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ABSTRACT 
 

 Method for the Simulated Layup of Composite Fabrics   
 

David Christensen 
Department of Mechanical Engineering, BYU 

Master of Science 
 

Due to the complexity of designing advanced composite parts, many software tools have 
been developed to aid the designer and reduce design cycle time. Draping is one of those tools 
and is used to predict the fiber angles throughout the part. This application of draping is to 
simulate the actual hand layup process that a technician would go through while creating a multi-
layered laminate composite part. This method is the first to use plies as an underlying surface for 
draping instead of just using an offset mold surface. This method can visualize full 3D ply 
geometry taking into account the thicknesses of the underlying plies and their drop-off regions 
which a designer could use to avoid superimposing ply drop-offs. Physical testing showed that 
this method predicts ply drop-off regions reasonably well and allows the designer to visualize the 
final shape of the laminate. The method also provides for re-ordering of the plies while keeping 
their cut-out shape the same because of its reverse-process draping technique. 

 
Three methods of draping were explored in order to find the best method. Multiple test 

parts were created with specific features that are difficult to drape. The method to drop fabric to 
the surface was the most versatile while a method published by Wang was the best for convex 
surfaces and superior to spread-type draping. No one method worked well for all surfaces. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords:  draping, composites, simulated layup 
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1 INTRODUCTION 

“Composite materials are used in a wide range of applications in structural design due to 

their superior mechanical properties over conventional materials. For example, in the aerospace 

industry, structures are usually built from materials with high strength and stiffness to weight 

ratios, and composite materials often serve these characteristics adequately. However, due to the 

complex behavior of composite materials, the design of a structural component using them is 

more complicated than one using conventional material.”[1] This design complexity has created 

a need for engineering tools to speed the design process. 

 Problem Overview 1.1

Due to the complexity of composite parts, there are many problems with accurately 

representing them in a virtual environment. Two of these problems are finding the correct fiber 

angles when a ply is draped on a mold and determining the location and geometry of ply drop-

offs. 

The first problem is commonly approached using a method called draping. Draping tries 

to predict and model the final shape and fiber angles of the fabric. In composite part 

manufacturing two relevant processes are vacuum bagging and resin transfer molding. In 

vacuum bagging and resin transfer molding, composite fabric plies are placed on the mold 

surface in layers. Each layer is made of some kind of fiber surrounded by a matrix material. 
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Fibers are usually made of fiberglass or carbon fiber and, in rarer cases, aramid. The matrix 

material is usually some type of polymer like polyester or epoxy. Vacuum bagging and resin 

transfer molding can take almost any shape. When each layer is placed in the mold, the fabric 

deforms to conform to the curvature of the mold. If the mold has curvature in two directions, it 

causes the fibers in the fabric to rotate relative to each other in the plane of the fabric which is 

called fabric shear. This deformation can lead to bunching and wrinkling of the fabric, bridging 

of the fabric, and due to the change in fiber directions, changes in the strength properties of the 

final laminate can occur which is one of the reasons draping exists. Due to the complexity of 

designing composites, many computer applications have been created to predict how a fabric will 

drape [2]. 

Ply drop-offs occur when a larger layer of fabric is placed over a smaller layer. Drop-offs 

are areas of stress concentration in the final part due to the free edge of the fabric. All of the 

algorithms to date have represented the fabric as a surface, neglecting the thickness of the fabric. 

The draping method in this thesis models the thickness of the fabric which allows for predicting 

the correct shear after a ply drop-off. 

 Thesis Objective 1.2

The objective of this thesis is to explain a method that has been created to simulate the 

draping of a fabric on a mold surface while taking into account the thickness of the fabric. The 

method specifically will: 

• Create a representation of a fabric that incorporates both thickness and cut-out 

shape 

• Predict the fiber angles throughout the part 

• Develop true ply geometry including ply drop-offs 
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This method is meant to be a quick check for designers to make sure their part is able to 

be draped without wrinkles and to avoid superimposing ply drop-offs. 

 Problem Delimitation 1.3

This method is not meant as a precise analysis tool but as a quick approximation for use 

during the design phase of a product. This method does not include an external knowledge-

system incorporating design rules. It also does not include a method to create an FEA model 

from the drape or a way to interactively change the ply boundaries once they are created. These 

are suggested as topics of future research. 

 Thesis Organization 1.4

Chapter 2 will give a brief background on composite materials, current design tools and a 

literature review on some draping methods and other topics relevant to this method. Chapter 3 

discusses the new draping method generally while Chapter 4 goes through the implementation of 

this method. Chapter 5 explains the results from this method and results of testing. The sixth 

chapter discusses the conclusions and future research of this project.  



5 

2 BACKGROUND 

 Composites Primer 2.1

Composite design and analysis is much more complex than design using homogeneous 

materials. Despite the complexity, composites offer certain advantages over homogeneous 

materials. The main advantage of using composites over homogeneous materials is a higher 

strength to weight ratio according to Strong [3]. This has led to heavy use of advanced 

composites in the aerospace industry.  

2.1.1 Relevant Material Types 

Composites come in many forms but this thesis refers to continuous fiber reinforced 

composites. The fibers in these composites are usually a fabric or unidirectional material and can 

be either pre-impregnated called “pre-preg” or with the matrix material or dry without any 

matrix. Both pre-preg and dry fabrics can be modeled by the method found in this thesis. Uni-

directional fabric does not drape well and is not considered. 

2.1.2 Relevant Manufacturing Processes 

Resin transfer molding and vacuum bagging are two processes that are relevant to this 

thesis. In resin transfer molding, a mold cavity is filled with dry woven and/or unidirectional 
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material in layers. The mold is closed, resin and a catalyst are mixed and injected through ports 

in the mold (See Figure 2-1:Resin Transfer Molding). 

 

 

Figure 2-1:Resin Transfer Molding 

 

In vacuum bagging only one side of the mold is needed. Either dry fabric is impregnated 

and then placed on the mold or pre-impregnated material is laid down and a bag is placed around 

the part. A vacuum is attached which removes the air and excess resin from the part which 

applies atmospheric pressure to the bag side of the mold (see Figure 2-2: Vacuum Bagging). 

Resin transfer molding has excellent wet-out which is a measure of how well the fibers are 

impregnated with resin. Good wet-out decreases the amount of voids found in the part which 

increases its strength [3]. Vacuum bagging generally has more voids than resin transfer molding, 

but the amount of voids can be decreased using pre-impregnated material. 
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Figure 2-2: Vacuum Bagging 

 

2.1.3 Laminates 

One layer of fabric would have insufficient strength in most cases so most advanced 

composites are created using multiple layers laid on top of each other in a laminate. The 

designer’s main goal is to define a ply. A ply is a layer of fabric or unidirectional material that 

has a specified cut-out shape and angle relative to the laminate coordinate system. A designer 

can choose an orientation for each ply thus optimizing the strength properties of the laminate by 

putting more of the fibers in the load direction and less in the other directions. This is one reason 

composites are lighter than isotropic materials. 

Both vacuum bagging and resin transfer molding build up a laminate by laying plies on 

top of plies over a mold surface. The method for simulated layup found in this thesis will show 

what each ply looks like when laid down along with its corresponding fiber angles. Only fabric 

plies are considered for this thesis; not unidirectional material.  
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 Current Design Tools 2.2

Current laminate design systems such as PACKS (developed at Boeing, purchased by 

Unigraphics), SCADS (developed at the University of Kansas), AUTOLAY and others have 

already been developed because of the complexity of modern composites [1], [2], [4], [5]. They 

have shown significantly decreased design cycle time and cost savings of up to 60% while 

designing composite parts [2].  

Typically, “a designer focuses his or her energy on manipulating lines in space, with the 

intention of eventually describing the concept of a ply. Unfortunately, the actual details of the 

ply have historically been neglected. Specifically, the true 3D geometry of the ply is not 

considered, merely an approximation of the geometry. Generally, that approximation consists of 

wireframe ply boundaries projected to the original tool surface, neglecting the thickness effect of 

adjacent plies or thickness transition details at a ramp between two constant thickness regions,” 

[2]. In the literature review for this research, not other method was found that modeled the 

thickness effects of the ply drop-offs. In the same paper Hale describes how composite parts are 

frequently divided into zones and each zone is defined independently which causes problems due 

to incompatible stacking sequences and ply drop-offs. PACKS tries to mitigate those problems 

by using a global database for the whole part and incorporates design rules and knowledge while 

still keeping the part divided into zones. 

Hepworth et al. describe a method for automatically creating ply geometry [6]. This 

paper takes a step away from the zone based definition which eases the problems associated with 

designing in zones. In another paper, Hepworth et al. describe an optimization approach to 

designing a laminate using a global ply table and a mid-surface representation of the laminate 

[7]. Elements are defined using the global ply table adding plies by priority and the thickness of 
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the part at the center of each element. While this is a quick way of producing an approximation, 

it does not take into account the actual ply geometry. Neither paper by Hepworth takes into 

account the local fiber angles of the ply due to draping. The method in this thesis takes into 

account ply thicknesses unlike current design tools. The lack of a zone based definition allows 

for a more accurate representation of plies including the drop-off zone. 

 Tessellated Surfaces 2.3

Tessellated surfaces are surfaces made up of many individual triangle facets. This type of 

surface is used in computer graphics extensively and is the basis for displaying almost all 

interactive 3d models on a computer. The advantages of tessellated surfaces over other types of 

surfaces such as NURBS surfaces are: 

• They can take any shape 

• Accelerated graphics cards can display them 

• Local operations can be performed on them such as removing a face or filling a 

hole 

• Parts of the surface can be changed without affecting other parts of the surface 

• CAD systems already create them to display the part on the screen as shown in 

Figure 2-3: Tessellated Surface 

There are some disadvantages to tessellated surfaces also: 

• They are not continuous 

• They require more data 

• They are not parameterized like NURBS 
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Figure 2-3: Tessellated Surface 

 

The implementation of this method uses a tessellated surface representation because of 

the advantages listed above – in particular the advantage of taking on any shape. With current 

computer speeds and memory capacities, the larger amount of data required is becoming less 

important. 

 Draping 2.4

Draping is a field of research that predicts the fiber directions of a fabric after it is placed 

on the mold surface. There are three main methods to calculate the draped ply: the kinematic 

approach, the FEA approach, and the mixed approach. These approaches are explained as well as 

the methods of fabric deformation and the way material properties are determined for a 

composite fabric which is necessary for the FEA and mixed approaches. 

2.4.1 Kinematic Approach 

The first way to calculate a draped ply is called the kinematic approach. The kinematic 

approach builds a pin-jointed net. First, the fabric is built outward by specifying an initial 
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application point and direction. Next, geodesic curves are created with a specified length (usually 

the tow spacing) in the initial direction and the perpendicular direction. Finally, the corner nodes 

to the unit cells are found by determining the geodesic curves whose endpoints are coincident 

and whose length is equal to the tow spacing[8]. This approach does not take into account any 

material properties of the fabric except the tow spacing. The kinematic approach assumes that 

the tows are inextensible and the shear deformation is solely a geometric phenomenon and has 

nothing to do with the fabric properties. 

2.4.2 FEA Approach 

The second method uses finite elements to model the fabric, the tooling, and the 

interaction between the two[9–16]. Multiple draping elements have been developed for different 

FEA systems in both triangular and quadrilateral form. Early work into the FEA approach was 

done using bar elements and membrane elements by Cherouat [10]. Dong [11] also used 

membrane elements but with an updated material law due to the coordinate system of the 

element changing during the simulation. Boisse [9] used a finite element approach to model both 

the shear and extension properties of the fabric. These properties were determined by modeling 

the unit cell of the fabric in FEA and comparing to physical tests. A second paper by Boisse [14] 

shows the difference between having shear properties in the finite element versus neglecting 

shear by doing a physical forming test on a hemisphere. It was shown that when including shear 

of the fabric, wrinkles could be predicted. Further work by Hamila and Boisse [15] created a 

triangular shell finite element to predict drape and wrinkles with only displacement degrees of 

freedom. They also determined that in-plane shear stiffness is mainly important for predicting 

wrinkle initiation and that bending stiffness determines the shape of those wrinkles.  
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Another triangular shell element was created by Thije [13] which takes into account 

inter-ply friction due to multiple layers of fabric being formed at the same time. Skordos [12] 

showed that shear rate has a significant effect on the final fabric shear for pre-preg materials. 

Skordos also applies friction between the fabric and the mold surface during forming. The FEA 

approach is the most accurate, but is also the slowest and requires FEA programs.  

2.4.3 Mixed Approach 

The third method mixes the kinematic and FEA methods and provides a compromise 

between the two [17], [18]. The surface is discretized, and the kinematic approach is used to 

provide initial node locations. The nodes are connected by spring elements along the fiber 

directions and on the diagonals to mimic the shear resistance of the fabric. The strain energy is 

calculated from the displacement of the spring elements and is minimized using an optimization 

routine. The boundary conditions caused by the tooling in this type of simulation are usually 

ignored. 

2.4.4 Ply Deformation Methods 

Most of the research on draping and ply deformation methods has been performed on 

fabrics due to the ease with which they can be formed on a surface. Unidirectional materials in 

general are harder to form on a doubly curved surface. 

The main deformation methods of fabric are fabric shear, fiber extension, fiber buckling, 

and slippage of fiber bundles [19]. Of these methods of deformation, the most studied is fabric 

shear because it is the largest deformation method and has the most impact on draping. Fabric 

shear is shown in Figure 2-4. 
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Fabric shear is resisted at first by friction between the tows. This friction is low in most 

fabrics. Once a fabric reaches its shear locking angle, the shear is also resisted by interference 

between and compaction of the tows. The shear locking angle is the most important material 

property in a draping simulation. Once the shear locking angle is reached, the resistance to fabric 

shear increases rapidly and the fabric can exhibit out of plane deformation causing wrinkles. 

Wrinkles decrease strength by introducing voids in the final part. 

 

 

Figure 2-4: Fabric Shear 

 

2.4.5 Material Property Determination 

There are three accepted ways of characterizing the shear behavior of the fabric: the 

picture frame test, the bias extension test, and modeling with FEA. The picture frame test is 

performed using a rig that clamps the four sides of a small square of composite fabric (see Figure 

2-5). There are pin joints on each corner to allow the rig to shear with the fabric. The rig is pulled 

from opposite corners in a tensile tester and the force/strain curve is recorded. The picture frame 
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test is very sensitive to boundary conditions of the fabric. If the fabric is not perfectly aligned, it 

can stretch or relax the fibers which decreases the accuracy of the test. 

 

Figure 2-5: Picture Frame Test [20] 

 

The bias extension test takes a sample of fabric that has been cut in the bias direction 

(45°) and is usually at least twice as long as it is wide. Clamps are placed on each short edge of 

the fabric and the sample is pulled in the tensile tester (see Figure 2-6). The force/strain is 

measured again and the data is normalized to determine the shear properties of the fabric. An 

approach has also been proposed by Harrison [21] that combines the picture frame and bias 

extension tests. A variation on the bias extension test, called the wide-strip bias extension test, 

has been published by Potluri [22]. Angles of the fibers were measured using both a camera and 

using an adjusted global strain method. 
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Figure 2-6: Bias Extension Test [23] 

 

The wide-strip bias extension test was shown to agree closely between the camera angles and the 

adjusted global strain method up to about 50° shear angle. After 50°, the fabric began to slip and 

results were inaccurate. The wide strip bias extension test has the benefit of being insensitive to 

boundary conditions while using a square pure-shear region of the fabric like the picture frame 

test. 

 

Figure 2-7: FEA Unit Cell [20] 
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The FEA method models one unit cell of the fabric using solid elements (see Figure 2-7). 

The model is subjected to shear loads and the force/strain curve is determined. FEA models 

avoid the need for expensive equipment and have good agreement with experimental testing 

according to Badel [20].  

A parametric model to characterize the shear behavior of glass woven reinforcements was 

created by Lomov [24]. This allows for material property determination based solely on 

measurements of the fabric. While this is a good method for the type of fabric used by Lomov, 

more research would be needed before all fabric could be modeled using that method. The main 

way to determine shear properties of fabric is still bias extension testing and picture frame 

testing. Bias extension testing was used in this implementation because a tensile tester was 

available and special hardware is not required. 

Draping is the main component used in this method. It is the part of the method that 

predicts the fabric boundaries and fiber angles. While current methods of draping ignore the 

thickness of the fabric, this method does not and allows for prediction of ply drop-off effects. 
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3 METHOD 

This chapter discusses the simulated layup method. The simulated layup method includes 

creation of the flat pattern, the draping method with thickness modeling, and the method for 

stacking multiple plies. 

 Creation of the Flat Pattern 3.1

This section explains the inputs needed for the creation of a ply, the structure of a ply, 

and the method of creating the structure. 

3.1.1 Input Parameters 

Each ply in a layup has a specific shape which is called the flat pattern. To fully define a 

ply, the following data is needed: 

• A flat pattern outline 

• An application point on the ply 

• An orientation angle for the warp direction of the fabric 

• A shear locking angle 

• A cell size 
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The flat pattern is made up of lines, arcs, splines or any mixture of the three. The curves 

all must lie in a plane and must form closed loops. Cut-out holes can be made in the flat pattern 

by forming an inner loop as long as the inner loop is surrounded by the outer loop of the ply. 

An application point represents the point on the flat pattern that will first contact the 

surface of the mold when it is draped. It can be represented as a point in the plane of the flat 

pattern. This becomes the origin of the ply. 

The orientation angle represents the strong direction of the fabric or the direction of the 

fibers. Many fabrics have the same strength in the warp and weft directions and in that case it 

does not matter which fiber direction is used. The shear locking angle as explained in 2.4.4 is the 

point at which the resistance to fabric shear increases rapidly. It is a property specific to each 

type of cloth. Cell size is the distance from the middle of one tow to the middle of the 

neighboring tow. In balanced fabrics the distance between the tows in the warp direction and 

weft direction are the same. Two cell sizes would be needed for an unbalanced fabric. This 

method only used one cell size and can only be used in its current state for balanced fabrics but it 

could be easily expanded to use two cell sizes. 

3.1.2 Ply Structure 

Each ply is made of two main types of data: nodes and elements. Nodes are locations in 

space and are represented by points. They are located at the intersections between the tows of 

fabric. Nodes serve to define the ply shape in 3d space when draping. Each node is connected to 

surrounding nodes by elements. 

Elements are represented as springs. In this method there are many types of springs. The 

types are listed next. 
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• Warp elements 

• Weft elements 

• Shear elements 

• Bend elements 

Warp elements connect two nodes in the warp fiber direction and represent the stiffness of the 

fabric in the warp direction. In general, the warp direction of a fabric is very stiff compared to 

the shear direction. 

Weft elements connect two nodes in the weft fiber direction and represent the stiffness of 

the fabric in the weft direction. For a balanced fabric, warp elements and weft elements have the 

same spring constant. 

Shear elements connect diagonal nodes in both directions and they represent the 

resistance of the fabric to shear. These elements have a much lower spring constant than the 

warp and weft elements and are responsible for most of the deformation of the fabric. When  

Bend elements connect three nodes in a line along the warp, weft and both shear 

directions. They resist out of plane bending which makes the fabric resist folding over on itself. 

To build the ply structure, a grid of nodes must first be created that completely surrounds 

the flat pattern. The bounding box of the flat pattern curves is determined. The number of nodes 

in the node grid x direction is 

6minmax +

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x l
XX

truncN  (3-1) 

 

where xN  is the number of nodes in the node grid x direction, bboxX min  is the minimum x value of 

the bounding box, bboxX max  is the maximum x value of the bounding box, and celll  is the cell length. 



20 

This makes sure the node grid completely overlaps the flat pattern with at least one extra column 

of nodes on each side. The number of nodes in the y direction can be determined similarly. The 

center node index is 

( ) 36*
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where center
xi  is the index of the center node when the node indices start at 0 and originX  is the x-

coordinate of the ply application point. The y index of the center node can be found in a similar 

manner. The x-coordinate of any node can be found given its index i: 

cell
center
xcell

origin
i liilXX ** +−= . (3-3) 

Again, the y value of any node can be found in a similar manner. 

Nodes are created on the grid, but only on the inside the flat pattern. Another layer of 

nodes is added so the flat pattern curves are completely covered so they can be used later to trim 

the fabric as shown in Figure 3-1. The elements are then created between nodes. 

 

 

Figure 3-1: Nodes Covering Flat Pattern 
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 Draping Method 3.2

The draping process is: 

1. Create flat pattern and ply structure 

2. Set initial location of nodes (two different methods are explored) 

3. Calculate forces on nodes 

4. Move nodes in direction of resultant force 

5. Repeat 3 and 4 until optimum is reached 

The fabric is modeled as a pin-jointed net. Some pin-jointed net models do not take into 

account any fabric properties. This method uses springs in the warp and weft directions to 

simulate the extension properties in their respective directions and springs on the diagonals to 

mimic the shear properties of the fabric. Bend elements prevent the fabric from folding over on 

itself and resists fabric bending. This thesis explores three draping methods: drop draping, spread 

draping, and a method found in Wang[17] called tendon node mapping and diagonal node 

mapping. All three have similar optimization methods, but different ways of applying it. This 

section includes a summary of each element type’s behavior, the method for modeling fabric 

thickness, the optimization method, and drop, spread, tendon and diagonal node mapping types 

of draping. 

3.2.1 Warp and Weft Elements 

Warp and weft elements are connected in strings along fiber directions. The elements are 

modeled as a simple linear spring for simplicity, but non-linear springs could also be 

implemented. Forces on nodes from warp or weft elements are calculated from a string of warp 

or weft elements instead of just one at a time. The forces from each element in the string are 
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added together to find the total force. The force from a warp element to the right of a node is 

calculated by 

[ ]
12

12
0 )(
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ppllkF

right

right
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−
−

∗−= ∑  (3-4) 

where 1p  is the three dimensional point of the node, 2p  is the three dimensional point of the 

other node of the warp element, l  is the length of the warp element, 0l  is the un-stretched length 

and k  is the spring constant. The geometry is shown in Figure 3-2. 

 

Figure 3-2: Warp/Weft Element Force 

 

Basically, all tensile and compressive forces from warp elements on the right are summed as the 

magnitude of the force, and the direction is defined as 
12

12

pp
pp

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−
−

. Both the magnitude and the 

direction are applied to the node. 
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3.2.2 Shear Elements 

There are two options for calculating shear force from a shear element. One option is to 

use a spring-based model and the other is to use a curve fit from the bias extension test. 

For the first option, shear elements are modeled as linear springs for the first part of 

travel. The un-stretched length of the shear elements can be found using the Pythagorean 

Theorem 

22
0 cellcell lll += . (3-5) 

The length at which the shear element becomes stiffer when compressed is 

)sin(10 lockshort ll θ−=  (3-6) 

and when stretched is 

)sin(10 locklong ll θ+=  (3-7) 

where lockθ  is the shear locking angle. See Figure 3-3 for geometry. 

 

Figure 3-3: Locked Unit Cell Showing Lengths of Shear Elements 
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Once the shear locking angle is reached, another spring force is added to the node in parallel with 

the first spring along the same direction to model the increasing resistance to shear. The force 

magnitude is then 
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where 1k  and 2k  are the  spring constants. The direction of the force is towards the node along 

the shear element if in compression and away from the node if in tension. 

For the second option, a polynomial can be fit to the normalized bias extension test force 

vs. deflection data. This gives a more accurate definition for the shear force. One thing to keep in 

mind while using a curve fit is to make sure the force continually increases outside the bounds of 

the bias extension test data. This is done by using an odd ordered polynomial. 

3.2.3 Bend Elements 

Bend elements represent the stiffness of the bundles of fibers and are modeled as 

torsional springs. Bend elements have three nodes that are collinear when the fabric is not 

deformed. When deformed, the fabric tows are no longer straight and the three nodes form an 

angle in 3d space. This is the deflection angle for the torsional spring. The moment that this bend 

element creates is 

)( θπ −= kM bend  (3-9) 

where θ  is the angle between the nodes and k  is the spring constant. Since the nodes have only 

position in space, the moment is converted into two couple moments with the forces at the nodes 

as shown in Figure 3-4. The forces are perpendicular to the line between the outer nodes and the 

middle node and in the plane formed by the three nodes. To prevent the fabric from folding over 
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on itself, extra stiffness can be added to the bend element after a certain angle such as 
2
π

 in a 

similar manner as was done with the shear elements. 

 

 

Figure 3-4: Bend Element Geometry 

 

3.2.4 Modeling Fabric Thickness 

The fabric thickness is modeled also using a spring type analogy. The difference is that 

the spring is connected from a node to the closest point on the surface of the layup. The direction 

of the force is along the line from the node to the closest point on the surface. If the node is 

closer than the thickness of the cloth to the surface, the sign of the force is changed and the node 

is pushed away from the surface. 
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Figure 3-5: Surface Force 

 

3.2.5 Optimization Method 

A diffusion type optimization method was employed similar to the one found in Wang’s 

paper [17]. The force vectors on each node are calculated from the elements connected to it and 

summed. The nodes are then moved a certain amount in the direction of the resultant force. The 

maximum distance allowed each step was limited to half the cell size to prevent the unit cells 

from crossing over each other. The step size is 
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where stepd  is the step size taken, maxd  is the allowable step size, F


 is the magnitude of the 

force resultant, and c  is an arbitrary constant on the order of F


. The step is taken in the 

direction of the resultant force. An addition to the optimization method employed by Wang was 

to decrease the maximum allowable step size as the optimization progressed which helped speed 

up convergence and made the value of c  less critical. The down side is that to make sure there 
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were enough iterations in the optimization, extra iterations had to be run to make sure the 

optimization did not stop before the nodes were in the correct place. The fraction of the 

maximum step size at the nth step in the optimization was 

β

α 





 −=

N
n1  (3-11) 

where α is the fraction, n is the step number, N is the maximum number of steps, and β is a 

constant greater than 0. A value of 1 for β will make the step size decrease linearly, higher than 1 

will have more time for fine adjustment and less than 1 will have more time for coarse 

adjustment (see Figure 3-6). The optimization was run a set number of times instead of stopping 

when the strain energy was minimized because controlling the step size prevented the unit cells 

of elements from getting twisted. 

 

 

Figure 3-6: Step Size Reduction 
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3.2.6 Drop Draping 

In drop draping, the fabric is created all at once in a plane above the mold surface. A 

simulated gravity force is added to each node. The optimization is run on all nodes at the same 

time. When a node is within a specified minimum distance of the surface of the layup, the 

gravity force is removed and the surface force takes over and pulls the fabric in further. The 

optimization runs indefinitely with a maximum step size until all nodes have switched over to 

using the surface force which allows the fabric to quickly drop to the surface. Once the fabric has 

reached the surface, the optimization runs a set number of times while decreasing the step size. 

Once the set number of runs is completed, the fabric has been draped. 

3.2.7 Spread Draping 

Spread draping does not model the entire fabric at once. The application point is the first 

node placed on the surface. The adjacent nodes are placed in a plane normal to the surface of the 

layup. These first nodes are optimized a set number of times while decreasing the step size. Once 

the optimization on those nodes is done, those nodes are deactivated and the nodes within one 

degree of separation are activated. The new set of active nodes is optimized in the same manner 

as the first set. The process is repeated thus “spreading” the fabric over the mold. Once all nodes 

have been optimized in sets, the entire fabric is activated and is optimized together while 

decreasing step size. Once the optimization is completed, the fabric is draped. 

3.2.8 Tendon and Diagonal Node Mapping 

Wang’s method is similar to spread draping because it starts in the middle and spreads 

out from there. The difference is in the order nodes are created. In spread draping they are 

created in layers while Wang’s method starts with what he calls tendon node mapping. Tendon 
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node mapping lays out the warp and weft fibers passing through the application point first by 

using the position of each previous warp or weft element to find an initial position and it is 

immediately optimized see Figure 3-7 (a). Once the tendon nodes are laid out, the diagonal node 

mapping is used to fill in the four quadrants created by the tendon nodes see Figure 3-7 (b). 

Since each diagonal node can have a great influence on  the positions of subsequently created 

diagonal nodes, each diagonal node is optimized immediately after it is created. Finally, a 

boundary propagation algorithm is used to create the nodes that were unable to be created by the 

tendon and diagonal node mapping. 

 

 

Figure 3-7: After Tendon (a) and Diagonal (b) Node Mapping[17] 

 

 Method for Stacking Plies 3.3

The key to stacking multiple plies is the tessellated surface representation. The mold 

surface is represented as a tessellated surface and the ply structure provides a convenient way to 

create a tessellated surface from the ply node grid. Since plies and the mold are represented using 

the same type of surface, the surface force can calculated from a ply in the same way as the mold 
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thus plies can be draped on plies. Ply drop-offs naturally happen with this method since when 

one ply ends, the ones underneath can become the drape surface. 
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4 IMPLEMENTATION 

The method in chapter 3 was implemented in a computer program which, given the 

definition of a ply, will drape plies onto a given surface. The surface can be a simple mold 

surface or a complex surface based on the plies already draped on a mold surface. The program 

was created in C++ using Siemens NX6 for visualization and geometry inputs. GSNLib created 

by Solid Modeling Solutions was used to compute arc/line/spline intersections and CGAL, an 

open source computational geometric algorithms library, was used to handle tessellated surfaces. 

This chapter explains in detail the implementation of the method defined in chapter 3. 

Certain sections of the code are highlighted for clarity. The specific process of ply creation is 

explained, and then the application of the draping method is discussed. Finally the method of ply 

trimming is described. 

 Ply Creation 4.1

The steps of ply creation in this implementation are: 

1. Get user input 

2. Calculate flat pattern curves bounding box and allocate node grid data structure 

3. Determine bounding box and center node 

4. Determine which nodes are inside the ply 

5. Add an extra layer of nodes 
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6. Create elements connecting nodes together 

7. Create strings of warp and weft elements 

Each of these will be explained in the following sections. 

4.1.1 User Input 

NX’s Open C API was used to get information from the user. The API provides selection 

capability and some pre-defined number input boxes. First, the user selects the mold surface. 

Next, each ply is created sequentially. The first step for a ply is to define the cell size, thickness, 

and shear locking angle of the ply. All are input at once using the uc1608 function which creates 

the dialog in Figure 4-1 below. 

 

 

Figure 4-1: Ply Parameters Input Dialog 

 

Next, the user selects the application point coordinate system, the ply coordinate system, and the 

ply curves. Finally, to select the type of draping, a button box is used (see Figure 4-2). The lines 

arcs and splines are then converted to splines in the format GSNLib uses. 
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Figure 4-2: Drape Method Selection Dialog 

 

4.1.2 Flat Pattern Curves Bounding Box and Data Structure Allocation 

The flat pattern curves bounding box is found by computing each curve’s bounding box 

and testing to see if the flat pattern fits within the composite bounding box of the trimming 

curves. If it does not completely fit inside the flat pattern bounding box, the flat pattern bounding 

box is expanded to fit the composite trimming curve bounding box (see Figure 4-3). Bounding 

boxes for splines are easy to calculate since splines follow the convex hull property. A curve 

follows the convex hull property if the entire curve fits inside the convex hull formed by the 

control points of the curve. If the convex hull contains the spline, a bounding box containing the 

control points (and therefore the convex hull) will always contain the spline itself. After creating 

the composite bounding box for the flat pattern, the structure for the node grid can be created. 

The node grid size is then adjusted to be able to fit the specified number of nodes in both the x 

direction and the y direction. The size of the node grid data structure is found by using equation 

(3-1). The node grid is a rectangular matrix of type Node. 
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Figure 4-3: Flat Pattern Bounding Box Creation 

 

4.1.3 Node Grid Bounding Box 

The center node is found using equation (3-2). The node grid bounding box is then 

created by finding the bottom left node (indices 0,0) and the top right node (indices I,J). The 

node locations can be found from the indices using equation (3-3). 

4.1.4 Determining Inner Nodes 

To determine inner nodes, a scan line algorithm similar to one used in computer graphics 

was implemented. The algorithm follows these steps: 
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1. Create vertical line 

2. Intersect line with all boundary curves 

3. Save the intersections 

4. Sort the intersections vertically 

5. Create intervals between intersections and save 

6. Loop 1-5 until all intervals are created 

That code is shown next showing each step separately: 

Step 1: Create vertical line 

  std::vector<std::vector<Interval> > yIntervals; 
  for(int i=0; i<sizeOfDataStructureX; i++) 
  { 
    //Create line along vertical node column 
    std::vector<double> yVals; 
    yVals.push_back(bottomLeftNode.y); 
    yVals.push_back(topRightNode.y); 
    std::vector<Interval> tempIntervals; 
    IwPoint3d stPt(bottomLeftNode.x+this->cellSize*i,bottomLeftNode.y,0); 
    IwPoint3d enPt(bottomLeftNode.x+this->cellSize*i,topRightNode.y,0); 
    IwLine* newLine; 
    IwLine::CreateLineSegment(localContext,3,stPt,enPt,newLine); 
    IwObjDelete autoDestruct(newLine); 
 

Step 2: Intersect with all boundary curves 

 
    for(int j=0; j<flatPatternCurves.size(); j++) 
    { 
      IwSolutionArray solutions; 
      flatPatternCurves.at(j)->GlobalCurveIntersect( 
        flatPatternCurves.at(j)->GetNaturalInterval(), 
        *newLine,newLine->GetNaturalInterval(), 
        .001*this->cellSize,solutions); 
      for(int k=0; k<solutions.GetSize(); k++) 
      { 
        IwVector3d newLineTangent, flatPatternTangent; 
 
        //Evaluate the intersection point and derivative 
        //from the intersection parameter of the line 
        IwVector3d newLinePointAndDeriv[2]; 
        newLine->Evaluate( 
          solutions.GetAt(k).m_vStart.m_adParameters[1], 
          1,TRUE,newLinePointAndDeriv); 
        newLineTangent = newLinePointAndDeriv[1]; 
        newLineTangent.Unitize(); 
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        //Evaluate the intersection point and derivative 
        //from the intersection parameter of the curve 
        IwVector3d flatPatternPointAndDeriv[2]; 
        flatPatternCurves.at(j)->Evaluate( 
          solutions.GetAt(k).m_vStart.m_adParameters[0], 
          1,TRUE,flatPatternPointAndDeriv); 
        flatPatternTangent = flatPatternPointAndDeriv[1]; 
        flatPatternTangent.Unitize(); 
 

Step 3: Save the intersections 

 
        //Check for tangency. If not tangent, add to yVals 
        if(1.0-fabs(flatPatternTangent.Dot(newLineTangent))>.00001) 
        { 
          IwPoint3d tempPoint = newLinePointAndDeriv[0]; 
          yVals.push_back(tempPoint.y); 
        }//End if 
      }//End solutions loop 
    }//End flat pattern curve loop 
 
Step 4: Sort the intersections vertically 

    std::sort(yVals.begin(),yVals.end()); 
 
Step 5: Create intervals between intersections and save 

    for(int j=0; j<yVals.size()-1; j++) 
    { 
      Interval tempInterval; 
      tempInterval.SetMinMax(yVals.at(j),yVals.at(j+1)); 
      tempIntervals.push_back(tempInterval); 
      IwPoint3d p1, p2; 
      p1.Set( 
        bottomLeftNode.x+static_cast<double>(i)*this->cellSize, 
        yVals.at(j),0); 
      p2.Set( 
        bottomLeftNode.x+static_cast<double>(i)*this->cellSize, 
        yVals.at(j+1),0); 
    } 
    yIntervals.push_back(tempIntervals); 
  }//End loop of steps 1-5 
 
 

Step 6 is the loop surrounding steps 1-5. Once this code is run, the program has intervals in the y 

direction where nodes exist and where they do not exist see Figure 4-4. Those intervals alternate 

from non-existing nodes to existing-nodes. 
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Figure 4-4: Flat Pattern Showing Intervals 

 

The next code snippet creates the nodes along the intervals where they exist (or the blue intervals 

in Figure 4-4): 

 

  for(int i=0; i<sizeOfDataStructureX; i++) 
  { 
    for(int j=0; j<sizeOfDataStructureY; j++) 
    { 
      for(int k=1; k<yIntervals.at(i).size(); k+=2) 
      { 
        if( 
          yIntervals.at(i).at(k).ContainsValue( 
          bottomLeftNode.y+static_cast<double>(j)*this->cellSize) 
          == TRUE) 
        { 
          this->nodeGrid.at(i).at(j) = new Node(this->layup); 
          this->nodeGrid.at(i).at(j)->xIndex = i; 
          this->nodeGrid.at(i).at(j)->yIndex = j; 
        }//End if 
      }//End interval loop 
    }//End node y loop 
  }//End node x loop 
 

When this block of code is finished, the flat pattern is filled with nodes as shown in Figure 4-5. 
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Figure 4-5: Flat Pattern Filled with Nodes 

 

4.1.5 Extra Outer Layer 

Another layer of nodes is created to ensure that the fabric completely overlaps the flat 

pattern. This enables the flat pattern curves to be used to trim the ply boundary. These nodes are 

added by taking each active node, finding the nodes around it, and adding them to a list if they 

previously did not exist. Once all inactive nodes are found, they are added to the node grid 

matrix. Once this is finished it looks like Figure 4-6. 
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Figure 4-6: Nodes Overlapping Flat Pattern 

 

4.1.6 Element Creation 

After nodes are created, warp, weft, and shear elements can be connected between them. 

The node grid is traversed, connecting elements to the right and above the node if both end nodes 

for each element exist. The other constant data is also added to each element such as the un-

stretched length and spring constant.  

  //Create elements between active nodes 
  //Add node pointers to elements and element pointers to nodes 
  for(int i=0; i<this->nodeGrid.size()-1; i++) 
  { 
    for(int j=0; j<this->nodeGrid.at(i).size()-1; j++) 
    { 
      //Warp elements 
      if(nodeGrid.at(i).at(j) != NULL && nodeGrid.at(i+1).at(j) != NULL) 
      { 
        WarpElement *tempWarpElement = new WarpElement(this->layup); 



40 

        tempWarpElement->n1 = nodeGrid.at(i).at(j); 
        tempWarpElement->n2 = nodeGrid.at(i+1).at(j); 
        tempWarpElement->springConstant = this->warpSpringConstant; 
        tempWarpElement->unstretchedLength = this->cellSize; 
        this->elementList.push_back(tempWarpElement); 
        nodeGrid.at(i).at(j)->AddElement(tempWarpElement); 
        nodeGrid.at(i+1).at(j)->AddElement(tempWarpElement); 
      }//End warp elements 
 
      //Weft elements 
      if(nodeGrid.at(i).at(j) != NULL && nodeGrid.at(i).at(j+1) != NULL) 
      { 
        WeftElement *tempWeftElement = new WeftElement(this->layup); 
        tempWeftElement->n1 = nodeGrid.at(i).at(j); 
        tempWeftElement->n2 = nodeGrid.at(i).at(j+1); 
        tempWeftElement->springConstant = this->weftSpringConstant; 
        tempWeftElement->unstretchedLength = this->cellSize; 
        this->elementList.push_back(tempWeftElement); 
        nodeGrid.at(i).at(j)->AddElement(tempWeftElement); 
        nodeGrid.at(i).at(j+1)->AddElement(tempWeftElement); 
      }//End Weft elements 
 
      //Shear elements 
      if(nodeGrid.at(i).at(j) != NULL && nodeGrid.at(i+1).at(j+1) != NULL) 
      { 
        ShearElement *tempShearElement = new ShearElement(this->layup); 
        tempShearElement->n1 = nodeGrid.at(i).at(j); 
        tempShearElement->n2 = nodeGrid.at(i+1).at(j+1); 
        tempShearElement->springConstant = this->shearSpringConstant; 
        tempShearElement->unstretchedLength = this->cellSize*sqrt(2.0); 
        tempShearElement->lockingAngle = this->lockingAngle; 
        this->elementList.push_back(tempShearElement); 
        nodeGrid.at(i).at(j)->AddElement(tempShearElement); 
        nodeGrid.at(i+1).at(j+1)->AddElement(tempShearElement); 
      } 
      if(nodeGrid.at(i+1).at(j) != NULL && nodeGrid.at(i).at(j+1) != NULL) 
      { 
        ShearElement *tempShearElement = new ShearElement(this->layup); 
        tempShearElement->n1 = nodeGrid.at(i+1).at(j); 
        tempShearElement->n2 = nodeGrid.at(i).at(j+1); 
        tempShearElement->springConstant = this->shearSpringConstant; 
        tempShearElement->unstretchedLength = this->cellSize*sqrt(2.0); 
        tempShearElement->lockingAngle = this->lockingAngle; 
        this->elementList.push_back(tempShearElement); 
        nodeGrid.at(i+1).at(j)->AddElement(tempShearElement); 
        nodeGrid.at(i).at(j+1)->AddElement(tempShearElement); 
      }//End shear elements 
    }//End vertical loop 
  }//End horizontal loop 

Bend elements are different than warp, weft, and shear elements because they use three 

nodes instead of just two. Bend elements run in all directions and represent the stiffness of the 

fabric out of plane. The function to create a bend element is as follows: 
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bool Ply::CreateBendElement(Node* n1, Node* n2, Node* n3) 
{ 
  if(n1!=NULL && n2!=NULL && n3!=NULL) 
  { 
    BendElement* be = new BendElement(this->layup); 
    //Add nodes to element and initialize 
    be->n1 = n1; 
    be->n2 = n2; 
    be->n3 = n3; 
    be->myType = ET_BEND; 
    be->springConstant = bendSpringConstant; 
    be->lockingAngle = this->bendLockingAngle; 
    this->elementList.push_back(be); 
    //Add element to nodes 
    n1->AddElement(be); 
    n2->AddElement(be); 
    n3->AddElement(be); 
    return true; 
  } 
  return false; 
} 

4.1.7 Warp and Weft Element Strings 

Since the warp and weft directions represent the tows which are essentially inextensible, 

the warp and weft element forces are calculated differently than shear or bend forces. The 

elements must be connected in strings to be able to calculate the force. The node grid is traversed 

and the warp elements to the left and right of node (i,j) are linked and the weft elements on top 

and bottom are linked. Cuts in tows are naturally modeled this way because if a node is missing 

in the string of elements, the warp or weft elements are not connected due to the blank node. 

 Draping Method 4.2

The implementation of the three draping methods, drop draping, spread draping, and 

Wang’s method are explained in this section. Drop draping simulates a fabric dropping onto the 

surface due to a simulated gravity force. Spread draping  and Wang’s method are similar to 

putting one point of the fabric down, and pushing the fabric onto the surface in an ever-widening 
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ring. All three methods employ the same code to calculate forces and the optimization method is 

the same except for some minor differences. The force calculation is explained first since it 

belongs to all three methods of draping and then the differences between the implementations of 

the optimization methods are described. 

4.2.1 Force Calculation 

The force calculation is done from a list of active elements and active nodes. Each node 

keeps a vector sum of all the forces acting on it. The CalculateAndAddForces() function in the 

following block of code uses the equations in sections 3.2.2 to 3.2.3 (pages 23 to 24) to calculate 

the force of the element on each node connected to it and add it to the corresponding vector sum. 

The warp and weft elements are done slightly differently. Equation (3-4) includes the sum of all 

the tensile and compressive forces along the string of elements. Each element’s tensile or 

compressive force is calculated first in the CalculateTensileForce function. See below: 

 

    for(std::list<Element*>::iterator it=activeElements.begin(); 
      it!=activeElements.end(); it++) 
    { 
      switch((*it)->myType) 
      { 
        case ET_WARP: 
        case ET_WEFT: 
          (*it)->CalculateTensileForce(); 
          break; 
        case ET_SHEAR: 
          (*it)->CalculateAndAddForces(); 
          break; 
        case ET_BEND: 
          (*it)->CalculateAndAddForces(); 
          break; 
        default: 
          break; 
      } 
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The active nodes are then traversed and warp and weft vector forces are calculated as seen in the 

next block of code: 

 

    for(std::list<Node*>::iterator it=activeNodes.begin(); 
      it!=activeNodes.end(); it++) 
    { 
      (*it)->AddForce((*it)->CalculateWarpForce()); 
      (*it)->AddForce((*it)->CalculateWeftForce()); 
    } 
 

The CalculateWarpForce and CalculateWeftForce functions traverse the string of elements, do 

the scalar sum of the tensile forces, and multiply the scalar force by the unit vector in the 

direction of the warp or weft element connected to the node. A warp or weft force for each side 

of the node is calculated and added to the node. 

After all the other forces have been calculated, the surface force is calculated. The surface 

force is based on the distance to the surface. CGAL was used to find the distance to the surface. 

An axis aligned bounding box tree (AABB tree) was constructed on the faces of the tessellated 

surface of the mold and plies. This allows for fast intersection and distance queries. When the 

closest point is queried, CGAL internally traverses the AABB tree using a ball search until it 

finds the bounding box that is closest at which point it switches over to using the triangle 

contained inside the bounding box to find the actual closest point on the triangle. Once the 

closest point is determined, the distance to that point and the direction to that point can be 

determined. The force from the surface is found using a spring equation with different spring 

constants for tension and compression. The un-stretched length of the spring is the thickness of 

the ply being draped. The direction of the force goes from the closest point on the surface to the 

node. 
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4.2.2 Differences Between Optimization Methods 

Once all forces on all the nodes have been calculated, the nodes are moved in the 

direction of the resultant force as seen in the function below: 

void Node::Move(double maxDist) 
{ 
  double stepLength = maxDist*(1 - 50/(50+forceSum.Length())); 
  IwVector3d step = forceSum; 
  step.Unitize(); 
  step = step * stepLength; 
  this->location = this->location + step; 
  this->ResetForceSum(); 
} 

 

where maxDist is set to less than or equal to half the cell size. This prevents most nodes from 

crossing over each other during optimization causing folds in the fabric. Once the node is moved, 

the force sum is set to zero for the next round of optimization. 

For drop draping, the fabric is created all at once in a plane above the mold surface. All 

nodes are moved during the entire optimization. When nodes are first created a simulated gravity 

force is added to each one. Once the nodes are within a specified distance to the surface, the 

gravity force is switched off and the surface force is switched on. The optimization continues 

indefinitely with a constant maximum step size of half the cell size until all nodes have switched 

over to the surface force. Once all nodes have switched over, the step size is decreased gradually 

using equation (3-11) until the optimization ends. 

For spread draping, only the application point and first layer of surrounding nodes are 

placed initially. Once the first nodes are placed, they are optimized a certain number of 

iterations. The initial nodes are de-activated and the next layer of surrounding nodes is then 

formed and optimized. This process repeats until the entire ply has been placed. It is now close to 

the optimum shape. Then, all nodes are activated at the same time for a final optimization. 
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For Wang’s method, the first four tendon nodes are created and optimized, then the next 

tendon nodes are created and optimized. This happens until there are no more tendon nodes to 

map. Next the diagonal nodes are mapped by creating a node, then optimizing it before creating 

the next node. The boundaries are propagated until all nodes have their initial position. Once all 

nodes have been placed, the entire fabric is optimized at the same time. 

 Ply Cutting Method 4.3

Plies initially are created to overlap their flat pattern boundaries by at least one node. This 

is the shape that is used for the active fabric so there are no partial elements. Once the ply is 

draped, the extra nodes and elements around the boundary must be cut to the proper length to 

properly define the edges of the fabric. This is done in three steps. The first step is to triangulate 

the two dimensional flat pattern with the borders, the second is to remove the extra fabric around 

the borders, and the third is to translate the two dimensional triangulation to the three 

dimensional ply. 

4.3.1 Triangulating the Flat Pattern 

The flat pattern triangulation was done using CGAL. The type of triangulation used was a 

constrained Delaunay triangulation. To get the constraints, the warp and weft elements were 

intersected with the border curves of the flat pattern using GSNLib and line segments were 

created between adjacent intersections. This creates a loop of non-intersecting constraints. The 

constraints are passed into the triangulation along with the node locations from the flat pattern. 

Once all nodes and constraints are passed in, the triangulation is finished. A face list is created 

from the triangulation and used in the next step. 
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4.3.2 Removing Extra Fabric 

During creation of the flat pattern, the extra nodes were created. The pointers to those 

nodes were kept and any face in the triangulation face list connected to one of those nodes is 

removed. This removes all external faces. 

4.3.3 Translation to Three Dimensions 

The face list contains two dimensional points from the flat pattern. To translate to the 

third dimension, the node grid is parameterized along the columns and along the rows. The 

parameter values start at 0 at the first node in a row or column and increase by 1 each node. Each 

node’s parameter is therefore its index in the node grid. Around the edges of the ply, the points 

from the constraints will likely lie between nodes. Their parameter values are interpolated 

between the surrounding nodes and will not be integers. For nodes, the three dimensional point is 

just the 3d point found by the draping algorithm. For points that do not lie on integer parameter 

values, the three dimensional point is interpolated from the surrounding nodes. The function for 

this operation is as follows: 

IwPoint3d Ply::Get3dFromFPPoint(IwPoint3d fpPoint) 
{ 
  IwPoint3d point; 
  std::pair<double,double> params = GetParametersFromFPPoint(fpPoint); 
  std::pair<int,int> indices = GetIndexFromParameter(params); 
  std::pair<double,double> diffs = ParamsMinusIndices(params,indices); 
  IwPoint3d origin = nodeGrid.at(indices.first).at(indices.second)->GetLoc(); 
   
  if(diffs.first > .000001 && diffs.second > .000001) 
  { 
    IwPoint3d point1 = (nodeGrid.at(indices.first+1).at(indices.second) 

->GetLoc()-origin)*diffs.first+origin; 
    IwPoint3d point2 = (nodeGrid.at(indices.first).at(indices.second+1) 

->GetLoc()-origin)*diffs.second+origin; 
    point = (point2-origin)+(point1-origin)+origin; 
  } 
  else if(diffs.first > .000001) 
  { 
    point = (nodeGrid.at(indices.first+1).at(indices.second)->GetLoc()- 
      origin)*diffs.first+origin; 



47 

  } 
  else if(diffs.second > .000001) 
  { 
    point = (nodeGrid.at(indices.first).at(indices.second+1)->GetLoc()- 
      origin)*diffs.second+origin; 
  } 
  else 
  { 
    point = origin; 
  } 
  return point; 

}  

 

The function compares the difference between the truncated parameter value and the full 

parameter value. If a non-integer parameter is found in both directions, the first if statement 

creates the three dimensional point by interpolating in both directions. The next two if statements 

only interpolate in either the column or the row direction and the else statement is for nodes that 

lie on exact parameter values. 

Once the three dimensional points are determined, the face list and new three dimensional 

points can be used to create a Polyhedron_3 from CGAL. This is the class that forms the basis 

for each ply and the mold surface. This is also the class that can create the AABB tree used in 

finding the distance between the next ply’s nodes and the surface of the layup.  
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5 RESULTS 

To validate the model, physical testing was done as well as exploration of the three different 

draping methods to determine which was best for certain situations. In this chapter the physical 

testing is explained as well as observations and comparisons of the different draping methods. 

 Physical Testing 5.1

The physical testing was done by creating a mold, laying up a fiberglass/epoxy part, 

filling it with foam, making cross-sectional cuts, polishing the cut edges and finding the ply 

drop-offs under a microscope. The locations of the drop-offs were marked and measured and 

compared to the model created by the draping program. Two molds were used: a 6 inch 

hemisphere as a standard and a scaled down dodge viper hood. This section will briefly explain 

the process to create and measure the samples and discuss the results in detail. 

5.1.1 Fabrication Process 

First molds for the parts were acquired. The molds were a 6 inch hemisphere and a dodge 

viper hood shown in Figure 5-1. 
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Figure 5-1: 6 Inch Hemisphere and Scale Dodge Viper Hood Molds 

 

The material used was a heavy plain-weave dry fiberglass with a tow width of .2 inches/tow and 

a thickness of .03 inches. The matrix material was an epoxy with a pot life of one hour and a cure 

time of 24 hours. Each ply shape was marked and cut out with heavy-duty scissors. The molds 

were prepped with a wax mold release and laid on the vacuum bag. Vacuum bagging was the 

only process available, it is relevant to this method and is common in industry. Each ply was 

wet-out with the epoxy on a plate and transferred from the plate and laid on the mold at the 

correct angle. Hand layup was used as the only method. After all plies were placed, the molds 

were covered with a perforated release film, a felt breather pad, and sealed in the vacuum bag 

using a sticky polymeric tape. A vacuum was applied immediately and for the duration of the 

cure. 

Once cured, the parts were removed from the molds and filled with an expanding sealant 

foam commonly found at a hardware store. Figure 5-2 shows the finished parts. 
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Figure 5-2: Finished Parts 

 

The parts were then marked with radial lines originating at the application point. The lines in 

Figure 5-2 are marked every 10° but only every 3rd line was used for cutting because a 10° slice 

would have been too thin to sand and polish. The parts were then cut using a Dremel tool with a 

cutting wheel along the lines.  

Next the cut edges were sanded and polished until smooth. The polished samples were looked at 

under a microscope to find the ply drop-offs. An example of a ply drop-off is shown in Figure 

5-3. Once the drop-offs were found, they were marked and measured. 

 

 

Figure 5-3: Ply Drop-off 
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The measurement method differed between the hemisphere and the viper hood. The 

hemisphere was measured using a 6 inch protractor with the 0° mark lined up with the bottom of 

the part. Each angle was measured to the closest degree. The hood measurements were taken 

from the outer edge of the hood surface since it was the only point of reference to measure with. 

Ply drop-offs on the hood were measured as a point to point distance. 

 

 

Figure 5-4: Measurement Techniques 

 

5.1.2 Comparison of Results 

The physical results in general agreed well with the results predicted by the 

implementation described in chapter 4. The results predicted by the implementation were 

measured by cross-sectioning the part at the same locations as the physical model. The 

differences in the results were compared against each other and are shown next for the 

hemisphere: 
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Table 1: Hemisphere Arc Length Error 

Hemisphere Arc length error (in)         
Cross-
section Ply 1 Ply 2 Ply 3 Ply 4 Ply 5 Ply 6 Ply 7 

1 full ply -0.20 0.06 0.07 0.09 -0.03 full ply 
4 full ply 0.08 0.10 0.39 -0.06 -0.02 full ply 
7 full ply 0.34 0.31 -0.17 0.12 0.24 full ply 

10 full ply -0.31 0.26 0.13 0.28 -0.08 full ply 
13 full ply 0.08 0.36 -0.55 0.05 0.15 full ply 
16 full ply 0.19 0.21 -0.07 0.12 0.10 full ply 

 

Plys 1 and 7 covered the entire hemisphere and were not measured. The error in the cells of 

Table 1 are found using this formula: 

radiuserrorlengtharc CADphysical *)(__ θθ −=  (5-1) 

Where physicalθ  and CADθ are the angles (in radians) measured from the top of the hemisphere to 

the ply drop-off of the physical part and the CAD representation. The error for the hood is 

 

Table 2: Hood Error 

Hood Physical Measurement -CAD Measurement (in)       
Cross-
section Ply 1 Ply 2 Ply 3 Ply 4 Ply 5 Ply 6 Ply 7 Ply 8 

1 full ply -0.16 -0.08 -0.05 -0.05 -0.05 -0.23 full ply 
4 full ply -0.10 -0.01 0.03 -0.04 -0.06 -0.20 full ply 
7 full ply 0.13 -0.05 -0.24 0.25 -0.11 -0.24 full ply 

10 full ply 0.15 -0.05 -0.10 0.05 0.27 0.01 full ply 
13 full ply 0.25 -0.15 -0.15 0.07 0.20 -0.13 full ply 
16 full ply 0.16 -0.09 -0.05 0.04 0.06 0.17 full ply 
19 full ply 0.07 0.02 -0.03 -0.02 0.21 0.09 full ply 
22 full ply 0.09 -0.03 -0.18 -0.08 0.05 0.06 full ply 
25 full ply -0.11 -0.24 -0.05 -0.22 -0.14 -0.02 full ply 
28 full ply -0.23 0.29 0.14 0.14 0.19 0.05 full ply 
31 full ply -0.17 -0.27 0.13 -0.10 -0.17 -0.08 full ply 
34 full ply -0.14 -0.04 0.04 -0.09 -0.03 -0.20 full ply 
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where each cell is just the physical measurement minus the CAD measurement. 

Much of the error in the results may have been introduced with the measurement 

techniques used. The samples were all polished by hand and therefore had varying amounts of 

material removed. If a ply edge was almost parallel to the cross-section as shown by the green 

ply in Figure 5-5, small changes in the position of the cross-section plane and small errors in the 

angle of the ply placement could introduce large discrepancies between the physical 

measurement and the CAD measurement. The cells in Table 1 and Table 2 that are marked red 

are the cells where this type of error is found. As the edges of the plies become more 

perpendicular to the cross-section like the red and yellow plies in Figure 5-5, the measurements 

are less affected by the amount of material removed during polishing.  

 

 

Figure 5-5: Ply Almost Parallel to Cross-Section 

 

Also, since the process used was hand layup, some ply orientations may have been slightly off in 

the physical part which could compound the error caused by varying the amount of material 
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removed such as ply 4, cross-section 13 in Table 1. To get more accurate results a laser 

projection system could be used (if available) to make sure the ply was placed at the correct 

angle and cutting the cross-section large and grinding down to the correct cross-section would 

both help reduce the measurement error. 

The maximum error in the hemisphere is larger than in the hood. One reason for this may 

be that the hemisphere has higher curvature and thus higher shear angles than the hood. One of 

the main deformation modes of fabric at high shear angles is fiber slippage. Since fiber slippage 

was not included in this method, it may have contributed to some of the error. Fiber slippage is 

suggested as a topic of future work in section 6.1.4. Another small source of error may be that 

the plies were traced from a pattern by hand and cut using hand shears. One final source of error 

is that because of the free edge of the fabric along the cuts, some fiber bundles fell out from the 

weave of the fabric, especially on the smaller plies. This made finding the true edge of the drape 

difficult under the microscope because one of the fiber directions was missing. 

The average of the absolute value of the hemisphere error is .17 inches. After removing 

the red cells, the average is .15 inches. The maximum error drops from .55 inches to .36 inches. 

The average of the absolute value of the error for the hood is .12 inches and after removing the 

red cells, the average is .11 inches. The maximum error is .29 inches which could have been 

caused by tows falling out or misalignment of the ply. 

These results are reasonable for a part of this size. If a larger part were manufactured, the 

distances between the ply drop-offs would likely be less of an issue. What really matters to a 

composite designer is whether the part will fail or not. This varies greatly with the fiber angles, 

locations of drop-offs, the stress state around the drop-offs and factor of safety. Since this 
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method is a way of visualization, the designer has one more tool to help figure out whether the 

design will fail. 

 Software Testing 5.2

This section explains what was done to test the robustness of the software. First the test 

parts are shown with explanations of why they were chosen. Next, an explanation of the results 

of using each of the drape methods on all four parts is offered.  

5.2.1 Test Parts 

There were four test parts as shown in Figure 5-6. Part 1 was included as a standard draping 

shape which should have no surprises. Part 2 was included because it was expected to create 

wrinkled fabric in the corners of the pocket. Part 3 was included because wrinkles can occur at 

the corners of the square protrusion. Part 4 was included as another easy draping shape that was 

not standard. 

 

 

Figure 5-6: Test Parts 
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5.2.2 Results Explanation 

The results for the testing are shown in Table 3. 

 

Table 3: Software Testing Results 

  Drop Spread Wang 
Part 1 Application point shift Uneven shear Good 
Part 2 Good Self-intersections Self-intersections 
Part 3 Good Hourglass unit cell Hourglass unit cell 
Part 4 Good Uneven shear Good 

 

A drape was considered good if there were no artifacts in the simulation that would be 

impossible or unlikely in the real world. Some examples illustrated were self-intersecting fabric, 

hourglass shaped unit cells, large shifts in application point, and uneven shear. In the physical 

world, fabric cannot self-intersect. Hourglass shaped unit cells happen when the cell is in torsion, 

and would not happen in a normal draping situation. Uneven shear is possible in the physical 

world, but usually does not happen because the technician takes care to align the fabric properly. 

Drop draping is the most versatile method and works well for parts 2 through 4 but the 

drape has a tendency to shift away from the application point if the part is asymmetrical or the 

fabric is draped asymmetrically on the part. Small plies work well on the hemisphere, but larger 

plies tend to get pulled off-center because as the fabric is dropping, some nodes are using the 

surface force and others are using the drop force (See Figure 5-7). If more of the nodes on one 

side of the fabric are using the drop force than the other side, the forces in the fabric are un-

balanced which is why the drape gets pulled off-center. In the physical world, the technician 

creating the layup controls where the fabric lies by using a laser projection system or some other 

method of aligning the ply. Also, friction between the ply and the layup resists the shifting 

motion seen in the drop draping method. Adding a way for the user to define the placement of 
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the middle warp and weft fibers and/or adding friction to the software model are possible 

avenues for future work.  

 

 

Figure 5-7: Shifted Drop Drape 

 

Spread draping works well for parts 1 and 4. On part 2 as the drape expands into the 

corners of the pocket, the initial locations of the nodes cross over each other causing hourglass 

shaped unit cells and self-intersection of the fabric. Part 3 behaves similarly once the drape 

progresses past the inside corner at the base of the protrusion. In the physical world, the locations 

where the software drape folds over itself are regions of high shear and would likely cause 

wrinkles in the fabric. This method also is somewhat dependent on cell size of the fabric. Smaller 

cell sizes have more of a tendency to fold over themselves than larger cell sizes.  

Wang’s method gives the best and fastest drape of both parts 1 and 4. Since this method 

is very similar to spread draping, its behavior is almost identical. There is a slight difference 

though. The shear in the drapes created with Wang’s method are usually more uniform than 

drapes created using spread draping. This happens because the tendon nodes do not move while 

the diagonal nodes are being created and optimized. This effectively separates the quadrants 

from each other and defines the overall shear for the quadrant. Defining the shear for the 
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quadrant affects the shear for each unit cell in the quadrant. Wang’s method could be expanded 

to allow the user to define the tendon node paths, thus more completely defining the drape of the 

fabric. 

Since no method worked for all parts, a designer should choose which method to use. The 

main factor that caused problems for Wang’s method of draping was the presence of highly 

curved concavities. If a part was convex or gently concave, Wang’s method was the best. If a 

part had sharp concave curvature, drop draping was the best method. 
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6 CONCLUSIONS 

The objective of this thesis was to create a representation of fabric that could be used to 

create a simulated layup. The conclusions formed were: 

1. No other method has modeled the local thickness of a layup 

2. No one draping method works with all part shapes 

3. This research predicted the physical layup ply boundaries to an average absolute 

error of .15 inches for the hemisphere and .11 inches for the hood 

4. The methods developed for this research help designers by visualizing plies thus 

avoiding superimposing ply drop-offs 

5. This method can re-order plies without changing cut-out shape 

 The literature review for this research found no other method that modeled the thickness 

of the laminate. To date, most draping methods have focused on draping a single ply on a 

surface. While this is helpful in many cases, a true representation of a layup must include fabric 

thickness. It was shown that this method takes into account the true layup thickness by forming a 

data structure where plies can be draped on top of plies. This becomes increasingly important 

with thick plies or thick laminates and areas where there are ply drop-offs. 

It was also shown that so far, one draping method does not fit all draping scenarios. The 

drop draping method was shown to be the most versatile method but had some issues with 

centering the drape on the application point. Spread draping was shown to stay on the application 
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point, but was inferior to Wang’s method because of uneven shear. Wang’s method was shown 

to work well on convex parts and was faster than drop draping. More on these methods is 

explained in the next section on future work. 

From the testing done on the hemisphere and hood parts, it was shown that this predicts 

the ply drop-off edges to an average of .15 inches and .11 inches for the two parts studied. Due to 

the hand measuring technique used, inaccuracies and anomalies in the hand layup process, and 

near-parallel ply boundaries and cross-sections, it was not possible to determine if the method 

predicted the boundaries better. It is expected that with a more tightly controlled physical layup 

technique the error would go down. The section on future work suggests ways to improve this 

measuring process. 

The visualization of the plies in this method provides an easy way for the designer of a 

composite part to visualize the laminate. Cross-sections can be taken in the CAD part and 

superimposed ply drop-offs can be seen easily and thus avoided. Plies can also be hidden or 

shown which would allow the designer to see where the entire boundary of the ply falls. 

Due to the nature of the data structure used, plies can be draped in any order while 

keeping their cut out shape. Most draping methods to date start with a boundary on a surface and 

drape to the boundary to find the flat pattern shape. This method reverses that process in order to 

be able to re-order plies if needed. 

 Recommendations for Future Work 6.1

There are many avenues for future work on this topic. These areas of future work 

explained in this section include: 

1. Using a more accurate physical fabrication and measuring process 

2. Adding friction to the drop drape method 



63 

3. Adding a user defined tow placement option to the drop draping method and 

Wang’s method 

4. Adding fiber slippage to the fabric model 

6.1.1 Fabrication and Measuring Process 

Since there were many sources of error in the physical layup and measuring technique, a 

more accurate process should be used. For the manufacturing process, a laser projection system 

would be helpful for placing plies correctly. For the cross-sectioning process, leaving an 

allowance for sanding and polishing would increase the accuracy because the part could be 

sanded and polished down to the measurement line to ensure the correct cross-section is 

measured. The layup of the part could be changed to include only plies whose boundaries are not 

close to parallel with any radial lines thus reducing the error caused by small differences in 

cross-section angle. 

6.1.2 Friction 

Other future work could include finding a way to keep the drop draping method from 

sliding off-center from the application point. Adding friction to the drop draping method is one 

option. Friction could be modeled by decreasing the step size of each node that is within a certain 

tolerance of the surface of the layup. This would cause the parts of the fabric that are on the 

surface to “stick” and would keep the drop drape on center. 

6.1.3 User Defined Tow Placement 

Another option to increase the accuracy of the drape might be to specify more 

deterministic boundary conditions for the fabric such as mixing the drop method with Wang’s 
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method. This would be done by attaching tendon nodes to a user defined curve while dropping. 

This would have the benefits of Wang’s method of draping such as more even shear while 

keeping the versatility of the drop draping method. In addition, a designer would have the option 

of tweaking the drape of the fabric to optimize the strength of the part. 

6.1.4 Fiber Slippage 

Fiber slippage was not included in this draping model. Fiber slippage becomes a 

significant deformation method at high shear angles. Currently, very few researchers have 

attempted to model fiber slippage. Slippage could possibly be included by adding a plastic 

deformation mode to the warp and weft springs.  
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