
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2013-10-01

Application of Machine Learning and Parametric
NURBS Geometry to Mode Shape Identification
Robert Mceuen Porter
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Porter, Robert Mceuen, "Application of Machine Learning and Parametric NURBS Geometry to Mode Shape Identification" (2013).
All Theses and Dissertations. 5744.
https://scholarsarchive.byu.edu/etd/5744

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5744&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F5744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5744&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F5744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5744?utm_source=scholarsarchive.byu.edu%2Fetd%2F5744&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Application of Machine Learning and Parametric NURBS Geometry

to Mode Shape Identification

Robert M. Porter

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

C. Greg Jensen, Chair
David T. Fullwood

Christophe Girard-Carrier

Department of Mechanical Engineering

Brigham Young University

November 2013

Copyright © 2013 Robert M. Porter

All Rights Reserved

ABSTRACT

Application of Machine Learning and Parametric NURBS Geometry
to Mode Shape Identification

Robert M. Porter
Department of Mechanical Engineering, BYU

Master of Science

In any design, the dynamic characteristics of a part are dependent on its geometric and ma-
terial properties. Identifying vibrational mode shapes within an iterative design process becomes
difficult and time consuming due to frequently changing part definition. Although research has
been done to improve the process, visual inspection of analysis results is still the current means of
identifying each vibrational mode determined by a modal analysis. This research investigates the
automation of the mode shape identification process through the use of parametric geometry and
machine learning.

In the developed method, displacement results from finite element modal analysis are used
to create parametric geometry which allows the matching of mode shapes without regards to chang-
ing part geometry or mesh coarseness. By automating the mode shape identification process with
the use of parametric geometry and machine learning, the designer can gain a more complete view
of the part’s dynamic properties. It also allows for increased time savings over the current standard
of visual inspection

Keywords: NURBS, machine learning, parametric geometry, mode shape identification, automa-
tion

ACKNOWLEDGMENTS

I would like to express my appreciation for all those who have helped me to complete this

research. I thank Dr. Greg Jensen from Brigham Young University, for his time, support, and

guidance. I thank Dr. David T. Fullwood and Dr. Christophe Giraud-Carrier for their guidance

and input during this process. I am grateful to Evan Selin and all those from Pratt & Whitney who

have been instrumental in supporting and contributing to the success of this research project on a

weekly basis. Pratt & Whitney is also responsible for the funding of this research for which I am

immensely grateful. Finally, I thank my wife, Megan, for her constant support and encouragement.

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

Chapter 1 Introduction . 1
1.1 Problem Overview . 1
1.2 Thesis Objective . 3
1.3 Problem Delimitations . 3
1.4 Thesis Organization . 4

Chapter 2 Background . 5
2.1 Modal Analysis . 5
2.2 Machine Learning . 5
2.3 Parametric Geometry . 6

Chapter 3 Method . 9
3.1 Gather User Information . 10
3.2 Data Pre-processing . 10

3.2.1 Read Displacement File . 11
3.2.2 Normalize Nodal Locations and Displacements 11
3.2.3 Transform Data into NURBS Surface . 11
3.2.4 Output Parameterized Displacements . 12

3.3 Machine Learning . 15
3.3.1 Define Training Data . 15
3.3.2 Selection of Machine Learning Algorithm 16
3.3.3 Training . 18
3.3.4 Evaluation with Test Set . 19

3.4 Mode Shape Identification . 19

Chapter 4 Implementation . 21
4.1 Gather User Information . 22
4.2 Data Pre-processing . 22

4.2.1 Read in Displacements . 23
4.2.2 Normalize Nodal Locations and Displacements 23
4.2.3 Transform Data into NURBS Surface . 24
4.2.4 Output Parameterized Displacements . 24

4.3 Machine Learning . 27
4.3.1 Define Training Data . 27
4.3.2 Selection of Machine Learning Algorithm 27
4.3.3 Training . 28
4.3.4 Evaluation with Test Set . 28

4.4 Identify Mode Shape . 29

iv

Chapter 5 Results . 30
5.1 Machine Learning - Algorithm Selection . 31
5.2 Mode Identification . 33
5.3 Mode Identification in Iterative Design . 37

Chapter 6 Conclusions . 39
6.1 Recommendations . 40

REFERENCES . 41

v

LIST OF TABLES

5.1 Confusion Matrix resulting from LOOCV of training data using k-NN 32
5.2 Results of a Paired T-test . 32
5.3 Parameters of baseline designs . 33
5.4 Accuracy of the method averaged over three tests 34
5.5 Results from Selin et al. using surface templates 35
5.6 Benchmarking time required of mode shape identification methods 38

vi

LIST OF FIGURES

1.1 Mode shapes produced by a modal analysis . 2

2.1 A parameterized surface . 7

3.1 Overall method . 9
3.2 Pre-processing method . 10
3.3 Normalized surface parameterized and projected onto working plane 12
3.4 The preliminary surface and displacement data create the mode shape surface . . . 12
3.5 Normalization of geometry . 13
3.6 Grouping average displacements into instances 14
3.7 Machine learning method . 15
3.8 Principle of k-Nearest Neighbor (k-NN) . 17
3.9 Principle of Decision Trees . 17
3.10 Principle of Support Vector Machines (SVM) . 18
3.11 Mode shape identification method . 19

4.1 Sample Isight task . 21
4.2 Modifying the design space in the DOE editor . 22
4.3 Interpolation of node data into a NURBS surface 24
4.4 Discretization of a mode shape surface into sections 26
4.5 Splitting data in leave-one-out cross validation (LOOCV) 28

5.1 Eight trained mode shapes for identification . 30
5.2 Isometric views of each test geometry . 31
5.3 Three geometrically identical models meshed differently 33
5.4 A baseline model and modified design . 34
5.5 Sample of modes blending into another . 36
5.6 Sample of trained and untrained mode shape of same mode 36
5.7 Example of a high order mode shape . 37
5.8 Isight mode identification task . 38

vii

CHAPTER 1. INTRODUCTION

Identifying vibrational mode shapes with their corresponding frequencies becomes impor-

tant when designing objects or structures that are subjected to dynamic forces. That is, to alleviate

structural weakness due to resonant behavior: natural frequencies being excited by operational

forces [1]. As a check the designer can perform a modal analysis using the Finite Element Method

to easily identify the mode shape of his/her given object. However, if an optimization were im-

plemented, where the design changes on an iterative basis, identifying and comparing these mode

shapes becomes a complex problem. In 2011 Selin et al. explored applying parametric NURBS

geometry and the Modal Assurance Criterion (MAC) to mode shape identification with the result

being the ability to identify mode shapes of parts with differing geometries and mesh densities [2].

Selin’s research addressed the problem of automating mode shape identification and it will also be

investigated here.

This research applies machine learning to the mode shape identification problem in efforts

to improve the task of identification. Machine learning is broadly defined to include any computer

program that improves its performance at some task through experience [3]. Machine learning

has been used in various classification and regression problems where one may wish to know a

type or category that given inputs fall under (classification) or a numerical prediction given inputs

with some training data (regression) [4]. This research seeks to leverage machine learning along

with parametric NURBS geometries to classify vibrational mode shapes from a finite element

analysis. In doing so, a designer can run an iterative optimization with information about the

dynamic behavior of the object. While Selin’s research was successful within its scope, this topic

of automating the identification process utilizing machine learning will show added benefits and

decreased disadvantages over utilizing the MAC. This research seeks a method by which machine

learning, along with parametric geometries will be used to automatically identify vibrational mode

shapes and frequencies from displacement data. The described method will be an important step

1

towards the development of a complete iterative vibrational mode shape identification tool that

could be used for a wide variety of parts or models.

1.1 Problem Overview

Within a design process modeled parts often go through many changes, especially within

an iterative design process such as an optimization or design of experiments. During an iterative

design process parametric models can be updated and changed in either small or large ways. The

purpose of changing model parameters and geometries, especially in a iterative design, is to ob-

tain a design that is superior to an initial, or starting design. Changing the properties of a part

via geometry, material properties or other, can have a significant effect on its static and dynamic

behavior.

In a modal analysis the natural frequencies are affected by design changes and the vi-

brational mode shapes excited by these natural frequencies can exhibit themselves in a different

manner than in consequent design iterations. These results can be reported in order of increasing

natural frequency. An example of the resulting contour plots from a modal analysis can be seen

in Figure 1.1 below. These contour plots are two dimensional representations of three dimensional

objects. The color dispersion present in Figure 1.1 represent the object’s displacement magnitude,

where red represents the largest positive displacement(s) and blue represents the largest negative

displacement(s).

Figure 1.1: Mode shapes produced by a modal analysis

2

It is important to note that the mode shapes are affected by design changes and the vi-

brational mode shape excited by the parts natural frequency can exhibit themselves in a different

sequence on different design iterations. This makes the task of identifying the specific mode shape

associated with each natural frequency more complicated when executing an iterative design.

If a designer were to view these changes after each iteration, they may take measurements

of the analysis results or simply view the surface to see how the mode shape has changed. In this

way the designer identifies the mode shape like they would any other shape, by looking at the

object’s features (number of sides, scale, how many peaks and valleys and their locations on the

part, the angles contained within the part, etc.). The designer can identify the parts mode shape

without regard to its mesh density or overall size. Machine learning has the ability to take in feature

attributes, like those described, and given a label can create its own hypothesis as to the correlation

between the two [5]. Machine learning has been used in a wide variety of classification problems

where the inputs and outputs of a system for some instance are known but how to arrive at the

output is unknown or unclear. Applying machine learning to mode shape identification is not a

straight forward process, and some conditioning must take place in order to benefit from machine

learning capabilities in this research. Once some pre-processing is done, an algorithm must be

chosen and that algorithm must be trained given training examples thus allowing it to learn. In

the end a properly trained machine learning algorithm is able to classify mode shapes based on

previous examples with good accuracy.

1.2 Thesis Objective

The purpose of this research is to develop a general method that will aid in the automation of

identifying mode shapes using parametric models and machine learning to improve upon previous

attempts. This method will create parametric surfaces from nodal displacements that result from

a finite element analysis to represent individual mode shapes. Through automating this process of

mode shape identification, the designer will be provided with a more complete understanding of

the model’s dynamic properties.

This research will also investigate the use of parametric geometry to collect proper feature

attributes for machine learning to match and correlate mode shapes. The use of parametric ge-

ometry will become important when trying to identify mode shapes from geometries that vary in

3

part definition and mesh coarseness. The use of parametric geometry would allow the same num-

ber of features to be extracted from the surface every time, which will aid the machine learning

process [6].

This research will report the time required and matching accuracy for the method and give

a comparison to previous research completed. The main benefit of this research will be in de-

termining if a method which utilizes machine learning is capable and robust enough to correctly

identify mode shapes of differing geometry to known mode shapes through the use of parametric

geometry.

This method has been implemented in an optimization framework to correctly match and

report the model’s natural frequency and mode shape. By utilizing the functionality of an opti-

mization software package, the designer can create training sets of known mode shapes as well as

identify unlabeled mode shapes based on previously trained examples.

1.3 Problem Delimitations

The purpose of integrating the method into a optimization framework to accomplish the

tasks mentioned above is to show that the developed method is feasible and implementable. This

method will be limited to parts that can reasonably be represented as four-edge surfaces due to the

fact that NURBS surfaces will be used. Modal analysis performed in this research will be using

ANSYS analysis software package, and as such will be modeled using the ANSYS SHELL63 ele-

ments. The models will also be limited to two-dimensional representations of parts. The parametric

data structures needed herein will utilize the NXOpen libraries which are commercially available.

Weka (Waikato Environment for Knowledge Analysis) will be used in this research to run machine

learning algorithms from acquired data and for the use of statistical testing of algorithms. There are

several applications within Weka such as the Explorer, Experimenter, KnowlegeFlow, and Simple-

CLI. For this research the Explorer and Experimenter will be utilized and are described in Chapter

4. Weka’s user guide may be consulted for more information about Weka and its applications [6].

Finally the method will be integrated into SIMULIA’s Isight optimization framework.

4

1.4 Thesis Organization

This thesis is organized into six chapters. Chapter 2 is a literature review that introduces the

reader to the most relevant literature related to this thesis. This will include a brief discussion of

modal analysis, a discussion about machine learning, and parametric geometry. The third chapter

discusses the general methods used to automate the matching of modal analysis results to previ-

ously trained instances using machine learning. The fourth chapter discusses the implementation

of those methods using C++ programming and integration into the Isight optimization software.

Chapter 5 details the results of the mode identification method and compares it to previous meth-

ods. The sixth chapter discusses the conclusions and future work of this research.

5

CHAPTER 2. BACKGROUND

2.1 Modal Analysis

In a design process, a modal analysis becomes useful when the designer wishes to char-

acterize the dynamic behavior of a part or structure. The dynamic characteristics that the modal

analysis determines are the natural frequencies and the vibrational mode shape of the given part

or structure [1]. Finite Element solvers perform modal analysis on meshed models with results

including a natural frequency and a vector of nodal displacements (mode shape). Historically the

MAC has been the general method for measuring the consistency of modal vector estimates, cal-

culations, or experimental data [7]. The MAC has the ability to calculate the linearity between

two modal vectors. After running the MAC calculation, it results in a value between zero and one,

which indicates the correlation between the two mode shapes, one being a perfect match and zero

being no correlation. One of the downsides to using the MAC is the inability to compare modal

solutions from a Finite Element model that has differing meshes or number of elements. The use-

fulness of the MAC has further been described in Selin’s work [2]. In Selin’s research he was able

to leverage parametric NURBS geometries in conjunction with the modal assurance criterion to

automatically identify vibrational mode shapes and frequencies from modal analysis displacement

data. The proposed research will be benchmarked against this work with the hopes of creating a

more robust method. For more information on the MAC, the following resources may be referred

to [1, 8, 9].

2.2 Machine Learning

Machine learning is actively being used today in many instances where it is necessary to

turn data into information. Machine learning is a mix of computer science, engineering, and statis-

tics, and often appears in many other disciplines from politics to geosciences [10]. Any field that

6

needs to interpret and act on data can benefit from machine learning techniques. While machine

learning has been successfully applied to many classification problems in many fields, there is

no known research that has leveraged machine learning to identify vibrational mode shapes. To

properly implement machine learning for this research and to any problem that can benefit from

machine learning some design decisions must be made. These decisions include identifying the

type of knowledge to be learned, how to represent the target knowledge, and a learning mecha-

nism [3].

For this research the type of knowledge to be learned is information about a model, namely

mode shape. Choosing a representation for this target knowledge is an important design decision.

It is necessary to choose attributes of the target knowledge that are both descriptive and consistent.

For example, if a machine learning task was to learn to identify pencils and the designer chose

a pencils shape as its representation, describing a pencil by its color would then be meaningless.

Thus choosing a representation for the target knowledge must be consistent in order to maintain a

basis for comparison. Learning mechanisms require a set of training examples in order for machine

learning to identify the target knowledge. Each example or instance in this research will describe

a specific mode shape. How this research obtains consistent attributes that represent mode shapes

will be discussed in subsequent chapters. More on designing a machine learning system can be

found in several known works [3, 4].

Satpal et al. applied machine learning methods to health monitoring of beam-like structures

using vibration-induced modal displacement data [11]. By using the modal properties of the struc-

ture, Satpal et al. were able to view changes in the modal displacement data to identify damage in a

simulated cantilever beam. Satpal found that the machine learning model known as support vector

machine (SVM) was a powerful tool for predicting the intensity and location of the damage. By

using the SVM model, Satpal et al. were able to predict any damage intensity or location of the

training set with almost zero error. In testing, Satpal observed errors ranging from 2.5% to 22%

depending on location along the beam and the level of noise present in the system. This research

explores SVM along with other machine learning models in the mode shape identification process.

Liu applied machine learning methods to character recognition proving its flexibility and

performance [12]. Liu describes early character recognition being done using template matching

and structural analysis, similar to previous work done by Selin et al. with template matching in

7

mode shape recognition. By switching over to machine learning methods, character recognition has

benefited tremendously by releasing the designer from creating and selecting templates along with

seeing significant improvements in recognition accuracy due to learning from large sample data.

Similar to Liu, this research hopes to reduce mode shape matching error from previous methods

by utilizing machine learning methods. A challenge that Liu encountered was the comparing of

classifiers or algorithms because many classifiers are flexible in their implementation and can be

easily influenced by any processing step.

Hung and Jan describe how machine learning can be implemented in engineering design

and specifically applied to a structure optimization problem [13]. An unsupervised fuzzy neural

network (UFN) case based learning model was developed to optimize for weight in a simply sup-

ported steel beam under LRFD specifications. It was found that their learning model adequately

represented their model, and could handle large amounts of instances with reasonable computing

time. Furthermore, Hung and Jan discuss the fact that selecting model attributes by trial and error

affected the performance of the UFN model. As a result, care must be taken in selecting attributes

that adequately describe the model in a consistent manner. Attribute selection will be an important

part to the proposed research in order to adequately represent any given model to correctly identify

its mode shape. Many resources are available to learn more about machine learning [3, 4, 14, 15].

2.3 Parametric Geometry

Parametric geometries are beneficial in that it is easy and quick to compute (x,y), or (x,y,z)

coordinates of points existing on a curve or surface [16]. By generating a parametric surface

with a uniform parameterization surfaces of differing size and complexity can be segmented into

distinct areas through using a u and v coordinate system separate from the actual x,y,z coordinate

system. Non-uniform rational B-spline (NURBS) surfaces are widely used parametric geometry

representations. Each surface can be parameterized such that u-values of zero and one correspond

to two edges of the surface and v-values of zero and one correspond to the other edges of the

surface as shown in Figure 2.1. Since NURBS surfaces are defined this way, they can only be

used to represent surfaces that are relatively four-edged, which can be a problem. The benefit of

using parametric geometry is that surfaces of varying size and shape can relate to a single set of

attributes by means of similar parameterizations that can directly relate the points on each surface.

8

This becomes important when assigning feature attributes that must remain consistent through a

variety of surfaces that can vary in size, shape, and mesh densities.

Figure 2.1: A parameterized surface

Interpolation through existing points and extrapolating points from control points are com-

mon methods for creating NURBS surfaces [17]. This research will utilize global surface inter-

polation to create NURBS surfaces from point clouds which approximates a surface through a

set of existing points. A brief description of the mathematical definition of NURBS surfaces and

global surface interpolation will be presented here. In creating a NURBS surface, each control

point defining a surface has a weight and a B-spline basis function which together determine the

extent to which the point influences the surface. A knot vector in each parametric direction, u and

v, influences the surface topology as well. The following equation is the mathematical definition

of a NURBS surface of degree p in the u direction and degree q in the v direction.

S(u,v) =
∑

n
i=0 ∑

m
j=0 Ni,p(u)N j,q(v)Wi, jPi, j

∑
n
i=0 ∑

m
j=0 Ni,p(u)N j,q(v)Wi, j

,0≤ u,v≤ 1 (2.1)

In Equation 2.1 Pi, j are the control points. Wi, j are the weights of each point, and n and m

are the number of control points in the u and v directions, respectively. The terms Ni,p and N j,q are

the basis functions that are defined on the knot vectors shown in Equations 2.2 and 2.3.

U = {0, ...,0,up+1, ...,ur−p−1, ...,1},ui ≤ ui+1 (2.2)

9

V = {0, ...,0,vq+1, ...,us−q−1, ...,1},vi ≤ vi+1 (2.3)

where r = n+ p+ 1 and s = m+ q+ 1. At the beginning and end of each knot vector, there are

p, or q repeated zeros and ones, which terminate the surfaces control curves and indicate that the

surface is parameterized between zero and one.

The following equation 2.4 is the mathematical definition for finding a B-spline surface Pi, j

of degree (p,q) that is interpolated from supplied (m+1)(n+1) data points {Qk,l},k = 0, ...,n and

l = 0, ...,m .

Qk,l = S(uk,vl) =
n

∑
i=0

m

∑
j=0

Ni,p(uk)N j,q(vl)Pi, j (2.4)

Here terms uk and vl are parameter values that can be chosen using various methods that allow

for the solving of Equation 2.4 for the approximated surface Pi, j. More information on the math-

ematical and geometric properties of NURBS surfaces can be found in numerous sources on the

topic [16] [17] [18].

By using parametric geometry this research will be able to relate dissimilar surfaces through

their parameterizations. This will become important when trying to identify mode shapes that re-

sult from geometries that have not been previously encountered due to changes in size, configura-

tion, or complexity. By moving surfaces in to parameter-space as opposed to real-space, a basis for

comparison can be made and mode shapes can be easily matched to previously identified modes.

10

CHAPTER 3. METHOD

Figure 3.1: Overall method

This section presents a method of automatically identifying the mode shape of an object

represented by a four-edge NURBS surface resulting from a modal analysis by using machine

learning. To achieve our goal a classifier must be obtained. A classifier is a function that can

identify to which category a new observation belongs. For example, a classifier could be trained

to identify between spam and non-spam email messages. After learning, it can then identify if

an incoming email is spam or not and take an appropriate action. Once trained, our mode shape

classifier can be utilized in a stand-alone or in an automated approach to mode shape identification.

The following steps outline this method:

• Gather information from the designer in regards to a base line design and the design space.

• Normalize, transform, and label nodal displacements resulting from a modal analysis into a

NURBS surface representation in preparation for machine learning.

11

• Obtain and evaluate a classifier that will be used in this research to identify the mode shape

for a given part.

• Utilization of the classifier to automatically match and report vibrational mode shapes within

an optimization framework or as a standalone operation.

A visual representation of these steps is shown in Figure 3.1.

3.1 Gather User Information

Some information from the designer is required before training or testing the method. A

designer must specify the model parameters that will act as a baseline design. These parameters

represent the dimensions or properties of the part such as length, width, thickness, mesh coarseness,

etc. The parameters of the baseline design that will be changed or iterated upon would be those that

would either optimize some aspect of the model or fulfill some requirement of an overall design.

As model parameters change new designs will arise that may not have been observed previously

and may result in unexpected mode shapes.

3.2 Data Pre-processing

Below describes the method used to prepare data resulting from a modal analysis by nor-

malizing and transforming the resulting nodal displacements into a NURBS surface representation.

Figure 3.2 is an illustration of the work sequence.

3.2.1 Read Displacement File

A modal analysis is done on a Finite Element model of a part or component and the results

are written to a file. This file contains the position and displacements of every node in the model

corresponding to its natural frequency solution. This method parses through this file to obtain

desired information.

12

Figure 3.2: Pre-processing method

3.2.2 Normalize Nodal Locations and Displacements

In order for the method to obtain consistent comparable attributes on which to consistently

identify a given mode shape, all surfaces are normalized by the maximum nodal displacement

found in the solution set. For the normalizing equation below, Uall denotes the set of all nodal

displacements in the modal solution, therefore the normalized displacements, Unorm, are found by:

Unorm =
Uall

max(|Uall|)
(3.1)

13

which results in normalizing all nodal displacements to fall between numerical values of negative

one and positive one. In Equation 3.1 the max function finds the largest absolute value contained

in Uall .

3.2.3 Transform Data into NURBS Surface

When creating a NURBS surface in this method, the normalized positions and displace-

ments for each node is used. In this research we use a CAD API to perform global surface in-

terpolation and fit a preliminary surface through a set of points containing the normalized node

locations from the original model. This surface will then be projected onto a working plane which

was chosen to be the xy plane for this research. While it is possible for this method to take into ac-

count displacements in all three directions (x,y,z) in this research the projection of the surface will

lie in the xy plane and displaced in the z direction. Figure 3.3 illustrates this process of projecting

a preliminary normalized parametric surface onto a working plane in preparation for the next step.

The red, green, and blue dots in Figure 3.3 represent points on the surface as they are projected

onto the working plane.

Figure 3.3: Normalized surface parameterized and projected onto working plane

The parameter values associated with every node in the model are determined by querying

the surface using an API function. After the parameter values for each node are found, those values

are then stored for future use. A new point set is then created with data from each node. Points in

this set are defined in three dimensions by the u and v parameters of the node on the preliminary

14

surface and the normalized displacement of the node that is perpendicular to the working plane

or in the case of this research, in the z direction. The surface fitting function from the API is

once again used with this new point set, creating a new surface representing the mode shape. This

process is illustrated in Figure 3.4.

Figure 3.4: The preliminary surface and displacement data create the mode shape surface

3.2.4 Output Parameterized Displacements

After a mode shape surface is created we then can make comparisons with other surfaces

in the presence of differing part definitions such as length, width, thickness, mesh coarseness, etc.

An example of this can be seen visually in Figure 3.5 where the top level of three surfaces have

the same mode shape but result from differing geometries. We can see visually how close these

surfaces relate despite differences in their original part definitions.

Once a surface has been created to represent the model’s mode shape, attributes are then

pulled from that surface. Displacements are chosen to be feature attributes for simplicity in lieu of

a more informative attribute. The parametric surface displacements in the z direction are grouped

together in a grid like fashion. Each section of the grid represents the average displacement found

over a given number of nodes. How these displacements are grouped is shown below in equa-

tion 3.2.

xz =
∑

M
u=0 ∑

N
v=0 Qu,v(z)
n

(3.2)

15

Figure 3.5: Normalization of geometry

In Equation 3.2 Qu,v is the vector containing all nodal displacements. xz is the averaged

displacement found over the number of nodes per grouping n. Each average displacement is con-

sidered a feature attribute of the surface. All average displacements are then written as a geometric

definition of the surface to a file in preparation for machine learning. For machine learning a set

of geometric definitions that describe a surface are called instances, and each instance contain fea-

ture attributes. Again, it is important to note that the number of feature attributes must remain

consistent throughout this process for a basis of comparison as mentioned previously.

An example of how these geometric representations of mode shape surfaces are trans-

formed into instances for machine learning can be seen in Figure 3.6. Figure 3.6 illustrates points

that have been identified, grouped, and averaged into sections to act as features of the surface. The

number of points and thus the number of sections required for this method is dependent on the

complexity of the part. More complex geometry and/or higher order mode shapes would require

more features to adequately describe the mode shape. Whereas if a designer will only be observing

simple geometries with lower order mode shapes, then fewer features would be sufficient.

16

Figure 3.6: Grouping average displacements into instances

These sections or features are then organized into a vector with the last entry being a label

that identifies the mode shape that the vector represents. These feature vectors are then formatted

and output to an Attribute-Relation File Format (ARFF) for the purpose of using Weka to handle

the machine learning calculations. ARFF files have two distinct sections: the Header information

and the Data information. The header of the ARFF file contains the name of the relation, a list of the

attributes, and their types. This section remains consistent throughout the method to ensure proper

learning. The data section is where the surface attributes (displacements) are stored as instances.

One instance is equivalent to one surface that has been discretized as previously described. It is in

the data section that, when preparing a training set or a test set, each instance is labeled.

17

3.3 Machine Learning

Figure 3.7: Machine learning method

This section reviews the method used for obtaining a classifier that will be used in this

research to identify the mode shape for a given part. The sequence of obtaining a classifier is

shown in Figure 3.7.

18

3.3.1 Define Training Data

The first step toward obtaining a classifier is collecting and defining a training dataset. Ev-

ery geometric definition of a surface, or in other words, every instance from the previous data

pre-processing step must be stored with a unique user-defined label for its mode shape. Unfor-

tunately this step must be done manually. Upon creating these training instances, they are stored

for further training and testing where they may be adjusted. This training set may be adjusted to

contain more examples or different feature attributes if it is found that the attributes chosen are

insufficient.

3.3.2 Selection of Machine Learning Algorithm

Choosing a specific learning algorithm to use in this classification problem is a vital step. It

is known in machine learning that there is no algorithm that is uniformly superior over all possible

problems [19]. The category of machine learning that this research falls into is supervised learn-

ing where the algorithms reason from externally supplied instances to produce general hypothesis

which then make predictions about future instances [20]. There are several supervised machine

learning algorithms to choose from and which algorithm we choose will be determined by cross

validation to ascertain how well the algorithm can learn the training data and by a paired t-test.

Cross validation is a statistical method of evaluating and comparing learning algorithms by divid-

ing data into segments where one is used to learn or train a model and the other used to validate the

model. The basic form of cross-validation is k-fold cross validation where the data may be divided

in a specific number of segments [3, 4]. A t-test is a common method that assesses whether the

algorithms chosen are significantly different from each other in the presence of a supplied training

set. Given two paired sets (classification results) of n measured values, the paired t-test determines

whether they differ from each other in a significant way under the assumptions that the paired

differences are independent and identically normally distributed [21]. In so doing we can find the

algorithm that best fits our data. If it is found that one classifier is not statistically different from

another a classifier may be chosen based on performance. After an appropriate classification algo-

rithm is selected we can then use it to run the method. While there are a number of algorithms to

choose from, this research implements k-Nearest Neighbors (k-NN), Decision Trees, and Support

19

Vector Machines (SVM). These three will give the reader a good idea of how this method performs

and how well we chose our feature attributes. For this thesis brief descriptions of each algorithm

will be presented to give the reader a general understanding of the variation in approaches. More

information on these learners can be found through numerous publications [4, 22, 23].

Figure 3.8: Principle of k-Nearest Neighbors (k-NN)

The simplest, most used instance-based learning algorithm is the k-NN algorithm. Once

trained, a k-NN classifier assigns a new query instance to a class having the most examples among

the k neighbors of the input [4]. k-NN assumes that all instances are points in some n-dimensional

space and defines neighbors in terms of distance from the new query instance, usually the Euclidean

distance [24]. k is the number of neighbors considered as exampled in Figure 3.8 where values of

k = 3 and k = 7 are chosen.

The classification of the new query instance is simply the most common class among the k

selected examples. It can be seen that for the example in Figure 3.8, for both k = 3 and k = 7, the

most likely class for the new query instance would be a red square. While both red squares and

blue circles are present, red squares are the most common and the query instance is classified as a

red square.

20

Figure 3.9: Principle of Decision Trees

Decision trees are trees that classify instances by sorting them based on feature values.

Each node in a decision tree represents a feature in an instance to be classified, and each branch

represents a value that the node can assume [4]. As indicated in Figure 3.9, a decision tree consists

of a root node, branches, internal nodes, and leaf nodes. The root node and internal nodes test

some property with discrete outcomes labeling the branches. This process of testing a property at

the root node and choosing a branch from the outcome is repeated through internal nodes until a

leaf node is hit. The leaf node provides an appropriate classification for the given instance. An

example of a decision tree can be seen in Figure 3.9. In this example we start with some instances

to be classified, and test them for color at the root node. After separating the instances by color,

the decision tree then tests for shape for both cases red and blue. Once this is done each instance

arrives at a leaf node where the most appropriate class in assigned.

A common method for training decision trees is the process of top-down induction of de-

cision trees (TDIDT). TDIDT works by splitting a provided data set into subsets by testing some

attribute value. This process is repeated at each derived subset in a recursive manner until a subset

is reached that has the same value as a target leaf node. More on decision tree learning can be

found in many publications [3–6].

21

Figure 3.10: Principle of Support Vector Machines (SVM)
http://www.imtech.res.in/raghava/rbpred/svm.jpg

Lastly, we will discuss the support vector machine (SVM) approach. SVM is a linear

classification model that seeks to separate classes via a hyperplane. For example, if a data set has

two distinct classes that can be linearly separated by a line then one class would be lie on one side

of the line and the second class on the other. The distance from the line to the instance closest to

it on either side is called the margin. Maximizing the margin will produce best results due to the

fact that points near the line represent very uncertain classification decisions. For example, if a

point were to lie on or next to the line, there would be a near 50% chance of the classifier choosing

either side. When a data set is not linearly separable, the data set can be mapped to a new space

using a nonlinear transformation. This is known as the kernel trick and more information about it

and the SVM method can be found in numerous publications [3–5, 25]. Figure 3.10 is an example

of instances in an input space being mapped to a feature space where a plane is identified that

separates the two classes shown. By moving from the input space into a possibly high-dimensional

feature space more features can be identified to separate individual instances.

3.3.3 Training

Exposing classification algorithms to a training set allows it to learn to do its task. A

training data set contains examples that are characteristic of the problem to be solved. It learns

by looking at the provided examples of attributes and given a label or class can create its own

hypothesis as to the correlation between them [5]. By training our classifier we will be evaluating

how well the learning algorithm is able to learn the sample training data. This evaluation is done

22

using cross validation as mentioned previously. Many classification algorithms allow for some

tuning of parameters which can enhance the classifiers ability to interpret given data. If it is found

that an algorithm is not performing well some parameter tuning of that algorithm may increase its

ability to learn.

3.3.4 Evaluation with Test Set

When applying this method to a new design space, a designer may evaluate the algorithm

chosen to ascertain how accurately that algorithm is at predicting mode shapes. To evaluate our

chosen classifier, we will use test sets where every instance has been properly labeled with its

corresponding mode shape. These test sets contain instances of mode shapes that result from parts

or models that may or may not have been observed when creating the training data. For example,

training data may be compiled from a model that has varied in its parameters by±10% and testing

data may be compiled from the same model that has varied in its parameters from±10% to±100%.

While the change in parameters are randomized every iteration, there is a chance that within±10%

some test instance may be identical to some training instance.

By testing on data that has not been previously observed we can evaluate how well the clas-

sifier and this method can extrapolate a mode shape from geometry with which it has no previous

experience. If the training or evaluation of a classifier is unsatisfactory the designer can return to

a previous stage of the supervised machine learning process (see Figure 3.7). For the problem of

mode shape identification a number of factors can be investigated: the most relevant features may

not be taken into account, a larger training set may be needed, utilizing an inappropriate algorithm

or some parameters need tuning.

3.4 Mode Shape Identification

Once a classifier has been obtained we can now use it to assign class labels (mode shape

names) to instances where feature values are known but the class is unknown. This can be done

both within and without an optimization workflow. Upon obtaining a classifier a new sequence

is needed for implementation of this method. While the first 2 steps remain the same, gathering

23

Figure 3.11: Mode shape identification method

information from the user and data pre-processing, we will now use the classifier directly to label

mode shapes with the accuracy of the selected classifier. This process is shown in Figure 3.11.

24

CHAPTER 4. IMPLEMENTATION

The methods described in Chapter 3 were implemented in computer programs in order

to be utilized in an automated approach where a design can be iterated upon, or as a standalone

process where the designer can examine a specific design. A program was developed to create

NURBS surfaces to represent mode shapes for a set of modal analysis results. This program

outputs discretized displacements of surfaces to be used as feature attributes in the mode shape

identification process. The program written for this research utilized Siemens NX C/C++ API.

Another programming language that was used was the ANSYS Parametric Design Language to

automate the modeling, meshing, analysis, and results reporting for the training and testing of this

method. All of the modal analysis completed for this research was done using ANSYS 13.0. Weka

3.6.9 was used for its collection of machine learning algorithms and ability to perform statistical

analysis.

Figure 4.1: Sample Isight task

The applications used in this research have been integrated into optimization software to

enable a designer to identify mode shapes iteratively or on a specific design. SIMULIA’s Isight

optimization software was chosen for this research to allow a user to take advantage of the methods

25

functionality. A sample of how the programs mentioned above can be used to implement the

method presented in this research can be seen in Figure 4.1.

The task in Figure 4.1 can be run to gather data to be used in training and testing, or

for identification if a classifier has been obtained. A design of experiments (DOE) is the first

component in the task. The DOE initializes selected parameter values and passes them into the

subflow which creates a new modal analysis script and solves the modal analysis in ANSYS. The

results of the modal analysis are then stored to be used by the next step. The results of the modal

analysis are then read by the pre-processing component and used to create parametric surfaces that

represent mode shapes. The pre-processing component then outputs attributes that describe each

mode shape. These attributes can then be used by the Weka component to identify modes shapes

if a classifier is present. How a classifier is obtained will be described in the subsequent sections.

4.1 Gather User Information

The task in Figure 4.1 allows users to identify which parameters of a baseline design they

wish to change, by how much, and how many times within the DOE component. An example of

how the user can choose their design space is shown in Figure 4.2 below.

Figure 4.2: Modifying the design space in the DOE editor

26

4.2 Data Pre-processing

Preparing the data contained in the modal analysis results file to become feature attributes

of the model has several steps which are detailed below. The purpose of these steps, as described

previously, is to provide a basis for comparison in the presence of differing geometries and mesh

coarseness of four-edge surfaces. For a reference of this sequence see Figure 3.2.

4.2.1 Read in Displacements

The modal analysis results contain node locations and displacements in directions x,y,z as

well as the magnitude of each node’s displacement. The reading of the modal analysis results that

is to be stored by the program is done simply by storing all lines of the file in a std::vector of

std::strings. A basic tokenizer is used to extract the node positions and displacements that lay in

xyz space. This is a relatively simple process and so the code used for this step is not presented

here.

4.2.2 Normalize Nodal Locations and Displacements

In order to properly compare and contrast models with differing geometries, the magnitudes

of the nodal locations and displacements must be normalized. In this way parts with differing

geometries but the same mode shape can be easily identified through this method. Once the largest

displacement is determined in the results, all displacements are normalized. The normalization of

nodal displacements is done as described above in section 3.2.2 and is shown in the code below.

It can be seen from the code below that all nodal positions (xPos,yPos,zPos) are normalized

as well as the nodal displacement magnitude (usum). Because the displacement magnitude is

reported from a modal analysis instead of the magnitude and direction, a direction is imposed

relative to displacements in the z direction. This is necessary to capture negative displacements

as well as positive displacements due to the fact that the reported displacement magnitudes are all

positive. Line 16 in the code says that if the model is displaced in the negative z direction by the

modal analysis, make the displacement magnitude negative as well.

27

1 / / De te rmine Maximum Node L o c a t i o n s and D i s p l a c e m e n t
2 f o r (i n t i =0 ; i <(i n t) s u r f a c e N o d e s . s i z e () ; i ++)
3 {
4 i f (f a b s (s u r f a c e N o d e s [i] . xPos)>xPosMax) xPosMax = s u r f a c e N o d e s [i] . xPos ;
5 i f (f a b s (s u r f a c e N o d e s [i] . yPos)>yPosMax) yPosMax = s u r f a c e N o d e s [i] . yPos ;
6 i f (f a b s (s u r f a c e N o d e s [i] . zPos)>zPosMax) zPosMax = s u r f a c e N o d e s [i] . zPos ;
7 i f (f a b s (s u r f a c e N o d e s [i] . usum)>usumMax) usumMax = s u r f a c e N o d e s [i] . usum ;
8 }
9 / / N o r m a i l i z e t h e Node L o c a t i o n s and D i s p l a c e m e n t s & d e t e r m i n e t h e d i r e c t i o n o f

t h e d i s p l a c e m e n t magn i tude
10 f o r (i n t i =0 ; i <(i n t) s u r f a c e N o d e s . s i z e () ; i ++)
11 {
12 i f (f a b s (xPosMax) >0.0) s u r f a c e N o d e s [i] . xPos = s u r f a c e N o d e s [i] . xPos / xPosMax ;
13 i f (f a b s (yPosMax) >0.0) s u r f a c e N o d e s [i] . yPos = s u r f a c e N o d e s [i] . yPos / yPosMax ;
14 i f (f a b s (zPosMax) >0.0) s u r f a c e N o d e s [i] . zPos = s u r f a c e N o d e s [i] . zPos / zPosMax ;
15 i f (f a b s (usumMax) >0.0) s u r f a c e N o d e s [i] . usum = s u r f a c e N o d e s [i] . usum / usumMax ;
16 i f (s u r f a c e N o d e s [i] . uz <0.0) s u r f a c e N o d e s [i] . usum = s u r f a c e N o d e s [i] . usum *(−1) ;
17 }

4.2.3 Transform Data into NURBS Surface

From the normalized nodal positions we interpolate a parametric surface representing the

original geometry of the model created and analyzed by the modal analysis. This is done using the

NX API function call UF MODL create surf from cloud as demonstrated in the code below.

1 / / P o p u l a t e ’ c l o u d ’ wi th n o r m a l i z e d node l o c a t i o n s
2 f o r (i n t i =0 ; i <(i n t) s u r f a c e N o d e s . s i z e () ; i ++)
3 {
4 c l o u d [i] [0] = s u r f a c e N o d e s [i] . xPos ;
5 c l o u d [i] [1] = s u r f a c e N o d e s [i] . yPos ;
6 c l o u d [i] [2] = s u r f a c e N o d e s [i] . zPos ;
7 }
8 / / C r e a t e a NURBS s u r f a c e t h a t r e p r e s e n t s t h e o r i g i n a l model n o r m a l i z e d
9 UF MODL crea t e su r f f rom c loud (p o i n t c n t , c loud , NULL, NULL, U degree ,

10 V degree , U pa tches , V pa tches ,0 ,& a v g e r r o r ,& max e r ro r ,& m a x e r r o r i n d e x ,&
s u r f a c e t a g) ;

Since this surface was interpolated from the nodes in the original model, each node exists either

on or near the surface. Figure 4.3 shows a representation of this surface fitting process.

We then determine the u and v parameters for each node using the NX API function call

UF MODL ask face parm. Given a reference point UF MODL ask face parm returns the parameter

(u,v) on the face that corresponds to that reference point. A new point set is then created that will

be used to create a parametric surface that describes its mode shape. This mode shape surface is

28

Figure 4.3: Interpolation of node data into a NURBS surface

created using the parameters u and v and the nodal displacements collected earlier for the three

dimensions of each point in the set. The code below shows how this step was implemented.

1 f o r (i n t i =0 ; i <(i n t) s u r f a c e N o d e s . s i z e () ; i ++)
2 { / / Query each node f o r i t s u and v p a r a m e t e r s
3 myPoint [0] = s u r f a c e N o d e s [i] . xPos ;
4 myPoint [1] = s u r f a c e N o d e s [i] . yPos ;
5 myPoint [2] = s u r f a c e N o d e s [i] . zPos ;
6 UF MODL ask face parm (s u r f a c e t a g , myPoint , parm , f a c e p n t) ;
7 / / P o p u l a t e ’ c l ou d2 ’ wi th t h e u and v p a r a m e t e r s and d i s p l a c e m e n t s
8 c l ou d2 [i] [0] = parm [0] ;
9 c l ou d2 [i] [1] = parm [1] ;

10 c l ou d2 [i] [2] = s u r f a c e N o d e s [i] . usum ;
11 }
12 / / C r e a t e a NURBS s u r f a c e t h a t r e p r e s e n t s a mode shape
13 UF MODL crea t e su r f f rom c loud (p o i n t c n t , c loud2 , NULL, NULL, U degree ,
14 V degree , U pa tches , V pa tches ,0 ,& a v g e r r o r ,& max e r ro r ,& m a x e r r o r i n d e x ,&

s u r f a c e t a g 2) ;

The resulting parametric surface can then be used to obtain information about the mode

shape without regards to changing parameters in the design space by conforming all possible ge-

ometries to a uniform basis for comparison. That is, all possible geometries within the design

space will be parameterized in terms of u and v parameter values as discussed in section 2.3.

4.2.4 Output Parameterized Displacements

As mentioned previously, displacements were chosen to describe a surface that represents

a mode shape. A designer can identify vibrational mode shapes visually by observing how the

surface is displaced; for this reason displacements were chosen to be feature attributes. How well

the displacements describe the surface will be assessed when evaluating the classifier’s ability to

correctly identify its mode shape in Chapter 5.

29

After creating the parametric surface that represents a mode shape, points in real space

are retrieved from that surface using the NX API function call UF MODL ask face props. The

function call UF MODL ask face props returns a point (x,y,z) on the surface face that corresponds

to a given parameter (u,v). This can be seen being implemented in the code below where 121 (11

by 11) points were chosen to be collected from the surface to describe its shape. As mentioned in

Chapter 3, the number of points collected from a surface may be chosen to be different if desired

or if it is found that a different number of points better describes the mode shape surface.

1 f o r (i n t i =0 ; i <=10; i ++)
2 {
3 P . c l e a r () ;
4 f o r (i n t j =0 ; j <=10; j ++)
5 {
6 paramUV [0] = uParm ;
7 paramUV [1] = vParm ;
8 UF MODL ask face props (s u r f a c e t a g 2 , paramUV , p o i n t , u1 , v1 , u2 , v2 , un i t no rm

, r a d i i) ;
9 xyz [0] = p o i n t [0] ;

10 xyz [1] = p o i n t [1] ;
11 xyz [2] = p o i n t [2] ;
12 P . p u s h b a c k (xyz) ;
13 uParm += 0 . 1 ;
14 }
15 uParm = 0 ;
16 vParm += 0 . 1 ;
17 Q. p u s h b a c k (P) ;
18 }

Figure 4.4: Discretization of a mode shape surface into sections

30

Upon collecting the desired amount of points from the mode shape surface, the displace-

ments in the z direction are then placed in discrete groups as described in section 3.2.4 and as

visualized in Figure 4.4. Each square in Figure 4.4 represent the average displacement of the

surface for that region. By pulling 121 (11 by 11) points from the surface and grouping them

as illustrated in Figure 3.6, the code below is able to group these displacements into precisely

100 discrete sections in preparation to be written to a file and act as attributes of the mode shape

surface.

1 i n t inc rV = 0 ;
2 f o r (i n t p =0; p<10;p ++)
3 {
4 i n t inc rU = 0 ;
5 f o r (i n t k =0; k<10;k ++)
6 {
7 do ub l e sumP = 0 ;
8 f o r (i n t i = inc rU ; i<=inc rU +1; i ++)
9 {

10 f o r (i n t j = inc rV ; j<=inc rV +1; j ++) sumP += Q[i] [j] [2] ;
11 }
12 i nc rU ++;
13 do ub l e aveP = 0 ;
14 aveP = sumP / 4 ;
15 DispArray . p u s h b a c k (aveP) ;
16 }
17 i nc rV ++;
18 }

As discussed in Chapter 3, these attributes are then formatted and output to an ARFF file.

The code below is used to open and format an ARFF file. This file may be appended to if the file

already exists.

The code below shows how the discretized groups of displacements contained in DispArray

are written as a string of features separated by commas. A “?” label is given at the end of each

string of features to signify that it is of an unknown class. The class label can then be changed

manually to the correct class if needed to act as a training or test set.

31

1 / / I f an a t t r i b u t e f i l e does n o t e x i s t s t h e n c r e a t e
2 i f (! f i l e)
3 { a t t r i b u t e F i l e . open (”C:\\ModeResearch \\ a t t r i b u t e F i l e . a r f f ”) ;
4 a t t r i b u t e F i l e << ” @ r e l a t i o n Mode Shape\n\n ” ;
5 f o r (i n t i =0 ; i <100; i ++) a t t r i b u t e F i l e << ” @ a t t r i b u t e S e c t i o n ” << i +1 << ” r e a l

\n ” ;
6 a t t r i b u t e F i l e << ” @ a t t r i b u t e c l a s s {Mode1 , Mode2 , Mode3 , Mode4 , Mode5 , Mode6 ,

Mode7 , Mode8 , Junk }\n ” ;
7 a t t r i b u t e F i l e << ”\n@data\n ” ;
8 }
9 / / I f an a t t r i b u t e f i l e e x i s t s t h e n open and append t o i t

10 e l s e a t t r i b u t e F i l e . open (”C:\\ModeResearch \\ a t t r i b u t e F i l e . a r f f ” , i o s : : app) ;

1 f o r (i n t i =0 ; i <100; i ++) a t t r i b u t e F i l e << DispArray [i] << ” , ” ;
2 a t t r i b u t e F i l e << ” ?\n ” ;
3 a t t r i b u t e F i l e . c l o s e () ;

4.3 Machine Learning

The training and testing of algorithms to be used as classifiers was done in Weka for this

research. Again, a classifier is a function that can identify which class a new instance belongs to.

In order to obtain a classifier that will properly identify the mode shape for a given part we first

must train and test an algorithm for classification.

4.3.1 Define Training Data

To obtain an initial training set the designer must first run the task mentioned at the begin-

ning of this chapter. For this research we constructed a training set by changing the baseline design

of a model by ±10%. For example, if a baseline design has a length of 10 inches the training set

would include designs with lengths from 9 to 11 inches. After constructing the training data the

designer must then label the instances in the ARFF file manually. To correctly label these mode

shapes the designer may view each parts corresponding contour plot that results from the modal

analysis. The training set can be appended to through consequent runs in order to create a larger

training set. A larger training set may be desired if more training examples are needed to more

accurately and consistently identify mode shapes. These issues of accuracy will be addressed in

subsequent sections.

32

4.3.2 Selection of Machine Learning Algorithm

As described in Chapter 3, three algorithms to apply to this classification problem were

chosen: k-Nearest Neighbors (k-NN), Decision Trees, and Support Vector Machines (SVM). These

algorithms are available in Weka’s Explorer application. The Explorer is an environment for ex-

ploring data with Weka [6]. In Weka the IBk algorithm was chosen which implements the k-NN

approach as discussed. To implement a decision tree learner, Weka’s J48 and Random Forest were

chosen. J48 is a simple decision tree as described in Chapter 3, whereas Random Forests operate

by constructing a multitude of decision trees and outputting the class that is the mode of the classes

output by individual trees. Weka’s SMO algorithm was chosen to implement the SVM approach.

More detail about Weka’s Explorer application and each algorithm used in this implementation can

be viewed in Weka’s documentation [6].

4.3.3 Training

The training of each algorithm was also done using Weka’s Explorer application with

the training set obtained from the previous pre-processing step. Leave-One-Out Cross Valida-

tion (LOOCV) was used to evaluate how well each algorithm was able to learn the training data.

LOOCV is a special case of the general k-fold cross validation method. LOOCV works by taking

a data set with n examples and performs n experiments. LOOCV uses n−1 examples for training

and the remaining example for testing. An example of how the data is split in LOOCV as described

is shown in Figure 4.5. The overall accuracy can be obtained by averaging the accuracies com-

puted on each experiment. LOOCV is used in this research in order to allow for sparse training

data so as to train on as many examples as possible. LOOCV is easily implemented in Weka’s Ex-

plorer environment by simply selecting “Cross-validation” and inputting the appropriate number

of folds [6].

Algorithms are then analyzed using Weka’s Experimenter which enables users to create,

run, modify, and analyze experiments [6]. To ascertain if there were statistical differences between

the selected algorithms the Experimenter’s paired t-test was used and the results of which can be

found in Chapter 5.

33

Figure 4.5: Splitting data in leave-one-out cross validation (LOOCV)

4.3.4 Evaluation with Test Set

In the research performed, after an appropriate learning algorithm was chosen it was tested

by subjecting the classifier to models that contained changes in their baseline design ranging from

±10% to±100% in order to ascertain the robustness of the method. In this way we see how far this

method can extrapolate outside of the initial training examples given. These tests were evaluated

in Weka and the results of the training and testing of these algorithms will be given in Chapter 5.

4.4 Identify Mode Shape

After a classifier has been obtained, the task shown at the beginning of this chapter can be

run to identify vibrational mode shapes. In the task Weka is called from a batch file that runs a

new solution set against the classifier and outputs its predictions. The training dataset location,

algorithm, and the location of the dataset to be identified can all be input into the Weka batch file.

An example of a command line prompt that is run from this batch file can be seen in the code

below.

1 j a v a −cp ”C : / Program F i l e s / Weka−3−6/weka . j a r ” weka . c l a s s i f i e r s . l a z y . IBk − t ”C

: / ModeResearch / a t t r i b u t e F i l e T r a i n . a r f f ” −T ”C : / ModeResearch / a t t r i b u t e F i l e .

a r f f ” > ”C : / ModeResearch / myOutpu tF i l e1 . a r f f ”

34

CHAPTER 5. RESULTS

The goal of this research, as discussed in Chapter 1, is to develop a method to automatically

identify mode shapes of a finite element modal analysis that improves on previous automated

attempts. The developed method leverages parameterized geometric representations of vibrational

mode shapes that allow machine learning to match differing parts of varied geometry or mesh

coarseness. This method can be utilized in an iterative design process, such as an optimization or

design of experiments as well as in a standalone operation.

While there are a number of modes that may be of interest to a designer, this research only

looked at eight modes that result from a modal analysis for identification. These modes can be seen

in Figure 5.1. Each of these modes signify their own class by being labeled as “Mode1”, “Mode2”,

... , “Mode8”. Any other mode that results from a modal analysis that cannot be classified as one of

these modes is labeled as “Junk”. It is the task of the classifier to distinguish between the different

classes given the displacement attributes provided.

Figure 5.1: Eight trained mode shapes for identification

35

Section 5.1 of this chapter reports the results of selecting an algorithm based on a supplied

training set. Section 5.2 shows the results of using the method to identify models that have been

meshed with different levels of detail than of those in the training set, and details the effectiveness

of the method in comparing parts with different geometrical definition. Section 5.3 presents the

results of utilizing the method in an iterative design process.

5.1 Machine Learning - Algorithm Selection

The method was tested on three different geometries. First a simple rectangular plate de-

fined by four parameters: length, width, thickness, and mesh coarseness. The second was tapered

and twisted along with changes in length, top width, bottom width, thickness, twist, and mesh

coarseness. Lastly a plate was designed similar to the second plate with the addition of two non-

linear edges. A sample of these geometries can be seen in Figure 5.2.

Figure 5.2: Isometric views of each test geometry

A training dataset of 200 instances was compiled containing variations in a model’s base-

line design of ±10% as described in Section 4.3.1. The simple rectangular plate described above

was the only model used to compile this training set. The training set containing 200 instances

consists of 20 instances for each class Mode1 through Mode8 and 40 instances for the Junk class.

As discussed in Section 4.2.4, 100 features were pulled from each surface to create each instance in

this research. This training set was used in the training and evaluation of each algorithm selected.

How an algorithm performs can be seen visually in a layout known as a confusion matrix. For

36

an example, how the k-NN algorithm performs with the training set can be seen in the confusion

matrix in Table 5.1 where LOOCV was used.

Table 5.1: Confusion Matrix resulting from LOOCV of training data using k-NN

Actual Predicted Class
Class Mode1 Mode2 Mode3 Mode4 Mode5 Mode6 Mode7 Mode8 Junk
Mode1 20 0 0 0 0 0 0 0 0
Mode2 0 20 0 0 0 0 0 0 0
Mode3 0 0 20 0 0 0 0 0 0
Mode4 0 0 0 20 0 0 0 0 0
Mode5 0 0 0 0 20 0 0 0 0
Mode6 0 0 0 0 0 20 0 0 0
Mode7 0 0 0 0 0 0 20 0 0
Mode8 0 0 0 0 0 0 0 20 0
Junk 0 0 0 0 1 0 0 0 39

As can be seen by the values in the diagonal elements of the Table, the k-NN algorithm

was able to learn the training data with 99.5% accuracy. Similar assessments were made with the

other algorithms chosen. The algorithms were subjected to a paired t-test at a 5% significance

level in Weka’s Experimenter to assess their differences, and the results of which can be seen in

Table 5.2. It is shown that there is no significant difference at the 5% significance level between

the IBk algorithm and the RandomForest algorithm, whereas there is significant degradation in the

J48 and SMO algorithms. Since it was found that there is not a significant difference between the

IBk and Random Forest algorithms, IBk was used due to its simplicity, speed, and ability to learn

the training set.

The machine learning algorithms used in this research were able to induce very accurate

models to distinguish between classes based on displacement values. Once the displacement data

that resulted from the modal analysis was processed into feature vectors, machine learning was

able to learn the mode shapes with low error. Several tests were performed to show that these

results hold over a range of models and parameters. These tests are presented in the next section.

The success seen here using machine learning is consistent with others who have also utilized

machine learning to realize great benefits [11, 26]

37

Table 5.2: Results of a Paired T-test

Dataset (1) (2) (3) (4)
Mode-Shape 99.50 95.50 • 98.85 81.00 •
◦, • statistically significant improvement or degradation

(1) lazy.IBk ’-K 1 -W 0 -A \”weka.core.neighboursearch.LinearNNSearch -A \\\”weka.core.EuclideanDistance -R first-last\\\”\”’
-3080186098777067172

(2) trees.J48 ’-C 0.25 -M 2’ -217733168393644444
(3) trees.RandomForest ’-I 10 -K 0 -S 1’ -2260823972777004705
(4) functions.SMO ’-C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K \”functions.supportVector.PolyKernel -C 250007 -E 1.0\”’ -

6585883636378691736

5.2 Mode Identification

By utilizing parametric geometries in this research, vibrational mode shapes are easily iden-

tified without regards to mesh coarseness. Figure 5.3 shows three geometrically identical models

that have differing mesh densities and therefore a differing number of nodal displacements in their

modal shape vectors. As expected, because the models in Figure 5.3 are geometrically identi-

cal the mode shapes determined from a modal analysis are also identical. The results of testing

this method include such variations of mesh densities. Mesh density is dictated by the number of

nodes along the width and length of the model and are defined in the baseline designs reported in

Table 5.3. Table 5.3 contains the parameters that define each model used in this research.

Figure 5.3: Three geometrically identical models meshed differently

In order for this method to be used in an iterative design process it must be able to identify

modes that result from models that have varied some parameter value(s) of its baseline design.

These changes in parameters may be small or large. Such change is illustrated in Figure 5.4 where

the length of the model on the right has increased from its baseline design on the left.

38

Table 5.3: Parameters of baseline designs

Parameters of Baseline Designs (inches)

Rectangular Plate
Tapered Twisted

Linear Plate
Tapered Twisted
Non-linear Plate

Length 20 20 20
Width 20 N/A N/A
Top Width N/A 20 20
Bottom Width N/A 20 20
Thickness 0.5 0.5 0.5
Nodes along Width 25 25 25
Nodes along Length 25 25 25
Twist N/A 1 1

Figure 5.4: A baseline model and modified design

This method was subjected to three types of geometry as described earlier where each

model’s parameters were subjected to changes in their baseline design ranging from ±10% to

±100%. The DOE in this method was used to produce the varied geometry according to a defined

parameter percent variation. The tests were performed by compiling test sets of various sizes

ranging from 20 to 50 instances per test set. Upon compiling a test set it was manually labeled to

ensure that each instance that represented a mode shape was correctly labeled via visual inspection.

39

By labeling the instances in the test set Weka could then report how accurate it was in its prediction

by comparison to the correctly labeled test set.

Tests were performed for each geometry type three times to produce an average accuracy.

The average accuracies for the three generated tests are reported in Table 5.4. These results can be

compared to the results from the research performed by Selin et al. shown in Table 5.5.

Table 5.4: Accuracy of the method averaged over three tests

Mode Identification Method Accuracy over 3 Tests
DOE Parameter Variation

±10% ±20% ±30% ±40% ±50% ±60% ±70% ±80% ±90% ±100%
Rectangular Plate 100% 100% 100% 100% 100% 99% 97% 97% 90% 98%

Tapered Twisted Linear Plate 100% 100% 100% 99% 96% 94% 92% 81% 76% 93%
Tapared Twisted Non-linear Plate 99% 100% 98% 97% 96% 97% 97% 89% 86% 84%

Table 5.5: Results from Selin et al. using surface templates

Mode Identification Method Accuracy - Surfaces
DOE Parameter Variation

±10% ±20% ±30% ±40%
Rectangular Plate 96% 87% 82% 87%

Tapered Twisted Linear Plate 93% 90% 82% 84%
Tapared Twisted Non-linear Plate 91% 88% 87% 82%

The results of testing the rectangular plate show significant improvement over previous

research. It can be seen from Table 5.4 that the accuracy of the mode identification method de-

veloped in this research is related to the amount of variation in model parameters. However, such

degradation of accuracy does not come into effect until the variation reaches ±60%. Throughout

the full range of parameter variation the results show that the average accuracy never falls below

90% for the rectangular plate. Through ±50% variation of the rectangular plate the accuracy was

found to be 100%.

The tapered twisted linear plate showed a similar relationship between the amount of vari-

ation and the method accuracy with amplified effects. This loss of accuracy is largely due to the

fact that the baseline design of the tapered twisted linear plate has different parameters than those

40

for the rectangular plate used in compiling the training data. By observing Table 5.4 it can be seen

that this method was able to identify mode shapes with 100% accuracy through ±30% variation.

At ±90% variation is found the lowest accuracy in the method of 76%.

Next, the tapered twisted non-linear plate model was used for testing. This model, hav-

ing the most differences from the model used in the training set, showed results consistent with

the relationship between variation and the method accuracy. While staying above 95% accurate

through ±70% parameter variation, the average of the three tests show that for a tapered twisted

non-linear plate this method is never 100% accurate. While the results show that at±20% variation

the method has 100% accuracy, because it is only 99% accurate at the ±10% variation level, we

cannot say that this method is ever 100% accurate for the tapered twisted non-linear plate model.

By investigating which mode shapes were incorrectly matched, it was determined that the

mismatches were mainly caused by two problems. The first problem was when one mode closely

resembled another and the distinctions between the two were difficult to identify even by visual in-

spection. This problem may be amplified when looking at higher order modes when distinguishing

between mode shapes is subtle. The function used to create a NURBS surface from nodal displace-

ments determines an approximate surface from a cloud of points. As it is an approximation and

does not pass through each point, the surface may not represent the mode shape as accurately as

possible. This approximation could add to the problem of misidentifying similar mode shapes. An

example of how mode shapes can blend into one another can be seen in Figure 5.5 where a distinct

mode is represented at the ends of the Figure and are conflated with each other towards the middle.

Figure 5.5: Sample of modes blending into another

The second problem that was observed was when a mode shape had not been properly

trained. For example in Figure 5.6 both contour plots represent the same mode in bending, but

41

while examples of the mode on the left was included in the training set the mode on the right was

not thus causing some error when the untrained mode was encountered. Both of these problems

could be relieved by a larger training set that includes more examples of distinct mode shapes. The

research performed has verified that by expanding the training set to include more examples these

problems could be overcome. However, through continual use of this method new mode shapes

would arise that exhibit the problems just mentioned and required further adjustment to the training

set.

A final caveat that should be clear is that in Section 4.2.4 it was discussed that the dis-

placements collected as attributes were in the z direction. This method looks at displacements

perpendicular to a working plane. In this research the working plane was the xy plane and as such

z displacements were used as feature attributes. If the designed model is significantly displaced

outside of the working plane information about the model could be lost. If in varying parameters

of a design a model should be displaced in a direction that is not primarily perpendicular to the

working plane, then the proposed methods effectiveness is not guaranteed and new attributes that

can describe the model should be explored. For this reason a designed model should stay relatively

in a working plane for best results. For established design processes this should not pose a problem

as a working plane can be readily identified.

Figure 5.6: Sample of trained and untrained mode shape of same mode

Despite the inefficiencies found in this method, the results show that the identification of

mode shapes using machine learning and parametric surfaces is feasible. The results reported here

demonstrate improvement in overall accuracy over a larger design space using machine learning

42

over previous attempts using a MAC calculation. The advantage of using machine learning in

this method is its ability to be modified to more accurately identify mode shapes. By modifying

or adjusting algorithms or training data, a classifier can become more accurate in its predictions.

Machine learning also allows for additional descriptive attributes to be used in conjunction with

such attributes of displacements used in this research thus allowing for the identification of more

complex parts. For example, by using the number of peaks and valleys present in a mode shape

may help identify higher order modes such as the mode shown in Figure 5.7.

Figure 5.7: Example of a high order mode shape

5.3 Mode Identification in Iterative Design

As discussed in previous chapters, this method may be implemented as an iterative design

process. Figure 5.8 shows an example of this method set up to run through the task shown. The

task starts with a DOE that initializes parameter values and passes them into the subflow which

creates a new modal analysis script, and solves the modal analysis in ANSYS. The task then

performs the pre-processing step as described in Section 4.2 to prepare the modal analysis results

for identification. The last component in the task calls Weka for the identification of mode shapes

resulting from the modal analysis results.

43

Figure 5.8: Isight mode identification task

By automatically identifying mode shapes significant time savings have been realized over

the current method of visual inspection. To test the time required to identify vibrational mode

shapes in this method 40 runs were completed, each run producing 5 mode shapes to be identified.

These results are benchmarked against the current method of visual inspection and to previous

work performed by Selin et al. in Table 5.6. Due to the similarities in approach, the results for time

required via visual inspection of mode shapes will be those reported by Selin et al. [2]. Selin’s

research used both parametric curves as well as surfaces. Since the proposed research uses para-

metric surfaces, the time saving reported herein will be comparing time to identify mode shapes

using parametric surfaces only.

Table 5.6: Benchmarking time required of mode shape identification methods

Identification Method Total Time (sec) # of Matches Time per Match (sec)
Proposed Method 159.86 200 0.7993

Selin et al. 311.07 200 1.55535
Visual 2433.28 200 12.1664

When this method was used as illustrated in Figure 5.8 it took an average of 0.7993 seconds

per match. Benchmarking the proposed method delivers time savings twice as fast as the method

using the MAC and parametric surfaces proposed by Selin et al. and 15 times faster than visual

inspection. While it is possible that using this method may result in an incorrect identification

44

of mode shapes as discussed in Section 5.2, the significant time savings that are achieved present

a compelling argument for the use of this method even if the identification is not always 100%

accurate.

45

CHAPTER 6. CONCLUSIONS

This research shows that machine learning, which has been used for a wide array of ap-

plications to solve classification and regression problems, can be effectively used to identify the

mode shapes of dissimilar finite element models. This is possible through the representation of the

model’s modal analysis results as parametric surfaces which allows parts with different geometric

definitions and mesh coarseness to be matched to trained mode shapes. By using parametric sur-

faces in this research, the behavior of a mode shape can be well defined over the entire part given

that descriptive attributes that use information over the whole model are utilized.

The surface approximation function in the NX API make it possible to use the nodal po-

sition and displacement data to create parameterized surfaces that represent specific mode shapes

to be used in this method. Once the results from a finite element model are transferred into a pa-

rameterized geometric form, attributes are then easily collected to be used for classification using

machine learning. Machine learning is then able to identify mode shapes between models of dif-

ferent mesh density and geometric definition given a trained classifier. This method has shown to

have high accuracy and over a large design space when applied to four-edge surfaces. The high ac-

curacy achieved by this method suggests that the chosen attributes of displacements was sufficient

in describing the mode shape surfaces used. The results of this research also suggests that machine

learning could be a valuable tool in identifying vibrational mode shapes of geometries other than

four-edge surfaces provided proper feature attributes can be obtained.

By automating the mode identification process, more detail about a parts dynamic proper-

ties can be obtained without having to visually inspect each modal solution. The greatest benefit

of this research can be realized when implementing an iterative design process, such as optimiza-

tion or design of experiment. In iterative design processes the geometric parameters of a model

are modified with each iteration. By using parametric surfaces to represent mode shapes, models

of differing geometric or mesh properties to be successfully identified. While this method is not

46

100% accurate in the identification of the modes contained in the analysis results over all possible

variations, its high accuracy can provide a designer with an understanding of the part’s properties

in the design process.

Comparing the accuracies of this research that uses machine learning with prior work by

Selin et al. that uses a MAC calculation to identify mode shapes indicate that machine learning

provides more accurate results over a broader design space. The time required to execute the

proposed method has twice the time saving realized by Selin’s work using parametric surfaces

and 15 times faster than visual inspection of results. These time savings can become even more

significant when a large number of modes are identified within an iterative process.

6.1 Recommendations

A limitation of the developed mode identification method, as mentioned previously, is that

only the nodal displacements in the z direction are being taken into account to define the attributes

that represent mode shapes. An improvement would be realized if features of the model could be

identified that described the model without respect to its initial positioning in real (xyz) space. This

would retain the level of detail captured in the NURBS surface representations of mode shapes,

and allow for an even broader design space to be used. This is due to the fact that information

about the model could be retained regardless of a relation to a workplane.

The surface fitting algorithm that is called using the NX Open C API is another limitation

in the developed method. The method is not reliable in fitting a surface through a set of points

that accurately describes the finite element model, especially as higher order mode shapes are

encountered. To improve the surface fitting required by this research another method that is better

capable of fitting surfaces through each point in a point cloud as opposed to using a least squares

approximation would be have to be realized. In so doing, NURBS surface representations of mode

shapes would become more accurate and could help alleviate the problem of misidentification.

If another method were to be realized that does not require a CAD environment for the

fitting of surfaces, then more benefits in the form of time savings could be realized. Currently,

a portion of the execution time within the process is starting a CAD session when the method is

run. This is done in order to call the function from the API which constitutes a significant amount

47

of time. If a surface fitting function that is independent from CAD could be used then more time

savings would be achievable.

Identification of mode shapes using machine learning comes with some uncertainty. Quan-

tified uncertainty in the mode shape identification process is an important issue that can be lever-

aged to aid a designer in understanding the results of the proposed method. What kind of un-

certainty or confidence level that is available is algorithm dependent and may not always be easily

available. Developing a means to leverage this uncertainty would improve this method by allowing

the identification of mode shapes that fall below a specified uncertainty level to be handled by the

designer.

While this research only applies to two dimensional finite element models, the ability of

machine learning to choose attributes that can describe a model’s features can also be used to

identify more complex models. Further research in obtaining feature attributes that can describe

three dimensional finite element results would prove useful in more complex analyses.

48

REFERENCES

[1] Gade, S., Herlufsen, H., and Konstantin-hansen, H., 2002. “How to determine the modal
parameters of simple structures.” Sound & Vib., 36(1), pp. 72–73. 1, 5

[2] Selin, E., 2012. “Application of parametric nurbs geometry to mode shape identification and
the modal assurance criterion.” Master’s thesis, Brigham Young University, April. 1, 5, 37

[3] Mitchell, T. M., 1997. Machine Learning. McGraw-Hill. 1, 5, 6, 16, 18

[4] Alpaydin, E., 2010. Introduction to Machine Learning., 2 ed. MIT, Cambridge, Mas-
sachusetts. 1, 6, 16, 17, 18

[5] Kotsiantis, S. B., 2007. “Supervised machine learning: A review of classification techniques.”
Informatica, 31, pp. 249–268. 2, 18, 19

[6] Mark Hall, Eibe Frank, G. H. B. P. P. R. I. H. W., 2009. “The weka data mining software: An
update.” SIGKDD Explorations, 11(1). 3, 18, 27, 28

[7] Burns, L., 2004. “MAC Evaluations Utilized in FEA Analysis for Mode Identification.”
Conference & Exposition on Structural Dynamics, 4(1), pp. 2008–2017. 5

[8] Ewins, D. J., 2009. Modal Testing: Theory, Practice and Application., 2nd ed. Wiley. 5

[9] Hearn, G., and Testa, R., 1991. “Modal analysis for damage detection in structures.” Journal
of Structural Engineering, 170(10), pp. 3042–3063. 5

[10] Harrington, P., 2012. Machine Learning in Action. Manning. 5

[11] Satish B. Satpal, Yogesh Khandare, A. G., and Banerjee, S., 2013. “Structural health moni-
tering of a cantilever beam using support vector machine.” Journal of the Acoustical Society
of America, 5(1), pp. 1–7. 6, 32

[12] Liu, C., and Fujisawa, H., 2007. Classification and learning for character recognition: Com-
parison of methods and remaining problems National Laboratory of Pattern Recognition
(NLPR),Beijing, China. 6

[13] Hung, S., and Jan, J., 1997. “Machine Learning in Engineering Design - An Unsuper-
vised Fuzzy Neural Network Case-Based Learning Model.” Intelligent Information Systems,
pp. 156–160. 6

[14] Bishop, C. M., 2006. Pattern Recognition and Machine Learning. Springer. 6

[15] Witten, I. H., and Frank, E., 2005. Data Mining: Practical Machine Learning Tools and
Techniques., 2nd ed. Elsevier. 6

49

[16] Piegl, L., and Tiller, W., 1997. The NURBS Book. Springer-Verlag Berlin Heidelberg, New
York, New York. 6, 8

[17] Zeid, I., 2005. Mastering CAD/CAM. McGraw-Hill, Boston. 7, 8

[18] Sederberg, T. W., 2012. Computer Aided Geometric Design - Course Notes. 8

[19] Wolpert, D. H., and Macready, W. G., 1995. No free lunch for search The Sante Fe Institute,
February. 16

[20] Zanifa Omary, F. M., 2010. “Machine learning approach to identifying the dataset threshold
for the performance estimators in supervised learning.” International Journal for Infonomics,
3(3), pp. 314–325. 16

[21] Alpha, W., 2012. Paired t-test http://mathworld.wolfram.com/Pairedt-Test.html. 16

[22] David W. Aha, Dennis Kibler, M. K. A., 1991. Instance-based learning algorithms., Vol. 6
Springer. 16

[23] Georgios Paliouras, Vangelis Karkaletsis, C. D. S., 2001. Machine Learning and Its Applica-
tions: Advanced Lectures. Springer. 16

[24] Ins M. Galvn, Jo M. Valls, M. G. P. I., 2011. “A lazy learning approach for building classifi-
cation models.” International Journal of Intelligent Systems, 26(8), pp. 773–786. 16

[25] Rong Xiao, Jicheng Wang, F. Z., 2000. “An approach to incremental svm learning algorithm.”
Tools with Artificial Intelligence, 12, pp. 268–273. 18

[26] Skowronski, M., and Harris, J., 2006. “Acoustic detection and classification of microchi-
roptera using machine learning: Lessons learned from automatic speech recognition.” Inter-
national Journal of Advanced Structural Engineering, 119(3), pp. 1817–1833. 32

50

