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ABSTRACT

Design Considerations in the Development and Actuation of Origami-Based Mechanisms

Eric W. Wilcox
Department of Mechanical Engineering, BYU

Master of Science

Origami-based mechanisms have unique characteristics that make them attractive for en-
gineering applications. However, origami-based design is still a developing area of design. Con-
tinued work to increase general understanding of key design parameters specific to origami-based
mechanisms will increase the ability of designers to capture the potential benefits of origami-based
mechanisms.

This thesis presents a fundamental study of origami to assist designers in gaining a stronger
understanding of the key parameters and capabilities of origami-based mechanisms. As a starting
point a study of fundamental motions in action origami models (those that exhibit motions in
their folded state) is presented to explore fundamental motions and actuation in origami-based
mechanisms. Eleven fundamental motions are outlined and defined with the associated actuation
forces that drive them.

Additionally, considerations for ensuring necessary performance and force transfer charac-
teristics in origami mechanisms are presented. This is done by exploring the effect of surrogate
hinge selections, fold pattern modification, and actuation inputs on the final mechanism. A model
of mechanical advantage in origami models consisting of N, degree-4, vertices (where N = 1,2,3,...)
is developed and explored.

From the exploration of the parameters of the mechanical advantage model it is shown that
hinge selection can greatly affect the performance of an origami mechanism by determining its
range of motion, precision, and mechanical advantage. Therefore, in order to better understand
this important design decision, specific considerations for surrogate hinge selection are presented.
These considerations discuss methods to increase performance and reduce hinge imprint, as well
as develop surrogate hinges in metals.

The key design parameters and considerations presented herein as well as study of origami
motions serve to lay the groundwork toward the development of analysis tools and design guide-
lines specifically suited to origami based design.

Keywords: origami, fundamental motions, classification, mechanical advantage, practical design
considerations, surrogate hinges
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Origami models exhibit many behaviors that are desirable for use in engineering appli-

cations such as reconfigurability, high compactibility, and the ability to be manufactured from a

single sheet. Their unique set of characteristics make them a useful source of inspiration for de-

signers and are being used to create unique solutions to engineering problems. The widespread use

of origami-based mechanisms is still limited, however, by the difficult nature of moving from seed

origami model to final, actuated, mechanism.

The first difficulty in this process is selecting the appropriate origami fold pattern to begin

the design. A better understanding of fundamental origami motions and how to actuate them

can assist in the effective selection of origami models from which to develop the origami-based

mechanism.

Once a starting point has been selected for a mechanism, there are additional design de-

cisions to be made that will greatly affect the final performance and behavior. Increased under-

standing of some of these critical design decisions and how they determine the behavior of the

mechanism will allow designers to troubleshoot difficult aspects of the origami-based design pro-

cess.

Some potential applications for origami-based mechanisms are beyond current capabilities

due to the limitations inherent in the materials from which they are constructed as well as those im-

posed by the hinges being used. The ability to produce fully compliant, origami-based mechanisms

in materials with greater strength, corrosion resistance, etc. and with greater hinge performance

will further increase the possible applications of these mechanisms.

Origami-based mechanisms have unique and desirable characteristics and offer novel so-

lutions to engineering problems. By establishing a fundamental understanding of achievable mo-

tions, understanding critical design parameters, and exploring the use of materials such as metals in
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the design of origami-based mechanisms; the development of mechanisms with greater complex-

ity and possible application will be facilitated. This in turn will broaden the use of origami-based

mechanisms and allow more designers to take advantage of their benefits.

1.2 Thesis Objective

The purpose of this thesis is to assist in the effective synthesis of compact, deployable, and

highly compactable origami-based mechanisms. This is performed by first investigating and clas-

sifying action origami models by their fundamental motions and required actuation inputs, then

exploring key parameters controlling the force-deflection behavior of origami-based mechanisms

and finally discussing practical considerations affecting the performance of the compliant hinges

used in origami-based mechanisms. Included is a discussion of specific considerations when de-

veloping such hinges in metals.

1.3 Thesis Outline

In Chapter 2, the fundamental motions exhibited by action origami models are outlined

and required actuation inputs discussed. Over 300 action origami models are classified based on

their spherical mechanism structure and motions, resulting in 11 different categories. This chapter

has been published in the proceedings of the 2014 Design and Engineering Technical Conferences

(DETC) [1].

Chapter 3 presents a mechanical advantage model for flat folding, rigidly foldable, linearly-

linked origami fold patterns consisting of N degree-4 vertices (where N=1,2,3...). This mechanical

advantage model is used to explore and identify critical design parameters affecting the perfor-

mance of origami-based mechanisms. Discussion of these key parameters allows designers of

origami-based mechanisms to gain a better understanding of their effect on the performance of

origami-based mechanisms. This chapter has been submitted for publication in the Journal of

Mechanical Design.

Chapter 4 discusses practical considerations concerning the selection of surrogate hinges

for origami-based mechanisms, as this was shown in Chapter 3 to be one of the more critical pa-

2



rameters affecting their performance. Considerations to be made in order to increase performance,

reduce hinge imprint, and create hinges in low compliance materials (metals) are discussed.

Lastly, Chapter 5 includes conclusions drawn from the research as well as areas of future

work.
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CHAPTER 2. EXPLORING MOVEMENTS AND POTENTIAL ACTUATION IN AC-
TION ORIGAMI

2.1 Introduction

There has been a growing interest in origami-inspired mechanisms. The design of these

mechanisms draws from the vast repertoire of origami models to create innovative solutions to

unique and challenging problems in applications as diverse as medical equipment [2], aircraft

construction [3], and space applications [4]. With the application of mathematical modeling and

analysis, origami designs have grown in complexity. These increasingly advanced origami models

promise to serve as useful tools in the creation of engineering solutions to equally specialized

and unique design problems. However, as origami models grow in complexity there is a greater

need for actuators that will meet the specific requirements of the resulting mechanisms. This

presents an opportunity for the development of origami-compatible actuators catering to the design

space of origami-inspired mechanisms. For instance, in designs where volume must be minimized,

conventional actuators may not be appropriate as they add unwanted bulk. In such circumstances

origami-compatible actuation systems designed to address this need could be selected to create the

needed movements without compromising performance. In this way the fields of actuation and

origami-inspired mechanisms are connected. Actuation technology is already being developed to

create actuation systems with less bulk, more autonomy, and greater control [5–7].

To efficiently advance the development of origami-compatible actuator systems, it is im-

portant to first understand the types of motion exhibited by origami models. In conventional engi-

neering designs, the motion of a given mechanism is a combination of the simple movements of

its components. These movements and how they couple together to form more complex motions

are well-documented and understood, allowing engineers to create sophisticated motion. Gaining

a similar understanding of the fundamental movements in origami models is an important step in

creating fully actuated origami-inspired mechanisms. The objective of this chapter is therefore to

4



define the fundamental motions in origami and identify the actuation inputs required to achieve

these motions in origami-inspired mechanisms.

2.2 Background

Origami can be split into static and action origami models. Static origami consists of mod-

els that exhibit no motion once folded. While such models can be complex and visually stunning,

it is difficult to translate their design into use in mechanisms. In contrast, action origami models

can be more directly translated into use in creating mechanisms due to their ability to create motion

in their folded state.

Some action origami models exhibit motions that cannot be predicted or replicated using

traditional kinematics, making them difficult to recreate in mechanisms. Thus designers may find

it useful to focus on models whose motions can be defined by rigid-body kinematics. Such models

have been defined as “kinematic action origami” [8]. Kinematic action origami models are designs

that can be modeled as mechanisms with relative motion between components and a distinct output

motion from a given input.

Modeling origami fold patterns as kinematic mechanisms is well established in papers con-

sidering the behavior of origami folds [9–12]. Each vertex is modeled as a spherical center to an

equivalent spherical mechanism with the surrounding panels acting as rigid links and fold lines

acting as revolute joints. Bowen et al. [8] proposed classes into which the kinematic origami mod-

els could be further divided by considering the driving fold pattern of the model. The driving fold

pattern of a model is the network of fold lines and vertices directly involved in creating the mo-

tion of the model. The proposed classification scheme analyzed how each vertex in the driving

fold pattern interacted spatially with the vertices around it. This chapter’s study of the motions

exhibited in several of these classes will serve to define fundamental types of motions observed in

kinematic origami models. Once an understanding of such motions and their actuation has been

established, further study could show how these basic building blocks can be combined to create

the more complicated motions exhibited in the other classes not addressed here.
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Figure 2.1: The backbone (dashed line) of Single, Coupled, and N-Long Linear Chain type mech-
anisms.

2.2.1 Important Terms

A brief explanation of important terms used in the following discussion is provided below.

Rigid Foldability: An origami model is rigidly foldable if the panels between folds remain rigid

and planar throughout the entire motion of the model (i.e. there is no flex in the panels).

Spherical Center: The spherical center is the point in space where the rotational axes of each

of the revolute joints of a spherical mechanism intersect. By considering origami fold lines to be

the axis of a revolute joint their point of intersection at the vertex can be modeled as the spherical

center of an equivalent spherical mechanism.

Sector Angle: The sector angle of a given panel in an origami vertex is the enclosed angle of

that panel measured between the creases that intersect with the origami vertex. In the context of

spherical mechanisms the sector angle is equivalent to the spherical link length for that panel.

Backbone: The backbone is a fold line that connects all spherical centers in the fold pattern

being considered. Figure 2.1 shows crease patterns for Single, Coupled, and N-Long Linear Chain
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Figure 2.2: A partially folded single vertex with the ground plane indicated in grey.

type fold patterns with their respective backbones indicated. The concept of a backbone is only

applicable to open-chain type fold patterns.

Ground Plane: Here the ground plane is defined as the plane the origami fold pattern lies in when

completely unfolded. As an origami folding pattern is actuated, the segment of the backbone lying

between the driving panels (where the actuation forces are being applied) remains in the ground

plane while the rest emerges out of the ground plane. A partially folded single vertex is shown in

Figure 2.2 with the ground plane indicated. Notice also the segment of the backbone that remains

in the ground plane throughout the entire motion.

Backbone Plane: The backbone plane for a given origami folding pattern is the plane which

contains the backbone of the folding pattern and remains perpendicular to the ground plane.

Back-Drivability: In this study the term “back-drivable” describes origami fold patterns whose

output motion can be actuated to recreate the input motion required to create it. For example, a

model requiring a linear translation of panels to create a rotational output is back-drivable if and

only if applying actuation forces to the panels involved in the output motion recreates the transla-

tion motion of the panels involved in the input motion.
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An origami fold pattern is considered to be back-drivable if it is rigidly foldable and can be

modeled as a 1 DOF kinematic system. However, while a system may be back-drivable in theory

it may prove difficult to realize in practice. For this reason, the practicality of back-driving some

of the fold patterns is also considered.

2.2.2 Classification of Models within Kinematic Origami

In this chapter we have chosen to focus on four of the classes proposed for action origami

by Bowen et al. [8]. Each is defined briefly below.

Open Chains

Single. A model whose driving fold pattern creates only one spherical mechanism.

Coupled. A model with a driving fold pattern containing two spherical mechanisms that

are coupled such that they share one joint.

N-Long Linear Chain. A model with three or more spherical mechanisms linked linearly

such that each spherical mechanism will share two joints, one with each of the neighboring spher-

ical mechanisms in the chain. The spherical mechanisms located at the extreme positions of the

chain will only share one joint with the adjacent spherical mechanism in the chain.

Networks

Single Loop. A model with a fold pattern that has only one loop (closed chain of at least 3

spherical centers) and where all spherical mechanisms in the loop share two joints.

2.3 Approach

The classes of origami models being considered here will be analyzed in order to char-

acterize the motions created by each type of driving fold pattern discussed. Subsets representing

fundamental types of motions in kinematic origami models will be outlined and placed inside the

framework of the existing classification scheme [8]. These subsets will be defined by:

1) Motions exhibited

2) Types of actuation forces required

3) Back-Drivability

8



(a) (b)

Figure 2.3: Crease patterns for Subsets S1 (a) & S2 (b) of the Single class.

Results of the study are summarized for each subset in Table 2.1 at the conclusion of this

chapter. The table is intended as a quick-reference tool for designers of origami-inspired mech-

anisms or others seeking to better understand the movements and actuation of kinematic origami

models.

Robert Lang and Jeremy Shafer, well known origami artists, have created many action

origami models and their books were the sources of the origami models discussed in this chap-

ter [13–16]. Approximately 140 kinematic origami models were analyzed. In studying these

models only the fold patterns from each design that were directly involved in driving the motion

of the model were considered.

This chapter is intended as an introduction to the basic types of motions in kinematic action

origami. The statements made concerning each subset are intended to be generic to apply to all

models in each group.

2.4 Discussion of Fundamental Origami Motions

This discussion starts with models in the Single class [8] by outlining subsets in this class

and then outlining subsets in the Coupled, N-Long Linear Chain, and Single Loop classes.
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Figure 2.4: Applied forces (blue arrows) that create the output (red arrow) of Subset S1a - a
moment about the backbone (dashed line) or forces applied orthogonally to the backbone plane.

2.4.1 Single

The Single spherical mechanism class can be divided into four distinct subsets: Subset S1a,

Subset S1b, Subset S2, and Subset S3. Subsets S1a and S1b consist of degree 4 vertex folds while

Subsets S2 and S3 consist of folds with degree 6 (or greater) vertices. Further description of each

subset is given below.

Subset S1a

This subset is the most basic of the Single class. Crease patterns associated with this subset,

as shown in Figure 2.3(a), create degree 4 vertices – meaning the fold pattern can be represented

by a 4R 1 DOF spherical mechanism. From the crease pattern one sees two sets of panels: one

whose sector angles are less than 90◦ and another whose sector angles are greater than 90◦. While

either set of panels could be used to drive the motion of the model (as it is a 1 DOF system), here

the panels whose sector angles are greater than 90◦ are referred to as “driving panels”. Actuation

of these driving panels causes the other panels to rotate out of the ground plane.

Figure 2.4 shows the type of forces that can be applied to create the motion of Subset S1a:

either a moment about the backbone or forces oriented perpendicular to the backbone plane and

acting in a plane that remains parallel to the ground plane of the fold vertex (as defined earlier)

10



Figure 2.5: Traditional Flapping Crane showing buckled panels.

throughout the entire motion of the panels. This constraint is often realized in origami designs by

attaching flaps to the panels being actuated and pulling on these flaps.

When using external flaps to actuate the fold pattern, the stroke length is determined by the

vertical distance of the plane containing the flaps from the ground plane; as the distance decreases

so will the stroke length. This statement applies to any fold pattern being actuated in this way.

The output displacement of the fold pattern can also be changed by modifying the sector angle

of the driving panels. As the angle of these panels approaches (but is still greater than) 90◦ the

displacement is increased. The motion of this subset is back-driven by applying a moment about

the backbone between the panels whose sector angles are less than 90◦.

Subset S1b

The crease patterns associated with this subset are no different from that for Subset S1a

given in Figure 2.3(a). The different motion behavior of the two subsets arises from the difference

in actuation inputs applied to the fold pattern. This can be seen by considering the “Flapping

Crane” [13, 15] shown in Figure 2.5. Models belonging to this subset gain their motion from

pulling on two of the panels of the vertex such that the other panels buckle or flex as shown in

Figure 2.5.
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Figure 2.6: Input force requirements (blue arrows) to create output (red arrows) of Subset S2.

In this figure the single vertex is located in the tail section of the crane and actuation forces

are applied to the panels with sector angles less than 90◦, causing the others to buckle and create

the flapping motion of the crane. While the tail section could be actuated as discussed with Subset

S1a the characteristic flapping of the “Flapping Crane” would not be achieved; this motion is only

created by the buckling and flexing of the panels in the tail section. Origami designs belonging to

this subset are not rigidly foldable. A mechanism using a non-rigidly foldable design would require

compliant links to function. Resulting actuation challenges arising from the use of compliant links

could include the actuator being required to output a greater force as well as being required to

resist a static load from the panels attempting to return to an un-flexed state. Also, due to the fold

pattern being non-rigidly foldable, this motion is not back-drivable.

Subset S2

Subset S2, while similar to Subset S1a, has some important differences which can be seen

in the crease pattern given in Figure 2.3(b). The most notable difference is that this crease pattern

creates a degree 6 vertex which will have more than one degree of freedom. The output motion

of the subset is similar to that of Subset S1a but differs in that the out-of-plane rotations occur on

both sides of the panels driving the motion. Actuation forces are applied to the two center panels

in the fold pattern (through the use of external flaps). The motion is created by forces applied
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Figure 2.7: A waterbomb base belonging to Subset S3 shown moving between its two stable
positions by inverting the fold vertex.

perpendicular to the backbone plane of the mechanism as demonstrated in Figure 2.6. As fold

patterns belonging to this subset are not 1 DOF systems this subset is not back-drivable.

Subset S3

Subset S3 may be of particular interest to designers of origami inspired mechanisms as

its motion demonstrates bistability which offers the potential benefit of lowering actuation energy

requirements. The motion associated with this subset is an inverting of the vertex with the model

moving between two stable positions as demonstrated in Figure 2.7. Any crease pattern with a

single vertex containing at least four fold lines can exhibit this bistable behavior (although to be

rigidly foldable at least six are required). Actuation of origami fold patterns in this subset can be

difficult if attempting to invert the vertex by applying a force directly to it. An alternate actuation

approach involves translational sliding contact on the mountain folds until the vertex pops through

to its second stable position. This motion is not back-drivable.

2.4.2 Coupled

The Coupled mechanism class is the next evolution in mechanism complexity and is com-

prised of fold patterns in which two spherical mechanisms are coupled together. There are three

possible orientations for the coupling of these spherical mechanisms which constitute the three

subsets of this class. Crease patterns showing these three orientations are given in Figure 2.8.

In the first subset (Subset C1) of coupled mechanisms the individual spherical mechanisms are
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(a) (b) (c)

Figure 2.8: Typical crease patterns from each of the three subsets of the Coupled class: Subset C1
(a), Subset C2 (b) & Subset C3 (c).

Figure 2.9: Actuation of a fold pattern belonging to Subset C1, showing input forces (blue arrows)
and the resulting output motion (red arrows).

oriented towards each other (forming a diamond), in the second subset (Subset C2) the two spher-

ical mechanisms are oriented away from each other, while in the third (Subset C3) the spherical

mechanisms are oriented in the same direction. These subsets are described below.

Subset C1

This subset is the most populated of any of the Coupled subsets and is seen in many action

origami models – particularly in those exhibiting chomping motions. The crease pattern associated

with this subset is shown in Figure 2.8(a). As described earlier the two spherical mechanisms are
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Figure 2.10: Actuation of a fold pattern belonging to Subset C2 with input forces (blue arrows)
and output motions shown (red arrows).

Figure 2.11: Extension motion created in a C2 type fold by actuating the panels at the extreme end
of the backbone.

oriented towards each other such that a diamond shape is created in the middle of the fold pattern.

The chomping motion of this subset, as shown in Figure 2.9, is actuated by bringing the points of

the “diamond” together in one plane causing the extreme endpoints of the backbone to be brought

together in an orthogonal plane. This motion can be initiated by applying a moment to the panels

of the diamond about the backbone (possibly with the use of forces on flaps as discussed earlier)

or by applying a moment about the fold line in the middle of the diamond. This motion is back-

driven by bringing the extreme points of the backbone together in one plane causing the points of

the diamond to come together in an orthogonal plane.

Subset C2

Subset C2 of the Coupled class is characterized by coupled spherical centers which are

oriented away from each other as shown in the crease pattern in Figure 2.8(b). This subset is
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Figure 2.12: Actuation of a fold pattern belonging to Subset C3 showing output motion (red ar-
rows) and the input forces that create it (blue arrows).

Figure 2.13: Linear extension created in a C3 type fold with parallel guiding action of the extreme
ends of the backbone.

actuated as the center panels move together causing the two extreme points of the backbone to

move together as shown in Figure 2.10. Like Subset C1, this motion is actuated by a moment

about the backbone applied to the input panels. Depending on the panels selected as input the fold

pattern will generate motion as shown in Figure 2.10 or, by actuating a set of panels at one of the

extreme ends of the backbone, an extension type motion as shown in Figure 2.11. These motions

are back-drivable.

Subset C3

This subset is not commonly represented in origami designs but consists of crease patterns

where the the two coupled spherical centers are oriented in the same direction (see Figure 2.8(c)).
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(a) (b)

Figure 2.14: Crease patterns for LC1 (a) and LC2 (b) subsets of the N-Long Linear Chain class
with fold pattern backbones indicated (dashed lines) and input forces shown (blue arrows).

Actuation of the fold pattern is accomplished by applying a moment about the center segment of

the backbone, creating a rotation of the end segments of the backbone as shown in Figure 2.12.

This fold pattern is back-driven by actuating a set of panels at one of the end

segments of the backbone. An interesting feature of this subset is that by actuating the extreme

panels in the mechanism a simple parallel guiding mechanism is created as the extreme ends of the

backbone remain parallel throughout the entire motion (see Figure 2.13).

2.4.3 N-long Linear Chain

The next level in mechanism complexity is the N-Long Linear Chain class. For this class

there are two subsets: Linear (LC1) or Kinked (LC2). Crease patterns from each subset are given

in Figure 2.14. The first subset consists of fold patterns that have a linear backbone while the

other has a kinked backbone that zig-zags across a linear “pseudo-backbone”. The specific move-

ment characteristics can vary depending on the types of folds branching from the backbone and

their orientations relative to each other, however a few general statements can be made about the

movements of this class as discussed below.
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Figure 2.15: Extension/contraction motion of Subset LC1 (red arrows) created by applying a mo-
ment about the backbone.

Subset LC1 - Linear

The linear subset is comprised of fold patterns containing a linear backbone extending from

one end of the chain to the other. A typical crease pattern for this subset is given in Figure 2.14(a).

The actuation of the chain is accomplished by applying forces on opposing panels in the chain

such that a moment about the backbone is created. This input force triggers either an extension

or contraction of the chain along the chain’s backbone depending on the direction of the applied

moment. This output motion is demonstrated in Figure 2.15. While this motion is back-drivable

it can become impractical as the extension of the chain can often be several times longer than the

movement required at the input to create it, thus requiring a greater stroke length or a larger number

of actuators to back-drive.

When actuating models from this subset the direction of the branching folds from the chain

and their angle relative to the backbone will dictate the maximum distance of the extension along

the backbone. As the angle between the branching folds and the backbone decreases the distance of

the extension goes to a minimum while the closer the angle comes to 90◦ the greater the extension.
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Figure 2.16: A fold pattern belonging to Subset LC2 showing the kinked backbone (solid red),
linear pseudo-backbone (dashed-red), and extension/contraction output motion (red arrows).

At an angle of 90◦ there is no extension of the chain – just a hinge-like folding of the chain about

the backbone.

While fold patterns in this subset are kinematically 1 DOF systems, when actuating mod-

els folded from paper (or other low-stiffness materials) not all the panels in the fold pattern will

be involved in the output motion. As the compliance of the material being used to create the

mechanism increases the extension motion of the chain will only move forward along the chain

originating from the point of actuation. This means that if the actuation force is applied near the

middle of the chain, folds and panels before this point will not be actuated as a result of this force.

Therefore, to ensure actuation of all panels in such models, the input forces should be applied at

the root of the chain.

Subset LC2 - Kinked

The kinked subset of the N-Long Linear Chain class is similar to the linear subset in that

both subsets exhibit an extension or contraction along a linear backbone as shown in Figure 2.16. In

the case of the kinked subset this extension occurs along an imaginary “pseudo-backbone” shown

in the crease pattern given in Figure 2.14(b). This motion is initiated by a moment applied about
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Figure 2.17: Crease patterns belonging to Subsets SL1 (a) and SL2 (b) showing the direction of
the center loop’s rotation.

the backbone. The kinked subset differs from Subset LC1 because, due to the kinked nature of

the backbone, the extension of the chain will always occur in both directions along the pseudo-

backbone from the point of application of the input forces. Also, depending on the compliance

of the panels of the material, the fold pattern can exhibit a curving of the chain. This motion is

achieved by warping the panels of the fold along the length of the chain and thus violates rigid-

foldability constraints. However, in some applications this secondary motion could be desirable.

For instance, in the origami model “Scary Snake” [15] the curving of the chain is used to create

a chomping type of motion. Another example would be “Randlett’s Bird” [13] which uses the

curving of the chain to cause the wings of the bird to flap. The curvature created in the chain is

increased by decreasing the distance between kinks in the backbone of the chain. Like Subset LC1

this subset may be impractical to back-drive because the output displacement is much greater than

the the input.

2.4.4 Single Loop Network

Up to this point, the fold patterns discussed have all been open chains. However, some

discussion of a closed network should be included in our investigation of fundamental motions

in origami designs. A network is defined as a set of linked spherical mechanisms that create a

closed loop such that there is no distinct beginning or end. In origami designs there are networks

of great complexity with very unique movements. However, a fundamental network to consider
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Figure 2.18: A hexagonal flasher belonging to Subset SL1 showing in-plane rotation of the central
loop and radial expansion motions of the flasher as well as the direction and location of the forces
that create them (blue arrows).

is that of the Single Loop outlined by Bowen et al. [8] and discussed earlier in this chapter. This

class contains two subsets - SL1 and SL2. Generic crease patterns typical of each subset are shown

in Figure 2.17. Origami models in two subsets for this class are distinguished from each other by

the direction the center loop rotates once the model is actuated: either in the ground plane (Subset

SL1) or out-of-plane (Subset SL2) as demonstrated in the figure. While these crease patterns show

a square center loop there is no requirement that the loop be square.

Subset SL1

This subset of the Single Loop class generally consists of the various origami flasher de-

signs. While many flashers are not rigidly foldable their crease patterns can be easily altered to

allow for rigid-foldability constraints. A general crease pattern belonging to the SL1 subset is given

in Figure 2.17(a), which also shows the characteristic in-plane rotation of the center loop. The spe-

cific motion of fold patterns belonging to Subset SL1 as well as the actuation to create it can be

rather complicated. Figure 2.18 shows three stages in the motion of a hexagonal flasher starting at

a fully stowed position and moving to a fully deployed (flat) state. The motion is created as forces

are applied to opposing sides of the flasher (highlighted in blue in the figure). As these forces are

applied the fold pattern will unfold and expand radially until finally reaching the final flat state.

Notice also how the inner loop rotates in the ground plane as the fold pattern is actuated. In some
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Figure 2.19: Output motion (red arrow) of Subset SL2 showing the out-of-plane rotation of the
center loop (outlined in red).

applications applying actuation forces to the outer edges could be undesirable or infeasible. In this

case, another possible actuation technique could be to rotate the center causing radial expansion

due to centrifugal force. This second actuation technique may present a new set of limitations as a

mechanism could require a prohibitively high force to create the rotation of the center loop. Fold

patterns belonging to this subset have multiple DOF’s and are therefore not back-drivable.

Subset SL2. Origami fold patterns belonging to this subset typically have crease patterns

similar to Figure 2.17(b) and exhibit a hinge-like rotation of the center loop out of the ground

plane (as shown in Figure 2.19). This motion is created by applying a moment about the hinge of

rotation. The location of this hinge is determined by the folds branching off from the loop. For

instance, considering the crease pattern from Figure 2.17(b), either the top or bottom of the square

loop could be a potential hinge because none of the branch-offs intersect the space directly above

or below those fold lines. The hinges will always lie on one of the edges of the center loop. Like

Subset SL1, this subset is not back-drivable.
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2.5 Results

From the 140 models analyzed in this study, 11 distinct types of motion were identified

and defined. Subsets inside an existing classification framework were created. This extension of

the classification scheme first proposed by Bowen et al. [8] allows for increased understanding of

the network of spherical mechanisms causing the motion and the types of motions exhibited by

origami models themselves. Table 2.1 gives a summary of these findings.

2.6 Conclusion

This chapter presented the results of an in-depth study of kinematic action origami models

and defined fundamental motions. The information provided will serve to create a better under-

standing of the fundamentals of actuating origami-inspired mechanisms. This is an important step

in advancing origami-compatible actuation technology as well as in the development of complex,

fully actuated, origami-inspired mechanisms.

While this chapter has established a basic understanding of some fundamental motions in

origami models and how to actuate them, further study is required to establish a more rigorous

understanding of their kinematics. Such studies may involve investigating the mechanical advan-

tage, energy storage, or other performance characteristics of each of the classes. Further study

could also explore the characteristics of more complex origami models including how the subsets

discussed here combine their motions in these more complicated designs.

As kinematic rigor is applied to defining and predicting the movements of origami models,

the mechanisms that they inspire will be able to grow in complexity and specialization. Customized

origami-compatible actuation systems will begin to be developed to create fully actuated origami-

based mechanisms. As a result origami inspired mechanisms will be able to find more wide-spread

application in solving challenging and otherwise impossible engineering problems.
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Table 2.1: Summary of characteristic motions and actuation inputs for each subset.
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CHAPTER 3. CONSIDERING MECHANICAL ADVANTAGE IN THE DESIGN OF
ORIGAMI-BASED MECHANISMS

3.1 Introduction

Origami-based mechanisms offer the potential for unique solutions to engineering prob-

lems. As increased rigor is brought to the engineering study of origami, the number of possi-

ble applications of these mechanisms promises to grow. Already origami-based designs can be

seen in the medical field [2, 17], aerospace [4], aircraft construction [3, 18], batteries [19], and

robotics [20–22]. While the use of origami-based mechanisms can be attractive to designers, the

design process is non-trivial and an understanding of key design parameters will assist in fully

realizing the benefits of origami-based mechanisms. This is particularly important when the mech-

anism being designed is required to perform a mechanical task and it is essential to meet required

performance characteristics such as force-deflection behavior and mechanical output.

The study of mechanical advantage – the ratio of mechanical force output to driving input

– can yield useful insight into the behavior of a mechanism. Mechanisms with greater mechanical

advantage allow a greater output force to be achieved from a given input. The study of mechan-

ical advantage can also give insight into relative velocities as well as displacements between the

output and input of a mechanism. For some applications a low mechanical advantage may be

desirable, in order to increase the output to input displacement ratio (geometric advantage [23]).

Increasing the geometric advantage of a mechanism is particularly useful when looking to de-

velop actuators/mechanisms with greater stroke. Since mechanical advantage is so closely tied to

force outputs, actuation, and displacements it can be helpful when seeking to better understand the

parameters controlling the performance of a mechanism.

The objective of this chapter is to demonstrate the effect of design decisions on the perfor-

mance of origami-based mechanisms. This is done by developing a mechanical advantage model

and exploring the effects of key parameters within the model as well as how they affect the funda-
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Figure 3.1: Origami vertex (shown in grey) with an equivalent rigid-body spherical mechanism
and the axes of its revolute joints (shown in blue).

mental design decisions of surrogate hinge selection, actuation input, and fold pattern modification.

Each parameter is studied within the scope of the model, then their effect on the design of origami-

based mechanisms is discussed. Included in this final discussion are practical considerations to be

made during the design process relating to each key parameter.

3.2 Background

Origami has existed as an art form for thousands of years and origami artists have developed

a vast number of models with various levels of complexity. However, when seeking inspiration for

mechanisms a specific subset of origami – kinematic action origami – is particularly attractive as

it is characterized by models that exhibit motions in their folded state that can be predicted and

analyzed using conventional kinematics.

Kinematic action origami models can be modeled as spherical mechanisms [9–12, 24]

where each vertex is represented as a spherical center, the panels as rigid links, and fold lines

as revolute joints. An example of this is shown in Figure 3.1, where the origami vertex is shown

(in grey) with an equivalent rigid-body spherical mechanism super-imposed (shown in blue). This

kinematic representation of origami models is made possible due to rigid foldability assumptions,

which state that all motion in the origami model comes from folding localized about crease lines
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(such that there is no deflection in the panels). Origami models for which this assumption is ap-

propriate are described as “rigidly foldable”.

Using this representation of origami models has allowed work to be done studying and fur-

ther classifying models within this set of origami. Bowen et al. [8] created a classification system

that grouped kinematic action origami models based on the spatial relationships between the ver-

tices of their associated fold pattern. From this classification scheme the fundamental movements

of origami models were studied and classified into subsets exhibiting similar types of motion [1].

To advance the work being done to understand and predict the behaviors of origami-based

mechanisms, this chapter will provide models and methods to evaluate the effects of design choices

on their performance – allowing designers to ensure that the final product will meet required func-

tional characteristics.

3.3 Mechanical Advantage Model

This section presents models for mechanical advantage in origami-based mechanisms con-

sisting of degree-4 vertices. Discussion of the model will first focus on a single origami vertex

followed by modelling origami patterns with N linearly-linked vertices.

3.3.1 Modelling a Single Origami Vertex

A general degree-4 vertex is shown in Figure 3.2. The sector angles (spherical link lengths)

are indicated by α while the dihedral angles (angles between panels) are indicated by θ . Note that

θn gives the angle between panels αn and αn+1. An assumption inherent in the following discussion

is that the fold pattern being considered is rigidly foldable. Further, in order to maintain a 1 DOF

system, only fold assignments that create fully coupled motion (all panels move at the same time)

are considered. For example, the vertex shown in Figure 3.2 has the fold assignment of three

valleys and one mountain - where the mountain fold is θ3. While there are other fold assignments

that meet rigid foldabilty requirements, they rely on sequential folding - thus making the vertex a 2

DOF system. Lastly, the vertices considered in this model have opposing fold assignment between

θ1 and θ3 (i.e. if the θ1 fold line is a valley then the θ3 fold line is a mountain).
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(a) (b)

Figure 3.2: General degree-4 vertex in flat (a) and folded (b) states with sector and dihedral angles
labeled with α and θ respectively. Fold assignments are indicated in (a) with dashed red (valley)
and solid black (mountain).

The mechanical advantage for a rigidly foldable, degree-4 vertex with fully coupled motion

is:

MA =
dγ1

dγ4
(3.1)

where γ is the exterior dihedral angle of panels αn and αn+1 such that

γi = π −θi (3.2)

Lang [25] showed that the mechanical advantage can be written explicitly (in terms of the driving

angle γ1), as:

MA =
µ2 tan2( γ1

2 )+1
µ[tan2( γ1

2 )+1]
(3.3)

where µ was defined as

µ =
sin(1

2(α3 +α2))

sin(1
2(α3 −α2))

(3.4)

Using Equation 3.2, one can rewrite Equation 3.3 in terms of θ1
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MA =
µ2 cot2(θ1

2 )+1

µ[cot2(θ1
2 )+1]

(3.5)

which gives the mechanical advantage of the origami vertex as a function of the interior dihedral

angle, θ1.

In addition to rigid-foldability, Equations 3.4 and 3.5 assume that the origami vertex is flat-

foldable. For a degree-4 vertex, flat-foldability requires that the sector angles for each panel satisfy

the following equation:

α1 +α3 = α2 +α4 = π (3.6)

While there exist closed-form equations for the behavior of rigid, non-flat-foldable, degree-4 ver-

tices they are significantly more complex [26].

Using Equations 3.4 and 3.5, the mechanical advantage of a rigid, flat-foldable, degree-4

vertex can be calculated. However, these equations are unable to account for any stiffness in the

hinges of the mechanism. When compliant hinges are introduced into a mechanism the mechanical

advantage profiles will be altered [27]. This is due to the fact that each compliant segment acts

like a torsional spring resisting the movement of the mechanism, effectively lowering the overall

mechanical advantage.

Salamon et al. [27] showed that the mechanical advantage of a mechanism with compliant

hinges (MAc) is of the form:

MAc = MAr

(
1− fc

fin

)
(3.7)

where MAr is the mechanical advantage of an equivalent rigid-body mechanism, fc is the total

force required to deflect all the compliant segments of the mechanism, and fin is the input force.

The solution for mechanical advantage of an origami vertex can be found, using virtual work

calculations, to be

29



020406080100120140160180
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Mechanical Advantage for a degree−4 Vertex

M
.A

.

 

 

Rigid Mechanism Mechanical Advantage
Compliant Mechanism Mechanical Advantage

θ
1

Figure 3.3: MAr vs. MAc for a degree-4 vertex with sector angles α1 =
2π

3 , α2 =
2π

3 , α3 =
π

3 , and
α4 =

π

3 . The MAc curve is calculated with Min =0.113 Nm and k =0.178 Nm/radian.

MAc = MAr −
MAr

Min

[
k1(θ1o −θ1)+ k3(θ3o −θ3)

dθ3

dθ1

]
−MAr

Min

[
k2(θ2o −θ2)

dθ2

dθ1
+ k4(θ4o −θ4)

dθ4

dθ1

] (3.8)

which can be simplified to the form of Equation 3.7

MAc = MAr

(
1− Mc

Min

)
(3.9)

where

Mc =
4

∑
i=1

ki(θio −θi)
dθi

dθ1
(3.10)

Equations 3.9 and 3.10, used with Equations 3.4 and 3.5, can be used to model the mechanical

advantage of a rigid, flat-foldable, origami-based mechanism consisting of a single degree-4 vertex

with compliant hinges.

Figure 3.3 demonstrates the difference in the mechanical advantage of a compliant degree-

4 vertex and its rigid-body equivalent. Here α1 = 2π

3 , α2 = 2π

3 , α3 = π

3 , and α4 = π

3 . Further,

all hinges are modelled with identical torsional stiffness of k = 0.178 Nm/radian and the motion
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(a) (b)

Figure 3.4: Example of a linear-linked origami fold pattern shown both flat (a) and partially folded
(b). Fold assignments are indicated in (a) with dashed red (valley) and solid black (mountain).

is driven by an input moment (Min) of 0.113 Nm. The origami vertex begins in a flat position

(θ1 = 180◦) and moves until fully folded (θ1 = 0◦). As can be seen from Figure 3.3, including

considerations for the compliant hinges decreases the mechanical advantage of the mechanism.

Further exploration of the parameters affecting the actuation, force-deflection behavior, and me-

chanical advantage of origami-based mechanisms is given in Section 3.3.3.

3.3.2 N Linearly-Linked Vertices

Thus far, discussion of the model has focused on a single degree-4 vertex. In this sec-

tion, equations for the mechanical advantage of origami-based mechanisms with N linearly-linked,

degree-4 vertices are developed. Here linearly-linked means that each vertex is linked to neigh-

boring vertices in the fold pattern such that the fold line associated with θ3 of a given vertex is

coupled directly to the input (θ1) of the adjacent vertex and the two fold lines are collinear. Ad-

ditionally, each vertex in the fold pattern has alternating fold assignments such that one vertex

has three mountain folds and one valley, while the subsequent vertex has three valleys and one

mountain. Finally, the constraint of fully coupled motion imposed in the previous section is again

enforced - so that fold assignments that create sequential folding are not considered (i.e. the chain

is 1 DOF).

An example of linearly-linked vertices with alternating fold assignments is given in Fig-

ure 3.4. It should be noted that there are numerous ways of linking origami vertices into a chain-

type fold pattern (each with their own mechanical advantage behaviors); however, in order to better
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demonstrate the fundamental parameters affecting the performance of origami-based mechanisms

the simplest, most symmetric scenario was chosen.

The mechanical advantage of a linearly-linked chain of origami vertices is

MA =
dθin

dθout
(3.11)

where θin is the input of the first vertex while θout is the output (θ4) of the last vertex in the chain.

A connection between these two angles is established using the relation of θ1 and θ3 in a degree-4,

flat folding, rigidly foldable, origami vertex given by Hull [28] which is:

θ1 =−θ3 (3.12)

Two degree-4 vertices that are linearly-linked will be coupled such that the input angle of the

second vertex (θ12) is equal to θ3 of the first vertex (θ31). Given Equation 3.12 and this coupling of

vertices in the chain, one can see that θ11 = -θ12 . Thus for N linearly-linked vertices the relationship

between θ11 and θ1n is:

θ11 = (−1)n−1
θ1n (3.13)

where n is the number of vertices in the fold pattern. With this relationship established, the rigid-

body equivalent mechanical advantage is found using:

MA =
dθ11

dθ4n

=
[
(−1)n−1] dθ1n

dθ4n

(3.14)

which becomes:

MA =
[
(−1)n−1] µn

2 cot2(θ1n
2 )+1

µn[cot2(θ1n
2 )+1]

(3.15)

where µn is calculated with Equation 3.4 using the sector angles associated with the nth vertex of

the mechanism.

Equation 3.15 gives an interesting insight into the mechanical advantage of a chain of

linearly-linked, flat-foldable, degree-4, vertices. While not immediately obvious, it can be seen
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Figure 3.5: MAr vs. MAc for a mechanism consisting of two, linearly-linked, degree-4 vertices
with sector angles α1 = 2π

3 , α2 = 2π

3 , α3 = π

3 , and α4 = π

3 . The MAc curve is calculated with
Min = 0.113 Nm and k = 0.178 Nm/radian.

that the rigid-body equivalent mechanical advantage is entirely determined by the final vertex in

the chain. This is because, due to the contraints of linearly-linked chains defined earlier, the mag-

nitude of the mechanical advantage of the first to (n− 1)th vertices are constrained to be 1. This

means that the sector angles for these vertices can be modified as desired (as long as they remain

flat-foldable) to capture the desired motion without affecting the mechanical advantage. This gives

designers great freedom in creating mechanisms with desired motions without having to compro-

mise mechanical advantage. This is only true, however, for the rigid-body equivalent as the hinge

stiffnesses in each vertex will affect the overall mechanical advantage.

To include considerations for compliant hinges in the mechanism, Equation 3.15 must be

modified. Recalling the form of Equation 3.9, which gives the mechanical advantage for a single

vertex, the mechanical advantage of N linearly-linked vertices is:

MAc =
n−1

∏
j=1

[(
−1+

Mc j

Min

)][
MArn

(
1− Mcn

Min

)]
(3.16)

where
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Mc j =
4

∑
i=1

ki j(θio j −θi j)
dθi j

dθ1 j

(3.17)

Using Equations 3.16 and 3.17, the mechanical advantage for a system of N linearly-linked, degree-

4 vertices can be calculated. Figure 3.5 shows a mechanical advantage plot (both the rigid-body

equivalent and that for a mechanism with hinge stiffnesses of 0.178 Nm/radian) for a fold pattern

consisting of two, linearly-linked, degree-4 vertices driven by an input moment of 0.113 Nm. Both

vertices consist of sector angles given by: α1 =
2π

3 , α2 =
2π

3 , α3 =
π

3 , and α4 =
π

3 .

3.3.3 Key Parameters Affecting Mechanical Advantage

Recalling Equations 3.4, 3.5, 3.9, and 3.10, the parameters affecting mechanical advantage

are:

Min: input moment driving the motion of the mechanism

k: torsional stiffness of the hinge about the fold axis

α: sector angles of the panels

θio: initial position of the vertex panels

Since origami-based mechanisms are generally manufactured from a flat sheet, the value of θio for

many cases will be 180◦. Therefore, the remaining discussion will focus on the effects of the other

parameters listed: hinge stiffness, input actuation moment, and fold pattern sector angles.

Hinge Stiffness

When using compliant hinges in an origami-based design, each hinge can be modeled as a

torsional spring with an associated k-value. Modifying the hinges to change their torsional stiffness

can significantly affect on the mechanical advantage of the mechanism. This is demonstrated in

Figure 3.6, which shows several mechanical advantage profiles for the vertex already considered

(α1 =
2π

3 , α2 =
2π

3 , α3 =
π

3 , and α4 =
π

3 ) with input moment Min = 0.113 Nm.

An interesting phenomenon is shown in Figure 3.6 when k = 0.890 Nm/radian. The plot

shows that the mechanical advantage crosses the x-axis and becomes negative. This behavior can
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Figure 3.6: Effect of compliant hinge stiffness (k) on mechanical advantage of a degree-4 vertex
with Min = 0.113 Nm.

be explained by recalling Equation 3.9, which shows that the mechanical advantage is equal to the

rigid-body mechanical advantage multiplied by the quantity: (1−Mc/Min). If Mc is ever greater

than Min the result will be a negative value. This negative result indicates that the total moment

necessary to flex the compliant segments is greater than the input moment. In the plot shown

in Figure 3.6 for k = 0.890 Nm/radian the mechanical advantage crosses the x-axis at roughly

θ1 = 40◦, this means that in order to move beyond θ1 = 40◦ and achieve the desired range of

motion (ROM), the hinge stiffness would need to be decreased. In this way, calculation of the

mechanical advantage can be used to predict the hinge stiffness needed to achieve a certain ROM

with a given input force.

Input Actuation Moment

When designing a mechanism the actuation moment is often initially unknown. In such

cases it can be useful to predict the minimum actuation moment required for the mechanism to

achieve a given deflection. Again, recalling Equation 3.9, the minimum actuation moment can

be determined by setting Min equal to Mc for a desired deflection of θ1. Explicitly, for a single

degree-4 vertex being actuated to a given driving angle, θ1, the minimum input moment required

to achieve the motion is:
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Figure 3.7: Effect of input force (Min) on mechanical advantage of a degree-4 vertex where k =
0.890 Nm/radian.

Min = k1(θ1 −θ1o)+ k2(θ2 −θ2o)

[
µ(cot2(θ1

2 )+1)

µ2 cot2(θ1
2 )+1

]

−k3(θ3 −θ3o)+ k4(θ4 −θ4o)

[
µ(cot2(θ1

2 )+1)

µ2 cot2(θ1
2 )+1

] (3.18)

where the interior dihedral angles, θ2, θ3, and θ4 are found with the following relationships given

by Lang [25]:

θ2 = π −2tan−1
[

µ tan
(

π −θ1

2

)]
(3.19)

θ3 =−θ1 (3.20)

θ4 = θ2 (3.21)

and µ is found using Equation 3.4.

Figure 3.7 shows the effect of the input moment (Min) on the mechanical advantage of the

vertex considered in the previous plots with hinge stiffness of k = 0.890 Nm/radian. As can be seen

from Figure 3.7, a minimum input moment of Min = 0.22 Nm is required to obtain the full 180◦

ROM. However, the MA at the end of the ROM is shown to be 0 – meaning the mechanism could
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only achieve the motion if unloaded. For there to be any output from the mechanism the actuation

moment would need to be greater. This is an interesting result of introducing compliant hinges

into a mechanism – the possibility of having a scenario where all the actuation input is absorbed

into the strain energy of the deflecting hinges, leaving nothing to achieve any mechanical task. The

ability to predict the minimum actuation moment allows designers to discover if the mechanism

being developed could even be actuated given the abilities of the available actuators.

In applications where the magnitude of the driving moment is large in relation to the stiff-

ness of the compliant hinges (at least 10n times greater – where n is the number of vertices in the

fold pattern) the mechanical advantage of the compliant mechanism will closely approximate that

of its rigid-body equivalent. This can be seen from Figure 3.7 as the mechanical advantage plot

of the origami vertex associated with an input moment of 9.04 Nm (roughly 10 times greater than

the k-value of 0.890) closely approximates the equivalent rigid-body mechanical advantage plot

(MAr).

Finally, when dealing with large chains of linearly-linked vertices, it may become necessary

to use multiple inputs. The position of these inputs in the chain can be found using the calculations

for the minimum actuation moment discussed earlier. This is done by finding the mechanical

advantage of a chain of linked vertices. As the number of vertices in the chain increases, so will

the value for Mc. When the value for Mc becomes greater than or equal to that for Min (after the

addition of the ith vertex), the chain will no longer be able to fully actuate. If modification of the

hinges or actuation input is not desired then a second actuation input can be added at the input to

the ith vertex.

Fold Pattern Sector Angles

Modifications of a vertex’s sector angles can have a significant effect on its mechanical ad-

vantage. However, modifying the sector angles of a vertex can also affect its motion. Additionally,

when modifying the fold angles one must be careful that flat and rigid foldability requirements are

still met. Figure 3.8 shows the effect of sector angle modification on the mechanical advantage of

a vertex with compliant hinge stiffnesses k = 0.222 Nm/radian and an input moment Min = 0.113

Nm. The mechanical advantage plot is shown as α2 ranges from 11π

18 (110◦) to 13π

18 (130◦) with a
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Figure 3.8: Effect of the sector angles (α) in a degree-4 origami vertex on mechanical advantage.
Here α2 is modified from its nominal value of 2π

3 (red). Hinge stiffness and actuation input are:
0.222 Nm/radian and 0.113 Nm respectively.

nominal value (shown in red) of 2π

3 (120◦). As the sector angles in a degree-4 vertex approach π

2

the mechanical advantage increases.

In Figure 3.8, only α2 was modified (and correspondingly α4 to maintain the relationship

given in Equation 3.6). If all the sector angles are modified simultaneously then the mechanical

advantage may be more affected by a given change in the sector angles.

3.4 Key Parameters’ Effect on Origami-based Design

With a basic understanding of the key parameters’ effect on the mechanical advantage and

force-deflection behavior of origami-based mechanisms established, their role in the design of

origami-based mechanisms can be explored.

3.4.1 Surrogate Hinges

Origami-based mechanisms derive their motion from the folding of rigid panels about

hinges (either revolute or compliant) which act as surrogates for paper folds, and selecting hinges

can be one of the most critical design decisions when developing origami-based mechanisms. The

hinges being used largely determine the achievable motion of the mechanism and the required ac-

tuation force by their stiffness and angular ROM. For this reason it is desirable to use hinges that

have low stiffness and large ROM.
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Additionally, when using compliant hinges the mechanisms can be further affected by the

introduction of secondary parasitic motions. Research has been done on the design of surrogate

hinges to improve their ability to model the motion of creased hinges and minimize the introduction

of parasitic motions [29–31]. Secondary motions can be reduced by knowing the loading condi-

tions at a fold line and selecting a compliant hinge that will resist the secondary motions associated

with those loading conditions. In this way the hinges need not resist all types of secondary motions

but only those that will be present under normal conditions. For instance, if compressive and bend-

ing loads are known to exist at a hinge then compliant hinge geometries that can resist compression

without buckling while still allowing bending should be considered. More information on which

types of loads a given compliant hinge is able to resist is given by Delimont et al. [30].

3.4.2 Actuation Inputs

From the discussion of the mechanical advantage of origami-based mechanisms it is clear

that actuation inputs have an effect on the final performance. In many cases the limitations of

the available actuation technology can determine the design of the mechanisms. For this reason

the achievable actuation force, as well as any limitations on stroke length, should be considered

early in the design. If the actuation input to an origami-based mechanism is low the result could

be reduced ROM or inability to perform mechanical tasks (even cases where there is no force

output). Any of these problems would result in a mechanism being unable to function properly.

For this reason it is suggested that designers work to find a balance between design parameters,

particularly hinge stiffness, such that desired ROM and outputs are achieved without requiring

prohibitively high actuation inputs. If the required actuation input becomes too large a possible

solution could be the use of multiple inputs. The location of each input can be determined using

the Equations 3.18- 3.21 as discussed in Section 3.3.3.

3.4.3 Fold Pattern Sector Angles

The kinematics of a given origami-based mechanism are largely determined by the fold

pattern being used. If a specific motion is required from a mechanism this can only be achieved

through modification of the sector angles. When dealing with mechanisms consisting of a single
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vertex, once this motion has been achieved, only small modifications can be made to the sector

angles to fine-tune the mechanical advantage of the mechanism. However, if the mechanism is

based on a fold pattern consisting of linearly-linked, flat-foldable, degree-4 vertices designers have

much greater freedom to modify the sector angles of the fold pattern. As a result, designers are

better able to achieve the desired output motion and kinematics without compromising mechanical

advantage and vice versa.

3.5 Conclusion

A model for calculating mechanical advantage in a rigid, flat-foldable origami-based mech-

anism consisting of N linearly-linked, degree-4 vertices was presented and key parameters affect-

ing the force-deflection behavior and mechanical advantage were discussed. The results enable

designers to predict the required actuation force and/or maximum ROM of a fold pattern as well

as gain familiarity with the effect of fundamental design decisions on origami-based mechanisms.

In the development of actuated origami-based mechanisms it is important to have a good

understanding of the parameters controlling their force-deflection behavior, motion, and mechan-

ical advantage. The mechanical advantage model and parameters developed in this chapter will

allow designers to gain this critical understanding and better see the effect of certain design de-

cisions on the functionality and actuation of the final mechanism. This may enable designs with

more complexity and functionality.

In conventional design problems, years of experience and study have created guidelines

and tools that designers can use to accurately model and analyze the behavior of their design.

The topics discussed in this chapter are a step towards such an understanding of origami-based

mechanisms.

As designers of origami-based mechanisms become aware of more design considerations

specific to origami-based design, their ability to fully realize the potential benefits of origami-based

mechanisms will increase.
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CHAPTER 4. CONSIDERATIONS FOR THE SELECTION OF SURROGATE HINGES
IN ORIGAMI-BASED MECHANISMS

4.1 Introduction

The use of origami-based mechanisms as solutions to engineering problems has become

an area of great interest for designers. Origami-based mechanisms have unique motions [1], allow

for simpler manufacturing methods [32–34], are highly storable [2, 35], and have the ability to be

reconfigurable [7, 36, 37]. With this unique set of characteristics, origami-based mechanisms are

able to offer solutions to engineering challenges in a wide variety of applications. As designers

develop greater familiarity with the effective design of origami-based mechanisms the applications

of such mechanisms will become even more widespread.

While the use of origami-based mechanisms in engineering applications is attractive, the

design process can be difficult and without well-established guidelines designers may find it diffi-

cult to fully capture their benefits. The previous chapter presented a detailed study of the parame-

ters affecting the performance of origami-based mechanisms. From this study three parameters –

actuation input, fold pattern sector angles, and surrogate hinge stiffness – were shown to have sig-

nificant effect on the force-deflection and mechanical performance of origami-based mechanisms.

Of these three parameters, surrogate hinge stiffness can have a significant effect on performance;

due to the fact that the overall precision, range of motion (ROM), and mechanical advantage of the

mechanism being developed are largely decided by the hinges being used. This chapter will dis-

cuss practical considerations relating to the selection of surrogate hinges for use in origami-based

mechanisms.

The objective of this chapter is to give designers a better understanding of considerations to

be made in selecting surrogate hinges. The considerations presented here will discuss minimizing

the hinge imprint, reducing undesirable motions (such as parasitic motion and reduced ROM), and

creating hinges in metals. By giving designers greater insight into a critical parameter control-
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ling the performance of origami-based mechanisms, the design of more precise and predictable

mechanisms will be facilitated. In turn, designers will be better able to capture the benefits of

origami-based mechanisms in applications beyond current limitations and expand to new areas in

engineering.

4.2 Background

When looking to develop origami-based mechanism a specific subset of origami – kine-

matic action origami – can provide useful inspiration, as models belonging to this subset exhibit

motions that can be analyzed through conventional kinematics.

Kinematic action origami models are modeled as spherical mechanisms [9–12, 24] with

each vertex represented as a spherical center, surrounding panels as rigid links, and fold lines as

revolute joints. To account for the compliant hinges commonly used in origami-based mechanisms

the revolute hinges can be assumed to have torsional stiffness, k, which is determined by the

geometry of the compliant segments in the hinge.

The design of surrogate hinges can be complex and, as discussed earlier, can have a strong

effect on the performance of the mechanism. Compliant hinges allow for easier manufacture,

reduced assembly, and remove the need for maintenance – which make them desirable for use

in origami-based mechanisms – but they can also introduce parasitic motions and reduce overall

ROM if not designed correctly. There has been work done to refine the design of these compliant

hinges such that these undesirable behaviors are minimized [29–31].

For applications where the surrogate hinges are to be created in metal there are somewhat

fewer examples and studies to reference. However, Ferrell et al. [38] developed surrogate hinges

where joints with 3D geometries were developed through sheet metal forming operations. Addi-

tionally, work has been done creating origami structures in metal [39]. These preliminary studies

represent a starting point for designers seeking to use metal surrogate hinges however there is still

much more work to be done to effectively use metals in origami-based mechanisms.

This chapter will further develop the study of surrogate hinges, including those in metals,

thereby allowing designers to select hinges that will ensure required performance and minimize

undesired behaviors.
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4.3 Practical Considerations Relating to Surrogate Hinge Selection

For origami-based mechanisms, designers must use hinges (either compliant hinges or rev-

olute) to act as surrogates for the creases in paper models. Work has been done to find ways of

creating hinges in non-paper materials that will approximate some of the behaviors of paper crease

hinges. In order to create such a hinge it is necessary to create a localized decrease in stiffness

about the fold axis such that the surrounding panels are significantly stiffer in comparison to the

“hinge” [38].

Several considerations should be made when selecting the type of surrogate hinge to be

used. This section will discuss several of these considerations and how each can affect the mecha-

nism.

4.3.1 Surrogate Hinge Imprint

When selecting a surrogate hinge to be used in an origami-based mechanism it is desirable

to minimize its overall imprint. The imprint of a hinge is defined to be its dimension orthogonal

to the fold axis. Hinges with larger imprints will limit the compactibility of the mechanism. The

ideal hinge will be elongated along the fold axis with little to no imprint orthogonal to it (much

like a crease in paper models).

With compliant surrogate hinges, the imprint on the mechanism can be reduced by selecting

the appropriate type of flexure. For instance, flexures that create deflection through torsion rather

than bending will have a smaller imprint. This is due to the fact that torsional flexures are oriented

along the length of a fold axis while bending flexures are oriented orthogonal to it. Thus any

increase in length (to increase compliance) of a torsional member will not increase the width of

the hinge. For this reason it is more desirable to select compliant surrogate hinges with torsional

members.

4.3.2 Required ROM of a Hinge

Depending on the motion of the mechanism, different amounts of angular displacement

will be required of each hinge. Generally, in origami models the max ROM for a given hinge will

be 180◦. Not all sections of a fold pattern, however, may require this full range of motion. For
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the section of the fold pattern being considered a hinge must be selected that will have the proper

ROM. It should be noted that not many surrogate hinges can create a full 180◦ rotation so this

should only be required of a given hinge if absolutely necessary. Also, hinges with higher ROM’s

may be more likely to introduce parasitic motion into the final mechanism.

4.3.3 Increasing the Precision of a Hinge

The precision required from a hinge is determined by the function of the mechanism. If

extremely high precision is required then each surrogate hinge must be made to minimize parasitic

motion and maintain a stable axis of rotation. A revolute joint is an example of a hinge that

perfectly resists all parasitic motion and has a stable axis of rotation. Most compliant surrogate

hinges, while able to approximate this behavior through a small displacement, will eventually shift

their axis of rotation as their geometry deforms. Some will not only shift their axis of rotation

but will allow parasitic motions to be introduced into the mechanism. To reduce these secondary

motions the compliant hinge stiffness can be increased. However, this comes at the cost of greater

actuation inputs to the mechanism. For applications where high precision must be maintained

through a large ROM only the revolute joint can be used, but with smaller displacements other

surrogate hinges may be appropriate.

4.3.4 Types of Loads on the Hinges

Ideally a hinge will allow only bending about the fold axis and resist all other motions.

As this ideal won’t be realized in all surrogate hinges it is necessary to be aware of which loads

a given hinge must resist in order for the motion to propagate as needed through the mechanism.

Generally the loads along hinges can be predicted for a given mechanism. Once a designer is aware

of the loads (tensile, compressive, shear, etc.) at a given hinge they can decide which ones must be

resisted and select an appropriate surrogate hinge. For instance, if compressive and bending loads

are known to exist at a hinge then surrogate hinges that can resist compression without buckling

while still allowing bending should be considered.
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4.4 Selection of Surrogate Hinges in Metals

For applications where the mechanism will be exposed to high temperatures, structural

loads, or corrosive environments the polymers commonly used in the creation of compliant hinges

will not be appropriate. In such cases the material used to fabricate the mechanism will most

likely be a metal. Using metal in the design of origami-based mechanisms allows the mechanism

to be used in more demanding applications. However, the design of compliant hinges with large

deflections in metals can be a challenge - especially hinges that are at the same time 2D and have a

reduced imprint (so as to lend themselves to use in origami-based mechanisms). This section will

discuss considerations that can be made in the development of such surrogate hinges.

4.4.1 Network Hinges

In order to decrease the overall length of the hinge, a network of flexures may be used [40].

By combining flexures in series and in parallel the stiffness of a hinge can be tailored to allow

a given deflection. The benefit of these networks is that the required length of any one flexure

is minimized; however, the imprint of the network hinge is greater than that of a single flexure.

Therefore designers must find a compromise between decreased flexure length and hinge imprint.

When analyzing the characteristics of a network hinge the network is modelled as a tesse-

lation of some unit compliant joint with some torsional stiffness (kθ ). The characteristics of the

network can then be calculated using the equations for springs in parallel and series. Often, as the

network hinge is created by tesselating the same compliant joint, the network can be modelled as a

system of equivalent springs combined in series and parallel. For this case the equivalent torsional

stiffness of the network (Kθ ) is

Kθ =
Pkθ

S
(4.1)

where:

kθ is the torsional stiffness of the unit compliant joint

P is the number of units combined in parallel

S is the number of units combined in series
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Coupled Network Hinges

SeriesParallel

Figure 4.1: Example orientations of network hinges connected in parallel and series. Rigid panels
are shown with hash marks and network hinges with solid fill.

While this approach of creating surrogate hinges in metal is effective, it changes the kine-

matics of the origami-based mechanism. This is due to the fact that the network hinge creates a

“distributed hinge”, causing a shift in the center of rotation as the hinge deflects. In applications

where it would be essential to maintain the kinematics of the origami model, the panels of the

mechanisms would have to be modified (lengthened/shortened/etc.) to account for this shift. Ad-

ditionally, network hinges that have too large of an imprint may introduce parasitic motions into

the final mechanism. This can be resolved by increasing the compliance of the unit joint being

tesselated (requiring fewer units and lowering the network’s imprint).

4.4.2 Systems of Network Hinges

Multiple network hinges can be coupled together to further increase the performance of the

metal surrogate hinge. Each individual network hinge is connected through a rigid segment to each

other (either in parallel or in series). Some possible ways of coupling network hinges in series and

parallel are demonstrated in Figure 4.1. Of these, one configuration, shown again in Figure 4.2,
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45˚

90˚

Figure 4.2: Stacked orientation of serially connected network hinges with overall hinge deflection
and individual network hinge deflection angles shown.

may be of particular interest to designers of origami-based mechanisms. This stacked orientation

creates a new undeflected position (with the panels laying on top of each other rather than adjacent)

as well as a hard-stop for the hinge. Further, it more closely approximates an origami paper crease

with a fixed axis of rotation.

The use of these systems of network hinges allows designers to further tailor the perfor-

mance of the surrogate hinge. For instance, connecting network hinges in series effectively lowers

the overall stiffness. This can be used by designers to achieve greater deflections (or a given de-

flection with lower stress in the individual network hinges as demonstrated in Figure 4.2).

4.5 Conclusions

In this chapter the selection of surrogate hinges for use in origami-based mechanisms was

explored. Several considerations and their affect on the hinge/mechanism were discussed. Ad-

ditionally, considerations for the development of surrogate hinges in metals were presented – al-

lowing designers to develop compliant hinges that will be appropriate in mechanisms for use in

demanding environments or with large applied loads.

The considerations discussed in the chapter will allow designers of origami-based mecha-

nisms to more effectively select surrogate hinges that will minimize parasitic motions, and ensure

that the required performance of the mechanism is met. This is important as the mechanisms’
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force-deflection behavior and mechanical advantage are greatly affected by the hinges being used.

Increased understanding of this key design parameter, as well as the others controlling the perfor-

mance of origami-based mechanisms will lead to the creation of origami-based mechanisms with

greater performance, capabilites, and application.
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CHAPTER 5. CONCLUSION

5.1 Conclusions

This thesis has presented designers of origami-based mechanisms with fundamental knowl-

edge of a developing area of engineering design. While there is great potential for these mecha-

nisms to provide valuable solutions to challenging engineering problems with their unique set of

characteristics, this potential is currently limited by lack of design tools, models, or experience

specific to origami-based design.

This work enumerated the fundamental motions in origami-based mechanisms - along with

required actuation inputs, developed a kinematic model of such mechanisms, and discussed key

considerations for the selection of surrogate hinges (including a discussion of the development

of these hinges in metals). The information presented herein will help in the proliferation and

sophistication of origami-based mechanisms.

While providing useful insight into the critical aspects of origami-based design (such as

motions, actuation requirements, and force-deflection behavior), this thesis demonstrated that the

kinematic analysis of origami-based mechanisms yields one main advantage: it allows for the

development of predictive models and tools that will give designers greater ability to control and

optimize the performance of the mechanism being developed (as shown in Chapter 3).

These predictive models allow for the exploration of key parameters controlling the mo-

tions and performance of origami-based mechanisms which can in turn be studied in detail. Fur-

ther, using the predictive models, these parameters can be ranked by their effect on origami-based

mechanisms, allowing designers to know just how critical a given aspect of the design may be in

achieving the required performance.
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5.2 Future Work

As has been stated, the work that was done in this thesis is but a preliminary effort to

developing a set of key parameters and guidelines for the the efficient design of origami-based

mechanisms. There are three areas in particular that would benefit from further work.

1. A more developed study of origami models and their motions – including more advanced

motions and how to combine the fundamental motions already considered to capture arbitrary

motions as required.

2. A further developed study of mechanical advantage including a study of origami tessela-

tions as well as non flat-foldable origami patterns and the parameters affecting force transfer

and motion propagation such origami fold patterns.

3. Lastly, a kinematic study of origami-based mechanisms with distributed hinges – in order

to better understand the effect of network hinges (as discussed in Chapter 4) on the kinematic

behavior of the mechanism and how to effectively maintain desired kinematics.
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