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ABSTRACT 

Dynamics and Control of Wrist and Forearm Movements 
 

Allan William Peaden 
Department of Mechanical Engineering 

Master of Science 
 

Wrist and forearm motion is governed both by its dynamics and the control strategies employed 
by the neuromuscular system to execute goal oriented movement. Two experiments were 
conducted to increase our understanding of wrist and forearm motion. The first experiment 
involved 10 healthy subjects executing planned movements to targets involving all three degrees 
of freedom (DOF) of the wrist and forearm, namely wrist flexion-extension (FE), wrist radial-
ulnar deviation, and forearm pronation-supination (PS). A model of wrist and forearm dynamics 
was developed, and the recorded movements were fed into the model to analyze the movement 
torques. This resulted in the following key findings: 1) The main impedance torques affecting 
wrist and forearm movements are stiffness and gravity, with damping and inertial effects 
contributing roughly 10% of the total torque. 2) There is significant coupling between all degrees 
of freedom (DOF) of the wrist and forearm, with stiffness effects being the most coupled and 
inertial effects being the least coupled. 3) Neglecting these interaction torques results in 
significant error in the prediction of the torque required for wrist and forearm movements, 
suggesting that the neuromuscular system must account for coupling in movement planning. A 
second experiment was conducted in which 10 different healthy subjects pointed to targets 
arranged on a plane in front of the subjects. This pointing task required two DOF, but subjects 
were allowed to use all three DOF of the wrist and forearm. While subjects could have 
completed the task with FE and RUD alone, it was found that subjects recruited PS as well. 
Hypotheses regarding why subjects would recruit PS even though it was not necessary included 
the minimization of a number of cost functions (work, effort, potential energy, path length) as 
well as mechanical interaction between the DOF of the wrist and forearm. It was found that the 
pattern of PS recruitment predicted from the mechanical interaction hypothesis most closely 
resembled the observed pattern. According to this hypothesis, the neuromuscular system uses a 
simplified 2 DOF model of the joints most critical to the task (FE and RUD) to plan the task, 
while leaving the third DOF (PS) uncontrolled. The resulting interaction torques create the 
observed pattern of PS movement. 
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1   INTRODUCTION 

1.1     Motivation 

Many people today suffer from Repetitive Strain Injuries (RSI) to the wrist, a class of injury that 

results from repetitive motion, sustained or awkward postures, and general overuse of a joint 

(van Tulder et al., 2007). Among the general population it is estimated that 11.3% of men and 

15.1% of women suffer from such an injury (Walker-Bone et al., 2004). Furthermore, prevalence 

of RSI has been on the rise in recent decades, particularly among the elderly (Gelfman et al., 

2009). 

 Our ability to understand and treat the causes of RSI to the wrist is limited due to a lack 

of understanding of several fundamental concepts governing its use and movement. Three areas 

in which the current body of scientific knowledge falls short include a characterization of the 

impedance torques acting on the wrist and forearm, the required complexity of the neural internal 

model of wrist and forearm dynamics, and the control strategy used by the neuromuscular system 

to plan and control wrist and forearm movements despite kinematic redundancy. The purpose of 

the present research is to address these issues. 

 

1.1.1     Characterization of Wrist and Forearm Impedance Torques 

The joint torques required to execute a movement can be determined by modeling the dynamic 

behavior of a system of joints.  This differs from a static force balance for a body at equilibrium 

because a dynamic model also includes the effect of velocity and acceleration. In the simplified 
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static state the only active impedance torques (which the muscle-generated torque must 

overcome) are torques due to joint stiffness and external forces. Joint stiffness represents the 

“springiness” of the joint, or the tendency for the joint to return to a neutral position (due to the 

joint’s elastic properties) after being displaced. External forces include gravity and any other 

externally applied force. However, when a joint is put in motion, dynamic effects become 

manifest. These include damping effects, which dissipate kinetic energy and are velocity 

dependent, and inertial effects, which reflect the joint’s resistance to change in motion and are 

either velocity or acceleration dependent. 

 Our current understanding of the impedance torques that act on the wrist alone (as 

opposed to the wrist and forearm together) suggests that stiffness and gravitational effects are 

roughly ten times larger than inertial and damping effects (Charles and Hogan, 2011). However, 

most natural movements involve the wrist and forearm together, and which impedance effects 

dominate wrist and forearm movements is currently unknown. Also, that wrist movements are 

dominated by stiffness effects is in stark contrast to shoulder and elbow movements, which are 

believed to be dominated by inertial effects. This dichotomy begs the question of whether the 

forearm rotation (pronation-supination) is more similar to the shoulder and elbow or the wrist.  

 

1.1.2     Complexity of the Neural Internal Model 

When executing any voluntary motion the neuromuscular system must first conduct some degree 

of motor planning, dictating which joints move when, and how much. This planning phase 

requires some kind of internal model, which has been shown to account for dynamic effects, 

including velocity and acceleration (Kawato, 1999). However, the required complexity of this 

internal model remains largely unknown. Specifically, when applied to the wrist and forearm it is 
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unknown whether all dynamic forces are necessary to the internal model, and whether or not 

each joint may be considered independently.  

 

1.1.3     Redundancy in the Wrist and Forearm 

When considered together the wrist and forearm can be approximated as a universal joint 

possessing three DOF: flexion-extension (FE), radial-ulnar deviation (RUD), and forearm 

pronation-supination (PS). Some tasks, such as using the wrist and forearm to point to a target on 

a plane, require less than three DOF. In the case of pointing, the neuromuscular system could 

chose to complete this task using only FE and RUD, regardless of the target location–the use of 

PS in this task is completely optional. The wrist and forearm joints are therefore deemed to be 

redundant for that task since they are not all necessary. 

Prior research has shown that the neuromuscular system makes use of all available DOF 

in this scenario, and has suggested that there exists a defined plane in RUD-FE-PS space on 

which all wrist/forearm motion lies (Campolo et al., 2010). Alternative theories for the body’s 

recruitment of all available DOF in this scenario have not yet been examined, and there lacks a 

clear link between the body’s preference in joint use and any physiological explanation.  

1.2     Thesis Objective 

The purpose of the research presented here is to increase our understanding of the control 

strategies which govern wrist and forearm movement. The current research contributed to this 

understanding in the following ways: a characterization of the impedance torques acting on the 

wrist and forearm, a determination of the needed complexity of an internal model of wrist and 

forearm dynamics, and an exploration of candidate theories which explain how the 

neuromuscular handles redundancy involving the wrist and forearm. This understanding is 
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beneficial for several reasons. A knowledge of which torques have the greatest effect on wrist 

and forearm movements informs device manufacturers of which type and magnitude of forces 

most need to be accounted for in human-machine interfaces, orthotics, etc. An understanding of 

the complexity of the internal wrist and forearm model and a theoretical understanding of how 

the neuromuscular system handles joint redundancy allows for devices which increase comfort 

by not interfering with the body’s intended paths of joint motion. Conversely, if a device’s 

intended function is to interfere with normal joint motion, such as in therapy, this understanding 

will allow these devices to be more effective. 

 Another notable contribution from the present research is a tractable 3-DOF model of 

wrist and forearm dynamics, incorporating RUD, FE, and PS. This model was used extensively 

to produce the results of this research, and may find future utility as researchers expand upon this 

work. 

1.3     Thesis Outline 

This thesis is organized as follows: Chapter 2 includes a characterization of the impedance 

torques experienced in normal wrist and forearm movement, and also finds a potential limit for 

the needed complexity of an internal wrist and forearm model. The last section of Chapter 2 is 

the derivation of a 3-DOF model of wrist and forearm dynamics, modeled as a universal joint. 

Chapter 3 focuses on possible solutions to the joint redundancy problem. Experimental results 

from wrist and forearm movements in an under-constrained scenario are compared to theoretical 

results based on different control strategies which the neuromuscular system may adapt. Chapter 

4 presents the conclusions from this work and provides recommendations for future research. 
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2   DYNAMICS OF WRIST AND FOREARM ROTATIONS 

Prior research indicates that stiffness and gravity dominate the impedance forces in wrist 

movement, and that a relatively simple internal model of the wrist should be sufficient in many 

scenarios of small angle movement (Charles and Hogan, 2011). However, these conclusions are 

limited in that they were only tested for movements in FE and RUD, despite the fact that rotation 

of the forearm is often used in conjunction with the wrist. Until the present it has been unknown 

if these same characteristics of pure wrist movement extend to 3 DOF movements involving the 

forearm. The research presented here addresses the issue, specifically which impedance forces 

are most significant among RUD FE PS movements, and how complex of a model this more 

comprehensive system needs be. The contents of this chapter were submitted for publication in 

the Journal of Biomechanics.  

2.1     Introduction 

Healthy upper limb movements generally involve multiple degrees of freedom gracefully 

coordinated into a single movement. Despite the apparent ease with which these movements are 

performed, the underlying dynamics are complex due to coupling (interaction) between the 

various degrees of freedom (DOF). We recently showed that the two DOF of the wrist, flexion-

extension (FE) and radial-ulnar deviation (RUD), are significantly coupled through stiffness 

(e.g., a wrist rotation in pure FE requires a torque in RUD as well as in FE) (Charles and Hogan, 

2011). The control of coordinated wrist rotations must account and compensate for this coupling, 
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and incomplete compensation has been shown to cause observable path curvature (Charles and 

Hogan, 2010, 2012). Thus, understanding the coupling between DOF allows us to understand 1) 

what the neuromuscular system must account and compensate for, 2) why certain behaviors 

occur (e.g., path curvature), and 3) how loss of compensation (through neuromuscular 

impairment) or changes in coupling dynamics (e.g., through joint spasticity or tool use) affect 

behavior. 

The purpose of this paper is to characterize the dynamics of forearm rotations and extend 

our understanding of coupling to rotations involving both wrist and forearm rotations (FE, RUD, 

and pronation-supination, PS). Many natural movements involve coordination of these three 

DOF (Aizawa et al., 2010; Anderton and Charles, 2012; van Andel et al., 2008), yet the 

dynamics of coupled wrist and forearm rotations are unknown. While several computational 

software packages have been developed to simulate limb dynamics using musculoskeletal 

parameters (Holzbaur et al., 2005; Lemay and Crago, 1996), here we present a tractable 

analytical model of wrist and forearm dynamics in terms of joint impedance (stiffness, damping, 

and inertia) to enable us to compute movement dynamics on a subject-by-subject basis, 

combining individual subjects’ kinematics with measurements of their joint impedance. More 

specifically, we present a model of wrist and forearm dynamics (involving FE, RUD, and PS) 

and evaluate these dynamics to answer the following questions: 

1. Are forearm rotations (by themselves and combined with simultaneous wrist rotations) 

dominated by inertial, damping, or stiffness effects? 

2. Are the DOF of the wrist (FE and RUD) coupled with the DOF of the forearm (PS)? 

3. How complex does a model of wrist and forearm dynamics need to be? 
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2.2     Methods 

2.2.1     Kinematic Data 

Subjects 

Ten young, healthy, right-handed subjects (5 female and 5 male, ages 19-37) free from 

neurological and biomechanical injuries to the upper limb were recruited to participate in this 

experiment. Following procedures approved by Brigham Young University’s Institutional 

Review Board, informed consent was obtained from all subjects. 

Experimental setup 

Subjects were seated with the upper limb in the parasagittal plane (0° shoulder abduction 

and approximately 60° elbow flexion). The proximal 14 cm of the forearm rested on a support 

while the distal forearm, wrist and hand remained unsupported, allowing for unobstructed use of 

PS, FE, and RUD (Figure 2-1A). Electromagnetic motion tracking sensors (trakSTAR by 

Ascension Technologies, Burlington, VT) were attached to the distal forearm (approximately 5 

cm proximal to the wrist joint center) and atop a handle held by the subject. These sensors 

recorded orientation at approximately 300Hz with a static accuracy and resolution of 0.5° and 

0.1°, respectively. At a combined weight of approximately 75g (5% of the mass of the average 

hand and forearm), the sensor and handle presented negligible interference to natural movements 

(see Discussion). 

  Each subject was calibrated in neutral position, defined as follows. The forearm was in 

neutral PS when the dorsal aspect of the distal forearm (more specifically the dorsal tubercle of 

the radius and the dorsal-most aspect of the ulnar head) was in the parasagittal plane. The wrist 

was in neutral FE and RUD when the long axis of the forearm was parallel to the long axis of the 

third metacarpal. 
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Protocol 

During the experiment the position of each DOF was communicated to the subject graphically 

via a computer screen in front of the subject (Figure 2-1B). A cursor on the screen moved 

horizontally and vertically in proportion to wrist FE and RUD, respectively. A yellow line 

through the center of this cursor communicated the amount of PS by rotating an equal amount 

from the vertical (neutral position). FE and RUD targets were represented by a pattern of white 

circles surrounding the neutral position, while targets in PS were represented by a red line drawn 

through the cursor. When a target was selected the corresponding circle from the pattern changed 

color to indicate the required FE and RUD, while the red line assumed the target PS angle. 

Subjects were required to align the cursor with the target circle and their PS with the target PS 

(within 2°) before the next target would appear.  

  

Figure 2-1: Experimental Setup (A) and Visual Display (B). The subject was instructed to 
move the cursor (visible in the center target) to one of the peripheral targets (a target to the 
bottom right is visibly highlighted) by use of wrist FE and RUD, while simultaneously 
aligning the crosshairs (which attached to the cursor) to achieve the desired amount of 
forearm PS. The darker crosshair is the target PS, while the lighter crosshair represents 
the subject’s current PS. 
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Targets were selected to require pure PS, FE, and RUD, as well as 2- and 3-way 

combinations of these DOF. The targets were positioned to require a total angular displacement 

of 15° in PS, FE, and RUD combined (i.e. rotating the coordinate frame of the hand from neutral 

to target position required 15° about the common axis). Positive and negative angular 

displacements were required in each DOF, resulting in a star-like pattern with 26 targets 

surrounding neutral position (Figure 1B).  

Subjects participated in two sessions in which they were instructed to move at a 

“comfortable speed” or “as fast as possible” (in random order). In each session, subjects made 10 

movements to each peripheral target. The data from both sessions were combined for a total of 

520 outbound and 520 inbound movements involving combinations of FE, RUD, and PS. 

Subjects were instructed to move the DOF simultaneously when more than one DOF was 

required, but were given no further instruction on path shape. As per standard procedure, in each 

session, the first movement to each target was considered practice and was not included in the 

analysis. 

Data processing 

 Joint angles were derived from sensor orientation data by inverse kinematics, where PS, 

FE, and RUD were represented as Euler angles 𝛼, 𝛽, and 𝛾, respectively (in that order), 

according to ISB recommendations for global forearm and wrist rotations (Wu et al., 2005). PS, 

FE, and RUD were positive in pronation, flexion, and ulnar deviation, respectively. The data 

were low-pass filtered with a fourth order Butterworth filter with a cut-off frequency of 20 Hz) 

and differentiated to obtain velocity. This process was repeated with the same filter to obtain 

acceleration, to which the filter was applied one final time. The beginning and end of each 
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movement were determined based on movement speed, defined as the magnitude of the total 

angular velocity (see Section 2.5 for derivation): 

‖𝜔��⃑ ‖ = ��̇�2 + �̇�2 + �̇�2 + 2�̇��̇� sin𝛽 
[2-1] 

Each movement was then defined to contain all the data points starting at the location of peak 

speed and extending both before and after this point down to the point at which the speed first 

descends below 5% of the peak value.  

 

2.2.2     Torque Calculation 

The torque in each DOF required to produce the recorded movements were calculated using a 3-

DOF model of wrist and forearm dynamics. 

Second-order mechanical impedance model of wrist and forearm rotations 

The wrist and forearm joints were modeled as a universal joint, with the axes of all three 

DOF intersecting at the same point. While the RUD axis is believed to be slightly distal to the FE 

axis, the distance between the axes is small and has been shown to have negligible effect on wrist 

dynamics (Charles and Hogan, 2011). Likewise, other offsets from the center of rotation are 

assumed minimal and inconsequential. Inertial, damping, stiffness, and gravitational effects were 

included for each DOF, resulting in the following equations of motion relating the torque in each 

DOF to the resulting movement (see Section 2.6 for derivation): 
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Table 2-1:  Model parameters 

𝐴 𝐼𝐻𝑥sin2 𝛽 + 𝐼𝐻𝑦cos2 𝛽 cos2 𝛾 + 𝐼𝐻𝑧sin2 𝛾 cos2 𝛽 + 𝐼𝐴𝑦 
𝐵 cos 𝛾 cos𝛽 sin 𝛾 �𝐼𝐻𝑦 − 𝐼𝐻𝑧� 
𝐶 𝐼𝐻𝑥 sin𝛽 
𝐷 𝐼𝐻𝑦sin2 𝛾 + 𝐼𝐻𝑧cos2 𝛾 
𝐸 0 
𝐹 𝐼𝐻𝑥 
𝐺 𝐼𝐻𝑥��̇� cos𝛽 (�̇� + 2�̇� sin𝛽)� + 𝐼𝐻𝑦�cos𝛽 cos 𝛾 ��̇��̇� cos 𝛾 − �̇��̇� sin𝛽 cos 𝛾 − �̇��̇� cos𝛽 sin 𝛾�

− ��̇� sin 𝛾 + �̇� cos𝛽 cos 𝛾���̇� sin𝛽 cos 𝛾 + �̇� cos𝛽 sin 𝛾��
+ 𝐼𝐻𝑧�cos𝛽 sin 𝛾 ��̇��̇� sin 𝛾 + �̇��̇� cos𝛽 cos 𝛾 − �̇��̇� sin𝛽 sin 𝛾�
+ ��̇� cos 𝛾 − �̇� cos𝛽 sin 𝛾���̇� sin𝛽 sin 𝛾 − �̇� cos𝛽 cos 𝛾�� 

𝐻 −𝐼𝐻𝑥�̇� cos𝛽 (�̇� + �̇� sin𝛽)
+ 𝐼𝐻𝑦��̇� sin𝛽 cos 𝛾 ��̇� sin 𝛾 + �̇� cos𝛽 cos 𝛾�
+ �̇� cos 𝛾 �2�̇� sin 𝛾 + �̇� cos𝛽 cos 𝛾� − �̇� sin 𝛾 ��̇� sin𝛽 cos 𝛾 + �̇� cos𝛽 sin 𝛾��
+ 𝐼𝐻𝑧��̇� sin𝛽 sin 𝛾 ��̇� cos𝛽 sin 𝛾 − �̇� cos 𝛾�
+ �̇� cos 𝛾 ��̇� sin𝛽 sin 𝛾 − �̇� cos𝛽 cos 𝛾� − �̇� sin 𝛾 �2�̇� cos 𝛾 − �̇� cos𝛽 sin 𝛾�� 

𝐼 𝐼𝐻𝑥��̇��̇� cos𝛽� + �𝐼𝐻𝑦−𝐼𝐻𝑧���̇� sin 𝛾 + �̇� cos𝛽 cos 𝛾���̇� cos𝛽 sin 𝛾 − �̇� cos 𝛾� 

 

The left-hand side of Equation 2-3 represents active torques (due to muscle contraction), which 

may depend on displacement and its derivatives (in addition to neural activation) since neural 

activation affects muscle stiffness and damping. The right-hand side of Equation 2-3 contains the 

passive inertial, damping, stiffness, and gravitational effects which the active torques must 

overcome in order to produce movement. The matrix containing elements 𝐴 through 𝐹 is the 

inertia matrix, while 𝐺, 𝐻, and 𝐼 contain the centripetal and coriolis terms (Table 2-2). Passive 
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damping and stiffness (i.e. in the absence of muscle contraction) are represented by the matrices 

containing damping coefficients (e.g. 𝐵𝛼𝛼) and stiffness coefficients (e.g. 𝐾𝛼𝛼), respectively. 

Parameters 𝑔, 𝑙, and 𝑚 represent the gravitational acceleration, distance from the wrist joint to 

the center mass of the hand, and the mass of the hand, respectively. 

Model Parameters 

Inertia: Published anthropometric regression equations  (de Leva, 1996) were used to 

estimate the inertia of the hand and forearm, and the mass and center of mass of the hand from 

measurements of segment lengths from each subject. These equations assume that the body-fixed 

inertia matrices of the hand and forearm are symmetric (i.e., negligible products of inertia). 

Stiffness: The passive stiffness of coupled wrist and forearm rotations was previously 

measured for each subject by Will Drake in our lab (unpublished data). More specifically, a 

rehabilitation robot moved each subject’s wrist and forearm in combinations of PS, FE, and PS 

in a quasi-static manner, while it measured the displacement and the torque required to produce 

that displacement. The 3-DOF stiffness matrix was then estimated from the torque and 

displacement data by multi-variable linear regression. 

Damping: The passive damping associated with coupled wrist and forearm rotations is 

unknown; however, damping has been measured in flexion-extension to be 0.02-0.03 Nms/rad 

(Gielen and Houk, 1984). Several studies have found that the stiffness and damping ellipses 

associated with shoulder and elbow movements are roughly proportional (Dolan et al., 1993; 

Perreault et al., 2004; Tsuji et al., 1995). Therefore, damping of the wrist and forearm was 

assumed to be proportional to wrist and forearm stiffness (the constant of proportionality was 

chosen so that the damping in FE would be 0.03 Nms/rad).  
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2.2.3   Analysis 

Dominant impedance effect 

To determine whether wrist and forearm rotations are dominated by inertial, damping, or 

stiffness effects, we calculated for each movement the average magnitude of the torque vector (in 

all 3 DOF combined) required to overcome each of these impedance effects as follows: 

𝑀𝑗 =
1
𝑇
� �𝑀��⃑ 𝛼,𝑗 + 𝑀��⃑ 𝛽,𝑗 + 𝑀��⃑ 𝛾,𝑗�
𝑇

0
𝑑𝑡 

=
1
𝑇
� �𝑀𝛼,𝑗

2 + 𝑀𝛽,𝑗
2 + 𝑀𝛾,𝑗

2 + 2𝑀𝛼,𝑗𝑀𝛾,𝑗 sin𝛽
𝑇

0
𝑑𝑡 

 

[2-3] 

where j represents the impedance element (either inertia, damping, stiffness) or gravity (we did 

not consider gravity as an intrinsic element but included it in the analysis—see Discussion), and 

𝑇 is the duration of the movement. We tested for differences in 𝑀𝑗 between impedance elements 

by 2-way ANOVA with impedance element and subject as fixed and random factors, 

respectively. 

Interaction between degrees of freedom 

In general, the DOF of a multi-DOF system are coupled, meaning that the torque in a 

DOF depends not only on movement in that DOF but also on movement in other DOF. In other 

words, the total torque in a DOF can be divided into a main torque (the torque in that DOF due to 

movement in that DOF) and an interaction torque (the torque in that DOF due to movement in 

other DOF). To quantify the amount of coupling between DOF, we computed for each 

movement the ratio of the average magnitude of the interaction torque vector to the average 

magnitude of the main torque vector: 
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𝑅 =
1
𝑇 ∫ �𝑀��⃑ 𝛼,𝐼𝑇 + 𝑀��⃑ 𝛽,𝐼𝑇 + 𝑀��⃑ 𝛾,𝐼𝑇�

𝑇
0 𝑑𝑡

1
𝑇 ∫ �𝑀��⃑ 𝛼,𝑀𝑇 + 𝑀��⃑ 𝛽,𝑀𝑇 + 𝑀��⃑ 𝛾,𝑀𝑇�

𝑇
0 𝑑𝑡

 [2-4] 

where 𝐼𝑇 and 𝑀𝑇 stand for interaction torque and main torque, respectively (the vector sum in 

the numerator and denominator was calculated as in Equation 2-3. According to this definition, a 

larger value of 𝑅 indicates greater coupling between DOF. Main torques were obtained from 

Equation 2-3 by including only the diagonal elements of each matrix, while interaction torques 

were obtained by only including the off-diagonal elements (G, H, and I were included in the 

inertial interaction torque). Gravitational effects were not included in this portion of the analysis. 

We also computed this ratio separately for inertia, damping, and stiffness: 

𝑅𝑗 =
1
𝑇 ∫ �𝑀��⃑ 𝛼,𝐼𝑇,𝑗 + 𝑀��⃑ 𝛽,𝐼𝑇,𝑗 + 𝑀��⃑ 𝛾,𝐼𝑇,𝑗�

𝑇
0 𝑑𝑡

1
𝑇 ∫ �𝑀��⃑ 𝛼,𝑀𝑇,𝑗 + 𝑀��⃑ 𝛽,𝑀𝑇,𝑗 + 𝑀��⃑ 𝛾,𝑀𝑇,𝑗�

𝑇
0 𝑑𝑡

 [2-5] 

where j represents the impedance element (inertia, damping, or stiffness). We tested for 

differences in 𝑅𝑗 between impedance element by 2-way ANOVA with impedance element and 

subject as fixed and random factors, respectively. 

Model complexity 

To determine how complex a model of wrist and forearm dynamics needs to be, we tested 

the accuracy of a series of simplifying approximations of Equation 2-3. In the first 

approximation, centripetal and coriolis terms (G, H, and I in Eq.) were neglected; the second 

simplification involved linearizing the first approximation about the neutral position. The third 

and final approximation neglected coupling between DOF (the off-diagonal terms of the 

impedance matrices). The error associated with each approximation was computed at each 

instant as �𝑀��⃑ − 𝑀��⃑ ′�, the magnitude of the difference between the complete torque vector 

(𝑀��⃑ = 𝑀��⃑ 𝛼 + 𝑀��⃑ 𝛽 + 𝑀��⃑ 𝛾) and the approximate torque vector (𝑀��⃑ ′ = 𝑀′����⃑ 𝛼 + 𝑀′����⃑ 𝛽 + 𝑀′����⃑ 𝛾). The 
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magnitude of the mean and maximum error values for each movement were then computed and 

expressed as a percentage of the magnitude of the maximum complete torque of that movement. 

2.3     Results 

2.3.1     Dominant Impedance Effect 

Most of the wrist and forearm torque required to make 15° forearm or simultaneous wrist and 

forearm rotations is used to overcome gravity and passive stiffness (Figure 2-2A-B). In 

comparison, the torques required to overcome inertial and damping effects are one order of 

magnitude smaller. Because they depend on acceleration and/or velocity, inertial and damping 

torques increase with speed (while gravity and stiffness torques do not), but even at the fastest 

speeds (in movements with durations less than 250ms) they only account for 15% and 25% of 

the total torque, respectively. While the four torque components can clearly be divided into two 

groups based on magnitude (gravitational and stiffness effects vs. damping and inertial effects; 

Figure 2-2A-B), there was a statistically significant difference between all four elements: 

𝑀𝑔𝑟𝑎𝑣 > 𝑀𝑠𝑡𝑖𝑓𝑓 > 𝑀𝑑𝑎𝑚𝑝 > 𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎 (p<0.0001). This same ordering is true for movements to 

targets involving only PS (p<0.0001;Figure 2-2 C-D). 

We also compared torque components between DOF and found that the size of inertial 

and gravitational effects remained relatively constant across DOF, while stiffness and damping 

effects were more pronounced in pure RUD than in pure FE or PS because stiffness and damping 

are significantly greater in RUD than in FE and PS (Figure 2-3) (according to the measurements 

of 3-DOF stiffness performed by Will Drake in our lab; unpublished data). Coupled movements 

lie between these extremes. 
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Figure 2-2:  The contribution of inertia, damping, stiffness, and gravity (color code in plot 
B) to movements involving PS, FE, and RUD (plots A and B) and only PS (plots C and D). 
Individual movements are represented in plots A and C (+, *, and ○ represent movements 
involving pronation, supination, or neither, respectively; C only contains movements 
involving pronation or supination). Average effects are shown in plots B and D, with mean 
effects (thick line) and 95% confidence interval of the mean (shaded area) for the data in 
figures (A) and (C), respectively. 
 
 
 
2.3.2     Interaction Between Degrees of Freedom 

The ratio of interaction torque to main torque was 18 ± 13% and relatively constant across 

movement durations (Figure 2-4). Considering inertia, damping, and stiffness separately, the 

ratio of the interaction torque to main torque was 8.9 ± 4.1% (mean ± SD) for inertia, 18 ± 11% 

for damping, and 18 ± 12% for stiffness. While these ratios are of the same order of magnitude, 

there were statistically significant differences between them: 𝑅𝑠𝑡𝑖𝑓𝑓 > 𝑅𝑑𝑎𝑚𝑝 > 𝑅𝑖𝑛𝑒𝑟𝑡𝑖𝑎 

(p<0.001).  
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Figure 2-3:  Mean impedance effect (color code to the right) grouped by DOF. The category 
All includes all movements, the categories PS, FE, and RUD contain movements to targets 
involving only a single DOF, and the category PS-FE-RUD represents movements 
requiring simultaneous motion in all three DOF. In all categories, gravity effects are 
greater than damping effects, which are greater than inertial effects, while the relative size 
of gravity and stiffness effects vary by category (because stiffness is significantly larger in 
RUD than in the other DOF). The error bars represent 1 standard error. 

 

Figure 2-4:  Ratio of interaction torque to main torque for inertia (blue), damping (red), 
and stiffness (green) for individual movements (A) and averaged over all movements (B) 
(note the difference in scale between vertical axes). The meaning of the marker symbols in 
A is the same as in Figure 2-2. The error bars in B represent the 95% confidence interval of 
the mean.  
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2.3.3     Model Complexity 

Some of the torques in Equation 2-3 contribute little to the total torque and can be neglected with 

little loss in accuracy (Figure 2-5), allowing the use of the following approximate models under 

certain conditions.  

Approximation 1 

Neglecting the velocity-dependent inertial interaction torques (the centripetal and coriolis 

torques) by setting 𝐺 = 𝐻 = 𝐼 = 0 produced mean and maximum error values of only 0.08 and 

0.54%, respectively. 

Approximation 2 

Approximation 1 was further simplified by linearizing the torques about neutral wrist and 

forearm position (𝛼 = 𝛽 = 𝛾 = 0), resulting in the following set of linear equations: 

�
𝑀𝛼
𝑀𝛽
𝑀𝛾

� = �
𝐼𝐻𝑦 +𝐼𝐴𝑦 𝛾�𝐼𝐻𝑦 − 𝐼𝐻𝑧� 𝐼𝐻𝑥 ∙ 𝛽

𝛾�𝐼𝐻𝑦 − 𝐼𝐻𝑧� 𝐼𝐻𝑧 0
𝐼𝐻𝑥 ∙ 𝛽 0 𝐼𝐻𝑥

� �
�̈�
�̈�
�̈�
� + �

𝐵𝛼𝛼 𝐵𝛼𝛽 𝐵𝛼𝛾
𝐵𝛽𝛼 𝐵𝛽𝛽 𝐵𝛽𝛾
𝐵𝛾𝛼 𝐵𝛾𝛽 𝐵𝛾𝛾

� �
�̇�
�̇�
�̇�
� 

+ �
𝐾𝛼𝛼 𝐾𝛼𝛽 𝐾𝛼𝛾
𝐾𝛼𝛽 𝐾𝛽𝛽 𝐾𝛽𝛾
𝐾𝛼𝛾 𝐾𝛽𝛾 𝐾𝛾𝛾

� �
𝛼
𝛽
𝛾
� + 𝑔𝑙𝑚 �

−𝛽
−𝛼
−1

� 
[2-6] 

This small-angle approximation resulted in mean and maximum error values of only 0.83% and 

1.9%, respectively. 

Approximation 3 

In the third approximation, the torque in each DOF was uncoupled from movement in 

other DOF by neglecting off-diagonal parameters, resulting in: 
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𝑀𝛼 = �̈��𝐼𝐻𝑦 + 𝐼𝐴𝑦� + �̇�𝐵𝛼𝛼 + 𝛼𝐾𝛼𝛼  

𝑀𝛽 = �̈�𝐼𝐻𝑧 + �̇�𝐵𝛽𝛽 + 𝛽𝐾𝛽𝛽 [2-7] 

𝑀𝛾 = �̈�𝐼𝐻𝑥 + �̇�𝐵𝛾𝛾 + 𝛾𝐾𝛾𝛾 − 𝑔𝑙𝑚  

This final approximation caused a significantly larger values of 9.7% and 17% in the mean and 

maximum errors, respectively. 

 

Figure 2-5:  Box plots of the mean and maximum error in torque (averaged across all 
subjects) due to the following approximations: 1) Omitting the velocity-dependent inertial 
terms, 2) linearizing about the neutral position, and 3) decoupling the DOF. 

2.4     Discussion 

Coordinated movement requires joint torques to account and compensate for the mechanical 

impedance (inertial, damping, stiffness) and gravitational effects in each DOF. Much of the 

upper limb motor control research over the past several decades has focused on how the 

neuromuscular system controls the inertial dynamics of reaching (shoulder and elbow) 

movements, in particular the significant and complex inertial interaction torques that couple the 
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shoulder and elbow joints (Hollerbach and Flash, 1982). In contrast, we have recently shown that 

wrist rotations are dominated by stiffness, not inertial effects, that the two DOF of the wrist are 

significantly coupled by stiffness and damping (but not inertia), and that a simple, linear model 

of wrist dynamics may be sufficient for planning and controlling wrist rotations (Charles and 

Hogan, 2011). The contrast between shoulder-elbow dynamics and wrist dynamics raises the 

question of whether the dynamics of the intermediate DOF (forearm pronation-supination, PS) 

are more similar to those of its proximal neighbors or its distal neighbor. 

Here we show that the dynamics of forearm rotations are 1) similar to those of wrist 

rotations in that stiffness effects dominate over inertial effects and that dynamics are well-

approximated by simple, linear equations of motion, and 2) intermediate between wrist and 

shoulder-elbow dynamics in that combined wrist and forearm rotations are coupled by stiffness, 

damping, and inertial effects. 

 

2.4.1     Dominant Impedance Effect 

Our results indicate that forearm rotations are similar to wrist rotations in that stiffness effects 

heavily dominate over inertial and damping effects. The same is true for movements combining 

wrist and forearm rotations. While we included gravitational effects in the analysis, we did not 

consider gravity to be an intrinsic impedance effect because the magnitude of its effect depends 

on the orientation of the forearm with respect to an external reference frame. In this study, the 

forearm was in the horizontal plane, maximizing the gravitational torque of the hand about the 

wrist joint. Therefore, the magnitude of the gravitational effects presented in this paper would 

decrease as the long axis of the forearm is rotated from horizontal to vertical.  The relatively 

small magnitude of inertial effects supports the claim that the mass of the handle and sensors 
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would have negligible impact on the results.  Increasing the wrist and forearm mass by 5% 

would not alter any of the key findings presented here. 

 

2.4.2     Interaction Between Degrees of Freedom 

Although the coupling between the three DOF of the wrist and forearm is smaller than the main 

effects (by a factor of five), it is not negligible, as demonstrated by the relatively large error 

associated with the removal of coupling in Approximation 3. The amount of coupling in inertia, 

damping, and stiffness is of the same order of magnitude (9%, 19%, and 19%, respectively). This 

result differs dramatically from prior studies involving only the wrist (Charles and Hogan, 2011), 

where inertial interaction torques were found to be negligible compared to damping and stiffness 

interaction torques (0.3% for inertia vs. approximately 13% for stiffness and damping). The 

reason why the ratio of interaction to main torques is larger in the current study (for stiffness and 

damping as well as inertia) is because we considered interaction across more DOF than in the 

previous study (e.g., we included the torque in PS due to movement in FE and/or RUD, which 

was not included in the previous study). The reason why the increase in inertial coupling from 

the previous to the current study is much greater than the increase in damping and stiffness 

coupling is because the inertial coupling between FE and RUD is very weak (because the inertia 

in these two DOF is very similar), whereas the inertial coupling of FE and RUD with PS is of the 

same order of magnitude as stiffness and damping coupling. 

 

2.4.3     Model Complexity 

Inertial interaction torques can be classified as acceleration-dependent (B, C, and E in Equation 

2-3) and velocity-dependent terms (G, H, and I, which contain the centripetal and coriolis terms). 
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While the inertial interaction torques as a whole are not negligible (9% of total torque), the 

velocity-dependent inertial interaction torques are (the mean error from Approximation 1 was 

0.08%). As these terms are the most complex terms in the equations of motion, neglecting these 

terms (Approximation 1) greatly simplifies the equations of motion. 

Linearizing the equations of motion (which neglects other terms in addition to G, H, and 

I) produces a larger but still negligible error (mean error of 0.86%). While this approximation is 

a substantial improvement in simplicity, it is only valid for modestly sized rotations 

(displacements on the order of ±15°, as in this study). 

In contrast, appreciable error (mean 9.7%) was accumulated when attempting to decouple 

the system. This fact further solidifies the importance of interaction torques in wrist and forearm 

rotations, and helps define a possible limit as to the needed complexity of an internal model of 

the wrist and forearm. In other words, this finding suggests that the neuromuscular system could 

control modestly sized wrist and forearm rotations by the simple, linear equations of motion in 

Approximation 2. 

 

2.4.4     Model Robustness 

Care was taken to minimize errors in modeling the torques required for wrist and forearm 

rotations. The stiffness values used in this study were measured on each subject and are similar 

to previous measurements of wrist and forearm stiffness. Inertial values were derived from 

measurements of segment lengths measured on each subject. More importantly, the main 

conclusions of this study are relatively insensitive to reasonable errors in model parameters 

because the differences between variables are large. For example, our results show that stiffness 

torques are one order of magnitude greater than inertial and damping torques. To reverse this 
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dominance of stiffness would require unreasonably large errors in our model parameters. Finally, 

the main conclusions of this study (that stiffness dominates impedance effects and that coupling 

is non-negligible) were found to be true for individual subjects as well as all subjects combined. 

2.5     Derivation of Wrist and Forearm Movements Angular Velocity Magnitude 

The magnitude of the angular velocity of wrist and forearm movements can be determined using 

kinematics and individual joint angles and velocities.  Assuming that all available DOF (RUD, 

FE, and PS) having intersecting axis (forming a universal joint) then the angular velocity of the 

final position is: 

𝜔 = �̇�𝚤̂′′ + �̇�𝚥̂ + �̇�𝑘�′ [2-8] 

where 𝚤̂′′ is the coordinate frame of the hand and forearm after displacements in PS and FE, 𝚥̂ is 

the stationary coordinate frame, and 𝑘�′ is the coordinate frame of the hand and forearm after a 

displacement in PS (Figure 2-6). The following rotation matrices map a point into the rotating 

coordinate frame defined by the Euler angles 𝛼,𝛽 and 𝛾, representing PS, FE, and RUD, 

respectively: 

𝑅𝛾 = �
1 0 0
0 cos 𝛾 sin 𝛾
0 −sin 𝛾 cos 𝛾

� ,𝑅𝛽 = �
cos𝛽 sin𝛽 0
− sin𝛽 cos𝛽 0

0 0 1
� ,𝑅𝛼 = �

cos𝛼 0 − sin𝛼
0 1 0

sin𝛼 0 cos𝛼
� [2-9] 

Applying the above rotation matrices to bring 𝜔 into a stationary frame yield: 

𝜔 = [𝑅𝛼]𝑇�𝑅𝛽�
𝑇�̇�𝚤̂ + �̇�𝚥̂ + [𝑅𝛼]𝑇�̇�𝑘� [2-10] 

𝜔 = 𝚥̂�̇� + �sin𝛼 𝚤̂ + cos𝛼 𝑘���̇� + �cos𝛼 cos𝛽 𝚤̂ + sin𝛽 𝚥̂ − sin𝛼 cos𝛽 𝑘���̇� [2-11] 

Rearranged: 

𝜔 = ��̇�cos𝛼 cos𝛽 + �̇� sin𝛼�𝚤̂ + (�̇� + �̇�sin𝛽)𝚥̂ + ��̇� cos𝛼 − �̇� sin 𝛾 cos𝛽�𝑘� [2-12] 
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Figure 2-6:  Coordinate frame for angular velocity derivation  
 
The magnitude is found by computing 

‖𝜔‖ = √𝜔 ∙ 𝜔 [2-13] 

Which, when expanded, is: 

𝜔 = ���̇�2cos2 𝛼 cos2 𝛽 + 2 γ̇β̇sin𝛼 cos𝛼 cos𝛽 + β̇2sin2 𝛼�

+ (�̇�2 + 2�̇��̇� sin𝛽 + �̇�2 sin2 𝛽)

+ ��̇�2 cos2 𝛼 − 2 γ̇β̇sin𝛼 cos𝛼 cos𝛽 + �̇�2 sin2 𝛼 cos2 𝛽��
1/2

 

[2-14] 

Simplifying the above equation and regrouping: 

𝜔 = ��̇�2 + 2�̇��̇� sin𝛽 + �̇�2(cos2 𝛼 + sin2 𝛼)

+ �̇�2(cos2 𝛼 cos2 𝛽 + sin2 𝛽 + sin2 𝛼 cos2 𝛽)�1/2
 

[2-15] 
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Removing trigonometric identities results in: 

‖𝜔��⃑ ‖ = ��̇�2 + �̇�2 + �̇�2 + 2�̇��̇� sin𝛽 
[2-16] 

 

2.6     Derivation of 3-DOF Model of Wrist and Forearm Dynamics  

The wrist and forearm were modeled as a universal joint with the following assumptions: 

• The axis of all three degrees of freedom (DOF) intersect at a common point (the center of 

the wrist joint) 

• Stiffness and damping are linear in all DOF 

• The center of mass of the forearm lies on the axis of rotation of the forearm 

We derived the equations of motion using Lagrange’s Equation: 

𝑄𝑘 =
𝑑
𝑑𝑡
�
𝜕𝐿
𝜕𝑞�̇�

� −
𝜕𝐿
𝜕𝑞𝑘

 [2-17] 

Variables 𝑞𝑘 and 𝑄𝑘represent the 𝑘th generalized coordinate and force, respectively, which were 

defined as follows: 𝛼, 𝛽, and 𝛾 are Euler angles (in that order) representing angular displacement 

in forearm pronation-supination (PS), wrist flexion-extension (FE), and wrist radial-ulnar 

deviation (RUD), respectively (with pronation, flexion, and ulnar deviation defined as positive). 

Torques 𝑀𝛼, 𝑀𝛽, and 𝑀𝛾 represent the total active torques (due to muscle contraction, which 

includes active stiffness and damping effects) about the axes associated with 𝛼, 𝛽, and 𝛾. 

The generalized forces were determined by the method of virtual work: 

𝛿𝑊𝑛𝑐 = 𝑄𝛼𝛿𝛼 + 𝑄𝛽𝛿𝛽 + 𝑄𝛾𝛿𝛾 [2-18] 

𝛿𝑊𝑛𝑐 = 𝑀𝛼𝛿𝛼 + 𝑀𝛽𝛿𝛽 + 𝑀𝛾𝛿𝛾 − �
𝐵𝛼𝛼 𝐵𝛼𝛽 𝐵𝛼𝛾
𝐵𝛽𝛼 𝐵𝛽𝛽 𝐵𝛽𝛾
𝐵𝛾𝛼 𝐵𝛾𝛽 𝐵𝛾𝛾

� �
�̇�
�̇�
�̇�
� ∙ �

𝛿𝛼
𝛿𝛽
𝛿𝛾
� [2-19] 
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where 𝐵𝑖𝑗 represents the passive damping (i.e. in the absence of muscle contraction) in 𝑖 due to 

movement in 𝑗 (for 𝑖, 𝑗 = 𝛼,𝛽, 𝑜𝑟 𝛾). Setting these expressions equal to each other results in the 

generalized forces: 

𝑄𝛼 = 𝑀𝛼 − 𝐵𝛼𝛼�̇� − 𝐵𝛼𝛽�̇� − 𝐵𝛼𝛾�̇� 

𝑄𝛽 = 𝑀𝛽 − 𝐵𝛽𝛼�̇� − 𝐵𝛽𝛽�̇� − 𝐵𝛽𝛾�̇� 

𝑄𝛾 = 𝑀𝛾 − 𝐵𝛾𝛼�̇� − 𝐵𝛾𝛽�̇� − 𝐵𝛾𝛾�̇� 

[2-20] 

The total kinetic energy of the system can be described by: 

𝑇 =
1
2
𝑚ℎ�̇�ℎ ∙ �̇�ℎ +

1
2

[𝜔ℎ]𝑇[𝐼ℎ][𝜔ℎ] +
1
2

[𝜔𝑎]𝑇[𝐼𝐴][𝜔𝑎] [2-21] 

where 
 
𝑚ℎ is the total mass of the hand 
𝑟ℎ is the vector from the wrist joint center to the center of mass (COM) of the hand 
𝜔ℎ is the angular velocity vector of the hand 
𝐼ℎ is the inertia matrix of the hand about body-fixed axes centered in the hand COM 
𝜔𝑎 is the angular velocity vector of the forearm 
𝐼𝐴 is the inertia matrix of the forearm about body-fixed axes centered in the forearm COM 
𝑇 is the transpose operation 

 

Assuming symmetry, the inertia matrices were defined as: 

𝐼ℎ = �
𝐼ℎ𝑥 0 0
0 𝐼ℎ𝑦 0
0 0 𝐼ℎ𝑧

�    𝑎𝑛𝑑   𝐼𝐴 = �
𝐼𝐴𝑥 0 0
0 𝐼𝐴𝑦 0
0 0 𝐼𝐴𝑧

� 
[2-22] 

[2-23] 

The universal joint forces the following relationships: 

𝑟ℎ =– 𝑙𝚥̂′′′ [2-24] 

𝜔ℎ = �̇�𝚤̂′′ + �̇�𝚥̂ + �̇�𝑘�′ [2-25] 

𝜔𝛼 = 0𝚤̂ + �̇�𝚥̂ + 0𝑘� [2-26] 
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where 𝑙 represents the distance from the wrist joint center to the COM of the hand, and  𝚤̂, 𝚥̂, and 

𝑘� represent unit vectors along the axes associated with 𝛼, 𝛽, and 𝛾, respectively. The number of 

primes represents each successive Euler angle rotation (e.g., 𝚤̂ represents neutral orientation and 

𝚤̂′, 𝚤̂′′, and 𝚤̂′′′ represent orientation after rotation by 𝛼, 𝛽, and 𝛾, respectively). The rotation 

matrices relating neutral orientation (the 𝚤̂𝚥̂𝑘� frame) to the actual orientation (the 𝚤̂′′′𝚥̂′′′𝑘�′′′ frame) 

are: 

𝑅𝛾 = �
1 0 0
0 cos 𝛾 sin 𝛾
0 −sin 𝛾 cos 𝛾

� ,𝑅𝛽 = �
cos𝛽 sin𝛽 0
− sin𝛽 cos𝛽 0

0 0 1
� ,𝑅𝛼 = �

cos𝛼 0 − sin𝛼
0 1 0

sin𝛼 0 cos𝛼
� 

[2-27] 
[2-28] 
[2-29] 

Therefore, 𝜔ℎ can be re-written as 

𝜔ℎ = �̇�𝚤̂′′′ + �𝑅𝛾��𝑅𝛽� �
0
�̇�
0
� 𝚥̂′′′ + �𝑅𝛾� �

0
0
�̇�
� 𝑘�′′′ [2-28] 

𝜔ℎ = (�̇� + �̇� sin𝛽)𝚤̂′′′ + ��̇� sin 𝛾 + α̇cos𝛽 cos 𝛾�𝚥̂′′′ + ��̇� cos 𝛾 − α̇cos𝛽 sin 𝛾�𝑘�′′′ [2-29] 

Determining �̇�ℎ requires the derivative of 𝚥̂ in the 𝚤̂′′′𝚥̂′′′𝑘�′′′ frame, which can be derived using the 

formula �̇̂� = 𝜕𝑒
𝜕𝑡

+ 𝜔��⃗ 𝑡𝑜𝑡𝑎𝑙 × �̂� (where �̂� represents a generic vector): 

𝚥̂̇′′′ =
𝜕𝑗′′′

𝜕𝑡
+ 𝜔ℎ × �

0
1
0
� = ��̇� cos𝛽 sin 𝛾 − �̇� cos 𝛾�𝚤̂′′′ + (0)𝚥̂′′′ + (�̇� + �̇� sin𝛽)𝑘�′′′ [2-30] 

Therefore, �̇�ℎcan be re-written 

�̇�ℎ = 𝑙 ��̇� cos 𝛾 − 𝛼̇ cos𝛽 sin 𝛾� 𝚤̂′′′ − 𝑙(�̇� + �̇� sin𝛽)𝑘�′′′ [2-31] 

Inserting into Equation 2-21 results in the following expression for the kinetic energy: 

𝑇 =
1
2
𝑚𝑙2(�̇� + �̇� sin𝛽)2��̇� cos 𝛾 − �̇� cos𝛽 sin 𝛾�

2
+

1
2
𝐼ℎ𝑥(�̇� + �̇� sin𝛽)2

+  
1
2
𝐼ℎ𝑦��̇� sin 𝛾 + �̇� cos𝛽 cos 𝛾�

2
+  

1
2
𝐼ℎ𝑧��̇� cos 𝛾 − �̇� cos𝛽 sin 𝛾�

2

+
1
2
𝐼𝐴𝑦�̇�2 

[2-32] 
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The potential energy is a combination of the potential energy due to gravitational and stiffness 

effects: 

𝑉 =
1
2

[𝛼 𝛽 𝛾] �
𝐾𝛼𝛼 𝐾𝛼𝛽 𝐾𝛼𝛾
𝐾𝛼𝛽 𝐾𝛽𝛽 𝐾𝛽𝛾
𝐾𝛼𝛾 𝐾𝛽𝛾 𝐾𝛾𝛾

� �
𝛼
𝛽
𝛾
� + 𝑔 ∙ 𝑚 ∙ 𝑟ℎ,𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ∙ 𝑘� [2-33] 

where 𝐾𝑖𝑗 represents the passive stiffness in 𝑖 due to movement in 𝑗 (for 𝑖, 𝑗 = 𝛼,𝛽, 𝑜𝑟 𝛾), 

stiffness was assumed to be symmetric (𝐾𝑖𝑗 = 𝐾𝑗𝑖), and 𝑔 represents the gravitational 

acceleration. Vector 𝑟ℎ,𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 represents 𝑟ℎ in the stationary frame: 

𝑟ℎ,𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 = ��𝑅𝛾��𝑅𝛽�[𝑅𝛼]�
𝑇
�

0
−𝑙
0
� 

[2-34] 

The potential energy can be re-written as: 

𝑉 = 𝛼�𝛼𝐾𝛼𝛼 + 𝛽𝐾𝛼𝛽 + 𝛾𝐾𝛼𝛾� + 𝛽�𝛼𝐾𝛼𝛽 + 𝛽𝐾𝛽𝛽 + 𝛾𝐾𝛽𝛾� + 𝛾�𝛼𝐾𝛼𝛾 + 𝛽𝐾𝛽𝛾 + 𝛾𝐾𝛾𝛾�

− 𝑔𝑚𝑙(cos𝛼 sin 𝛾 + sinα sinβ cos 𝛾) 
[2-35] 

The Lagrangian, defined as 𝐿 = 𝑇 − 𝑉, was differentiated with respect to the time derivative of 

generalized coordinate: 

𝜕𝐿
𝜕�̇�

=
𝑚𝑙2

2
�2 sin𝛽 (�̇� + �̇� sin𝛽) − 2 cos𝛽 sin 𝛾 ��̇� cos 𝛾 − �̇� cos𝛽 sin 𝛾�� + 𝐼𝐴𝑦�̇�

+ 𝐼ℎ𝑥 sin𝛽 (�̇� + �̇� sin𝛽) + 𝐼ℎ𝑦 cos𝛽 cos 𝛾 ��̇� sin 𝛾 + �̇� cos𝛽 cos 𝛾�

− 𝐼ℎ𝑧 cos𝛽 sin 𝛾 ��̇� cos 𝛾 − �̇� cos𝛽 sin 𝛾� 

[2-36] 

𝜕𝐿
𝜕�̇�

= 𝑚𝑙2 cos 𝛾 ��̇� cos 𝛾 − �̇� cos𝛽 sin 𝛾� + 𝐼ℎ𝑦 sin 𝛾��̇� sin 𝛾 + �̇� cos𝛽 cos 𝛾�

+ 𝐼ℎ𝑧 cos 𝛾 ��̇� cos 𝛾 − �̇� cos𝛽 sin 𝛾� 

[2-37] 

𝜕𝐿
𝜕�̇�

= 𝑚𝑙2(�̇� + �̇� sin𝛽) + 𝐼ℎ𝑥(�̇� + �̇� sin𝛽) [2-38] 

Taking the time derivatives of these derivatives and simplifying yields 
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𝑑
𝑑𝑡
�
𝜕𝐿
𝜕�̇�
� = 𝐼𝐴𝑦�̈�+(𝐼ℎ𝑥 + 𝑚𝑙2)��̇� cos𝛽 (�̇� + �̇� sin𝛽) + sin𝛽 ��̈� + �̈� sin𝛽 + �̇��̇� cos𝛽��

+ 𝐼ℎ𝑦�−�̇� sin𝛽 cos 𝛾 ��̇� sin 𝛾 + �̇� cos𝛽 cos 𝛾�

− �̇� cos𝛽 sin 𝛾 ��̇� sin 𝛾 + �̇� cos𝛽 cos 𝛾�

+ cos𝛽 cos 𝛾 ��̈� cos𝛽 cos 𝛾 + �̈� sin 𝛾 + �̇��̇� cos 𝛾 − �̇��̇� sin𝛽 cos 𝛾

− �̇��̇� cos𝛽 sin 𝛾��

+ (𝐼ℎ𝑧 + 𝑚𝑙2)��̇� sin𝛽 sin 𝛾 ��̇� cos 𝛾 − �̇� cos𝛽 sin 𝛾�

− �̇� cos𝛽 cos 𝛾 ��̇� cos 𝛾 − �̇� cos𝛽 sin 𝛾�

− cos𝛽 sin 𝛾 �−�̈� cos𝛽 sin 𝛾 + �̈� cos 𝛾 − �̇��̇� cos 𝛾 + �̇��̇� sin𝛽 sin 𝛾

− �̇��̇� cos𝛽 cos 𝛾�� 

[2-39] 

𝑑
𝑑𝑡
�
𝜕𝐿
𝜕�̇�
� = (𝐼ℎ𝑧 + 𝑚𝑙2)�cos 𝛾��̈� cos 𝛾 − �̇��̇� sin 𝛾 − �̈� cos𝛽 sin 𝛾 + �̇��̇� sin𝛽 sin 𝛾

− �̇��̇� cos𝛽 cos 𝛾� − �̇� sin 𝛾 ��̇� cos 𝛾 − �̇� cos𝛽 sin 𝛾��

+ 𝐼ℎ𝑦�̇� cos 𝛾 ��̇� sin 𝛾 + �̇� cos𝛽 cos 𝛾�

+ 𝐼ℎ𝑦 sin 𝛾 ��̈� sin 𝛾 + �̇��̇� cos 𝛾 + �̈� cos𝛽 cos 𝛾 − �̇��̇� sin𝛽 cos 𝛾

− �̇��̇� cos𝛽 sin 𝛾� 

[2-40] 

𝑑
𝑑𝑡
�
𝜕𝐿
𝜕�̇�
� = (𝐼ℎ𝑥 + 𝑚𝑙2)��̈� + �̈� sin𝛽 + �̇��̇� cos𝛽� [2-41] 

Solving for 𝜕𝐿
𝜕𝛼

 , 𝜕𝐿
𝜕𝛽

 ,  and 𝜕𝐿
𝜕𝛾

 yields 

𝜕𝐿
𝜕𝛼

= −𝐾𝛼𝛼𝛼 − 𝐾𝛼𝛽𝛽 − 𝐾𝛼𝛾𝛾 − 𝑚𝑔𝑙(sin 𝛾 sin𝛼 − cos 𝛾 cos𝛼 sin𝛽) [2-42] 

𝜕𝐿
𝜕𝛽

= �̇� cos𝛼 (𝐼ℎ𝑥 + 𝑚𝑙2)(�̇� + �̇� sin𝛽) − 𝐼ℎ𝑦�̇� cos 𝛾 sin𝛽 ��̇� sin 𝛾 + �̇� cos𝛽 cos 𝛾�

+ �̇� sin𝛽 sin 𝛾 (𝐼ℎ𝑧 + 𝑚𝑙2)��̇� cos 𝛾 − �̇� cos𝛽 sin 𝛾� + 𝑚𝑔𝑙 cos𝛽 cos 𝛾 sin𝛼

− 𝐾𝛼𝛽𝛼 − 𝐾𝛽𝛽𝛽 − 𝐾𝛽𝛾𝛾 

[2-43] 
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𝜕𝐿
𝜕𝛾

= �𝐼ℎ𝑦 − 𝐼ℎ𝑧 − 𝑚𝑙2���̇� sin 𝛾 + �̇� cos𝛽 cos 𝛾���̇� cos 𝛾 − �̇� cos𝛽 sin 𝛾�

+ 𝑚𝑔𝑙(cos 𝛾 cos𝛼 − sin𝛽 sin 𝛾 sin𝛼) − 𝐾𝛼𝛾𝛼 − 𝐾𝛽𝛾𝛽 − 𝐾𝛾𝛾𝛾 
[2-44] 

Incorporating these expressions into Lagrange’s equation (Equation 2-17) produces the equations 

of motion for this system. These equations were simplified by centering the moments of inertia 

of the hand about the wrist joint center instead of the COM of the hand. The new inertia matrix is 

denoted as 𝐼𝐻 and was computed using the following relation: 

[𝐼𝐻] = [𝐼ℎ] + 𝑚{𝑑𝑇𝑑[𝐼] − 𝑑𝑑𝑇} [2-45] 

where [𝐼] is the identity matrix and 𝑑 is the vector from the wrist joint center to the COM of the 

hand (i.e. in this case 𝑑 = 𝑟ℎ). This results in the following relationships, which are incorporated 

into the above equations: 

𝐼𝐻𝑥 = 𝐼ℎ𝑥 + 𝑚𝑙2 [2-46] 

𝐼𝐻𝑦 = 𝐼ℎ𝑦 [2-47] 

𝐼𝐻𝑧 = 𝐼ℎ𝑧 + 𝑚𝑙2 [2-48] 
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Writing the equations of motion in matrix format yields: 

�
𝑀𝛼
𝑀𝛽
𝑀𝛾

� = �
𝐴 𝐵 𝐶
𝐵 𝐷 𝐸
𝐶 𝐸 𝐹

� �
�̈�
�̈�
�̈�
� + �

𝐺
𝐻
𝐼
� + �

𝐵𝛼𝛼 𝐵𝛼𝛽 𝐵𝛼𝛾
𝐵𝛽𝛼 𝐵𝛽𝛽 𝐵𝛽𝛾
𝐵𝛾𝛼 𝐵𝛾𝛽 𝐵𝛾𝛾

� �
�̇�
�̇�
�̇�
� + �

𝐾𝛼𝛼 𝐾𝛼𝛽 𝐾𝛼𝛾
𝐾𝛼𝛽 𝐾𝛽𝛽 𝐾𝛽𝛾
𝐾𝛼𝛾 𝐾𝛽𝛾 𝐾𝛾𝛾

� �
𝛼
𝛽
𝛾
� 

+𝑔𝑙𝑚 �
sin𝛼 sin 𝛾 − cos𝛼 cos 𝛾 sin𝛽

−cos𝛽 cos 𝛾 sin𝛼
sin𝛼 sin𝛽 sin 𝛾 − cos𝛼 cos 𝛾

� [2-49] 

where variables A-G are given in Table 2-1 and parameter values are given in Table 2-2. 
 

Table 2-2:  3-DOF model parameters 

𝐴 𝐼𝐻𝑥sin2 𝛽 + 𝐼𝐻𝑦cos2 𝛽 cos2 𝛾 + 𝐼𝐻𝑧sin2 𝛾 cos2 𝛽 + 𝐼𝐴𝑦 
𝐵 cos 𝛾 cos𝛽 sin 𝛾 �𝐼𝐻𝑦 − 𝐼𝐻𝑧� 
𝐶 𝐼𝐻𝑥 sin𝛽 
𝐷 𝐼𝐻𝑦sin2 𝛾 + 𝐼𝐻𝑧cos2 𝛾 
𝐸 0 
𝐹 𝐼𝐻𝑥 
𝐺 𝐼𝐻𝑥��̇� cos𝛽 (�̇� + 2�̇� sin𝛽)� + 𝐼𝐻𝑦�cos𝛽 cos 𝛾 ��̇��̇� cos 𝛾 − �̇��̇� sin𝛽 cos 𝛾 − �̇��̇� cos𝛽 sin 𝛾�

− ��̇� sin 𝛾 + �̇� cos𝛽 cos 𝛾���̇� sin𝛽 cos 𝛾 + �̇� cos𝛽 sin 𝛾��
+ 𝐼𝐻𝑧�cos𝛽 sin 𝛾 ��̇��̇� sin 𝛾 + �̇��̇� cos𝛽 cos 𝛾 − �̇��̇� sin𝛽 sin 𝛾�
+ ��̇� cos 𝛾 − �̇� cos𝛽 sin 𝛾���̇� sin𝛽 sin 𝛾 − �̇� cos𝛽 cos 𝛾�� 

𝐻 −𝐼𝐻𝑥�̇� cos𝛽 (�̇� + �̇� sin𝛽)
+ 𝐼𝐻𝑦��̇� sin𝛽 cos 𝛾 ��̇� sin 𝛾 + �̇� cos𝛽 cos 𝛾�
+ �̇� cos 𝛾 �2�̇� sin 𝛾 + �̇� cos𝛽 cos 𝛾� − �̇� sin 𝛾 ��̇� sin𝛽 cos 𝛾 + �̇� cos𝛽 sin 𝛾��
+ 𝐼𝐻𝑧��̇� sin𝛽 sin 𝛾 ��̇� cos𝛽 sin 𝛾 − �̇� cos 𝛾�
+ �̇� cos 𝛾 ��̇� sin𝛽 sin 𝛾 − �̇� cos𝛽 cos 𝛾� − �̇� sin 𝛾 �2�̇� cos 𝛾 − �̇� cos𝛽 sin 𝛾�� 

𝐼 𝐼𝐻𝑥��̇��̇� cos𝛽� + �𝐼𝐻𝑦−𝐼𝐻𝑧���̇� sin 𝛾 + �̇� cos𝛽 cos 𝛾���̇� cos𝛽 sin 𝛾 − �̇� cos 𝛾� 
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Table 2-3:  Mean male and female model parameters 

Parameter Male Female 
𝑚 [kg] 0.439 0.346 
𝑙 [m] 0.0665 0.0586 

𝐼𝐻𝑥 [kgm2] 0.00317 0.00180 
𝐼𝐻𝑦 [kgm2] 0.000501 0.000241 
𝐼𝐻𝑧  [kgm2] 0.00276 0.00164 
𝐼𝐴𝑦 [kgm2] 0.00137 0.000505 

𝐾𝛼𝛼 [Nm/rad] 0.756 0.827 
𝐾𝛼𝛽 = 𝐾𝛽𝛼 [Nm/rad] 0.0175 0.0809 
𝐾𝛼𝛾 = 𝐾𝛾𝛼 [Nm/rad] 0.291 0.148 

𝐾𝛽𝛽 [Nm/rad] 0.992 0.713 
𝐾𝛽𝛾 = 𝐾𝛾𝛽 [Nm/rad] -0.0991 -0.0780 

𝐾𝛾𝛾 [Nm/rad] 2.92 2.24 
𝐵𝛼𝛼 [Nms/rad] 0.0236 0.0362 

𝐵𝛼𝛽 = 𝐵𝛽𝛼  [Nms/rad] 0.000791 0.00376 
𝐵𝛼𝛾 = 𝐵𝛾𝛼  [Nms/rad] 0.00831 0.00643 

𝐵𝛽𝛽 [Nms/rad] 0.0300 0.0300 
𝐵𝛽𝛾 = 𝐵𝛾𝛽 [Nms/rad] -0.00316 -0.00351 

𝐵𝛾𝛾 [Nms/rad] 0.0882 0.0959 
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3     CONTROL OF REDUNDANT WRIST AND FOREARM MOVEMENTS 

A great deal of prior research has attempted to explain how the neuromuscular system controls 

body members. This has been investigated primarily in for reaching movements involving the 

shoulder and arm, and has resulted in several hypotheses with various levels of success. Our 

research presented in Chapter 2 suggests that wrist and forearm dynamics are significantly 

different from the shoulder and arm, with stiffness dominating instead of inertia. Under this 

premise it is necessary to reexamine the neuromuscular control strategies used in this vastly 

different system. Note: the experimental portion of this chapter was conceived, planned and 

conducted by Garrett Dorman (Section 3.2.1 Subjects throughProtocol) 

3.1     Introduction 

When making upper limb movements, humans often recruit more degrees of freedom (DOF) 

than are necessary, allowing the same posture to be achieved in an infinite variety of 

configurations. How the neuromuscular system deals with such kinematic redundancy has been 

studied extensively for reaching movements; common trajectories (selected from the infinite 

variety of possibilities) have been shown to be similar to trajectories that minimize a cost 

function associated with movement (such endpoint error or torque change) or maximize an 

attribute of movement (such as stability). 

In contrast, how the neuromuscular system solves the problem of redundancy for wrist and 

forearm movements is unknown. The wrist and forearm allow significant movement in three 



 

34 
 

DOF: flexion-extension (FE), radial-ulnar deviation (RUD), and pronation-supination (PS). 

Many tasks involving FE, RUD, and PS, such as pointing, require less than three DOF. While 

pointing could be achieved with FE and RUD alone, subjects repeatedly recruit pronation-

supination (PS) in addition to FE and RUD. Why does the neuromuscular system recruit PS 

even though it is not necessary? 

The purpose of this study is to 1) characterize the use of PS during pointing 

movements and 2) determine why PS is used (even though it is not necessary). More 

specifically, we tested whether the pattern of PS matched that predicted by a motor control 

strategy that minimized a cost function (path length, potential energy, work, or effort), or 

whether the pattern simply resulted from mechanical interaction between DOF. 

 We found that subjects did indeed use a statistically non-zero amount of PS during 

pointing movements. The amount of PS was repeatable within and between subjects and 

varied sinusoidally with target direction. Furthermore, this pattern depended on movement 

amplitude but not movement speed. When compared to the patterns of PS recruitment 

predicted for minimizing common cost functions and for mechanical interaction, the observed 

pattern of PS recruitment matched the pattern predicted for mechanical interaction, but not the 

patterns predicted for minimizing common cost functions. 
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Figure 3-1: Subjects made 800 center-out movements to 16 targets in the periphery, 
incorporating both comfortable and fast speeds as well as to smaller and larger radii 
(15°and 22.5°). 

3.2     Methods 

3.2.1     Experiment 

Subjects 

 Ten young, healthy, right-handed subjects (5 female, 21-28 years old) participated in this 

experiment. None of the subjects suffered from neurological injury or biomechanical injury to 

the wrist or forearm. Following procedures approved by Brigham Young University’s 

Institutional Review Board, informed consent was obtained from all subjects. 

Experimental Setup 

Subjects were seated in a chair with the right arm in the parasagittal plane. The shoulder 

was in approximately 20° of flexion and 0° abduction and humeral rotation, and the elbow in 

approximately 30° of flexion. A shoulder belt constrained shoulder motion. The proximal 10cm 

of the forearm rested on a horizontal support, constraining elbow motion but allowing 

unobstructed forearm rotation. In their right hand, subjects held a lightweight handle to which a 
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motion sensor (trakSTAR by Ascension Technologies, Burlington, VT) was rigidly attached. A 

second motion sensor was fastened to the dorsal aspect of the distal forearm, approximately 4cm 

proximal to the center of the wrist joint. Together these motion sensors measured wrist flexion-

extension (FE) and radial-ulnar deviation (RUD) as well as forearm pronation-supination (PS) at 

approximately 300Hz with an angular accuracy and resolution of 0.5° and 0.1°, respectively. At 

a combined weight of approximately 75g (roughly 5% of the mass of an average hand and 

forearm), the handle and two sensors presented negligible interference to natural wrist and 

forearm movements. 

In front of the subject was a monitor with 16 peripheral targets equally distributed around 

a center target. Also displayed was a cursor that represented the direction in which the hand 

pointed, similar to the projection of a laser pointer on a screen. More specifically, the horizontal 

and vertical screen coordinates of the cursor were calculated as 

𝑥𝑠 = 𝐶[−𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛽)𝑐𝑜𝑠(𝛾) + 𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)] [3-1] 

𝑦𝑠 = 𝐶[−𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑐𝑜𝑠(𝛾) − 𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾)] [3-2] 

where 𝐶 is a constant factor to adjust the cursor coordinates to the size of the monitor, and 𝛼, 𝛽, 

and 𝛾 are Euler angles representing pronation, flexion, and ulnar deviation (in that order), with 

negative values indicating supination, extension, and radial deviation (see Section 3.5 for 

derivation). As for pointing with a laser pointer, the position of the cursor depended on PS (as 

well as FE and RUD), allowing the cursor to reach the same target with different combinations 

of FE, RUD, and PS. To go from the center target to any of the peripheral targets required either 

15° or 22.5° of displacement in the pointing direction of the hand (depending on the session). 

The cursor was calibrated to be in the center target when the wrist and forearm were in neutral 

position, defined as follows. The forearm was in neutral PS when the dorsal aspect of the distal 
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forearm (more specifically the dorsal tubercle of the radius and the dorsal-most protuberance of 

the ulnar head) was in the parasagittal plane. The wrist was in neutral FE when the handle, the 

center of the wrist joint, and the midpoint between the medial and lateral epicondyles were 

aligned. Finally, the wrist was in neutral RUD when the center of the head of the third 

metacarpal, the center of the wrist joint, and the lateral epicondyle were aligned. This definition 

of neutral position is similar to the ISB recommendation for global movements (Wu et al., 2005) 

except that the definition of FE was adjusted to account for the fact that subjects were holding a 

handle. 

Protocol 

Subjects participated in four experiments divided into two sessions in which they were 

required subjects to combine FE, RUD, and PS in order to move the cursor between the center 

target and each peripheral target. No instruction was given regarding how to combine these three 

DOF. The two experiments in each session were identical except that subjects were instructed to 

move either at a comfortable speed or as fast as possible. The order of the experiments within 

each session was randomized, and there was a break of 5 minutes between experiments. Moving 

between the center target and any of the peripheral targets required 15° of rotation in the first 

session, and each subject was required to complete this 15 times, for a total of 240 roundtrip 

movements.  In the second session targets required 22.5° of rotation and were required 10 times, 

for a total of 160 movements. Each session lasted approximately 40 min. 

Data processing 

Only outbound movements were included in the analysis. Because PS was not prescribed 

or graphically displayed (besides its effect on the pointing direction of the hand), subjects 

exhibited significant drift in PS over the duration of a session. To remove the effect of this drift 
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on the observed pattern of PS recruitment, we calculated for each movement the variable ∆𝑝 as 

the final PS angle minus the initial PS angle (Figure 3-2). The large majority of movements were 

roughly monotonic for PS, with only slight overshoot at the end of a movement at the end of 

each movement. We also calculated the target angle 𝜃, adjusted to account for the drift in PS as 

shown in Figure 3-2. 

 

 

Figure 3-2: Calculation of the change in PS, ∆𝑷𝑺, and the target angle, 𝜽. The black 
coordinate frame represents the extrinsic (world-space) frame, while the blue and green 
frames represent the intrinsic (joint-space) frame at the beginning and end of a move, 
respectively. Since the start and end orientations are 𝜽𝟏 and 𝜽𝟐, respectively, the value of 
∆𝑷𝑺 is 𝜽𝟐 − 𝜽𝟏. If the target is shown as the red dot, then the target angle associated with 
this movement is 𝜽 = 𝜽𝟏 + 𝝓. 
 
Data analysis 

To identify possible trends in the resultant data, the ΔPS values were compared against 

the angle of the target location.  The ΔPS values from all four experimental sessions for each 

subject were first pooled, and outliers removed that were more than 2σ from the mean value. The 

mean bias was then removed from the remaining data points. The resultant data exhibited a 
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generally sinusoidal trend, to which a least squared sinusoidal fit was superimposed in the form 

of ∆𝑃𝑆 = 𝐴 sin(𝐵𝜃 + 𝐶) where A is the amplitude, B is the frequency, and C is the phase shift.  

 

3.2.2     Simulation 

To provide insight into possible control strategies employed by the neuromuscular system for the 

wrist and forearm, the aforementioned experiment was simulated using a 3 DOF model of wrist 

and forearm dynamics (Hill, 1968). In this simulation, all anthropometric model parameters, 

including stiffness, inertial, and damping values, were taken from a similar experiment involving 

5 male and 5 female subjects (Peaden and Charles). Male and female values were averaged to 

obtain non gender-specific results. Theoretical target positions for this experiment would lie on a 

continuous circle with a radius defined by a 15° wrist rotation in either FE or RUD and centered 

on the neutral position. Due to the relative simplicity of simulation, this allows for a higher 

resolution than the 16 points chosen for experimentation, and 72 evenly spaced “virtual targets” 

were placed on this circle at 5° increments, starting from pure radial deviation and proceeding 

around the circle in a clockwise fashion. The amount of PS recruited at each virtual target in each 

simulation was recorded. 

 As in the experiment, the wrist was under-constrained in the simulation. The wrist model 

possesses three unknown variables, one per DOF, but only two constraints, one for each 

coordinate of the pointing direction, leaving one variable undefined. Since the pointing direction 

of the wrist cannot be uniquely solved for in this scenario (infinite solutions are possible), 

various hypotheses were tested to provide the needed relationships between the several DOF, 

such that each hypothesis had a unique solution at each target. These hypotheses fall into two 

principal categories: cost function hypotheses, which assume that the neuromuscular system is 
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attempting to minimize some perceived movement cost, and Two DOF hypotheses, which 

assume that the neuromuscular system primarily concerns itself with FE and RUD. 

Cost Function Hypotheses 

A great variety of movement costs could be examined which would drive the 

neuromuscular system to select a unique joint path with the three DOF of the wrist and forearm. 

Five such costs were selected based on their intuitive connection to physiological behavior. The 

selected costs include mechanical work, movement effort, end-point effort, change in potential 

energy, and path length. The first two of these hypotheses are path dependent and require full 

motion simulation, whereas the second three only require a steady state solution. 

Mechanical Work 

The idea that the neuromuscular system attempts to conserve energy in movement is long 

standing and has been shown to be accurate in some scenarios (Alexander, 1997). The cost 

associated with energy conservation used here is mechanical work, which is the amount of 

mechanical energy the body produces to execute the movement. Energy expenses resulting from 

non-mechanical aspects of the system (e.g. chemical processes) are not considered under this 

assumption. This hypothesis is therefore akin to the neuromuscular system choosing the path of 

least physical resistance. 

To test this hypothesis a function was programmed into OptdesX, a commercial software 

optimizer. The function used the 3DOF model to simulate a movement which started at the 

neutral position (𝛼 = 𝛽 = 𝛾 = 0) and followed a minimum-jerk velocity profile for each joint 

angle until terminating at a set of joint angles chosen by the optimizer. The movement duration 

was set to 0.5 seconds, and the applied forces necessary to execute the movement were 

calculated in 0.001 second step intervals. Each optimization was also constrained, so that the 
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wrist pointed no more than 0.057° off from each “virtual target” at the endpoint, and so that joint 

angles could not exceed reasonable values (FE and RUD constrained to ±30°, PS constrained to 

±80°). The optimizer would iterate on this function until it found a set of joint angles which 

minimized the mechanical work without violating these constraints. Sequential quadratic 

programing (SQP) and generalized reduced gradient (GRG) algorithms were both used on each 

data point to provide confidence in the result. The solution found at various virtual targets was 

also further verified by repeating the optimization from different initial conditions to verify that 

an absolute minimum had been found within the constraints. Mechanical work was calculated as 

a numerical approximation of: 

𝐶𝑤𝑜𝑟𝑘 = � 𝑀𝛼𝛿𝛼 +
𝛼𝑓

0
� 𝑀𝛽𝛿𝛽 +
𝛽𝑓

0
� 𝑀𝛾𝛿𝛾
𝛾𝑓

0
 

[3-3] 

Where 𝛼𝑓, 𝛽𝑓, and 𝛾𝑓 are the joint angles at the virtual target. 

Movement Effort 

 The neuromuscular system may also attempt to find a path in which it has to exert the 

least amount of effort, defined here as joint torque. This differs from minimizing work in that the 

displacements produced by the applied torques have no direct effect on the cost, making longer 

joint paths potentially more favorable if they provide less net resistance. Effort cost is defined as 

the net effort required for the movement, which is the integral of the magnitude of the torque 

vector taken across the entire movement, from the start time, 𝑡 = 0, until movement completion 

at 𝑡 = 𝑡𝑓: 

𝐶𝑒𝑓𝑓𝑜𝑟𝑡 = � �𝑀𝛼
2 + 𝑀𝛽

2 + 𝑀𝛾
2 + 2𝑀𝛼𝑀𝛾sin (𝛽) 𝑑𝑡

𝑡𝑓

0
 [3-4] 

 To minimize the movement effort the same methods were employed as in minimizing 

work, only that the OptdesX function was modified to compute effort as defined above. 
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Postural Effort 

 Instead of following a path that minimizes net effort, this hypothesis assumes that the 

neuromuscular system attempts to minimize the effort required to maintain the end effector 

pointed to the correct target. This effort can be computed from the magnitude of the torque 

vector used to sustain this position: 

𝐶𝑝𝑜𝑠𝑡𝑢𝑟𝑎𝑙−𝑒𝑓𝑓𝑜𝑟𝑡 = �𝑀𝛼𝑓
2 + 𝑀𝛽𝑓

2 + 𝑀𝛾𝑓
2 + 2𝑀𝛼𝑓𝑀𝛾𝑓sin (𝛽𝑓) [3-5] 

To determine the required torques in this equation only the static terms from the 3 DOF wrist 

model need to be considered: 

�
𝑀𝛼
𝑀𝛽
𝑀𝛾

� = �
𝐾𝛼𝛼 𝐾𝛼𝛽 𝐾𝛼𝛾
𝐾𝛼𝛽 𝐾𝛽𝛽 𝐾𝛽𝛾
𝐾𝛼𝛾 𝐾𝛽𝛾 𝐾𝛾𝛾

� �
𝛼
𝛽
𝛾
� + 𝑔𝑙1𝑚ℎ �

sin𝛼 sin 𝛾 − cos𝛼 cos 𝛾 sin𝛽
−cos𝛽 cos 𝛾 sin𝛼

sin𝛼 sin𝛽 sin 𝛾 − cos𝛼 cos 𝛾
� [3-6] 

 The required effort can therefore be determined from the above equation if all joint 

angles are considered in their final state, 𝛼𝑓, 𝛽𝑓, and 𝛾𝑓. The required joint angles are also 

constrained in that they must point to the correct virtual target. These relationships can be 

obtained by solving for 𝑥 and 𝑦 in Equations 3-1 and 3-2, resulting in the following relationships 

with the joint angles: 

𝛾 = −sin−1(cos(𝛼) ∗ 𝑦𝑠 −sin(𝛼) ∗ 𝑥𝑠) [3-7] 

𝛽 = sin−1 �
sin(𝛼) ∗ sin(𝛾) − 𝑥𝑠

cos(𝛼) ∗ cos(𝛾) � 
[3-8] 

These two equations, combined with a minimization of the effort cost function, provide an equal 

number of relations and unknowns, indicating that a solution can be found. To compute this 

optimum all possible values of 𝛼 were considered from −𝜋/2 to 𝜋/2, and 𝛾 and 𝛽 were made 

dependent on this value. The cost function was then computed along this continuum at each 

virtual target, the minimum found, and the corresponding joint angles recorded. 
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Change in Potential Energy 

 The body may concern itself most with the work required to maintain its endpoint 

position rather than just attain it. Since dissipated energy (damping) will not affect this, then it 

may be computed as a change in the potential energy between this state and the neutral position. 

This relationship is found in the derivation of the 3 DOF wrist and forearm model (Peaden and 

Charles, Appendix p3). 

 This cost function was optimized using the same methods described for the end-point 

effort hypothesis, with change in potential energy as the computed cost.  Specifically, the change 

in potential energy was computed with the aid of Equations 3-7 and 3-8 for all possible values of  

𝛼 from −𝜋/2 to 𝜋/2 until the minimum was found. 

Path Length 

 Under the assumption that path length is the highest cost which the neuromuscular 

system must account for, a joint path will be chosen which minimizes the rotation of the 

coordinate frame from its neutral position. Combining the rotation matrix which moves the hand 

to point each virtual target from neutral position (see Section 3.5) with the equation for 

equivalent angle-axis representation of joint rotations (Eqn. 2.81, Craig, 2004, p 47) this angular 

rotation can be shown to be: 

𝐶𝑙𝑒𝑛𝑔𝑡ℎ = �cos−1 �
(cos𝛼 ∗ cos 𝑏)

2
+

(cos𝛼 ∗ cos𝑔)
2

+
(cos 𝑏 ∗ cos𝑔)

2

−
sin𝛼 sin𝛽 sin 𝛾

2
−

1
2
�� 

[3-9] 

This change in potential energy was minimized as a cost function using the same methods 

employed to minimize end-point effort and change in potential energy. 
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Mechanical Interaction Hypothesis 

 Although PS, FE, and RUD all affect the pointing direction, they do not contribute 

equally to the task of reaching the target. While some targets can be reached by FE alone and 

others by RUD alone, and all targets can be reached by a combination of FE and RUD, no target 

can reached by PS alone, nor is PS actually necessary to reach any target. Indeed, linearizing Eq. 

3-1 and 3-2 yields 𝑥 ≈ −𝑓 and 𝑦 ≈ −𝑢. Therefore, one potential strategy of the neuromuscular 

system may be to simply ignore PS (intentionally or not) and try to reach targets with FE and 

RUD alone. However, because PS is mechanically coupled with FE and RUD, torques in FE and 

RUD will create movement in PS. We hypothesize that the observed behavior in PS may simply 

be this movement, passively and secondarily induced by a control strategy that did not involve 

PS. 

 To test this hypothesis, we ignored PS during the planning stage and computed the effect 

on PS during the execution stage. With only 2 available DOF, the planning stage reduces to a 

fully constrained problem, so we determined the FE and RUD angles and torques necessary to 

reach a virtual target by inverse simulation using a 2-DOF model of the wrist, and then executed 

the movement by forward simulation using the full 3-DOF model of the wrist and forearm (with 

zero input torque in PS; Figure 3-3). Without a stabilizing torque in PS, mechanical interaction 

between the DOF caused a “kickback displacement” in PS, which was determined at each virtual 

target. 
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Figure 3-3: Methodology for computing the kinematics predicted by the interaction 
hypothesis. 

 

Because the movement in PS was not taken into account in the planning stage, the actual 

final pointing direction was slightly different from the planned direction. The error in pointing 

direction was small (mean error = 1.2°, maximum error = 2.7°) and in practice could be ignored 

(the targets had a radius of 1.5°) or corrected toward the end of the movement using visual 

feedback. Nevertheless, we also simulated a slight variation in control strategy that results in 

zero endpoint error. According to this strategy, the input torque in PS is still zero, but the torques 

in FE and RUD are altered during the planning stage to take the mechanical interaction with PS 

into account (using the full 3-DOF model). The resulting movement in PS was computed by 

setting the steady-state PS torque in the 3-DOF model equal to zero and combining this condition 

with Equations 3-3 and 3-4, resulting in a fully constrained system which was solved for 𝑝 at 

every virtual target. 
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3.2.3     Comparison of Experimental and Simulated Data 

The accuracy of each hypothesis was evaluated by qualitatively comparing their predicted PS 

values with the experimentally recorded values of ΔP. Specifically, a potentially valid hypothesis 

should exhibit the same behavior as the experimental data in three key areas: frequency, phase, 

and amplitude. The frequency of the data or hypotheses is defined as the number of times PS 

recruitment exhibits identical behavior that is offset only in target angle within the circle of 

targets. Amplitude is defined as the peak value of the absolute value of the observed or 

theoretical PS recruitment. Phase shift is defined as the offset in phase of the hypothesis or 

experimental data from a pure sinusoidal behavior. Hypotheses that appear to meet these criteria 

are further evaluated by observing their predicted behavior with anthropometric parameters from 

a similar experiment (Peaden and Charles) to verify that their predicted results do not differ 

substantially when considered for individuals as opposed to populations. 

3.3     Results 

3.3.1     Experiment 

Most all subjects exhibited a clearly discernible sinusoidal trend in their PS recruitment (Figure 

3-4:). After each subject’s measured PS recruitment was fit to a sine curve, the mean amplitude 

of the sinusoid among subjects was 1.7°, with a frequency of 1.12 cycles/revolution and phase 

shift of 115°. There is consistency between the subjects in regard to all three of these 

phenomena, and almost all of the determined parameters for each subject fall within two 

standard deviations of the mean. Two obvious exceptions to this are with subject 2 (whose 

frequency is 2.80 SD from the mean) and subject 7 (whose phase is 1.98 SD from the mean) 

(Table 3-1). Removing these outliers, the mean frequency becomes 1.01 cycles/revolution, and 

the mean phase shift becomes 128°. 
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Figure 3-4:  The ΔPS calculated for each subject plotted against target angle. The target 
corresponding to pure radial deviation was considered to be at 0°, and the angle increased 
in a clockwise fashion, passing through pure extension at 90°, ulnar deviation at 180°, and 
flexion at 270°, although target angles were possible at any point along this circle due to the 
compensation for PS drift. This same convention is used on all future figures. 
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Figure 3-5:  Mean ΔPS (averaged across all subjects) plotted against target angle. The sine 
fit to this data has an amplitude of 0.77°, a frequency of 1.08 cycles/revolution, and a phase 
shift of 105°. 

 

Figure 3-6: Graph of subjects’ least squares sine fit approximations 
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Table 3-1:  Least squares sine fits of subjects’ ΔPS values 

Subject Amplitude 
ΔPS (deg) 

Frequency 
(cycles/revolution) 

Phase Shift 
(degrees) Residual 

1 1.64 0.970 132 1977 
2 0.898 2.08 116 3560 
3 2.14 0.995 88 2995 
4 2.26 1.01 150 2680 
5 1.58 1.11 157 1531 
6 0.907 1.10 222 2780 
7 2.34 0.887 1 20048 
8 2.51 0.951 82 5580 
9 1.36 1.04 104 4527 

10 1.52 1.04 99 2509 
mean 1.71 1.12 115 4819 

standard 
deviation 0.578 0.343 58 5482 

 

3.3.2     Simulation 

 

Figure 3-7:  PS recruitment predicted by minimization of common cost functions and by 
simple mechanical interaction. Positive values in the y-axis indicate pronation, whereas 
negative values indicate supination. The x-axis values are the target angle for each of the 72 
data points simulated for each. The target angle is defined as the angle offset from pure 
radial deviation (right hand), proceeding clockwise in a completed circle. 
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 The amount of PS recruitment predicted varies greatly in behavior between the several 

hypotheses (Figure 3-7:). The amplitude of the various hypotheses varies between 1° when 

minimizing the rotation of the coordinate frame, to 35° when minimizing effort. Frequency 

varies between 1 cycle/rotation for most hypotheses, but 2 cycles/rotation when minimizing the 

rotation of the coordinate frame. Phase can only be compared when observing strictly sinusoidal 

curves, and varies from 131° for the interaction and coupled interaction hypothesis, to180° when 

minimizing the rotation of the coordinate frame. All hypotheses are cyclic; there are no 

discontinuities. The minimum work and minimum change in potential energy hypothesis are 

nearly identical, and their behavior is nearly coincident. Likewise the kickback and coupled 

kickback hypothesis share a nearly identical locus, but there is a slightly larger discrepancy in 

this case. All other hypotheses are easily distinguishable. 

 

3.3.3  Comparison of Experimental and Simulated Data 

Most hypotheses failed in one or more area, however both the interaction and coupled interaction 

hypothesis meet all the established requirements for a good hypothesis (Table 3-2). The 

interaction hypothesis is near perfect sinusoid with a frequency of 1 cycle/revolution, amplitude 

of 5.9°, and phase shift of 131°. The coupled interaction hypothesis produces almost identical 

results, only with a slightly reduced amplitude. 

Despite their comparative resemblance to the experimental data, the predicted amplitude 

of the interaction and coupled interaction hypothesis, although of similar magnitude, remains 

larger than the mean value of the sinusoidal fits observed (about 1.71º ΔPS, Table 3-1).  We  
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Table 3-2:   Comparison between experimental data and various hypotheses.  
A good hypothesis should possess the same frequency, amplitude, and phase 

 as the experimental data.  Note that in order to have the correct phase,  
the theoretical curve must exhibit the same sinusoidal behavior  

observed experimentally, since the phase shift of  
dissimilar curves cannot be determined. 

Hypothesis Frequency Amplitude Phase 
Mechanical Work X X  
Movement Effort X   
Postural Effort X   
Change in Potential Energy X X  
Path Length    
Interaction X X X 
Coupled Interaction X X X 

 

found that increasing 𝐾𝛼𝛼 by a factor of three reduces the predicted magnitude for both 

hypotheses to roughly the same magnitude as the experimental data.  This is plausible because it 

would indicate a small amount of co-contraction in the DOF least used in the movement (co-

contraction may cause the stiffness to increase much more than this). 

 

  

Figure 3-8:  The ∆𝑷𝑺 predicted by the interaction and coupled interaction hypotheses, 
based on individual anthropometric parameters from subjects in a similar experiment 
(Peaden and Charles). The interaction hypothesis had amplitudes ranging from 1.7° to 18° 
while the coupled interaction hypothesis had amplitudes ranging 1.7° to 15°. Both 
hypothesis phase shifts ranged from 95° to 166°. 
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Figure 3-9:  Comparison of subject least squares regression sine fits (fine lines) to the 
interaction hypothesis (light blue, bold line) and the interaction hypothesis with simulated 
co-contraction of the forearm (orange, bold line). 

3.4     Discussion 

Of the hypotheses tested, the interaction and coupled interaction hypotheses appear to hold the 

most merit. Although both hypotheses predict larger amounts of ΔPS then the experimental data 

suggests, when individual subjects anthropometric parameters are simulated (Figure 3-8:), the 

amount of ΔPS predicted becomes comparable to the spread of data observed in individual 

subjects (Figure 3-4:). Also, co-contraction of the forearm, likely caused by the gripping of the 

sensor handle, may further explain this discrepancy. 

 The interaction hypothesis suggests that the neuromuscular system may simplify pointing 

by approximating the wrist and forearm as a 2 DOF system. This implies that the neuromuscular 
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system may employ a simplified internal model for scenarios involving redundancy, ignoring 

additional complications which contribute little to accuracy—this is similar to other research, 

including the unconstrained manifold (Scholz and Schoner, 1999) and leading joint hypotheses 

(Dounskaia, 2005).  The failure of the wrist and forearm to exactly attain its target in this 

hypothesis is of little consequence, since when it is constrained to do so as in the coupled 

interaction hypothesis, nearly identical results are produced. 

3.5     Screen Coordinate Derivation 

As defined by Peaden and Charles, the wrist and forearm’s stationary coordinate frame is 

positioned so that from anatomical position the x-axis points in the frontal direction (roughly 

normal to the palm), the y-axis points upward along the forearm towards the shoulder, and the z-

axis points outward parallel to the frontal plane (roughly in the thumb’s pointing direction). 

From this coordinate system, the rotation matrix that brings a point a distance 𝑙1 from the wrist, 

extending along the third metacarpal, into the stationary frame is: 

𝑅 = ��𝑅𝛾��𝑅𝛽�[𝑅𝛼]�
𝑇
�

0
−𝑙1

0
� 

[3-10] 

Which when expanded becomes 

𝑅 = �
cos𝛽 cos𝛼 sin 𝛾 sin𝛼 − sin𝛽 cos 𝛾 cos𝛼 sin𝛽 sin 𝛾 cos𝛼 + cos 𝛾 sin𝛼

sin𝛽 cos𝛽 cos 𝛾 − cos𝛽 sin 𝛾
− cos𝛽 sin𝛼 sin𝛽 sin𝛼 cos 𝛾 + sin 𝛾 cos𝛼 cos 𝛾 cos𝛼 − sin𝛽 sin 𝛾 sin𝛼

� 

 

[3-11] 

Multiplying this matrix by the arbitrary wrist end point �
0
−1
0
� the x, y, and z coordinates of a  

point on the hand a distance 1 away can be determined. This produces: 
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𝑟ℎ,𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 = �
− sin(𝛼) sin(𝛾) + cos(𝛼) sin(𝛽) cos(𝛾)

−cos (𝛽)cos (𝛾)
− cos(𝛼) sin(𝛾) − sin(𝛼) sin(𝛽) cos(𝛾)

� [3-12] 

In the anatomical coordinate frame used by Peaden and Charles, the targets in this experiment 

would lie on the XZ plane, and their coordinates could be found from the first and third elements 

of this matrix. The screen coordinates differ from the anatomical coordinate system used in that 

the sign of the x-coordinate is reversed, and the y screen coordinate is equal to the z anatomical 

coordinate. The screen coordinates then become: 

𝑥𝑠 = 𝐶[−𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛽)𝑐𝑜𝑠(𝛾) + 𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)] [3-13] 

𝑦𝑠 = 𝐶[−𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑐𝑜𝑠(𝛾) − 𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾)] [3-14] 

Where 𝐶 is constant factor to adjust the cursor coordinates to the size of the monitor. 
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4     CONCLUSION 

Despite the abundance of Repetitive Strain Injuries (RSI) to the wrist, our current understanding 

of wrist movement is lacking in key areas necessary to remedy this problem. Two of these areas 

include an improved understanding of the torques acting on the wrist, as well as the control 

strategies that govern wrist movement. This knowledge is essential in designing ergonomic and 

therapeutic devices which prevent or even cure RSI in the wrist. Because natural movement 

generally combines wrist movements with forearm movements, understanding the torques and 

control strategies involved in wrist movements requires that we understand forearm movements 

as well. The research presented in this thesis addresses these gaps in our current understanding 

by modeling dynamic wrist and forearm impedance torques, and by examining the needed 

complexity and possible control strategies employed by the neuromuscular system’s internal 

model for wrist and forearm movement. 

A key contribution of this research is a complete 3-DOF model of wrist and forearm 

dynamics, which when coupled with correct parameters can be used to both compute joint 

torques and predict movements from known torques. This model provides several advantages 

over current computational models. Specifically, it requires joint impedance (as opposed to 

individual muscle parameters), which can be estimated or even measured for a given subject, it is 

simple to implement and requires no unique software package, and it can be easily manipulated 

for a specific application. This model was used in all aspects of this research. 
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Our first experiment (Chapter 2) found that stiffness dominated the torques acting on the 

forearm, as well as on the wrist and forearm together, and that interaction torques between the 

wrist and forearm (due to impedance coupling) were significant. Therefore, in terms of 

dynamics, forearm rotation is more similar to wrist rotations, which are also dominated by 

stiffness effects (Charles and Hogan, 2011) than shoulder and elbow rotations, which are 

believed to be dominated by inertial effects. 

Another key finding of this experiment was in modeling the torque required for small-

angle movements, some torque terms contribute little to the overall torque and can be neglected 

with little loss in accuracy. More specifically, linearizing the equations of motion resulted in an 

average error of less than 1%. This suggests that an internal model for such movements does not 

need to be complicated. This conclusion, however, became invalid if the interaction torques 

between degrees of freedom (DOF) were removed, suggesting that the neuromuscular system’s 

internal model for these movements must account for coupling between DOF. These results 

likewise agree with prior research considering only 2 DOF (Charles and Hogan, 2011). 

In our second experiment we compared experimental and theoretical results of PS 

recruitment for a 2 DOF pointing task in which all 3 DOF of the wrist and forearm were 

available in an effort to determine how the neuromuscular system may handle joint redundancy.   

Our results (Chapter 3) suggest that the neuromuscular system may control the task of pointing 

with the wrist and forearm, which involves redundancy, with a simplified 2-DOF model. 

Specifically, forearm motion was the least critical to the task, and simulated motor planning that 

neglected this DOF produced theoretical predictions of PS usage most similar to what was 

observed experimentally. This agrees with prior research which has suggested that the 
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neuromuscular system focuses its control efforts on the DOF most critical to the completion of a 

task (Scholz and Schoner, 1999). 

Understanding how the neuromuscular system controls wrist and forearm movements 

involving redundancy is critical to designing human-machine interfaces that reduce the risk of 

RSI. Knowing the origin of these forces is likewise critical if natural wrist and forearm 

movement is to be emulated or restored.   

Despite the advances furnished by this research, several aspects could be further refined to 

provide more accurate results. The research presented here was all, to some degree, based off of 

a 3-DOF wrist and forearm model. The stiffness values used in this model were only valid for 

small angle movements, and had been linearized. Removing these simplifications would result in 

a more complete model. There also remains a great deal of potential research with the current 3-

DOF model, such as modeling essential tremor in the wrist, modeling the effect of orthotics on 

wrist movement, and modeling the effect of tool use on the wrist. 
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APPENDIX 

In order to simulate a motion with the dynamic model presented in Chapter 2.5 it may be 

desirable to define both a path and a velocity profile for the movement. In this model the wrist 

and forearm were treated as a universal joint, so the region of space that can be reached by an 

end effector point located on the hand is a semi-sphere with the joint origin at the center of its 

base.   To move this end effector between any two points on this sphere a path must be defined, 

which here is chosen to be the arc that traverses the shortest distance possible between these two 

points. The coordinates system must also be configured to provide a series of points along this 

arc that adhere to a pre-determined velocity profile. 

 

Figure A-0-1:  Coordinate system for minimum distance path between two points (labeled 1 
and 2) on a semi-sphere 
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The shortest distance path between the start and end point (points 1 and 2, Figure A-0-1) lies on 

the arc that is formed by the intersection of the semi-sphere of possible end-effector points and a 

plane that intersects the start point, end points, and origin. The velocity profile for the path 

between these two points is chosen by applying some function to 𝛼, the rotation angle of arc 

along this plane. Since the radius remains constant in this configuration, the magnitude of the 

velocity of the end-effector will be the tangential velocity: 

|𝑉| = 𝑟 ∗ |�̇�| [A-1] 

Thus, the after the path is chosen, the velocity profile may chosen by incrementing 𝛼 according 

to the desired function.  For simplicity’s sake, in this derivation the sphere is assumed to have a 

radius of one. The end points, if known in the coordinate system shown in Figure A-0-1, can be 

determined in Cartesian space as follows 

𝑥1 = sin𝜃 cos𝛼1 + cos𝜃 sin𝜙 sin𝛼1 [A-2] 

𝑦1 = sin𝛼1 cos𝜙 [A-3] 

𝑧1 = cos𝜃 cos𝛼1 − sin𝜃 sin𝜙 sin𝛼1 [A-4] 

The same relations can likewise be used for the second point. 

Reversing this relationship to find the coordinates of the end points in this new coordinate 

system that are known in Cartesian space is also possible. Note that because the end points lie on 

a sphere, if two of the three Cartesian coordinates are known, the third can be solved for.  

To solve for 𝛼,𝜃 and 𝜙 we first reverse the relationship for the y-coordinate (Equation A-3), so 

that the values for 𝛼1 and 𝛼2 can be partially determined: 

𝛼1 = sin−1
𝑦1

cos𝜙
 

𝛼2 = sin−1
𝑦2

cos𝜙
 

[A-5] 
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We next define the dot product between the two vectors of end-effector points in Cartesian space 

for future use: 

𝜓 = 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2 [A-6] 

The difference in the angles  𝛼1 and 𝛼2 is equal to that found from the dot product: 

𝛼1 − 𝛼2 =  cos−1 𝜓 [A-7] 

The lone variable left in this equation, after substituting in equations A-5 and A-6 is 𝜙, which 

can be solved for: 

𝜙 = cos−1 �
�(𝜓2 − 1)(2𝑦1𝑦2𝜓 − 𝑦12 − 𝑦22)

𝜓2 − 1 � [A-8] 

With 𝜙 solved for, 𝛼1 and 𝛼2 may be determined as well. Due to the nature of negative relations 

in trigonometry, the solutions for 𝛼 and 𝜙 found thus far may be incorrect. An algorithm, or 

good intuition, should be used at this point to determine if the correct values are  𝛼1 or  𝜋 − 𝛼1, 

𝛼2 or  𝜋 − 𝛼2 and 𝜙 or −𝜙. There are, in all, 8 possible combinations of answers here to choose 

from.   Code is provided at the end of this section which may be used to correctly select the 

desired combination. 

Once the correct values for 𝛼1, 𝛼2, and 𝜙 are known, 𝜃 may be solved for as follows: 

Rearranging Equation A-2: 

𝑥1 − sin𝜃 cos𝛼1
sin𝜙 sin𝛼1

= cos𝜃 [A-9] 

Repeating this for the equation for 𝑥2,  then combining the two equations and rearranging: 

𝑥1 sin𝛼2 − sin𝜃 cos𝛼1 sin𝛼2 = 𝑥2 sin𝛼1 − sin𝜃 cos𝛼2 sin𝛼1 

We can now solve for 𝜃: 

𝜃 = sin−1 �
𝑥1 sin𝛼2 − 𝑥2 sin𝛼1

cos𝛼1 sin𝛼2 − sin𝛼1 cos𝛼2
� [A-10] 
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Code: 

dot=x1*x2+y1*y2+z1*z2;  %Compute Dot Product 
phi=acos(-sqrt((-1+dot^2)*(2*y1*dot*y2-y2^2-y1^2))/(-1+dot^2)); %Compute Phi 
at1=real(asin(y1/cos(phi)));    %Compute alpha temporary 1 
at2=real(asin(y2/cos(phi)));    %Compute alpha temporary 2 
  
%Check to see which alpha is smaller.  It is assumed that the trajectory 
%travels from point 1 to point 2 
if at1<at2 
    smaller=at1; 
else 
    smaller=at2; 
end 
  
if phi ~= 100 %test all 8 possibilities 
    if (smaller+real(acos(dot)))<=pi/2  %This tests to see if the start and 
end point are both on the same side of the hemisphere 
    disp('same side'); 
    ttemp=real(asin((x1*sin(at2)-x2*sin(at1))/(cos(at1)*sin(at2)-
sin(at1)*cos(at2))));  %Compute a temporary theta 
    xx1=sin(ttemp)*cos(at1)+cos(ttemp)*sin(phi)*sin(at1);   %Use the derived 
coordinates of alpha, phi, and theta to recompute the x and z coordinates 
    zz1=cos(ttemp)*cos(at1)-sin(ttemp)*sin(phi)*sin(at1); 
    xx2=sin(ttemp)*cos(at2)+cos(ttemp)*sin(phi)*sin(at2); 
    zz2=cos(ttemp)*cos(at2)-sin(ttemp)*sin(phi)*sin(at2); 
    tdist1=abs(real(sqrt((x1-xx1)^2+(z1-zz1)^2)))+abs(real(sqrt((x2-
xx2)^2+(z2-zz2)^2)));       %Compare the x and z coordinates just computed 
with the specified x and z coordinates, x1, z1, x2, and z2.  This is done by 
summing the absolute value of the distances between both the start and the 
end points. 
    phi=-phi; %Switch the sign of phi and try this again.  Alphas are not 
affected by changing sign of phi 
    ttemp=real(asin((x1*sin(at2)-x2*sin(at1))/(cos(at1)*sin(at2)-
sin(at1)*cos(at2))));  %Repeat this process for the new angle values 
    xx1=sin(ttemp)*cos(at1)+cos(ttemp)*sin(phi)*sin(at1); 
    zz1=cos(ttemp)*cos(at1)-sin(ttemp)*sin(phi)*sin(at1); 
    xx2=sin(ttemp)*cos(at2)+cos(ttemp)*sin(phi)*sin(at2); 
    zz2=cos(ttemp)*cos(at2)-sin(ttemp)*sin(phi)*sin(at2); 
    tdist2=abs(real(sqrt((x1-xx1)^2+(z1-zz1)^2)))+abs(real(sqrt((x2-
xx2)^2+(z2-zz2)^2))); 
    at3=pi-at1;  
    at4=pi-at2; 
    phi=-phi;   %revert to original phi first. 
    ttemp=real(asin((x1*sin(at4)-x2*sin(at3))/(cos(at3)*sin(at4)-
sin(at3)*cos(at4)))); 
    xx1=sin(ttemp)*cos(at3)+cos(ttemp)*sin(phi)*sin(at3); 
    zz1=cos(ttemp)*cos(at3)-sin(ttemp)*sin(phi)*sin(at3); 
    xx2=sin(ttemp)*cos(at4)+cos(ttemp)*sin(phi)*sin(at4); 
    zz2=cos(ttemp)*cos(at4)-sin(ttemp)*sin(phi)*sin(at4); 
    tdist3=abs(real(sqrt((x1-xx1)^2+(z1-zz1)^2)))+abs(real(sqrt((x2-
xx2)^2+(z2-zz2)^2))); 
    phi=-phi; 
    ttemp=real(asin((x1*sin(at4)-x2*sin(at3))/(cos(at3)*sin(at4)-
sin(at3)*cos(at4)))); 
    xx1=sin(ttemp)*cos(at3)+cos(ttemp)*sin(phi)*sin(at3); 
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    zz1=cos(ttemp)*cos(at3)-sin(ttemp)*sin(phi)*sin(at3); 
    xx2=sin(ttemp)*cos(at4)+cos(ttemp)*sin(phi)*sin(at4); 
    zz2=cos(ttemp)*cos(at4)-sin(ttemp)*sin(phi)*sin(at4); 
    tdist4=abs(real(sqrt((x1-xx1)^2+(z1-zz1)^2)))+abs(real(sqrt((x2-
xx2)^2+(z2-zz2)^2))); 
    phi=-phi;   %revert to original phi again. 
    tvec=[tdist1 tdist2 tdist3 tdist4]; %Select the case that positions x and 
z values computed from alpha1, alpha2, phi, and theta closest to the desired 
values (should be only computational numeric error) 
    switch min(tvec) 
        case tdist1 
        alpha1=at1; 
        alpha2=at2; 
        %Phi does not change. 
        case tdist2 
        alpha1=at1; 
        alpha2=at2; 
        phi=-phi; 
        case tdist3 
        alpha1=at3; 
        alpha2=at4; 
        %phi does not change. 
        case tdist4 
        alpha1=at3; 
        alpha2=at4; 
        phi=-phi;             
    end 
    if tdist2==tdist3 && tdist2==min(tvec)  % Handle redundancies in case 
more than one solution matches. 
        alpha1=at1; 
        alpha2=at2; 
        phi=-phi; 
    end 
    if tdist1==tdist4 && tdist1==min(tvec) 
        alpha1=at1; 
        alpha2=at2; 
    end 
    if tdist1==tdist2 && tdist1==min(tvec) 
        alpha1=at1; 
        alpha2=at2; 
    end 
    if tdist3==tdist4 && tdist3==min(tvec) 
        alpha1=at3; 
        alpha2=at4; 
    end 
    end 
    if (smaller+real(acos(dot)))>pi/2   %Repeat this entire process if alpha1 
and alpha2 are on opposite sides of the hemisphere 
    disp('Opposite side'); 
    at1=pi-at1; 
    ttemp=real(asin((x1*sin(at2)-x2*sin(at1))/(cos(at1)*sin(at2)-
sin(at1)*cos(at2)))); 
    xx1=sin(ttemp)*cos(at1)+cos(ttemp)*sin(phi)*sin(at1); 
    zz1=cos(ttemp)*cos(at1)-sin(ttemp)*sin(phi)*sin(at1); 
    xx2=sin(ttemp)*cos(at2)+cos(ttemp)*sin(phi)*sin(at2); 
    zz2=cos(ttemp)*cos(at2)-sin(ttemp)*sin(phi)*sin(at2); 



 

65 
 

    tdist1=abs(real(sqrt((x1-xx1)^2+(z1-zz1)^2)))+abs(real(sqrt((x2-
xx2)^2+(z2-zz2)^2))); 
    phi=-phi; %Alphas are not affected by changing sign of phi 
    ttemp=real(asin((x1*sin(at2)-x2*sin(at1))/(cos(at1)*sin(at2)-
sin(at1)*cos(at2)))); 
    xx1=sin(ttemp)*cos(at1)+cos(ttemp)*sin(phi)*sin(at1); 
    zz1=cos(ttemp)*cos(at1)-sin(ttemp)*sin(phi)*sin(at1); 
    xx2=sin(ttemp)*cos(at2)+cos(ttemp)*sin(phi)*sin(at2); 
    zz2=cos(ttemp)*cos(at2)-sin(ttemp)*sin(phi)*sin(at2); 
    disp(abs(real(sqrt((x1-xx1)^2+(z1-zz1)^2)))); 
    disp(abs(real(sqrt((x2-xx2)^2+(z2-zz2)^2)))); 
    tdist2=abs(real(sqrt((x1-xx1)^2+(z1-zz1)^2)))+abs(real(sqrt((x2-
xx2)^2+(z2-zz2)^2))); 
    at3=pi-at1;  
    at4=pi-at2; 
    phi=-phi;   %revert to original phi first. 
    ttemp=real(asin((x1*sin(at4)-x2*sin(at3))/(cos(at3)*sin(at4)-
sin(at3)*cos(at4)))); 
    xx1=sin(ttemp)*cos(at3)+cos(ttemp)*sin(phi)*sin(at3); 
    zz1=cos(ttemp)*cos(at3)-sin(ttemp)*sin(phi)*sin(at3); 
    xx2=sin(ttemp)*cos(at4)+cos(ttemp)*sin(phi)*sin(at4); 
    zz2=cos(ttemp)*cos(at4)-sin(ttemp)*sin(phi)*sin(at4); 
    disp(abs(real(sqrt((x1-xx1)^2+(z1-zz1)^2)))); 
    disp(abs(real(sqrt((x2-xx2)^2+(z2-zz2)^2)))); 
    tdist3=abs(real(sqrt((x1-xx1)^2+(z1-zz1)^2)))+abs(real(sqrt((x2-
xx2)^2+(z2-zz2)^2))); 
    phi=-phi; 
    ttemp=real(asin((x1*sin(at4)-x2*sin(at3))/(cos(at3)*sin(at4)-
sin(at3)*cos(at4)))); 
    xx1=sin(ttemp)*cos(at3)+cos(ttemp)*sin(phi)*sin(at3); 
    zz1=cos(ttemp)*cos(at3)-sin(ttemp)*sin(phi)*sin(at3); 
    xx2=sin(ttemp)*cos(at4)+cos(ttemp)*sin(phi)*sin(at4); 
    zz2=cos(ttemp)*cos(at4)-sin(ttemp)*sin(phi)*sin(at4); 
    tdist4=abs(real(sqrt((x1-xx1)^2+(z1-zz1)^2)))+abs(real(sqrt((x2-
xx2)^2+(z2-zz2)^2))); 
    phi=-phi;   %revert to original phi again. 
    tvec=[tdist1 tdist2 tdist3 tdist4]; 
    switch min(tvec) 
        case tdist1 
        alpha1=at1; 
        alpha2=at2; 
        %Phi does not change. 
        case tdist2 
        alpha1=at1; 
        alpha2=at2; 
        phi=-phi; 
        case tdist3 
        alpha1=at3; 
        alpha2=at4; 
        %phi does not change. 
        case tdist4 
        alpha1=at3; 
        alpha2=at4; 
        phi=-phi; 
    end 
    if tdist2==tdist3 && tdist2==min(tvec) 
        alpha1=at1; 
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        alpha2=at2; 
        phi=-phi; 
    end 
    if tdist1==tdist4 && tdist1==min(tvec) 
        alpha1=at1; 
        alpha2=at2; 
    end 
    if tdist1==tdist2 && tdist1==min(tvec) 
        alpha1=at1; 
        alpha2=at2; 
    end 
    if tdist3==tdist4 && tdist3==min(tvec) 
        alpha1=at3; 
        alpha2=at4; 
    end 
    end 
end 
  
theta=real(asin((x1*sin(alpha2)-x2*sin(alpha1))/(cos(alpha1)*sin(alpha2)-
sin(alpha1)*cos(alpha2)))); % Compute Theta 
  
if alpha2<alpha1 %Handle path direction 
    temp=-1; 
else 
    temp=1; 
end 
  
for v=1:1:length(t)     %Step through vector of angle values, tpos, to 
compute x, y, and z point at every point of time from the start point to the 
end point  
xp(v)=sin(theta)*cos(alpha1+temp*tpos(v))+cos(theta)*sin(phi)*sin(alpha1+temp
*tpos(v)); 
yp(v)=(sin(alpha1+temp*tpos(v))*cos(phi)); 
zp(v)=cos(theta)*cos(alpha1+temp*tpos(v))-
sin(theta)*sin(phi)*sin(alpha1+temp*tpos(v)); 
end 
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