
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2012-03-13

A Methodology for Strategically Designing
Physical Products that are Naturally Resistant to
Reverse Engineering
Stephen P. Harston
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations
by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Harston, Stephen P., "A Methodology for Strategically Designing Physical Products that are Naturally Resistant to Reverse
Engineering" (2012). All Theses and Dissertations. 3128.
https://scholarsarchive.byu.edu/etd/3128

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F3128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F3128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3128?utm_source=scholarsarchive.byu.edu%2Fetd%2F3128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


A Methodology for Strategically Designing Physical Products that are

Naturally Resistant to Reverse Engineering

Stephen P. Harston

A dissertation submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Christopher A. Mattson, Chair

Brent L. Adams

Brian D. Jensen

Spencer P. Magleby

Alan R. Parkinson

Department of Mechanical Engineering

Brigham Young University

April 2012

Copyright © 2012 Stephen P. Harston

All Rights Reserved



ABSTRACT

A Methodology for Strategically Designing Physical Products that are

Naturally Resistant to Reverse Engineering

Stephen P. Harston

Department of Mechanical Engineering, BYU

Doctor of Philosophy

Reverse engineering - defined as extracting information about a product from the product

itself - is a design tactic commonly used in industry from competitive benchmarking to product

imitation. While reverse engineering is a legitimate practice - as long as the product was legally

obtained - innovative products are often reverse engineered at the expense of the pioneering com-

pany. However, by designing products with built-in barriers to reverse engineering, competitors

are no longer able to effectively extract critical information from the product of interest. Enabling

the quantification of barriers to reverse engineering, this dissertation presents a set of metrics and

parameters that can be used to calculate the barrier to reverse engineer any product as well as the

time required to do so. To the original designer, these numerical representations of the barrier and

time can be used to strategically identify and improve product characteristics so as to increase the

difficulty and time to reverse engineer them. On the other hand, these quantitative measures enable

competitors who reverse engineer original designs to focus their efforts on products that will result

in the greatest return on investment.

In addition to metrics that estimate the reverse engineering barrier and time, this disserta-

tion also presents a methodology to strategically plan for, select, design, and implement reverse

engineering barriers. The methodology presented herein considers barrier development cost, bar-

rier effectiveness in various product components, impact on performance, and return on investment.

This process includes sensitivity analysis, modeling of the return on investment, and exploration

of multiobjective design spaces. The effectiveness of the presented methodology is demonstrated

by making a solar-powered unmanned aerial vehicle difficult to reverse engineer. In the example,

the propeller is selected to be the critical component where a series of voids are introduced to de-

crease the propeller weight and increase the flutter speed (a desirable attribute in propellers). Our

tenet is that the use of such a framework contributes greatly to the sustainability of technological,

economical, and security advantages enjoyed by those who developed the technology. Designers

benefit because (i) products do not readily disclose trade secrets, (ii) competitive advantages can be

maintained by impeding competitors from reverse engineering and imitating innovative products,

and (iii) the return on investment can be increased.

Keywords: reverse engineering, barriers to reverse engineering, product imitation, hardware imi-

tation, counterfeit prevention, return on investment, microstructure sensitive design



ACKNOWLEDGMENTS

I would like to acknowledge and express appreciation for all those who have helped and

inspired me throughout this research.

I especially would like to thank my advisor, mentor, and friend, Dr. Christopher A. Matt-

son. His innate ability to inspire and motivate one to perform above and beyond their natural

capabilities is evident in the level of success we have had in the research. Because of his guidance,

this research experience has been excellent as he has molded me into being a better person in all

aspects of my life.

I am also grateful for the members of my Doctoral Committee, Dr. Brent L. Adams, Dr.

Brian D. Jensen, Dr. Spencer P. Magleby, and Dr. Alan R. Parkinson for their support, advice, and

willingness to serve on the committee.

I would also like to acknowledge the National Science Foundation and the funding that was

received from them under grant CMMI-0800904 for Christopher A. Mattson and Brent L. Adams.

Importantly, I want to express my undying gratitude to my amazing wife and family who

were so willing and supportive during the many long days and nights that were devoted to research.

Above all, I acknowledge and am grateful for the Divine guidance that has been a constant blessing

throughout all aspects of the research and my life.



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Need to Characterize and Quantify Barriers to Reverse Engineering . . . . . . 5

2.3 Selection of Critical Components of a Product . . . . . . . . . . . . . . . . . . . . 9

2.4 Microstructure Manipulation to Create Barriers to Reverse Engineering . . . . . . 11

Chapter 3 An Anecdotal Understanding of Barriers to Reverse Engineering . . . . . 13
3.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Barriers in the Reverse Engineering Process . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Technical Complexity of the Product . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Availability of the Necessary Resources . . . . . . . . . . . . . . . . . . . 19

3.3.3 Skill of the Reverse Engineering Team . . . . . . . . . . . . . . . . . . . . 22

3.4 Barriers to Reverse Engineering Tips and Guidelines . . . . . . . . . . . . . . . . 24

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Chapter 4 Evaluating the Barrier and Time to Reverse Engineer a Product . . . . . 29
4.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 A Foundation in Ohm’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Development of Metrics and Parameters for Reverse Engineering . . . . . . . . . . 32

4.3.1 General Metrics for Reverse Engineering . . . . . . . . . . . . . . . . . . 33

4.3.2 Decomposition of a Product for Barrier and Time Analysis . . . . . . . . . 33

4.3.3 Integration of Analyses for Overall Product Evaluation . . . . . . . . . . . 37

4.4 Model Limitations and Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . 39

4.5 Empirical Validation of Developed Metrics . . . . . . . . . . . . . . . . . . . . . 40

4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 5 Characterizing the Effects of Learning When Reverse Engineering Mul-
tiple Samples of the Same Product . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Introduction and Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Metrics Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 The Behavior of Information Flow Rates when Reverse Engineering . . . . 51

5.3.2 Metrics for Reverse Engineering Multiple Samples of the Same Product . . 54

iv



5.3.3 How to Use the Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Case Study and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter 6 A Framework for Evaluating the Cost to Implement Barriers to Reverse
Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Calculating Return on Investment while Considering Market Lost to Product Imi-

tations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3.1 Return on Investment Calculation . . . . . . . . . . . . . . . . . . . . . . 69

6.4 Case Study 1: KitchenAid Stand Mixer . . . . . . . . . . . . . . . . . . . . . . . 71

6.5 Case Study 2: Cantilevered L-Beam . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 7 How to Plan for, Select, Design, and Implement Barriers to Reverse En-
gineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3 Selection and Implementation of Barriers to Reverse Engineering . . . . . . . . . . 85

7.4 Practical Implementation: Solar-Powered UAV . . . . . . . . . . . . . . . . . . . 87

7.4.1 Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.4.2 Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.4.3 Step 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4.4 Step 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4.5 Step 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Chapter 8 Capitalizing on Heterogeneity and Anisotropy to Design Desirable Hard-
ware That is Difficult to Reverse Engineer . . . . . . . . . . . . . . . . . . 101

8.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.3 Description of Enabling Technologies and Fundamental Theories . . . . . . . . . . 103

8.3.1 Ultrasonic Consolidation: Additive Manufacturing Process of Metals . . . 103

8.3.2 Reference Frames and Fundamental Zone Defined . . . . . . . . . . . . . 105

8.3.3 Using Rotation and Lamination Theory to Predict Material Properties . . . 106

8.3.4 A Criteria for Plastic Failure . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.3.5 Part Construction by the Rotation and Lamination Theory . . . . . . . . . 109

8.4 Design and Optimization Framework for Enhanced Performance Through Mi-

crostructure Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.4.1 Part 0 – Initialize Input Parameters . . . . . . . . . . . . . . . . . . . . . . 113

8.4.2 Part I – Characterize Microstructure of Selected Alloy . . . . . . . . . . . 113

8.4.3 Part II – Determine the Full Range of Material Properties Obtainable with

Rotations and Laminations for the Selected Alloy . . . . . . . . . . . . . . 113

v



8.4.4 Part III – Determine Rotation/Lamination Strategy Required to Obtain De-

sired Performance for Selected Alloy . . . . . . . . . . . . . . . . . . . . 114

8.4.5 Part IV – Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 115

8.4.6 Part V – Constraint Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.5.1 Sub-studies I through IV . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.5.2 Sub-studies V and VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Chapter 9 Concluding Remarks and Future Work . . . . . . . . . . . . . . . . . . . 127
9.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.2.1 Reverse Engineering Power . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.2.2 Exploration of Additional Information Types . . . . . . . . . . . . . . . . 132

9.2.3 Topology Optimization with Anisotropic Materials . . . . . . . . . . . . . 132

9.2.4 Methods to Automatically Determine Information Quantity . . . . . . . . . 133

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

vi



LIST OF TABLES

2.1 Qualitative attack difficulty classifications [1] . . . . . . . . . . . . . . . . . . . . 8

3.1 Guidelines for implementing effective barriers to reverse engineering. . . . . . . . 25

4.1 Comparison of electrical circuit parameters and reverse engineering parameters . . 32

4.2 Table of predicted and actual times to extract geometric information from Part 127.

Time is in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Table of predicted and actual times to extract geometric information from Part 128.

Time is in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Parameters and metrics determined for geometric information of Flowserve spool

and spool block valve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Comparison of different models to predict the time to reverse engineer multiple

samples of the same product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1 Input parameters for calculating the return on investment of a KitchenAid Stand

Mixer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Constant input parameters for calculating the return on investment of a cantilevered

L-beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 The return on investment for a cantilevered L-beam with varying mechanical prop-

erties. Retail price is held constant. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 The return on investment for a cantilevered L-beam with varying mechanical prop-

erties. Retail price varies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.1 Identification of the system performances, F , and the system performances at risk

of being reverse engineered, F ′. ROI represents return on investment. . . . . . . . 88

7.2 Parameters that influence the at-risk performances, P. ROI denotes return on in-

vestment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 The ability to modify component parameter pi j. When i = 1 the at-risk perfor-

mance is thrust, when i = 2 the at-risk performance is ROI, and when i = 3 the

at-risk performance is thrust and ROI. . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4 The impact of parameter pi j on performance f ′i . When i = 1 the at-risk perfor-

mance is thrust, when i = 2 the at-risk performance is ROI, and when i = 3 the

at-risk performance is thrust and ROI. . . . . . . . . . . . . . . . . . . . . . . . . 90

7.5 Summary of barrier concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.6 Barrier effectiveness of barrier concepts as compared to – and normalized to – the

benchmark design for the UAV. A larger value denotes a more effective barrier. . . 93

7.7 Barrier concept impact – normalized to the benchmark design – on UAV system

performance. A larger value denotes a superior performance. . . . . . . . . . . . . 93

7.8 The values of η and C of an optimized propeller with voids compared against the

same propeller without voids. The efficiency of both designs is the same due to the

external geometry being the same for both designs. A smaller value of C denotes

a higher flutter speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

viii



8.1 Optimization results for the four material strategies presented in the L-beam case

study. Angles are expressed in degrees. . . . . . . . . . . . . . . . . . . . . . . . 121

8.2 Optimization results for the single and four layer L-beams with a target force and

percent failure. Angles are expressed in degrees. . . . . . . . . . . . . . . . . . . . 124

ix



LIST OF FIGURES

3.1 Steps of the reverse engineering process . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Reverse engineering example of non-circular gears . . . . . . . . . . . . . . . . . 21

3.3 Example of reverse engineering from WWII; The Tu-4 is a reverse engineered

copy of the B-29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Simple resistor-capacitor circuit. The capacitor is initially fully charged and begins

to discharge the instant the switch is closed at t = 0. . . . . . . . . . . . . . . . . . 30

4.2 A basic taxonomy of information contained by a product. . . . . . . . . . . . . . . 34

4.3 First order sensitivity analysis of the reverse engineering barrier. . . . . . . . . . . 40

4.4 First order sensitivity analysis of the time to reverse engineering a product. . . . . . 41

4.5 Part 127 as presented in Sec. 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Part 128 as presented in Sec. 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 Plot of unextracted dimensions remaining in Part 127 versus time as compared to

the linear and exponential time predictions for Individual 1. . . . . . . . . . . . . . 43

4.8 Plot of unextracted dimensions remaining in Part 128 versus time as compared to

the linear and exponential time predictions for Individual 1. . . . . . . . . . . . . . 44

4.9 Figure of keyboard before disassembly. . . . . . . . . . . . . . . . . . . . . . . . 46

4.10 Figure of keyboard disassembled. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.11 Plot of unextracted dimensions remaining in keyboard versus time as compared to

the linear and exponential time predictions. . . . . . . . . . . . . . . . . . . . . . 47

5.1 Unextracted information in a product as a function of time. The curves for multiple

reverse engineering samples are compared. . . . . . . . . . . . . . . . . . . . . . 51

5.2 The process for predicting the time that it would take to reverse engineer several

samples of the same product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Flowserve 3400iq digital positioner with spool block valve and spool shown. Im-

age adapted from [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Unextracted dimensions as a function of time for spool valve block samples 2,5,10,

and 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1 Generic representation of the Bass Diffusion Model. Note that the sales shown are

not cumulative, but are time dependent. . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 KitchenAid Artisan Stand Mixer. [3] . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3 Estimated per time product development costs. . . . . . . . . . . . . . . . . . . . 74

6.4 Estimated per time potential sales. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5 Estimated competitor’s sales as a result of releasing an imitation. In other words,

sales lost to the competitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 The estimated cost of goods sold over the life of KitchenAid’s stand mixer. . . . . 75

6.7 The estimated per time costs/revenues of KitchenAid’s stand mixer over its entire

life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.8 The estimated per time costs/revenues of KitchenAid’s stand mixer over its entire

life with a microstructure barrier. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.9 Geometry and boundary conditions for the L-beam case study. . . . . . . . . . . . 78

x



7.1 Illustration of the (i) barrier development process, (ii) a general product develop-

ment process, and (iii) their interaction with each other where t0 is the time the

product development process begins, t ′0 is the time the barrier implementation pro-

cess begins, t ′f is the time the barrier implementation process ends, td is the time

“Detail Design” ends, and t f is the time the product development process ends. . . 85

7.2 Solar-powered UAV system model. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 Comparing the ability to modify each parameter vs. the parameter’s impact on

the system performance to determine which parameters will most benefit from

receiving reverse engineering barriers. . . . . . . . . . . . . . . . . . . . . . . . . 91

7.4 Representation of a section of the propeller with internal voids. . . . . . . . . . . . 97

7.5 Plot of system performance (with barrier concept implemented) vs. barrier effec-

tiveness for each of the five barrier concepts and the benchmark design. Values

have been normalized to the benchmark design. . . . . . . . . . . . . . . . . . . . 98

8.1 Ultrasonic consolidation process with scanning electron microscope image of grains

at layer interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.2 Reference frames defined for the part, lamina, and crystal. . . . . . . . . . . . . . 106

8.3 Microstructure-to-Material-Properties flowchart. . . . . . . . . . . . . . . . . . . . 107

8.4 Property closure of yield strength vs. compliance for Ni 201. The outer loop is the

property closure, the triangle represents an isotropic material with the same mate-

rial properties in all directions and the inner loop represents all material properties

that can be obtained by applying the rotation and lamination theory to a material

that starts with the microstructure shown as a star. The middle loop represents ma-

terial properties that can be obtained when the layer rotations are not constrained

to a single plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.5 (a) Flowchart of a generic optimization framework to obtain improved perfor-

mance with common materials and (b) an optimization framework specific to struc-

tural stiffness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.6 Geometry and boundary conditions for the L-beam case study. . . . . . . . . . . . 116

8.7 (a) Finite element mesh for the isotropic, single layer, and four layer L-beams, and

(b) finite element mesh for the heterogeneous L-beam. . . . . . . . . . . . . . . . 119

8.8 Graphical representation of the feasible design space obtainable with rotations and

laminations of the copper material used for sub-study V and VI. . . . . . . . . . . 123

xi



NOMENCLATURE

α Bass Diffusion Model coefficient of early adoption

α(s)
i j Combination of slip directions and slip plane normals for

the s-th slip system

B Barrier to extract information about a product from the product itself

β Bass Diffusion Model coefficient of late adoption

C Costs related to a product

C11 Material property constant obtained from literature for

selected material class

C12 Material property constant obtained from literature for

selected material class

C44 Material property constant obtained from literature for

selected material class

Cwxyz Sample stiffness (average crystal stiffness)

D∗ Critical strain rate

D Macroscopic strain rate

DN
k Normal direction of the k-th lamina, also an axis for the

lamina reference frame

DR
k Rolling direction of the k-th lamina, also an axis for the

lamina reference frame

DT
k Transverse direction of the k-th lamina, also an axis for

the lamina reference frame

δ Prescribed displacement

F Estimated rate at which information is extracted from a product

Fm Fourier coefficients representing volume fraction of

crystals in the m-th bin of the Fundamental Zone

g Euler angles from Sample to Crystal reference frames

gwx Orientation matrix of Euler angles from Sample to

Crystal reference frames

γ̇0 Reference shear rate

γ The lowest unextracted information level of interest

J Aggregate optimization objective statement

K Estimated or actual information contained by a product

M Material class, (e.g., nickel, copper)

M0 Selected alloy from material class

m Estimated market size in number of units

μ Design objective

N Number of laminae to be used in layer-by-layer

creation of material

n Bass Diffusion Model sales probability density

function

nc Number of columns in the binned Fundamental Zone

nh Number of layers in the binned Fundamental Zone

nK Total number of unextracted information levels

xii



nr Number of rows in the binned Fundamental Zone

ns Total number of reverse engineering samples

nT Total number of information types

ν Constraint violation

P Estimated power exerted to extract information contained by a product

φ1,n Lamination orientation for the n-th layer

Ψ The sales volume of a product

Q Force

R Return on investment ratio

r Product revenue

ρ Product retail price

S A measure of a product’s ability to contain information

s Slip systems. Comprised of slip plane normals, {111},

and slip directions < 110 >
σi 6x1 stress vector for the i-th node

σ ′
kl Deviatoric stress

T Estimated time to extract information K
t Reference time frame for reverse engineering a product

τ Reference time frame when all parameters are known

τ∗(s) Critical resolved shear stress for the s-th slip system

X The dollar sales of a product

Z Learning factor, a measure of a person’s resistance to change in information flow rate

Subscripts, superscripts, and other indicators
ˆ[ ] indicates [ ] pertains to a single reverse engineering sample

[ ]0 indicates [ ] is evaluated at time t or τ equal to zero

[ ]c indicates crystal reference frame

[ ]d Indicates [ ] pertains to product development

[ ]g Indicates [ ] pertains to goods sold

[ ]I Indicates [ ] pertains to a competitor or product imitation

reverse engineering sample j
[ ]k indicates [ ] is evaluated for information type k
[ ]l indicates lamina reference frame

[ ]M Indicates [ ] pertains to market entry

[ ]m Indicates [ ] pertains to manufacturing

[ ]p indicates part reference frame

[ ]R Indicates [ ] pertains to reverse engineering

[ ]∗ indicates total measure or effective property of [ ] unless otherwise noted

[ ](t) indicates [ ] is a function of time, in the t domain

[ ](τ) indicates [ ] is a function of time, in the τ domain

[ ]t indicates target value

[ ]u Indicates [ ] occurs at the upper limit of sales

xiii



CHAPTER 1. INTRODUCTION

The introduction of innovative products into the marketplace is often accompanied by an

interesting engineering and design dichotomy; on the one hand, the original designer is intent on

maintaining his/her competitive advantage, gained through innovation, by offering the product to

the masses without easily disclosing its enabling technology [4]. On the other hand, however, the

competitor is determined to reverse engineer the innovative product so as to uncover the enabling

technology and potentially earn a portion of the market by capitalizing on it [5–11]. Although

seen from different perspectives, the notion of barriers to reverse engineering is critical in both

cases. Ideally, to the original designer, all efforts are made to increase the barrier and time required

to reverse engineer his/her design, thus protecting trade secrets and proprietary information. To

those reverse engineering the original designs, minimal time and barrier is desired so as to enter

the market before it is saturated. In either case, these designers could benefit from general metrics,

parameters, definitions, and methodologies for quantifying the time and barrier to reverse engineer

a product [12, 13]. For clarity of scope, we provide three important definitions in the context of

this dissertation:

Reverse Engineering is the process of extracting information about a product from the product

itself. A similar, but distinctly different concept, is that of product imitation – the process

of discovering how to physically manufacture and reproduce the performance of the reverse

engineered product.

Time to Reverse Engineer is the total required man-time to reverse engineer a product without

consideration to parallel activities.

Barrier to Reverse Engineering is anything that impedes reverse engineering.

Barriers to reverse engineering include, for example, critical complex surfaces that are difficult to

quantify, localized heat treating that creates difficult-to-discover heterogeneous material charac-
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teristics, and hidden in situ sensors that monitor performance. Importantly we note that there are

distinct differences between time and barrier and that a large time to reverse engineer a product

does not necessarily imply that there is also a large barrier to reverse engineering. For example,

the barrier to extract geometric information from keys on a keyboard is relatively small as it only

requires simple measurements that are easy to obtain. However, the time to reverse engineer the

keys on a keyboard may not be small due to the quantity of keys requiring analysis.

Historically there have been few, and often ineffective, options to impede competitors from

acquiring valuable information from innovative products through reverse engineering [14]. One

such example is that of the Chevy Spark (a compact car sold in Asia). Soon after the release of the

Chevy Spark it was being reproduced nearly identically as the Chery QQ by the Chinese automo-

tive company Chery. Notably, in 2005, the Chery QQ was outselling the Chevy Spark nearly five

to one [15]. Other times, market share lost due to a reverse engineered product is negligible in sig-

nificance when compared to the national security lost when Armed Forces’ equipment is captured

and reverse engineered. The B-29 Superfortress is an American bomber that was captured by the

Soviet Union during World War II. Only two years after the capture of the B-29, the Soviet Union

was performing their own bombing raids with the first of 847 Soviet Tu-4’s, a nearly identical copy

of the American B-29. The Tu-4 was engineered so precisely that it even had the same problems

as the B-29, such as notoriously unreliable engines [16].

Unfortunately, there is little incentive for original designers to develop innovative products

if competitors can imitate the products at a significantly reduced development cost with a larger

return on investment [13, 17]. Therefore, barriers to reverse engineering are desirable, as they (i)

impede competitors from gaining valuable insight from the innovative product, and (ii) minimize

loss of market share due to imitations of the innovative product [14]. With the possible exception

of some military products, barriers to reverse engineering do not need to make a product impos-

sible to reverse engineer. Instead, they must make the cost of reverse engineering more than the

cost to design the same product from scratch [18, 19]. In general, any improvement that can be

economically taken to reduce the risk of the product being successfully reverse engineered is worth

taking [20].

While others have previously presented the idea of barriers to reverse engineering [21–23],

the developments presented in this dissertation focus on an articulated, yet unmet need in the
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literature – namely the need for design metrics, parameters, and methodologies enabling products

to be developed that are inherently difficult to reverse engineer. As such, the principle objective of

this dissertation is to:

Dissertation Objective Develop an effective design framework that results in products that can

be handled, used, dissected, or similarly analyzed by a competitor without disclosing the

phenomena by which the product functions.

The successful development of such a framework contributes greatly to the sustainability

of technological, economical, and security advantages enjoyed by those who developed the tech-

nology. As shown is subsequent chapters, the dissertation objective is accomplished by completing

the six research sub-objectives listed below. The six sub-objectives are:

Sub-Objective 1 Develop metrics that quantitatively approximate (i) the time to reverse engineer

any product, and (ii) the barrier to reverse engineering that must be overcome to successfully

reverse engineer any product. As a note, the quantitative approximations of the reverse

engineering barrier and time are termed reverse engineering metrics.

Sub-Objective 2 Quantify the error of the reverse engineering metrics and what it means to the

designer.

Sub-Objective 3 Explore how microstructure sensitive design results in effective and efficient

barriers to reverse engineering.

Sub-Objective 4 Explore the tradeoffs between reverse engineering barriers, cost, and return on

investment.

Sub-Objective 5 Determine what products – or product components within a system – most ben-

efit from implementing barriers to reverse engineering.

Sub-Objective 6 Use numerical optimization to search for designs that (i) meet or exceed per-

formance requirements, (ii) maximize return on investment, and (iii) are difficult to reverse

engineer.
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The remainder of the dissertation is presented as follows. Providing a deeper motivation

for this work, Chapter 2 discusses the relevant completed work and unmet needs as expressed by

the literature. In Chapter 3, we present an anecdotal understanding of barriers to reverse engineer-

ing, followed by the presentation of the reverse engineering metrics in Chapter 4. Building on the

reverse engineering metrics, additional metrics are presented in Chapter 5 that may be used to esti-

mate the reverse engineering barrier and time when multiple samples of the same product are being

reverse engineered. This is followed by the return on investment analysis for reverse engineering

barriers in Chapter 6. The culminating chapter is Chapter 7 where the methodology used to plan

for, select, and implement barriers to reverse engineering is presented and explained in the context

of an example of a solar-powered unmanned aerial vehicle. This is followed by Chapter 8, which

explores in detail the effectiveness of material microstructures as barriers to reverse engineering.

The final chapter, Chapter 9, presents concluding remarks and future work.

4



CHAPTER 2. LITERATURE SURVEY

2.1 Chapter Overview

The purpose of this chapter is to present technical preliminaries and unmet needs expressed

by the literature as they relate to reverse engineering and reverse engineering barriers. To facilitate

the discussion, this chapter has been divided into sections – Section 2.2 discusses the need to

characterize and quantify barriers to reverse engineering, Section 2.3 discusses existing techniques

for selecting the critical components of a product, and Section 2.4 discusses methods and models

that may be used to strategically manipulate material microstructures to create barriers to reverse

engineering.

2.2 The Need to Characterize and Quantify Barriers to Reverse Engineering

Innovative products have changed the world. Reverse engineering and imitation of such

products has been to the detriment of pioneering companies. One such example is the company

EMI. In 1975, EMI created the first CAT scanner and used it to distinguish between healthy and

diseased brain tissue [24,25]. Since its creation, doctors have been using CAT scans to improve the

lives of hundreds of millions. In fact, in 2007 alone, an estimated 72 million scans were performed

in the United States [26]. However, within six years of the CAT scanner’s release to market,

EMI had lost market leadership and within eight years EMI had discontinued competing in the

market it originally created [27]. The culprit was competing companies that reverse engineered,

imitated, and improved upon the original design. If competitors were not able to successfully

reverse engineer and understand EMI’s product, it is likely that EMI would have been able to

maintain their competitive advantage and continue to be the market leader for a number of years.

This is just one of many examples where product imitations have captured market share from an

innovative product and reduced the return on investment for the innovator [10, 15, 28–32].
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Before we further explore the reverse engineering of physical products, let us first explore

the variety of similar, yet unique, ways various disciplines have approached the topic in the liter-

ature. Among the disciplines that have addressed the topic of reverse engineering, the following

three areas are predominant; (i) reverse engineering of software [33–37] (ii) reverse engineering

of hardware [5, 6, 12, 21, 38], and (iii) reverse engineering of biological systems [39–42]. The re-

verse engineering of software is pervasive in the literature and is of particular interest as it relates

to reverse engineering because software is being delivered to end-users with more mobile code in

architecture-independent formats – thereby facilitating the reproduction of original code with less

effort. Strategies to prevent reverse engineering of software include tamper proofing, obfuscation,

and watermarking [43].

The reverse engineering of hardware is generally addressed in the literature from within

three areas of research; (i) performance benchmarking [5, 6, 38], which is the evaluation of com-

petitive products in order to specify performance criteria and generate concepts for new products,

(ii) geometric surface and shape recovery [44, 45], which is the automated extraction of geometry

from an existing product and the construction of 3D CAD models from the data, and (iii) empirical

parameter estimation and surrogate model building by statistical sampling of hardware [46, 47],

which is simply the estimation of performance measures through testing an existing product and

fitting a mathematical model to the test data, thereby developing an approximate parametric model

of the product’s performance.

Of particular interest to this dissertation, Ingle provides a basic four-stage methodology for

the reverse engineering of hardware [5]. Stage 1 is the evaluation and verification of a product or

system. Stage 2 is the documentation of the findings, usually in the form of technical data. Stage

3 is prototype verification, and Stage 4 is project implementation.

Finally, research in the reverse engineering of biological systems has gained more and

more momentum as scientists and engineers seek to discover the building blocks of nature [40,

41] and successful ways in which natural systems accomplish complex tasks [42]. While many

insights of reverse engineering may be gained from analyzing software or biological systems, the

developments presented in this dissertation focus on reverse engineering of physical hardware.

Although they may not use the same terminology, many researchers state the need for (i)

estimations of the time and barrier to reverse engineer a product, and (ii) methodologies for incor-
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porating barriers to reverse engineering. These ideas are presented from various perspectives in the

literature which range from those of the original designer [12, 21, 38], to those who reverse engi-

neer, [5,6,13], to market analysts [12,48,49]. Despite the fact that these perspectives are insightful

and suggest the need for quantitative measures and barrier implementation methodologies, none of

them provide them.

While there are not any quantitative metrics presented in the literature, Weingart presents

a qualitative measure that is termed attack difficulty [1] and is summarized in Tab. 2.1. This

classification system ranges from 1 to 6, based on the tools and skills required to reverse engineer a

product. Similar qualitative classifications have been presented by Christiansen [50] and Abraham

et al. [51]. An advantage of these measures is that they are intuitive, and can be easily evaluated in

the early stages of the product development process. However, these metrics are not quantitative

in nature and cannot be used in conjunction with numerical optimization to maximize the reverse

engineering time and barrier.

In addition to the need for quantitative metrics, many authors discuss the importance of

understanding and designing for reverse engineering barriers. Macmillan et al. [12] state that it is

critical to estimate competitors’ response lag (or time to reverse engineer and imitate a product)

in order to understand the potential financial risks and profits. Pahl et al. [38] state that effective

product planning includes understanding the life cycle of the proposed product as well as under-

standing competitors’ products. Therefore, effective product planning and definition of product

life cycle is likely to (i) consider the time required for competitors to conduct reverse engineering

activities and (ii) require a full understanding of competitive products through reverse engineering

activities.

Shapiro [52] and Nelson and Winter [53] emphasize that the harder a product is to reverse

engineer – dependent upon the competitor and their resources and skills available – the less in-

centive a competitor has to imitate the technology. On the other hand, there is little incentive

for original designers to develop innovative products if competitors can imitate the products at a

significantly reduced development cost with a larger return on investment [13]. Many companies

have adopted a strategy of entering into a well-developed market so as to take advantage of the

marketing, innovation, and the development of the customer base by the pioneering company [27]

in spite of the benefits associated with being the first to enter a market [54]. In fact, imitators are
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Table 2.1: Qualitative attack difficulty classifications [1]

Level Name Description
1 None The attack can succeed “by accident,” with-

out the attacker necessarily being aware that

a defense was intended to exist. No tools or

skills are needed.

2 Intent The attacker must have a clear intent in order

to succeed. Universally available tools (e.g.,

screwdriver, hobby knife) and minimal skills

may be used.

3 Common Tools Commonly available tools and skills may be

used (e.g., those tools available from retail

department or computer stores, such as a sol-

dering iron or security driver bit set).

4 Unusual Tools Uncommon tools and skills may be used, but

they must be available to a substantial popu-

lation (e.g., multimeter, oscilloscope, logic

analyzer, hardware debugging skills, elec-

tronic design and construction skills.) Typ-

ical engineers will have access to these tools

and skills.

5 Special tools Highly specialized tools and expertise may

be used, as might be found in the labora-

tories of universities, private companies, or

governmental facilities. The attack requires

a significant expenditure of time and effort.

6 In Laboratory A successful attack would require a major

expenditure of time and effort on the part of

a number of highly qualified experts, and the

resources available only in a few facilities in

the world.

often able to surpass the innovators to become the market leader [27,54]. However, if imitators are

impeded – requiring potential imitators to develop their own competing product – the innovators

can maintain their competitive advantage [21, 54]. Preventing competitors from extracting critical

information from a product is especially significant when trade secrets may be kept secret even

when the product is readily available to the masses [22].

Interestingly, there are few laws to prevent the reverse engineering of hardware [55]. Cur-

rent laws state that reverse engineering is an acceptable method of obtaining trade secrets as long
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as the product acquisition was done legitimately [55]. These laws are rationalized, by many, since

the time and effort required to reverse engineer a product is often viewed as substantial enough to

allow the original designer to maintain a large market share [55]. If the justification of the current

laws was true, then reverse engineering would not be a common issue.

One common approach to secure intellectual property is through patents. However, patents

disclose the enabling technology of a product and aid imitators in avoiding patent infringement

while maintaining comparable performance [9]. Another common approach from the literature is

to develop business strategies that minimize market loss due to product imitations. These strate-

gies range from analysis of the marketing mix and corporate strategy [56], to providing measures

that help a company structure its business model to maintain a competitive advantage [57]. Fur-

thermore, Reed and DeFillippi [21] argue that barriers to reverse engineering are created through

tacitness, complexity, and specificity in a firm’s skills and resources. While each of these insights

are useful, each of these approaches focus on business strategies alone. Building off these strate-

gies, this doctoral work adds a design/engineering element to minimize market loss due to reverse

engineering. Specifically, a design methodology is presented which enables the design of products

that are inherently difficult to dissect, reverse engineer, and imitate – thus further increasing the

return on investment.

2.3 Selection of Critical Components of a Product

It may not be practical to incorporate reverse engineering barriers into all products. One

must weigh the consequences of the product being reverse engineered, determine the additional

cost to develop the barriers, and calculate the expected return on investment of a product that does,

or does not, implement a reverse engineering prevention strategy. However, designing reverse

engineering barriers into a product can be costly – both in time and resources. This can result in a

delayed market entry and a reduced return on investment. On the other hand, innovative products

have lost a significant portion of the market share due to reverse engineering and product imitations

– some companies have even discontinued competing in the markets which they originally created

due to competitors reverse engineering and imitating their innovative product [27]. While barriers

to reverse engineering may be costly to implement, entire products can be made difficult to reverse

engineer by strategically selecting and designing barriers to reverse engineering into one, or a few,
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critical components [32]. Therefore, it is important that the critical components of a system be

identified, and that strategies be selected for making them more difficult to reverse engineer.

Identifying, characterizing, and understanding the critical components of a system is not a

novel idea. The basis of risk management [17,58], security [59] and defense in depth [60,61] is to

identify the critical components and improve their designs to decrease risk or increase security of

the system. In product design, designers seek to understand what features of a product are critical

to user satisfaction [62], understand the impact of critical components on a system when they are

redesigned and replaced [63], and perform analyses to systematically identify possible failures and

estimated risks [38]. Grand [19] suggests that before any security/barrier features are designed

into a product, risk assessment in the following three areas should be performed to help identify

critical components: (i) what needs to be protected (ii) why does it need to be protected, and (iii)

who are you protecting against. Pooley and Graves [64] recommend locating the most valuable

information in a product, and focusing resources and efforts on that component recognizing that a

larger barrier may be required to discourage qualified engineers from reverse engineering a product

than for non-technical workers.

While Grand, [19] and Pooley and Graves [64] offer great insight on critical component

selection of hardware, this dissertation takes the critical component selection process further by

developing a systematic approach that can be automated, and used in conjunction with numeri-

cal optimization, to help designers select the critical components of a physical system. Similar

methods are used in the software industry where graph theory concepts are used to improve infor-

mation security evaluations for electronic communication devices. Rae and Fidge [65] present an

approach that significantly reduces analysis time by forgoing analysis on components that do not

affect information security and focusing on the critical components that are most likely to cause

failures. Furthermore, Ebert [66] presents a number of classification techniques to help software

designers detect source code defects early in the development process and to focus defect detection

on the error-prone areas.

A number of these approaches (i) may be automated, and (ii) provide useful insight on how

to select critical components; however they cannot be directly adopted for discovering critical com-

ponents of physical hardware. As such, a method for selecting the critical components of physical
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hardware – which builds upon the discussed methods and ideas – is developed and presented in

this doctoral work.

2.4 Microstructure Manipulation to Create Barriers to Reverse Engineering

Throughout the doctoral work, many barriers to reverse engineering have been explored.

Of the barriers explored, the strategic manipulation of material microstructures has been found

to be a very effective barrier reverse engineering barrier. As such, we explore the literature for

existing models and techniques that may be used to strategically design and manipulate material

microstructures with the purpose of creating reverse engineering barriers.

The optimization of macroscopic geometry, known in the literature as size [67], shape

[68, 69], and topology [69, 70] optimization, is a powerful approach to identify hardware with de-

sirable performance characteristics [71]. A different, yet equally powerful, approach is to manipu-

late microscopic metallurgical material characteristics to enhance material properties and achieve

desirable hardware performance [72]. Individually, these two approaches have improved products

and allowed for more advanced designs over those of the past [71, 72]. Through an integrated ap-

proach, however, macroscopic and microscopic features can be manipulated in a complementary

way to identify hardware designs with desirable and unexpected mechanical performance, thus

resulting in a large barrier to reverse engineering.

It is known that one or more microstructures can be used as a starting point to obtain

any combination of properties in the property closure, which is the set of all theoretically possi-

ble material properties [73]. Unfortunately, it is not known how to consistently manufacture all

microstructures required to obtain every combination of properties in the property closure. There-

fore, only a small, discrete, set of material properties contained within the full property closure

are commonly used in practice. This is one of the main reasons why material properties are rarely

considered continuous variables in the material selection activities of product design.

However, with the strategic combination of laminations, microstructures that were pre-

viously difficult to obtain become simple combinations of optimally-layered, well-known mi-

crostructures [74]. This process is similar to a carbon-fiber composite material design where many

thin layers are ideally aligned to obtain desired material properties in specific directions [75, 76].

For years, carbon-fiber composite researchers have studied the effect of material microstructures
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on product performance [75]. Specifically, fiber composites have been analyzed and tested to deter-

mine fiber composition, epoxy composition, fiber/epoxy mixtures, and layer orientation resulting

in desired product performance [75–78]. Some have even studied the effects of alternating layers

of fiber/epoxy and thin metal sheets [79].

Significant contributions have also been made by others who have recognized performance

improvements that can be achieved by microstructure design with metals [80–84]. While the ori-

gins of the modern theories used for analyzing metallic microstructures may be traced back to the

mid 1900’s, it is only in recent years that microstructure theories have matured to the point that

enables the design of metals at the micro level resulting in a desired macro level performance [80].

Notably, McDowell [80, 81] discusses the challenges when designing for microstructure plasticity

characteristics and also presents a methodology that effectively overcomes microstructure design

challenges [82]. Olson [83] and Kuehmann and Olson [84] discuss the computational design of

materials to meet specific engineering needs. Specifically they address the handling of conflicting

design objectives and expensive computations to obtain desired material properties and desired

product performance.

By building upon the work of others in the areas of microstructure analysis and design, this

doctoral work takes an unique approach by strategically manipulating material microstructures

with the purpose of making products difficult to reverse engineer. Specifically, this doctoral work

presents a new design framework, in conjunction with numerical optimization, that couples mi-

crostructure manipulation and modeling with existing manufacturing processes to create products

that are resistant to reverse engineering attempts. The microstructure sensitive design approach, as

presented in Chapter 8, enables a product to perform (e.g., deflection, yield characteristics, shear

characteristics) in a way that cannot be obtained without manipulating the material. Furthermore,

the source of performance improvement is difficult to determine and recreate from a reverse engi-

neering perspective, thus impeding competitors from successfully reverse engineering the product.
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CHAPTER 3. AN ANECDOTAL UNDERSTANDING OF BARRIERS TO REVERSE
ENGINEERING

3.1 Chapter Overview

Reverse engineering is a common design strategy in industry. It is a term that has come to

encompass a large array of engineering and design activities in the literature; however, in its basic

form, reverse engineering is simply the process of extracting information about a product from

the product itself. Depending on its use, it may or may not be advantageous to utilize a reverse

engineering strategy. As with any rational decision, reverse engineering is only favorable when the

benefits from its use outweigh the investment. Therefore, a general understanding of the principles

that increase the difficulty or investment required to reverse engineer mechanical products would

be helpful for everyone affected by reverse engineering activities. In this chapter, we articulate and

explore these fundamental principles after reviewing examples from the literature and from our

own experience.

3.2 Introduction

Reverse engineering carries various connotations in different industry settings. At one end

of the spectrum, reverse engineering is associated with design theft and piracy with the intent to

plagiarize and capitalize on the work of others [43,85]. On the other hand, reverse engineering can

be as conventional as competitive benchmarking [86] or as benign as the dissection of a popular

product by a curious consumer [87]. Notice that the definition of reverse engineering used here

is different from imitation, which we define as the process of replicating the performance of an

existing product in one or more of its performance areas [88]. Reverse engineering often leads to

imitation; however, the definition of reverse engineering as defined here limits the discussion to

simply the information extraction process.
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There are many reasons to employ reverse engineering as a viable engineering design tactic.

A few common reasons are listed below:

• To compare products through competitive benchmarking [89, 90]

• In preparation for imitating a product [91]

• To obtain technical data that does not exist [92–94]

• To obtain technical data that the original supplier is no longer willing or able to provide

[90, 95]

• To shorten market entry times [90]

• To enhance existing data [5]

• To perform product verification [5]

• To aid in product design [96]

• To investigate patent law infringement [97]

• To assist in academia or other learning environments [97, 98]

While this list is not exhaustive, it illustrates how reverse engineering is used in a variety of set-

tings. As such, it is important to know what factors affect reverse engineering difficulty. This

knowledge is beneficial – both for original designers and those reverse engineering. It can poten-

tially help original designers to design products that are more difficult to reverse engineer, thereby

maintaining a market advantage over their competitors. On the other hand, those reverse engineer-

ing can use this knowledge to select projects that will be successful, meaning that the payoff is

sufficiently greater than the reverse engineering cost.

This chapter is devoted to investigating barriers in the reverse engineering process. Some

examples of barriers to reverse engineering include the complexity of turbine blade surfaces, in-

accessibility of hidden or microscopic features of an embedded circuit, inadequate measurement

equipment, or even an inexperienced engineer. Barriers for mechanical systems can be classified

into internal and external barriers. Internal barriers are physical features of the product itself, or
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lack thereof, that hinder reverse engineering, while external barriers are extrinsic to the product.

The total barrier is affected by all barriers whether internal, external, or a combination of the two.

Not all products benefit from incorporating barriers to reverse engineering. Some products

may be so simple, or sold at low margins, so that incorporating barriers to reverse engineering is

not practical. Deciding which products are suitable for barrier implementation is a critical question

that is answered by the methodology presented in Chapter 7.

In this chapter, we characterize the fundamental types of barriers to reverse engineer me-

chanical components. We provide examples and theories from related fields to illustrate how these

barriers can potentially stymie reverse engineering efforts. In so doing, we provide valuable insight

into how one can either increase or decrease the magnitude of a barrier to reverse engineering. Our

tenet is that the difficulty to reverse engineer a product can (i) be controlled and (ii) designed in a

strategic manner. Further, the methods presented in this dissertation facilitate the implementation

of our tenet.

3.3 Barriers in the Reverse Engineering Process

The general procedure of reverse engineering has been defined and examined in detail

by both Ingle [5] and Otto and Wood [6]. Additional techniques for digitizing physical objects

for CAD applications have been presented by Varady [99], Sarkar and Menq [100], and Raja [90].

Though there exist multiple descriptions of the reverse engineering process, they can all be distilled

to three simple steps as seen in Fig. 3.1. The three basic reverse engineering steps are: (i) planning,

(ii) data collection, and (iii) data processing. As Fig. 3.1 suggests, the process can be iterative in

nature. During data processing, for example, the reverse engineering team must validate extracted

information, so as to know when the process is complete. If errors are discovered, due to missing

or low quality data, the reverse engineering team must extract more information from the product.

When barriers to reverse engineering are strategically implemented, the process would ideally have

to be repeated several times.

Before presenting the methodology that impedes competitors from gaining valuable infor-

mation from a product we classify barriers into the following three categories, which will facilitate

the presentation of the said methodology:
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Planning

Data Collection

Data Processing
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2
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Figure 3.1: Steps of the reverse engineering process

• Technical complexity of the product or feature

• Availability of the necessary resources [101]

• Skill of the reverse engineering team [101]

Barriers associated with the technical complexity of the product or feature are internal barriers to

reverse engineering, while the remaining types of barriers are external. The skill of the reverse

engineering team could be considered a necessary resource, i.e., a human resource; however, as

skill is an intangible asset with unique characteristics, we consider it separately in the discussion

of the barrier types presented in this section. While the original designer has direct control over

internal barriers, it will be shown that he or she can also indirectly affect the external barriers as

well.

When a simple product is evaluated by someone with the necessary resources and adequate

skill, then the total barrier to reverse engineer that product is small. The opposite is also true –

the total barrier is high if the product is technically complex and the reverse engineering team

lacks necessary resources and skills. It follows that the magnitude of the total barrier is directly

proportional to the technical complexity of the product, while inversely proportional to both the

availability of the necessary resources and the skill of the person or team reverse engineering the

product.

We note here that while legal barriers can and do exist to prevent the commercialization of

copied products, there are few laws to prevent the reverse engineering of hardware [55]. Current
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laws state that reverse engineering is an acceptable method of obtaining trade secrets as long as the

product acquisition was done legitimately [55,87]. These laws are justified by many, since the time

and effort required to reverse engineer a product is often viewed as substantial enough to allow the

original designer to maintain a large market share [55]. Interestingly, patents facilitate reverse

engineering as they disclose critical product information and key technologies. In some cases,

laws are outright violated and products are continually built directly from patent information even

though the patent owners have claimed patent infringement and seek compensation [102]. Thus,

it may not be wise for an original designer to rely solely on legal barriers to mitigate reverse

engineering attempts of their product.

The remainder of this section investigates in greater detail how these three barrier categories

interact to create information-extraction difficulties during the reverse engineering process.

3.3.1 Technical Complexity of the Product

Perhaps the most apparent barrier to reverse engineering is the technical complexity of the

product. We decompose technical complexity into the quantity of information, the information type

(e.g. geometric dimensions, material composition), and the extent to which different information

types interact. If a product is more technically complex, it will be more difficult to reverse engineer.

As this is an internal barrier, the original designer can literally build physical features into the

product to increase the difficulty to reverse engineer the product. Therefore, the original designer

has a direct influence on this type of barrier.

A product can contain many disparate types of information, such as geometric, material,

chemical, electrical, or even aesthetic information. Certain types of information are inherently

more difficult to extract than others [14]. Von Hippel articulates this in [103] by defining the

“stickiness” of a unit of information as the incremental expenditure required to transfer that unit

of information to a specified locus in a form useable by a given information seeker. In other

words, stickiness is a measure of the rate at which usable information may be extracted from

a product while reverse engineering. When systems containing sticky information interact with

other systems in a product, the result is a powerful barrier to reverse engineering. For example,

when material properties that are difficult to reverse engineer are heterogeneously placed at critical
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geometric locations, the barrier to reverse engineer is larger than when the same microstructure is

homogeneously distributed.

Information stickiness varies for different information types, even within the geometric

domain. Free form surfaces are not easily measured with traditional measurement devices such as

micrometers or calipers [104]; therefore, their complexity could be potentially difficult to capture

during the data collection step, as they require more expensive, and user intensive, measurement

equipment. This is exemplified by Soo et al. in [105] where the difficulties of digitally capturing

the complicated and arbitrary curves of a Chinese bamboo-net handicraft are discussed in detail.

Additionally, the physical size of the measurement can have a large impact on the information

stickiness. For instance, as computer chips have decreased in size, they have become increasingly

more difficult to reverse engineer [106].

Products can contain a large amount of information. One challenge for the reverse engi-

neering team lies in distinguishing between information that is superfluous and information that is

pertinent to product performance [14]. This distinction can be difficult to make, especially when

products contain a plethora of nonessential information or when essential information is disguised

to appear trivial [87]. Extracting superfluous information will decrease the return on reverse en-

gineering investment, as resources are wasted on information that does not provide significant

benefits. Therefore, it is important for the reverse engineering team to make this distinction, if

possible in the planning step (see Fig. 3.1), before collecting data from the product.

Additionally, one must ensure that all pertinent information is extracted from the prod-

uct. This is typically done during the data processing step. McEvily [32] presents a case study

of reverse engineering failure, where a defective butterfly valve in an aircraft engine caused the

plane to crash. He states that the original alloy and part dimensions [of the butterfly valve] were

accurately duplicated; however, the firm reverse engineering the valve failed to extract the heat

treating process required to properly reconstruct the valve. As a result, the valve was inadequately

manufactured and failed in use.

Another aspect of product complexity is the accessibility of pertinent information. Products

can be difficult to dissect; essential components of the product can be enclosed in the product in

such a way that nondestructive disassembly is nearly impossible [64]. This is the case with many

computer chips, where the coating on the chip is designed so that when the coating is removed, one

18



or more layers of the chip are also destroyed, thereby making the rest of the chip difficult, if not

impossible, to reverse engineer [18]. Another way to limit accessibility of pertinent information

is to add locks to a product. For mechanical products, this may be in the form of custom made

fasteners [19,104]. In general, the harder it is to access the information, the stickier the information

becomes.

The fundamental principles to understand about the technical complexity of barriers to

reverse engineering can be summarized with the following:

• The technical complexity of a product or feature is an internal barrier to reverse engineering

– the original designer has a direct influence over the magnitude of this barrier.

• When sticky information interacts with other sticky information in a product, the result is a

powerful barrier to reverse engineering.

• The stickiness of pertinent information can be increased by reducing its accessibility or in-

cluding more superfluous information in the product to disguise pertinent features.

We note that in Section 3.4 a list of specific actions to increase product complexity is provided.

3.3.2 Availability of the Necessary Resources

We now turn our attention to external barriers to reverse engineering, specifically, the bar-

riers associated with the availability of necessary resources. By necessary resources we mean

required tools (including tools for disassembly, performance analysis, data synthesis, measure-

ment etc.), samples of the product, and any other object or software that is required to successfully

extract information from the product itself. Unlike internal barriers, the original designer can

only indirectly influence the magnitude of external barriers as they may not be able to control the

resources extrinsic to the product. However, by strategically designing the product, original de-

signers can require those engaged in reverse engineering to use resources that are expensive or not

readily available in order to be successful at reverse engineering. While there may be more than

one approach to extract information from a product, some information can only be acquired with

the correct tools such as the material microstructure of a custom made material that is critical for
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proper performance of the product. On the other hand, a reverse engineering team can overcome

many barriers by acquiring essential resources.

First and foremost, the product or system being analyzed needs to be accessible. Even

if a product is readily available on the market, it may be expensive or may only be available in

limited quantities, thereby discouraging others from attempting to reverse engineer the product as

the required investment increases. Often times it is of interest to those reverse engineering to know

how the original product fails, possibly to prevent or improve the conditions of failure. Clearly,

when only a few sample parts are available, extracting this type of information can be difficult [5].

Second, equipment used during the data collection step (see step two of Fig. 3.1) needs

to be available. Often, a high level of precision and accuracy is needed when collecting infor-

mation from a product. This is much easier to accomplish with appropriate equipment, which

for geometric information could include micrometers, gages, coordinate measuring machines, and

optical scanning equipment [95] or for material microstructure information could include a scan-

ning electron microscope [73]. At the same time, a significant amount of skill and experience,

see Sec. 3.3.3, may be needed to operate these measuring tools, as well as to understand their

limitations and shortcomings [45, 107–109].

Third, converting collected data into a usable form during the data processing step (see step

three of Fig. 3.1) can also be challenging. For geometric information, this form is often digital,

meaning in the form of a CAD model or drawing. This, of course, requires CAD or CAE software.

Much care is needed during this process to ensure that minimal error is introduced when processing

the data [93, 107]. For material microstructure information, the data collected through scanning

electron microscopy needs to be analyzed with orientation image microscopy (OIM) software [73].

Clearly, if this equipment is unavailable, the magnitude of the barrier to reverse engineering will

be large.

Finally, proper testing and validation of extracted data is vital to the success of a reverse

engineering project. Assumptions made in the planning step in Fig. 3.1, such as decisions regard-

ing information relevance, need to be verified as the data collected may or may not actually be

pertinent. Additionally, some information may still be needed to adequately reverse engineer the

product. Verification can take on many different forms, each requiring specific resources. CAD

systems can help verify that all the needed geometric dimensions have been extracted. CAE sys-
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tems can further aid in this process by analyzing motion, stress, heat transfer, and failure modes.

If the necessary equipment is available, prototypes can be built and subsequently tested for the

purpose of verification.

10mm

(a) Original brass gears

10mm

(b) CAD model

50mm

(c) Acrylic prototypes

10mm

(d) Reconstructed brass gears

Figure 3.2: Reverse engineering example of non-circular gears

For example, the non-circular brass gears in Fig. 3.2(a) were originally part of a photocopy

machine. As part of this study, we reverse engineered the gears to illustrate the verification process.

The gears were measured using an optical comparator, and the data was manually entered into a

CAD system. The resulting CAD model appears in Fig. 3.2(b). A motion analysis was done using

CAE software to verify that the gears properly meshed. Acrylic prototypes were then manufactured

using a laser cutter, and are shown in Fig. 3.2(c). The acrylic prototype was made five times larger,

to accommodate for the resolution of the laser cutter. Finally, brass gears were cut in true scale

using wire electric discharge machining (EDM), as shown in Fig. 3.2(d). Multiple tools were

needed to verify that we extracted the correct information about the non-circular gears. In fact,

the prototypes revealed some flaws in our extracted data, as the reconstructed brass gears did not
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perform as well as the original gears. If the necessary resources were not readily available (optical

comparator, CAD and CAE software, laser cutter, wire EDM), then this process would have taken a

different path characterized by its own difficulty. Therefore, we can see that the resources available

to the reverse engineering team influence the difficulty to reverse engineer the product.

The fundamental principles to understand about the resource-availability category of barri-

ers can be summarized with the following:

• The availability of the necessary resources is an external barrier to reverse engineering – the

original designer typically has an indirect influence on this barrier.

• When few or no samples of the product are available, the magnitude of this barrier increases

dramatically.

• Proper equipment is often required for efficient product dissection, information extraction,

and data processing. The absence of this equipment could severely reduce the quality of

collected data. The barrier can be made larger by embedding information that requires spe-

cialized and/or unavailable tools to extract.

Section 3.4 provides specific actions that can be taken to increase the magnitude of this type of

barriers.

3.3.3 Skill of the Reverse Engineering Team

The third and last category of barriers to reverse engineering is the skill of the reverse engi-

neering team. Clearly when required skills are absent, the barrier to reverse engineering is larger.

Skill can be considered from two perspectives. First, a familiarity or basic understanding of the

science governing the system being analyzed is often essential for effective reverse engineering.

For instance, a working knowledge of chemistry is necessary to extract chemical information from

a battery. Second, expertise and experience with the reverse engineering process and its associ-

ated tools is also extremely important. More than likely, a successful reverse engineering project

will require the synergy and collaboration of a group of professionals with different skill sets –

economists, market analysts, accountants, engineers, managers, etc. Thus, skills in multidisci-

plinary design and project management are valuable.
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The reverse engineering team must begin by considering the purpose for reverse engineer-

ing in the planning step of Fig. 3.1. This will determine whether or not there is a need to capture

as-built information from the product or design intent information [110]. In its extreme form,

the as-built approach aims to copy every bit of information from a product to the best ability of

the team. Even though the as-built approach focuses on copying all information, it is likely that

some assumptions will be made, i.e. assuming that bolts in a system are consistent sizes there-

fore not requiring a detailed analysis of each bolt of a similar shape and size. Some deviation

from the original product may also occur due to manufacturing tolerances and errors made dur-

ing the reverse engineering process. On the other hand, design intent attempts to determine the

nominal performance and understand the desired relationship between components. For simple

features, recovering design intent may be straight forward; however, with more complex features

such as a turbine blade [111], distinguishing between manufacturing variations and design in-

tent becomes significantly more difficult, or in other words, the likelihood of making an invalid

assumption increases. Although methodologies do exist for extracting design intent when reverse

engineering [112], recovering design intent is likely to require more resources and time [110] when

compared to the as-built approach. Therefore, experience with reverse engineering would help in

selecting an appropriate extraction strategy.

(a) United States Air Force B-29 bomber [30, 113] (b) Soviet Union Tupolev Tu-4 bomber [114]

Figure 3.3: Example of reverse engineering from WWII; The Tu-4 is a reverse engineered copy of

the B-29

A well-known historical example that illustrates this type of barrier to reverse engineering

occurred during World War II. After a forced landing in the former Soviet Union, an American
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B-29 bomber, pictured in Fig. 3.3(a), was reverse engineered by the Soviets to yield the Tupolev

Tu-4 bomber, shown in Fig. 3.3(b). Josef Stalin ordered that the downed B-29 (eventually, a total

of four such aircraft came under Soviet control) be copied exactly [30, 31], so as to ensure that all

the separate components would assemble correctly. It has even been rumored that existing damage

on the B-29 fuselage [115] and manufacturing defects such as a small, misplaced rivet hole on

the B-29 left wing [31] were incorporated into the original Tu-4 design. This would indicate that

the Soviets took more of an as-built approach to reverse engineering the B-29. As a result, the

Tu-4 is nearly an exact replica of the B-29, with the exception of some subsystems such as the

cannons [30].

Additionally, the Soviet’s thought it beneficial to extract information in the native units of

the design (English units). Therefore, the Soviets needed to buy measuring equipment in Canada,

England, and the United States and retrain thousands of engineers and technicians to work with

the new measurement system [31]. Although the magnitude of the total barrier to reverse engineer

the B-29 was large, the Soviets were able to utilize nearly unlimited resources in conjunction with

enough skill to successfully reverse engineer the B-29.

The fundamental principles to understand about the barriers associated with the skill of the

reverse engineering team can be summarized with the following:

• A reverse engineering team is more likely to succeed if they have a basic understanding of the

science being analyzed and a familiarity with the process and tools of reverse engineering.

• Knowing which approach is needed – as-built, design intent, or a combination of both – will

help maximize the return on reverse engineering investment.

Similar to technical complexity and availability of resources previously discussed, in Section 3.4

we provide a list of ways to make a product more difficult to reverse engineer.

3.4 Barriers to Reverse Engineering Tips and Guidelines

Often the market advantage achieved when a firm successfully develops an innovative prod-

uct acts as the driving force for technological progress. However, if a competing firm can success-

fully reverse engineer the innovative product, then the market advantage of the original firm is
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Table 3.1: Guidelines for implementing effective barriers to reverse engineering.

Guideline
The barrier to reverse engineering may be increased by increasing

the technical complexity, increasing the resources needed, and/or

increasing the skills required to reverse engineer a product or fea-

ture.

The barrier produces a benefit greater than the cost of its develop-

ment, implementation, and manufacture.

The barrier requires competitors to use more resources or time to

reverse engineer a product/feature than to independently develop

their own.

The barrier protects a product/feature that is at risk of being re-

verse engineered.

The barrier’s effectiveness increases when it protects a prod-

uct/feature with few alternative feasible designs.

The barrier does not degrade product performance past a tolerable

point determined by the designer.

quickly lost [12]. When this occurs, the incentive for innovation is reduced [52]. Therefore, it is

in the best interest of original designers to design products that are difficult to reverse engineer. A

product can be made difficult to reverse engineer simply by making one critical component difficult

to reverse engineer. For example, consider how the performance of an entire aircraft system was

influenced by a single critical component, namely the butterfly valve described in Sec. 3.3.1. As a

note, components that are heavily constrained are often the best candidates for implementing barri-

ers. The more a component is constrained by specifications or interactions with other components,

the less likely competitors will be able to design around the barriers, thus requiring competitors to

overcome the barriers. Other guidelines have been presented in Table 3.1 to facilitate implementa-

tion of barriers into products.

Different barriers are more effective in different scenarios. If the goal is to impede con-

sumers from discovering what components are used in an electrical circuit, some have found an

effective barrier to be encoding labels for resistors and capacitors in the electronics [87]. If the goal

is to protect proprietary information, creating a product that cannot be opened without destruction

of critical components may be a sufficient barrier. If the goal is to reduce skills and resources

available to competitors, one may use material microstructures that are anisotropic and heteroge-
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neous which are difficult to detect and reproduce. By understanding what information needs to

be protected, the design team can determine if multiple small barriers will be more effective or

a single large barrier. Multiple small barriers are beneficial as they require competitors to solve

several problems that may be completely independent. A careful review of the metrics presented

in Chapter 4 shows that the difficulty of overcoming multiple independent barriers is more than the

sum of those same barriers. If only a single barrier is implemented, and competitors are able to ef-

ficiently overcome the barrier, the information may not be adequately protected. However, a single

large barrier, if sufficiently difficult to overcome, may be the best protection. Some questions to be

answered while exploring potential barriers and their effectiveness might include:

• What information is the barrier trying to protect?

• Are the resources available to implement the barrier? If not, are we willing to acquire the

resources?

• What resources are available to competitors?

• A cost-efficient barrier may be to implement a barrier in an area that we are experienced in

and competitors are not. Does such an area exist?

• When is the barrier going to be implemented into the product? Now? 2 years?

• Does there exist barriers from other products that can be directly implemented?

These types of questions help define the nature of the required barriers. Discovering this informa-

tion is a critical step to strategic barrier creation.

In addition to understanding the nature of the problem, it is also important that various

barrier concepts are generated in an effort to find optimal barriers to reverse engineering. While

barriers vary from industry to industry, and generating effective candidate barriers will come with

experience, here we list a few generic barriers that might serve as a catalyst for concept generation

in specific applications:

• Design components that are difficult to access [19]

• Require unique tools to extract information [19, 104]
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• Require unique skills to extract information [21]

• Avoid explicitly disclosing information such as labels on electrical components [19, 43, 87]

• Obfuscate information [87]

• Avoid standard sizes [31]

• Increase or decrease geometric scale [91, 106]

• Couple component functions [103]

• Design components that self destruct when tampered with [18, 19, 64]

• Remove evidence of manufacturing processes [4]

• Create anti-robust designs – components only work at within a small tolerance [87]

• Design components that require multiple disciplines that are typically not coupled [21]

• Design a component to appear, or have the performance, of another component [116]

• Design a critical component to look like an insignificant component [116] or vice versa [87]

• Design components that look different but have the same function [4] or vice versa [43]

• Design and implement multiple functionally-equivalent configurations of the same product

[117]

While not all of these candidate barriers may always be practical to implement, the goal

is to make the competitors spend time and resources on gathering information that is either not

needed or require them to extract information that is expensive (either in time and/or resources).

Ideally, any barrier introduced would require multiple iterations through the reverse engineering

process. It is important to note that a barrier does not need to be impossible to overcome. Some

believe that a barrier is sufficient when competitors spend as much time and resources as was spent

in developing the original product, [18, 19] while others believe that a barrier is sufficient if it can

keep competitors out of the market until market saturation [88].
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3.5 Chapter Summary

In this chapter, we have explored the fundamentals of barriers that can stymie reverse en-

gineering efforts during any step of the reverse engineering process. We have demonstrated that

by increasing the complexity of a product – such as making information inaccessible and intro-

ducing complicated information interactions – we can increase the reverse engineering barrier. An

example of a reverse-engineered butterfly valve that failed demonstrated the difficulty of extracting

information that interacts with other information, and to extract information that is difficult to ac-

cess. We next demonstrated how reverse engineering can be made more difficult when competitors

lack necessary resources. Although original designers may not have direct control over the re-

sources available to competitors, when a product design requires special tools or materials that the

competitors are likely not to have, the barrier to reverse engineering is increased. An example of

non-circular gears was given which shows that resources available influence the reverse engineer-

ing difficulty. Finally, we demonstrated how the skills of the reverse engineering team also affect

the reverse engineering barrier. Similar to resources available, the original designers can only indi-

rectly affect what skills are required, since they cannot control what skills the reverse engineering

team will have. The example of the Soviet replicate of an American B-29 bomber demonstrates

that even technically complex products can be adequately reverse engineered when the team has

the proper skill set. With an anecdotal understanding of what affects barriers to reverse engineer-

ing, in the next chapter we present metrics that have been developed to systematically characterize

the reverse engineering barrier. This systematic barrier characterization enables designers to quan-

tify what barriers are most effective and efficient in specific design applications. This can even be

done in conjunction with numerical optimization which is the topic of Chapter 7 .
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CHAPTER 4. EVALUATING THE BARRIER AND TIME TO REVERSE ENGINEER
A PRODUCT

4.1 Chapter Overview

This chapter presents a set of metrics and parameters that can be used to calculate the barrier

to reverse engineer any product as well as the time required to do so. To the original designer, these

numerical representations of the barrier and time can be used to strategically identify and improve

product characteristics so as to increase the difficulty and time to reverse engineer them. As the

metrics and parameters developed in this chapter are quantitative in nature, they can also be used

in conjunction with numerical optimization techniques, thereby enabling products to be developed

with a maximum reverse engineering barrier and time – at a minimum development cost. On the

other hand, these quantitative measures enable competitors who reverse engineer original designs

to focus their efforts on products that will result in the greatest return on investment.

4.2 A Foundation in Ohm’s Law

The metrics that are developed in this chapter have a foundation in Ohm’s law. Ohm’s law

serves as an appropriate foundation because of an interesting phenomenon which will be described

later in this section. The observed phenomenon was sufficient to motivate the investigation into the

application of Ohm’s law to reverse engineering. The results documented herein, indicate that the

developed relationships are appropriate for nearly all products and are accurate to the degree of an

average error of 12.2%.

The history of Ohm’s law is rich; Ohm first presented Ohm’s law in an 1827 publication

[118]. Since then, it has been adapted and used to meaningfully characterize the behavior of

many systems including fluid systems [119], mechanical systems [120], thermal systems [121],

and electrical systems [122, 123].
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Capacitor Resistor

Switch

Figure 4.1: Simple resistor-capacitor circuit. The capacitor is initially fully charged and begins to

discharge the instant the switch is closed at t = 0.

To facilitate the ensuing developments, we consider the analysis of the simple resistor-

capacitor circuit shown in Fig. 4.1, and outline mathematical relationships that enable the evalua-

tion of a circuit’s resistance, R, capacitance, C, and the time, T , to drain an initially charged capac-

itor. We present the following fundamental principles of Ohm’s Law because it is the foundation

for the reverse engineering metrics and parameters presented in Sec. 4.3. Ohm’s law characterizes

the relationship between resistance, current, and voltage in a circuit as

R =
V (t)
I(t)

(4.1)

while the capacitance, C, can be expressed as [122]

C =
Q(t)
V (t)

(4.2)

where V (t) represents the voltage difference across the resistor at current I(t), and Q(t) represents

the charge stored in the capacitor. Notice that while V , I, and Q are time dependent, R and C are

not. This important principle is used later in the chapter to assist the designer in specifying reverse

engineering parameters.

The resistance and capacitance of the circuit can be expressed in a way that is convenient

to our discussion of reverse engineering. The convenience of this form is made evident in the

next section. When Q, I, and P are known and the following well-accepted [123] relationships are

considered

V (t) =
W (t)
Q(t)

(4.3)
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I(t) =
Q(t)

t
(4.4)

and

W (t) = P(t)t (4.5)

it follows that

R =
P(t)
I(t)2

(4.6)

and

C =
Q(t)I(t)

P(t)
(4.7)

We reiterate that this form of the resistance and capacitance relationships is particularly useful in

the context of information extraction during reverse engineering.

When R and C are known for a given system, the time to discharge a capacitor can be

quantified as a function of the charge remaining in the capacitor by

T = −RC ln

(
Q
Q0

)
(4.8)

where it is assumed that the capacitor begins to discharge at t = 0, and T represents the time when

the specified charge, Q, is remaining in the capacitor. An interesting characteristic of a discharging

capacitor is that the discharge rate is dependent upon the voltage difference across the resistor

shown in the resistor-capacitor circuit of Fig. 4.1. When the difference is large, the capacitor

discharges quickly. When the difference is small, the capacitor discharges slowly. This behavior is

exponential in nature.

This phenomenon is also observable in the reverse engineering of products. That is, the rate

at which information can be extracted from a product is dependent upon the difference between

the unextracted information that exists in a product and how much of that information is known by

the individual reverse engineering the product – we hereafter refer to this difference as information

difference. For this reason, Ohm’s law is the foundation for the metrics developed in this chapter.
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Table 4.1: Comparison of electrical circuit parameters and reverse engineering parameters

Electrical Circuit Parameters Reverse Engineering Parameters
Resistance (R) Barrier (B)

Capacitance(C) Storage Ability (S)

Charge (Q) Unit of Information (K)

Current (I) Information Flow Rate (F)

Voltage (V) Work per Information Extracted (U)

Power (P) Power (P)

As Eq. 4.8 is an exponential relationship, the time to fully discharge the capacitor is infinite.

For this reason, Q is often selected to be a positive non-zero value with the bounds

0 < Q ≤ Q0 (4.9)

which results in a finite quantity of time.

Therefore, by these relationships, any resistor-capacitor circuit can be analyzed and, impor-

tantly, a prediction of time to discharge the circuit’s capacitor can be made. Additionally, by using

Ohm’s law as a basic building block, circuits of any complexity can be analyzed using well struc-

tured, well-known, approaches such as Kirchhoff’s current and voltage laws [123]. As presented

in the next section, we use this same basic relationship to estimate the time required to discharge

information about a product, from the product itself.

4.3 Development of Metrics and Parameters for Reverse Engineering

In this section, we present metrics and parameters for characterizing the barrier and time to

reverse engineer any product. The presentation of the metrics and parameters is divided into three

main parts in this section. Section 4.3.1 presents the general relationship for barrier and time to

reverse engineer any product, with a brief description of the supporting parameters and metrics.

Section 4.3.2 provides practical insight into specifying the needed parameters, and quantifying

barriers and time for small subsets of a larger problem. Section 4.3.3 shows how the solutions to

these small subsets can be reintegrated to solve the large problem.

32



4.3.1 General Metrics for Reverse Engineering

The barrier, B, to reverse engineer a product can be expressed as

B =
P

F2
(4.10)

where P is the power – the work per time to extract information – and F is the rate at which

information can be extracted from a product. The time, T , to reverse engineer a product is

T = −BS ln

(
K
K0

)
(4.11)

where K is the information contained by a product at a specific moment in time and K0 is the

information initially contained by a product. For simplicity, K is often defined as a fraction of K0

(i.e., K = 0.05K0). Specifically, the quantity K is constrained to

0 < K ≤ K0 (4.12)

which ensures that Eq. 4.11 yields a finite quantity of time. The quantity S in Eq. 4.11 is evaluated

as

S =
KF
P

(4.13)

where S is termed information storage ability of a product, which is analogous to electrical capac-

itance. As a note, while the general form of the equations presented in this section are true for K,

F , and P at any time, it is worth noting that K0, F0, and P0 are typically the simplest to specify.

Similar to the electrical relationships, the reverse engineering metrics can be rearranged to

solve for any variable that is known or easily determined. In this chapter, the metrics have been

presented in a form that utilizes the variables K, F , and P as they are more readily determined than

S, B, or T .

4.3.2 Decomposition of a Product for Barrier and Time Analysis

This section discusses how to determine the values of K, F , and P for the computation of the

metrics as presented in this chapter. In a realistic setting, it can be difficult to accurately determine
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Figure 4.2: A basic taxonomy of information contained by a product.

the values of K, F , and P for the product as a whole. However, a product can be decomposed

into disparate information components allowing for a more simple quantification of K, F , and P

for each component. In this section, we present an approach for decomposing a product based

on information components, and analyzing each component to determine B and T . In Sec. 4.3.3,

we discuss how the quantities B and T for each component can be systematically combined to

determine the total barrier, B∗, and the total time, T ∗, to reverse the product as a whole.

We start by discussing the parameter K, and the categorization of it. Recall that K is the

estimated or actual information contained by a product, and that the purpose of reverse engineer-

ing is to extract information contained by a product from the product itself. Some examples of

information contained by a product include material, geometry, electrical conductivity, and color.

While there are many different ways a product can be decomposed, we present a process by which

products are decomposed according to categories of information contained by the product. For the

purposes of the present chapter, information contained by a product, K, is categorized according

to the taxonomy chart in Fig. 4.2.

As seen in the taxonomy chart, the general information contained by a product can be sep-

arated into three basic levels. At the highest level, information is categorized into information

types such as geometric information, material information, and function information. The second

level of categorization separates each information type into information classes. For geometry,

information classes include linear dimensions and radial dimensions, among others. When appli-
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cable, another categorization of geometric information class can include micro dimensions, meso

dimensions, and macro dimensions. The final level of categorization on the taxonomy chart is

the information sub-class which only has two categories – information that is pertinent to product

performance and information that is superfluous. Generally speaking, the product should be de-

composed into the minimum number of levels needed to easily specify the parameters K, F , and P

for all the information contained by the product. As values for K, F , P, S, B, and T are specified

or calculated for each information type, a subscript [ ]i is used to distinguish information types or

information classes – depending on the level for which K, F , and P are being analyzed – while the

superscript [ ]∗ represents the values of [ ] that pertain to the product as a whole.

With the different information types defined, K is more fully defined as the estimated,

unextracted, pertinent information contained by a product at a specific time. The quantity of

information contained by a product is therefore a function of information type, i, and time, t. The

quantity of pertinent information contained by a product is determined as the number of relevant

units of information that is critical to the performance of the product.

For convenience in specifying the parameters K, F , and P, we define two reference time

frames. Time in the t domain is the traditional representation of time, which captures any moment

during the reverse engineering process. As it may be difficult to determine the quantity of pertinent

information contained by a product, and the rate at which it is extracted, at any time t when the

product contains both pertinent and superfluous information, a second reference time frame is

used. This second reference time frame, in the domain τ , is a theoretical time frame when all the

values of K, F , and P are known, and all information is deemed pertinent. In the τ time frame, the

time-independent quantities of B and S are more easily calculated. Since these quantities are time

independent, they can also be used directly in the t time frame where there exists many unknown

factors.

We pause now to make a clear distinction between K(τ) and K(t). The parameter K(t)

represents only the pertinent information contained by a product, while the parameter K(τ) repre-

sents the total information contained by a product, be it pertinent or superfluous. In general, the

most conservative value of K(τ) is when K(τ) is set equal to K(t) implying that competitors know

exactly what information is pertinent and what is superfluous. The quantity K(τ) is principally

used for calculating S. A similar process of using two different reference frames is often used to
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determine the capacitance and resistance of electrical elements. If a resistor value is unknown,

one can apply a known voltage and measure the current and determine the resistance of the system

using Ohm’s law. The resistance of a resistor is not dependent upon electrical current, voltage or

time. Therefore the resistance may be known for all times, t, once it is known for a single time τ

where a known voltage and current has been applied.

When a product is reverse engineered, no amount of superfluous information will benefit

those extracting the information. For this reason we are only interested in the rate, F , at which

pertinent information can be extracted. For a product that contains both pertinent and superfluous

information, it may be difficult to determine the flow rate of pertinent information when both per-

tinent and superfluous information is being extracted. For this reason, the flow rate of information

is determined in the τ reference frame where all information is assumed pertinent. The quantity

F(τ) is principally used for calculating S and B for individual information types.

Typically when extracting information contained by a product, the information that is

quickly and easily extracted is extracted at a high flow rate. At times in the information extraction

process, information becomes more difficult to extract resulting in a lower flow rate. It is also

apparent that the flow rate of one information type such as geometric linear dimensions may not be

the same flow rate as another information type such as material grain orientations. The flow rate

of information in the τ reference frame can be determined experimentally by measuring the time

to extract information of particular information classes, such as geometric linear dimensions.

The measure of work per time to extract information contained by a product is character-

ized as power, P. It is important to note that while an individual may put forth a consistent effort,

the quantity of work achieved per unit of time does not remain constant during the reverse en-

gineering process since some information requires little work to extract while other information

require significantly more work. Not only was this obvious from the empirical validations, but

also the equations that define P – both in the electrical engineering perspective and in the metrics

presented in this chapter – show that P decays exponentially as a function of time. The quantity P

is also determined in the τ reference frame and is used in calculating both S and B. The value of P

is constrained by

0 < P ≤ 1 (4.14)
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where zero represents no work being accomplished and one represents that maximum work is

accomplished per unit of time while reverse engineering a product. The value of power should be

selected to accurately represent the competitor’s actual performance. Often it is simplest to specify

P when t = 0, therefore, we have specified P0 to be a value of one for this study – which is the

most conservative value of P0. With the values of K, F , and P defined, B and S can be calculated

according to Eqs. 4.10 and 4.13 for each information type i or for the product as a whole if it can

be evaluated as a whole. When the product cannot be evaluated as a whole, the developments of

the next section become important.

4.3.3 Integration of Analyses for Overall Product Evaluation

In this section, the total time to reverse engineer, and the total barrier to reverse engineering,

are calculated by strategically combining the barrier and time to reverse engineer each information

component as discussed previously. In the previous section, we discussed how a product can be

decomposed into various information types to facilitate the selection of K, F , and P resulting in a B

and T for each information type. Importantly, when multiple barriers exist for the same information

type, those barriers may be added together in the same way electrical resistors in parallel and in

series may be added together.

A different approach is required for calculating the total barrier and time to reverse engineer

a product when it contains multiple types of information. Under this approach, each information

type, including the respective barrier and storage ability, may be considered as an independent

resistor-capacitor circuit. Calculating the total time to reverse engineer a product is analogous

to quantifying the total time required to discharge multiple independent resistor-capacitor circuits

where the number of circuits is equivalent to the number of information types contained by the

product. Knowing the length of time required to discharge the independent circuits, the combined

quantity of charge initially stored by the circuits, and the capacitance of the capacitors enables us

to create a pseudo resistor-capacitor circuit that will result in the same quantity of time to discharge

as the summed time of the independent circuits – when the pseudo circuit has the same capacitance

and charge as the sum of the individual circuits. With the capacitance, charge, and time to discharge

known for the pseudo circuit, the resistance of the pseudo circuit can be calculated.
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To estimate the total barrier and time to reverse engineer the product as a whole, we perform

a similar analysis on a pseudo product that has the same performance as one that has the considered

information types combined enabling an estimation of B and T for the entire product.

The total time, T ∗, to reverse engineer a product, the total information, K∗, contained by a

product and the total storage ability, S∗, of a product can be determined by

T ∗ =
N

∑
i=1

Ti (4.15)

K∗ =
N

∑
i=1

Ki (4.16)

and

S∗ =
N

∑
i=1

Si (4.17)

where N is the quantity of information types the product has been decomposed into.

When individual information types are analyzed, the known values include F and P. With

the pseudo product, however, the flow rate is calculated by

F∗ =
K∗

T ∗ (4.18)

which enables P∗ to be calculated as

P∗ =
K∗F∗

S∗
(4.19)

Note that Eq. 4.19 is obtained by rearranging Eq. 4.13 and solving for P.

Only now that the effective rate at which information can be extracted from the pseudo

product and the power required to extract information are known, the effective barrier for the en-

tire product can be determined by using Eq. 4.10. It is important to note that the barrier and time

to reverse engineer a product are dependent upon skills and resources available (both affecting the

flow rate of information). Therefore the barrier to reverse engineer a product may vary depending

upon the group performing the reverse engineering activities [103]. In general, the metrics pre-

sented in this chapter will be more accurate if the individual reverse engineering is familiar with

the reverse engineering process, the tools to be used while extracting information, and has a gen-
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eral understanding of the product being reverse engineered since the rate of information extraction

often changes rapidly for those learning new processes or tools.

4.4 Model Limitations and Sensitivity Analysis

In this section we present the limitations for the reverse engineering metrics presented in

this chapter as well as a sensitivity analysis of the input parameters.

The accuracy of the time and barrier to reverse engineer a product is dependent upon accu-

rate selection of the parameters K, F , and P. Depending upon the reverse engineering perspective

taken, some parameters may be more accurate lending to a better estimation of the time and barrier

to reverse engineer a product. Recall that there are at least two practical reverse engineering per-

spectives: that of the original designer who seeks to determine, and even maximize, the difficultly

to reverse engineer their product; and that of the competitor who seeks to reverse engineer the

innovative product.

When the original designer uses the relationships presented in this chapter, he/she is able

to accurately determine the actual quantity of pertinent information, K, contained by the product

but will only be able to estimate the rate at which the competitor can extract information, F .

The competitors, on the other hand, will be able to accurately determine the rate at which they

(the competitors) can extract information, F , but will be forced to estimate the initial quantity

of pertinent information contained by the product. Additionally, it may not be obvious to the

competitor what information is pertinent and what is superfluous – especially if the designers

developed the product to be difficult to reverse engineer. It is likely that the original designers can

estimate information extraction rate for the competitors more accurately than the competitors can

estimate the quantity of pertinent information contained by a product. A simple approach would

be for the original designer to specify a flow rate of information extraction based on their own skill

and motivation, as it is likely that their competitors have similar skills and motivation. Also, as

discussed in Sec. 4.5, products must be of a sufficient complexity to ensure accurate estimations of

B and T .

There are also limitations regarding the input parameter P. In this chapter, we present

P0 = 1 for all of the presented examples. This is because the conditions defining P0 = 1 can be

understood in terms of product development which involves a maximum effort being put forth
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Figure 4.3: First order sensitivity analysis of the reverse engineering barrier.

with maximum work achieved. Unfortunately, the conditions defining P less than one, are not

yet understood and are the focus of a separate study by the authors. Fortunately, the conditions

defining P0 = 1 are also the most conservative. It is additionally beneficial that the term P, does

not affect the time estimation. The parameter P cancels out in the T equations therefore negating

any error that may be introduced due to a poor selection of P, however, the barrier estimation is

still affected.

The first order sensitivity analysis confirms this notion and shows the sensitivity of B and T

to the input parameters which may be seen in Figures 4.3 and 4.4 which present the percent error

of the calculated B and T , respectively, with respect to the error of the input parameters. As can be

seen from the figures, the flow rate of information extraction generally has the largest impact on

the accuracy of the barrier and time estimations. Therefore, it is likely most beneficial to ensure

that the flow rate is accurate. In our studies we have found that a typical F error has been found to

be +/−5% when F is determined by the methods outlined in this chapter.

4.5 Empirical Validation of Developed Metrics

In this section, we present an empirical study with the purpose of showing that the time

and barrier to reverse engineering can be estimated by the relationships presented in this chapter
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Figure 4.4: First order sensitivity analysis of the time to reverse engineering a product.

for products of sufficient complexity. For the empirical studies presented here, only geometric

information is considered and K is assumed to be 0.05K0 (see Eq. 4.11).

For any information type, the time to extract a unit of information varies from unit of in-

formation to unit of information (within a product) and from product to product. An effective and

efficient way to handle the differing times is to determine an individual’s general rate of infor-

mation extraction; by general we mean valid for all products of sufficient complexity. As a note,

this extraction rate is the rate of information extraction F(τ) as described in Section 4.3.2. We

obtain F(τ) for geometric information experimentally by issuing a uniform dimension extraction

test. The test is set up to allow the individual to familiarize themselves with the dimension to

be extracted then instructed to extract that dimension with a measurement tool while the time is

recorded. This process is repeated multiple times for different dimensions to obtain an average

dimension extraction rate of the individual using the measurement tool – a rate that is independent

of time spent developing the dimension extraction sequence or checking to ensure all dimensions

have been extracted. The dimension extraction rate (F) is then used in Eq. 4.10 enabling calcula-

tion of T by Eq. 4.11 to estimate the time to reverse engineer any product of sufficient complexity

as discussed in this section. The accuracy of the exponential time estimations are dependent upon

accurate measurement of the information extraction rate. When the actual information extraction

rate is known, the estimated time is the same as the actual time to reverse engineer a product. The
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Figure 4.5: Part 127 as presented in Sec. 4.5.

test we use has been found to be an adequate measure of information flow rates resulting in time

estimations with an average error of 12.2%.

To illustrate, four individuals were asked to reverse engineer Part 127 and Part 128 as

seen in Fig. 4.5 and Fig. 4.6, respectively. Before beginning the reverse engineering process,

the information extraction rate, F , was determined for each individual by the process outlined

above, K was determined by counting the dimensions required to fully describe each part, and

the initial power was selected to be P0 = 1 assuming that individuals put forth a maximum effort

with maximum work achieved. The individuals, without knowing the values of K, F , and P, were

then instructed to extract and record the dimensions with enough detail that the product could be

recreated if needed.

The plots seen in Fig. 4.7 and Fig. 4.8 are the results of a single individual reverse engi-

neering each product and compared to the linear and exponential time approximations. The linear

relationship is defined as

T =
K
F

(4.20)

where the information extraction rate (F) of the individual is the slope and the number of dimen-

sions (K) to be extracted is the y-intercept on a plot of dimensions versus time. While the plots

are for a single individual, they are representative of all the individuals that reverse engineered the

products and are consistent with other tests we have performed. The data in the plots has been re-
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Figure 4.6: Part 128 as presented in Sec. 4.5.
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Figure 4.7: Plot of unextracted dimensions remaining in Part 127 versus time as compared to the

linear and exponential time predictions for Individual 1.
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Figure 4.8: Plot of unextracted dimensions remaining in Part 128 versus time as compared to the

linear and exponential time predictions for Individual 1.

Table 4.2: Table of predicted and actual times to extract geometric information from Part 127.

Time is in seconds.

Individual Actual Linear Linear Exponential Exponential Barrier
Time Prediction % Error Prediction % Error

1 4020 1158 -71.20% 3579 -10.97% 307.8

2 3473 847 -75.60% 2656 -23.51% 339.2

3 1367 517 -62.19% 1433 4.84% 260.9

4 2201 826 -62.48% 2323 5.55% 272.8

arranged according to the time to extract each dimension - with the shortest times plotted first - and

are not plotted in the order of dimension extraction. Tables 4.2 and 4.3 present the predicted time

to reverse engineer each product, for each individual, as well as the calculated barrier to reverse

engineering. From Tables 4.2 and 4.3 we see that the barrier to reverse engineering is the same

for both parts for each individual. This is due to the fact that the barrier is only dependent upon

the individual and the type of information being extracted and not dependent upon the quantity of

information extracted.
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Table 4.3: Table of predicted and actual times to extract geometric information from Part 128.

Time is in seconds.

Individual Actual Linear Linear Exponential Exponential Barrier
Time Prediction % Error Prediction % Error

1 629 298 -52.65% 845 34.16% 307.8

2 568 298 -44.48% 887 56.20% 339.2

3 595 242 -59.28% 656 10.27% 260.9

4 522 264 -49.33% 733 40.49% 272.8

To determine the validity of the relationships presented, multiple individuals have reverse

engineered multiple products resulting in over fifty sets of data for geometric information extrac-

tion. By observation and data analysis, we have verified that the time to reverse engineer the

geometry of a product can be approximated by an exponential relationship. We have also observed

that simple products tend to be less accurately estimated by the exponential relationship. Part 128

was specifically selected to test the exponential relationship near the limits of application and it

may be seen that a linear approximation may be more accurate for the simplest of parts. However,

Part 127, while still relatively simple, has been found to be sufficiently complex to be accurately

estimated by the exponential relationship. As a note, the calculated error does not include the error

associated with parts that are not sufficiently complex such as Part 128.

Products of higher degrees of complexity have also been analyzed and have also been found

to be accurately represented by the exponential relationship. To illustrate this, we briefly discuss

the reverse engineering of Apple Inc.’s recently released computer keyboard as seen in Figs. 4.9

and 4.10. As with the previous examples, we will only reverse engineer geometry and do not

reverse engineer the material properties or the keyboard electronics. However, if the flow rate of

information extraction is determined for extracting material properties and analysis of electronics,

the same relationships used for estimating the time and barrier to extract geometric information

can also be used to estimate the time and barrier to extract information about material properties

and the electronics of a system.

We reverse engineered the keyboard to the degree that we could recreate keyboard parts

that would be interchangeable with the current product. In order to fully extract the geometric

information contained by the keyboard, some disassembly was required. While disassembly time
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Figure 4.9: Figure of keyboard before disassembly.

Figure 4.10: Figure of keyboard disassembled.
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Figure 4.11: Plot of unextracted dimensions remaining in keyboard versus time as compared to the

linear and exponential time predictions.

may be important to quantify, [124, 125] it was not the focus of this study or of the developed

metrics. Therefore, the keyboard was considered disassembled when reverse engineering began.

Utilizing the relationships presented in this chapter to estimate the time and barrier to reverse

engineer the keyboard resulted in a barrier of 307.8 and an estimated time of 25,649 seconds. In

actuality, it took 23,667 seconds to reverse engineer the keyboard - an 8.38% error when compared

to the predicted time of 25,649 seconds. The estimated and measured times were determined

independently so that neither influenced the other. Figure 4.11 compares the actual time to reverse

engineer the keyboard with the exponential and linear predictions.

4.6 Chapter Summary

In this chapter, we have presented general metrics for evaluating the barrier and time to

reverse engineer a product. We have also defined supporting metrics and parameters for evaluating

the barrier and time. The metrics and parameters presented are adapted from Ohm’s Law and are

based on resistor-capacitor circuits and capacitor discharge time estimates. The effectiveness of

the metrics outlined in this chapter has also been demonstrated with an empirical study.
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The presented relationships enable a systematic and consistent comparison of products –

pre or post production. This brings the designer a distinct ability to quantify the amount of time

to reverse engineer different variations of a product while in the early design stage. Such quantifi-

cation can readily support trade-off studies of production costs with market strategies. The ability

to quantify the barrier and time to reverse engineer a product early in the design process enables

designers to strategically implement product features that will increase the difficulty of reverse

engineering the product, while minimizing implementation cost. For those reverse engineering,

the systematic estimation of the reverse engineering time facilitates management decisions such as

reverse engineering costs, project timelines, and market strategies.
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CHAPTER 5. CHARACTERIZING THE EFFECTS OF LEARNING WHEN REVERSE
ENGINEERING MULTIPLE SAMPLES OF THE SAME PRODUCT

5.1 Chapter Overview

The work presented in this chapter builds upon the reverse engineering metrics that are de-

veloped and presented in Chapter 4. Specifically, this chapter addresses the issue of characterizing

the reverse engineering time and barrier when multiple samples of the same product are reverse

engineered. Frequently in practice, a product will be repetitively reverse engineered to increase

accuracy, extract tolerances, or to gather additional information from the product. In this chapter,

we introduce metrics that (i) characterize learning in the reverse engineering process as additional

product samples are evaluated, and (ii) estimate the total time to reverse engineer multiple sam-

ples of the same product. Additionally, an example of reverse engineering parts from a control

valve is introduced to illustrate how to use the newly developed metrics and to serve as empirical

validation.

5.2 Introduction and Literature Survey

When one product is reverse engineered, the part, in most cases, is just a single member of

a distributed population, where variation is undoubtedly present [45]. As a result, an appropriate

statistical analysis needs to be performed in order to test hypotheses on the true nominal values of

information contained by a product. This involves determining an adequate product sample size to

be reverse engineered based on a predetermined confidence level and acceptable error [126]. As

the number of available parts for the sample size increases, so does the accuracy of the extracted

data [127].

Another purpose for reverse engineering a product multiple times is to reverse engineer

geometric tolerance data. Reverse engineering with the intent of reconstructing a product for fu-

ture manufacturing is incomplete until tolerances are allocated to the product. If the dimensions
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of a product vary more than the allowable tolerances, then the probability of the product failing to

assemble or function correctly increases. This will inevitably lead to costly repairs, poor perfor-

mance, and dissatisfied customers, all of which diminish the product’s effectiveness [128]. Opti-

mally allocating tolerances is a typical, yet challenging task in engineering design. An overview

of the many methods used to allocate tolerances when designing a product can be found in [129].

When reverse engineering, the process becomes more difficult [130], as it requires a significant

amount of skill and experience to match the original tolerances of a product. As a consequence,

various methods have been presented in the literature to help approximate dimensional and ge-

ometric tolerances when reverse engineering [131–133]. One in particular involves performing

dimensional analysis on multiple samples of the same product and comparing the results to dis-

cover possible manufacturing variations as an aid to establishing tolerances [133].

If multiple samples of the same product are reverse engineered, then learning will take

place – knowledge about the product’s form, composition, and function will be retained from

previous iterations of the process. Learning can be defined as change in behavior that occurs

as a result of experience [134]. Learning can occur at an individual level or on an organizational

level [135]. Several researchers have characterized the learning curve for various industrial settings

and determined the factors that influence learning [136, 137]. However, research has not been

published regarding learning during reverse engineering.

In this chapter, we introduce parameters and metrics that (i) characterize a person’s learning

capability in the context of reverse engineering, and (ii) predict the total barrier and time to reverse

engineer multiple samples of the same product. To do this, we begin by presenting metrics that are

capable of estimating the time and barrier of tolerance extraction in Sec. 5.3. Demonstrating the

use of the metrics, including metric validity and limitations, is illustrated by a case study presented

in Sec. 5.4. Concluding remarks are provided in Sec. 8.6.

5.3 Metrics Development

In this section, we develop the metrics for predicting the time and barrier to reverse engineer

multiple samples of the same product. The presentation of the metrics is divided into three main

parts. In Sec. 5.3.1 we discuss how the flow rate of information changes during the process of

reverse engineering multiple samples of the same product. In Sec. 5.3.2 we develop and present
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Figure 5.1: Unextracted information in a product as a function of time. The curves for multiple

reverse engineering samples are compared.

the metrics. Finally, in Sec. 5.3.3, we explain how to use the metrics to estimate the time to reverse

engineer multiple samples of the same product.

5.3.1 The Behavior of Information Flow Rates when Reverse Engineering

When we reverse engineer a product, we extract information from that product. Typically,

these pieces of information are discrete in nature; thus, it is advantageous to look at K and F at

discrete values of K, which we call unextracted information levels. Additionally, the values of F

will vary depending on the reverse engineering sample (i.e., how many samples of the product have

been reverse engineered). Therefore, we will use the subscripts [ ]k,s to distinguish unextracted

information level, k, and reverse engineering sample, s. For example, the information flow rate

when three dimensions still need to be measured on the fourth product sample would be denoted

F3,4.

The way in which the flow of information varies when reverse engineering is illustrated in

Fig. 5.1, which plots the amount of unextracted information in a product as a function of time for

several reverse engineering samples of the same product. The first curve, labeled c1, represents

the first product sample that is reverse engineered. This curve resembles an exponential decaying

relationship and is derived in Chapter 4. When K = K0, the slope of c1 is relatively steep, which

means the extraction of information per unit time, or information flow rate, is large in comparison
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to when K = γ , where γ is the lowest unextracted information level of interest. This variation in

information flow rate can be credited to the fact that reverse engineering encompasses more than

just measuring dimensions, for example. It includes secondary procedures such as deciding which

dimensions are pertinent, finding the dimensions in the product, documenting or recording the di-

mensions on a hand drawing or in a CAD system, and verifying that all the needed dimensions

have been extracted. When all of the aforementioned steps are performed, the flow rate of infor-

mation is low, in comparison to when none or few of the secondary procedures are necessary for

information extraction. This implies that the fastest, or largest, flow rate occurs when information

is simply extracted without utilizing any secondary procedures.

When a person reverse engineers a second sample of a product, he or she utilizes some

of the knowledge gained while reverse engineering the product the first time, obviating some of

the steps of the reverse engineering process. For example, if someone is reverse engineering the

geometry of a piston for the second time, the pertinent dimensions of the piston have already been

determined during the first reverse engineering sample, as well as an appropriate documentation

procedure. This is characterized in Fig. 5.1, where the slopes along the curve for the second

product sample, labeled c2, are generally steeper than those of c1, resulting in less total time to

reverse engineer the product. Reverse engineering additional samples, denoted cns in the plot, will

yield similar results – flow rates will continue to increase and the reverse engineering time will

continue to decrease. If the reverse engineering sample size is sufficiently large, then the sample

curves will approach the dashed line in the plot, marked as c∞. This line represents the reverse

engineering process when it has achieved maximum efficiency.

The slope of c∞ in Fig. 5.1 is the fastest theoretical flow rate or the initial flow rate, FK0,1,

and is described in detail in [14]. We also assume that the initial flow rate is the initial slope of

each sample curve, or

FK0,s = FK0,1, ∀ s ∈ {1,2, . . . ,ns} (5.1)

where ns is the number of reverse engineering samples. Based on this assumption, the initial

flow rate remains the same for an individual, regardless of reverse engineering sample. Moreover,

information requiring less extraction time is extracted from a product first, followed sequentially

by units of information requiring more time. This may or may not happen in practice; regardless,
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when empirical data gathered by the authors is rearranged according to the time to extract each

unit of information – with the shortest times placed first – this relationship generally holds true

(see Sec. 5.4).

The horizontal dashed lines in Fig. 5.1 help to visually track unextracted information levels

along different sample curves. The lowest unextracted information level in the plot is γ , which is

the closest integer value of K for which the following is approximately true

γ = 0.05∗K0 (5.2)

This is the value typically used for K to predict the total time to reverse engineer a product once

[14]. If the information flow rates of different samples at any unextracted information level, K0

through γ , are compared to one another, we assume the following to be true

|Fk,1| ≤ |Fk,s| ≤ |Fk,ns|,
⎧⎨
⎩ ∀ k ∈ {γ,γ +1, . . . ,K0}

∀ s ∈ {1,2, . . . ,ns}
(5.3)

In other words, the flow rate at a particular unextracted information level k is bound by the flow

rate of the first reverse engineering sample, Fk,1, and the flow rate of the last reverse engineering

sample, Fk,ns . Additionally, as stated above, if the product sample size is sufficiently large, the

curves in the plot approach a linear prediction with the slope of the initial flow rate, FK0,1, or

lim
s→∞

Fk,s = FK0,1, ∀ k ∈ {γ,γ +1, . . . ,K0} (5.4)

This suggests that as an individual learns while reverse engineering multiple samples of the same

product, they drive the flow of information towards maximum efficiency.

The question remains as to how quickly (in terms of reverse engineering samples) infor-

mation flow rates approach the initial flow rate. Some individuals are slow learners with regards to

reverse engineering, while others are not. In the next section, we introduce a parameter, reflective

of the rate at which a person can learn, to help characterize this behavior.

53



5.3.2 Metrics for Reverse Engineering Multiple Samples of the Same Product

The metrics for reverse engineering multiple samples of the same product are derived from

the first order response of a simple resistor-inductor circuit [123, 138]. Thus, we are extending

the electrical analogy presented in Chapter 4 to include inductance, for two reasons: (i) we have

observed that when reverse engineering multiple samples of the same product, the flow of informa-

tion at an unextracted information level behaves like the first order response of electrical current in

a resistor-inductor circuit and (ii) the inductance in a circuit provides an applicable parameter that

can be used to characterize how quickly a person learns while reverse engineering.

The flow rate of information for any sample and unextracted information level, Fk,s, is

calculated as

Fk,s = Fk,1e−(s−1)∗B/Z +FK0,1

(
1− e−(s−1)∗B/Z

)
(5.5)

where B is the barrier to reverse engineering and Z is termed the learning factor. The flow rate

from the first reverse engineering sample at any unextracted information level, k, is denoted by

Fk,1. This value is determined by solving for K from the relationship for T (refer to Eq. 4.11), and

substituting into F = dK/dt, which yields

Fk,1 =
−K0

BS
e−T/BS (5.6)

This equation can be further simplified by substituting the relationships for B, S, and T in (refer to

Eq. 4.10, Eq. 4.13, and Eq. 4.11 respectively) allowing Fk,1 to be rewritten as

Fk,1 =
FK0,1 ∗ k

K0
(5.7)

where k has been substituted for K because we are interested in the flow rate at discrete, unextracted

information levels. In this form, the first flow rate for each unextracted information level can easily

be calculated and used in Eq. 5.5. Notice that when s = 1 in Eq. 5.5, the second term on the right

hand side of the equation drops out and Eq. 5.5 simplifies to Fk,s = Fk,1. On the other hand, as s

approaches infinity, Eq. 5.5 simplifies to Fk,s = FK0,1. This is the same behavior for information

flow rates that we described in Sec. 5.3.1.
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The learning factor, Z, is a measure of a person’s ability to learn while reverse engineering

multiple samples of the same product, given a particular measurement tool. A large Z indicates

a high resistance to change in information flow rates, or in other words, it is difficult for the

individual/team performing the reverse engineering to utilize information gained during previous

iterations of the process. A small Z may indicate that the process is nearly automated, meaning

that secondary reverse engineering procedures do not need to be repeated after the first reverse

engineering sample. An example would be using a coordinate measuring machine to automatically

scan geometry or using a scanning electron microscope to extract the material microstructure from

several samples – the set up procedure is only done once, and then the process is automated. If all

other parameters are equal, a person with a smaller Z will reverse engineer multiple samples of the

same product quicker than someone with a larger Z.

The learning factor is calculated as

Z =
B

(
FK0,1 −Fk,s

)
dFk,s/ds

(5.8)

where dFk,s/ds indicates the change in information flow rate, Fk,s, per reverse engineering sam-

ple, s, for any flow rate besides the initial flow rate, FK0,1. The parameters that comprise Z are

experimentally determined for an individual; more information on how this is done is provided in

Sec. 5.3.3. A similar equation to Eq. 5.8 exists for inductance in a simple resistor-inductor circuit.

In fact, the learning factor is analogous to inductance in an electrical circuit – both measure resis-

tance to change in flow rates (electrical current or information flow rates). We note that Z does

not change as information flow rates increase, nor is it dependent on the unextracted information

level or reverse engineering sample – we assume that a person’s aptitude to learn remains constant

during the reverse engineering process. Again, this is similar to an inductor in an electrical circuit,

where the inductance value remains constant, regardless of the electrical current flowing through

it.

With a relationship defined for how the flow rate of information during reverse engineering

changes, we can now calculate the total time to reverse engineer multiple samples of the same

product as

T = −BS ln(γ/K0)+
ns

∑
(s=2)

K0

∑
(k=γ+1)

1

Fk,s
(5.9)

55



where the 1 in the numerator represents one unit of information, ensuring that T has units of time.

The first term on the right hand side of Eq. 5.9, −BS ln(γ/K0), represents the time to reverse engi-

neer the first product sample. The second term of the equation accounts for all remaining samples;

thus, the outer summation is initialized at s = 2 and continues until ns. For each sample, the recip-

rocal of Fk,s is summed for all unextracted information levels starting with k = γ +1 up through K0.

The flow rates at the unextracted information level γ are not included because this is a forward dif-

ference approximation, and inclusion of the flow rates at the lowest unextracted information level

would overestimate the total time. The parameters and metrics that make up Eq. 5.9 can easily be

calculated for any individual or product. As a result, the task of accurately estimating the time to

reverse engineer a product becomes simple and straightforward. More information on how this is

to be done is included in Sec. 5.3.3.

The time required for each individual reverse engineering sample (beyond the first) can

also be determined by modifying Eq. 5.9 to get

T̂s =
K0

∑
k=γ+1

1

Fk,s
(5.10)

where the subscript s distinguishes the reverse engineering sample in question and the 1 in the

numerator signifies one unit of information. It is important to note that the metrics developed

here use discrete unextracted information levels to determine F , using Eq. 5.7. Because discrete

points are used to characterize the entire curve, approximation error is introduced into the model.

Therefore, to maintain a higher degree of accuracy, it is more appropriate to use the relationship

for T in Eq. 4.11 for the first reverse engineering sample.

Up until this point, the metrics introduced have not considered the type of information

being extracted from a product. Information type is a significant factor in reverse engineering, as

the barrier and time for reverse engineering depend on the type of information that is contained

in a product [14]. Each information type has a distinct initial flow rate, FK0,1 and learning factor,

Z. Therefore, every information type needs to be considered separately. This will result in a

different time to reverse engineer each information type. The total time to reverse engineer all the
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information types in a product, T ∗, is calculated as

T ∗ =
nI

∑
i=1

T i (5.11)

where the superscript [ ]i is used to distinguish information type, making T i the time to reverse en-

gineer one type of information as calculated with Eq. 5.9, and nI is the total number of information

types contained in the product.

The barrier to reverse engineer multiple samples of the same product is the same barrier

that has been defined in Eq. 4.10. Each information type has a unique barrier; however, this barrier

does not change with additional reverse engineering samples, despite the fact that information

flow rates do increase. This is similar to a resistor in a resistor-inductor circuit – the value of its

resistance remains the same, even though the current passing through it can change. Therefore, the

effective barrier to reverse engineer multiple samples of an entire product is still calculated using

the relationships presented in [14].

5.3.3 How to Use the Metrics

In this section, we explain how to use the metrics that were presented in Sec. 5.3.2 to

estimate the time to reverse engineer multiple samples of the same product. This could be done

in industry by original designers who are trying to protect their products, or by those performing

benchmarking activities. In the first case, the designer would have the advantage of knowing how

much information is contained by the product; however they would be required to estimate the

initial flow rate and the number of samples used by their competitors. In the second case, the

person reverse engineering the product would be required to estimate how much information is in

the product, while all other parameters would be known.

The process is described by the flow chart in Fig. 5.2. To start the process, one must

determine the number of information types, nI , that are needed to reverse engineer the product.

The index to count the number of information types, i, is initialized at 1.

Step 1 is to experimentally determine the initial flow rate, Fi
K0,1

, for a particular information

type i [139]. This is done by using a uniform dimension extraction test. The goal of the test is

to measure the average rate at which a person can extract information from a product when no
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Figure 5.2: The process for predicting the time that it would take to reverse engineer several

samples of the same product.

secondary reverse engineering procedures are performed. In the test, an individual is asked to

familiarize themselves with a particular dimension on a product. After this is done, the individual

receives a measurement tool and the time is then recorded for them to measure the dimension. The

process is repeated for many different dimensions of the same information type and the extraction

rates are averaged to determine Fi
K0,1

. The resulting Fi
K0,1

determined by the test can be used

to calculate the metrics in step 4 for any product that contains the appropriate information type.

In practice, the test only needs to be done once and then the value for Fi
K0,1

can be reused for

information type i, or a generic database containing the initial flow rates for typical measurement

tools and operator skill levels could be developed.
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Step 2 is to experimentally determine and calculate the learning factor, or Zi. It is calculated

using Eq. 5.8, which requires a flow rate, Fi
k,s, other than the initial flow rate, and its associated

derivative with respect to reverse engineering sample, dFi
k,s/ds. These values are determined for an

individual using a uniform dimension extraction test, similar to how Fi
K0,1

is determined. However,

in this test the person must extract dimensions from multiple product samples. During the test,

the person is handed a product and asked to extract several difficult pieces of information. Then

they are asked to repeat the measurements on a new sample of the same product. Fi
k,s and dFi

k,s/ds

are recorded, and Zi is calculated with Eq. 5.8. It is important that the information in this test

be difficult to extract, so as to emphasize differences in flow rates between samples due to actual

learning that occurs in the process, and not natural human variation.

Step 3 is to choose the number of samples, ns, and the total amount of unextracted infor-

mation, K0. With K0 defined, γ can be calculated using Eq. 5.2. In practice, when a person reverse

engineers a product, ns will be known initially, while K0 will not. Otherwise, for the person using

these metrics to predict the reverse engineering time of their competitors, ns must be estimated, but

K0 will be known. Accurately predicting ns can be a challenging task, as the number of samples

used for reverse engineering will vary for different products and companies; however, an estimate

can be made based on a statistical analysis to determine an adequate sample size. Additionally, if

the price is significantly high for one product, then ns will likely be small.

Step 4 is to calculate the barrier, Bi, storage capability, Si, the flow rates, Fi, and time

T i. The P, F , and K typically used to calculate Bi and Si are P = 1, F = Fi
K0,1

, and K = K0,

respectively. Steps 1-4 are then repeated for each information type of interest in the product, after

which the total time to reverse engineer the product, T ∗, is then calculated in Step 5 with Eq. 5.11.

Thus, the time to reverse engineer a product can be estimated, without having to actually reverse

engineer the product. In the next section, we discuss the accuracy and limitations of the model

with a case study.

5.4 Case Study and Validation

In this section, we present an empirical study with the purpose of showing that the time

to reverse engineer multiple samples of the same product can be estimated by the relationships

presented in this chapter. For this study, only geometric information was extracted and analyzed.
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Figure 5.3: Flowserve 3400iq digital positioner with spool block valve and spool shown. Image

adapted from [2].

Table 5.1: Parameters and metrics determined for geometric information of Flowserve spool and

spool block valve.

Individual Part FK0,1 (dim/s) Z ns K0 γ B S T ∗(s) Actual T ∗(s) |ε| (%)

#1 Spool 0.065 2127 30 24 1 236.7 1.560 13613 14611 6.8

#2 Spool 0.057 2912 10 23 1 307.8 1.311 6606 5966 10.7

#1 Block 0.065 2127 10 34 2 236.7 2.210 8179 7630 7.2

#2 Block 0.057 2912 29 35 2 307.8 1.995 21668 21791 0.6

Table 5.2: Comparison of different models to predict the time to reverse engineer multiple

samples of the same product.

Linear Model Exponential Model Combined Model Learning Model

Individual Part |ε| (%) |ε| (%) |ε| (%) |ε| (%)

#1 Spool 27.3 140.9 21.7 6.8

#2 Spool 35.3 112.1 20.6 10.7

#1 Block 35.5 94.2 22.5 7.2

#2 Block 23.0 133.9 17.5 0.6

Average 30.3 120.3 20.6 6.3
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Two individuals were asked to reverse engineer multiple samples of a spool valve block and its

associated spool from a Flowserve Digital Positioner seen in Fig. 5.3. According to sources at

Flowserve, the spool valve block and spool have been reverse engineered and imitated by competi-

tors of Flowserve; therefore, these parts merit our attention in this study on reverse engineering.

Before beginning the reverse engineering process, the initial flow rate and learning factor

of both individuals in the study were determined as described in steps 1 and 2 from Sec. 5.3.3. The

individuals were then instructed to extract and record geometric dimensions using digital calipers

with enough detail that the product could be recreated if needed. Multiple samples (between 10 to

30) of both parts were analyzed by the individuals while the time to reverse engineer was recorded.

Independently, the number of samples, ns, and the total amount of unextracted information,

K0, were chosen. This enabled the calculation of the barriers to reverse engineering, storage ca-

pacities, information flow rates, and times to reverse engineer the product samples. These values,

excluding the information flow rates to preserve clarity in presentation, are located in Tab. 5.1. The

actual extraction times along with the errors are also listed in Tab. 5.1. As shown, the total errors

ranged from -10.7% to 6.8%.

For comparison purposes, we will look at several models for predicting the time to reverse

engineer multiple samples of the same product. Each model is described below and the total

absolute error, |ε|, for each model is compared in Tab. 5.2.

Linear Model – The time for one sample predicted by this model is calculated as T̂lin = (K0 −
γ)/FK0,1. In other words, to calculate the total time for one sample, the quantity of infor-

mation contained in a product is divided by the initial flow rate. This results in a linear

relationship between K and T . The total time, T ∗
lin, is then calculated as T ∗

lin = ns ∗ T̂lin. This

is the simplest model, and does not account for any variation in information flow rates. As

shown in Tab. 5.2, the average absolute error when using this model was 30.3%.

Exponential Model – For this model, the total time, T ∗
exp, is calculated as T ∗

exp = ns ∗ T̂exp, where

T̂exp is determined from Eq. 4.11. This is the time that is predicted using the previous metrics

[14], where learning is not accounted for. It is called the exponential model because when

K is plotted against T , it resembles an exponentially decaying relationship. As stated in

Sec. 5.2, this model will typically overestimate the time to reverse multiple samples of the
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same product. This is especially evident for this case study, where the average |ε| shown in

Tab. 5.2 for the exponential model was 120.3%.

Combined Model – This model is a combination of the linear and exponential models. The total

time is determined as T ∗
com = T ∗

exp +(ns − 1) ∗T ∗
lin. We note that the exact same result will

occur if Z is nearly zero in the learning model. In this case study, the combined model had

the second best time prediction in Tab. 5.2, with an average error of 20.6%.

Learning Model – This is the model developed in this chapter. The total time is calculated here

with Eq. 5.9, because we are only dealing with one information type. Without exception, the

learning model outperforms the other models for predicting the time to reverse engineer

multiple samples of the same product. The learning model predicted the times with an

average absolute error across all tests of 6.3% (see Tab. 5.2). The stark contrast in accuracy

between the learning model and the other models suggests that learning plays an important

role in reverse engineering when using manual equipment such as digital calipers to extract

information from a product.

The plots in Fig. 5.4 display the actual results and model predictions for spool samples 2,

5, 10, and 30 of individual #1. While the plots are for a single individual and product, they are

representative and consistent with other tests that we have performed. The combined model is not

explicitly called out in the plots, because it is only a combination of the linear and exponential

models, both of which are shown. As the sample number increases, the data, which is marked by

the asterisks in the plot, moves away from the exponential prediction towards the linear prediction.

Likewise, the learning model curve, begins at the exponential curve and moves toward the linear

curve at a rate that closely matches the real data.

We note that the data in the plots have been rearranged according to the time to extract

each dimension - with the shortest times plotted first - and are not plotted in the order of dimension

extraction. According to our assumptions given by Eqs. 5.1, 5.3, and 5.4, the flow rates should

never be larger than FK0,1, which is the slope of the linear prediction in Fig. 5.4; however, some of

the flow rates for reverse engineering sample # 30 are clearly larger than FK0,1. This is explained

by how we obtained FK0,1 – by averaging the quickest times to extract several simple dimensions

from an arbitrary product (see Sec. 5.3.3 Step 1). Since the FK0,1 used here is an average, it is
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Figure 5.4: Unextracted dimensions as a function of time for spool valve block samples 2,5,10,

and 30.

likely that some information will be extracted quicker due to natural variation. If the data is not

rearranged according to the time to extract each dimension for sample #30, with the shortest times

plotted first, the actual data appears more linear in nature and strongly correlates with the linear

prediction.

5.5 Concluding Remarks

In this chapter, we have presented general metrics for evaluating the time to reverse en-

gineer multiple samples of the same product, which is a continuation of the research presented

in Chapter 4. An exponential decay function adequately describes the relationship between un-

extracted information remaining in a product and time for the first reverse engineering product

sample. With subsequent samples, the relationship becomes more linear, due to changes in the
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flow of information. We have introduced supporting metrics that characterize this change in infor-

mation flow rates due to learning.

A study involving multiple product samples of a spool and a spool valve block from a

Flowserve Digital Positioner has been offered to both demonstrate the use of the metrics and serve

as empirical validation. The study confirms that as reverse engineering samples increase, the flow

rates at all unextracted information levels increase toward the same asymptotical limit - the theo-

retical fastest flow rate, much like the response of electrical current in a resistor-inductor circuit.

Moreover, the example suggests that if certain information is known about a product, the person re-

verse engineering, and the product sample size, then the metrics can be used to accurately estimate

the total time needed to reverse engineer the geometry of a product, and, in this case with an av-

erage absolute error of 6.3%. Although this chapter focuses on geometric information, the metrics

defined here can also apply to other information types such as electrical conductivity, elasticity,

tensile strength, or even color.
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CHAPTER 6. A FRAMEWORK FOR EVALUATING THE COST TO IMPLEMENT
BARRIERS TO REVERSE ENGINEERING

6.1 Chapter Overview

Designing products with built-in barriers to reverse engineering can impede competitors

from gathering critical information from innovative products and delay the production of product

imitations. However, incorporating barriers to reverse engineering requires additional time and

resources to design, develop, and manufacture. As these elements of barriers are conflicting, it is

important to understand the tradeoff and the overall impact on the product return on investment.

This chapter presents a framework for evaluating the cost to design and implement barriers to

reverse engineering, thus, providing a valuable tool to assist the designer while designing barriers

to reverse engineering. Two case studies show that using the presented framework to evaluate a

barriers return on investment is an essential part of ensuring a profitable endeavor.

6.2 Introduction

Product developers can influence the effectiveness of barriers based on calculated and

sometimes even uncalculated design decisions. Those design decisions can range from how to

obtain parts (i.e., make versus buy) to what the composition of the material microstructure should

be. The effectiveness of a barrier is measured relative to the person trying to break the barrier, and

the metrics for calculating a barrier are discussed in Chapter 4. In conjunction with calculating the

barrier, the time it takes to reverse engineer and imitate a product can also be calculated. Know-

ing these parameters is necessary to estimate the return on investment for a product. Knowing

how design decisions affect a firm’s bottom line is a key factor in making barrier implementa-

tion decisions. While implementing barriers to reverse engineering and imitation may be costly,

Shapiro [52] and Nelson and Winter [53] emphasize that the harder a product is to imitate the less

incentive there is for competitors to imitate the product. Furthermore, Crockford [20] states that
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any improvement that can be economically taken to reduce the risk of the product being success-

fully reverse engineered is worth taking.

This chapter (i) proposes a framework for calculating the return on investment when im-

plementing a barrier strategy, thus helping designers to manage the tradeoffs of barrier imple-

mentation, and (ii) recommends a barrier strategy as a method to protect intellectual property and

maintaining competitive advantage.

6.3 Calculating Return on Investment while Considering Market Lost to Product Imita-
tions

The business strategy behind implementing barriers to reverse engineering is two fold. The

first is to protect trade secrets. The second objective is to capture as much of the market share

as possible for as long as possible. Maintaining a large market share helps increase return on

investment (R). There are two key components to estimating the return on investment. The first

is an estimation of all the costs associated with the product’s development and production. The

second is an estimation of the sales and market performance of the product. In the following

section we explore how, with given models, a firm can estimate the sales and costs of its product.

In the past, most designers have been far removed from financial estimations. The development

of concurrent engineering has drawn designers closer to the financial estimation for a project and

helped them make more educated design decisions [140]. The purpose here is not to prescribe

estimation models, but to show how given models can be applied to help designers make better

barrier implementation decisions based on the return on investment.

Product Development Costs

There are a variety of methods for estimating project costs and how those costs will be

distributed over time. The method used is usually determined by the firm developing the product.

Product complexity can be a major factor in determining product development costs. At the onset

of a project, it can be difficult to get an estimate of the product development costs. Ulrich and

Eppinger [141] suggest that the costs associated with the product can be separated into four cate-

gories: development, ramp-up, marketing and support, and production. Development costs include
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all design, testing, and refinement costs up to production. Magrab [142] outlines several models

for determining the development costs. Magrab states that the product’s total cost is computed as

Cp = Np(M +L+R)+T0 +S +D (6.1)

where NP is the lifetime product volume, M is the material cost per unit, L is the manufacturing

labor per unit, R is the production resource usage/unit, T0 is the capitalization costs, S is the indirect

costs, and D is the development costs.

There is no model that is assumed to be a “one-fits-all” solution. As stated above, it is

left up to members of the individual firm to decide which model works best for them. Another

way to measure product development costs is by product complexity. One way to measure product

complexity is by the information content of a product [23]. Because more complex products are,

in most cases, more expensive to develop, we use information content as a key measurement for

product development costs in the example below.

Market Revenue Prediction

Predicting a product’s sales can often be a very involved process. Some companies commit

massive amounts of resources to predicting how a product will perform in the market and some go

by gut instinct. There are methods and models that are available to alleviate some of the uncertainty

and help a developer estimate the future sales of a product. The purpose of this chapter is not to

prescribe a specific method for predicting how a product performs in the market, but to show

how, with a given model, a developer can predict the return on investment. This is done under

the assumption that a competitor will eventually release an imitation of the product of interest to

market (no sooner than the reverse engineering and imitating time), thus, stealing market share and

reducing the innovator’s return on investment.

One model that has proven to be a good predictor of sales for consumer durables is the Bass

Diffusion Model [143]. This model works well for our application because it tells us how the sales

vary over time and is not just a lump sum of sales. Knowing how sales vary over time is important,

because the entrance of a competitor to the market will have varying effects depending on the level

of sales in the market at that time. The Bass model has proven to be a good predictor of how
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Figure 6.1: Generic representation of the Bass Diffusion Model. Note that the sales shown are not

cumulative, but are time dependent.

quickly sales of new consumer durables grow and how much of the potential market a product can

capture [144]. The term “consumer durables” refers to products that are replaced by the consumer

at a very low rate. Examples of consumer durables are refrigerators, televisions, washing machines,

and lawn mowers. For this dissertation, we assume that the products in question will have no repeat

buyers; lending itself easily to the Bass Model.

The Bass model is expressed as a probability density function that spreads the total expected

market sales of a product over time, τ , and is defined as

n(τ) =
(α +β )2

α
e−(α+β )τ(

β
α e−(α+β )τ +1

)2
(6.2)

where α is the coefficient of early adoption and represents the probability of an initial purchase at

τ = 0, and β is the coefficient of late adoption and represents the influence that previous buyers

have on future buyers.

Fig. 6.1 is a generic representation of the Bass Diffusion curve where the area under the

curve represents the cumulative sales probability of a product.

The Bass model places buyers into two categories: early adopters and late adopters. The

timing of early adopters’ purchases is not based on how many previous buyers there have been,

while the timing of the late adopters’ purchase is based on the quantity of previous buyers. The
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last component needed in order to predict the quantity of sales at time τ is the overall market size,

m. With the total market size estimated, the sales, Ψ, at time τ are

Ψ(τ) = m
(α +β )2

α
e−(α+β )τ(

β
α e−(α+β )τ +1

)2
(6.3)

and the time at which sales peak, τu, is found by differentiating Ψ and solving for τ when dΨ/dτ =

0. Therefore,

τu =
1

α +β
ln

(
β
α

)
(6.4)

The cumulative sales Ψt at τ is

Ψt(τ) = m
∫ τ

0
n(τ)dτ (6.5)

Obtaining a good prediction of sales is based upon good estimates of α , β , and m. Ob-

taining good estimates of α , β , and m can be done in various ways, but one simple way is to use

data from a similar product and market. Research suggests that when time is in years an average

value for α is 0.03, but is often less than 0.01, and β ranges between 0.3 and 0.5 with an average

value of 0.38 [144]. The parameters should be scaled according to the time scale. It is important

to emphasize that this discussion of the Bass model has been to facilitate the discussion of how a

given sales model can be applied to make design decisions. Once again, we are not suggesting that

the Bass model is one that should be used for all applications. Firms should use discretion when

deciding what model to use to estimate the sales of its product.

6.3.1 Return on Investment Calculation

Calculating return on investment starts with estimating the costs and revenues of the prod-

uct. The costs are broken down into two categories: development and manufacturing. The product

development time is calculated using a baseline cost and the reverse engineering metrics with a de-

velopment flow rate. In most cases, firms will be able to relate product development time to cost,

because they will know their costs per time to utilize their resources. Therefore, to further facilitate
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this discussion, product development cost, Cd , has a linear relationship with product information

content and is defined as

Cd = Cττd (6.6)

where Cτ is the cost per unit time and τd is the product development time.

The manufacturing cost correlates directly with sales and is defined as

Cg = CmΨ(τ) (6.7)

where Cg is the cost of goods sold, Cm is the unit cost of manufacturing. The total product cost is

defined as

C =
τd∫

0

Cddτ +

τ f∫
τd

Cgdτ (6.8)

where τ f is the time at which the product reaches the end of its life.

The revenues for the product are obtained using the Bass Diffusion model, but with one

caveat: the sales will be diminished by the entrance of an imitation to the market, thus affecting

the distribution and quantity of sales. To accomplish this the total market diffusion, ψ(τ) is first

calculated assuming that no imitation enters the market. Second, the amount of market that an

imitation is able to capture is then calculated. Predicting the rate and magnitude at which an

imitation will sell is done using the Bass model as well. An early adoption and late adoption rate,

αI and βI respectively, is defined for the imitation product. Additionally, the potential market size

is reduced to what is currently remaining when the imitation product enters the market. Actual

sales for the innovator are then defined as

Xt(τ) = X(τ)−XI(τ) (6.9)

where Xt(τ) is the total sales in dollars for the innovator up to time τ , X(τ) is the total potential

market sales in dollars up to time τ , and XI(τ) is the total sales in dollars for the competitor up to

time τ .
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Figure 6.2: KitchenAid Artisan Stand Mixer. [3]

An alternate approach to calculating R is to choose a required R for a project. Then, design-

ers can solve for the information flow rate needed to achieve the required R. Once the information

flow rate is calculated, designers can use intuition and/or estimation methods outlined by Harston

and Mattson [14] to decide if the flow rate will, in reality, allow the firm to capture the required R.

6.4 Case Study 1: KitchenAid Stand Mixer

In order to illustrate how the models described above are used together, a KitchenAid Stand

Mixer will be examined. According to Euromonitor International [145], KitchenAid sold approx-

imately 24 million units of kitchen appliances from 2005 to 2010. KitchenAid has numerous

product offerings, but this example will focus on its popular stand mixer. Based on the number of

different kitchen appliances offered, the data provided by Euromonitor, and the Stand Mixer being

KitchenAid’s number one selling product, it is estimated that the market size for the stand mixer is
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10 million units. To illustrate the return on investment analysis for implementing barriers to reverse

engineering, the Bass diffusion model will first be invoked where no barriers have been strategi-

cally implemented, and a competitor is introduced. Under this scenario, KitchenAid’s return on

investment is calculated to be 1.145. This means that the project will return 100% of the costs

for the product plus 14.5% above the total cost. Second, strategic barriers to reverse engineering

and imitation are introduced, and the Bass model is re-executed. Though there is added cost of

designing and manufacturing the barriers, material barriers can be used to achieve a 6.4% gain in

return on investment.

The parameters used in this example are listed in Tab. 6.1. The development rate, Fd , is set

to 0.036, which is the rate at which the microstructure (i.e., size, orientation, and distribution of

crystallographic grains) barrier used in this case study can be designed into the product in units of

information per hour. The parameters FR(1), FI(1), KR(1), and KI(1) are the geometry flow rate

and information content of the stand mixer as they pertain to reverse engineering and imitating. The

parameters FR(2), FI(2), KR(2), and KI(2) are the material microstructure flow rate and information

content of the stand mixer. Notice that FR(1) and FI(1) are noticeably larger than FR(2) and FI(2).

This is simply due to the fact that geometric information (i.e., dimensions) can be extracted much

faster than microstructure information. The power exerted by KitchenAid’s product development

team to develop the stand mixer is represented by Pd . The reverse engineering and imitating power

is represented by PR and PI , respectively. Recall that these values are set to “1” as it is the most

conservative approach.

As stated above, the Bass model is invoked to illustrate the diffusion of the stand mixer mar-

ket. The parameters α and β are the coefficients of early adoption and late adoption, respectively,

for the Bass model. The values for these coefficients were chosen based on research presented by

Sultan et al. [146] for both KitchenAid’s stand mixer and the competitor’s product. The retail price

is represented by ρ . The cost for KitchenAid to manufacture the stand mixer is represented by

Cm. Note that the product development costs, Cd , include all pre-launch costs, including engineer-

ing costs, marketing, tooling, and production ramp-up (30 day supply of product) and are evenly

distributed over the development time.
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Table 6.1: Input parameters for calculating the return on investment of a KitchenAid Stand Mixer.

Param. Value Decription

Fd 0.036 Development rate (info/hr)

FR(1) 144 Reverse engineering. geometry information flow rate (info/hr)

FR(2) 0.4 Reverse engineering microstructure information flow rate (info/hr)

FI(1) 50 Imitating geometry information flow rate (info/hr)

FI(2) 0.1 Imitating microstructure information flow rate (info/hr)

KR(1) 800 Reverse engineering geometry information

KR(2) 2 Reverse engineering material information

KI(1) 300 Imitating geometry information

KI(2) 4 Imitating material information

Pd 1 Development power

PR 1 Reverse engineering power

PI 1 Imitating power

α 2.03×10−5 Coefficient of early adoption

β 5.64×10−4 Coefficient of late adpotion

αI 3.00×10−5 Competitor’s coefficient of early adoption

βI 6.00×10−4 Competitor’s coefficient of late adoption

m 10.00×106 Market size in number of units

ρ 250 Product retail price in Dollars

Cm 200 Cost to manufacture product in Dollars

Cd 14,500 Development cost in Dollars per hour

For this example, the assumption is made that the stand mixer is a new and innovative

product and that the percentage of market share a competitor can capture is inversely proportional

to its launch time as shown in Eqn. (6.10).

mI = m
(

1− T ∗
M

τu

)⎛
⎜⎝1− e−(α+β )T ∗

M(
β
α e−(α+β )T ∗

M +1
)2

⎞
⎟⎠ (6.10)

where T ∗
M is the time to competitor market entry and τu is the time to the market saturation point.

Figs. 6.3, 6.4, 6.5, and 6.6 (plotted on the same scale for ease of visualization) aid in visual-

izing how the costs and revenues are distributed over the life of the product. Fig. 6.3 illustrates the

distribution of development costs. Fig. 6.4 illustrates the distribution of sales starting immediately

after product launch and if an imitation product is never released. Fig. 6.5 illustrates the sales of an
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Figure 6.3: Estimated per time product development costs.

Figure 6.4: Estimated per time potential sales.

imitation released at T ∗
M = 4,771 hours. Fig. 6.6 illustrates the cost of goods sold over the life of

the product and accounts for the release of an imitation. These figures can then be superimposed to

make a composite graph, as represented in Fig. 6.7. Note that in Fig. 6.7 there is very short period

where KitchenAid is alone in the market, which is depicted by the “spike” in sales immediately

after development. This is also the reason for the apparently vertical line in Fig. 6.6.
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Figure 6.5: Estimated competitor’s sales as a result of releasing an imitation. In other words, sales

lost to the competitor.

Figure 6.6: The estimated cost of goods sold over the life of KitchenAid’s stand mixer.

The return on investment is calculated through integration as

R =

τ f∫
τd

Ψ(τ)−ΨI(τ)dτ

Cdτd +
τ f∫
τd

Cmdτ
(6.11)
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Figure 6.7: The estimated per time costs/revenues of KitchenAid’s stand mixer over its entire life.

The return on investment can also be visualized as the ratio of the difference in areas under the

curves of Figs. 6.4 and 6.5 to the sum of the areas under the curves of Figs. 6.6 and 6.3. From the

model, R is calculated to be 1.145. Also, the calculated barrier is 1.3×10−3.

KitchenAid can influence return on investment and B by incorporating different types of

information and/or by varying the quantity. Doing so will likely affect the product development

time, cost, and manufacturing cost, however, the added barrier will also likely delay the com-

petitor’s market entry. It is important to understand this tradeoff in order to effectively increase

return on investment by implementing barriers. For the above example, assume KitchenAid strate-

gically manipulates the material microstructure of the stand mixer in order in increase the barrier.

Because the analysis of a given material’s microstructure is intricate and time consuming, there

will be a significant change in F for the competitor. Due to the increased difficulty of extracting

microstructure information and the added information, the values of the following parameters are

changed: FR(2) = 0.04, FI(2) = 0.01, KR(2) = 15, and KI(2) = 30. The additional information

included in the product also increases the product development time, cost, and the manufacturing

cost. The addition of more information and a slower information flow rate for the competitor re-

sults in T ∗
M = 14,797 hrs. This change leads to R = 1.209, which provides the firm with an extra

6.4% return over what was previously calculated. This equates to an extra $311 million in net

sales for KitchenAid. Also, the barrier is improved to 78.0× 10−3. It is important to note that
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Figure 6.8: The estimated per time costs/revenues of KitchenAid’s stand mixer over its entire life

with a microstructure barrier.

the barrier values are intended as a comparative measure. Typically the barriers of various designs

are compared to the barrier of a benchmark design. The product life-cycle plot for the improved

barrier is shown in Fig. 6.8. A substantial change in the revenues of KitchenAid’s stand mixer can

be noticed from the plot alone.

6.5 Case Study 2: Cantilevered L-Beam

The above has illustrated how incorporating different types of information can increase the

barrier and time to market entry for a competitor, thus increasing the return on investment for the

innovator. The following case study illustrates the implementation of specific barriers and how

those affect the return on investment for the innovator. It is borrowed from Harston et al. [4] and

is extended to illustrate the point at hand. Here, an “L” shaped beam is considered, as shown in

Fig. 6.9, which is fixed at one end and exposed to a prescribed deflection at the other. Note that

this beam is unique in that the cross-section is composed of anisotropic layers, which have been

joined using ultrasonic consolidation [4]. This particular beam is used as a contact in an electrical

connector, hence the reason the dimensions are in millimeters.

Because of the geometric constraints of the application, the geometry for the L-beam is

fixed. Harston et. al. first optimized the L-beam under four separate conditions to achieve a target

reaction force at the free end when subjected to a prescribed displacement (δ ) at the same end. The
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Figure 6.9: Geometry and boundary conditions for the L-beam case study.

four different conditions analyzed were (I) Single Isotropic Layer, (II) Single Anisotropic Layer,

(III) Multilayer Anisotropic, and (IV) Single Layer Heterogeneously Anisotropic. Condition (I) is

used as a benchmark and is manufactured using traditional manufacturing techniques. Whereas,

conditions (II), (III), and (IV) are manufactured using ultrasonic consolidation and/or friction stir

welding [4]. Tab. 6.2 specifies the constant input parameters that will be used to calculate R for

each condition. The amount of information contained by each condition will vary, as specified in

Tabs. 6.3 and 6.4.

Harston et. al. only optimized the product reaction force and yielding characteristics and

did not attempt to optimize return on investment. In this case study, the L-beam is further analyzed

to obtain the return on investment for each of the four conditions. Because each condition will re-

quire slightly different processes to manufacture, the manufacturing costs are adjusted accordingly.

Furthermore, when a product has a superior performance the sales price will be less constrained

by competitive products. Therefore, we are able to adjust the sales price to overcome the added

expense of barrier implementation. Due to the added barriers, the market becomes more secure

and there is less threat of having to compete on price, leaving the innovator free to dictate the price

of the product. However, it is important to also consider the impact that a higher sales price will

have on the overall market size. Therefore, overarching market pressures will frequently constrain

the sales price of a product. For this purpose, we present return on investment under two scenarios
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Table 6.2: Constant input parameters for calculating the return on investment of a cantilevered

L-beam.

Param. Value Decription

Fd 0.036 Development rate (info/hr)

FR(1) 144 Reverse engineering. geometry information flow rate (info/hr)

FR(2) 0.04 Reverse engineering microstructure information flow rate (info/hr)

FI(1) 50 Imitating geometry information flow rate (info/hr)

FI(2) 0.01 Imitating microstructure information flow rate (info/hr)

Pd 1 Development power

PR 1 Reverse engineering power

PI 1 Imitating power

α 3.00×10−5 Coefficient of early adoption

β 3.00×10−4 Coefficient of late adpotion

αI 6.00×10−5 Competitor’s coefficient of early adoption

βI 4.00×10−4 Competitor’s coefficient of late adoption

m 1.00×108 Market size in number of units

Cd 1,000 Development cost in Dollars per hour

Table 6.3: The return on investment for a cantilevered L-beam with varying mechanical

properties. Retail price is held constant.

Case KR(1) KR(2) KI(1) KI(2) Cm ($) ρ ($) T ∗
M (hrs) R

(I) Benchmark 10 2 30 4 0.02 0.06 2,140 2.296

(II) Single layer 10 3 30 6 0.04 0.06 2,858 1.352

(III) Four Layers 14 15 42 30 0.06 0.06 11,726 0.935

(IV) Heterogeneous 10 18 30 36 0.05 0.06 13,642 1.113

– a fixed sales price, and a variable sales price. The results of the analysis are presented in Tabs. 6.3

and 6.4, respectively.

Let us first discuss return on investment when there is a fixed sales price as seen in Tab. 6.3.

Notice that for this example, when the sales price is fixed, return on investment decreases as barriers

are implemented. This is due to the increased product development and manufacturing cost that is

unable to be recovered even though the product is able to capture and maintain a larger portion of

the market share. This demonstrates that not all products will benefit from implementing barriers.
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Table 6.4: The return on investment for a cantilevered L-beam with varying mechanical

properties. Retail price varies.

Case KR(1) KR(2) KI(1) KI(2) Cm ($) ρ ($) T ∗
M (hrs) R

(I) Benchmark 10 2 30 4 0.02 0.06 2,140 2.296

(II) Single layer 10 3 30 6 0.04 0.12 2,858 2.704

(III) Four Layers 14 15 42 30 0.06 0.12 11,726 1.869

(IV) Heterogeneous 10 18 30 36 0.05 0.15 13,642 2.782

As an alternate approach, one can consider additional barrier types and model their impact on the

return on investment.

However, if the product has a superior performance, the sales price can be adjusted to

help recover the increased product development and manufacturing costs. As discussed above,

the L-beams were optimized for both the reaction force and yielding characteristics. We note

that the heterogenous design has the best performance while the single-layer and the four-layer L-

beams performed equally well. Even though the single-layer and four layer L-beams have the same

performance, we assume that the four-layer L-beam is not only more difficult to reverse engineer,

but is also more expensive to fabricate. All three designs out-performed the benchmark design and

the sales price of each L-beam is modified to represent the increased level of performance. For the

performance specifics, we refer the reader to [4]. Of the four conditions considered here, condition

(IV) yields the highest return on investment due to (i) the increased product performance enabling

a higher sales price and (ii) a barrier to reverse engineering that effectively delays the market entry

of imitators.

6.6 Chapter Summary

This chapter has developed and presented metrics for estimating the time it takes a com-

petitor to launch an imitation product. The launch of the imitation can have a significant impact

on the return on investment of an innovator’s product, because it steals away market share and

reduces sales from what they could potentially be. In order to understand how implementing a

barrier strategy affects return on investment we have developed a framework that considers design

decisions, competitor behavior, and market performance. This framework allows designers to see

how the implementation of certain design features affects the return on investment of a product.
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The insight provided by the framework presented enables designers to make more educated design

decisions and increase a firm’s return on investment.
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CHAPTER 7. HOW TO PLAN FOR, SELECT, DESIGN, AND IMPLEMENT BARRI-
ERS TO REVERSE ENGINEERING

7.1 Chapter Overview

In Chapter 4, quantitative metrics are presented that estimate the barrier that must be over-

come to reverse engineer physical hardware as well as an estimation of the time to do so. While

barrier implementation can be costly, entire products can be made difficult to reverse engineer

with an increased return on investment by selectively incorporating one or more barriers to reverse

engineering. This chapter presents a process for barrier development by considering performance

measures of interest, parameters that affect the performance measures, and generating reverse engi-

neering barrier concepts to protect the selected performance and parameters. This process includes

sensitivity analyses to determine parameter impact on product performance, considers the ease for

which parameters may be modified, and analyzes the effectiveness of barrier concepts. The process

is demonstrated on a solar-powered unmanned aerial vehicle.

7.2 Introduction

The purpose of barriers to reverse engineering is to (i) impede competitors from gaining

valuable insight from the innovative product, and (ii) minimize loss in market share due to imita-

tions of all or part of the innovative product [14]. Barriers to reverse engineering do not need to

make a product impossible to reverse engineer. Instead, they must keep a competitor out of the

market long enough to give the original developer a desirable return on investment. Some believe

that a barrier is sufficient when the cost to reverse engineer is greater than the cost to develop the

original product [18,19]. Military products may be an exception. In general, any improvement that

can be economically taken to reduce the risk of the product being successfully reverse engineered

is worth taking [20].
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It may not be practical to incorporate reverse engineering barriers into all products. One

must weigh the consequences of the product being reverse engineered, determine the additional

cost to develop the barriers, and calculate the expected return on investment of a product that

does, or does not, implement a reverse engineering prevention strategy. On one hand, designing

and implementing reverse engineering barriers into a product can be costly – both in time and

resources. Barrier implementation frequently requires additional design time, manufacturing costs,

and assembly costs. This can result in a delayed market entry and a reduced return on investment.

On the other hand, innovative products have lost a significant portion of the market share due

to reverse engineering and product imitations – many companies have discontinued competing

in the markets they originally created due to competitors reverse engineering and imitating their

innovative product [27]. While barriers to reverse engineering may be costly to implement, entire

products can be made difficult to reverse engineer by selecting and designing barriers to reverse

engineering into one critical element [32]. Therefore, it is important that the critical elements of a

system be identified, and that barriers are selected to make these elements more difficult to reverse

engineer.

Identifying, characterizing, and understanding the critical elements of a system are not

novel ideas. The basis of risk management [17,58], security, [59] and defense-in-depth (the use of

multi-layered or redundant protections) [60,61] is to identify the critical elements and improve their

designs to decrease risk or increase security of the system. Software designers seek to identify the

critical modules of code to facilitate early defect detection and reduce intrinsic downtime [65, 66].

In product design, designers seek to understand what features of a product are critical to user

satisfaction [62], understand the impact of critical elements on a system when they are redesigned

and replaced [63], and perform analyses to systematically identify possible failures and estimated

risks [38]. Grand [19] suggests that before any security/barrier features are designed into a product,

risk assessment in the following three areas should be performed to help identify critical elements:

(i) what needs to be protected (ii) why does it need to be protected, and (iii) whom it is being

protected against. Furthermore, Pooley and Graves [64] recommend locating the most valuable

information in a product, and focusing resources and efforts on that element. We note that the

barrier development process presented in Sec. 8.3 is built upon the work of Edwards [63], Grand

[19], and Pooley and Graves [64].
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Figure 7.1: Illustration of the (i) barrier development process, (ii) a general product development

process, and (iii) their interaction with each other where t0 is the time the product development

process begins, t ′0 is the time the barrier implementation process begins, t ′f is the time the barrier

implementation process ends, td is the time “Detail Design” ends, and t f is the time the product

development process ends.

Similar methods used in the software industry apply graph theory concepts to improve

information security evaluations for electronic communication devices. Rae and Fidge [65] present

an approach that significantly reduces analysis time by forgoing analysis on elements that do not

affect information security and focus on the critical elements that are most likely to cause failures.

Furthermore, Ebert [66] presents a number of classification techniques to help software designers

detect source code defects early in the development process and to focus defect detection on the

error-prone areas. While these approaches provide useful insight on how to select critical software

elements, they have been developed specifically for code-based modules and cannot be directly

adopted for discovering critical elements of physical hardware.

The purpose of this chapter is to present a barrier development process that enables de-

signers to identify the critical elements of a physical system and to develop reverse engineering

barriers to protect them. Specifically, this process considers (i) which product performances need

protection, (ii) what parameters affect the product performances, and (iii) what barriers best protect

the selected parameters and product performances.

7.3 Selection and Implementation of Barriers to Reverse Engineering

The purpose of this section is to provide an overview of a process that enables designers

to develop barriers to reverse engineering. Following this overview, a detailed discussion of each

step as applied to a solar-powered unmanned aerial vehicle is discussed in Sec. 7.4. The barrier

85



development process consists of five steps and can be done in parallel with the traditional product

development process as shown in Fig. 7.1. The five steps are:

Step 1 Identify the set of performances, F ′, that are at risk of being reverse engineered.

This is a subset of all system performances, F where F = [ f1, f2, ..., fn f ], n f is the total number of

system performances, F ′ = [ f ′1, f ′2, ..., f ′n f ′ ], and n f ′ is the number of at-risk performances.

Step 2 Identify the parameters that influence the at-risk performances. Let P represent all

such parameters and let P′ represent the set of parameters (subset of P) for which barrier implemen-

tation should be considered. For notation purposes, let the ith row of P be Pi = [pi,1, pi,2, ..., pi,npi
],

where npi is the number of parameters that influence the at-risk performance i, and let the ith row of

P′ be P′
i = [p′i,1, p′i,2, ..., p′i,np′i

], where np′i is the number of parameters that are considered for barrier

implementation to protect performance i. Often designers are interested in developing barriers for

parameters that can be easily modified and have a large impact on system performance. To identify

such parameters – which will ultimately populate the P′ matrix – the following may be used:

max
i, j

{m(pi, j),s(pi, j)} i ∈ {
1,2, ...,n f ′

}
, j ∈ {

1,2, ...,npi

}
(7.1)

where m(pi, j) is a measure of the ease of modification of parameter pi, j, s(pi, j) is a measure how

sensitive performance i is to parameter pi, j. Equation 8.3 seeks the values of i and j that maximize

m and s. The result of this formulation is used to populate P′ which may be a single parameter, or

a set of parameters.

Step 3 Generate barrier concepts that protect the parameters in P′. This results in a three-

dimensional matrix of barrier concepts where the barriers generated for parameter j of performance

i are represented as Bi, j = [bi, j,1,bi, j,2, ...,bi, j,nbi, j
] where nbi, j is the number of barrier concepts

generated for the jth parameter of the ith performance. The reader is referred to Curtis et. al. [147]

for additional insights on the development of barrier concepts.

Step 4 Analyze and select barrier concepts that maximize system performance, Γ, and

barrier effectiveness, β . This can be represented mathematically as

max
i, j,k

{Γ(Bi, j,k),β (Bi, j,k)} i ∈ {
1,2, ...,n f ′

}
, j ∈ {

1,2, ...,npi

}
,k ∈ {

1,2, ...,nbi, j

}
(7.2)
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where Γ(Bi, j,k) is the performance of the system when barrier concept Bi, j,k is implemented, and

β (Bi, j,k) is the reverse engineering barrier effectiveness when barrier concept Bi, j,k is implemented.

The result of this formulation is used to populate B′ which is the set of barrier concepts that may be

favorably implemented. B′ is a subset of B and is defined as B′
i, j = [b′i, j,1,b

′
i, j,2, ...,b

′
i, j,nb′i, j

] where

nb′i, j
is the number of barrier concepts that may be favorably implemented to protect parameter j of

performance i. The reader is referred to Harston and Mattson [14] for a discussion and calculation

of barrier effectiveness, β .

Step 5 Implement selected barrier(s).

Note that when any index is used, the first index identifies the performance at risk of being

reverse engineered, the second index identifies the parameter that affects that performance, and the

third index identifies the barrier concept for the respective parameter and performance. Once a set

has been reduced – as denoted by [ ]′ – the indices reference the reduced set. Importantly, this

methodology does not constrain designers to select and implement a single barrier, or to consider

performances independently. If desired, sets of performances, parameters, and barriers may be

analyzed.

7.4 Practical Implementation: Solar-Powered UAV

In this section, the proposed process presented in this chapter is used to develop reverse

engineering barriers to protect a solar-powered unmanned aerial vehicle (UAV). The solar-powered

UAV is selected because it is a complicated dynamic system for which the critical element(s) and

the barrier(s) to implement are not apparent. This is partially due to the dynamic system model and

the cyclic nature of component interdependencies as seen in the system model diagram of Fig. 7.2

(e.g., the battery is constantly being drained by the motor while simultaneously being charged by

the solar panel). Another reason for using the UAV to demonstrate the process is that this is one

application where cutting-edge, proprietary technologies are used to minimize weight, maximize

thrust, maximize battery life, etc. Not only can barriers to reverse engineering help maximize a

return on investment for the highly competitive UAV market, but barriers to reverse engineering

can also impede competitors (including military opponents) from obtaining crucial technology in

the event of the UAV being lost or captured. The presented process to develop barriers to reverse

engineering is now presented.
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Figure 7.2: Solar-powered UAV system model.

Table 7.1: Identification of the system performances, F , and the system performances at risk of

being reverse engineered, F ′. ROI represents return on investment.

System Performances (F) At-Risk Performances (F ′)
f1 Weight f ′1 Thrust

f2 Thrust f ′2 ROI

f3 Battery life f ′3 Thrust & ROI

f4 ROI

f5 Thrust & ROI

f6 Weight & Thrust

7.4.1 Step 1

Identify the performances that are at risk of being reverse engineered. The complexity of

this system is such that it is not valuable to report the complete F . However, a portion of F , as well

as the entirety of F ′, is presented in Table 7.1. For this example, the selection of F ′ is based upon

the designer’s intuition as to what performances most need protection. The barrier development

process presented herein assists the designer in determining which performance(s) of F ′ are most

benefited by barrier implementation. Note that F is reduced in size to lower the computation

required and if desired, F ′ can be equivalent to F .

7.4.2 Step 2

Identify the parameters that influence the at-risk performances. A list of these parameters

are shown in Table 7.2 for the UAV. With P defined, the tradeoffs between how readily a parameter
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Table 7.2: Parameters that influence the at-risk performances, P. ROI denotes return on

investment.

Thrust ( f ′1 ) ROI ( f ′2) Thrust & ROI ( f ′3)

p1,1 Motor Current p2,1 Motor Current p3,1 Motor Current

p1,2 Motor Frequency p2,2 Motor Frequency p3,2 Motor Frequency

p1,3 Battery Voltage p2,3 Battery Voltage p3,3 Battery Voltage

p1,4 Solar Panel Current p2,4 Solar Panel Current p3,4 Solar Panel Current

p1,5 Prop Thrust p2,5 Prop Thrust p3,5 Prop Thrust

p1,6 Motor Freq. & Prop Thrust p3,6 Motor Freq. & Prop Thrust

p1,7 Motor Current & Prop Thrust

p1,8 Motor Freq. & Battery Voltage

Table 7.3: The ability to modify component parameter pi j. When i = 1 the at-risk performance is

thrust, when i = 2 the at-risk performance is ROI, and when i = 3 the at-risk performance

is thrust and ROI.

f ′1 Thrust f ′2 ROI f ′3 Thrust & ROI

pi,1 3 2 1

pi,2 3 5 4

pi,3 1 3 3

pi,4 5 3 2

pi,5 5 4 5

pi,6 4 4

pi,7 4

pi,8 2

can be modified, m, and the impact, s, the parameter has on the overall system performance are

explored. This is done by characterizing m and s in Tables 7.3 and 7.4, respectively. For this

example, the values of m are determined by rating each parameter on a scale from 1 (the parameter

cannot be modified) to 5 (the parameter can readily be modified). If additional resolution is desired,

a finer scale or alternate metrics may be used.

For this example, the impact on UAV performance is determined by varying each parameter

by 10% of the nominal value and measuring the effect on the system performance. The models

used for analyzing the thrust and return on investment are based upon the work of Larson and

Mattson [148] and Knight et. al. [149], respectively. The reader is referred to their work for the

details of these models.
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Table 7.4: The impact of parameter pi j on performance f ′i . When i = 1 the at-risk performance is

thrust, when i = 2 the at-risk performance is ROI, and when i = 3 the at-risk performance

is thrust and ROI.

f ′1 Thrust f ′2 ROI f ′3 Thrust & ROI

pi,1 0.01 0.15 0.10

pi,2 0.17 0.15 0.27

pi,3 0.15 0.01 0.07

pi,4 0.01 0.25 0.20

pi,5 0.10 0.10 0.24

pi,6 0.29 0.32

pi,7 0.10

pi,8 0.35

With an understanding of the ease for which a parameter may be modified, and the impact

of the parameter on the system performance, Eqn. 8.3 can be used to populate P′. If an aggregate

objective function [150] is used, a single parameter will be selected. Another approach, the ap-

proach used for this example, is to generate the data and use multiobjective decision theories to

select one or more parameters to pursue [151, 152]. The tradeoffs between the two objectives –

ability to modify the parameter, and impact on system performance – are shown in Fig. 7.3. From

this data, the three parameters that are on the Pareto front (the non-dominated designs) are selected

and considered for barrier implementation. These are (i) motor frequency and battery voltage with

respect to thrust (i.e, p′1,1isde f inedasp1,8), (ii) prop thrust with respect to thrust and return on in-

vestment (i.e, p′3,1isde f inedasp3,5), and (iii) motor frequency and prop thrust with respect to thrust

and return on investment (i.e, p′3,2isde f inedasp3,6). The undefined elements of p′ are null.

7.4.3 Step 3

Generate barrier concepts that protect the parameters in P′. Designers may generate multi-

ple concepts, one concept, or no concepts for each parameter. For this example, barrier concepts

are only generated for a few parameters and may be represented in a three-dimensional barrier

matrix B. Each non-zero element of B represents a barrier concept. The barrier concepts – and the

only non-zero elements of B – are:
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Figure 7.3: Comparing the ability to modify each parameter vs. the parameter’s impact on the

system performance to determine which parameters will most benefit from receiving reverse engi-

neering barriers.

b1,1,1: Design the motor and battery to look identical to off-the-shelf parts – but with a

superior performance – and encode labels to minimize information divulged.

b1,1,2: Design the motor and battery so that neither part can be analyzed or dissected without

causing destruction.

b1,1,3: Combine barrier concept b1,1,1 and b1,1,2.

b3,1,1: Introduce voids into the aluminum propeller to (i) reduce the weight of the pro-

peller, and (ii) increase propeller’s flutter speed while meeting efficiency constraints. Flutter is a

failure mode that is characterized by excessive vibrations in a propeller or wing which decreases

performance and can cause catastrophic failure. Voids not only reduce weight and increase the

performance of the propeller but also are difficult to detect and imitate by strategically selecting

the manufacturing process (such as friction stir welding or ultrasonic consolidation) [4].

b3,2,1: Combine barrier concept b1,1,1 and b3,1,1.

A summary of these barrier concepts, including the parameters and performances they

influence, is shown in Table 7.5.
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Table 7.5: Summary of barrier concepts.

F ′ Performance P′ Parameter B Barrier Concept

f ′1 Thrust p′1,1 Motor Freq. & Battery Voltage b1,1,1 Appears to be off-the-shelf

f ′1 Thrust p′1,1 Motor Freq. & Battery Voltage b1,1,2 Destructive dissection

f ′1 Thrust p′1,1 Motor Freq. & Battery Voltage b1,1,3 Couple b1,1,1 and b1,1,2

f ′3 Thrust & ROI p′3,1 Prop Thrust b3,1,1 Introduce voids

f ′3 Thrust & ROI p′3,1 Motor Freq. & Prop Thrust b3,2,1 Couple b1,1,1 and b3,1,1

7.4.4 Step 4

Analyze and select barrier concepts that maximize system performance, Γ, and barrier

effectiveness, β . To understand how each barrier concept influences the system performance and

barrier effectiveness, existing models are used – or developed if none exist. For this example, a

total of four models are required to analyze and select barrier concepts – one model is required to

determine the barrier effectiveness of the barrier concepts, and three additional models are required

to determine the effect of the barrier concepts on system performance. Each of these models are

now discussed.

Barrier Effectiveness Model for All Barrier Concepts

In previous work by the authors, a systematic approach for analyzing the effectiveness of

barriers to reverse engineering is developed and presented [14]. This approach, based upon Ohm’s

Law, enables designers to estimate the difficulty of extracting critical information about the product

from the product itself. Readers are referred to Harston and Mattson [14] for model details. Some

barrier concepts do not impact system performance, while others may have a positive or negative

impact. As such, it is important to understand the impact various barrier concepts have on the

difficulty of reverse engineering the product. For this example, the barrier concepts are compared

against the benchmark design – which is the UAV design that does not incorporate any barrier

concepts – as shown in Table 7.6.
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Table 7.6: Barrier effectiveness of barrier concepts as compared to – and normalized to – the

benchmark design for the UAV. A larger value denotes a more effective barrier.

Barrier Normalized

Concept Barrier

Effectiveness (β )

Benchmark 1.00

b1,1,1 1.16

b1,1,2 1.16

b1,1,3 1.33

b3,1,1 2.17

b3,2,1 2.67

Table 7.7: Barrier concept impact – normalized to the benchmark design – on UAV system

performance. A larger value denotes a superior performance.

Barrier Normalized

Concept Performance (γ)

Benchmark 1.00

b1,1,1 1.18

b1,1,2 1.00

b1,1,3 1.18

b3,1,1 1.10

b3,2,1 1.29

Performance Model for b1,1,1, b1,1,2, and b1,1,3

To analyze the barrier impact on system performance for concepts b1,1,1, b1,1,2, and b1,1,3

the models developed by Larson et. al. [153], and Larson and Mattson [148] are used. These

models have been shown to approximate measured data with a max error of 3.76% when properly

calibrated with the physical system. The impact of the barrier concepts on UAV system perfor-

mance is shown in Table 7.7.

Performance Model for b3,1,1

In the barrier development process, barrier concepts are analyzed and selected. However,

the effectiveness of a barrier concept is dependent upon how well it is designed and optimized. This

may require additional numerical optimizations or multiple design iterations of the barrier concept
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before it is compared against other barrier concepts. In this section, not only is the performance

model presented for analyzing barrier concept b3,1,1 (introducing voids into the propeller) but the

formulation used to optimize the barrier concept is also presented.

Recall that barrier concept b3,1,1 is being developed to improve and protect the UAV thrust

and return on investment. As such, the introduction of voids into the propeller is correlated with

UAV thrust and return on investment. This is accomplished by the use of existing analytical models

for propeller flutter [154], propeller efficiency [155], and return on investment [149]. Note that by

maximizing the propeller flutter speed and propeller efficiency, the overall UAV thrust is improved.

As such, the design of the propeller seeks to maximize flutter speed and propeller efficiency.

Once the flutter speed has been reached, the propeller deforms reducing thrust output. In

extreme cases, the flutter-induced vibrations may cause propellers to catastrophically fail. In gen-

eral, a higher flutter speed is better as this increases the operational speed range and increases the

margin of safety [156]. However, accurately modeling flutter requires understanding and interpret-

ing highly non-linear interactions of aerodynamic, elastic, and inertial forces. In general, flutter

is very difficult to accurately simulate for complex geometries [157–159]. Frequently, designers

take a coupled modeling/experimental approach to characterize and design for flutter. However,

there are some simplified models that enable approximation of the speed at which a wing or pro-

peller will flutter. One approximation of the flutter speed by the National Advisory Committee for

Aeronautics [154] is given by

VF =
Kc
R

√( t
c

)3 G
(ρ (Xc −0.25))

(7.3)

where VF is the flutter speed, K is a constant dependent upon the profile, c is the mean chord

length, R is the propeller radius, t is the propeller thickness, G is the shear modulus, ρ is the air

density, and Xcg is the position of the center of gravity expressed as a fraction of the chord. It is

interesting to note that when Xcg is at the quarter chord (i.e., Xcg = 0.25) then the flutter speed

is theoretically infinite. Therefore, when voids are introduced into a propeller, it is beneficial to

distribute them in a manner that moves the center of gravity close to the quarter chord mark. The

numerical optimization formulation used to determine the location of the voids within the propeller

is

94



min
Si,φi,Nv,i,xi, j,yi, j,zi, j,ri, j

{−η −R−
√

C2
Ti

+C2
i } (7.4)

subject to

Si ∈ {1,2,3,4} ∀i = 1,2, ...,Ns (7.5)

−30 ≤ φi ≤ 30 ∀i = 1,2, ...,Ns (7.6)

0 ≤ Nh,i ≤ 10 ∀i = 1,2, ...,Ns (7.7)

xL,i ≤ xi, j ≤ xU,i ∀i = 1,2, ...,Ns and ∀ j = 1,2, ...,Nv,i (7.8)

yL,i ≤ yi, j ≤ yU,i ∀i = 1,2, ...,Ns and ∀ j = 1,2, ...,Nv,i (7.9)

zL,i ≤ zi, j ≤ zU,i ∀i = 1,2, ...,Ns and ∀ j = 1,2, ...,Nv,i (7.10)

and

0 ≤ ri, j ≤ 1 ∀i = 1,2, ...,Ns and ∀ j = 1,2, ...,Nv,i (7.11)

where i is the cross section index, j is the hole index, η is the efficiency of the propeller [155]

(defined as the ratio of available power to the engine power), R is the return on investment, CT,i

is the target center of gravity (the quarter chord), Ci is the calculated center of gravity, Si is the

normalized cross section geometry which is then scaled by the optimization, φi is the cross section

pitch, Nv,i is the number of voids in cross section i, xi, j, yi, j, and zi, j are the cartesian coordinates

of the voids, ri, j is the normalized radius of the voids, Ns is the number of crossections, and xL,i,
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Table 7.8: The values of η and C of an optimized propeller with voids compared against the same

propeller without voids. The efficiency of both designs is the same due to the external geometry

being the same for both designs. A smaller value of C denotes a higher flutter speed.

Propeller without Voids Propeller with Voids

η 83.23% 83.23%

C 14,337 1,015

yL,i, zL,i and xL,i, yL,i, zL,i are the lower and upper bounds, respectively, of the void positions within

each cross section. For this example, flutter speed is determined by propeller center of mass which

is represented as
√

C2
Ti

+C2
i for the ith cross section. When

√
C2

Ti
+C2

i = 0 for all crossections the

flutter speed is theoretically infinite.

The numerical optimization uses a genetic algorithm to search for the global optimum. Of

the two blades comprising the propeller, only one blade was analyzed due to symmetry. The blade

was divided into 100 crossections where each cross section could have a maximum of 10 voids.

The number of voids was limited to reduce the computational expense. On a computer with a

processer speed of 3.4GHz and 3.25 GB of RAM, the optimization took approximately 20 hours to

find an optimal solution with a population size of 30 individuals. To ensure that an optimal solution

has been found, the algorithm was executed multiple times and the solutions were compared. The

comparison of the design without voids to the design with voids may be seen in Table 7.8 and a

representation of a section of the propeller with voids is shown in Fig. 7.4. Note that the efficiency

of both designs is the same. This is due to the fact that the both designs have the same external

geometry – which has been improved over the initial propeller geometry. However, once the flutter

speed has been exceeded, efficiency is reduced. Hence the importance of increasing the flutter

speed. To characterize the flutter of the entire propeller, C is defined as the average distance

between CTi and Ci over all crossections: C =
(

Ns
∑

i=1

√
C2

Ti
+C2

i

)/
Ns. A smaller value of C denotes

a higher flutter speed according to Eqn. 7.3 (i.e., when C = 0 then Xcg = 0.25).

The numerical model was validated for a propeller with voids and a propeller without

voids by (i) analyzing and comparing the center of gravity with the numerical model, and (ii)

physically measuring the center of gravity on a rapid-prototyped section of each propeller. The

percent error between the physical measurements and the analytical model is less than 1% for
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Figure 7.4: Representation of a section of the propeller with internal voids.

the wing sections tested. In addition, both the numerical model and physical measurements show

that the propeller with voids has an improved mass distribution. According to the model (refer

to Eqn. 7.3), the propeller with the voids will have a superior performance by being able to have

a higher operational speed before flutter begins to occur. The impact of barrier concept b3,1,1 on

system performance is shown in Table 7.7 where the system performance has been normalized

with respect to the benchmark performance.

Performance Model for b3,2,1

This barrier concept is to design the motor to look identical to an off-the-shelf part, encode

labels, and introduce voids into the propeller. As this is simply a combination of barrier concept

b3,1,1 and barrier concept b3,1,1, the models required to analyze these barrier concepts are presented

above. The impact of barrier concept b3,2,1 on system performance is shown in Table 7.7 where

the system performance has been normalized with respect to the benchmark performance.

Selection of Barrier Concepts

With the barrier effectiveness model and the barrier performance models defined, Eqn. 8.7

is used to select which barrier concepts to pursue (i.e., populate B′). Similar to Step 2, using an

aggregate objective function results in the selection of a single barrier concept, where the use of
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ness for each of the five barrier concepts and the benchmark design. Values have been normalized
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multiobjective decision theories enables the designer to select one or more barrier concepts. For

this example, when barrier performance is plotted against barrier effectiveness (shown in Fig. 7.5),

a single barrier concept dominates all other concepts. It is this barrier concept – barrier concept

b3,2,1 – that is selected to be implemented into the solar-powered UAV with the goal of maximizing

reverse engineering difficulty, maximizing return on investment, and maximizing UAV thrust. If

desired, multiple barrier concepts may be implemented simultaneously.

7.4.5 Step 5

Implement selected barrier. The selected barrier concept is to design the motor to look

identical to an off-the-shelf part, encode labels, and introduce voids into the propeller. Recall

that the purpose of this barrier development process presented in the current chapter is to assist

the designers in identifying the critical elements of a system and to develop reverse engineering

barriers to protect them. Where the first four steps of the barrier development process focused on

selection of the reverse engineering barrier, the fifth step focuses on refining and implementing the

barrier concept into the product. At this point, the barrier development process merges with the
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traditional product development process (refer to Fig. 7.1) where additional barrier-specific design

constraints are imposed to ensure the proper implementation of the selected barrier(s).

7.5 Chapter Summary

In this chapter, a process to assist designers in developing products that are difficult to

reverse engineer and meet or exceed performance requirements is presented. The barrier devel-

opment process considers (i) which product performances need protection, (ii) what parameters

affect product performances, and (iii) what barriers best protect the selected parameters and prod-

uct performances. To illustrate the barrier development process, a solar-powered unmanned aerial

vehicle is analyzed and made difficult to reverse engineer. With multiple performances, parame-

ters, and barriers explored for the UAV, the method assisted the designer in determining that (i)

the most desirable performances to protect are thrust and return on investment, (ii) the parameters

that affect the selected performances are motor frequency and propeller thrust, and (iii) a desirable

barrier to implement is to design the motor to look identical to an off-the-shelf part, encode labels

to minimize divulged information, and introduce voids into the propeller that decrease weight and

increase flutter speed – a desirable attribute in propellers.
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CHAPTER 8. CAPITALIZING ON HETEROGENEITY AND ANISOTROPY TO DE-
SIGN DESIRABLE HARDWARE THAT IS DIFFICULT TO REVERSE ENGINEER

8.1 Chapter Overview

This chapter presents a method for treating material microstructure (crystallographic grain

size, orientation, and distribution) as design variables that can be manipulated – for common or

exotic materials – to identify unusual material properties and to design devices that are difficult to

reverse engineer. A practical approach, carefully tied to proven manufacturing strategies, is used to

tailor material microstructures by strategically orienting and laminating thin anisotropic metallic

sheets. The approach, coupled with numerical optimization, manipulates material microstructures

to obtain desired material properties at designer-specified locations (heterogeneously) or across the

entire part (homogeneously). A comparative study is provided that examines various microstruc-

tures for a simple fixed geometry. These cases show how the proposed approach can provide hard-

ware with enhanced mechanical performance in a way that is disguised within the microscopic

features of the material microstructure.

8.2 Introduction

While others have previously coupled material properties of metals with geometry and

performance optimization [82–84, 160, 161], this chapter presents a new method of tailoring the

properties of metals by using thin metal laminations strategically oriented [74] and ultrasonically

welded together. [162] We show how numerical optimization can be used to search through a ma-

terials design space [151,152,163], and that the proposed integration of optimization, manufactur-

ing, and design methods can result in material microstructures that are (i) consistently producible

from a manufacturing perspective, and (ii) difficult to reverse engineer. The proposed method can,

therefore, be used to tailor new and practical materials for the design engineer’s specific need.
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For many product designers, material properties, such as yield strength and Young’s modu-

lus, are chosen from a set of discrete values, typically published in the form of a material properties

table [164]. Under this typical approach, if one requires a part to withstand more stress before fail-

ure, the geometry is typically changed or a new material class or alloy is selected. Consider the

benefit that would come to the design engineer if he or she could hold the geometry constant and,

using the original material, improve the material’s resistance to plastic failure or other material

properties. He or she could increase product performance without resorting to more expensive

materials or they could hide performance increases from competitors, since discovering the source

of the increased performance would not be trivial. This chapter proposes a methodology to do this.

Recent advancements in material science enable the development of the proposed ap-

proach [73, 74]. Specifically, these advancements pertain to material microstructure, which is the

composition of a material including arrangement, size, orientation and distribution density of crys-

tallographic grains [73]. These advancements have led to predictive relationships for characteriz-

ing material properties as a function of the material microstructure. When coupled with numerical

optimization and lamination technology (two other key enablers), material properties can be mod-

ified as simply as geometry, creating one more degree of freedom in the design. Additionally, the

method outlined in this chapter allows one to make calculated changes to the microstructure to

obtain desired results in material properties at designer specified locations (heterogeneously) or

across the entire part (homogeneously).

The purpose of this chapter is to present a new design framework, in conjunction with nu-

merical optimization, that couples microstructure manipulation and modeling with existing man-

ufacturing processes to create products with desired performance. The microstructure sensitive

design approach, as presented in this chapter, enables a product to perform (e.g., deflection, yield

characteristics, shear characteristics) in a way that cannot be obtained without manipulating the

material. Furthermore, the source of performance improvement is difficult to determine and recre-

ate from a reverse engineering perspective, thus impeding competitors from successful reverse

engineering.

The presented design framework is based upon the published work of two fundamental

elements: microstructure characterization [73, 74, 165] and the additive manufacturing process

of ultrasonic consolidation [162, 166, 167]. While microstructure characterization and ultrasonic
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consolidation have been previously described in the literature, in this chapter they are coupled

under an optimization framework that enables the creation of products with enhanced mechanical

performance.

The framework proposed in this chapter is presented by first reviewing enabling technolo-

gies and fundamental theories supporting the work. This is presented in Section 8.3. Section 8.4

then describes the design framework used to obtain desired material properties with common ma-

terials. In Section 8.5, a comparative study is provided that examines various microstructure im-

plementations for a simple fixed geometry. Concluding remarks are provided in Section 8.6.

8.3 Description of Enabling Technologies and Fundamental Theories

In this section we present the enabling technology of ultrasonic consolidation [162] which

facilitates the joining of thin metal sheets with minimal disturbances to the microstructure in the

weld areas. We also present four fundamental theories required for predicting material properties

for a part, based on measurements of a material’s microstructure. They are; reference frames,

fundamental zone, rotations of anisotropic layers, and the lamination of those thin layers.

8.3.1 Ultrasonic Consolidation: Additive Manufacturing Process of Metals

One manufacturing technology that allows improved material properties to be obtained

from common metals is the additive manufacturing process of ultrasonic consolidation (UC). UC

utilizes principles of ultrasonic welding [162] to combine metal sheets, typically 150 μm thick,

in a layer-by-layer process. This process is often combined with a 3-axis CNC mill to produce

complicated geometry during the additive process. The UC process, as represented in Figure 8.1,

begins with a heated base of the same material of the part. A rolling/rotating sonotrode applies a

normal force while oscillating which results in dynamic interfacial stresses at the interface between

the two mating surfaces. [162, 166, 167] The stress incurred by the high frequency oscillations,

around 20 kHz, produce elastic-plastic deformation and establishes a metallurgical bond as can be

seen in the polished crossection shown on the right-side of Figure 8.1. This process is repeated

layer-by-layer until the part is completed with the desired number of layers.
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Figure 8.1: Ultrasonic consolidation process with scanning electron microscope image of grains at

layer interface.

It is impressive to note that UC materials can yield a 85% to 100% linear weld density

along the bonded interface. [168] A linear weld density of 100% implies that the weld has an equiv-

alent void space, dislocations, and is as durable (both for fatigue and corrosion resistance) as the

surrounding grain boundaries. Obtaining a linear weld density of 100% is feasible, however it re-

quires proper adjustment of the UC manufacturing parameters (e.g., magnitude of the oscillations,

frequency of sonotrode, normal force applied) which are typically determined through empirical

studies on the material of interest [169, 170]. When the linear weld density is not 100%, prod-

ucts may need to be designed with a larger safety factor to take into account the weakened welds

which may result in decreased fatigue life and yield strength. However, Ram et. al. [169,170] have

conducted numerous experiments with ultrasonically consolidated materials to determine optimal

parameters to obtain a linear weld density of approximately 100%.

One important characteristic of UC is the low temperature at which the layers are welded

together, which range from ambient to 350◦F . This results in minimal local disturbances in the

weld area, thus making the layer-by-layer construction virtually undetectable, which supports the

notion of hiding the source of performance increases from competitors.

Possibly the most impressive feature of UC is the number of microstructures that may

be obtained thereby. It is known that extreme microstructures may be induced in metal foils by

rolling and recrystallization. [171] These foils may then be combined by the UC process to create a

material made with laminations. When layers with known microstructures are strategically placed,
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one can effectively create a laminated material with desired properties and even consistently obtain

material properties that are otherwise not used in practice.

As the additive process of ultrasonic consolidation is relatively expensive compared to

traditional manufacturing processes (e.g., rolling, heat treating, machining), it is often best strate-

gically implemented into a few critical components of a system. The quantity of components that

are created with the UC process will adversely affect the product manufacturing cost, however, (i)

UC enables designers to obtain microstructures (and therefore desired material properties) that are

difficult, if not impossible, to obtain by other means, and (ii) when critical components of a system

are made difficult to reverse engineer, by using UC to obtain unusual microstructures, it effectively

impedes the reverse engineering of the entire system. Therefore the costly nature of UC can be

justified in some cases by the unique benefits it brings.

8.3.2 Reference Frames and Fundamental Zone Defined

As the UC method forms a basis for microstructure manipulation by joining laminae, it

is useful to define three reference frames commonly used when working with laminae: Crystal,

Laminate, and Part reference frames. The main purpose of these reference frames is to have a

consistent point of reference when aligning layers and defining directionally-dependent material

properties. While it is important that reference frames do not vary over the design process, it does

not matter how reference frames are oriented. There are however, common approaches for orien-

tation; typically the crystal’s reference frame will be aligned with the crystallographic directions,

Xc j, Yc j and Zc j for the j-th crystal in a sample, [172] where the subscript c represents the crystal

frame.

A convenient reference direction for a heavily rolled lamina is the rolling direction. One

axis of the sample reference frame is aligned with the rolling direction and is termed “Rolling

Direction” or DR
k for the k-th layer. The second axis, or “Normal Direction” (DN

k ), is placed

perpendicular to the both the rolling direction and a surface of the laminate. While it does not

matter which surface is selected for the thin lamina, typically surfaces with a large surface area

are used as a reference. With two axis defined, the third axis, the “Transverse Direction” (DT
k ), is

defined with the use of the right-hand rule. [73]
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Figure 8.2: Reference frames defined for the part, lamina, and crystal.

The final reference frame to be described, the part reference frame, is defined according to

the geometry and is typically aligned with a dominant geometric feature as seen in Figure 8.2 as

Xp, Yp and Zp. The part reference frame allows one to properly align the rotated laminae in relation

to the part to achieve the desired properties in the directions of interest. [172]

The orientation of one reference frame to another is represented by the standard Euler

angles, φ1, Φ, and φ2. The Euler angles represent all possible orientations but due to symmetry, the

limits on the angles may be set to 0 ≤ φ1 < 2π , 0 ≤ Φ ≤ π , and 0 ≤ φ2 < 2π respectively. [172]

For parts constructed with layers, it is convenient to only rotate the layers about their normal axes,

which is what we do in this chapter.

Another important concept in being able to extract material properties from crystal orien-

tation data is the Fundamental Zone (FZ). The FZ is the set of all physically-distinct orientations

of the local crystal that can occur. [73] Due to the computational power required to analyze the

infinite number of possible crystal orientations, the FZ is binned into groups of orientations with

each bin approximated by a single orientation. The Binned Fundamental Zone (BFZ) can then be

used as a simplified orientation description for all crystals in the sample. The number of bins is

determined by the conflicting objectives of desired accuracy and computational time available.

8.3.3 Using Rotation and Lamination Theory to Predict Material Properties

In this section we present the microstructure-to-material-property theory, which is the pro-

cess we use to predict material properties, given information about the material microstructure. In

the rotation and lamination theory presented below in Section 8.3.5, it is through manipulation of
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Figure 8.3: Microstructure-to-Material-Properties flowchart.

the material microstructure of each layer that one is able to obtain an overall change in material

properties and product performance. Therefore, it is important to understand the microstructure-

to-material-properties theory which is the crucial link in considering material properties as design

variables.

The flowchart in Figure 8.3 presents the process in which material stiffness, Cwxyz, is esti-

mated from microstructure properties of a material. As a note, other specific material properties

such as yield strength, Young’s modulus, Poisson’s ratio, shear modulus, and critical shear stress

can also be determined from the material microstructure by a similar process if desired. The

flowchart in Figure 8.3 is now described in detail.

The process to estimate material stiffness begins by initializing the variables shown in the

upper left box of Figure 8.3 and by obtaining the material specific constants from the literature such

as C11, C12, and C44. [173] Next, the FZ is binned allowing multiple orientations to be approximated

by a single orientation thus decreasing the number of unique orientations requiring analysis. The

resolution of the binning is determined by dividing the FZ into a number of rows, columns, and

layers represented by nr, nc, and nh, respectively. Fewer bins equates to a faster computational

time with a decrease in accuracy while increasing the number of bins improves accuracy at the

expense of time. Continuing downward from the box dipicting the binning of the fundamental
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zone, the Fourier coefficient, Fm, is calculated which is literally the volume fraction of crystals

in the m-th bin of the BFZ. Simply stated, Fm is the percentage of crystals that are aligned in a

given direction and is used for calculating the material stiffness. Before Fm can be calculated,

crystal orientation data, g, obtained by Orientation Image Microscopy [73] (OIM) is converted

to an orientation matrix, gwx, which forms a link between the raw OIM data and the BFZ. One

of the key factors in obtaining a continuous range of material properties is the understanding of

the initial microstructure as determined by OIM. Without the details of the starting microstructure

(characterized by g in the upper left box of Figure 8.3) for the specific material to be used, the

desired material properties cannot be obtained with the rotation/lamination theory.

A simple way to determine the percentage of crystals occupying a bin is to use the Ori-

entation Distribution Function (ODF). The ODF is a function that receives information about the

BFZ and orientation matrix, gwx, and enables a description of all crystal orientations in a sample.

Evaluating the ODF with a single direction results in a scalar representing the percentage of crys-

tals aligned in that direction. When the ODF is calculated for multiple directions, the results are

a scaler representing the percentage of crystals aligned in the multiple directions defined – such is

the case of a bin in the BFZ.

As is true with all material properties, stiffness of the sample is a function of the stiffness

of each crystal. In fact, the sample stiffness, Cwxyz, is estimated by the average stiffness of all

crystals. Parameters required to determine crystal stiffness are the direction of interest as defined

by the designers (w, x, y, z) and three material properties which come from literature; C11, C12, and

C44. Note that the additional parameters related to binning the fundamental zone are not required

unless reducing the computation cost is required. With Fm and Cwxyz known, it is a simple matter

to compute Cwxyz, since Cwxyz is the average stiffness weighted by Fm. For the derivations of these

estimations and their limitations we refer the reader to [174–176].

8.3.4 A Criteria for Plastic Failure

The failure criteria used in this chapter to determine if the material plastically deforms

under the applied loading conditions is presented in this section. Two approaches can be taken

to characterize plastic failure; the first involves developing a general estimate of the material’s

yield strength, which can be found directly from microstructure data and calibrated with a single
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tensile test. Another approach uses the classic power law viscoplasticity failure model, which

requires both material microstructure information and loading conditions. In this chapter we use

the viscoplasticity failure model, which can be expressed as

Di j = Di j = γ̇0

s

∑
s=1

∣∣∣∣∣(σ
′
kl)α

(s)
kl

τ∗(s)

∣∣∣∣∣
n

sign
(
(σ ′

kl)α
(s)
kl

)
α(s)

i j (8.1)

where γ̇0 is the reference shear rate, s is the total number of slip systems in the material, σ ′
kl is the

local deviatoric stress for a given direction, [177] α(s)
kl and α(s)

i j are simple combinations of the slip

directions and the slip plane normals, [177] and τ∗(s) is the estimated shear stress required before

dislocations move on the slip plane. The only value on the right side of the equation that cannot be

obtained from literature is the local deviatoric stress which can be determined using finite element

analysis with known loading conditions. The local strain rate, Di j, can then be calculated. One

assumption often made when using the viscoplasticity failure model is that the average of the local

strain rates is equivalent to the macroscopic strain rate, Di j, of the material at that point. Therefore

plastic deformation of a material is directly related to the material strain rate. It follows that when

D∗ ≤ Di j (8.2)

where D∗ is the critical strain rate, we can know that the material has plastically deformed at that

point. In the current chapter, we have selected the critical strain rate to be 0.001 s−1. The finite

element analysis returns the stress at each node which we use to determine the total number of

nodes that have yielded by the relationships above. As there will always be some quantity of nodes

that fail under any loading condition, we specify that a material fails when when 15% or more of

the nodes have plastically deformed. For the full development and application of Equation 8.1,

the reader is referred to Adams et. al., [165] Fromm et. al., [177] Taylor, [178] and Asaro and

Needleman. [179]

8.3.5 Part Construction by the Rotation and Lamination Theory

We now consider approaches by which microstructures can be intentionally created to have

certain characteristics. We have explored a variety of manufacturing processes that allow for mi-
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Figure 8.4: Property closure of yield strength vs. compliance for Ni 201. The outer loop is the

property closure, the triangle represents an isotropic material with the same material properties in

all directions and the inner loop represents all material properties that can be obtained by applying

the rotation and lamination theory to a material that starts with the microstructure shown as a star.

The middle loop represents material properties that can be obtained when the layer rotations are

not constrained to a single plane.

crostructure manipulation such as friction-stir welding, [180] heat treatment, and introducing voids

into the material. While these processes may be utilized in many different ways, strategically ori-

enting and laminating thin sheets is a more flexible and predictable way to consistently obtain

designer selected values of material microstructures. The theory of rotations and laminations al-

lows one to take any initial microstructure and create a new microstructure by stacking and welding

thin metal layers – with directionally dependent material properties – at specific rotations. This the-

ory, coupled with UC technology, allows the designer to hold the alloy fixed, yet modify material

properties by choosing layer configuration and orientation.

Recall that the material property closure is the set of all material properties that are pos-

sible if one could create all possible microstructures. Since not all microstructures are practically

obtainable, the achievable space in the property closure is limited. Implementation of rotation and

lamination theory, however, greatly expands the achievable space in the property closure as shown

in Figure 8.4 for Ni 201 – a first-order approximation of the property closure. The axes shown

in Figure 8.4 represent two different material properties; material compliance (elasticity) on the

x-axis and yield strength on the y-axis. Note the subscripts, which represent desired directions for

which the properties apply. The outermost loop, and the area it contains, represents every possi-

ble combination of these two properties. A single point represents a specific value for both the
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compliance and the yield strength which may be mapped to one or more microstructures that will

have those properties. The triangle in Figure 8.4 represents isotropic material properties for Ni

201 while the star represents the starting microstructure of the material – as defined by OIM – in

the direction of interest. As a note, the starting microstructure is the material microstructure for

a a thin metal sheet before reorientation or inclusion in a laminae. The inner loop that intersects

the star, and the area it contains for multilayered structures, represents all properties that can be

obtained by implementing the rotation and lamination theory to that starting microstructure when

all rotations about the normal axis of the respective layer are considered. The remaining loop and

the area it contains represents material properties that may be obtained by performing the rotation

and lamination process twice (rank 2 lamination) to obtain even more complicated microstruc-

tures. It is important to note that any microstructure obtained by conventional methods, such as

heavy rolling, can be enhanced to obtain new microstructures and thus enable new combinations

of material properties that are typically thought to be unobtainable.

8.4 Design and Optimization Framework for Enhanced Performance Through Microstruc-
ture Manipulation

In this section we present a generic framework that enables us to obtain an enhanced,

and desired, mechanical performance created by strategically manipulating the microstructure of

common metal alloys using the rotation and lamination theory. Specifically, when given a target

performance, the direction(s) of interest, and the desired number of layers, this optimization routine

will find an optimal orientation of each layer in an effort to obtain the desired performance in

the direction(s) of interest. The generic optimization framework may be seen in Figure 8.5(a)

and a framework specific to structural design, and used in the case study section of this chapter,

may be seen in Figure 8.5(b). There are six main parts to the optimization framework. Part 0

– initialization of system parameters. Part I – gathering microstructure data for selected alloy.

Part II – definition of feasible range of material properties obtainable by rotations and laminations.

Part III – material property exploration and selection using optimization techniques. Part IV –

performance measurement. Part V – constraint analysis. Each part of the process is now described

in detail.
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Figure 8.5: (a) Flowchart of a generic optimization framework to obtain improved performance

with common materials and (b) an optimization framework specific to structural stiffness.
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8.4.1 Part 0 – Initialize Input Parameters

Let us first consider Part 0. This part of the framework requires the designer to identify the

optimization parameters and variables, and formulate the objective function, J. The designer also

selects the material class, M, a specific alloy, M0, from the chosen class to be used as the lamina

material, the number of lamina, N, in the lamination, and at least one direction of interest, which is

represented by w, x, y, and z. Assuming a uniform layer thickness, the number of layers required

is dependent upon the thickness of the part being created.

8.4.2 Part I – Characterize Microstructure of Selected Alloy

Before we can obtain the desired material stiffness of a material, we first need to acquire

microstructure information about that material. This is done by polishing and scanning the sample

with a scanning electron microscope and analyzing the data with OIM software. [73] The data col-

lected includes grain size, grain distribution, grain orientation and other microstructure information

specific to the sample. Once microstructure data is gathered, the range of material properties may

be determined as described in Part II.

8.4.3 Part II – Determine the Full Range of Material Properties Obtainable with Rotations
and Laminations for the Selected Alloy

The range of properties obtainable by rotation and lamination depends upon the material

microstructure. A material that is isotropic will always have the same properties independent of

the material orientation. On the other hand, anisotropic materials made with a single crystal have

the most directionally dependent material properties as the properties may change dramatically

even with a small rotation. The OIM data found in Part I determines the microstructure of the

selected alloy, thus determining the degree of anisotropy that exists in the sample. The OIM data

is then used in the rotation/lamination theory to determine material properties in a given direction.

Application of the rotation/lamination theory for every orientation from 0−2π reveals the range of

material properties that may be obtained with the sample-specific microstructure. When symmetry

exists in the microstructure, the complete range of material properties may be obtained with a

reduced set of microstructure orientations. A convex hull encloses the resulting range of material
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properties and is principally used to help the designer know the feasible range of material properties

for the given microstructure. This is the process that was performed on Ni 201 to obtain the

property closure in Figure 8.4.

8.4.4 Part III – Determine Rotation/Lamination Strategy Required to Obtain Desired Per-
formance for Selected Alloy

In Part III, we use an optimization routine to determine the manufacturing strategy – specif-

ically the orientation of each layer – to create a laminated material with the desired material prop-

erties in the direction of interest. The optimization requires the number of laminations, N, the di-

rection of interest, w, x, y, z, and the objective function, which are all determined by the designer in

Part 0. The optimization selects a value of φ1 for each lamina, sends the lamina orientation through

the rotation and lamination model and receives the material properties of interest. The optimizer

then sends those material properties to the performance analyzer of Part IV, which evaluates and

returns the design objective values, μ , and/or any other needed analysis such as those pertaining to

constraints. Part V evaluates the constraints and determines the magnitude of constraint violation,

ν . The process is repeated until the optimization determines the optimal orientation of each layer.

On the final iteration, the optimization outputs the optimal value of the design objectives, μ∗, the

constraint violations, ν∗, and the optimal orientation of each layer, φ∗
1 . Note that by optimal we

mean numerically optimal as characterized by the designer-made performance models (e.g., finite

element analysis) and characterized by the optimization problem statement, which in its generic

form is as follows:

min
φ1

J = {μ1,μ2, ...μnμ} (8.3)

subject to

gq ≤ 0 ∀q = 1,2, ...,ng (8.4)

hv = 0 ∀v = 1,2, ...,nh (8.5)
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0 ≤ φ1,i ≤ π ∀i = 1,2, ...,N (8.6)

where φ1 = [φ1,1,φ1,2, ...,φ1,N ] and represents the orientation of each layer, and μi denotes the i-th

generic design objective. Note that due to symmetry the design variable is constrained from 0 to

π . In some cases, it may be necessary to expand the variable space to avoid active constraints that

point to local, as opposed to global, optima.

During the optimization process, each layer is strategically oriented to create a new mi-

crostructure in an effort to obtain the desired mechanical performance. If a target material per-

formance is not possible for any combination of material properties obtainable with the rota-

tion/lamination theory, the optimization routine will find feasible material properties that result

in the best performance possible as measured by the objective function.

8.4.5 Part IV – Performance Analysis

The performance analyzer in Part IV receives the material properties as determined in

Part II and Part III and outputs the design objective values. In the case of structural design (Fig-

ure 8.5(b)) the performance analyzer receives the material stiffness matrix, C, as an input and

determines the force required to achieve a prescribed deflection with a predetermined geometry.

It also determines the stresses that develop throughout the part as a result of the force. The finite

element analysis software, ANSYS, then returns the force, Q, and the stress, σi, to the optimizer

where i represents the i-th node and is used to determine the deviatoric stress, σ ′
kl in Equation 8.1

8.4.6 Part V – Constraint Analysis

The constraint analysis is a designer-defined function that simply determines if the current

design selected by the optimization meets the design criteria. The constraint analysis calculates

the constraint violation, ν . Returning to the structural design example in Figure 8.5(b), the con-

straint analysis will receive the stress (calculated by ANSYS) and the material stiffness and will

determine if plastic deformation has occurred by using the power law viscoplasticity failure model

as described in Section 8.38.3.4.
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Figure 8.6: Geometry and boundary conditions for the L-beam case study.

Section 8.4 has illustrated how we use the various theories described in this chapter to

explore the materials design space and search for desirable material properties that enhance me-

chanical performance. In the following section, we consider a simple mechanical element and

show how the use of the aforementioned design and optimization framework leads to desirable

mechanical performance – the source of which is hidden in the tailored material microstructure

that results from the design and optimization approach.

8.5 Case Study

This section illustrates the benefits that can come from implementing the theories and

methodologies presented in the previous sections of this chapter. For this case study, and all sub-

studies presented herein, a simple L-beam geometry, fixed at one end, and exposed to a prescribed

deflection at the other is considered. The L-beam is chosen to illustrate the process because of the

its simplicity and because it is derived from an actual L-beam designed by one of the authors for

a popular mobile phone. As such, the geometry, parameters, and so forth are representative of a

realistic industrial application.

We pause now to describe why we fix the geometry throughout this case study and explain

the effect this has on reverse engineering. The geometry is fixed for two principle reasons. First,

during the design of the L-beam used in the mobile phone, the geometry was already at the up-
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per bounds of a very constrained component envelope. Therefore, any permissible change in the

geometry would have an undesirable affect on the performance, as shown below. Second, when a

component such as this is reverse engineered by a competitor, the most likely reverse engineering

strategy is to copy the geometry and the chemical composition of the material. As is shown below,

this common reverse engineering approach will not lead to a functional replica. Instead it leads to a

design represented by the benchmark design below. A desirable performance can only be achieved

through microstructure manipulation. It is important to note that it is unlikely that the competitor

will be able to determine the complex material microstructure created by the lamination of inde-

pendently oriented thin metal foils. Should the competitor determine the complex microstructure,

the extremely difficult task of determining how to manufacture that complex microstructure poses

yet another barrier to reverse engineering.

Six sub-studies of the L-beam are provided here for comparative purposes. The illustration

provided in Figure 8.6 represents the fixed geometry and boundary conditions used throughout the

entire case study. The six sub-studies consider (I) an isotropic one layer lamina, (II) an anisotropic

one layer lamina, (III) a multilayered anisotropic laminate, (IV) a heterogeneously distributed mi-

crostructure in single layer, and (V and VI) a special exploration into when multilayered laminates

out perform single layer lamina and vice-versa. Each sub-study shows how the performance of the

fixed L-beam geometry can be enhanced by material manipulation.

8.5.1 Sub-studies I through IV

For sub-studies I through IV, the design objective is to minimize the reaction force (in the

normal direction) at the free end of the beam, when subject to a prescribed displacement (δ ) at

the free end and subject to the material being within acceptable yielding conditions. As a note,

for applications such as those of the mobile phone, normal forces larger that 1.2 N can result in

excessive wear on the mating surfaces of these parts, which are often used to transmit electrical

current. [181]

The optimization problem statement used for sub-studies I-IV is:

min
φ1

J = Q (8.7)
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subject to

P < 0.15 (8.8)

0 < Q ≤ 1.2 N (8.9)

and

0 ≤ φ1 ≤ 90o (8.10)

where Q is the reaction force at the point of the applied deflection, and P is the fraction of nodes

that have plastically deformed.

During the optimization procedure, only the material orientation, φ1,i, is changed where

i represents the i-th homogeneous material segment, such as a single layer. For the isotropic L-

beam and the single anisotropic layer L-beam, i ∈ {1}. For the laminated L-beam four layers

are considered, so i ∈ {1,2,3,4}. And the heterogeneous L-beam is divided into two segments,

therefore, i ∈ {1,2}. The material used throughout the case study is pure copper, which for sub-

studies II through VI has been rolled and heat treated to create a very strong texture in the rolling

direction. As a note, all material microstructures were obtained by measuring the microstructure of

the sample as described in Section 8.48.4.2. In consideration of manufacturing process simplicity,

we only allow material orientations belonging to the set {0 5 10 15 20 25 30 35 40 45 50 55 60 65

70 75 80 85 90} expressed in degrees.

Each of the sub-studies presented in this section used a genetic algorithm to find the mate-

rial orientation that minimized the reaction force, and ensured compliance with a material yielding

criteria. The genetic algorithm was selected as the optimization algorithm as it is capable of search-

ing over a design space with multiple local minima. Since we are interested in potentially orienting

multiple layers, and since the orientation of each layer influences the effective properties of the part

as a whole, many local minima exist in the design space. Due to the nature of genetic algorithms,

it is possible for the optimization routine to converge on different solutions – which may or may

not be the global optimal solution – for different optimization runs. To increase the likelihood that

the global optimal solution is found, the optimization routine was executed multiple times for each
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Figure 8.7: (a) Finite element mesh for the isotropic, single layer, and four layer L-beams, and (b)

finite element mesh for the heterogeneous L-beam.

sub-study. For the examples presented in this chapter, each run of the optimization routine resulted

in approximately the same solution for a given sub-study. The genetic algorithm parameters were

the same for each of the sub-studies presented in this chapter which are: a population size of 30

individuals, a maximum number of 30 generations, a mutation rate of 0.01, and a crossover rate

of 0.50. While the optimization was permitted to run up to 30 generations, an optimal solution

was often found within 10 generations. As a note, these same algorithm parameters are used in

sub-studies V and VI.

The genetic algorithm was coupled with the commercial finite element analysis software

ANSYS to analyze the force and stresses of the structure. A material stiffness matrix – determined

by the microstructure and the respective orientation – was input into ANSYS (using anisotropic

element shell281) which then output the force required to achieve the prescribed deflection of the

L-beam and also output a 6x1 stress vector for each node (refer to Figure 8.5(b)). As a reference,

the mesh used for sub-study I-III, V, and VI may be seen in Figure 8.7(a) and the mesh used for sub-

study IV may be seen in Figure 8.7(b) where a line at approximately 45o separates the horizontal

and vertical beams for the heterogeneous material. The 6x1 stress vector is then analyzed by the

failure criteria presented in Section 8.38.3.4 to determine if failure has occurred. Using a Xeon 3.4

GHz processor and 3.25 GB of RAM, the analysis took roughly 25 seconds per individual. This

time includes both the genetic algorithm calculations and finite element analysis.
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We now briefly provide additional information regarding each sub-study and refer the

reader to Tables 8.1 and 8.2 for a summary of results.

Sub-study I, Single Isotropic Layer L-Beam

The single layer isotropic L-beam is considered the benchmark design in this study as it

is based on the same assumptions used in the design of the mobile phone previously mentioned.

Namely those assumptions are that the material used is isotropic, homogeneous, and linear elastic.

With the material being isotropic, layer orientation has no affect on the performance as shown in

Table 8.1. As this is the benchmark design, all other sub-studies seek improved performance over

the benchmark.

Sub-study II, Single Anisotropic Layer L-Beam

Often, significant performance improvements can be achieved solely by capitalizing on the

material anisotropy. We demonstrate this by showing performance increases that can be achieved

in the same L-beam when created with a single anisotropic layer. This approach is beneficial

as it only requires the material to be strategically oriented during the manufacturing process and

does not require additional equipment such as an ultrasonic consolidation welder. By single layer

orientation alone, as shown in Table 8.1, the performance increases are notable.

Sub-study III, Multi-Layer Anisotropic L-Beam

By implementing ultrasonic consolidation (Section 8.38.3.1), the L-beam may be created

with multiple thin layers, each independently oriented, to achieve a desired performance. While the

multilayered material strategy may be more expensive to manufacture, it has a distinct advantage

in that the design space significantly expands upon using a layered material approach. However,

as shown in Table 8.1, the multilayered case can not out perform the single layered case. Sub-

studies V and VI explore this in further detail and illustrate that under different design objectives

the multilayered case will out perform the single layer case.
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Table 8.1: Optimization results for the four material strategies presented in the L-beam case study.

Angles are expressed in degrees.

Case Q (N) P φ1,1 φ1,2 φ1,3 φ1,4

(I) Benchmark 1.302 0.227 Isotropic – – –

(II) Single Layer 0.846 0.087 70 – – –

(III) 4 Layers 0.846 0.087 70 70 70 70

(IV) Heterogeneous 0.744 0.056 60 15 – –

Sub-study IV, Single Layer Heterogeneously Anisotropic L-Beam

We now consider a single layer case where the anisotropy throughout that layer is hetero-

geneous. For this example, i = 1 represents the segment of the L-beam that is in aligned with

the y-axis, and i = 2 represents the segment that is aligned with the z-axis as seen in Figure 8.6.

Through the exploration afforded by the optimization procedure, these two segments may take on

any layer orientation, independent of the other. Using this approach, the improvement over the

benchmark design is even more significant as shown in Table 8.1.

In consideration of the manufacturing process that might be used to create such a hetero-

geneous microstructure, we propose a friction stir welding (FSW) process [180]. While various

metal joining process could be used to join the separate materials, FSW is desirable because it is

a low temperature metal joining process. Since the material microstructure is designed to enable

a specific performance, it is important that manufacturing processes does not significantly modify

the material microstructure. The high temperature of traditional welding significantly changes the

material microstructure at the weld site.

Results and Comparison for Sub-studies I Through IV

Now we compare the numerical results of the four sub-studies presented in this case study,

which are summarized in Table 8.1. Notice the values of the benchmark design with the isotropic

material. Recalling that the maximum allowable force for this L-beam is 1.2 N, the benchmark

design fails by exceeding the maximum allowable force and also by plastically deforming since P

is greater than the allowable 0.15 or 15%. Simply by using a single anisotropic layer strategically

oriented, we are able to meet the design objectives. Notice that the single layer and multilayered
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anisotropic material provide identical solutions. The reason for this is that the design objective

seeks an extreme solution (i.e., minimize reaction force). Because it is an extreme solution, and

not one in the center of the design space – which is the space that can be obtained by a multilayered

laminate – the single layer laminate can provide an optimal solution. A more in-depth discussion

of this is provided in the next section. As a final note, we can see that further improvement on the

design can be achieved when a heterogeneous material strategy is taken.

8.5.2 Sub-studies V and VI

Having observed in the previous section that the multilayered anisotropic approach did not

out perform the single layer anisotropic approach, we now consider the conditions under which

it would. Before describing the new conditions, it is important to note that aside from the new

optimization problem statement described below, all other conditions are identical to those of sub-

studies I through IV. This includes all genetic algorithm parameters and finite element parameters

and meshes.

Sub-study V, Multi-Layer L-Beam with Target Q and Target P

Recall the discussion on the range of material properties that can be achieved by rotation

and lamination and Figure 8.4 in Section 8.38.3.5. It is difficult, if not impossible, to obtain even

a few of the material properties enclosed by the property closure without utilizing a multilayered

material approach. Sub-study V illustrates this point. The following optimization problem state-

ment searches for a design that provides a specific reaction force, Qt , and a specific fraction of

yielding, Pt , by orienting four layers:

min
φ1

J = (Q−Qt)2 +(P−Pt)2 (8.11)

subject to

P < 0.15 (8.12)
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Figure 8.8: Graphical representation of the feasible design space obtainable with rotations and

laminations of the copper material used for sub-study V and VI.

0 < Q ≤ 1.2 N (8.13)

and

0 ≤ φ1 ≤ 90o (8.14)

As a reference, i = 1 represents the top layer of the L-beam and i = 4 represents the bottom

layer. The target force and node yielding fraction are 0.98 N and 0.12, respectively. As shown in

Table 8.2, the multilayered case is capable of reaching the target performance. This is in contrast

to the single layer case which is described now.

Sub-study VI, Single Layer L-Beam with Target Q and Target P

Here we revisit sub-study V, with the modification that only one layer is possible – in

contrast to the four layers considered in sub-study V. It is interesting to note that by using a single

layer, only a force of 0.99 N can be achieved with a plastic yielding fraction of 0.101. Figure 8.8

provides a graphical look at the nature of sub-studies V and VI. The horizontal axes represents the
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Table 8.2: Optimization results for the single and four layer L-beams with a target force and

percent failure. Angles are expressed in degrees.

Case Q (N) P Qt(N) Pt φ1,1 φ1,2 φ1,3 φ1,4

(V) Single Layer 0.99 0.101 0.98 0.12 0 – – –

(VI) 4 Layers 0.98 0.121 0.98 0.12 10 0 5 15

reaction force, Q, and the vertical axes represents the yielding fraction, P, of the part. The solid

path represents the performance combinations that are possible using only a single layer. The path

and the area enclosed by the path can be achieved by the multilayered lamination. To illustrate

more fully, we choose a point within the path and set the corresponding values of Q and P to Qt

and Pt . This point is represented by the star in Figure 8.8. The best values that can be afforded by

the single layer approach is shown in Table 8.2.

We now return to the notion of making the hardware more difficult to reverse engineer.

Consider for a moment using this L-beam as a mechanical fuse. One that explicitly requires a

plastic yielding fraction of 0.12 at a reaction force of 0.98 N. Because this design point is within

the area created by the solid lines in Figure 8.8, a competitor can only find this design through

a multilayered approach. Any design found by a single layer would be limited to the solid path

in Figure 8.8. While the single layer may be easier to manufacture, it comes at the expense of

achieving the desired force and percent failure values.

Using the developments presented in Harston and Mattson, [14] it can be shown that the

barrier to reverse engineering for all the sub-studies is significantly larger than the barrier to reverse

engineer the benchmark design. This can be explained by the additional exploration required to

determine the layer orientation, or heterogeneity associated with the non-benchmark designs.

In summary, we note that the following barriers exist for a competitor reverse engineering

the hardware. (i) Discovering that a layering approach was used would be difficult and would

require sophisticated microscopy. (ii) Deciphering the microstructure created by the layering ap-

proach would be difficult even for those experienced with microstructure analysis, and (iii) de-

termining the methodology to manufacture the microstructure, if it was deciphered, would be yet

another challenge – perhaps one that is prohibitive.
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8.6 Chapter Summary

We have presented an approach that uses material microstructure information, numerical

optimization, and state-of-the-art manufacturing techniques to create designs with a customized

mechanical performance that is difficult to reverse engineer – a powerful combination for compa-

nies who wish to make innovative products and devices available to the masses without disclosing

the phenomena that gives the device its customized performance. The root of the method is in

manipulating the material microstructure numerically, while constrained to existing manufacturing

methods (rolling, UC, and FSW). The consideration of these manufacturing approaches is embod-

ied in the rotation/lamination theory and in the minimal negative affect that these joining processes

have on the microstructures of interest. A simple study of an L-beam was presented to illustrate

the basic benefits that come from the presented design and optimization approach. The case study

considered one layer isotropic lamina, one layer anisotropic lamina, multilayered anisotropic lam-

inae, heterogeneously distributed microstructures in single layer lamina, and a special exploration

in to when multilayered laminae out perform single layer lamina and vice-versa. Through this case

study we see that by using a microstructure sensitive design approach, coupled with numerical

optimization, product performance can be customized, and can be made manufacturable and diffi-

cult to reverse engineer. Difficult to reverse engineer because each scenario in the case study has

identical geometry and material alloy, yet notably different performance which can only be traced

to difficult-to-discern microstructures.
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CHAPTER 9. CONCLUDING REMARKS AND FUTURE WORK

9.1 Concluding Remarks

Reverse engineering is a common design strategy in industry. It is a term that has come to

encompass a large array of engineering and design activities in both the literature and in practice.

However, in its basic form, reverse engineering is simply the process of extracting information

about a product from the product itself. As presented in this dissertation, it may or may not be

advantageous to utilize a reverse engineering strategy. Reverse engineering, similar to any rational

decision, is only favorable when the benefits from its use outweigh the investment.

This dissertation has presented numerous examples where innovative products have been

reverse engineered and imitated at the expense of the original designer. Consequently, various re-

searchers have expressed the need for general metrics, parameters, definitions, and methodologies

that quantify the time and barrier to reverse engineer a product; however, none of them provide

it. Specifically, the literature states the need for (i) comparative metrics for the barrier and time to

reverse engineer a product or system, and (ii) a design strategy that effectively seeks to maximize

barriers to reverse engineering. In this dissertation, we addressed these unmet needs by achieving

the dissertation objective:

Dissertation Objective Develop an effective design framework that results in products that can

be handled, used, dissected, or similarly analyzed by a competitor without disclosing the

phenomena by which the product functions.

The dissertation objective was partially achieved by first gaining an understanding of the

nature of barriers to reverse engineering. We demonstrated that reverse engineering barriers are

affected by (i) the complexity of a product, (ii) the resources available, and (iii) the skill of the

reverse engineering team. As designers can directly control the complexity of a product, they

can also indirectly affect the resources available, and the skills required for successful reverse
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engineering. Designing products with built-in barriers to reverse engineering impedes competitors

from gaining valuable insight – such as proprietary information or trade secrets – from the product

itself. This also impedes competitors from quickly imitating the product to enter the market by

capitalizing on the research and development costs of the innovative company.

The anecdotal understanding of what affects barriers to reverse engineering facilitates un-

derstanding of the metrics that characterize the time and barrier to reverse engineer a product. The

metrics developed in this dissertation are numerical in nature and are based on Ohm’s law which

is used to analyze electrical circuits. To the original designer, these numerical representations of

the barrier and time can be used to strategically identify and improve product characteristics so as

to increase the difficulty and time to reverse engineer them. As the metrics and parameters devel-

oped are quantitative in nature, and have been presented generically to be applied to any situation,

they can be used in conjunction with numerical optimization techniques. Using optimization, we

demonstrated how products can be designed with a large reverse engineering barrier and time

while maximizing return on investment. This has been demonstrated with the KitchenAid stand

mixer, electrical connectors used in cell phones, and a solar-powered unmanned aerial vehicle.

On the other hand, these quantitative measures enable competitors who reverse engineer original

designs to focus their efforts on products that will result in the greatest return on investment. The

results documented herein – and demonstrated on products with various levels of complexity –

indicate that the developed reverse engineering metrics are appropriate for nearly all products and

are accurate to the degree of an average error of 12.2% for products that are sufficiently complex.

In some situations, it may be desirable to reverse engineer a product multiple times (i.e, in-

crease accuracy, extract tolerances, gather additional information). If multiple samples of the same

product are reverse engineered, then learning will take place – knowledge about the product’s form,

composition, and function will be retained from previous iterations of the process. Thus, needed

additional metrics are developed and presented to characterize the time and barrier to reverse engi-

neer multiple samples of the same product. As presented, these metrics (i) characterize learning in

the reverse engineering process as additional product samples are evaluated, and (ii) estimate the

total time to reverse engineer multiple samples of the same product. Use of the metrics is exem-

plified by the industry example of the block and spool that was repetitively reverse engineered to

extract tolerance information.
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An understanding of the reverse engineering time and barrier alone is not adequate for

designing barriers to reverse engineering. This is principally due to the fact that barriers are costly

to implement. Therefore, it is critical to have an understanding of the cost tradeoffs associated with

barrier implementation. Specifically, a method is presented that enables designers to (i) estimate

the return on investment for products without reverse engineering barriers, (ii) estimate the return

on investment for products with reverse engineering barriers, and (iii) estimate the market captured

and return on investment by product imitations as a function of the barrier incorporated into a

product (or lack thereof). This is a key step, as not all products benefit from barriers to reverse

engineering. In some cases, the largest return on investment may result from not incorporating any

barriers at all. Importantly, a methodology is presented that enables an individual to determine the

return on investment of any product as a function of the reverse engineering barrier.

While barriers to reverse engineering may be costly to implement, entire products can be

made difficult to reverse engineer by strategically selecting and designing barriers to reverse engi-

neering into one, or a few, critical components. As such, a methodology was developed to assist

designers in planning for, selecting, designing, and implementing barriers to reverse engineering.

This methodology systematically determines which components most benefit from reverse engi-

neering barriers while considering (i) the difficulty of modifying components, (ii) the sensitivity of

the system to the various components, (iii) the effect of barrier concepts on overall product perfor-

mance, and (iv) the calculated return on investment. An overarching methodology is an essential

part of this doctoral work. As such, the effectiveness of this methodology is demonstrated by mak-

ing a solar-powered unmanned aerial vehicle more difficult to reverse engineer. In the example,

the propeller was selected to be the critical component where a series of voids were introduced to

decrease the propeller weight and increase the flutter speed (a desirable attribute in propellers).

Additionally, we have treated material microstructures (crystallographic grain size, orienta-

tion, and distribution) as design variables that can be manipulated – for common or exotic materials

– to identify unusual material properties and to create effective barriers to reverse engineering. A

practical approach, carefully tied to proven manufacturing strategies, was used to tailor material

microstructures by strategically orienting and laminating thin anisotropic metallic sheets. The

approach, coupled with numerical optimization, manipulates material microstructures to obtain

desired material properties at designer-specified locations (heterogeneously) or across the entire
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part (homogeneously). A comparative study was provided that examines various microstructures

for a simple fixed geometry. These cases show how the proposed approach can provide hardware

with enhanced mechanical performance in a way that is disguised within the microscopic features

of the material microstructure.

To be clear, we now review the six sub-objectives as presented in Chapter 1 and briefly

mention how each sub-objective was accomplished.

Sub-Objective 1 Develop metrics that quantitatively approximate (i) the time to reverse engineer

any product, and (ii) the barrier to reverse engineering that must be overcome to successfully

reverse engineer any product. This is accomplished with the development and validation of

the reverse engineering metrics as presented in Chapter 4 and Chapter 5.

Sub-Objective 2 Quantify the error of the reverse engineering metrics and what it means to the

designer. In addition to the presentation of the reverse engineering metrics, Chapter 4 also

quantifies and discusses the error associated with the reverse engineering metrics. Specifi-

cally, the average error has been found to be 12.2%.

Sub-Objective 3 Explore how microstructure sensitive design results in effective and efficient bar-

riers to reverse engineering. The entirety of Chapter 8 is focused on analyzing and un-

derstanding the effects of microstructure sensitive design on reverse engineering barriers

– which have been found to be a very effective reverse engineering barrier when properly

designed. In addition, the KitchenAid mixer presented in Chapter 6 uses a microstructure

barrier to increase the reverse engineering barrier and return on investment.

Sub-Objective 4 Explore the tradeoffs between reverse engineering barriers, cost, and return on

investment. Enabling the exploration of tradeoffs, a return-on-investment model is developed

in Chapter 6. Furthermore, the methodology presented in Chapter 7 considers (i) the diffi-

culty of modifying components, (ii) the sensitivity of the system to the various components,

(iii) the effect of barrier concepts on overall product performance, and (iv) the calculated re-

turn on investment. This includes a discussion and presentation of techniques for exploring

the associated tradeoffs.
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Sub-Objective 5 Determine what products – or product components within a system – most bene-

fit from implementing barriers to reverse engineering. A fundamental element of the method-

ology, presented in Chapter 7, is the selection of the components that most benefit from bar-

riers to reverse engineering. The effectiveness of the component selection process is made

evident in the solar-powered UAV example where the propeller was selected to be the critical

component and received the barrier to reverse engineering.

Sub-Objective 6 Use numerical optimization to search for designs that (i) meet or exceed per-

formance requirements, (ii) maximize return on investment, and (iii) are difficult to reverse

engineer. Chapter 7 presents a multi-objective numerical optimization strategy that simulta-

neously considers performance requirements, return on investment, and barriers to reverse

engineering. This is again demonstrated with the solar-powered UAV example. Furthermore,

additional examples of using numerical optimization to simultaneously maximize product

performance and barriers to reverse engineering are presented in Chapter 8.

In summary, the tools and methodologies presented herein enable designers to systemati-

cally design products that can be handled, used, dissected, or similarly analyzed by a competitor

without disclosing the phenomena by which the product functions.

9.2 Future Work

While the desired goals of the dissertation have been met, a number of new areas have been

identified as candidates for future research. These areas are briefly discussed below.

9.2.1 Reverse Engineering Power

In the development of the reverse engineering metrics (refer to Chapter 4), the power, P, is

defined as the work per time to extract information. While P is constrained to

0 < P ≤ 1 (9.1)

the assumption is made that P = 1. This is the most conservative approach for those estimating how

long it will take competitors to reverse engineer their product as P = 1 implies that the individual
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is putting forth their best effort to reverse engineer the product. However, the reverse engineering

metrics may be improved by developing a systematic approach to determine the actual value of P.

This is a difficult task as it is likely that P is not only a function of the individual, but also varies as a

function of the individual’s perception of the accuracy required and their desire to reverse engineer

the product. One possible solution may be to use an approach similar to the one developed for

characterizing a person’s initial flow rate, F0 as presented in Chapter 4.

9.2.2 Exploration of Additional Information Types

The emphasis of this doctoral work focused on two information types – macroscopic ge-

ometry and material microstructures. While the reverse engineering metrics and the methodologies

presented herein have been developed in a general nature, it would be beneficial to further validate

the application of the metrics on additional information types. Additional information types may

include: electrical conductivity, surface finish, aesthetics, color, heat transfer characteristics, ther-

mal expansion, fatigue, stress concentrations, assembly information, etc. and the coupling of such

information.

9.2.3 Topology Optimization with Anisotropic Materials

In exploring the strategic, simultaneous design of both material microstructures and macro-

scopic geometry, we briefly pursued the coupling of topology optimization with directionally de-

pendent material properties. Specifically, we coupled topology optimization with finite element

analysis. This combination, along with proven manufacturing techniques, enables the design and

optimization of manufacturable topologies with anisotropic and heterogeneous material proper-

ties. An optimization algorithm was developed and presented in a conference paper [182] that

simultaneously optimizes the topology on the macro scale and the material properties of each ele-

ment at the microstructure level by selecting and strategically orienting anisotropic materials. The

anisotropic materials are selected from a materials database that was created by physically testing

and measuring various material microstructures. Three examples illustrated the capabilities of the

algorithm to simultaneously optimize topologies and material properties.
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Using this research as a foundation, advanced materials/geometry optimizations may be

developed, resulting in performance improvements that cannot be achieved without consideration

to both. However, there exist a number of issues that need to be addressed in this area of research.

These issues include (i) computational cost, (ii) convergence criteria, and (iii) developing additive

topology optimization algorithms – typical topology optimization algorithms are subtractive in

nature. While this exploratory study identified fertile areas for future work, we did not pursue this

topic in an effort to maintain focus on the principle objective and sub-objectives of the dissertation.

9.2.4 Methods to Automatically Determine Information Quantity

The reverse engineering metrics have been developed in a way that easily lends to numeri-

cal optimization. However, one of the limitations of using the metrics in numerical optimizations

is estimating the quantity of information contained within a product, K, due to the fact that this

estimation currently requires the analysis and input of a human. This is particularly problematic

when the optimization is allowed to change the geometry of the product during each optimization

iteration (e.g., topology optimization). Therefore, techniques for automating the quantification of

K can enable numerical optimizations to continuously run without human input.

There are numerous papers from the literature that discuss how to reverse engineer geo-

metric features utilizing CAD systems [183–185]. As such, it may be possible to extend existing

techniques to the context of automatically calculating K. Toledo et al. [186] present an efficient

method by which geometric information may be determined, even from complicated systems, in

an effort to determine original geometric data. Vrady et al. [187] present an automated approach to

create CAD representations of structures that are accurate, capture design intent, and require little

or no user assistance. While additional research is needed in this area, it is possible that some of

these methods may be used directly to estimate the quantity of information contained by a product.
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