-9 show pile up of <a> slip type at high angle grain boundaries. The lattices of 

the grains at the two sides of these boundaries have strong mismatch, which makes it difficult for 

dislocations to glide from one grain to another one [27]. Therefore accumulation of the 

dislocation happens at these boundaries. As suggested by Koike[5], to accommodate 

incompatibility stress caused by basal slip systems at grain boundaries and to avoid grain 

separation, <c+a> slip systems are required. Twinning is the alternative option for stress 

accommodation. From this point of view, nucleation of the tensile twins is not surprising. In 

contrast, less <a> slip system pile up happens at low angle boundaries, therefore tensile twins 

have less chance for nucleation at those boundaries. 

Once twins are formed, their boundaries also act as a barrier for dislocation movement. 

Yoo[28] reported that twin interfaces act as barriers to basal dislocations. As it is evident in the 

split dislocation maps, higher <a> and <c+a> slip activity can be observed at twin boundaries 

and twin tips. Upon further deformation, twin growth continues until it reaches the other side of 

the parent grain. Depending on the boundary type that it then encounters, twins can transmit to 

neighboring grain or be suppressed. As it is shown in Fig. 1-9, if the grain boundary has low 

angle misorientation, 15-25°, the <a> slip pile up at the twin tip can transmit to the neighboring 



22 

 

grain and cause twinning in the neighboring grain. In contrast to this mechanism, if the twin 

reaches a high angle boundary, 45-55°, the <a> slip content at the twin tip is not enough to shear 

the neighboring grain. Therefore at the observed strain level the twin is impeded by high angle 

boundaries. Further deformation may provide sufficient localized slip activity to transmit the 

twin to another grain. 

Huber and Hatherly [29, 30] in their studies on brass showed that twins can relax 

accumulated strain due to heavy cold-         T                  w    ‘    v     w   ’          

showed that dislocation density inside the twins is lower than outside of the twins. The result 

from considering relative dislocation activity in Fig. 1-6, Fig. 1-9, and Fig. 1-13 shows lower 

dislocation content inside the twin as a result of less <c+a> slip type inside the twin.  

The twin variant selection is studied in relation to Schmid factor in some grains in Fig. 1-6 

and Fig. 1-9. Since the texture is a highly basal one, having a high Schmid factor of 0.45 for at 

least one of the twin variant is not surprising. Figure 1-8 and 1-11 show that tensile twinning is 

governed by Schmid factor. In other word, tensile twinning due to a strain path of compression 

along TD obeys the Schmid factor criterion. However, the twins with lower Schmid factor still 

have the chance be nucleated. 

1.4.3 Deformation mechanisms: twinning vs <c+a> pyramidal slip system 

In magnesium alloy because of limited numbers of independent basal slip systems, some 

other type of deformation accommodation is required to satisfy von-Mises criterion. <c+a> 

pyramidal slip system and twinning potentially play an important role in magnesium deformation 

since they provide mechanisms which can accommodate strain along the c-axis in HCP crystals. 

Nucleation of tensile twins typically correspond with a lower CRSS than that required for 
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activation of <c+a> pyramidal slip sytems at room temperature [6]. Nevertheless, it is postulated 

that at the small strain levels present in the samples of this study tensile twins are predominantly 

nucleated at high angle grain boundaries. The misorientation distribution map in Fig. 1-5(c) 

shows that only 30% of the boundaries in the undeformed material have misorientation above 

39°. In addition, because of basal texture of the material, the Schmid factors for basal slip for 

most of the grain are low. In other words, two of the factors which promote slip-assisted 

twinning are absent in many of the grains. Relatively higher amounts of <c+a> pyramidal slip 

may then be expected in twin-free grains. Relative dislocation activity maps in Fig. 1-13 shows 

higher amounts of <c+a> slip contents in the twin-free grains. Those grains have low activity of 

<a> slip systems or have high-angle grain boundaries which makes them unfavorable for twin 

nucleation and propagation. Strain accommodation along the c-axis in these grain is partially 

satisfied by activation of <c+a> slip systems. In contrast, in the grains contain tensile twin, strain 

along the c-axis is provided by twins and the <c+a>slip system is not required to be activated. 

1.5 Conclusions 

The aim of this study was to investigate correlations relating to tensile twin nucleation / 

propagation using HR-EBSD techniques. Using this approach, total and resolved dislocation 

densities can be derived from the EBSPs (electron backscattered patterns). The main results can 

be summarized as follows: 

1. Tensile twinning strongly obeys a Schmid factor criterion. The twin variant with higher 

Schmid factor is activated; meanwhile the twin variant with second rank Schmid factor 

has a chance to form in the grain. 
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2. Tensile twin nucleation predominantly occurs in a grain which meets two requirements: 

the grain has a boundary with misorientation of higher than 39° and high activity of <a> 

slip systems present on the other side of that boundary in a neighboring grain. 

3. Tensile twinning and pyramidal <c+a> slip systems compete for strain accommodation 

along the c-axis. In a grain which has low chance of twinning, higher activity of <c+a> 

pyramidal slip is present. 

4. At low strain, high-angle grain boundaries, in the range of 45-55°    ’      w  wins to 

transmit through them to the other grain and cause twinning in neighboring grain. In other 

word, the dislocation pile up at the twin tip is not enough to shear the adjacent grain at 

high-angle grain boundaries. In contrast, tensile twins can propagate through low angle 

grain boundaries (15-25° misorientation); at these boundaries dislocation pile up at a twin 

tip can produce incompatibility stress at the grain boundary which leads to formation of 

another twin in the neighboring grain. The tensile twins can be considered as recovery 

twins in the AZ31 magnesium alloy, causing strain relaxation by diminishing <c+a> slip 

content inside the twin. 
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2 IN-SITU MICROSTRUCTURE EVOLUTION OF AZ31 MG ALLOY AT 

DIFFERENT STRAIN PATHS 

Abstract 

Microstructure evolution of AZ31 magnesium alloy was investigated during in-situ 

compression and tension tests by means of high-resolution electron backscatter diffraction (HR-

EBSD) techniques which provide information on geometrically necessary dislocations (GND) 

from the scanned area. Compression and tension tests were performed at room temperature to 

various strain level up to 7% strain. The results show twin formation and total dislocation density 

strongly depends on initial microstructure and load directions. In the rolled sheet with deviation 

away from basal texture spreading along the rolling direction (RD) in the (0001) pole figure, 

twinning starts at lower strains when the sample is loaded along the transverse direction (TD). 

On the other hand, total dislocation density increases more rapidly when the sample is loaded 

along the rolling direction. 

2.1 Introduction 

Application of magnesium alloys has been increased substantially in automotive, aircraft, 

and electronic industries because of specific properties of the Mg alloys. In the last few decades, 

in order to reduce vehicle weight, many efforts have been made to accelerate its adoption. 

Replacement of heavy components of the automobile with Mg improves fuel efficiency and 

reduces the harmful gas emissions [2, 4, 6-8, 15, 31, 32]. Magnesium and its alloys are the 
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lightest structural metals, providing good mechanical properties and the highest available 

strength over weight ratios in metal components [2, 32]. Wrought magnesium alloy products 

provide excellent mechanical properties[4, 5]; however, the casting process requires techniques 

which provides fine-grain microstructure, for example die-casting or Thixo-casting techniques, 

which are limited by solidification speed and processing cost [4, 5]. Furthermore, wrought 

magnesium alloys exhibit strong anisotropies and asymmetries in mechanical properties because 

of strong crystallographic texture and the intrinsic anisotropy in the HCP lattice [7, 8, 16, 32]. 

Wrought alloys are also unsuitable for many components, such as body panels in 

automotives. However, sheet material presents other issues. Room (or near-room) temperature 

forming of magnesium alloys is desirable to reduce energy and lubricant costs; but, formability 

of Mg alloys at ambient temperature is poor since the HCP              ’     v    a sufficient 

number of active slip systems [2-7]  A                v   M    ’            f v               lip 

systems are required for plastic deformation of polycrystalline materials, but popular alloys only 

have two active (basal), and two semi-active (prismatic) systems. Hence deformation twinning 

plays an important role in plastic deformation of magnesium alloys by adding additional active 

systems [3, 8-11]. 

It has been reported [8, 11, 33-35] that twin morphology, twin fraction, and texture may be 

changed by varying strain paths, leading to different mechanical behavior from previously 

identical materials. Hong et al [8] showed that tension along the normal direction (ND) of highly 

textured sheet will activate different twin variants in the grains, resulting in a random distribution 

of the c-axis for the twin texture in the RD-TD plane. In contrast they showed that compression 

along the RD results in activation of mostly one twin variant or a twin variant pair in all grains, 

and a preferred direction for the c-axis of the twin texture in the rolling direction; this helps basal 
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slip activity by increasing its corresponding Schmid factor. They concluded that the strain path 

can significantly affect flow stress and strain hardening. It has been seen [32, 35] that spreading 

 f          ’          x       w    RD    TD                     f                  w   f  w 

stress if the sample is pulled along the direction of spread. This relates to the numbers of grains 

which are more favorably oriented for basal activity as well as for tensile twinning in the 

direction along which the basal texture spreads. 

In this study, in-situ compression and tension tests were performed to investigate 

microstructure evolution for different load paths. The total dislocation densities at each strain 

levels were obtained using HR-EBSD techniques which provide deeper insights into the plastic 

deformation study of AZ31 magnesium alloy. For this purpose, a rolled AZ31 Mg sheet with an 

intense basal texture was used. The samples were loaded along the rolling direction (RD) and the 

transverse direction (TD) in compression and tension. 

2.2 Experimental procedure 

AZ31B magnesium sheet was annealed at 350 °C for 1 hour prior to in-situ tension and 

compression tests. Both the rolling and the transverse directions (RD and TD) of the sheet were 

aligned along the major strain axis.  Compression cubes and tensile bars were machined from the 

homogenized plate by using wire EDM to avoid any residual stress during cutting; then the 

sample was mounted in cold resin and polished for EBSD scan preparation. The sample 

preparation procedure was grinding with 1200 grid SiC paper, polishing with 6, 3, and 1 µm oil-

based diamond suspension, followed by OP-S colloidal silica slurry which provides high quality 

surface finishing for EBSD. The sample was etched with a solution of 60% ethanol, 20% 

distilled water, 15% acetic acid and 5% nitric acid. Using a focused ion beam (FIB), Platinum 
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fiducial    k  w                           ’     f                                              

Uniaxial true strains of 1, 3, 5, and 7 % were achieved. 

 Automatic EBSD scans were performed using the FEI-Helios NanoLab
TM

 600i SEM 

equipped with OIM
TM

 data acquisition software and a high-speed Hikari
TM

 camera. In order to 

get dislocation maps, the EBSPs (electron backscattered patterns) were saved in bmp format for 

all the scan points and later they were post-processed. Regular square grid scans were used to 

examine           with a 300 nm step size. Using cross correlation technique, the 

perturbation of the orientation between neighboring scan points can be measured from their 

corresponding EBSPs from which lattice distortion between the can be measured. The 

dislocation density tensor can be described as second rank tensor, with components    . Nye and 

Kr ̈ner defined the components of dislocation tensor in terms of the components of lattice 

distortion (   ) tensor as [18]: 

               2-1 

                       2-2 

where      is the permutation tensor. Note that scans from the surface of the sample only provide 

lattice gradients in the plane of the surface, hence only 12 of the required 18 components of 

lattice distortion, and therefore 3 fully determined, and several partially determined, components 

of the dislocation tensor can be derived. 

Texture evolution studies of the scanned region during in-situ loading were performed using 

TSL
TM 

OIM software, and for this purpose      w         fi      index < 0.07 were filtered out. 

In addition, twin fractions in each strain level were calculated by the software with a 

misorientation tolerance of ±2° for characterizing tensile twin boundaries at 86.3°. The twin 
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fractions are calculated based on the ratio of the area of the twinned region divided by the total 

scanned area. 

2.3 Results and discussions 

The Inverse pole figure (IPF) map of the undeformed AZ31 magnesium sheet in annealed 

condition are shown in Fig. 2-1, where the corresponding (0001) and {   ̅ } pole figures show 

strong basal texture and random distribution of prismatic and pyramidal planes. The basal texture 

is more spread in RD which has been reported to influence the yielding behavior of the sheet 

under different load paths [32, 35]. 

 

Figure 2-1. Inverse pol                                                                                    
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2.3.1 In-situ compression tests 

The microstructural evolutions of AZ31 Mg under different load paths are shown in Fig. 2-

2. As is evident, massive fractions of twins are formed in compression tests relative to the 

tension tests (shown in the same figure). Compression of the AZ31 Mg sample along RD by 7% 

strain causes 25.4% of the scanned area to twin. The twin fraction for the sample compressed 

along TD is 23.5% for 5% strain. The plot in Fig. 2-3(a) shows that in the sample compressed 

along TD, the twin fractions at 1, 3, and 5% strain are higher than the corresponding levels for 

the sample compressed along RD at each strain level. In the sample compressed along TD, the 

scan of 7% strain was rejected due to the high level of noise in the scan, which was a result of 

poor diffracted patterns at that strain level. However, from the trend of twin fraction for previous 

strain levels, one would predict that the twin fraction at 7% strain for the C-TD (compression 

along TD) sample would be higher than C-RD (compression along RD).  

The much higher twin fraction at 1% strain for the C-TD sample relative to the C-RD 

sample indicates that twin formation occurs at lower strain levels when the sample is compressed 

along the transverse direction as opposed to the rolling direction. This can also be inferred by 

looking at the initial (0001) pole figures of both regions in Fig. 2-4. The C-TD sample had an 

initial microstructure in which more basal planes were aligned with the normal direction of the 

sheet than C-RD sample. Hence, higher Schmid factor values for tensile twin variants are 

expected as shown in Fig. 2-5(a). Theoretically, tensile {   ̅ } twin can be formed in six 

equivalent planes, with a specific shear direction:    ̅  [ ̅   ],     ̅  [  ̅  ],   ̅    [  ̅  ], 

  ̅    [   ̅ ],    ̅   [   ̅ ], and    ̅   [ ̅   ].  The Schmid factor is calculated using 

           . Twinning differs from slip activity by its polar nature; i.e. twins form in just 

one direction in the twin plane. Hence a shear vector is considered in the Schmid formula instead 



31 

 

of a shear line; this leads to a negative Schmid factor for some of the twin variants. In other 

words, the twin variant with negative Schmid factor has no chance of being formed in the parent 

grain, even if it has a high absolute Schmid factor. As it can be seen in Fig. 2-5(a) and Table 1, 

the C-TD sample not only has a slightly higher fraction of positive twin variants (81.7% vs 

79.5%) but it also has a significantly higher average SF (0.403 vs 0.359) than the C-RD sample. 

These reasons help explain why twins in the C-TD sample formed at lower strain level than for 

the C-RD sample. 

 

Figure 2-2. Inverse pole figure evolution of the AZ31 Mg strained along RD and TD during in-situ 

compression tests (C-RD and C-TD) and in-situ tension test (T-RD and T-TD) at several strain levels up to 

7% (two missing subfigures are due to poor scans at these strain levels). 
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Figure 2-3. Twin fractions at different strain levels for in-situ compression tests (a) and in-situ tensile tests (b) 

 

Total dislocation density maps of initial microstructure and final strained C-RD and C-TD 

sample are shown in Fig. 2-6. In other ongoing research we have shown dependency of the 

measured dislocation density with scan step size. Hence the reported magnitudes of the 

dislocation densities in Fig. 2-7 use a constant 300 nm step size for each scan. Although the 

initial dislocation density for C-RD sample is less than that for C-TD, the dislocation density 

increased much sharper in C-RD sample than in the C-TD sample. This may relate to the initial 

texture of the samples. As shown in Fig. 2-4, the basal texture for C-RD sample spreads more 

along the rolling direction, which makes the activation of the basal slip system easier by 

increasing the SF. The distribution of SF values of undeformed condition in the C-RD and C-TD 

samples were plotted in Fig. 2-8(a). As it is evident in the plot, the fraction of grain with higher 

Schmid factor for basal slip system is higher when the sample is loaded along rolling direction 

than transverse direction. The average Schmid factors for basal slip system in C-RD and C-TD 

samples are 0.306 and 0.274 respectively. The C-TD sample is less favorable for basal slip 

activity, and more favorable for twin formation at lower strain levels (as discussed above) 
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leading to higher twin fraction and lower GND content, since mechanical twinning and slip 

system activity are two competing deformation mechanisms in HCP materials. In both C-RD and 

C-TD samples total dislocation densities decrease after 5% and 3% strain respectively. This 

could be a result of twin formation and growth. It has been observed [29, 30] that dislocation 

density inside the twin region is less than in the parent grain (recovery twinning). Therefore by 

consuming parent grains with twins, total dislocation density of the sample decreases. 

 

 

Figure 2-4.                                                                               strain paths: 

Compression test along RD (C-RD), compression test along TD (C-TD), tension test along RD (T-RD), and 

tension test along TD (T-TD). 
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Figure 2-5. Fraction of twin variants with positive SF values in the scanned area, and the average of two 

highest ones at each grain at different strain paths (a), fraction of grain with 0, 1, 2, 3, 4, 5, and 6 twin 

variants with negative SF values for different strain paths (b). 

 

Table 2-1. Statistical information of the scanned area in each in-situ test. 

Sample C-RD C-TD T-RD T-TD 

Numbers of grains in scanned area 147 124 124 136 

Numbers of twin variants 882 744 744 816 

Numbers of twin variants with positive SF 701 608 240 161 

Fraction of twin variants with positive SF (%) 79.5 81.7 32.2 19.7 

Average of the two highest positive SF 0.359 0.403 0.104 0.065 

2.3.2 In-situ tension tests 

The inverse pole figure maps of in-situ tension tests along rolling and transverse directions 

are shown in Fig. 2-2. The regions with high lattice curvature within a grain are apparent via 

gradients in the color. In both the T-RD and T-TD samples few twins formed; the twin fractions 

at 7% strain reach 4.6% and 4.5% respectively. The lower spread in rolling direction on the 

undeformed (0001) pole figure of the T-TD sample might be the reason for higher twin fraction 

at 1% strain (due to a resultant higher SF for slip, as was the case for the compression samples). 
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However, since the initial textures of both samples were fairly similar, the final twin fractions for 

both samples are also close after 7% strain. As shown in Fig. 2-5(a), the T-RD sample has both a 

higher average SF and a higher fraction of twin variants with positive SF. Hence the twin 

fraction may be more sensitive to the twin SF than the fraction of twin variants with positive SF. 

 

 

Figure 2-6. Total dislocation density maps of undeformed and final strain for different strain paths. 

 

Total dislocation density maps of initial and 7% strained T-RD and T-TD samples in Fig. 2-

6 show similar increasing rate between 0% and7% strain (2.63 times from                   

     in T-RD sample and 2.5 times from                        in T-TD sample ). 

However, the increasing rates in 1% strain are different in T-RD and T-TD (1.72 times from 

                       in T-RD sample and 1.13 times from                       in 

T-TD sample). The initial textures of both samples have similar basal textures which spread 

slightly along the RD; this is more favorable for basal slip activity. Hence more slip activity and 
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GND generation is expected at low strain level during tensile test along RD as opposed to TD. 

From the maximum intensity of the (0001) pole figure in Fig. 2-4 the basal texture strengthens 

by 15% and 8.5% for T-RD and T-TD respectively. The strengthening of the basal texture during 

tension tests is reported to relate to basal slip activity [2, 4, 36]. 

 

Figure 2-7. Total dislocation density plot of in-situ compression and tension tests at 0, 1, 3, 5, and 7% strains. 

 

 

Figure 2-8. Distribution of Schmid factor values for basal slip system in C-RD and C-TD samples (a) and T-

RD and T-TD samples (b). 
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2.3.3 Twinning vs. slip system activity 

Significant differences in twin fractions between compression samples and tension samples 

relate to the polar nature of tensile twins. Compression in RD-TD plane leads to expansion along 

the ND of the sheet; because of strong basal texture of the sheet, most of the grains expand along 

their c-axis which favors tensile twins. As it is evident in Fig. 2-5(a) and Table 2-1, in 

compression tests larger fractions of possible twin variants have positive SF and the average of 

two highest positive SFs is higher. In Fig. 2-5(b), in compression tests most of the grains have at 

most 2 twin variants with negative SF value. In contrast, in tension tests, most of the grains have 

at least 4 twin variants with negative SF value.  In contrast to the compression tests, total 

dislocation densities for tension tests have increasing trends. The increasing then decreasing 

trend for total dislocation densities of compression samples could relate to massive twin 

nucleation and their growth. Figure 2-9 shows three small areas containing twins. In order to 

have more data inside the twins, these scans were done with a 100nm step size. As it is evident in 

this figure, the GND content inside the twin is less than the level in the parent grain. The other 

reason for decreasing dislocation density in compression tests after 3% strain could relate to 

amount of noise in the scans at higher deformation. In other words, the regions of highest GND 

will have the lowest confidence index, and hence these areas will be preferentially filtered out – 

reducing the overall GND. However, one might notice that in tensile samples at 7% strain more 

data points close to the boundaries are filtered out so then the actual dislocation densities for both 

tension tests should be higher than the quantities in the graph. In other words, the increasing rate 

of GND due to deformation is higher than the decreasing rate of GND due to filtering out poor-

quality points, therefore the GND contents shows an increasing rate up to 7% strain in both 

tension samples. 
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Figure 2-9. Inverse pole figure and total dislocation map of three regions with twins. 

2.4 Conclusions 

In-situ HR-EBSD on compression and tension tests was performed to study twin formation 

and dislocation evolution of AZ31 magnesium alloy along RD and TD.  For in-situ compression 

tests, almost 25% of the total area twinned while for tension tests the twin fraction barely 

reached 5%. The strain threshold for twin formation is strongly depends on initial microstructure 

and load direction; slight deviation from basal texture will change the total average Schmid 

factor and the numbers of twin variants with positive SF value. Dislocation evolution also shows 

dependency on initial microstructure and load direction. Although the initial texture of the 

sample in tension test results in the same fairly close GND content, the samples loaded along RD 
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have sharper increase in dislocation density while loading along TD shows a modest increase of 

dislocation density. In compression samples, the twin formation and growth decrease the total 

dislocation density. This also may be affected by filtering out the highly deformed region 

because of low quality of EBSP. 
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