
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2012-11-08

A Hybrid Bishop-Hill Model for Microstructure
Sensitive Design
Ribeka Takahashi
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations
by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Takahashi, Ribeka, "A Hybrid Bishop-Hill Model for Microstructure Sensitive Design" (2012). All Theses and Dissertations. 3528.
https://scholarsarchive.byu.edu/etd/3528

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3528?utm_source=scholarsarchive.byu.edu%2Fetd%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


A Hybrid Bishop-Hill Model for Microstructure Sensitive Design

Ribeka Takahashi

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

David T. Fullwood, Chair
Christopher A. Mattson

Larry L. Howell
Carl D. Sorensen
Eric R. Homer

Department of Mechanical Engineering

Brigham Young University

November 2012

Copyright © 2012 Ribeka Takahashi

All Rights Reserved



ABSTRACT

A Hybrid Bishop-Hill Model for Microstructure Sensitive Design

Ribeka Takahashi
Department of Mechanical Engineering, BYU

Doctor of Philosophy

A method is presented for adapting the classical Bishop-Hill model to the requirements of
elastic/yield-limited design in metals of arbitrary crystallographic texture. The proposed Hybrid
Bishop-Hill (HBH) model, which will be applied to ductile FCC metals, retains the ‘stress corners’
of the polyhedral Bishop-Hill yield surface. However, it replaces the ‘maximum work criterion’
with a criterion that minimizes the Euclidean distance between the applicable local corner stress
state and the macroscopic stress state. This compromise leads to a model that is much more ac-
cessible to yield-limited design problems. Demonstration of performance for the HBH model is
presented for an extensive database for oxygen free electronic (OFE) copper. The study also im-
plements the HBH model to the polycrystalline yield surface via standard finite element analysis
(FEA) tools to carry out microstructure-sensitive design. Anisotropic elastic properties are incor-
porated into the FEA software, as defined by the sample texture. The derived local stress tensor
is assessed using the HBH approach to determine a safety factor relating to the distance from the
yield surface, and thereby highlighting vulnerable spots in the component and obtaining a quantita-
tive ranking for suitability of the given design. By following standard inverse design techniques, an
ideal microstructure (meaning texture in this context) may be arrived at. The design problems con-
sidered is a hole-in-plate configuration of sheets loaded in uniaxial tension and simple compliant
mechanisms.

The further improvement of HBH model is discussed by introducing geometrically nec-
essary dislocation (GND) densities in addition to the crystal orientations procedure in standard
microstructure-based method. The correlations between crystal orientations and GND densities
are studied. The shape of the yield surface most influenced by the texture of the material, while
the volume of the envelope scales in accordance with the GND density. However, correlations
between crystal orientation and GND content modify the yield surface shape and size. While cor-
relations between GND density and crystal orientation are not strong for most copper samples,
there are sufficient dependencies to demonstrate the benefits of the detailed four-parameter model.
The four-parameter approach has potential for improving estimates of elastic-yield limit in all
polycrystalline FCC materials.

Keywords: Bishop-Hill model, microstructure, FCC metals, elastic/plastic yield limit, design
space, stress, yield surface, OFE copper
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CHAPTER 1. INTRODUCTION

Microstructure Sensitive Design (MSD) is an innovative methodology for incorporating

material microstructure information in design. This allows more accurate prediction of physical

properties or functionality of products by incorporating the preferred crystal orientations relating

to the microstructures, crystal phase, grain size, etc. The method uses a mathematical framework

to systematically study potential material microstructures to meet the objectives of a specific de-

sign. Furthermore, the MSD method expands design space, and help designers to realize new

possibilities in performance, which may have been missed by the standard design approach.

The work presented in this dissertation develops a new mathematical model of evaluating

reliable estimates of plastic/elastic yield limit. Although this new method is derived from the theo-

retical stress corner defined by Bishop and Hill [1,2], the new approach called Hybrid-Bishop-Hill

(HBH) model, focuses on stress states rather than strain states of FCC materials. This characteris-

tic enables mechanical designers easier access to the evaluation of yield limit design because many

of the mechanical design focuses on stress states on geometries in its design practice. The study

applies the HBH model to various examples to demonstrate how mechanical design practice can

be improved by the use of HBH model.

The study in this work uses single-phase polycrystalline oxygen free electronic (OFE) cop-

per. Conventional thermo-mechanical treatment using rolling deformation has been applied to the

samples to create various microstructures.

The dissertation comprises three sections. The first section focuses on development of the

Hybrid-Bishop-Hill model. The section discusses how the idea for the need of stress-based yield

model is developed and how it defines its elastic/plastic yield limit. A simple hole-in-plate problem

with the use of HBH model demonstrates how anisotropic material properties open up a new design

space.
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The second section implements the HBH model to various geometrical structures through

finite element analysis (FEA) to carry out the MSD. The HBH model is applied to different geo-

metrical structures in this section. One of such geometry is the hole-in-plate problem; the study

compares the result obtained from analytical HBH approach and FEA incorporated HBH model.

The section also aims to demonstrate how HBH model can be adapted to mechanical design prac-

tice through the use of FEA.

The third section further develops the HBH model by incorporating fourth-parameter, ge-

ometrically necessary dislocation (GND) densities into its yield surface evaluation technique. The

corner stress defined by Bishop-Hill model is carefully scaled by the GND densities to accurately

demonstrate its influence on elastic/plastic yield limit. The section also searches the correlations

between crystal orientation and GND densities. The study demonstrates how four-parameter ap-

proach works superior to standard-microstructure-based HBH model.

The computation and validation of the HBH model is carried out by MATLAB (2009a,

2009b, 2010a, The Mathworks) programing. The OFE copper samples used in this work are pre-

pared by the use of available facilities at BYU, which includes rolling mill, tensile machine, wire

EDM, conventional oven, polishing lab, machine shop, etc. The samples are primarily studied

under the Phillips XL30 S-FEG scanning electron microscope (SEM). Microstructure data such as

crystal orientations and high-resolution electron backscattered diffraction (EBSD) patterns are ob-

tained and analyzed by the use of EDAX/TSL orientation imaging microscopy (OIMT M) software

(OIM 5.1, OIM 5.3, OIM analysis 5.0, and OIM analysis 6.0). The FEA-based approaches are

studied with ANSYS (ANSYSrAcademic Research, Release 13.0).
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CHAPTER 2. HYBRID BISHOP-HILL MODEL FOR ELASTIC-YIELD LIMITED
DESIGN

2.1 Chapter Overview

Three fundamental and interrelated design parameters affect yielding in materials; they

are (1) part geometry, (2) material microstructure, and (3) boundary conditions. In typical design

practice, these three types of design parameters lead to specific stress states, which are then com-

pared to simplified yield criteria (e.g., von Mises and Tresca criteria) as a means to predict failure.

Even simpler, in the most practiced sense, the largest stress component in a part is compared to a

measured yield strength (typically recovered from the standard uniaxial tensile test). Clearly this

simple yield-limited approach has been used in the past to create great parts and products [3, 4].

However, for any material that is not isotropic and homogenous, these methods rely upon an over

simplification of the yield surface. Reliance upon this simplified approach in yield-limited design

is partially due to ready-accessible tabulated yield strength data. But its use typically implies neg-

ligible variation of the yield strength with direction in the material. Extending these data sets to

include yield anisotropy can be very challenging, and has only been attempted in the most highly

constrained design problems. Ultimately, the readily available minimal yield data reduces the de-

sign engineer’s opportunity to search for optimal material performance, which can only be done by

including property anisotropy. This work presents a new, and accessible model for the anisotropic

yield surface that can be used to consider first-order anisotropic yield characteristics in design.

The literature provides useful insight into the evaluation and representation of anisotropic

yield surface models [5–7]. Through adaptations of the von Mises yield criteria, an empirical

representation of the anisotropic yield surface can be developed. This representation however

typically assumes material orthrombicity, and requires parameters that can only be found through

implementation of a significant testing program. Several microstructure-based theories have been

offered for the prediction of yielding in polycrystalline materials, such as the Taylor model [8], the

3



Bishop-Hill model, [1, 2] and various intermediate or hybrid models [9]. These classical models

are focused upon integrating crystallographic texture (preferred distribution of lattice orientations)

into yield predictions. Typically they require the input of a ‘critical resolved shear stress’, in order

to properly scale the predictions to measured yield properties.

It is important to note that under the classical Taylor [8] and Bishop-Hill [1, 2] method-

ologies, plastic strain states must be specified to evaluate the yield stress. The difficulty is that,

for design problems focused upon initial yielding, the elastic and plastic components of the total

strain are comparable in magnitude and difficult to separate. Thus, the precise condition of plas-

tic strain at initial yielding is not precisely specified. It follows that application of these classical

microstructure-based theories of plasticity to initial yielding is a rather imperfect approximation at

best.

The new models presented in this work, called the Hybrid Bishop-Hill (HBH) model 1, is

closely related to the classical Bishop-Hill model [1,2] in predicting local stress states and mechan-

ical yielding. The HBH model has the advantage, when used in the context of part design, of greatly

expanding the design space, thus enabling the designer to reach into traditionally unexplored ar-

eas of performance. Because the computational burden associated with the full characterization

of the 5-dimensional anisotropic yield surface is prohibitive, we develop a reduced representation

of the yield surface that is much more accessible. Typically only a small portion of the complete

yield surface is required for part design and the HBH model facilitates rapid access to the pertinent

domain of the yield surface.

This chapter (1) describes a stress-focused anisotropic yield limited design approach, in-

corporating the new HBH model, which (2) does not require an evaluation of plastic strain (or

strain rate) at yielding, (3) preserves the characteristic of local grain-scale heterogeneity present in

the Taylor and Bishop-Hill models, and (4) efficiently accesses a realistic portion of the anisotropic

yield surface pertinent to the mechanical design.

The new methodology is applied to an extensive database of rolled and annealed FCC Cu

materials (Oxygen Free Electronic purity grade). Although these materials exhibit the typical or-

thorhombic symmetry in their crystallographic textures, consideration is also given to rigid body

rotations of the principal axes of orthorhombicity, about the rolling plane normal direction. Prop-

1This chapter has been published [10].
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erty closures, of the type developed by microstructure-sensitive design methodology [11, 12], are

utilized to describe the breadth of elastic/yielding performance available within the complete ma-

terial database. Demonstration of the new methodology is focused upon the common problem of

stress concentration about a circular hole in a plate, loaded under uniaxial tension in arbitrary di-

rections with respect to the principal material axes. Analytical solutions to the elastic equilibrium

equations, provided by Lekhnitskii, [13] are used in the mechanical analysis.

The remainder of this chapter is presented as follows. In section 2.2, we present the tech-

nical preliminaries required to introduce the new methodology. In section 2.3, we present the new

approach for the mechanical yield limit design. Section 2.4 presents the application of the approach

to the hole-in-plate design problem.

2.2 Background

2.2.1 Property Closure

The simplest form of homogenization relations, associating the distribution of local states

of microstructure to estimates of the macroscopic (effective) elasticity, require only volume frac-

tion information on the distribution. Hill-Paul upper- and lower-bounds [12] on the stored elastic

strain energy density can be expressed in the following ways.

ε i j(S)−1
i jklεkl ≤ ε i jC

e f f
i jkl εkl ≤ ε i jCi jklεkl

σ i j(C)−1
i jklσ kl ≤ σ i jS

e f f
i jkl σ kl ≤ σ i jSi jklσ kl

(2.1)

Here Ce f f and Se f f are the fourth-order effective elastic stiffness and compliance tensors, S and C

are the local ones, ε is the local (second-order) infinitesimal strain tensor, σ is the Cauchy stress

tensor, and the bar over the top of any of these tensors indicates the volume average of the same.

(Note that the Einstein summation convention has been used in Eq. 2.1, in that repeated indices

occurring on the same side of the equation signify summation from 1 to 3 over that index. Thus,

each term in Eq. 2.1 contains 81 terms. This same convention is applied throughout the chapter.)

Although Eq. 2.1 rigorously bound the elastic energy density, bounding of the effective

stiffness tensor itself is only convenient when the indices k, l are set equal to i, j. In this situation
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the following bounds must be satisfied:

S−1
i ji j ≤Ce f f

i ji j ≤Ci ji j

C−1
i ji j ≤ Se f f

i ji j ≤ Si ji j.
(2.2)

Thus, bounds on 9 of the 21 independent effective elastic constants are readily available from sim-

ple volume averages over the corresponding local elastic constants, but more complex relations are

required to bound the remaining terms [11, 12]. For our purposes in this study, we will focus upon

the ‘Hill average elastic constants’, Ce f f (Hill) and Se f f (Hill), which are defined by the following

expressions.

Ce f f (Hill)
i jkl ≈

S−1
i jkl +Ci jkl

2

Se f f (Hill)
i jkl ≈

C−1
i jkl +Si jkl

2

(2.3)

The Hill average constants are an average of the upper- and lower-bounds on the effective elastic

constants; and the expressions apply to all 21 independent components.

Refinements in the prediction of elastic constants are available [11, 12], but such require

additional information on the spatial placement of local state, in addition to the distribution by

volume fraction. For our purposes the Hill average estimates will be sufficient.

2.2.2 Distribution of Local States

The term ‘local state’ refers here to any local characteristic of the material that affects the

property of interest. The ‘local state distribution’ refers to how the components of microstructure

are distributed upon the set of possible local states. A common example of a local state distribution

function is the familiar orientation distribution function, used in describing the crystallographic

texture of polycrystals [14]. For the materials of interest in this chapter, two types of local state

will be important, but only one will be considered to vary. Only one material phase is present in

oxygen free electronic (OFE) Cu polycrystals - the FCC Cu phase. Impurity levels in this material

are small; and these impurities are typically dispersed in interstitial form within the dominant

phase. It is assumed that the local elastic state of the material is determined only by the orientation

of the crystal lattice, and by the basic elastic properties of the Cu phase, CCu. If the direction
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cosines, g(x), are known at any local position x, then the local elastic properties are given by the

expression.

Ci jkl(x) = gim(x)g jn(x)gko(x)gl p(x)CCu
mnop (2.4)

The sense of the direction cosines in this expression is a coordinate transformation from the 〈100〉

crystal axes of the FCC unit cell, to the selected orthonormal coordinate system in the macroscopic

or specimen frame. Clearly g(x) varies little when x varies within an individual grain, but it jumps

as x traverses a grain boundary.

g(x) is the local state variable of principal interest in this chapter. With respect to the Hill

average estimates of effective elastic properties, given by Eq. 2.3, Eq. 2.4 can be used as input into

volume averaging, if g(x) is known for a sufficient sampling of material points x. Current experi-

mental electron backscatter diffraction (EBSD) techniques [12, 15] are very efficient at measuring

g(x) for large numbers of material points.

The second local state variable of interest to the present work is the critical resolved shear

stress, τcrss. This reflects the level of shear stress that must be present upon any of the {111}〈110〉

slip systems to cause dislocation slip to occur. It is known that τcrss is proportional to the square

root of the local total dislocation density, which typically varies with position x. However, in the

present work τcrss will be held constant for any specified material condition within the database.

Determination of τcrss will be discussed later.

Various parameterizations of g(x) are available. Of course the full 3× 3 matrix of coeffi-

cients of the direction cosines, utilized in Eq. 2.4, is an important parameterization; however only

3 of the 9 direction cosines are independent [12,14]. And for the purposes of defining the range of

all possible lattice orientations, it is convenient to reduce g(x) to 3 independent variables. Many

choices are possible, but the Bunge Euler angles, φ1, Φ, φ2, are the most common [14]. These

define a sequence of three primitive rotations that are required to bring a sample-fixed coordinate

frame into coincidence with the lattice fixed frame on 〈100〉. Output of the Bunge Euler angles is

common, using established image processing applied to EBSD patterns [15]. When symmetry of

the FCC crystal lattice is fully considered, it is convenient to express a 3-fold redundant space of
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possibilities for φ1, Φ, φ2 [12]:

FZ3c =

{
g≡ (φ1,Φ,φ2)

∥∥∥∥∥∥∥∥∥∥∥∥

0≤ φ1 < 2π

0≤Φ <
π

2

0≤ φ2 <
π

2

∥∥∥∥∥∥∥∥∥∥∥∥
}
. (2.5)

The 3-fold redundancy refers to the fact that each physically distinctive lattice orientation appears 3

times in FZ3C. Further reduction to the point that each distinctive orientation appears only one time

is possible, but the inconvenience is that the fundamental zone contains a complex surface, which

renders partitioning difficult. Experience dictates that it is easier to work with the rectangular 3-

fold redundant fundamental zone described by Eq. 2.5. From the experimental point of view, each

EBSD-based measurement of lattice orientation will occur 3 times in FZ3C.

The rectangular shape of FZ3C can be split into smaller bins of rectangular shape. All

computations of the type required in Eq. 2.3 will be handled discretely, using binned datasets.

Suppose that N such bins have been defined, and designated by ωn, where

ωn ⊂ FZ3c,

N⋃
n=1

ωn = FZ3c, ωn∩ωm =� (m 6= n). (2.6)

Associated with each bin ωn is an indicator function χn(g), defined by the expression.

χn(g)≡ χn(φ1,Φ,φ2)

{
1, i f g ∈ ωn

0, otherwise
(2.7)

The size of the bins will have an effect upon the errors in forming the averages required by the Hill

estimates of effective elastic stiffness.

The pertinent local state distribution is the distribution of lattice orientation among the

sampled material points. Imagine that a total of S local orientations have been measured by EBSD-

based methods. A condition of statistical sufficiency is assumed for this set of measurements.

Roughly, this means that the measurements are taken in a sufficiently large number of components

of microstructure (grains) to ensure that the experimental sampling is characteristic of the overall
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microstructure. After converting each of the S measurements of orientation into it’s 3 equivalent

orientations within FZ3C, the 3S determined orientations will be distributed among the N defined

bins. Let f n denote the fraction of 3S orientations that fall within ωn.

f n =
1

3S

3S

∑
s=1

χn{gs} (2.8)

The local state distribution function, in this case closely related to the orientation distribution

function, will consist in the set of real number fractions f n, F = { f 1, f 2, · · ·, f N}. From Eq. 2.8

conservation of volume requires that
N

∑
n=1

f n = 1. (2.9)

Approximations to the average elastic tensors required in Eq. 2.3 are readily formed from

the local state distribution function via expressions of the form

Ci jkl ≈
N

∑
n=1

f nCn
i jkl (2.10)

where Cn denotes the value of the elastic stiffness calculated by Eq. 2.4 with φ1,Φ,φ2 taken to be a

characteristic lattice orientation lying within the associated bin ωn. Numerical examination of the

bin-size dependency of calculations like Eq. 2.10 have determined that numerical errors are ∼ 1%

when a bin size of 5◦×5◦×5◦ in the three Euler angles is selected within FZ3C; consequently, this

bin size was utilized throughout the present work.

2.2.3 Taylor-Bishop-Hill Model

Since its introduction in 1938, the Taylor [8] first-order upper bound on the yield strength

of rigid elastic (elastic strains are ignored), perfectly-plastic (strain hardening is not considered)

polycrystals [16] has been widely applied to the problem of yielding. Of course these simplified

conditions do not accurately reflect the heterogeneous nature of elastic/plastic behavior in poly-

crystals at the yield point. Essential to the Taylor model is the approximation that all crystallites

or grains are subject to the same plastic strain. In the original theory, plastic deformation is con-

strained to occur by shear on specified slip systems, and the required plastic shear strains on these
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slip systems are discovered. In FCC materials like Cu, which has 12 {111}〈110〉 slip systems, a

large number of choices of 5 slip systems (required to accommodate an arbitrary incompressible

plastic deformation) can be discovered from among the 12 available slip systems. At this point

Taylor postulates that the correct combination will be the set that accomplishes the required de-

formation with the least amount of total shear: the so-called minimum work criterion. (Those

practiced in the Taylor model will recall that it is often the case that there remains a redundancy

in the available sets of slip accommodation. Several choices remain with the same minimum work

condition. However, for consideration of yield strength alone, this redundancy is of no further

interest.)

The question naturally arose after the emergence of the Taylor model, as to whether or

not actual homogeneous stress conditions could be discovered that would activate any particular

required set of slip systems for yielding. Thus came the Bishop-Hill model in 1951 [1, 2]. It was

discovered that for FCC materials a set of 56 stress states are capable of activating the required

combinations of slip for an arbitrary plastic deformation. These 56 stress states are also known as

‘stress corners’, because they form the vertices of a convex polytope, which is the yield surface

in 5-D deviatoric stress space. A maximum work criterion was presented for correctly identifying

the pertinent stress corner associated with any particular impressed plastic strain. Later Chin and

Mammel showed that the Taylor and Bishop-Hill models are dual solutions to the same linear

problem [17]. For this reason some authors refer to these two complimentary models as the Taylor-

Bishop-Hill (TBH) model.

These 56 vertices or corners of the yield surface for FCC crystals can be grouped into 5

different types: the first three groups activate 8 slip systems simultaneously; and the fourth and

fifth groups activate 6 [1, 18]. According to the TBH model, a slip system is only activated when

the resolved shear stress meets or exceeds τcrss. It is also found that the resolved shear stress upon

the non-active slip systems is zero [18]. Appendix B lists 28 of the 56 TBH corner stress states;

the remaining 28 are simply related to the first 28 by a minus sign.

According to the TBH model, each grain experiences the uniform (macroscopic) imposed

strain. TBH theory hypothesizes that the active corner stress state is the one that maximizes the

work done. If the local corner stress is σC, and the imposed strain increment is δε , then the
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increment of plastic work, δW p for any particular choice of stress corner will be

δW p = σ
C
i j(x)δεi j(x). (2.11)

The correct choice for the active stress corner, within the TBH model, is the one that maximizes

δW p.

First-order estimates of the TBH upper-bound on the yield strength in polycrystals can

be computed from the S measurements of lattice orientation, g(x), according to the following

expression:

σ
Y
i j ≈

N

∑
n=1

f n
σ

Cn
i j (δε). (2.12)

Here δε is the imposed plastic strain increment, σ
Y (δε) is the predicted macroscopic yield stress

associated with the selected plastic strain increment, and σCn(δε) is the correct TBH stress corner

associated with bin n and the imposed plastic strain increment, according to Eq. 2.11. (Note that

it is essential that all terms in Eq. 2.12 be expressed in the macroscopic or specimen coordinate

frame.)

2.2.4 Estimation of τcrss from the TBH Model

The corner stress states required to implement the yield stress estimation expressed in Eq.

2.12 require knowledge of τcrss. A particular way of estimating the τcrss has been used, and will be

briefly described here. It is assumed that experimental uniaxial tensile testing has been conducted

on each material of interest.

Tensile samples are cut to a geometry, and loaded in such a way that to a first approximation

only a single tensile component of the stress can be present in the gage section of the sample. We

designate this tensile axis as the ê1 direction, with the two transverse directions being ê2, ê3 .

If the tensile testing is conducted with ê1 aligned with any one of the principal axes of material

microstructure, then it is reasonable to expect that the plastic strain increment in the gage section
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to have a diagonal form that can be expressed as

δε ≡ δε11


1 0 0

0 −η 0

0 0 −(1−η)

 (2.13)

where η is the contractile (plastic) strain ratio, η =
ε22

ε11
. In principle this contractile strain ratio

can be measured in the tensile sample after yielding has occurred, when the load has been re-

moved from the sample. Once the relevant contractile strain ratio is known, the appropriate strain

increment is known, and Eq. 2.12 can be used to estimate the uniaxial yield strength, σ
Y
11. This

estimate scales linearly with τcrss, and adjustments in τcrss can be pursued until σ
Y
11 matches with

the experimentally measured yield stress. This is the basic approach.

In practice it is difficult to measure the plastic contractile strain ratio at initial yielding,

because the plastic strains involved are small,∼ 10−3. One approach to overcome this is to deform

the sample to larger deformations, and then to assume that the contractile strain ratio observed

at these larger strains will be representative of the one at smaller strains. The limitations of this

approach are obvious. Another approach, which is numerical, is to take the contractile ratio to

be a variable, and then to calculate the estimate of the yield stress tensor for each selected choice

of the ratio. When the predicted stress state is as close as possible to the uniaxial condition, it

can be assumed that the correct contractile ratio has been discovered. This approach is equivalent

to minimizing the average overall plastic work increment, δW p. In the present work, this latter

approach has been taken.

2.2.5 Determination of Elastic-Yield Property Closures

Interest in the complete range of elastic/yield property combinations that could occur within

all conceivable polycrystalline microstructures of fixed material phase typically occurs during

preliminary design. Theoretical methods for constructing estimates of properties closures have

been presented in the literature [12, 19–21]. The approach taken is to make use of available

microstructure-sensitive homogenization relations for the properties of interest, and then to con-

sider all possible microstructures, beginning with single crystals of an arbitrary lattice orientation.

12



Details of this approach are not given here; but the interested reader will find the methods detailed

in the referenced literature [12, 19–21]. Of interest in this work is a limited, or ‘accessible proper-

ties closure’, comprising the portion of the full elastic/yield closure that is readily accessible with

ordinary materials processing.

2.2.6 Anisotropic Properties of Orthotropic Plates Containing Circular Holes

As an example of a simple anisotropic design problem, where microstructure consider-

ations are of paramount importance, the classical problem of ‘hole-in-anisotropic-plate’ will be

revisited. The detailed mechanics of plates containing a circular hole, and with microstructures

exhibiting orthorhombic symmetry, was presented by Lekhnitskii [13]. Considering an infinite

plate, loaded under uniaxial in-plane tension in an arbitrary direction with respect to a selected

principal axis of material orthorhombicity, the tensile stress tangential to the inner surface of the

hole is given by the expression:

σθ = p
Eθ

E1
{[−cos2

φ +(k+n)sin2
φ ]k cos2

θ

+[(1+n)cos2
φ − k sin2

φ ]sin2
θ

−n(1+ k+n)sinφ cosφ sinθ cosθ}.

(2.14)

In this expression p is the applied stress, exerted a large distance away from the circular hole. θ

defines an angle relative to the selected principal material axis (taken to be the rolling direction

in this work) that identifies the location of a point on the circumference of the circular hole. This

is defined to be the tensile stress tangential to the point of circumference identified by θ . Finally,

φ denotes the direction of the applied stress with respect to the principal material axis. Other

components in Eq. 2.14 are defined by the expressions.

1
Eθ

=
sin4

θ

E1
+(

1
G
− 2ν1

E1
)sin2

θ cos2
θ +

cos4 θ

E2

k =

√
E1

E2

n =

√
2

E1

E2
−ν1 +

E1

G

(2.15)
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The symbol ν1 represents Poisson’s ratio perpendicular to the principal material axis, E1 and E2

represent Young’s modulus in the rolling and transverse directions of the sheet, respectively, and G

is the in-plane shear modulus. Given the traction-free condition at the circumference of the hole,

and the other geometrical and boundary conditions, σθ is the only non-zero component of stress

that can occur adjacent to the circular hole. Estimates for each of these effective elastic properties

are accessible by calculations of the Hill average properties, using Eq. 2.3 and Eq. 2.10.

Predictions of σθ , taken from Eq. 2.14, will be compared to estimates of the yield strength,

which also varies with θ , in order to establish the maximum value of the tensile load p that can

applied to the plate without causing yielding. The design problem reduces to the matter of deter-

mining, for any particular material, the peak load that can be applied and the direction φ in which

it must be applied. Figure 2.1 depicts the essential geometrical definitions for the anisotropic

hole-in-plate problem.

Figure 2.1: A geometry of anisotropic hole-in-plate problem

2.3 Proposed Hybrid Bishop-Hill Model

In most yield limited design problems the interest is in the near-vicinity of the yield surface,

where the plastic strain is not dominant compared to the elastic strain. If the spatial character of

the strain state is considered, it is not constant, but varies with position in complex ways. These

conditions call to question the application of the TBH model for the problem of initial yielding.
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For plastic problems where the total strain is dominated by the plastic component, this is not an

issue.

Our present purpose is to propose a modified version of the TBH model, which will be

named the ‘Hybrid Bishop-Hill Model’ (HBH model). Importantly, the focus of the HBH model is

on the applied stress, rather than on the plastic strain; this makes the model much more accessible

to design engineers who focus more upon stress states, rather than strain states. The algorithm

for predicting the yield strength of the polycrystalline material via the HBH model uses the same

stress corners that were defined for the TBH model. Retaining this characteristic means that there

will be a natural heterogeneity of local stress among the constituents of the polycrystal.

A simple assumption is taken that the local yielding at any position in the material occurs

at the corner stress state, σ̂C
i j , that lies “closest” to the macroscopic stress, σ̂i j . The “hat” over the

stress symbols signifies the deviatoric stress. Distance between these two stress states is defined

by di j, where

di j = σ̂
c
i j− σ̂i j. (2.16)

The magnitude of distance between stress states, d, is defined by the Euclidean norm:

||d2||= di jdi j. (2.17)

Importantly, the distance defined according to Eq. 2.16 and Eq. 2.17 is invariant with respect

to coordinate transformation. The selection of stress corner for any particular component (grain)

within the polycrystal is taken to be the Bishop-Hill corner stress that minimizes the distance d

between the applied stress and the corner stress state.

The estimated (deviatoric) yield strength of the material is obtained from the expression

σ̂
Y
i j ≈

N

∑
n=1

f n
σ̂

Cn
i j (2.18)

σ̂Cn denotes the pertinent stress corner associated with bin n in FZ3c. Note that all corner stress

states exercised in Eq. 2.18 must be expressed in the macroscopic (sample) frame in order to

interpret σ̂Y
i j as the yield strength. Whereas yield strength is customarily described as the full
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Cauchy stress, the deviatoric yield stress must be converted, using the customary definition:

σ
Y
i j = σ̂

Y
i j +

1
3

δi jσ
Y
kk (summation over k implied). (2.19)

Exercising Eq. 2.19 to obtain σY
i j requires additional physical information about the applicable

pressure 1
3δi jσ

Y
kk or some other characteristic of the normal components of σY

i j . If, for example, the

calculations involve estimates of a uniaxial tensile test, then only one component of σY
i j is expected

to be non-zero; and in this case a pressure term 1
3δi jσ

Y
kk can be applied that renders σY

i j as close as

possible to a uniaxial stress condition. This is the approach taken in the present work.

Recall that the corner stress states of the TBH model are states that are capable of sup-

porting general local states of plastic strain. Consistent with the classical Taylor model, the TBH

model defines stresses that are capable of causing an arbitrary plastic strain state, by {111}〈110〉

dislocation slip. The TBH model does not satisfy the stress equilibrium condition, although when

the macroscopic plastic strain is imposed upon each individual grain within the material, strain

compatibility is fulfilled in a trivial sense. The new HBH model fulfills neither stress equilibrium,

nor strain compatibility at a local level. However, having utilized the TBH stress corners in the

model to estimate local stress conditions, it can be anticipated that complex plastic strain condi-

tions, as required by the equilibrium and compatibility requirements under elastic/plastic loading,

could more readily be satisfied by the stress corners. To some extent the HBH model could be

compared to the relaxed-constraints model(s) that preserve some features of Taylor-like models,

but do not strictly enforce either strain compatibility or stress equilibrium [22].

The basic relations pertaining to the HBH model (Eq. 2.16 through Eq.2.18) can be applied

to arbitrarily complex loading states.

2.4 Results and Discussions

2.4.1 Database of OFE Copper Materials

It will be obvious to those familiar with materials processing, that the range of microstruc-

tures that are readily accessible to the designer comprise a range of properties that is much smaller

than the set considered by the theoretical properties closure, briefly described in section 2.2.5. A
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limited, accessible closure for elastic/yield properties has been considered for OFE Cu. Three

common processing routes have been considered: rolling deformation, thermal annealing, and

rigid body rotation of the material about the normal direction to the rolling plane. Rolled OFE

Cu plate (in the as-received ‘half-hard’ condition), and 6 derivative materials produced there-from

by secondary processing steps, and one addition material (very strongly ‘cube textured’, provided

by Oak Ridge National Laboratory), were considered in the database. Table 2.1 Describes the

processing conditions for each of these samples.

Table 2.1: Sample description

Sample Description Heat Treatment Temperature Heat Treatment Time
(C◦) (Hour)

As received N/A N/A
As received and annealed 191 1
98% cold worked 22 N/A
98% cold worked and recrystallized 225 0.5
58% cold worked N/A N/A
58% cold worked and annealed 160 1
58% cold worked and recrystallized 225 1.5
Cube texture N/A N/A

Theoretically, each of these 8 materials within the ‘accessible’ database, were then allowed

to rotate around their plane normal, in order to compute the ‘accessible properties closure’. The

local state distribution can easily be recomputed for an arbitrary rotation angle, and then Eq. 2.10

and Eq. 2.12 can be re-exercised to recover the changed estimates for elastic and yielding prop-

erties. Rotations of the sample relative to the loading gives rise to orbits in the properties closure.

Further details of this approach are provided in the 2008 paper of Adams et al. [19]. The com-

plete and accessible closure for σY
θ

(in-plane uniaxial yield strength in direction θ̂ ) versus Eθ

(Young’s modulus associated with the same in-plane direction) is shown in Figure 2.2. The reader

should note that E1 in Eq. 2.14 and Eq. 2.15 is related to this notation by E1 = E0 = Eθ=0 and

E2 = Eπ/2 = Eθ=π/2 .
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Figure 2.2: Property closure

2.4.2 Comparison of HBH and TBH Models

An accessible comparison is here detailed for the predictions of yield strength for the 8

OFE Cu materials included in the database of this study. The comparison is between predictions

based upon the classical TBH and the new HBH models.

Appendix A contains the {111} and {200} crystallographic pole figures for each material

of the database. These were obtained from EBSD data sets comprising a minimum of 2,500 grains

for each sample (excluding the ‘cube texture’ material, which has a large grain size). The peak

value for the texture of these materials was measured to be in excess of 37 ‘times-random’, for

the cube texture sample, for the {100}〈001〉 component. Most of the other materials exhibited the
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classical rolling texture, [23] with peak times-random values ranging from 1.6 in the as-received

material, upwards to 5.5 in the 98% cold worked sample. It is evident that upon annealing the

98% cold rolled material, a {100}〈001〉 cube component develops with an intensity of∼ 3.7 times

random.

Standard tensile testing was conducted for the purpose of recovering the yield strength in

the rolling direction, RD, in each sample. (The yield strengths reported are the typically average

values from 3 tensile tests.) Using the numerical approach described in Sec. 2.2.4, the contractile

strain ratio η was varied in connection with Eq. 2.11 and Eq. 2.12 until the macroscopic increment

of plastic work, δW p, estimated from the TBH model, was minimized. Using this estimate for the

strain increment, τcrss was estimated from the Taylor factor and the experimental yield strength.

The results of this comparison are shown in Table 2.2. It is evident that in most instances the new

HBH model more accurately predicts the yield strength in comparison with the TBH model.

Table 2.2: Comparison of experimentally obtained tensile yield strength vs. the numerically
obtained yield strength

Samples Contractile Experimental Tensile The TBH The Hybrid
Strain Ratio Yield Strength Yield Strength Yield Strength

η (MPa) (MPa) (MPa)
As received 0.51 185.40 201.74 181.07
As received and annealed 0.49 185.67 204.05 182.10
98% cold worked 0.43 423.48 436.15 400.95
98% cold worked and recrystallized 0.52 71.93 77.83 69.67
58% cold worked 0.36 377.10 401.11 363.53
58% cold worked and annealed 0.39 363.93 391.08 354.06
58% cold worked recrystallized 0.54 65.43 72.14 63.97
Cube texture 0.39 33.76 50.56 27.65

2.4.3 HBH-Based Design for the Anisotropic Hole-In-Plate Problem

First, consider the plate without a hole. Variation of the uniaxial yield strength, σY
φ

, with

direction of the applied load, φ , is shown in Figure 2.3 for each of the 8 materials within the

database. The variation of yield strength (σY
φ

, with respect to φ ) is as small as ∼ 1% in the as-

received and as-received annealed materials, to ∼ 33% in the strongly cube-textured material. In
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terms of absolute strength, it is not unexpected that the lowest values of strength are found in the

most heavily annealed materials, and the highest values are seen in the most heavily cold-worked

material. The range of strength is from ∼ 30−425 MPa.

Next, consider plates containing a circular hole, loaded under uniaxial tension. The simple

stress states around the circumference of the hole, are purely uniaxial; and they act in a tangen-

tial direction relative to the circumference of the hole. This is expressed by Eq. 2.14, and Eq.

2.15. This stress state can be compared with the theoretical yield stress in the same direction, as

determined using the HBH model. Note that σθ depends linearly upon the magnitude of the stress

p applied in direction φ ; and the magnitude of σθ depends on both variables, φ and θ . In this

chapter, we are interested in two stress states, σφ and σθ . σφ denotes a uniaxial stress aligned with

the direction defined by φ ; and with respect to the hole-in-plate problem, σφ = p. σθ , however, in

the context of the hole-in-plate problem, is the tangential stress acting at the point identified by θ

on the circumference of the circular hole, as shown in Figure 2.1, as evidenced by Eq. 2.14 and

Eq. 2.15, σθ = σθ (p,φ) . The distinction between σφ and σθ is that the former is parallel to the

direction defined by φ , and the latter is perpendicular to the direction specified by θ . When the

superscript Y is used, as with σY
φ

or σY
θ

, what is meant is the uniaxial yield strength of the material

for the particular the stress state.

Figure 2.4 compares the θ - dependent yield strength, σY
θ

, with the calculated stress state

around the circumference of the circular hole for the cube texture OFE Cu plate for constant values

of φ and σφ . For this example φ was chosen to be 45◦ (i.e., 45◦ from RD), and the magnitude of

the applied stress, p, was taken at a level that just causes these two curves to touch one another

at θ = 105◦ and 285◦, at a stress level of σY
θ
= 36 MPa. For stress levels that exceed this it is

predicted that plastic yield will occur, first at these two circumferential angles, and then later at

other locations associated with minima in the yield stress curve. Note that changes in the angle φ

of application of the applied stress p will change the form of σθ . Peak performance in design with

plates containing circular holes will consist in identifying the direction φ at which the largest p can

be applied without causing plastic yielding at any position θ about the hole.

This same analysis can be performed for all of the plate types found in the database. Let pY
φ

denote the applied stress in direction φ where yielding begins. This behavior is shown in Figure

2.5.
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Figure 2.3: A variation in yield strength with respect to the applied tensile load direction in
anisotropic plates
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Figure 2.4: The stress states around a circular hole in cube texture plate (the dotted line) and the
related yield stress of the material (solid line). When the stress states (σθ ) touch the yield stress
(σY

θ
), the material is considered to be yielded. The applied stress is at φ = 45◦ to the sample rolling

direction.

The best and worst performances can be obtained from Figure 2.5 for the various materi-

als. This minimum performance is interesting from the point of view that an uninformed designer

could inadvertently load a plate with circular hole in the direction where minimum strength would

be realized. Another way to look at the maximum and minimum performance is in terms of the as-

sociated stress concentration factors. An anisotropic stress concentration factor, Kt can be defined

as the following:

Kt =
max σθ

pY
φ

(2.20)

where max σθ signifies the peak value of σθ that occurs around the circumference of the hole

at the applied load at which yielding occurs, pY
φ

. For isotropic materials Kt becomes 3, but for

anisotropic materials it can be larger or smaller than 3. A complete listing of the predicted maxi-

mum and minimum performance levels, their associated yield strengths pY
φ

, and the angles of load

application, and their related stress concentration factors, is presented in Table 2.3.

As-received OFE copper plate and its derivatives gives Kt close to 3; however, the highly

cube textured sample gives Kt less than 2.5. The range of predicted maximum and minimum
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Figure 2.5: A variation in yield strength with respect to the applied tensile load direction in
anisotropic plates with a circular hole
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Table 2.3: The performance of anisotropic plates with a circular hole

Stress Applied Tensile Angles from the
Samples Performance Concentration Yield Strength (pY

φ
) Sample Rolling Direction

Kt (MPa) (degrees)
As received max 2.9998 60.6029 67.5

min 3.0138 59.7461 135
As received and annealed max 2.9999 61.0013 67.5

min 3.0087 60.3045 127.5
98% cold worked max 2.9951 139.0507 172.5

min 3.0471 131.4412 52.5
98% cold worked and recrystallized max 3.0000 23.9691 67.5

min 3.0145 23.0364 135
58% cold worked max 2.9255 128.0214 0

min 2.9526 123.1271 90
58% cold worked and annealed max 2.9596 123.0033 135

min 2.9543 119.8268 90
58% cold worked recrystallized max 2.9998 21.5910 67.5

min 3.0146 21.0382 45
Cube texture max 2.4672 14.6613 135

min 2.4823 11.1397 165

performance condition among the materials of the database becomes: 2.46 < Kt < 3.05 or a factor

of 1.2.

2.5 Chapter Summary

This chapter presents a new approach to first-order yield limited elastic/plastic design, by

introducing the Hybrid Bishop-Hill model for yielding. The HBH model retains the distinctive

corner stress states defined for FCC crystals by the classical Taylor Bishop-Hill model, but differs

in focusing the choice of corner stress state upon the macroscopic applied stress. In a comparison

between the TBH and HBH models, undertaken for a database of 8 distinctive OFE Cu materials,

it was demonstrated that the HBH model performed markedly better than the TBH model when

compared with experimentally measured yield strengths.

A semi-complete (complete in the E direction) properties closure for in-plane uniaxial yield

strength versus Young’s modulus was presented, and compared with an accessible property closure

for the database of 8 OFE Cu materials. In addition to the varied secondary processing by thermal-

mechanical treatment, rigid body rotation of these sheet materials, about the sheet normal, was
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considered. The variation of yield strength and Young’s modulus with rotation define orbits within

the properties closure. These orbits were detailed in the accessible property closure.

To illustrate the application of the new HBH model to a yield limited design problem of

general interest, the problem of yielding in anisotropic plates containing circular hole was con-

sidered. Anisotropic plate theory predicts that the location of maximum stress concentration is

dependent on material microstructure such that the stress concentration is not necessary located at

90 degrees off the applied tensile load axis, as in the isotropic plate theory, but varies with mate-

rial microstructure and loading direction in the plate. The study shows that the variation of load

capacity is large for highly textured samples. In the identified optimal direction, it is predicted

that the applied stress at yield is about 34% of the tensile yield strength in the rolling direction

for most samples compared with 33% for isotropic materials. For the cube-textured material, it is

about 50% of the tensile strength (ultimate tensile strength for plate with no hole). If the perfor-

mance of the plates is based upon the stress concentration factor Kt (Eq. 2.20), it does not change

significantly with direction of the applied tensile load.

This section of work has presented a new approach for improving the performance of sim-

ple mechanical parts by incorporating material microstructure information into a stress-centric

framework. Since the stress is much more accessible than the plastic strain, near the yield point

of the material, the new approach facilitates a much easier approach to yield limited design. As

an example of the application of the new yield theory we have shown that the locations of stress

concentration, the optimal/critical applied load directions, and the readily accessible direction-

dependent yield strength predictions aid the design for improvement of overall performance of

plates containing a circular hole.
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CHAPTER 3. HYBRID BISHOP-HILL MODEL COMBINED FINITE ELEMENT
ANALYSIS

3.1 Chapter Overview

To achieve excellence in mechanical design, engineers may consider various aspects of

design, including geometry of a structure, processing strategy and material microstructure. Opti-

mizing any of these parameters lead to enhancement of performance of products. This chapter will

focus primarily on the optimization of material microstructure, termed microstructure sensitive

designing [12]. However, in practice none of these design parameters can be treated in isolation;

hence the interactions between all three will be considered in a framework focused on design for

yield in polycrystalline metals.

In general design practice today, engineers use readily available tables of material data

(such as properties derived from standard uniaxial tensile tests) which assume an isotropic nature

for materials. In reality, many of the materials have anisotropic properties and preferred crystal

orientations relating to their microstructure. By using methodology based upon microstructure

sensitive design and introducing the anisotropic properties of materials into the design space, new

possibilities arise in performance which may have been missed by the standard design approaches.

An evaluation of the elastic/yield limit is a critical aspect of many mechanical design ac-

tivities. Several microstructure-based theories have been offered for the prediction of yielding

in polycrystalline materials such as Taylors model [8], the Bishop-Hill model [1, 2], and various

intermediate or hybrid models [9, 24–31]. These classical models are focused upon integrating

crystallographic texture (the preferred distribution of lattice orientations) into yield predictions.

Typically a critical resolved shear stress is required as an input to properly scale the predictions of

measured yield properties.

It is important to note that under the classical Taylor Bishop-Hill methodologies [1, 2, 8],

plastic strain states must be specified in order to evaluate the yield stress. The difficulty is that, for
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designing problems focused upon initial yielding, the elastic and plastic components of the total

strain are comparable in magnitude and difficult to separate. Thus, the precise condition of plastic

strain at initial yielding is not precisely specified. It follows that application of these classical

microstructure-based theories of plasticity to initial yielding is a rather imperfect approximation at

best.

This section of the work will focus on a Hybrid-Bishop-Hill (HBH) model [10] which is

closely related to the classical Bishop-Hill model [1,2] in predicting local stress states and mechan-

ical yielding. The HBH model has the advantage, when used in the context of part design, of greatly

expanding the design space, thus enabling the designer to reach into traditionally unexplored ar-

eas of performance. Because the computational burden associated with the full characterization

of the 5-dimensional anisotropic yield surface is prohibitive, a reduced representation of the yield

surface that is much more accessible is developed. Typically only a small portion of the complete

yield surface is required for part design and the HBH model facilitates rapid access to the pertinent

domain of the yield surface.

One of the most flexible design tools for determining local stress state, as an input to the

HBH model, is Finite Element Analysis (FEA). Many physical phenomena are studied through

differential equations, with given boundary or initial conditions that may be solved numerically

via FEA techniques. FEA allows designers to study distributions of stress and displacement in

complex physical/geometrical models which may not have analytical solutions; thus enabling en-

gineers to evaluate structural integrities as part of the design process. Hence the incorporation of

an HBH model into the FEA framework is an ideal partnership for studying yield behavior in the

context of anisotropic materials.

This chapter will demonstrate the anisotropic material dependent HBH / FEA analysis with

three different geometries. The first geometry of this study is the classical ‘anisotropic hole-in-plate

problem’ (3.1). While many geometrical models do not have analytical solutions to the associated

stress field, an infinite plate having a circular hole is one of the relatively few geometry problems

which have analytical solutions. Lekhnitskii explains that the stress states around a circular hole

of infinite plate can be expressed in terms of material information in the following form [13]:
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Figure 3.1: A geometry of anisotropic hole-in-plate problem

σθ = p
Eθ

E1
{[−cos2

φ +(k+n)sin2
φ ]k cos2

θ

+[(1+n)cos2
φ − k sin2

φ ]sin2
θ

−n(1+ k+n)sinφ cosφ sinθ cosθ}.

(3.1)

In this expression p is the applied stress, exerted a large distance away from the circular

hole. θ defines an angle relative to the selected principal material axis that identifies the location

of a point on the circumference of the circular hole. σθ is defined to be the tensile stress tangential

to the point on the circumference identified by θ . φ denotes the direction of the applied stress with

respect to the principal material axis (Figure 3.1). Other components in Eq. 3.1 are defined by the

expressions:

1
Eθ

=
sin4

θ

E1
+(

1
G
− 2ν1

E1
)sin2

θ cos2
θ +

cos4 θ

E2

k =

√
E1

E2

n =

√
2

E1

E2
−ν1 +

E1

G
.

(3.2)

The symbol ν1 represents Poisson’s ratio perpendicular to the principal material axis, E1 and E2

represent Young’s modulus in the rolling and transverse directions of the sheet, respectively, and G

is the in-plane shear modulus. Given the traction-free condition at the circumference of the hole,
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Figure 3.2: Parameters for a stent-like compliant mechanism

and the other geometrical and boundary conditions, σθ is the only non-zero component of stress

that can occur adjacent to the circular hole.

The second and third examples studied in this work are geometries relating to compliant

mechanisms, as illustrated in Figure 3.2 and Figure 3.3. A stent-like geometry (Figure 3.2) expe-

riences displacement loading from an applied force F. A geometrical part from a lamina emergent

torsional (LET) joint [32,33] (Figure 3.3) experiences simple loading conditions which create dif-

ferent complex stress states within the geometry of the part.

The study aims to demonstrate how to achieve excellence in elastic/yield-limited design

by introducing material anisotropy using these simple geometries. The FEA is carried out on the

geometrical parts for the anisotropic material properties of oxygen free electronic (OFE) polycrys-

talline copper, which are obtained from microstructure analysis over a range of processing options.

The stress states of each node, which are evaluated via FEA, are studied with the HBH yielding

model.
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Figure 3.3: A basic unit of a lamina emergent torsional joint

3.2 Methodology

3.2.1 Anisotropic Material Properties

The term ‘local state’ refers to any local characteristics of materials that affect the properties

of interest. The ‘local state distribution’ refers to how the components of microstructure, such as

crystal orientations, are distributed across the set of possible local states. Only one material phase

is present in OFE Cu polycrystals - the FCC Cu phase; impurity levels in this material are small. It

is assumed that the local elastic state of the materials is determined only by the orientation of the

crystal lattice, and by the basic elastic properties of the Cu phase.

The simplest way to connect the distribution of local states of microstructure to estimates of

the macroscopic (effective) elasticity is to utilize a rule of mixtures (or an inverse rule of mixtures)

approach; i.e. to use only volume fraction information of the distribution. Such information is

often referred to as ‘first-order’ information of the microstructure.

One set of first-order bounding relations on the elastic properties is called the Hill-Paul

bounds [11]. The Hill-Paul upper- and lower-bounds on the elastic properties are shown in the

following expression where Si jkl , and Ci jkl denote the volume averaged elastic compliance tensor

and stiffness tensor:

S−1
i ji j ≤Ce f f

i ji j ≤Ci ji j. (3.3)
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Because of the assumptions made in the derivation of the above bounding relation, the bounds

hold only for the diagonal elements of the elastic stiffness tensor [11,12,20,21]. The derivation for

bounding relations for off diagonal elements of the stiffness tensor requires a more sophisticated

approach, based upon the positive definite property of the elastic tensor. Taking the arithmetic

means of the upper bound and the lower bound is called the Hill average [14,34]. The Hill average

applies to both diagonal and non-diagonal components of the elastic properties:

Ce f f (Hill)
i jkl ≈

S−1
i jkl +Ci jkl

2
. (3.4)

To determine the distribution of local states within the material, it is first necessary to

define the pertinent local state space. The crystal orientation, g, governs the anisotropic nature of

the material, and is the local state variable of principal interest here. Various parameterizations

of g are available, but the Bunge Euler angles, φ1, Φ, φ2 , are the most common [14]. These

define a sequence of three primitive rotations that are required to bring a sample-fixed coordinate

frame into coincidence with the lattice fixed frame on 〈100〉. Output of the Bunge Euler angles is

commonly available using established image processing applied to EBSD patterns [15]. Each data

point belongs to the complete Bunge-Euler space (FZT ) [14]:

FZT =

{
g≡ (φ1,Φ,φ2)

∥∥∥∥∥∥∥∥∥
0≤ φ1 < 2π

0≤Φ < π

0≤ φ2 < 2π

∥∥∥∥∥∥∥∥∥
}
. (3.5)

The cubic lattice possesses 24 rotational symmetries; thus a reduced subspace is available

within FZT that includes only one of the 24 physically equivalent lattice orientations of the local

crystal [11]. However, a reduced fundamental zone has a non-rectangular shape that is difficult to

deal with for efficient binning and computational operation. When symmetry of the FCC crystal

lattice is fully considered, it is convenient to express a 3-fold redundant space of possibilities for
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φ1, Φ, φ2: [12]

FZ3c =

{
g≡ (φ1,Φ,φ2)

∥∥∥∥∥∥∥∥∥∥∥∥

0≤ φ1 < 2π

0≤Φ <
π

2

0≤ φ2 <
π

2

∥∥∥∥∥∥∥∥∥∥∥∥
}
. (3.6)

The 3-fold redundancy refers to the fact that each physically distinctive lattice orientation

appears 3 times in FZ3C. Further reduction to the point that each distinctive orientation appears

only one time is possible, but the inconvenience is that the fundamental zone contains a complex

surface, which renders partitioning difficult. Experience dictates that it is easier to work with the

rectangular 3-fold redundant fundamental zone described by Eq. 3.6. From the experimental point

of view, each EBSD-based measurement of lattice orientation will occur 3 times in FZ3C.

The rectangular shape of FZ3C can be split into smaller bins of rectangular shape. All

computations of the type required in Eq. 3.4 will be handled discretely, using binned datasets.

Suppose that N such bins have been defined on FZ3C, with a given bin designated by ωn, where

ωn ⊂ FZ3c,

N⋃
n=1

ωn = FZ3c, ωn∩ωm =� (m 6= n). (3.7)

Associated with each bin ωn is an indicator function χn(g), defined by the expression.

χn(g)≡ χn(φ1,Φ,φ2)

{
1, i f g ∈ ωn

0, otherwise
(3.8)

The size of the bins will have an effect upon the errors in forming the averages required by the Hill

estimates of effective elastic stiffness.

The pertinent local state distribution is the distribution of lattice orientation among the

sampled material points. Imagine that a total of S local orientations have been measured by EBSD-

based methods. A condition of statistical sufficiency is assumed for this set of measurements.

Roughly, this means that the measurements are taken in a sufficiently large number of components

of microstructure (grains) to ensure that the experimental sampling is characteristic of the overall

microstructure. After converting each of the S measurements of orientation into it’s 3 equivalent
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orientations within FZ3C, the 3S determined orientations will be distributed among the N defined

bins. Let f n denote the fraction of 3S orientations that fall within ωn:

f n =
1

3S

3S

∑
s=1

χn{gs}. (3.9)

The local state distribution function, in this case closely related to the orientation distribution

function [11, 12], will consist in the set of real number fractions f n, F = { f 1, f 2, · · ·, f N}. From

Eq. 3.9, conservation of volume requires that

N

∑
n=1

f n = 1. (3.10)

Approximations to the average elastic tensors required in Eq. 3.4 are readily formed from

the local state distribution function via expressions of the form

Ci jkl ≈
N

∑
n=1

f nCn
i jkl (3.11)

where Cn
i jkl denotes the value of the elastic stiffness associated with orientation φ1,Φ,φ2, taken to

be a characteristic lattice orientation lying within the associated bin ωn. Numerical examination of

the bin-size dependency of calculations like Eq. 3.11 have determines that numerical errors (the

error compared with an infinitesimal bin size) are ∼ 1% when a bin size of 9◦× 9◦× 9◦ in the

three Euler angles is selected within FZ3C; consequently, this bin size was utilized throughout this

chapter.

3.2.2 Elastic-Yield Property Closures

Interest in the complete range of elastic/yield property combinations that could occur within

all conceivable polycrystalline microstructures of fixed material phase typically arises during pre-

liminary design. This envelope of property combinations is termed a property closure, and a

designer would choose an area of the closure that provides optimal properties for the compo-

nent to be produced. Theoretical methods for constructing estimates of properties closures have

been presented in the literature [11, 12, 20, 21]. The approach taken is to make use of available
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microstructure-sensitive homogenization relations of the properties of interest, and then to con-

sider all possible microstructures beginning with single crystals of an arbitrary lattice orientation.

The framework presented in this work will be directly applicable to full property closures.

However, one frequently raised issue with full property closures is the lack of defined processing

techniques for arriving at any given defined microstructure. Hence, for the test-beds presented here

we will utilize only subsets of the full closure that are associated with a limited set of microstruc-

tures associated with known manufacturing processes.

3.2.3 OFE Copper Materials

Eight differently textured oxygen free electronic (OFE) copper samples have been prepared

for the study using three common processing methods: rolling deformation, thermal annealing and

rigid body rotation of the material about the normal direction to the rolling plane. Rolled OFE Cu

plate (in the as-received half-hard condition), and six derivative materials produced there-from by

secondary processing steps, plus one addition material (very strongly cube textured Cu, provided

by Dr. Amit Goyal of Oak Ridge National Laboratory) constitute the database. Table 3.1 describes

the processing conditions for each of these samples.

Table 3.1: Sample description

Sample Description Heat Treatment Temperature Heat Treatment Time
(C◦) (Hour)

As received N/A N/A
As received and annealed 191 1
98% cold worked 22 N/A
98% cold worked and recrystallized 225 0.5
58% cold worked N/A N/A
58% cold worked and annealed 160 1
58% cold worked and recrystallized 225 1.5
Cube texture N/A N/A

Each material is rotated in π/24 radian (φ = 7.5 degree) steps about the sheet normal

direction to give 48 different possible microstructures for a given material type. Anisotropic

material properties were obtained from Eq. 3.4 for each given rotation and applied to ANSYS
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(ANSYSrAcademic Research, Release 13.0). The performance of each design was determined

in terms of the minimum safety factor and related configurational yield stress.

3.3 Finite Element Analysis - ANSYS

3.3.1 Hole-in-Plate Problem

To carry out FEA analysis that accurately represents an infinite plate condition the dimen-

sions of the plate and hole are selected carefully. The ratio of circular hole and plate dimension

needs to be chosen in a way such that the stress field around the hole of the modeled finite plate

is similar to that of an infinite plate. The study will follow St. Venant’s Principle to create such a

condition. The principle states that the resultant forces become negligible at a large distance away

from the dimensions of the part when the system of forces and moments are statistically equivalent.

By utilizing St. Venant’s principle, the ratio between plate and hole dimensions were determined.

The geometry of the problem is based on the gage length of ASM standard tensile test

specimen dimensions. The length of the plate is 2 inch (50.8mm ) and the width of the plate is 0.5

inch (12.7mm). Since the stress field due to a circular hole of diameter, d, is localized within ∼ 3d

from the geometrical discontinuity, the hole needs to be located at least∼ 3d from the discontinuity

(the edge of the plate). Hence a 1/6 inch (d = 0.794mm ) drill size hole is chosen for the study.

Figure 3.4: Meshing of hole-in-plate example in ANSYS
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Figure 3.5: Closer view of ANSYS meshing around hole circumference of Figure 3.4

The plate experiences a tensile load which is approximately a plane stress case; thus the

study employs two dimensional stress analyses. One end of the plate is fixed in the direction and

the other end experiences the applied tensile load which is distributed over the relevant nodes.

The FEA simulations are carried out in ANSYS using element type Plane-183 as 2-dimensional

stress analysis with mesh size 0.700 mm quadrilateral shape. The mesh around the hole circumfer-

ence is refined to give nodes at 5 degree increments. 21 anisotropic properties obtained from Eq.

3.4 are employed in the simulations. The stress states of 72 nodes on the hole’s circumference are

selected to be further studied by the HBH yield model.

3.3.2 A Stent-Like Compliant Geometry

The dimension of a compliant geometry is shown in Table 3.2 and Figure 3.2. The structure

experiences a displacement loading along the x-axis due to an applied force F (Figure 3.2). One

end is fixed, and other end segment experiences the applied load in the negative x-direction.
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Table 3.2: Dimension of a stent-like geometry

Dimensions Value Unit
Length 1.00 mm
Thickness 2.50e−2 mm
Theta 30 degree
Radius 5.00e−2 mm
Phi 80 degree

Figure 3.6: ANSYS meshing of a stent-like geometry

The ANSYS model executes FEA analysis with Solid-185 elements with 8-nodes. Only

about 5% of the nodes experiences high stress, these being located at the bend section of the

geometry; thus, the study focuses on the 70 nodes located in this segment.
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3.3.3 A Lamina Emergent Torsional Joint

The dimensions of a single LET joint are shown in Table 3.3. One end of the joint is

fixed and the load is applied to the segment at the other end (see Figure 3.7 and Figure 3.8).

Two different loading conditions are applied to the compliant joint: loading in the plane of the

page and out of the plane of the page. Additionally, each loading condition was applied under

homogeneous (texture, and related elastic properties, are constant throughout the sample) as well

as heterogeneous (texture, and related elastic properties, vary along the sample) conditions. The

homogeneous condition represent a part that is cut out from a sheet of material such that all points

in the part have the same rolling direction. Meanwhile, the heterogeneous condition represents a

part that is bent to its final shape from a sheet of metal such that the rolling direction follows the

direction of each leg, and therefore changes with respect to the global frame along the part. In each

condition the rolling direction is rotated in 7.5 degree increments about the sheet normal direction

(out of the page direction in Figure 3.7 and Figure 3.8) to test the component response with the

accompanying change in texture with respect to the global frame.

Table 3.3: Dimension of a LET joint

Dimensions Value Unit
Length 4.78 mm
Thickness 0.787 mm
Width 6.35 mm
Force (in plane) 1.56 N
Force (out of plane) 1.56 N

The ANSYS model uses the Solid-186 element type. The applied load is decomposed into

coupled forces, such that the resulting forces are distributed over all nodes of the relevant surface.

3.4 Hybrid Bishop-Hill Model

The Hybrid Bishop-Hill Model (HBH model) is a modified version of the Taylor-Bishop-

Hill (TBH) model. In the TBH model, the yield locus is defined in a five dimensional deviatoric

stress space, and each stress state is expressed in term of a critical resolved shear stress. The
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Figure 3.7: In-plane loading with homogeneous vs. heterogeneous coordinates with schematic
simplified

Figure 3.8: Out-of-plane loading with schematic simplified

TBH model predicts the existence of a convex polyhedron shaped yield surface, which has 56

vertices [1] for FCC materials. The TBH model states that for FCC materials a set of 56 stress

states (also known as stress corners) is capable of activating the required combinations of slip for

an arbitrary plastic deformation. This is a strain-based model: each grain experiences the uniform

imposed (macroscopic) strain and the active corner stress state is the one that maximizes the plastic

work done.
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The HBH model, on the other hand, is a stress-based model and uses the same stress corners

defined by the TBH model to predict the yield strength of polycrystalline materials. The model

reflects the natural heterogeneity of the constituents of the polycrystal. The magnitude of the corner

stress states requires knowledge of a critical resolved shear stress τcrss. This stress defines the level

of shear stress that must be present upon any of {111}〈110〉 slip systems to cause dislocation

slip to occur. It is known that τcrss is proportional to the square root of the local total dislocation

density [35] which typically varies with position x. However, in the present work τcrss is obtained

from combinations of mechanical tensile test and numerical calculations by the use of a contractile

(plastic) strain ratio approach; thus τcrss will be held constant for any specified material condition

within the database. For methodologies to determine τcrss, please refer to the following publication

[10, 36].

Some of the advantages of using HBH model are that it focuses on applied stress, rather

than on the plastic strain; this makes the model much more accessible to design engineers who

focus more upon stress states, rather than strain states. Furthermore, HBH model works superior

to the TBH model at near-vicinity of the yield surface due to reasons discussed earlier (in Section

3.1).

The HBH model makes a simple assumption that the local yielding at any position in the

material occurs at the corner stress states, σ̂C
i j , that lies “closest” (by some definition) to the macro-

scopic stress, σ̂i j. The “hat” over the stress symbols signifies the deviatoric stress. Distance be-

tween these two stress states is defined by di j, where

di j = σ̂
c
i j− σ̂i j. (3.12)

The magnitude of distance between stress states, d, is defined by the Euclidean norm:

||d2||= di jdi j. (3.13)

Importantly, the distance defined according to Eq. 3.12 and Eq. 3.13 is invariant with respect

to coordinate transformation. The selection of stress corner for any particular component (grain)

within the polycrystal is taken to be the Bishop-Hill corner stress that minimizes the distance d

between the applied stress and the corner stress state.
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The estimated (deviatoric) yield strength of the material is obtained by averaging over the

texture components in the sample using the expression.

σ̂
Y
i j ≈

N

∑
n=1

f n
σ̂

Cn
i j (3.14)

σ̂Cn denotes the pertinent active stress corner associated with bin n in FZ3c. Note that all corner

stress states exercised in Eq. 3.14 must be expressed for the current and local stress condition in

the macroscopic (sample) frame in order to interpret σ̂Y
i j as the yield strength.

In this study, we introduce the notion of safety factor, λ , to determine the material tendency

to yield. The local stress state from each node in the FEA model is projected on to the closest

(active) corner stress state. The stress state is then scaled so that the magnitude of local stress

becomes equal to the magnitude of the active corner stress; i.e. the local stress state touches the

yield surface defined by the active corner stress. If the safety factor works out to be 1, or smaller

than 1, the material has yielded. In other words, when the safety factor is greater than 1, the

material won’t fail because the stress states are within the yield limit.

For a given design (e.g. a hole-in-plate problem) the smallest safety factor defines the

yield limit of the design. An estimate of macroscopic stress that results in yield is obtained by

multiplying the applied stress by this smallest safety factor; this is termed the configurational yield

stress.

The yield stress of a part is dependent on its geometry and how it experiences the external

load. ANSYS simulations relate an applied load on the plate to the local stress state. The configu-

rational yield stress indicates the component yield stress by considering the applied stress instead

of the local stress. The methodology includes the geometrical information via the safety factors

obtained from each node and provides the local stress level. To connect the local stress to the

macro level, the applied load is multiplied by the minimum safety factor (or minimum averaged

safety factor over a minimum yield area), giving the configurational yield stress.

The process used in the HBH incorporated FEA simulations are follows:

1. Choose the applied load p and the applied load direction φ

2. Obtained stress states σi j in nodes around the hole’s circumference from ANSYS
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3. Send σi j to the HBH model to obtain the safety factor λ

(a) λ ≤ 1→ material has yielded

(b) λ > 1→ material has not yet reached the yield surface

4. Choose the smallest safety factor λmin in each φ orientation

5. Find the configurational yield stress for each configuration by multiplying each minimum

safety factor by applied load: λmin · p

The magnitude of applied stress p used in ANSYS simulations for the hole-in-plate problem

is chosen to give proximity to the elastic/yield limit (Table 3.4), and determination of the values

are based on a yield limit study using the analytical approach [10].

Table 3.4: List of applied load in ANSYS simulations

OFE copper materials Applied Load: p
(MPa)

As received 60
As received and annealed 60
98% cold worked 135
98% cold worked and recrystallized 23.5
58% cold worked 125
58% cold worked and annealed 122
58% cold worked and recrystallized 21.5
Cube texture 12

In the case of compliant geometries, instead of finding the smallest safety factor λmin in

each orientation and sample, the simulations find the average λ to evaluate the overall response

of a given mechanical design (for those nodes under consideration). Hence, the HBH approach

calculates an average λ in step 4 and determines the overall performance. This provides a different

approach to the definition of component failure that may be more appropriate in some instances.

3.5 Validation of FEA Approach

The hole-in-plate problem provides a simple analytical validation of the FEA approach.

However, one should keep in mind that the HBH incorporated FEA approach and analytical HBH
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model have different approaches. The difference lies in how material information is incorporated

into simulations: the difference in how stiffness/compliance tensor elements are used. Recall

(from Eq. 3.1 and Eq. 3.2) that the analytical procedure assumes a 2D orthotropic material; i.e.

the analytical method assumes only 4 independent components in the compliance tensor. On the

other hand, the FEA approach incorporates a full set of 21 (possibly independent) components for

the stiffness tensor in its simulations. This difference in approach brings about small variances in

yield surface, and from the reasons above, it is natural to predict that FEA approach gives more

accurate results than the analytical method.

The stress states around the hole of cube-textured sample using the analytical method (Eq.

3.1 and Eq. 3.2) are shown in Figure 3.9. The stress is shown at every 5 degree increment in θ .

Results for applied loads along the rolling direction (RD; φ = 0 ) and at φ = 45 degrees and φ = 90

degrees from RD are shown. The same stress states calculated using the ANSYS model are shown

in the same figure (Figure 3.9); each nodal stress is expressed in terms of the von Mises stress.

The analytical method gives much higher peak stress in the 45 degree orientation compared to the

FEA simulations. However, in general the figure confirms that the analytical and the FEA gives

consistent stress profile.

The result of the ANSYS incorporated HBH simulation is shown in Figure 3.10. The stress

on each node is put into the HBH model, and safety factors are obtained. The safety factor of each

node is plotted in Figure 3.10; larger safety factors indicate that the material is not likely to yield. A

minimum of the graph, or minimum stress, occurs at θ = 65 degree on the hole circumference for

φ = 0, and 90 degree orientations. The applied macro stress is 12 MPa, and minimum safety factor

at this location is λ = 1.43 (Figure 3.10). The configurational yield stress is the multiplication

of applied macro stress and minimum safety factor; thus the yield stress is 17.2 MPa for this

configuration (φ = 90 degree). This configurational yield stress suggests that this is the required

macro stress to yield the plate at some point on the component. The minimum safety factors for

45 degree orientation are slightly larger than for the 0 and 90 degree configurations, indicating

that a 45 degree orientation is preferable compared to the other two orientations shown here, for a

cube-textured material.

Figure 3.11 shows the analytical stress and the FEA calculated stress for the cube texture

sample. In general, the analytical and FEA models give similar stress levels. However, close obser-
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Figure 3.9: Stress states around a hole of cube texture sample

vation near the yield limit (lower peaks) shows that the analytical approach gives lower estimates

of stress compared to the FEA approach.

Table 3.5 shows the optimal configurational yield strength of hole-in-plate problems using

both the analytical method and FEA method. The optimal yield strength of the plate is the best

possible performance obtained from the plate when applying the load from different orientations.

In other words, it is the yield strength of plate with orientation φ which gives the highest possible

yield strength. Observation of the table indicates that the analytical approach consistently gives

lower optimal yield strength compared to the FEA approach.
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Figure 3.10: Local safety factors around the hole for cube texture sample in various applied load
orientation

A previous study also indicated that the analytical HBH approach calculates a lower yield

strength compared to the experimental results [10]. Since FEA utilizes all 21 components of the

stiffness tensor, we postulate that while the two models are in reasonable agreement, the FEA

results are likely to be more accurate.

3.6 Results

3.6.1 A Hole-in-Plate Problem

The locations of most likely failure, so called ‘hot spots’ around the circumference of the

hole, are estimated using the HBH incorporated FEA model and presented in Tables 3.6 and 3.7

for sample with φ = 0 and φ = 45 degree.

When a plate with a circular hole experiences uniaxial tensile load, tangential stress states

arise at the periphery of the hole. In the case of isotropic materials the highest tangential stress
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Figure 3.11: Local stress states around the hole for cube texture sample in various applied load
orientation

occurs at locations perpendicular to the applied load (θ = 90 and 270 degree). However, in the

case of anisotropic materials the maximum tangential stress states may shift from the perpendicular

locations. For example, the hot spot in 98% cold worked and 58% cold worked samples are

somewhat shifted from the perpendicular locations. The cube-textured sample shows that the hot

spots are located between 65 and 75 degrees from the loading direction when the load is applied at

φ = 0 and 45 degree from RD. Configurational yield stresses are calculated for each material type

and each configuration (i.e. each value of φ ) as discussed in the previous section. In order to assess

the potential performance envelope of the different types of copper in a hole-in-plate situation we

consider the property closure of these available materials in all possible configurations, which we

term a “configurational sub-closure.”

Figure 3.12 shows a configurational sub-closure for OFE copper with configurational yield

stress as one of the material properties, and modulus as the other. Each of the 8 materials within

the accessible database, are allowed to rotate around their plane normal in order to compute the
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Table 3.5: Optimal yield strength of anisotropic plate

Analytical FEA
OFE copper materials Yield Strength Yield Strength

MPa MPa
As received 60.55 65.94
As received and annealed 60.96 66.70
98% cold worked 138.62 147.75
98% cold worked and recrystallized 23.88 26.50
58% cold worked 127.41 133.97
58% cold worked and annealed 122.75 129.47
58% cold worked and recrystallized 21.53 23.40
Cube texture 14.56 17.75

accessible property closure. Rotations of the sample relative to the loading direction give rise to

orbits in the property closure. Further details relating to the production of sub closures are provided

in the 2008 paper of Adams et al. [19].

The accessible property closures indicate that highly textured samples have larger closures

in both the elastic and the yield limit. 98% cold worked, 58% cold worked, 58% cold worked-

annealed, and cube-textured samples are such materials. The cold worked samples give larger

variations in configurational yield strength. The percentage difference in performance (relative

to the minimum configurational yield strength) is around 1 to 1.5% in cold worked samples and

3.5% in a cube texture sample. Although only small variations are seen, the configurational yield

strength does depend on applied load direction (φ ).

The small elliptical property closures for individual materials in Figure 3.12 imply that

as-received samples and recrystallized samples in this study tend to have almost isotropic plastic

properties [10,19], thus the configurational yield strength does not vary very significantly with the

direction of applied load.

3.6.2 A Stent-Like Compliant Geometry

A 0.400 mm displacement is applied to the stent-like compliant mechanism described in

Section 3.3; the response of various OFE copper materials are shown with the average safety factor

over the 72 most highly stressed nodes (Figure 3.13).
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Table 3.6: ‘Hot spots’ of hole-in-plate geometry when applied load is along RD

Location of most likely failure:
OFE copper materials ‘hot spots’

θ (degree)
As received 90

270
As received and annealed 90

270
98% cold worked 95

275
98% cold worked and recrystallized 90

270
58% cold worked 85

265
58% cold worked and annealed 85

270
58% cold worked and recrystallized 90

270
Cube texture 65

115
250
295

The observation of performance with respect to material rotation reveals that highly tex-

tured samples, such as cube texture and cold worked samples, show significant directional depen-

dent performance. The variation in performance is most high in the cube texture sample, with up

to 34% improvement in performance when compared with the minimum average safety factor; the

variation in cold worked samples is 2% to 3%. The difference in safety factors in other samples,

such as recrystallized samples and as-received samples, are small; their performances are basically

independent of material rotation. In general, improvement in performance due to sample rotation

is much smaller than can be achieved by material section; only a few percent improvement results

from rotation (except for the cube texture sample).

The best material and orientation for this design is the 98% cold worked material with an

applied rotation of 135 degrees. This material selection gives an average safety factor of 0.640.

The 58% cold worked and 58% cold worked-annealed material performed almost as well with

safety factors of 0.584 and 0.566. The cube texture gives the worst performance (λ = 9.60e−2)
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Table 3.7: ‘Hot spots’ of hole-in-plate geometry when applied load is 45 degree from RD

Location of most likely failure:
OFE copper materials ‘hot spots’

θ (degree)
As received 90

270
As received and annealed 90

270
98% cold worked 95

275
98% cold worked and recrystallized 90

270
58% cold worked 85

265
58% cold worked and annealed 85

270
58% cold worked and recrystallized 90

270
Cube texture 75

105
255
285

although it has an interesting directional dependent performance. By comparing the best and worst

performances, the best selection has 8.5 times the safety factor and can withstand much higher

stresses without yielding. This difference in performance reflects both the effects of cold work

(dislocation content) and texture. Some idea of the difference in performance that is only due to

texture differences can be gained by comparing the results of the recrystallized samples with the

cube sample (i.e. two samples with low dislocation content). In this case the best selection from

this subset of samples is 98% cold worked-recrystallized sample with an increase in safety factor

of 1.5 times over the worst selection (which is again the cube texture).

3.6.3 A Lamina Emergent Torsional Joint

In the first case study of the Laminar Emergent Torsional geometry (LET joint), it is sub-

jected to 1.56N in-plane loading (Table 3.3). 1.56N is arbitrarilt selected to give a stress condition
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Figure 3.12: Configurational sub-closure of OFE copper samples for hole-in-plate geometry

in the vicinity of the elastic/plastic limit. The average safety factors (over all nodes) of each version

of the assumed materials are plotted in Figure 3.14 and Figure 3.15 against the rotation angle of

the rolling direction; recall that a safety factor below one indicates that the material has passed its

yield point. The optimal performance is given by the cold worked samples which have safety fac-

tors between 4 and 5. The 98% cold worked sample gives the best performance (λ = 4.83) when

the component global frame is aligned with the material rolling direction, for the homogeneous

condition. For the heterogeneous case λ = 4.65 when the component frame is 7.5 degree from the

rolling direction.
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Figure 3.13: A stent-like compliant geometry and its average safety factors

Figure 3.16 and Figure 3.17 show the average safety factor for the homogeneous and het-

erogeneous components vs. material orientation when 1.56N out-of-plane load is applied to the

geometry (Table 3.3). Again, the best performance is given by the 98% cold worked sample

(λ = 5.27) when the component frame is aligned to the material rolling direction.

The directional dependent performance is observed to be inflated in highly textured samples

such as cold worked and cube texture samples for both applied load conditions. In-plane loading

with the homogeneous condition gives 1 to 4% difference in yield response for derivative materials

prepared from as-received OFE copper, and around 30% difference in performance for the cube

texture sample. The difference in performance is exaggerated in the heterogeneous condition: 1 to

5% difference in derivative materials and 60% difference in cube texture materials. Out-of-plane

loading gives an even wider gap between the optimal and minimal performance. The variation in

performance is around 1 to 5% in derivative materials and a little over 30% in cube texture sample

52



for the homogeneous case. The heterogenous case reads 2 to 7% difference in derivative materials

and close to 80% difference in the cube texture sample.

The pattern of results shows that the homogeneous condition gives better average perfor-

mance while the heterogeneous condition gives stronger directional dependent performance.

3.7 Chapter Summary

This chapter presents FEA-based microstructure sensitive design by incorporating the HBH

model into standard FEA tools. The HBH model retains the distinctive corner stress states defined

for FCC crystals by the classical Taylor Bishop-Hill model, but differs in focusing the choice

of corner stress state upon the macroscopic applied stress. The HBH model uses safety factors

to describe the distance of stress states on each node as calculated via FEA, from the material

yield surface. The minimum safety factor is multiplied by the applied load to give a so-called

configurational yield stress, which readily provides the information of the yield limit for a given

geometry with specific material.

The FEA simulations with incorporated HBH model can easily be adapted to the mechani-

cal design practice. The first example given in this chapter (hole-in-plate) demonstrates that highly

textured samples such as 98% cold worked, 58% cold worked, cold worked-annealed, and cube

texture samples show directional dependent performance; by rotating each sample along the sheet

normal direction in φ , the performance of the plate can be optimized or minimized. The study

also shows that the HBH incorporated FEA approach can show the location of high stress states in

the geometry and predicts the most likely location of failure.

A stent-like geometry example also shows that highly textured samples show direction

dependent performance. Although the improvement due to material rotation is small, the optimal

choice (the combination of material selection and its orientation) can give as high as 8.5 times

better performance when compared to the worst selection.

The last example demonstrates how the method can assist the decision of optimal mate-

rial selection and orientation based on design purposes. For example, if a determining factor of

design is yield strength, then the homogeneous condition gives better performance by providing

the best combination of choices: the optimal material selection and its material rolling direction.

However, if the directional dependent performance is of significant interest for the design (such
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as in design for reverse engineering [37]), then a heterogeneous condition gives the ideal choice

by providing the best combination of material and its orientation (material rolling direction). The

optimal material, its material rolling direction and processing methods can be altered based on

design purposes.

Configurational sub-closures can be used to identify regions of material property closures

that are accessible to designers using the available materials and for arbitrary rotation of the global

texture.

The work presented in this chapter demonstrates how combining information of material

microstructure and part geometry can influence the design practice. The method delivers a prac-

tical approach to improve the performance of simple mechanical parts by incorporating material

microstructure information into a stress-centric framework of HBH model through FEA.
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Figure 3.14: In-plane loading with homogeneous condition

55



0 15 30 45 60 75 90 105 120 135 150 165 180
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
In plane loading (heterogeneous)

φ (sample rotation in degree)

a
v
e
ra

g
e
 s

a
fe

ty
 f
a
c
to

r 
( 
λ
 )

 

 

as received

as−received annealed

98% cold worked

98% cold worked and recrystallized

58% cold worked

58% cold worked and annealed

58% cold worked and recrystallized

cube

Figure 3.15: In-plane loading with heterogeneous condition
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Figure 3.16: Out-of-plane loading with homogeneous condition
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Figure 3.17: Out-of-plane loading with heterogeneous condition
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CHAPTER 4. FOUR-PARAMETER HYBRID-BISHOP-HILL MODEL

4.1 Chapter Overview

There are several microstructure-based theories for prediction of yielding in polycrystalline

materials. Many of the models are focused upon integrating crystallographic texture (the preferred

distribution of lattice orientations) into yield predictions [29, 30, 38–42]. Although the existing

microstructure-based models provide acceptable estimates of yield limit, improving these predic-

tions with more sophisticated frameworks may leads to significantly enhanced design practices.

One recent study suggested a way for potentially improving the prediction of yield surface by in-

corporating another physical parameter, in addition to the crystallographic orientations, into the

model [43].

The study uses hexagonal materials to show how the prediction of yield strength improves

immensely incorporating not only the crystallographic texture alone but also the grain size infor-

mation. Fromm et al. approached the problem of yielding in α-titanium using the Taylor power-

law-visco-plastic model, coupled with the Hall-Petch relation [43] for including information about

grain size. Local measurements of the grain size were employed with the familiar evaluation of

the Taylor factor as a function of lattice orientation to simultaneously consider the effects of lattice

orientation and grain size on yielding. Their study indicates that the prediction of yield strength

is improved relative to the Taylor visco-plastic model, by accounting for grain size variations dis-

tributed among the orientation components of the crystallographic texture.

Although the Hall-Petch relation used in the study of α-Titanium shows improved predic-

tions for the yield surface, the Hall-Petch slope for copper is relatively small, as it is for all FCC

materials, and hence grain size manipulation has limited impact on yielding of copper. Pure FCC

materials strengthen mainly by means of dislocation-dislocation interactions [44, 45]. The empir-

ical Taylor relation [35], also known as the Bailey-Hirsch equation, shows a strong relationship
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between the shear stress required for dislocation slip, and the dislocation density present within

the material.

τcrss = αµb
√

ρ (4.1)

In the equation, ρ is the total dislocation density, b is a Burgers vector, µ is the elastic shear mod-

ulus, and α is an empirical constant that typically varies from 0.2 to 0.5 [46]. Taylor flow stress

is viewed as the stress that is required to induce the next increment of plastic deformation at a

material point; thus, it is interpreted to be the current critical resolved shear stress of the mate-

rial. In this work, we propose to employ an experimentally-determined estimate of geometrically

necessary dislocation (GND) density as a fourth parameter associated with the prediction of yield

strength in FCC copper.

The classical Taylor Bishop-Hill model [1, 2, 8] is one of the well known yield theories

which focuses on plastic strain states to predict yield limits. There are some difficulties of using the

classical models in evaluation of elastic/limited design because the elastic and plastic components

of the total strain are comparable in magnitude and are generally difficult to separate. Thus the

precise condition of plastic strain at initial yielding is not accurately specified. It follows that

application of these classical microstructure-based theories of plasticity to initial yielding is a rather

imperfect approximation at best. However, a stressed-based yield approach, the Hybrid-Bishop-

Hill (HBH) model [10], works nicely in predicting local stress states and mechanical yielding

in the near-vicinity of yield surface. This approach is closely related to the classical Bishop-

Hill model [1, 2]. This chapter will demonstrate the improvement of yield limit prediction by

using the HBH model coupled with four physical parameters: three crystal orientations plus the

geometrically necessary dislocation density. The study uses database of rolled and heat-treated

oxgen-free electronic copper shown in Table 4.1.

60



Table 4.1: Sample description

Sample Description Heat Treatment Temperature Heat Treatment Time
(Celsius) (Hour)

98% cold worked 22 N/A
98% cold worked and recrystallized 225 0.5
58% cold worked N/A N/A
58% cold worked and recrystallized 225 1.5

4.2 Methodology

4.2.1 The Distribution of Local States

The term ‘local states’ refers to any local characteristics of material that affect the properties

of interest. The ‘local states distribution’ refers to how the components of microstructures such as

crystal orientations and dislocation densities are distributed across the set of possible local states.

Local material properties need to be linked via some relations to macro level effective

properties of interest in the design problem. Theses microstructure-properties relations are homog-

enization relations that relates the microscopic details of the microstructure to effective properties

at the macroscale. For the purposes of this study the homogenization relations of interest will re-

quire only volume fraction information of the local state distribution. Such information is often

referred to as ‘first-order’ information on the microstructure.

The elastic and plastic (yielding) properties are the two main properties of interest in this

work. Not all features and characteristics of microstructure are of equal importance to the elastic

and yield properties of polycrystalline materials. Rigorous bounds on elastic properties require,

at a minimum, information about the distribution, by volume fraction, of the components of mi-

crostructure by lattice phase and lattice orientation, and they are insensitive to dislocation density

(at ordinary levels of density). On the other hand, plastic properties require the local dislocation

density distribution in addition to the distribution of lattice phase and orientation.

One set of first-order bounding relations on the elastic properties are called the Hill-Paul

bounds [11]; the simplified Hill-Paul upper- and lower-bounds on the elastic properties are shown

in the following expressions where Si jkl , and Ci jkl denote the volume averaged elastic compliance
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tensor and stiffness tensor:

S−1
i ji j ≤Ce f f

i ji j ≤Ci ji j. (4.2)

Because of the assumption made in the derivation of above bounding relation, the bounds hold only

for the diagonal elements of the elastic stiffness tensor [11,12,20,21]. The derivation for bounding

relations for off diagonal elements of the stiffness tensor requires a more sophisticated approach,

based upon the positive definite property of the elastic tensor. Taking the arithmetic means of the

upper bound and the lower bound is called the Hill average [14, 34]. The Hill average applies to

both diagonal and non-diagonal components of the elastic properties:

Ce f f (Hill)
i jkl ≈

S−1
i jkl +Ci jkl

2
. (4.3)

To define the distribution of local states within the material, it is first necessary to define

the pertinent local state space. The lattice orientation (g) is conveniently specified by a set of

three (Bunge) Euler angles, φ1, Φ, and φ2; these define a set of three rotations that are required to

bring a sample-fixed coordinate frame into coincidence with the lattice-fixed frame [14]. The Euler

angles are readily determined from the electron backscatter diffraction (EBSD) patterns acquired

at material points sampled in spot mode using a scanning electron microscope (SEM) [15]. Each

data point belongs to the complete (total) Bunge-Euler space (FZT ) [14]:

FZT =

{
g = (φ1,Φ,φ2)

∥∥∥∥∥∥∥∥∥
0≤ φ1 < 2π

0≤Φ≤ π

0≤ φ2 < 2π

∥∥∥∥∥∥∥∥∥
}
. (4.4)

For copper, the space of Euler angles can be reduced because of lattice symmetry. The cubic

crystal lattice possesses 24 rotational symmetries; thus a reduced subspace is available within FZT

that includes only one of the 24 physically equivalent lattice orientations of the local crystal [11].

However, a reduced fundamental zone has a non-rectangular shape that is difficult to deal with for

efficient binning and computational operation. It is convenient to use a 3-fold redundant subspace,
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FZ3C, which is rectangular [12]. The space spanned by FZ3C is:

FZ3c =

{
g = (φ1,Φ,φ2)

∥∥∥∥∥∥∥∥∥∥∥∥

0≤ φ1 < 2π

0≤Φ <
π

2

0≤ φ2 <
π

2

∥∥∥∥∥∥∥∥∥∥∥∥
}
. (4.5)

The rectangular shape of FZ3C facilitates an easy partitioning of the fundamental zone into cubical

bins, which is discussed later.

Bunge-Euler space is useful to represent crystal orientations because of its naturally inher-

ent periodicity. However, the volume of an infinitesimal region of Euler space must be scaled by

the so-called invariant measure in order to arrive at the true volume in rotation space; i.e. the space

is somewhat distorted.

dR =
1

8π2 sinΦdφ1dφ2 (4.6)

The use of the invariant measure in scaling the volume of the space complicates the analysis for

microstructure design, and loses the useful characteristics of periodicity in Euler space [20]. In this

study, we ignore the small error associated with overlooking the invariant measure for the sake of

simplicity, and use a rectangular space defined by the three Euler angles, allowing some distortion

in orientation space similar to the approach published by Kalidindi et al. [20, 21].

The other local state variable used in this work is the geometrically necessary dislocation

(GND) density, ρ . The local state space of GND density can be expressed as a line segment, since

dislocation density adds only one scalar variable to the local state space. The symbol h is used

to represent all four of the local state variables of interest: h = (g,ρ). Thus h ∈ FZ3C×4 where

4= {ρ | ρmin ≤ ρ ≤ ρmax}.

The convenient approach to partitioning this space utilizes uniform rectangular bins within

FZ3C for lattice orientation, and line segments of equal measure in GND density. Thus, the tessera

associated with FZ3C ×4 are of 4-dimensional rectangular character. Euler angles and GND

densities at the center of each 4-D bin are used to approximate the lattice orientation and GND

density for each measurement point falling within that bin.
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For crystal orientation space, the discretization is expressed using indicator function; ωn

represents the nth bin in FZ3C, and the indicator function takes the value of 1 if g ∈ ωn, and 0

otherwise.

χn(h) =

{
1, i f g ∈ ωn

0, otherwise
(4.7)

In the case of GND density, the line segment of the local space is partitioned with κm

where m represents the mth bin of discretized dislocation density space. The indicator function for

dislocation density space is similar to the one for orientation space.

ηm(h) =

{
1, i f ρ ∈ κm

0, otherwise
(4.8)

Although not required in this study, this approach of discretization is compatible with the

use of Fast Fourier Transformation (FFT) method for computing average tensors [11, 12].

Suppose that the local state is determined at S points of a sample via EBSD, with the state

at point s being hs. Then the orientation distribution function for the sample can be defined via:

f n =
1

S

S

∑
s=1

χn(hs) (4.9)

and the sum over the local state distribution is unity: ∑ f n = 1.

The elastic nature of pure FCC material depends only upon crystal orientations; thus, the

effective stiffness tensor (Ci jkl) is obtained by weighting the local stiffness tensor (Cn
i jkl) by means

of the orientation distribution. The local stiffness tensor is associated with the center of each

orientation bin, and the weighting is done by taking the number fraction of the total measurement

points associated with the assigned bin:

Ci jkl ≈
N

∑
n=1

f nCn
i jkl. (4.10)

Because the plastic properties of FCC materials depend on both lattice orientations and

GND density, the distribution function of interest requires the product of both orientation and

GND local state spaces. By using the previously introduced indicator functions, the distribution
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function is expressed as:

f nm =
1

S

S

∑
s=1

χn(hs)ηm(hs) (4.11)

where S is the total number of measurements of local state, and n and m are associated with

bins in each component of the local state space. The sum over the total local states gives unity:

∑n ∑m f nm = 1.

The effective yield stress (σ i j ) is obtained by weighting the local yield stress (σnm
i j ) with

the overall distribution function:

σ i j ≈
N

∑
n

M

∑
m

f nm
σ

nm
i j . (4.12)

Numerical examination of the bin-size dependency of calculations like Eq. 4.12 have de-

termined that numerical errors are less than 1% when a bin size of 5◦×5◦×5◦ in the three Euler

angles in FZ3C and 100 division in dislocation densities binning is selected; consequently, this bin

size was utilized throughout this chapter unless otherwise specified.

4.2.2 Geometrically Necessary Dislocation (GND) Density

Dislocation density quantifies crystallographic defects, and based on a Taylor assumption,

the plastic deformation in materials is almost entirely caused by dislocation slip [44]. Slip occurs

when dislocations experience an increment of flow stress in excess of that shown in Eq. 4.1.

There are two different types of dislocations commonly referred to: the statistically stored

dislocations (SSD) and geometrically necessary dislocations (GND). The former (SSD) have a net

signed density of zero within the Burgers circuit due to the equal and opposite sign of dislocations.

On the other hand, the GND densities do not cancels out within the Burgers circuit, and this

dislocation density causes long range stress fields in materials [47].

The idea of the dislocation density tensor αi j was first introduced by Nye [48], and further

developed by Kroner [49]. Kroner added the effect of lattice strain into the dislocation density

tensor αik:

αik = κki−δkiκpp+ ∈kl j ε
e
i j,l (4.13)

where κ is the lattice curvature, δki is the Kronecker delta, ∈kl j is the permutation tensor, and εe
i j,l

represents the elastic strain gradients [48–51]. The lattice curvature κ can be obtained taking the
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derivatives of the lattice rotation θk on the Burgers circuit, with respect to the neighboring scan

points:

κki =
∂θk

∂xi
(4.14)

where xi indicates a vector between the scan points [51]. When a surface is scanned using EBSD,

the scan points are placed along two directions: x and y. Since the lattice curvature is defined by

taking the derivatives of lattice rotations with respect to the direction of neighboring scan points,

only six out of nine components of lattice curvature are defined; the curvature which requires the

neighboring points in the z direction is not obtainable due to the lack of scan points.

If the elastic strain gradient term in Eq. 4.13 is negligible, five components of the dis-

location density tensor are obtained from the available six components of lattice curvature. By

the use of mathematical intuition, the difference of two other components of dislocation density

tensor is also obtained [51]. The full dislocation density tensor is not obtainable because of these

limitations; but the incompletely measured tensor can nevertheless be used in a particular way to

estimate the overall GND density [52].

The dislocation tensor may also be expressed in terms of the distortion tensor β , also called

the displacement gradient.

βi j =
∂u j

∂xi
(4.15)

The distortion tensor takes the spatial derivatives xi of displacement field u j. The total distortion β T

is the addition of plastic and elastic components: β T = β P +β where β is the elastic distortion.

The field must be continuous and differentiable within the body; thus the condition ∇× β T =

∇× (∇ · u) = 0 is applied [49, 53–55]. This gives ∇× β T = −∇× β . The dislocation density

tensor can then be simply expressed by taking the curl of the distortion tensor β .

α = ∇×β (4.16)

The above relation is called the fundamental equation of continuum dislocation theory [54,55]. The

equation suggests that the presence of dislocation densities creates geometrical distortion within

materials; thus, it conveys the information of GND densities. In this regard, the terms “dislocation

densities” and “GND densities” are used in the same context in this work and used alternately.
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The potential difference between the measured GND content and the overall dislocation density is

discussed later in the chapter (in section 4.4).

The recent development of high-resolution EBSD (HREBSD) analysis enables the mea-

surement of the complete distortion tensor components by comparing the shift of Kikuchi band in

EBSD patterns in neighboring scan points [52,54–57]. Various approaches have been developed to

obtain the elastic distortions and strain of material based upon this idea [50, 52, 53, 55, 56, 58, 59].

This study uses an extension of these method which provides accurate local displacement gradient

to express Nye dislocation density tensor [54], and suites the calculation of GND densities. In this

work a full nine component average of the dislocation density tensor is used as an estimate of the

overall dislocation density used within the Bailey-Hirsch relation (Eq. 4.1).

The Nye dislocation density tensor expresses the GND densities within the single Burgers

circuit [60]. The HREBSD method uses two neighboring scan points to create an imaginary Burg-

ers circuit; thus to have an accurate estimate of GND measurement requires careful consideration

of scan step size. Increasing step size leads to the loss of dislocation network information; on the

other hand, reducing the step size amplifies noises in the dislocation density data [60].

Kysar et al. suggest a meaningful scan step size L for estimating GND densities with

HREBSD analysis:
1√

ρ total
grid

� L� 1√
ρ total

grid b
(4.17)

where ρ total
grid is the total GND density and b is the Burgers vector [47]. The relation (Eq. 4.17)

indicates that the relevant step size needs to be located between a maximum limit, significantly

larger than the average distance between dislocations, and a minimum limit, significantly smaller

than that relating to notable variations in the plastic deformation field [47]. With this notion in

mind, the step size of each OFE copper sample’s scan is decided and it is shown in Table 4.2.

4.2.3 The Hybrid Bishop-Hill (HBH) Model

The Hybrid Bishop-Hill (HBH) model is a modified version of the Taylor-Bishop-Hill

(TBH) model. In the TBH model, the yield locus is defined in a five dimensional deviatoric stress

space, and each stress state is expressed in term of a critical resolved shear stress. The TBH model

predicts the existence of a convex polyhedron shaped yield surface, which has 56 vertices [1] for
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Table 4.2: HREBSD scan step size

Samples HREBSD scan step size (µm)
98% cold worked 1
98% cold worked and recrystallized 1
58% cold worked 1
58% cold worked and recrystallized 2.5

FCC materials. The TBH model states that for FCC materials a set of 56 stress states (also kwon

as stress corners) is capable of activating the required combinations of slip for an arbitrary plastic

deformation. This is a strain-based model: each grain experiences the uniform imposed (macro-

scopic) strain and the active corner stress state is the one that maximizes the plastic work done.

The HBH model, on the other hand, is a stress-based model and uses the same stress corners

defined by the TBH model to predict the yield strength of polycrystalline materials. The model

reflects the natural heterogeneity of the constituents of the polycrystal. The magnitude of the corner

stress states requires knowledge of a critical resolved shear stress τcrss. This stress defines the level

of shear stress that must be present upon any of {111}〈110〉 slip systems to cause dislocation slip

to occur. It is known that τcrss is proportional to the square root of the local total dislocation density

as in Eq. 4.1 which typically varies with position x.

Some of the advantages of using the HBH model are that it focuses on the applied stress

rather than on the plastic strain; this makes the model much more accessible to design engineers

who typically focus more upon stress states, rather than strain states. Furthermore, the HBH model

works superior to the TBH model at near-vicinity of yield surface due to reasons discussed earlier

(in Section 4.1).

The HBH model makes a simple assumption that the local yielding at any position in the

material occurs at that corner stress states, σ̂C
i j , that lies “closest” to the macroscopic stress, σ̂i j.

The “hat” over the stress symbol signifies the deviatoric stress. The distance between these two

stress states is defined by di j, where

di j = σ̂
c
i j− σ̂i j. (4.18)
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The magnitude of distance between stress states, d, is defined by the Euclidean norm:

||d2||= di jdi j. (4.19)

Importantly, the distance defined according to Eq. 4.18 and Eq. 4.19 is invariant with respect to

coordinate transformation. The selection of stress corner for any particular component (scan point)

within the polycrystal is taken to be the Bishop-Hill corner stress that minimizes the distance d

between the applied stress and the corner stress state.

The estimated (deviatoric) yield strength of the material is obtained by averaging over the

texture and GND densities components in the sample using the expression

σ̂
Y
i j ≈

N

∑
n

M

∑
m

f nm
σ

nm
i j (4.20)

where σnm
i j denotes the pertinent stress corner associated with bin nm in local state space. Note that

all corner stress states exercised in Eq. 4.20 must be expressed in the macroscopic (sample) frame

in order to interpret σ̂Y
i j as the yield strength. Where yield strength is customary described as the

full Cauchy stress, the deviatoric yield stress must be converted using the customary definition:

σ
Y
i j = σ̂

Y
i j +

1
3

δi jσ
Y
kk (summation over k implied). (4.21)

Exercising Eq. 4.21 to obtain σY
i j requires additional physical information about the applicable

pressure 1
3δi jσ

Y
kk or some other characteristic of the normal components of σY

i j . If, for example, the

calculations involve estimates of a uniaxial tensile test, then only one component of σY
i j is expected

to be non-zero; and in this case a pressure term 1
3δi jσ

Y
kk can be applied that renders σY

i j as close as

possible to a uniaxial stress condition. This is the approach taken in this chapter.

The dislocation density scales the magnitude of each corner stress in HBH model (or TBH

model) via the critical shear stress in Eq. 4.1; thus, the magnitude of active corner stress varies

based on the amplitude of dislocation density level. Three different HBH approaches are exercised

in this study to observe the influence of dislocation densities on yielding. The first approach is the

full four-parameter approach given in Eq. 4.20. This approach fully considers the effect of both

the crystal orientation and the dislocation densities influence on yielding. The second approach

69



is to use the average dislocation densities in designated crystal orientation bins to scale the active

corner stress in the HBH model. The active corner in each orientation bin, σ̂C(n), is independently

scaled (via Eq. 4.1 ) based on the dislocation density average associated with the particular crystal

orientation, and Eq. 4.22 is applied to obtain the sample yield stress:

σ̂
Y
i j ≈

N

∑
n=1

f n
σ̂

C
i j . (4.22)

The third approach uses the overall average of dislocation densities of the sample to scale the active

corner stress: i.e. each σ̂C(n) is scaled by the same value. Then, Eq.4.22 is employed to obtain the

yield limit of the sample.

4.3 Yield Surfaces of FCC Metal Texture

FCC metals possess unique textures. Some of the well-known FCC crystal textures and

corresponding dominant crystal orientations are shown in Table 4.3.

Table 4.3: Common FCC metal texture

Texture
Components {hkl} < uvw > φ1 Φ φ2

Copper, C {112} < 111 > 90 35 45
S {123} < 634 > 59 37 63
Goss, G {001} < 100 > 0 45 90
Brass, B {001} < 211 > 35 45 90
Cube {001} < 110 > 0 0 0

The yield surfaces for the above FCC crystal textures were determined using TBH corner

stresses. The corner stress states in crystal frames are scaled by unity (i.e. dislocation density is

ignored; τcrss = 1), and are transformed to the sample frame using FCC texture crystal orientations.

The yield surface obtained this way show only the crystal orientation dependence.

Table 4.4 shows the volume of yield surface in each texture. The cube texture has the largest

yield surface envelope volume; indicating the material will not easily yield, compared to the other
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textured samples. The same observation suggests that a material having dominantly copper texture

will fail the earliest for a random applied stress state.

The yield surface of brass texture and cube texture are shown in Figure 4.1 and Figure 4.2.

The shapes of the yield surfaces are markedly different, based upon the different textures. These

observations highlight the fact that crystal orientation strongly influences the shape of a given yield

surface.

However, the critical shear stress in each corner stress states is a function of the local

dislocation density. As a result, the accurate calculation of yield limit requires the consideration of

dislocation densities.

The relationship between the critical shear stress and the dislocation density is given by a

square root (Eq. 4.1). Thus, the higher the value of dislocation density, the larger the magnitude of

corner stress, contributing to a larger yield surface. The volume of yield surface is thus a function

of both the crystal orientations and the dislocation density.

Let us assume a hypothetical FCC material which has a mixture of two textures: 50% cube

texture and 50% brass texture. First, consider a case when the effect of crystal orientation alone is

considered. When the sample experiences pure shear (Sy12), the cube texture withstands the stress

up to a normalized value of 2.3, and brass texture is elastic up to 1.9 (Figure 4.1 and Figure 4.2). In

this condition, the failure is dominated by the brass texture because it has the smaller yield limit.

Now, take the effect of dislocation density into consideration in addition to the texture of

samples. Suppose that the cube texture grains have dislocation densities of 1e15 m−2, and brass

texture crystals have dislocation densities of 5e14 m−2. The smaller dislocation densities in brass

Table 4.4: The yield surface envelope volume of well-known FCC texture: the τcrss is normalized
to unity

Texture Volume of
Components Yield Envelope
Copper, C 26.720
S 31.383
Goss, G 27.713
Brass, B 27.713
Cube 34.293
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Figure 4.1: Yield surface for brass (B) texture
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Figure 4.2: Yield surface for cube texture
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texture aggravate the performance by making the yield surface smaller; consequently, the failure

of the sample is influenced even more strongly by the brass texture.

What would be the case if the sample has an opposite dislocation density profile: the cube

texture having the dislocation density of 5e14 m−2 and the brass texture having the dislocation

density of 1e15 m−2? The cube texture which has a larger yield surface volume, is scaled negatively

by the smaller dislocation density; the brass texture having smaller volume is scaled positively by

the larger dislocation density. Hence, the lower dislocation density in cube texture reduces its

performance, and higher dislocation density in brass texture improves its performance. The overall

performance of the sample comes by the competing effect from both the textures. Incorporating the

dislocation density information in addition to the texture of samples enables the sensitive evaluation

of yield limit.

This type of analysis would be particularly important if local effects dominated the com-

ponent response, such as in micro-devices. We do not look in detail at such local response in this

work.

4.4 Results and Discussions

HREBSD data sets comprising of ∼ 2000 grains were used for the evaluation of sample

yield limit of the various copper types investigated in this chapter. The estimated dislocation den-

sities and measured (via HREBSD) GND levels of four samples (98% cold worked sample, 58%

cold worked sample, 98% cold worked-recrystallized sample, and 58% cold worked-recrystallized

sample) are shown in Table 4.5. The estimated dislocation density values are obtained from ex-

perimental tensile strength data and the samples averaged Taylor factor (M), through the Taylor

relationship (τcrss =
σy
M ) and Eq. 4.1. We note that the GND content is typically only a fraction

of the total dislocation content (for example, [61] estimates about 35% of total dislocation content

for one sample). In this work, we are assuming that the ratio of GND to total dislocation content

is effectively constant for the different textures / samples. The accuracy of this assumption has not

yet been widely studied, and more work in this area is required in the future.

Observation Table 4.5 suggests that the HREBSD method gives similar trends for disloca-

tion density level compared to the estimated values (estimated from the measured yield points). In
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both cases the cold worked samples show significantly higher dislocation density, compared with

the recrystallized samples.

Table 4.5: Sample dislocation densities (GND densities)

Estimated Dislocation HREBSD measurement
Density (Eq. 4.1) of GND

98% cold worked ∼ 1e15 7.77e14
98% cold worked and recrystallized ∼ 3.2e13 9.89e13
58% cold worked ∼ 8.6e14 3.96e14
58% cold worked and recrystallized ∼ 2.6e13 3.91e13

Table 4.6: The HBH tensile yield strength

four-parameter Orientation bin Sample average
approach yield average GND yield GND yield strength
strength (MPa) strength (MPa) (MPa)

98% cold worked 303.12 314.44 315.54
98% cold worked and recrystallized 109.11 113.51 113.73
58% cold worked 216.61 222.54 223.78
58% cold worked and recrystallized 72.430 74.512 74.612

The uniaxial yield strength estimated by the HBH model is presented in Table 4.6. The

results show that the four-parameter approach consistently gives lower yield strength compared

to the orientation averaged GND density method and sample average GND density cases. The

differences in estimate of yield strength between the four-parameter approach and sample average

GND densities yield strength is around 3 to 4%.

The four-parameter approach fully incorporates any correlations between GND content and

crystal orientation; thus, it is expected to be the most accurate yield surface calculation method.

The method incorporates the effect of the GND measurement at each material point, taking the

square root of dislocation density at each point to determine the local critical shear stress.

The binning average method is less accurate compare to four-parameter approach due to

taking an average value in each dislocation density bin rather than each material point. When
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calculating τcrss, taking the square root of the average density in a bin always gives a slightly

higher value than taking the average of square roots for each material point. Although the bin

average approach loses some information of GND density as it applies to active corners, the method

might be more efficient in certain computation approaches. Calculating yield limit with smaller

orientation bin size may alleviate the problem of losing GND information, but smaller binning

requires more computational power.

The sample average GND method calculates the yield surface from information of crystal

orientation alone, and then scales the surface based upon the overall average GND density. Thus,

this method completely ignores any correlations between crystal orientation and GND density that

may exist.

If the shape of the yield surfaces for the four-parameter approach and the sample average

approach were identical, then this would suggest that either crystal orientation has a negligible

effect on yield surface shape, or that there is negligible correlation between GND density and

crystal orientation.

Figures 4.1 and 4.2 indicate that for the Cu material the yield surface shape depends

strongly upon crystal orientation/texture. Hence any correlations between GND density and crystal

structure should result in differences in yield surface shape for the two calculations methods.

Figure 4.3 illustrates the distribution in GND densities for the various crystal orientations

in Euler space for the 98% cold worked sample, which displays the greatest correlation between

GND and orientation. The gray scales on the maps display the level of GND densities. It is clearly

seen that there is significant variation in dislocation density distribution based on crystal orientation

for this particular sample.

The variation in GND densities with respect to different crystallographic texture compo-

nents is shown in Figure 4.4. S texture component show significantly smaller dislocation densities

than other texture components such as copper, goss, and brass texture.

Figure 4.5 shows the yield surface of S texture and goss texture based upon their corre-

sponding dislocation densities. Goss texture performs better in tensile direction (Sy11) of applied

stress, and S texture performs about the same in both tensile (Sy11) and shear direction (Sy12). The

average dislocation density for 98% cold worked sample is 7.8e14m−2. As seen in Figure 4.4 the

dislocation density for goss texture is close to the average GND value of the sample. This suggests
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Figure 4.3: GND densities maps in φ2 slice of crystal orientation

that the average dislocation density method works well enough for the estimate of elastic/yield

limit in goss texture dominant sample. However, the average dislocation density approach will

work very poorly on S texture; the next example will demonstrate this.

Let us assume that grains with goss texture and S texture experience a particular stress

state: tensile load in Sy11. S texture has a larger yield surface volume than goss texture (Table

4.4), but its performance in the Sy11 is slightly lower (about 17%) than the goss texture if only

crystal orientation alone is considered. If the overall average GND density is used for the estimate

of the yield surface (i.e. the four parameter approach is not used), for the S texture, the expected
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Figure 4.4: GND densities and corresponding texture: 1. C texture, 2. S texture, 3. G texture, 4. B
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yield limit in Sy11 will be slightly lower (about 17% lower) than the goss texture’s limit. In reality,

S texture is associated with much lower GND densities than goss texture (Figure 4.4), and its

performance in the Sy11 lowers based on GND densities. When GND information is incorporated,

the performance in Sy11 of S texture becomes lower, and the performance of goss texture becomes

even higher (Figure 4.5), making a larger difference in performance between the two textures.

This demonstrates that average dislocation density method can miss the crucial information for

estimating the elastic/plastic limit.

The comparison of yield surface between four-parameter method and sample average GND

densities approach is shown by using 98% cold worked sample (Figure 4.6 and Figure 4.7: yield

closures are obtained using 9 degree crystal orientation binning with 100 GND densities binning).

The shape of yield surface may looks similar in both methods as it is postulated since the crystal

orientations used in the computation are the same. However, there are subtle differences relating

to the fact that there is some correlation between orientation and GND densities as discussed pre-

viously. Some examples of this occur in the right hand side (label B) and the top left side (label
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Figure 4.5: Yield surface for G texture and S texture with corresponding dislocation density

A) of the surfaces, as seen in the images; the different triangulation of the surfaces for the two

images indicates a slight shape change in the areas for the two yield surfaces. The size of enve-

lope is different (Table 4.7) because the magnitude of GND densities information is incorporated

differently. The yield surface of average GND approach evaluates 11% larger envelope than the

four-parameter method.

Although the variation may look small, the 11% difference in estimate of yield surface can

possibly cause problems in the practice of mechanical design if a design of the part requires precise

functionality.

The yield surface for two samples, 98% cold worked and 98% cold worked - recrystallized

sample, are shown for a comparison. Figure 4.8 and Figure 4.9 show the yield surface obtained

from four-parameter approach. Each of the samples has different texture; thus, the shape of yield

surface is different. In addition to the shape, the magnitudes of GND densities are significantly

Table 4.7: Yield surface envelope volume of 98% cold worked sample

Volume of yield surface envelope
Four-parameter approach HBH method 1.7595e23
Averaged GND HBH method 1.9846e23
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Figure 4.6: Yield surface of 98% cold worked sample using four-parameter HBH model shown in
deviatoric stress space

Figure 4.7: Yield surface of 98% cold worked sample using average GND densities HBH model
shown in deviatoric stress space
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lower in recrystallized sample, making the volume of closure much smaller compare to the cold

worked sample.

The shape and volume of envelope suggest interesting outcome for some design feature. A

larger closure of cold worked sample suggests that the sample is suited for a design, which simply

requires a stronger material. However, if a design property requires material, which function only

superior in one direction - to a tensile load, but not shear - the recrystallized sample performs

effectively.

4.5 Chapter Summary

This chapter presents a new approach to the evaluation of yield limit by incorporating GND

densities as a fourth parameter in addition to crystal orientation in a stress based Hybrid Bishop-

Hill model. The HBH model retains the distinctive corner stress states defined for FCC crystals

by the classical Taylor-Bishop-Hill model, but differs in focusing the choice of corner stress state

upon the macroscopic applied stress. The use of GND densities properly scales the active corner

stress states in the HBH model, allowing a better estimate of yield limit.

The yield characteristics are determined by the dominant texture and corresponding GND

densities in each sample. The crystal orientation most influences the shape of the yield surface; the

dislocation is known to affect the volume of the yield surface via Eq.4.1, but if correlations exist

between orientation and dislocation content, then the shape of the yield surface is also changed.

These correlations are captured by the four-parameter approach.

Three different methods were used to incorporate GND content into the HBH model: i)

the full four-parameter approach (fully accounting for different GND contents at each point of

a sample), ii) averaging the GND content in each crystal orientation bin, and iii) using only the

overall average GND content. The change in yield surface shape does not alter dramatically be-

tween the different approaches, indicating that correlations between GND content and orientation

are not strong. However, the example of the 98% cold worked copper demonstrated that there can

be significant correlations between orientation and GND density that change the shape of the yield

surface, and may be important factors in the analysis of elasto-plastic design. The four-parameter

approach possibly improves the evaluation of yield limit in FCC materials, and hence contributes

to the enhancement of mechanical design practice.
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Figure 4.8: Yield surface for 98% cold worked sample obtained from four-parameter approach in
deviatoric stress space
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Figure 4.9: Yield surface for 98% cold work-recrystallized sample obtained from four-parameter
approach in deivatoric stress space

81



CHAPTER 5. CONCLUSION

This dissertation presented a new approach for improving the performance of simple me-

chanical parts by incorporating material microstructure information into a stress-centric frame-

work. Since the stress is much more accessible than the plastic strain, near the yield point of the

material, the new method facilitates a much easier approach to yield limited design. This Hy-

brid Bishop-Hill model is appreciable to yield limit evaluation on FCC materials, and the study

indicates that the HBH model gives better estimate of yield prediction than a classical Taylor-

Bishop-Hill model.

A simple design problem is simulated with analytical method using the HBH model in

chapter 2, and the same geometry is further studied in following chapter by FEA incorporated

HBH model. The result reveals that FEA incorporated HBH model gives more accurate prediction

than analytical model by utilizing a full 21 components of stiffness tensor.

The idea of safety factors is introduced: a safety factor scales elastic/plastic yield limit of

each material to its yield surface. The FEA incorporated HBH model demonstrates that the HBH

approach can be easily applied to various geometries and various stress states in mechanical design

practice.

Although it is not presented in the work, there is an alternative use of safety factors: per-

centage of nodes failure within the geometry of interest with given applied load condition. The

idea can be considered as practical yielding; this idea gives more freedom to mechanical designers

to take control on what is suitable definition of yielding (a decision of how much percent node

failure is considered as yielding) in particular design of interest. This approach can be applied to

FEA incorporated HBH model in future to demonstrate easier design practice.

The examples of simple design practices with the HBH model in chapter 2 and chapter 3

exhibit that incorporating microstructure information opens up a new design space which are not

seen with ordinary design practice.
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The chapter 4 explores the possibility of improvements in the HBH model by introducing

additional physical parameter. The stress corner in HBH model is defined by the critical shear

stress as with the classical TBH model; thus, the detail information on critical shear stress can

correctly scale the magnitude of active corner; hence improves the accuracy of the HBH model.

The geometrically necessary dislocation density is introduced. The GND densities obtained from

EBSD simulations method determines the critical shear stress of each sample. By utilizing the

information on GND densities through four-parameter approach HBH model, a prediction on yield

surface envelope volume of sample is modified by 11% in this study. This is due to the fact that

GND densities have small but certain dependence on crystal orientations. The shape of the yield

surface is most specified through the texture of the material, while the volume of the envelope is

scaled in accordance with the GND density. The yield surface of material is defined by interactive

influence on both the crystal orientations and GND densities. The four-parameter approach has

potential for improving estimates of elastic-yield limit in all polycrystalline FCC materials.

The determination of dislocation densities through EBSD method is a currently developing

technique. The advancement of this procedure will help the GND estimate of each material, and

lead to the improvement of HBH models.
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APPENDIX A. POLE FIGURES FOR THE DATABASE

(a) As-received
Maximum intensity: 1.639×random

(b) As-received and annealed
Maximum intensity: 1.748×random

Figure A.1: As-received samples

(a) 98% cold worked
Maximum intensity: 5.534×random

(b) 98% cold worked and recrystallized
Maximum intensity: 3.714×random

Figure A.2: 98% cold worked samples
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(a) 58% cold worked
Maximum intensity: 3.390×random

(b) 58% cold worked and annealed
Maximum intensity: 2.827×random

(c) 58% cold worked and recrystallized
Maximum intensity: 2.816×random

Figure A.3: 58% cold worked samples

(a) Maximum intensity: 36.796×random

Figure A.4: Cube texture sample
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APPENDIX B. TBH CORNER STRESS STATES

Table B.1: TBH corner stress states
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