
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2013-07-10

Variable Fidelity Optimization with Hardware-in-
the-Loop for Flapping Flight
Michael Luke Duffield
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Duffield, Michael Luke, "Variable Fidelity Optimization with Hardware-in-the-Loop for Flapping Flight" (2013). All Theses and
Dissertations. 3731.
https://scholarsarchive.byu.edu/etd/3731

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3731&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3731&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F3731&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3731&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3731&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F3731&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3731?utm_source=scholarsarchive.byu.edu%2Fetd%2F3731&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Variable Fidelity Optimization with Hardware-in-the-Loop for Flapping Flight

M. Luke Duffield

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Christopher A. Mattson, Chair
Mark B. Colton

Scott L. Thomson

Department of Mechanical Engineering

Brigham Young University

July 2013

Copyright © 2013 M. Luke Duffield

All Rights Reserved



ABSTRACT

Variable Fidelity Optimization with Hardware-in-the-Loop for Flapping Flight

M. Luke Duffield
Department of Mechanical Engineering, BYU

Master of Science

Hardware-in-the-loop (HIL) modeling is a powerful way of modeling complicated systems.
However, some hardware is expensive to use in terms of time or mechanical wear. In cases like
these, optimizing using the hardware can be prohibitively expensive because of the number of calls
to the hardware that are needed. Variable fidelity optimization can help overcome these problems.
Variable fidelity optimization uses less expensive surrogates to optimize an expensive system while
calling it fewer times. The surrogates are usually created from performing a design of experiments
on the expensive model and fitting a surface to the results. However, some systems are too expen-
sive to create a surrogate from. One such case is that of a flapping flight model. In this thesis, a
technique for variable fidelity optimization of HIL has been created that optimizes a system while
calling it as few times as possible. This technique is referred to as an intelligent DOE. This in-
telligent DOE was tested using simple models of various dimension. It was then used to find a
flapping wing trajectory that maximizes lift. Through testing, the intelligent DOE was shown to be
able to optimize expensive systems with fewer calls than traditional variable fidelity optimization
would have needed. Savings as high as 97% were recorded. It was noted that as the number of
design variables increased, the intelligent DOE became more effective by comparison because the
number of calls needed by a traditional DOE based variable fidelity optimization increased faster
than linearly, where the number of hardware calls for the intelligent increased linearly.

Keywords: variable fidelity optimization, hardware-in-the-loop modeling, flapping flight
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NOMENCLATURE

α Scaling factor between physics and hardware models
αh Artificial objective scaling between hardware and physics models used to create

the hardware model
Cη Term that controls the shape of η(t)
f Wing flapping frequency
γ Shift within physics model space
γh Artificial shift within physics model space used to create the hardware model
H Hardware model
K Term that controls the shape of φ(t)
µh,b Best objective value measured in the hardware model
µp,i Physics model objective value at x∗p,i
η0 Constant offset in η

η(t) Wing pitch as a function of time
ηm Maximum wing pitch
∇H Gradient of the hardware model
∇P Gradient of the physics model
N Harmonic used in θ

P Physics model
φ(t) Wing sweep as a function of time
φm Maximum wing sweep
Φη Phase shift in η

θ0 Constant offset in theta
θm Maximum deviation
Φθ Phase shift in θ

θ(t) Wing deviation as a function of time
xh Coordinates of a point within the hardware model design space
x∗h Coordinates of the optimal point within the hardware model
xp Coordinates of a point within the physics model design space
x∗p Coordinates of the optimal point within the physics model
x∗p,i Initial optimal point in physics model space
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CHAPTER 1. INTRODUCTION

1.1 Literature Search

Hardware-in-the-loop (HIL) modeling is a powerful way of modeling complicated systems.

HIL means using physical hardware to represent a system rather than an analytical or physics-based

model. This has some advantages and disadvantages when compared to analytical modeling. One

advantage of HIL modeling is that it can avoid problems caused by inaccurate models. Com-

plicated phenomena may be difficult to model accurately, but they can act on a hardware model

similarly to how they would act on a real system. Another benefit of HIL modeling is manifest

when accurate models cannot be obtained because of time or other constraints. In cases like these,

a system can be modeled by a HIL model, which is treated as a black box [1] that returns perfor-

mance outputs given inputs.

HIL modeling is used extensively in a few fields. HIL models are frequently used to test

electrical components. Here, the rest of the system is usually simulated by computers so that the

electrical component can be tested quickly with real inputs and outputs. This tactic is common in

the testing of electronic control units (ECUs) for engines [1, 2]. This allows the ECU to be tested

using many different inputs to verify that it works properly under a wide variety of circumstances

[3]. Here, the hardware is considered to be inexpensive to call, which allows for this exhaustive

testing. HIL is also used in automotive crash tests [4, 5]. Here, the actual hardware (the vehicle)

is expensive, so large numbers of tests are not practical. VEhicle Hardware-In-the-Loop (VEHIL)

[4, 5] is used to study a vehicle’s responses to certain inputs leading up to a crash, frequently

without actually crashing the vehicle [6]. VEHIL is a type of HIL that monitors the outputs of

various components with simulated inputs.

Some researchers have used HIL in the study of flapping flight [7, 8]. Flapping flight is

difficult to model and creating an accurate analytical model would be too complicated and time

consuming [9] for the scope of the present research. However, HIL has some challenges when
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used in optimization. Sometimes, HIL models are too expensive to call exhaustively [10]. The

HIL system used by George et al. has a large, complex design space and sampling the whole

space with a central composite design of experiments could require over 32,000 calls [10]. While

this test would take a long time to complete, it would also wear the system out. In cases like

this, mechanical wear can contaminate the results of the test [11]. This makes the hardware too

expensive to use in a normal optimization algorithm. Instead, a less expensive model is needed for

optimization.

One potential solution to this problem is variable fidelity optimization (VFO), or variable

complexity optimization [12]. Some models are too expensive to use in traditional optimization

[13], and VFO can help optimize with less calls to the model. VFO attempts to find the solution

to a model using many calls to a less expensive surrogate model and a smaller number of calls

to the more expensive model [12, 14]. This minimizes the calls to the expensive model, saving

cost. Since the surrogate is usually a response surface fit to data obtained from sampling the

expensive model [10, 14, 15], it is not as accurate as the expensive model. Response surfaces

are used because they can be obtained quickly, then used in optimization [16]. The surrogate

is often a better representation of the expensive model in certain regions of interest around the

solution [12] than it is in other areas. Accuracy can be improved by shrinking the region of interest

or by increasing the number of points sampled [12]. Prior knowledge of the model can aid in

choosing a region of interest, thus reducing the total number of calls needed [12]. Haftka et al.

demonstrated this approach for a structural optimization problem [12]. The objective function in

this example was very expensive and the optimization needed to call it as few times as possible.

George et al. used a similar method to optimize the wing trajectory of a flapping wing [10]. The

expensive model was a HIL model of a flapping wing. A design of experiments (DOE) was used

to create a surrogate and determine a region of interest, then additional optimization was done

in the chosen region of interest. This approach is effective because it removes areas with poor

objective values [12]. While this optimization was much less expensive than traditional design

of experiment-based optimization using only the hardware, it still required over 2000 calls to the

expensive model [10]. In some cases, such as this one, a surrogate developed experimentally is

still considered too expensive [17].
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In this research, a physics-based model is used as a surrogate. Since it is based on physical

laws rather than experimental data, this surrogate is created without any calls to the expensive

model. Many analytical, physics-based models have been developed of flapping flight [11, 18–

23]. Analytical models almost never match the system being modeled exactly and since these

models were not developed to model the specific system being optimized, there is additional error.

However, a physics-based model is acted upon by many of the same physical phenomena acting

on the expensive hardware model, so a physics model can predict trends similar to those seen in

the hardware model.

1.2 Approach

In this section, an approach to variable fidelity, hardware-in-the-loop optimization that min-

imizes calls to the hardware is presented, which is referred to as the hardware model. The basis

of this approach is an intelligent DOE. For the purposes of this paper, an intelligent DOE is one

that is informed by physics. As such, the intent of this research is to create an intelligent DOE. An

intelligent DOE chooses points to test that are predicted to have better objectives than the previous

points. This requires something that can provide accurate information about the hardware without

calling it. A physics-based surrogate model can fill this role. The physics-based model predicts op-

timal solutions and gives information about how different design variables affect the performance

of the hardware. This information can be used to choose the next point or points for the DOE

to test. This way, the DOE does not waste time and hardware calls testing points for which the

objective is worse.

An unintelligent DOE-based optimization systematically or arbitrarily samples the space

all around a point, searching for the best objective value. This information is then used to choose

a starting point for the next iteration. The only points that are really desired, however, are those

for which the objective improves. Points for which the objective values are worse are of little

interest. Thus, the unintelligent DOE creates a surrogate with many points that will not be pursued

as solutions. This is a problem for hardware in the loop modeling, where these points still require

the expensive hardware to be called.

To avoid large numbers of hardware model calls, the surrogate model guiding the intelligent

DOE is a physics-based model. This surrogate model does not require any hardware calls to create.
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It can be a model made of a related system since building a model is often too time consuming

and complex. Since the physics model is meant for another system, it will not match the hardware

exactly. In fact, it may not match the hardware very well at all. Despite this, an appropriate model

will still be able to aid the DOE since it includes many of the same physical phenomena that are at

work on the hardware. Figure 1.1 illustrates the concept. Figure 1.1(a) is a top fuel dragster. Figure

1.1(b) is a scooter. Both have physical forces acting on them including gravity, air resistance, and

inertia. In both cases, engine power, the coefficient of friction of the tires, and vehicle weight affect

the performance of the system. All of the parameters discussed here are vastly different between

the dragster and the scooter. The dragster may have an engine with over 1000 horsepower, while

the scooter’s engine is significantly less powerful. However, increasing engine power will make

both vehicles faster. Likewise, decreasing the mass decreases inertia and the friction force in both

cases. In the event that a scooter model does not exist, the dragster model could be used to inform

choices about the scooter’s design.

(a) Dragster

(b) Scooter

Figure 1.1: Two Different,Yet Related Systems
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CHAPTER 2. THE INTELLIGENT DOE

In this chapter, the intelligent design of experiments (IDOE) is described. The intelligent

DOE is the algorithm that performs variable fidelity optimization (VFO) on a hardware in the loop

(HIL) system while minimizing calls to the hardware, or hardware model. It does this by using

a physics-based model as a surrogate. This physics model makes predictions about the hardware,

or hardware model, allowing the intelligent DOE to find the optimal hardware performance, or

hardware solution, with a minimal number of calls to the hardware model.

2.1 Assumptions

The main assumption upon which this research is based is that the objective surface of

a hardware model has a similar shape to that of a representative physics-based model. In other

words, a feature at a certain point in the physics model surface is formed by simulating the effects

of various physical phenomena and these phenomena create a similar feature in the hardware model

surface. Due to inaccuracies inherent in modeling, these similar features may not lie at the same

point within the two spaces and the features may not have the same size. It is also possible that

one model will have features not found in the other. This can be the case when a physics-based

model does not account for all phenomena acting on the system. However, provided that the

physics-based model is sufficiently representative of the hardware system, these features can be

small compared to those found in both models.

In order to take advantage of the similarities between a physics-based model and a hardware

model, some mapping between the expensive hardware model and the inexpensive physics model

must be made. This mapping allows the physics model to provide useful information about the

hardware model by relating points within the physics model space to corresponding ones in the

hardware model space. In order to create this mapping, some assumptions must be made about

the differences between the models. Specifically, it is assumed that a point in the hardware model
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space, xh, can be represented as a point in the physics model with some shift, γ . Also, the objective

values may differ by some scaling factor α . The two models, then, can be related by the expression

H (xh) = αP(xp− γ), where xp is a point within the physics model space and xh is a point within

the hardware model design space. H represents the hardware model and P represents the physics

model. Since xp is an element within the design space and γ is defined within the same space,

both are vectors of the same number of dimensions as the physics model has. There are other

potential differences between the models, such as stretching, which will be discussed in Section

5.1; however, for many situations, the differences discussed here are sufficient to map the models

sufficiently well for optimization purposes.

2.2 Algorithm

Here, the steps in the intelligent DOE are outlined. The optimization problem can be stated

as

min
x

H(x) (2.1)

subject to:

linear constraints≤ 0 (2.2)

nonlinear constraints≤ 0 (2.3)

where:

H(x) is the hardware model. (2.4)

Using the assumptions discussed in Section 2.1 above, the next step to finding the hardware

model solution, x∗h, is to find values for α and γ for which H
(
x∗p
)
= αP

(
x∗p,i− γ

)
, where x∗p =

x∗p,i− γ , and x∗p,i is the initial optimal solution of the physics model. When these values have been

found, x∗h = x∗p.

Steps 1 through 10, above, show the algorithm used to find values for α and γ and Figure

2.1 shows a flowchart of the entire method. First, the user finds the optimal solution, x∗p,i, to the
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Figure 2.1: Flowchart of the Intelligent DOE

low cost physics model. This involves setting bounds on the space, choosing a starting point, and

using a known optimization technique. The optimization problem is expressed by

min
xp

P(xp) (2.5)

subject to:

linear constraints≤ 0 (2.6)

nonlinear constraints≤ 0 (2.7)

where:

P(x) is the physics model. (2.8)

In this research, gradient-based algorithms were used, however, genetic or other algorithms could

be effective, depending on the nature of the model. µp,i is the objective value at x∗p,i. Step 2

sets x∗p = x∗p,i. x∗p,i is the initial solution to the physics model and does not change throughout the

algorithm, while x∗p does change as the physics model is shifted. Step 3 is calling the hardware

model, H, at the physics model solution, x∗p, and setting the result as µh. Step 4 finds the gradient
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of the hardware model at x∗p. Steps 5 through 10 are repeated until the algorithm converges. Once

∇H(x∗p) has been found, step 5 finds the point, xp,m, where the physics model gradient matches the

gradient measured in the hardware. This step is an optimization problem that can be stated as

min
x

L(x) (2.9)

subject to:

linear constraints≤ 0 (2.10)

nonlinear constraints≤ 0. (2.11)

where:

L = ‖∇H(x∗p)−∇P(xp,m)‖ (2.12)

This is done with known optimization techniques. Here, gradient-based and genetic algorithms

were used as needed by the problem. Step 6 finds the offset between the hardware and physics

models, γ , by subtracting xp,m from x∗p. This difference is added to the existing offset, which is

initially zero, and the physics model is shifted by this amount. Next, step 7 defines the new x∗p by

shifting it by the offset so that it does not move relative to the physics model. µh and ∇H are found

at this new x∗p in step 8. Step 9 updates α by dividing the best value returned by the hardware, µh,b,

by µp,i, the value of the physics model at x∗p,i. This scale must be accurate in order for the physics

gradients to be correct. Finally, 10 checks for convergence. This can be done using any appropriate

criteria. A convergence criteria for variable fidelity optimization is presented in the literature [24],

however, this uses a traditional response surface, which allows for many calls. This method can

require a prohibitive number of function calls when calling the expensive physics model [24]. Two

alternative convergence criteria requiring no additional hardware calls are presented here. One

criterion is whether the gradient was zero. As is the case with some gradient-based algorithms [25],

this can terminate the algorithm at local maxima, minima, or saddle points, so care should be

taken to ensure that solutions reached with this criteria are optimal. In many cases, solutions to

engineering problems are constrained, which means, among other things, that the gradients are
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non-zero [25]. For cases like this, convergence can be triggered when ∇P(x∗p) = ∇H(x∗h). This

criterion, in effect, is triggered when the hardware point that corresponds to the physics model

solution, x∗p, has been found. This assumes that the scale, α , and the offset, γ have been found

correctly. Other convergence criteria could be used, depending on the nature of the problem being

solved. Using these steps, the physics model shifts and scales until it matches the hardware model

at the solution and x∗p = x∗h. As can be seen in the flowchart, each time steps 5-10 are iterated,

the hardware gradient must be found. Thus, the number of hardware calls needed for the IDOE to

converge is directly related to the number of iterations of the algorithm and it is desirable to find

the solution with as few iterations as possible.

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3

Figure 2.2: Progression of the IDOE Through an Optimization
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Figure 2.2 shows plots of hypothetical hardware and physics models after each iteration

of a one dimensional test. The objective of this problem is to minimize the value returned by the

hardware. A similar example is discussed in more detail in Section 3.1. Here, the hardware model

has been scaled by a factor of α = 1.3 and shifted by γ = 20◦. Figure 2.2(a) shows the models in

their initial state. Notice that it has larger negative value than µp,i which is caused by the fact that

the hardware model is scaled larger than the physics one. In iteration 2, α and γ have been updated

so that the physics model is nearly equal to the hardware model. By the third iteration, shown in

Figure 2.2(c), the models are equal and the solution to the hardware model, x∗h equals the known

solution to the physics model, x∗p.
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CHAPTER 3. VERIFICATION OF THE INTELLIGENT DOE

After development, the intelligent DOE (IDOE) was verified on several problems of vary-

ing complexity. This allowed for testing of a variety of scenarios. Each example problem was

optimized by the IDOE and two DOE-based VFO routines for comparison. The results are shown.

3.1 One Dimensional Example

Initially, the IDOE was tested with a one dimensional sine wave. Details of this example

are also found in Section 2.2. The physics model was of the form P(xp) = −sin(xp) and the

hardware was represented by H(xh) = −αh sin(xh− γh). The values of αh and γh were varied

throughout testing to simulate various scenarios. The objective was to find the minimum value of

the hardware model. This optimization problem can be stated as

min
xh

H(xh) (3.1)

subject to:

−90◦ ≤ xh ≤ 270◦ (3.2)

where:

H(xh) =−1.3sin(xh−20◦). (3.3)

After optimizing this problem with the IDOE, two DOE-based VFO routines were per-

formed on it for comparison. Both used a fractional factorial (FF) DOE. FF designs use only a

subset of the tests prescribed by a full factorial DOE in order to sample the space while minimiz-

ing the number of tests needed [26]. For these tests, αh = 1.3 and γh = 20◦.
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Figure 3.1: Flowchart of the Intelligent DOE

3.1.1 IDOE Optimization

The IDOE followed the steps outlined in Section 2.2. For convenience, the flowchart,

Figure 2.1 is shown again here as Figure 3.1.

First, the starting point was set to be

xp = 10◦. (3.4)

This value was chosen arbitrarily. This value was used by the initial optimization, step 1 in

Figure 3.1. The optimizer returned the point

x∗p,i = 89.9983◦ (3.5)

where µp,i = -1.0000. Next, x∗p was defined and set equal to x∗p,i, as shown in Figure 3.1, step 2.

During step 3, µh was found to be -1.2216 and in step 4, ∇H(x∗p) was found to be -0.4446. Step 5

is to find the point in the physics model where the gradient equals ∇H(x∗p). This point was found

to be

xp,m = 63.6046◦. (3.6)
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Using xp,m and x∗p, the shift was defined to be

γ = 26.3937◦. (3.7)

As is shown above, the actual shift between the two models is

γ = 20◦, (3.8)

so the value found by the IDOE in equation 3.7 is substantially different from what it should be.

The differences between these equations originate primarily from the fact that the artificial scaling

has altered the gradient values. Next, the physics model and x∗p were shifted within the design

space by γ . The new value for x∗p was 116.3920◦. Moving on to step 8, the new µh was found to

be -1.2919 and

∇H = 0.14481◦. (3.9)

Using the best value of µh to date, -1.2919, α was found to be 1.2919 in step 9. Step 10, the

convergence criteria, were not met, so one more iteration was needed. When the IDOE converged,

it found a solution of µh =−1.3000 where x∗p = 19.9553◦ and α = 1.3000. These values are very

close to the artificial ones shown above, indicating that the solution is correct.

3.1.2 Fractional Factorial Best Point Optimization

During the first optimization, a DOE was run over the entire space with the center point

being the middle of the range and the other tests being on the edges of the range. After this test,

the point with the best objective value was chosen as the new center point and the range of the

experiment was cut in half. This was repeated until a solution was converged on. This test was

constructed to follow the method used by George [10], except that it used a fractional factorial

design rather than a Box-Behnken design since Box-Behnken designs are not defined for problems

with less than three variables.
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3.1.3 Surrogate Response Surface Optimization

Next, an optimization was performed using a low fidelity surrogate response surface model.

This was also performed by George and is a common technique in VFO [14, 15]. To form the

surrogate, a FF design was performed, then a response surface was fit to the results. This surrogate

was a third order polynomial of the form f (xh) = p1x2
h + p2xh + p3, where p1 through p3 are

coefficients found using least squares methods with the polyfit function in MATLAB. The surrogate

solution, the minimum value, was found using gradient-based optimization. The optimization

problem is shown below.

min
xh

f (xh) (3.10)

subject to:

−90◦ ≤ xh ≤ 270◦ (3.11)

where:

p1 = coefficient 1 from least squares fit (3.12)

p2 = coefficient 2 from least squares fit (3.13)

p3 = coefficient 3 from least squares fit (3.14)

f (xh) = p1x2
h + p2xh + p3 (3.15)

Then, the surrogate solution was set as the center point for the next iteration and the steps were

repeated until a solution was found.

3.1.4 Performance Comparison

The actual optimum value of the hardware, µ∗h,A was found for comparison using known

optimization methods. The optimization problem solved here is

min
xh

H(xh) (3.16)
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Figure 3.2: Performance of One Dimensional Sine Wave Tests

subject to:

−90◦ ≤ xh ≤ 270◦ (3.17)

where:

H(xh) =−1.3sin(xh +30◦). (3.18)

µ∗h,A could only be found in this way because the hardware was actually represented by a physics-

based model. This was done outside of the other optimizations so that µ∗h,A was unknown to

them. The value of µ∗h,A was used only to asses the accuracy of the solutions returned by the other

optimization methods. For comparison, a DOE-based optimization was performed on the flapping

flight model. The results are shown in Figure 3.2. The dependent axis, % Error, shown in the
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figure, was calculated for each data point using the equation

% Error =

∣∣∣∣∣µ∗h,A−µh,C

µ∗h,A

∣∣∣∣∣∗100, (3.19)

where µh,C is a solution value of one of the optimization routines being examined.

Figure 3.2 shows the performance of both DOE optimizations along with the performance

of the IDOE. Each of the methods eventually found the solution, however, each method has differ-

ent cost in terms of the number of hardware calls needed. The FF best point optimization described

above requires the most hardware calls to find the solution, in this case, 21. The surrogate response

surface optimization required nine calls to reach the solution and the IDOE took six calls. It is

not surprising that the surrogate response surface optimization required less calls than the FF best

point optimization because the surrogate provides a way to explore solutions that are not explicitly

tested. This, combined with the gradient-based optimization, makes educated guesses about the

location of the actual solution, rather than just choosing the best of the tested points. As Figure 3.2

shows, the IDOE found the solution in 71% fewer calls than the FF best point optimization and

33% fewer than the low fidelity surrogate optimization.

3.2 Two Dimensional Example

Next, the IDOE was tested with a two dimensional sine wave. The physics model was of

the form

P(xp) =−sin(1.5xp1)− sin(1.5xp2) (3.20)

and the hardware was represented by

H(xh) =−αh[sin(1.5(xh1− γh1))+ sin(1.5(xh2− γh2))], (3.21)

with αh = 0.6 and γh1 = γh2 =−30◦. The objective was to find the minimum value of the hardware

model and the optimization problem can be formally stated as

min
xh

H(xh) (3.22)
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subject to:

−90◦ ≤ xh1 ≤ 270◦ (3.23)

−90◦ ≤ xh2 ≤ 270◦ (3.24)

where:

γh = [−30◦;−30◦] (3.25)

H(xh) =−0.6sin(1.5(xh1− γh1))−0.6sin(1.5(xh2− γh2)). (3.26)

3.2.1 IDOE Optimization

The IDOE followed the steps outlined in Section 2.2. First, the starting point was set to be

[10◦;10◦]. (3.27)

These values were chosen arbitrarily. Step 1 in Figure 2.1 returned the point

x∗p,i = [89.9983◦;89.9983◦] (3.28)

using the optimization problem

min
xp,i

P(xp,i) (3.29)

subject to:

−90◦ ≤ xp,i1 ≤ 270◦ (3.30)

−90◦ ≤ xp,i2 ≤ 270◦ (3.31)

where:

P(xp,i) =−sin(1.5(xp,i1))− sin(1.5(xp,i2))]. (3.32)
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and the solution was µp,i = -2. Next, x∗p was defined and set equal to x∗p,i, as shown in Figure 2.1,

step 2. During step 3, µh was found to be -1.0392 and in step 4, ∇H(x∗p) was found to be

[−0.2533◦;−0.2533◦]. (3.33)

Step 5 is to find the point in the physics model where the gradient equals ∇H(x∗p). This point was

found to be

xp,m = [70.3101◦;70.3101◦] (3.34)

using the optimization problem

min
xp,m

L(xp,m) (3.35)

subject to:

−90◦ ≤ xp,m1 ≤ 270◦ (3.36)

−90◦ ≤ xp,m2 ≤ 270◦ (3.37)

where:

L = ‖∇H(x∗p)−∇P(xp,m)‖. (3.38)

Using xp,m and x∗p, the shift, γ , was defined to be

[19.6882◦;19.6882◦]. (3.39)

As is shown above, the actual shift between the two models is

[−30◦;−30◦], (3.40)

so the values found by the IDOE in equation 3.39 had significant differences from what they

should have been. The differences between these equations originated from the scaling differences

between the models. When the hardware gradients were found in step 4, the different scaling

changed the measured gradient. When xp,m was found, it led to a shift that was in the correct
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direction, but did not have the correct magnitude. Next, the physics model and x∗p were shifted

within the design space by γ . The new value for x∗p was

[109.6865◦;109.6865◦]. (3.41)

Since the shift was in the right direction, it still caused the physics model to be a more accurate

approximation of the hardware. Since the shift was not of the right magnitude, though, more

iterations were eventually needed before the IDOE could converge on a solution. Moving on to

step 8, the new µh was found to be -1.1806 and

∇H = [−0.0555◦;−0.0555◦]. (3.42)

Using the best value of µh to date, -1.1806, α was found to be 0.5903 in step 9. Step 10, the

convergence criteria, did not signal convergence after this iteration, so the algorithm looped back

to step 5. These steps were repeated two more times before the convergence criteria were tripped.

When that happened, the value found for α was 0.6000 and γ equalled [30.0875◦;30.0875◦]. These

are both very close to the actual artificial scale and shift, 0.6 and [−30◦;−30◦], respectively. The

values of γ could have been obtained more closely if the convergence criteria had been more strict.

The solution returned by the IDOE was -1.2000, which is correct.

3.2.2 Fractional Factorial DOE Optimizations

After optimizing this problem with the intelligent DOE, two DOE-based optimization rou-

tines were performed on it for comparison. The fractional factorial best point optimization was

similar to the one described in Section 3.1.2. The surrogate response surface optimization also

used a fractional factorial DOE, but the response surface was of the form

f (xh) = Bxh + xT
h Cxh +(xT

h Dxh)(xT
h Dxh), (3.43)

where
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xh =

xh1

xh2

 (3.44)

B =

β1 β2

β3 β4

 (3.45)

C =

β5 β6

β7 β8

 (3.46)

D =

 β9 β10

β11 β12

 . (3.47)

This form was chosen because it fit the data from the design of experiments well. The

surface was created using nonlinear regression with the nlinfit function in MATLAB. The minimum

value of the response surface was found using the optimization problem

min
xh

f (xh) (3.48)

subject to:

−90◦ ≤ xh1 ≤ 270◦ (3.49)

−90◦ ≤ xh2 ≤ 270◦ (3.50)

where:

B = β values 1 through 4 from linear regression (3.51)

C = β values 5 through 8 from linear regression (3.52)

D = β values 9 through 12 from linear regression (3.53)

f (xh) = B∗ xh + xT
h ∗C ∗ xh +(xT

h ∗D∗ xh)∗ (xT
h ∗D∗ xh). (3.54)
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Figure 3.3: Performance of Two Dimensional Sine Wave Tests

3.2.3 Performance Comparison

The actual optimum value of the hardware, µ∗h,A was found for comparison using known

optimization methods. The optimization problem solved here is

min
xh

H(xh) (3.55)

subject to:

−90◦ ≤ xh1 ≤ 270◦ (3.56)

−90◦ ≤ xh2 ≤ 270◦ (3.57)

where:

γh = [−30◦;−30◦] (3.58)

H(xh) =−0.6sin(1.5(xh1− γh1))−0.6sin(1.5(xh2− γh2)). (3.59)
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µ∗h,A could only be found in this way because the hardware was actually represented by a physics-

based model. This was done outside of the other optimizations so that µ∗h,A was unknown to

them. The value of µ∗h,A was used only to asses the accuracy of the solutions returned by the other

optimization methods. For comparison, a DOE-based optimization was performed on the flapping

flight model. The results are shown in Figure 3.3. The dependent axis, % Error, shown in the figure,

was calculated for each data point using equation 3.19, where µh,C is a solution value of one of

the optimization routines being examined. As Figure 3.3 shows, the FF best point optimization

took 35 hardware tests to converge on the solution and the FF with surrogate optimization took

30 . The first IDOE point was far away from the solution. This point comes from the hardware

being initially called at xh = x∗p,i. Since the γ values are relatively large, this point was far away

from the hardware solution and the objective value was poor. The next iteration of the IDOE got

closer to the actual solution after calling the hardware six times. It found the solution on the next

iteration, requiring a total of nine calls. This represents a 74% improvement over the FF best point

optimization and a 70% improvement over the FF with surrogate optimization.

3.3 Twenty Dimensional Example

Next, the IDOE was tested with a twenty dimensional sine wave. The physics model was

of the form

P(xp) =−sin(xp1)− sin(xp2)− ...− sin(xp19)− sin(xp20) (3.60)

and the hardware was represented by

H(xh) =−αh[sin(xh1− γh1)+ sin(xh2− γh2)+ ...+ sin(xh19− γh19)+ sin(xh20− γh20)], (3.61)

where αh = 0.8 and

γh = [13◦;8◦;14◦;10◦;15◦;9◦;10◦;17◦;12◦;10◦;13◦;10◦;14◦;11◦;8◦;16◦;15◦;9◦;10◦;10◦].

(3.62)

The objective was to find the minimum value of the hardware model using the formal problem

min
xh

H(xh) (3.63)
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subject to:

0◦ ≤ xh1, xh2,· · · , xh20 ≤ 180◦ (3.64)

where:

γh = [13◦;8◦;14◦;10◦;15◦;9◦;10◦;17◦;12◦;10◦;13◦;10◦;14◦;11◦;8◦;16◦;15◦;9◦;10◦;10◦]

(3.65)

H(xh) =−0.8[sin(xh1− γh1)+ sin(xh2− γh2)+ ...+ sin(xh19− γh19)+ sin(xh20− γh20)]. (3.66)

3.3.1 IDOE Optimization

The IDOE followed the steps outlined in Section 2.2. First, the starting point was set to be

[0◦;1◦;0◦;90◦;100◦;0◦;0◦;0◦;0◦;0◦;0◦;45◦;110◦;5◦;0◦;0◦;0◦;0◦;0◦;0◦; ]. (3.67)

These values were chosen arbitrarily. Step 1 in Figure 2.1 returned the point

x∗p,i =
[90◦;90◦;90◦;90◦;90.0001◦;90◦;90◦;90◦;90◦;90◦;90◦;

90◦;90.0001◦;90.0002◦;90◦;90◦;90◦;90◦;90◦;90◦; ]
(3.68)

using the optimization problem

min
xp,i

P(xp,i) (3.69)

subject to:

0◦ ≤ xp,i1, xp,i2,· · · , xp,i20 ≤ 270◦ (3.70)

where:

P(xp,i) =−sin(xp,i1)− sin(xp,i2)−·· ·− sin(xp,i19)− sin(xp,i20) (3.71)

23



where µp,i = -20. Next, x∗p was defined and set equal to x∗p,i, as shown in Figure 2.1, step 2. During

step 3, µh was found to be -15.9856 and in step 4, ∇H(x∗p) was found to be

[−0.0367◦;−0.0226◦;−0.0395◦;−0.0280◦;−0.0423◦;−0.0253◦;−0.0280◦;

−0.0483◦;−0.0339◦;−0.0280◦;−0.0367◦;−0.0282◦;−0.0396◦;−0.0310◦;

−0.0224◦;−0.0454◦;−0.0425◦;−0.0251◦;−0.0281◦;−0.0281◦].

(3.72)

Step 5 is to find the point in the physics model where the gradient equals ∇H(x∗p). This point was

found to be

xp,m =

[79.63◦;83.61◦;78.83◦;82.01◦;78.08◦;82.81◦;82.00◦;76.46◦;

80.43◦;82.01◦;79.63◦;82.02◦;78.84◦;81.22◦;83.60◦;77.26◦;

78.05◦;82.80◦;82.01◦;82.02◦]

(3.73)

using the problem statement

min
xp,m

L(xp,m) (3.74)

subject to:

0◦ ≤ xp,m1, xp,m2,· · · , xp,m20 ≤ 270◦ (3.75)

L = ‖∇H(x∗p)−∇P(xp,m)‖. (3.76)

Using xp,m and x∗p, the shift, γ , was defined to be

[10.36◦;6.383◦;11.16◦;7.985◦;11.91◦;7.181◦;7.990◦;13.53◦;9.566◦;7.986◦;

10.36◦;7.972◦;11.15◦;8.772◦;6.393◦;12.73◦;11.94◦;7.195◦;7.984◦;7.979◦].
(3.77)

As is shown above, the actual shift between the two models is

γh = [13◦;8◦;14◦;10◦;15◦;9◦;10◦;17◦;12◦;10◦;13◦;10◦;14◦;11◦;8◦;16◦;15◦;9◦;10◦;10◦].

(3.78)
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so the values found by the IDOE in equation 3.77 again had significant differences from what they

should have been. The differences between these equations originated from the scaling differences

between the models. When the hardware gradients were found in step 4, the different scaling

changed the measured gradient. When xp,m was found, it led to a shift that was in the correct

direction, but did not have the correct magnitude. Next, the physics model and x∗p were shifted

within the design space by γ . The new value for x∗p was

[100.3◦;96.38◦;101.1◦;97.98◦;101.9◦;97.18◦;97.99◦;103.5◦;99.56◦;97.98◦;

100.3◦;97.97◦;101.1◦;98.77◦;96.39◦;102.7◦;101.9◦;97.19◦;97.98◦;97.97◦].
(3.79)

Since the shift was in the right direction, it still caused the physics model to be a more accurate

approximation of the hardware. Since the shift was not of the right magnitude, though, more

iterations were eventually needed before the IDOE could converge on a solution. Moving on to

step 8, the new µh was found to be -15.9856 and

∇H =

[−0.0367◦;−0.0226◦;−0.0395◦;−0.0280◦;−0.0423◦;−0.0253◦;−0.0280◦;

−0.0483◦;−0.0339◦;−0.0280◦;−0.0367◦;−0.0282◦;−0.0396◦;−0.0310◦;

−0.0224◦;−0.0454◦;−0.0425◦;−0.0251◦;−0.0281◦;−0.0281◦]

(3.80)

Using the best value of µh to date, -15.9856, α was found to be 0.7993 in step 9. Step 10, the

convergence criteria, did not signal convergence after this iteration, so the algorithm looped back

to step 5. These steps were repeated three more times before the convergence criteria were tripped.

When that happened, the value found for α was 0.8000 and γ equalled

[12.99◦;8.000◦;14.00◦;9.999◦;14.95◦;9.001◦;10.00◦;16.99◦;12.00◦;10.00◦;

13.00◦;10.00◦;13.99◦;11.00◦;8.002◦;16.00◦;15.00◦;8.997◦;10.00◦;9.998◦].
(3.81)

These are both very close to the actual artificial scale and shift, 0.8 and

[13◦;8◦;14◦;10◦;15◦;9◦;10◦;17◦;12◦;10◦;13◦;10◦;14◦;11◦;8◦;16◦;15◦;9◦;10◦;10◦], (3.82)

25



respectively. The values of γ could have been obtained more closely if the convergence criteria had

been more strict. The solution returned by the IDOE was -16, which is correct.

3.3.2 Box-Behnken DOE Optimizations

After optimizing this problem with the intelligent DOE, two DOE-based optimization rou-

tines were performed on it for comparison. The first was a Box-Behnken best point optimization

that was similar to the one described in Section 3.1.3, except that it used a Box-Behnken DOE

rather than a fractional factorial DOE. The Box-Behnken is a very sparse design, although it is still

able to explore the design space [27,28]. It was chosen for this reason. The second was a surrogate

response surface optimization-based on data from Box-Behnken DOEs. The response surface was

of the form f (xh) = Bxh + xT
h Cxh, where

xh = [xh1;xh2; ...;xh20] (3.83)

B =


β1 β2 · · · β20

β21
. . . ...

... . . . ...

β381 · · · · · · β400

 (3.84)

C =


β401 β402 · · · β420

β421
. . . ...

... . . . ...

β781 · · · · · · β800

 . (3.85)

This form was chosen because it fit the data from the design of experiments well. The

surface was created using nonlinear regression with the nlinfit function in MATLAB. Optimizing

the surface used the optimization problem statement

min
xh

f (xh) (3.86)
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subject to:

0◦ ≤ xh1, xh2,· · · , xh20 ≤ 180◦ (3.87)

where:

B = β values 1 through 400 from linear regression (3.88)

C = β values 401 through 800 from linear regression (3.89)

f (xh) = B∗ xh + xT
h ∗C ∗ xh. (3.90)

Figure 3.4: Performance of Twenty Dimensional Sine Wave Tests
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3.3.3 Performance Comparison

The actual optimum value of the hardware, µ∗h,A was found for comparison using known

optimization methods. The optimization problem solved here is

min
xh

H(xh) (3.91)

subject to:

0◦ ≤ xh1, xh2,· · · , xh20 ≤ 180◦ (3.92)

where:

γh = [13◦;8◦;14◦;10◦;15◦;9◦;10◦;17◦;12◦;10◦;13◦;10◦;14◦;11◦;8◦;16◦;15◦;9◦;10◦;10◦]

(3.93)

H(xh) =−0.8[sin(xh1− γh1)+ sin(xh2− γh2)+ ...+ sin(xh19− γh19)+ sin(xh20− γh20)]. (3.94)

µ∗h,A could only be found in this way because the hardware was actually represented by a physics-

based model. This was done outside of the other optimizations so that µ∗h,A was unknown to

them. The value of µ∗h,A was used only to asses the accuracy of the solutions returned by the other

optimization methods. For comparison, a DOE-based optimization was performed on the flapping

flight model. The results are shown in Figure 3.4. The dependent axis, % Error, shown in the

figure, was calculated for each data point using the equation 3.19, where µh,C is a solution value of

one of the optimization routines being examined. In this example, the Box-Behnken best point test

and the Box-Behnken with a surrogate response surface did not converge on the solution exactly, so

convergence was said to have occurred when the solution was within 0.01% of the exact solution.

Using this criteria, the Box-Behnken best point optimization did converge on a solution, but not

the global minimum. This is because the bounds were shrunk around an inaccurate point and the

exact solution was then outside of the region being explored. If this optimization had converged on

the global minimum at the same rate it converged on the solution it did find, it would have required

6948 calls. The Box-Behnken with the surrogate response surface required 3860 hardware calls
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to converge. As in example 3.3, the IDOE started far away from the solution, then found it two

iterations later. The IDOE required 84 calls, which represents a 98.7% reduction over the Box-

Behnken best test optimization and a 97.8% reduction in cost compared to the response surface

optimization.

3.4 One Dimensional Example with Different Physics Model Form

All of the previous tests used hardware models that were scaled and shifted from what the

physics models. This test used hardware and physics models that were of different forms. The

physics model is of the form P(xp) = −5sin(xp) and the hardware was represented by H(xh) =

2.5
(

xh−40◦
50

)2
− 10. The objective is to find the minimum value of the hardware model. This

optimization problem can be stated as

min
xh

H(xh) (3.95)

subject to:

−90◦ ≤ xh ≤ 270◦ (3.96)

where:

H(xh) = 2.5
(

xh−40◦

50

)2

−10. (3.97)

After optimizing this problem with the IDOE, two DOE-based VFO routines were per-

formed on it for comparison. Both used the same fractional factorial DOE explained in Section

3.1.2.

3.4.1 IDOE Optimization

The IDOE followed the steps outlined in Section 2.2. Pictures showing the results from

each iteration of the IDOE are shown in Figure 3.5.
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3.4.2 Fractional Factorial Best Point Optimization

During the first optimization, a DOE was run over the entire space with the center point

being the middle of the range and the other tests being on the edges of the range. After this test,

the point with the best objective value was chosen as the new center point and the range of the

experiment was cut in half. This was repeated until a solution was converged on. This test was

similar to the one descried in Section 3.1.2.

3.4.3 Surrogate Response Surface Optimization

Next, an optimization was performed using a low fidelity surrogate response surface model.

This test was the same as the one shown in 3.1.3. As before, the surrogate was a third order

polynomial of the form f (xh) = p1x2
h+ p2xh+ p3, where p1 through p3 are coefficients found using

least squares methods with the polyfit function in MATLAB. The surrogate solution, the minimum

value, was found using gradient-based optimization. The optimization problem is shown below.

min
xh

f (xh) (3.98)

subject to:

−90◦ ≤ xh ≤ 270◦ (3.99)

where:

p1 = coefficient 1 from least squares fit (3.100)

p2 = coefficient 2 from least squares fit (3.101)

p3 = coefficient 3 from least squares fit (3.102)

f (xh) = p1x2
h + p2xh + p3 (3.103)

Then, the surrogate solution was set as the center point for the next iteration and the steps were

repeated until a solution was found.
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3.4.4 Performance Comparison

The actual optimum value of the hardware, µ∗h,A was found for comparison using known

optimization methods. The optimization problem solved here is

min
xh

H(xh) (3.104)

subject to:

−90◦ ≤ xh ≤ 270◦ (3.105)

where:

H(xh) = 2.5
(

xh−40◦

50

)2

−10. (3.106)

µ∗h,A could only be found in this way because the hardware was actually represented by a physics-

based model. This was done outside of the other optimizations so that µ∗h,A was unknown to

them. The value of µ∗h,A was used only to asses the accuracy of the solutions returned by the other

optimization methods. For comparison, a DOE-based optimization was performed on the flapping

flight model. The results are shown in Figure 3.6. The dependent axis, % Error, shown in the

figure, was calculated for each data point using equation 3.19.

Figure 3.6 shows the performance of both DOE optimizations along with the performance

of the IDOE. Each of the methods eventually found the solution, however, each method has differ-

ent cost in terms of the number of hardware calls needed. The FF best point optimization described

above requires the most hardware calls to find the solution, in this case, 30. The surrogate response

surface optimization required 6 calls to reach the solution and the IDOE took 14 calls. It is not

surprising that the surrogate response surface optimization required less calls than the FF best point

optimization did because the surrogate provides a way to explore solutions that are not explicitly

tested. This, combined with the gradient-based optimization, makes educated guesses about the

location of the actual solution, rather than just choosing the best of the tested points. In this case,

the response surface form used for the surrogate was of a very similar form to the hardware model.

This is why it was able to optimize so quickly. As Figure 3.2 shows, the IDOE found the solution
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in 53% fewer calls than the FF best point optimization but 130% more calls to the low fidelity

surrogate optimization.

3.5 Verification Discussion

Based on the results of these tests, it is clear that, in most of the situations tested, the IDOE

converges on a solution with fewer calls to the physical hardware than DOE-based optimizations

do. It is interesting to note that as the number of design variables increases, the percent cost savings

from the IDOE increases. This is due to the fact that the number of calls needed by a DOE increases

faster than linearly as the number of variables increases. On the other hand, the number of calls

needed by the IDOE is driven by the cost of taking gradients, which increases linearly with the

number of variables. Also in these tests, the IDOE converges on the global solution more reliably

than the DOE-based optimizations do. This is due to the fact that, in the DOE optimizations, the

bounds of the region of interest are shrunk in between experiments in order to get a more accurate

approximation of the surface. Sometimes, shrinking the bounds can make it so that the global

solution is out of bounds and, therefore, out of the search area.
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

(g) Iteration 7

Figure 3.5: Progression of the IDOE Through Optimization of Models with Different Forms
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Figure 3.6: Performance of One Dimensional Tests with Different Model Forms
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CHAPTER 4. APPLICATION TO FLAPPING FLIGHT

The intelligent DOE was developed to enable VFO on HIL systems where the hardware is

too expensive for traditional DOE-based surrogate optimization. Chapter 3 shows that this IDOE is

capable of solving simple problems with small or large numbers of design variables. This chapter

shows the IDOE optimizing a more useful system, in this case, one representing a flapping wing.

The objective of this optimization is to find a hovering wing trajectory that produces the maximum

amount of lift.

4.1 Flapping Flight Optimization

Over the past century, flight has come to play an essential role in many civilian and mil-

itary applications such as transportation, surveillance, and defense. The overwhelming majority

of aircraft today use fixed wings or rotors to produce lift. These both have inherent advantages

and disadvantages. Some potential applications, however, require flight characteristics that are not

found in either of these traditional methods. For example, both fixed wing and rotor flight pro-

duce large amounts of sound [29]. Fixed wing aircraft cannot hover and are difficult to maneuver

in tight spaces, such as indoors [30]. Vehicles using rotors have limited endurance [30] and are

also not very maneuverable [31]. Also, both fixed wing and rotor flight lend themselves to large

vehicles [31, 32].

Insects, which use flapping wings to produce lift, are small and very capable of hover and

precise flight in confined areas [23, 31, 33]. For small vehicles that require quiet, precise flight in

tight spaces, flapping wing flight shows potential [34]. Flapping flight is being researched for use

with Micro Air Vehicles or MAVs [7,11,19–21,23,31,33,35–38]. These vehicles can carry sensors

and relay information back to a controller. This makes MAVs well suited for applications such as

surveillance and inspection of areas that are dangerous or difficult to access [39].
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Flapping flight development has lagged behind that of fixed wing and rotor flight due to

a number of challenges. Flapping flight relies on complex aerodynamics that are difficult to con-

trol [9]. For example, conventional aerodynamics can explain some aspects of flapping flight, but

unsteady aerodynamics must be used to explain hovering of small insects [40, 41]. Because of

these and other phenomena not accounted for in conventional aerodynamics, flapping wings can

produce more lift than would be predicted by conventional aerodynamic analysis [42], sometimes

by a factor of two or three [43]. Further, rotational forces on the insect are unstable in some

cases [44, 45]. Finally, the performance of a flapping wing involves interdependent relationships

between factors like wing planform and flapping trajectory [23]. Flapping flight models are diffi-

cult to develop since they must include these complex phenomena [9]. Model verification requires

expensive hardware. These obstacles and others have made flapping flight development lag behind

that of other types.

4.1.1 Physical Hardware

One way to overcome these challenges is with HIL modeling. HIL modeling allows phe-

nomena in the system being modeled to be treated as a black box [1] and thus study the effects

of various parameters on the lift produced without knowing all of the fluid phenomena that are at

play [8]. A six degree of freedom (three per wing) flapping mechanism has been constructed [7].

It is instrumented to collect lift and drag data. Each wing is powered by three motors. Two of the

motors are attached to worm gears that control η (pitch angle) and θ (deviation angle) via a differ-

ential gear [35, 37]. φ (sweep angle) is controlled directly by the third motor. See Figure 4.1(b).

This set-up allows the wing to execute virtually any trajectory, provided that it does not violate the

mechanical limits of the system, which are φ = ±90◦, θ = +55◦/− 105◦, η = ±180◦ [10]. The

objective is to find the optimal parameters to maximize lift. The mechanism flaps in water.

Trajectory Equations

The flapping trajectory is specified using 11 independent parameters, which define equa-

tions 4.1 through 4.3. These control equations allow the wing to execute a wide variety of trajec-

tories. The objective of the optimization is to determine the combination of these parameters that
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(a) View of Both Wings

(b) Cad Model of One Wing

Figure 4.1: The Flapping Mechanism

optimizes some combination of lift and thrust. The kinematic pattern that determines the trajectory

was proposed by Berman and Wang [20]. φ (sweep) is controlled by the equation

φ(t) =
φm

sin−1(K)
sin−1 [K sin(2π f t)] , (4.1)

where 0 < K < 1. When K approaches 0, φ(t) approaches a sine wave and as K approaches 1,

φ(t) becomes a smoothed triangular wave. These equations were chosen based on experiments
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performed by Sane and Dickinson [18]. φm is the amplitude of the wave in degrees and f is the

flapping frequency in Hz. Wing pitch, η(t), with units of degrees, is controlled by the relationship

η(t) =
ηm

tanh(Cη)
tanh [Cη sin(2π f t +Φη)]+η0, (4.2)

where 0 < Cη < ∞. When Cη approaches 0, η(t) approaches a sine and when Cη approaches

infinity, Cη approaches a square wave. η0 is a constant offset and Φη is the phase shift. ηm

determines the amplitude of the pitch. The deviation from the stroke plane, θ , is controlled by the

equation

θ(t) = θm cos(2Nπ f t +Φθ )+θ0, (4.3)

where θm is the amplitude of the deviation in degrees, Φθ is the phase shift, and θ0 is a constant

offset. N determines how many cycles are performed per flap.

Once these paths are generated in MATLAB, they are sent to LabVIEW. The LabVIEW

outputs are transmitted to an FPGA, where they are combined and sent to a current amplifier,

which sends signals to the motors.

4.1.2 Optimization Setup

As is mentioned, in Section 1.1, optimizing this system by exhaustive testing is too expen-

sive in terms of time and mechanical wear. This is largely because of the complexity of the design

space. This makes the flapping flight mechanism a good candidate for VFO. Ryan George used

traditional VFO with a response surface to optimize the system [10]. However, This approach still

required over 2000 calls to the physical hardware. Because of the high cost of calling this system,

it is well suited for optimization with an IDOE.

Because of difficulties finding the point xp,m, several of the input parameters were held

constant. Their values were taken from the optimal ones found by Berman and Wang [20]. The

values of these parameters are θ0 = 2.67◦, η0 = −90◦, K = 0.796, Cη = 0.711, N = 2, and f =

19Hz.
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The physics model used as a surrogate is taken from the work of Berman and Wang [20].

It is a quasi steady model that outputs the lift and thrust generated during a flap. The model is

intended to represent a hovering insect, which is the focus of this research.

For this test, the hardware was represented not by the physical system, but by another

physics model. This is because of technical difficulties with the hardware. The hardware model

was derived from the physics model. This was done using the assumptions discussed in Section

2.1. Using these assumptions, the hardware model was an artificially shifted version of the physics

model, where the artificial shift,

γh = [6◦;6◦;6◦;6◦;6◦]. (4.4)

The values of γ were chosen arbitrarily. α = 1. This was chosen because of difficulty in finding

xp,m. Because it was very difficult to find it accurately, I restricted the search to a small area in

which I knew the point existed. This was possible because the artificial shift was known. If α were

not equal to one, the location of xp,m would not have been in the same location. This optimization

problem can be formally stated as

max
xh

H(xh) (4.5)

subject to:

0◦ ≤xh1 ≤ 90◦ (4.6)

0◦ ≤xh2 ≤ 180◦ (4.7)

−180◦ ≤xh3 ≤ 180◦ (4.8)

0◦ ≤xh4 ≤ 90◦ (4.9)

−180◦ ≤xh5 ≤ 180◦ (4.10)

where:

γh = [6◦;6◦;6◦;6◦;6◦] (4.11)

H(xh) = P(xh− γh). (4.12)
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Figure 4.2: Flowchart of the Intelligent DOE

The most important sections of the code used in this optimization are included in appendix

A.

4.1.3 Optimization Steps

The IDOE followed the steps outlined in Section 2.2. For convenience, the flowchart,

Figure 2.1 is shown again here as Figure 4.2.

First, the starting point was set to be

xp =



φm

ηm

Φη

θm

Φθ


=



90◦

85.3◦

−97.9◦

8.1◦

−109.2◦


. (4.13)

(4.14)
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These values were the optimal ones found by Berman and Wang [20]. These optimal values

were chosen to aid in the initial optimization, step 1 in Figure 4.2. The optimizer returned the point

x∗p,i = [41.6217◦;71.7496◦;−156.4045◦;15◦;−109.8277◦] (4.15)

where µp,i = 0.245931 newtons. This optimization problem can be formally stated as

max
xp,i

P(xp,i) (4.16)

subject to:

15◦ ≤xp,i1 ≤ 75◦ (4.17)

15◦ ≤xp,i2 ≤ 165◦ (4.18)

−165◦ ≤xp,i3 ≤ 165◦ (4.19)

15◦ ≤xp,i4 ≤ 75◦ (4.20)

−165◦ ≤xp,i5 ≤ 165◦ (4.21)

where:

P(xp,i) is the physics model. (4.22)

Next, x∗p was defined and set equal to x∗p,i, as shown in Figure 4.2, step 2. During step 3, µh

was found to be 0.2154 newtons and in step 4, ∇H(x∗p) was found to be

[−0.2813◦;0.2919◦;0.1366◦;0.8570◦;−0.0983◦]. (4.23)

Step 5 is to find the point in the physics model where the gradient equals ∇H(x∗p). This can be

formally defined as

min
xp,m

L(xp,m) (4.24)
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subject to:

15◦ ≤xp,m1 ≤ 75◦ (4.25)

15◦ ≤xp,m2 ≤ 165◦ (4.26)

−165◦ ≤xp,m3 ≤ 165◦ (4.27)

15◦ ≤xp,m4 ≤ 75◦ (4.28)

−165◦ ≤xp,m5 ≤ 165◦ (4.29)

L = ‖∇H(x∗p)−∇P(xp,m)‖. (4.30)

This point was found to be

xp,m = [35.43◦;65.63◦;−162.49◦;8.984◦;−115.98◦]. (4.31)

Using xp,m and x∗p, the shift, γ , was defined to be

[6.182◦;6.110◦;6.088◦;6.015◦;6.156◦]. (4.32)

As is shown in equation 4.4, the actual shift between the two models is

[6◦;6◦;6◦;6◦;6◦], (4.33)

so the values found by the IDOE in equation 4.32 are close to what they should be. The differ-

ences between these equations originate from inaccuracies in how point xp,m was found. Next, the

physics model and x∗p were shifted within the design space by γ . The new value for x∗p was

[47.80◦;77.86◦;−150.31◦;21.01◦;−103.67◦]. (4.34)

Moving on to step 8, the new µh was found to be 0.2458 newtons and

∇H = [0.0053◦;−0.0083◦;−0.0156◦;−0.2097◦;0.0027◦]. (4.35)
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Using the best value of µh to date, 0.2458, α was found to be 0.999745 in step 9. Step 10, the

convergence criteria, did not signal convergence after this iteration, so one more iteration of steps

5 through 10 was needed. When a solution was converged on, the shift was found to be

γ = [6.046◦;6.000◦;5.986◦;6.034◦;6.038◦] (4.36)

and the scaling factor was found to be 0.999745. The solution found was 0.2458 newtons. These

values are all very close to the actual ones. More accuracy in finding xp,m and more stringent

convergence criteria could have produced more accurate results.

4.1.4 Optimization Results

Finding the point where the physics model gradient matched the measured hardware gradi-

ent proved to be difficult for this example. It was done by using a genetic algorithm, then passing

the best solution from the genetic algorithm into a gradient-based algorithm to improve it some-

what. This method was fairly effective, however, the accuracy of the solutions was not always

sufficient to allow the IDOE to converge on a single solution as happened in the examples in Chap-

ter 3. If the solutions are not sufficient, the solutions returned after each iteration of the IDOE

quickly approach the actual solution, µp,i, then bounce around it as shown in Figure 4.3.

Figure 4.3(a) shows three iterations of the unsuccessful optimization. The % error of the

last points 11.4%. Figure 4.3(b) shows another unsuccessful optimization that was allowed to run

for ten iterations. Notice that the solutions bounce around rather than converging on the actual

solution. In both cases, the % error is relatively high. Figure 4.4 shows three iterations of a

successful optimization with the IDOE. This run was successful because the genetic algorithm

was allowed to run for much longer, which produced better solutions to the problem of where

the gradients match. Figure 4.4 shows the values of the objective, lift, after each iteration of the

IDOE. As Figure 4.5 shows, the IDOE got close during the second iteration, but did not trip the

convergence criteria until the next iteration. The solution it found was within 0.048% of the actual

solution.
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The actual optimum value of the hardware, µ∗h,A was found for comparison using known

optimization methods. The optimization problem solved here is

max
xh

H(xh) (4.37)

subject to:

0◦ ≤xh1 ≤ 90◦ (4.38)

0◦ ≤xh2 ≤ 180◦ (4.39)

−180◦ ≤xh3 ≤ 180◦ (4.40)

0◦ ≤xh4 ≤ 90◦ (4.41)

−180◦ ≤xh5 ≤ 180◦ (4.42)

where:

γh = [6◦;6◦;6◦;6◦;6◦] (4.43)

H(xh) = P(xh− γh). (4.44)

µ∗h,A could only be found in this way because the hardware was actually represented by a physics-

based model. This was done outside of the other optimizations so that µ∗h,A was unknown to

them. The value of µ∗h,A was used only to asses the accuracy of the solutions returned by the other

optimization methods. For comparison, a DOE-based optimization was performed on the flapping

flight model. The results are shown in Figure 4.5. The dependent axis, % Error, shown in the

Figure, was calculated for each data point using the equation 3.19. The Box-Behnken best point

optimization converged on a point that was within 0.62% of the solution, reaching this value after

552 hardware calls. The IDOE found a solution within 0.048% of the solution after 18 calls to the

hardware. This is a 96.7% savings.

The IDOE was able to get very close to the solution with many fewer calls to the hardware

than the DOE-based optimization runs. This allows for much more in depth study of various

aspects of flapping flight due to decreased cost of optimization.
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(a) Unsuccessful Run: 3 Iterations

(b) Unsuccessful Run: 10 Iterations

Figure 4.3: Performance of Flapping Flight Model Tests with Insufficient Accuracy in the Matched
Gradient
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Figure 4.4: Successful Intelligent DOE Optimization

Figure 4.5: Performance of Flapping Flight Model Tests
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CHAPTER 5. LIMITATIONS AND CHALLENGES

Chapters 3 and 4 show that the IDOE can solve a wide variety of optimization problems.

There are, however, limitations to the effectiveness and applicability of the IDOE. One set of lim-

itations deals with the physics model used. Another category of limitations deals with challenges

in the implementation of the IDOE.

5.1 Limitations Associated with Physics Based Model

The first difficulty in implementing an IDOE is finding a physics based model of a system

similar to the hardware being studied. Flapping flight is a popular research topic and many models

are available in literature [21–23]. Models of other systems may not be as readily available. When

using models of similar systems, it is important that the systems are similar enough, because some

models may not match each other well enough to gain useful information. For example, a model

of ice cream melting in warm surroundings would probably not be able to assist in the design of

the scooter in Figure 1.1 at all, even if the ice cream model were very accurate. If there is not a

model available, one could be constructed, but that could be time consuming and costly, maybe

prohibitively so. However, the IDOE will not work properly if the systems are not sufficiently

similar.

Another limitation to the method is finding a model that is sufficiently representative of the

system being studied. Even if the systems are similar, their models may not be. Figure 1.1 shows a

dragster and scooter. These models would share many elements, however, a model of a motorcycle

would probably inform design of a scooter better than a dragster model would. It is important

to find models that match each other as closely as possible. Similar to this is the idea of model

stretching. The assumptions in Section 2.1 do not account for the fact that the objective surfaces

may not have the exact same shape. In other words, the physics model could be stretched in one

or more dimensions, giving it a slightly different shape. This leads to gradients that are slightly
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different than expected. Usually, the IDOE can still converge on a solution when one model is

stretched, but it is less efficient, requiring more calls to the hardware. An example of this is shown

in Figure 5.1. This is the same problem that was solved in Section 3.1, except that the hardware

has been stretched by a factor of 0.6. When solved with no stretching, the intelligent DOE found

the solution in four calls. As shown here with stretching, the intelligent DOE needed 12 hardware

calls to solve the problem. This is the same number that was needed by the surrogate response

surface optimization. This shows that the IDOE can solve problems that involve stretching, but

requires more hardware model calls.

A final limitation associated with the model is that the physics model solution may be

infeasible for the hardware. Physical hardware is usually bounded in some way and the physics

model may not have these restrictions. If the physics model prescribes a solution that is infeasible

for the hardware, the intelligent DOE can stall because it is trying to go to a certain region of the

design space, but is repeatedly pushed out of it by constraints.

5.2 Challenges Associated with Implementation of the IDOE

One major challenge in using the IDOE is finding the point where the physics model gra-

dient matches the measured hardware gradient. In some cases, such as the examples in sections

3.1 and 3.2, finding this point can be accomplished by gradient based algorithms. This method,

however, was ineffective in the 20 dimensional sine problem in Section 3.3, so a genetic algorithm

was used, which proved to be sufficient. In the flapping flight model optimization, a genetic al-

gorithm alone was not very effective and needed to be used in conjunction with a gradient based

algorithm in order to find the matching gradient. Even this was not as accurate as could be desired,

preventing smooth convergence. If this point is not found accurately enough, the IDOE will move

in the wrong direction and will be unable to find a solution.

Another challenge is determining when the IDOE has converged on a solution. Some

methods for accomplishing this are presented in Chapter 3, but these need to be adjusted to fit the

system being optimized. Other convergence criteria besides the ones listed here are possible. Any

convergence criteria, especially those involving convergence tolerances, need to be adjusted to fit

the model.
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5.3 Other Limitations

Another challenge is that of noise in the hardware model. Physical hardware usually has

inaccuracies so that a single point in the design space will return slightly different values on dif-

ferent runs. This can be a result of many factors. The problem this creates for the IDOE is that it

distorts the gradient measured by the hardware. This can send the IDOE in the wrong direction,

preventing convergence. One way to overcome this problem is to call the hardware multiple times

at each point and average the results. This is effective, but is rarely exactly accurate. Also, it

drastically increases the number of calls needed to find a gradient, increasing the overall cost of

the optimization. Systems whose noise is small compared to the output signal have less problems

with noise than systems with large noise to signal ratios, so it is preferable that the system have

as little noise as possible. Another thing that can help mitigate the noise problem is increasing

the step size used when taking the gradient. Increasing the step can help decrease the effects of

inaccurate hardware values. Choosing an appropriate step size can be difficult [13]. Using a step

size that is too small will amplify inaccuracies from the hardware, but a large step size can change

the calculated value of the gradient.

49



(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 5.1: Progression of the IDOE Through an Optimization of a Stretched Model
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Hardware in the loop (HIL) modeling is a powerful way of representing complex physi-

cal systems. It allows for accurate modeling of systems without dealing with all of the physical

phenomena at play. HIL models can be expensive to call, so variable fidelity optimization (VFO)

can be used to optimize these models. However, some HIL systems are too expensive even for

traditional VFO. A method is needed to optimize systems like this that requires fewer calls to the

expensive hardware.

An intelligent design of experiments (IDOE) has been developed to reduce the cost of VFO

for HIL systems. It uses an inexpensive physics-based surrogate to guide the optimization of an

expensive hardware model. This is accomplished by establishing a mapping between the models,

then adjusting the physics model so that it resembles the hardware more closely. The mapping is

defined in terms of a shift within the design space, γ , and a scaling on the objective values, α .

The values of these mapping parameters are found in Chapter 2 by first, finding the solution to

the physics model, second, finding the hardware gradient at the point where the physics model

solution is, then finding the point in the physics model space where the physics model shows the

same gradient that the hardware measured. Once this is done, the physics model is shifted and

scaled so that the points whose gradients match are in the same location. This makes the physics

model a better approximation of the hardware. These steps are repeated until the physics model

solution is in the same location as the hardware solution, at which point, the hardware solution is

known.

Through various tests, this intelligent DOE was shown to reduce the number of calls to

the hardware by up to 98% when compared to traditional DOE based optimization and up to 97%

when compared to traditional VFO using a DOE based surrogate. The intelligent DOE saved cost

on all of the tests conducted where the physics model was of the same form as the hardware.
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In Section 3.4, the physics model was of a different form than the hardware model. The IDOE

did converge on a solution, but took more calls than the surrogate response surface optimization.

The response surface was of the same form as the hardware model, so it fit very well and was

able to optimize using fewer hardware calls than the IDOE. As Section 3.5 discussed, the savings

became more dramatic as the number of design variables increased. This was due to the fact

that the number of calls to perform most unintelligent DOEs increased faster than linearly as the

number of variables increased, while the number of calls for the intelligent increased linearly with

the number of variables. It was also demonstrated in Section 3.3.3 that traditional DOE-based

optimization was sometimes unable to converge on the global solution. This could happen when

bounds were shrunk so that the global solution was infeasible.

The intelligent DOE presented in this thesis is able to optimize expensive HIL models using

fewer hardware calls than are required by traditional VFO. This allows engineers to better optimize

expensive hardware systems by drastically decreasing the cost of doing so. This means that more

can be learned from an expensive hardware model, which increases its usefulness.

6.2 Future Work

The effectiveness of the IDOE could be greatly improved if there were a better way to find

the point where the physics model has the same gradient as the measured hardware gradient. This is

mentioned as being a problem in Section 5.2. At present, this is a major limitation to the usefulness

of the IDOE. In problems with small numbers of design variables and simple objective surfaces,

such as those in Sections 3.1 and 3.2, this step was relatively straight forward and could be quickly

accomplished by gradient based algorithms. In Section 3.3, however, the large number of variables,

20, created a more complex objective surface, which prevented a gradient-based algorithm from

finding a solution. For this problem, a genetic algorithm was able to find the point accurately

enough. However, in the flapping flight example, Section 4.1.4, it was not able to do so. In this case,

a genetic algorithm was used to get close to the solution, then a gradient based algorithm was used

to converge to a solution. This method worked moderately well, but required many generations of

the genetic algorithm in order to get close enough to the correct solution. Unsurprisingly, increased

accuracy came as the number of generations increased. In summary, current methods work well

enough to verify the effectiveness of the intelligent DOE, but are time intensive enough to be
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cumbersome. A better way to find the matching gradient would greatly increase the usefulness of

the IDOE.
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APPENDIX A. MATLAB CODE FROM FLAPPING FLIGHT OPTIMIZATION

This appendix includes some of the main pieces of code used to complete the flapping flight

optimization.

A.1 Main Function

1 clc; clear variables; format compact;
2 tic; %timer for the whole program
3
4 %% User Inputs
5 %enter the name
6 LabViewOutputFileName=’Icecream’;
7 %define the starting physics inputs
8 x_p_star=[
9 %inputs for the sweep (phi)

10 90.0; %max sweep in degrees
11 %inputs for the pitch (eta)
12 85.3; %max pitch in degrees
13 -97.9; %phase shift in eta in degrees
14 %inputs for deviation (theta)
15 8.10; %max deviation in degrees
16 -109.2];%phase shift in theta direction in degrees
17
18 %% Set up stuff for the algorithm
19 global scaling; scaling=1;%Set the starting scaling factor to one.
20 shift=zeros(length(x_p_star),1); %Set the starting shift to zero.
21
22 global HardwareUpperBound HardwareLowerBound
23 global PhysicsUpperBound PhysicsLowerBound
24
25 [HardwareLowerBound,HardwareUpperBound,PhysicsLowerBound,...
26 PhysicsUpperBound]=...
27 FormHardwareAndPhysicsBounds(); %form the bounds
28
29 %% Find the solution using the physics model
30 OPTIONS1 = optimset(’MaxFunEvals’,5000,’TolFun’,1e-17,’Display’,’iter’...
31 ,’Algorithm’,’active-set’);
32 [x_p_star_initial,mu_p_target,junk1,output1]=fmincon(@(x_p_star)...
33 Physics(x_p_star,shift,scaling),x_p_star,[],[],[],[],...
34 PhysicsLowerBound,PhysicsUpperBound,[],OPTIONS1); %#ok<ASGLU>
35
36 gradPStar=FindPhysicsGradient(x_p_star_initial,shift);
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37
38 %count the physics model calls
39 PhysicsModelCalls=output1.funcCount;
40
41 % initialize x_p_star
42 x_p_star=x_p_star_initial;
43
44 %% if one of the inputs (x_p_star) is out of bounds, set it equal to...
45 % the bound to make it binding
46 for j=1:length(x_p_star)
47 if x_p_star(j)>HardwareUpperBound(j)
48 x_p_star(j)=HardwareUpperBound(j);
49 elseif x_p_star(j)<HardwareLowerBound(j)
50 x_p_star(j)=HardwareLowerBound(j);
51 end
52 end
53
54 %convert x_p_star to x_h
55 x_h=x_p_star;
56
57 %% call the hardware at the x_p_star_initial
58 [mu_h_1]=Hardware(x_h,LabViewOutputFileName); %mu_h_1=lift
59
60 %find gradient at x_p_star_initial
61 [gradH,HardwareModelCalls]=...
62 FindHardwareGradient(x_h,HardwareUpperBound,HardwareLowerBound,...
63 mu_h_1,1,LabViewOutputFileName);
64 mu_h_forScaling=mu_h_1; %this is the running max for the scaling
65
66 %% make a vector of outputs
67 vec_of_x_h(1,1)=1;
68 vec_of_x_h(2,1)=mu_h_1;
69 for l=3:length(x_h)+2 %x_h at the iteration
70 vec_of_x_h(l,1)= x_h(l-2);
71 end
72 for l=length(x_h)+3:2*length(x_h)+2 %gradH at the iteration
73 vec_of_x_h(l,1)= gradH(l-length(x_h)-2);
74 end
75 vec_of_x_h(l+1,1)=scaling;
76
77 %% setup things for the loop
78 MaxNumberOfLoops=15;
79 i=2; %the iterator in the while loop
80 HasConverged=false;
81 optimizationFunction=’SolveWithHybridAlgorithm’; %fmincon or fsolve
82
83 %% The loop
84 while HasConverged==false && i<=MaxNumberOfLoops
85
86 display(i);
87
88 %% find the point where the physics model...
89 %predicts What the Hardware model measured
90
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91 if strcmp(optimizationFunction,’fmincon’)
92 %set up the starting point
93 fminconStartPoint=x_p_star+[+.1;+.1;+.1;+.1;+.1];
94 %find the point
95 OPTIONS2 = optimset(’MaxFunEvals’,50000,’TolFun’,1e-3,’Display’...
96 ,’iter’,’MaxIter’,5000);
97 [x_p_toMatchHardware,exitflag,error2,output2]=...
98 fmincon(@(x_p_star) GradientDifference(x_p_star,shift,gradH...
99 ,optimizationFunction),fminconStartPoint,[],[],[],[],...

100 PhysicsLowerBound,PhysicsUpperBound,@(x_p_star)...
101 nonlcon(x_p_star,scaling,shift),OPTIONS2); %#ok<ASGLU>
102 %count the physics model calls
103 PhysicsModelCalls=PhysicsModelCalls+output2.funcCount;
104 elseif strcmp(optimizationFunction,’SolveWithHybridAlgorithm’)
105 [x_p_toMatchHardware,error2,exitflag,output2]=...
106 FindMatchingGradientWithHybrid(shift,gradH); %#ok<NASGU,ASGLU>
107 elseif strcmp(optimizationFunction,’fsolve’)
108 fsolveStartPoint=x_p_star+[+.01;+.01;+.01;+.01;+.01];
109 OPTIONS3 = optimset(’TolFun’, 1e-7,’Display’,’notify’,’MaxIter’...
110 ,5000,’MaxFunEvals’,5000,’MaxTime’,120);
111 [x_p_toMatchHardware,error2,exitflag,output2]=...
112 fsolve(@(x_p_star) GradientDifference(x_p_star,shift,gradH...
113 ,optimizationFunction),fsolveStartPoint,OPTIONS3); %#ok<ASGLU>
114 PhysicsModelCalls=PhysicsModelCalls+output2.funcCount;
115 elseif strcmp(optimizationFunction,’SolveWithOmniscience’)
116 [x_p_toMatchHardware,error2,exitflag] =...
117 FindMatchingPointWithOmniscence(x_p_star_initial,shift,gradH...
118 ,PhysicsUpperBound,PhysicsLowerBound); %#ok<NASGU>
119 elseif strcmp(optimizationFunction,’SolveWithGeneticAlgorithm’)
120 [x_p_toMatchHardware,error2,exitflag,output2]=...
121 FindMatchingGradientWithGA(shift,gradH); %#ok<NASGU,ASGLU>
122 else
123 diplay(’enter a valid optimiztion function.’);
124 end
125
126 %% Calculate stuff for the algorithm
127 %find the physics objective at x_p_toMatchHardware
128 mu_p=Physics(x_p_toMatchHardware,shift,scaling);
129
130 %update the shift
131 shift=shift+(x_p_star-x_p_toMatchHardware);
132
133 %update x_p_star
134 x_p_star=x_p_star_initial+shift;
135
136 %% calculate more stuff
137 %convert x_p_star to x_h
138 x_h=x_p_star;
139
140 %call hardware at the new x_h
141 [mu_h_1]=Hardware(x_h,LabViewOutputFileName);
142 HardwareModelCalls=HardwareModelCalls+1;
143 [gradH,HardwareModelCalls]=FindHardwareGradient(x_h,...
144 HardwareUpperBound,HardwareLowerBound,mu_h_1,...
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145 HardwareModelCalls,LabViewOutputFileName);
146 ThisShouldBeZero=(gradPStar-gradH)’;
147
148 %% Update the scaling
149 if mu_h_1<mu_h_forScaling
150 mu_h_forScaling=mu_h_1;
151 end
152
153 FindNewScalingFactor(mu_h_forScaling,mu_p_target);
154
155 %% add the iteration results to the vector of outputs
156 vec_of_x_h(1,i)=i;
157 vec_of_x_h(2,i)=mu_h_1;
158 for l=3:length(x_h)+2 %x_h at the iteration
159 vec_of_x_h(l,i)= x_h(l-2);
160 end
161 for l=length(x_h)+3:2*length(x_h)+2 %gradH at the iteration
162 vec_of_x_h(l,i)= gradH(l-length(x_h)-2);
163 end
164 vec_of_x_h(l+1,i)=scaling;
165 vec_of_x_h(l+2,i)=error2;
166
167 %% Check for convergance and exit the loop if it has converged
168
169 %if the last three objective values are equal
170 %the amount of change in objective that is considered zero
171 converganceTolerance=.001;
172 if i>=4 && ...
173 sqrt((vec_of_x_h(2,i-1)-vec_of_x_h(2,i-2))ˆ2)<...
174 converganceTolerance &&...
175 sqrt((vec_of_x_h(2,i-1)-vec_of_x_h(2,i-3))ˆ2)<...
176 converganceTolerance
177 HasConverged=true;
178 display(’Converged by Repeated Objective Values’);
179 display(sprintf([’The Solution is: ’ num2str(mu_h_1)]));
180 display(sprintf([’The Hardware Was Called ’,...
181 num2str(HardwareModelCalls),’ Times.’]));
182 break
183 end
184
185 %check if the gradient equals the gradient at the physics solution
186 gradMagCutoff=.00000001;
187
188 if norm(gradPStar-gradH)<gradMagCutoff;
189 HasConverged=true;
190 display(’The Gradient Equals the Gradient at the Physics Solution.’);
191 display([’The Solution is ’ num2str(mu_h_1)]);
192 display(sprintf([’The Hardware Was Called ’,...
193 num2str(HardwareModelCalls),’ Times.’]));
194 end
195
196 %% get ready for the next iteration
197 %increment i for the next run of the loop
198 if HasConverged == false
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199 i=i+1;
200 end
201 end
202
203 %calculate and print the performance results
204 if HasConverged
205 design=bbdesign(20);
206 bbHardwareCalls=1*length(design(:,1))*1;%1 DOEs,1 flap per test
207 display(sprintf([’A Box Behnken would take ’ num2str(bbHardwareCalls)...
208 ’ calls.’]));
209 CallSavings=100*(1-HardwareModelCalls/bbHardwareCalls);
210 display(sprintf([’This is ’, num2str(CallSavings), ...
211 ’ percent less than five box behnken experiments.’]));
212 else
213 display(’The Convergance Criteria Were Not Met.’);
214 end
215
216 %plot resutls
217 subplot(2,1,1)
218 plot(vec_of_x_h(1,:),vec_of_x_h(2,:))
219 xlabel(’iteration’);
220 ylabel(’lift’);
221 subplot(2,1,2)
222 plot(vec_of_x_h(1,:),vec_of_x_h(14,:))
223 ylabel(’GA fitness’);
224
225 plot(vec_of_x_h(1,:),-1.*vec_of_x_h(2,:),’ro’)
226 xlabel(’Iteration’);
227 ylabel(’Lift (n)’);
228 hline=refline(0,-mu_p_target);
229 legend(’Progression of Intelligent DOE’,’\mu_{p,i}’);
230
231 %% clean up the workspace
232 clear output j junk1 OPTIONS2 OPTIONS1 k Domain
233 clear HardwareRange PhysicsRange error2 showPlotOfEachItertion
234 clear CallSavings MaxNumberOfLoops SaveMovie ShowMovieAfterRun
235 clear bbHardwareCalls scrsz surfaceHardware surfacePhysics
236 clear x1axis x2axis writerObj PlotHardware PlotPhysics design
237 clear output1 output2 l junk0 OPTIONS3 exitflag mu_h_2
238 clear optimizationFunction ub lb LabViewOutputFilename
239 clear gradMagCutoff

A.2 Physics Model

1 function [ Lift ] = Physics( x_p,shift,scaling )
2 %UNTITLED Summary of this function goes here
3 % Detailed explanation goes here
4
5 %% user inputs
6 x_p_shifted=(x_p-shift).*pi./180;
7
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8 phi_m =x_p_shifted(1);%max sweep in rad
9 eta_m =x_p_shifted(2);%max pitch in rad

10 phi_eta =x_p_shifted(3);%phase shift in eta in rad
11 theta_m =x_p_shifted(4);%max deviation in rad
12 phi_theta=x_p_shifted(5);%phase shift in theta direction in rad
13
14 % phi_m=90*(pi/180); %max sweep in rad
15 % theta_m=8.1*pi/180; %max deviation in rad
16 % eta_m=85.3*pi/180; %max pitch in rad
17 theta_0=2.67*pi/180; %constant offset in theta direction n rad
18 eta_0=-90*pi/180; %constant offset in eta direction n rad
19 % phi_theta=-109.2*pi/180; %phase shift in theta direction in rad
20 % phi_eta=-97.9*(pi/180); %phase shift in eta in rad
21
22 %% define some parameters
23 cBar=18.26; %mean chord length in mm
24 R=51.9; %wing radius in mm
25 numberOfSlices=5; %number of chords that will be used
26
27 rho_f=1.29/(1000ˆ3); %density of air in kg/mmˆ3
28 b=.01; %thickness of wing in mm
29 mu1=.2;
30 mu2=.2;
31 ct=1.678;
32 cr=pi;
33 cd_of_0=.07;
34 cd_of_piOver2=3.06;
35 f=19; %flapping frequancy in Hz
36
37 K=.796; %shape of phi 0<K<1
38 C_eta=.711; %shape of eta 0<C_eta<inf
39 N=2; %harmonic of theta
40
41 Mwing=47e-6; %mass of wing in kg
42 m=1648e-6; %mass of insect in kg
43
44 %% calculate vetors of r values and c(r) values
45 dr=R/numberOfSlices; %width of slice in mm
46 rValues=(dr/2:dr:R-dr/2); %r cordinate of center of each slice
47 c_of_rValues=(4*cBar/pi).*sqrt(1-(rValues.ˆ2)./(Rˆ2));
48
49 %% calculate wing kinematics
50 dt=1/(50*f);
51 t=(0:dt:1/f)’; %time in seconds from 0 to one period
52
53 %sweep in rad
54 phi=(phi_m/asin(K))*asin(K*sin(2*pi*f.*t));
55 phiDot=2*phi_m*K*cos(2*pi*f.*t)*pi*f./sqrt(1-Kˆ2.*sin(2*pi*f.*t).ˆ2)./...
56 asin(K); %in rad
57 phiDotDot=-4*phi_m*K*sin(2*pi*f.*t)*piˆ2*fˆ2./sqrt(1-Kˆ2.*sin(2*pi*f.*t)...
58 .ˆ2)./asin(K)+...
59 4*phi_m*Kˆ3*cos(2*pi*f.*t).ˆ2*piˆ2*fˆ2./(1-Kˆ2.*sin(2*pi*f.*t).ˆ2)...
60 .ˆ(3/2)./asin(K); %in rad
61
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62 %pitch in rad
63 eta=eta_m*tanh(C_eta*sin(2*pi*f.*t+phi_eta))./tanh(C_eta)+eta_0;
64 etaDot=1/tanh(C_eta).*(2.*eta_m.*(1-tanh(C_eta.*sin(2*pi*f.*t+phi_eta))...
65 .ˆ2).*C_eta.*cos(2*pi*f.*t+phi_eta).*pi.*f);
66
67 %deviation in rad
68 theta=theta_m.*cos(2*N*pi*f.*t+phi_theta)+theta_0;
69 thetaDot=-theta_m*2*N*pi*f.*sin(2*N*pi*f.*t+phi_theta);
70 thetaDotDot=-theta_m*(2*N*pi*f)ˆ2.*cos(2*N*pi*f.*t+phi_theta);
71
72 %% loop through each chord
73 totalLift=0;
74 for j=1:length(rValues)
75
76 r=rValues(j); %radius to current chord in mm
77 c_of_r=c_of_rValues(j); %chord length in mm
78
79 %% calculate intermediate things
80 m11=.25*pi*rho_f*b*b; %kg/mm
81 m22=.25*pi*rho_f*c_of_rˆ2; %kg/mm
82 % I_a=(1/128)*pi*rho_f*(c_of_rˆ2+b*b)ˆ2; %kg*mm
83
84 %% calculate velocities
85 vxPrime=r*(phiDot.*cos(theta).*cos(eta)+thetaDot.*sin(eta)); %in mm/s
86 vyPrime=r*(thetaDot.*cos(eta)-phiDot.*cos(theta).*sin(eta)); %in mm/s
87
88 axPrime=r.*((phiDotDot.*cos(theta)+thetaDot.*(etaDot-phiDot.*...
89 sin(theta))).*cos(eta)+(thetaDotDot-etaDot.*phiDot.*cos(theta))...
90 .*sin(eta)); %in mm/sˆ2
91 ayPrime=r.*((thetaDot.*(etaDot-phiDot.*sin(theta))-phiDotDot.*...
92 cos(theta)).*sin(eta)+(thetaDotDot-etaDot.*phiDot.*cos(theta))...
93 .*cos(eta)); %in mm/sˆ2
94
95 %% calculate alpha(t)
96 alpha=zeros(length(t),1); %initialize alpha
97 for i=1:length(t)
98 R1=[cos(eta(i)),sin(eta(i));-sin(eta(i)),cos(eta(i))];
99 R2=[-sin(phi(i)),cos(phi(i)),0;-sin(theta(i))*cos(phi(i)),...

100 -sin(theta(i))*sin(phi(i)),cos(theta(i))];
101 Vel=pinv(R1*R2)*[vxPrime(i);vyPrime(i)];
102
103 if Vel(2)>=0 %when forward velocity in aerodynamic frame >=0
104 alpha(i)= eta(i)-atan(Vel(3)/Vel(2)); %upstroke
105 else
106 alpha(i)=-eta(i)+atan(Vel(3)/Vel(2)); %downstroke
107 end
108 end
109
110 %% calculate viscosity and curculation terms
111 Fvx=.5.*rho_f.*c_of_r.*(cd_of_0.*cos(alpha).ˆ2+cd_of_piOver2.*...
112 sin(alpha).ˆ2).*sqrt(vxPrime.ˆ2+vyPrime.ˆ2).*vxPrime.*dr;%kg*mm/sˆ2
113 Fvy=.5.*rho_f.*c_of_r.*(cd_of_0.*cos(alpha).ˆ2+cd_of_piOver2.*...
114 sin(alpha).ˆ2).*sqrt(vxPrime.ˆ2+vyPrime.ˆ2).*vyPrime.*dr;%kg*mm/sˆ2
115
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116 Tau=-.5.*ct.*c_of_r.*sqrt(vxPrime.ˆ2+vyPrime.ˆ2).*sin(2.*alpha)+...
117 .5.*cr.*(c_of_r.ˆ2).*etaDot; %in mmˆ2/s
118
119 %% forces in wing frame
120 dFxPrime=((((c_of_r/(cBar*R))*Mwing+m22).*vyPrime.*etaDot-rho_f.*...
121 Tau.*vyPrime-m11.*axPrime).*dr-Fvx)/1000; %in N (kg*m/sˆ2)
122 dFyPrime=(((-(c_of_r/(cBar*R))*Mwing+m11).*vxPrime.*etaDot+rho_f.*...
123 Tau.*vxPrime-m22.*ayPrime).*dr-Fvy)/1000; %in N (kg*m/sˆ2)
124
125 %% rotate forces back into labratory frame
126 labForces=zeros(3,length(t));
127 for i=1:length(t)
128 R1=[cos(eta(i)),sin(eta(i));-sin(eta(i)),cos(eta(i))];
129 R2=[-sin(phi(i)),cos(phi(i)),0;-sin(theta(i))*cos(phi(i)),...
130 -sin(theta(i))*sin(phi(i)),cos(theta(i))];
131
132 labForces(:,i)=pinv(R1*R2)*[dFxPrime(i);dFyPrime(i)]; %in N
133 vectorMag=sqrt(labForces(1,i)ˆ2+labForces(2,i)ˆ2+labForces(3,i)ˆ2);
134 labForces(:,i)=labForces(:,i)./vectorMag; %normalize
135 end
136
137 totalLift=totalLift+sum(labForces(3,:)).*dt;
138
139 end
140
141 %% calculate lift
142 Lift=2*totalLift; %there are two wings
143 LiftToMassRatio=Lift/(m*9.81);
144 Lift=-scaling*Lift;
145 % display(LiftToMassRatio);
146 %
147 % subplot(3,1,1)
148 % plot(t,phi,’:’,t,eta,’--’,t,theta);
149 % legend(’\phi’,’\eta’,’\theta’);
150 % ylabel(’rad’);
151 %
152 % subplot(3,1,2)
153 % plot(t,alpha);
154 % ylabel(’\alpha (rad)’);
155 %
156 % subplot(3,1,3)
157 % plot(t,vxPrime,’:’,t,vyPrime)
158 % legend(’v_x’’’,’v_y’’’);
159 % xlabel(’Time (s)’);
160 % ylabel(’mm/s’);
161
162
163 end
164

65



A.3 Find Point with Matching Gradient

1 function [x_p_toMatchHardware,error2,exitflag,output2] =...
2 FindMatchingGradientWithHybrid(shift,gradH)
3 %This is the main function for a genetic algorithm
4
5 %bring in global variables
6 global PhysicsUpperBound PhysicsLowerBound
7
8 PUB=PhysicsUpperBound;
9 PLB=PhysicsLowerBound;

10 ShiftVector=6.*[1;%x1 in degrees
11 1; %x2
12 1;
13 1;
14 1];
15
16 PhysicsUpperBound=-ShiftVector+[41.6217165013473;71.7495633590574;...
17 -156.404542398670;15;-109.827704076146]+1+2.*shift+0;
18 PhysicsLowerBound=-ShiftVector+[41.6217165013473;71.7495633590574;...
19 -156.404542398670;15;-109.827704076146]-1+2.*shift-0;
20
21 %define an initial population
22 populationSize=40; %use a multiple of 4
23 numberOfGenerations=1000;
24
25 population=zeros(length(PhysicsUpperBound),populationSize);
26
27 for i=1:populationSize
28 for j=1:length(PhysicsUpperBound)
29 population(j,i)= PhysicsLowerBound(j)+rand(1)*...
30 (PhysicsUpperBound(j)-PhysicsLowerBound(j));
31 end
32 end
33
34 %evaluate the fitness of each gene
35 populationFitness=zeros(1,populationSize);
36 for j=1:populationSize
37 populationFitness(j)=...
38 GradientDifference(population(:,j),shift,gradH,’fmincon’);
39 end
40
41 progressOverTime=ones(numberOfGenerations,1).*min(populationFitness);
42 for i=1:numberOfGenerations
43
44 %determine which genes will become parents
45 [parents,parentFitness]=performSelection(population,populationFitness);
46
47 %perform crossover
48 [children] = performCrossover(parents);
49
50 %perform mutation;
51 mutantChildren=performMutation(children,i,numberOfGenerations);
52
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53 %evaluate the fitness of each child
54 childFitness=parentFitness.*0;
55 for j=1:populationSize/2
56 childFitness(j)=GradientDifference(mutantChildren(:,j),shift,...
57 gradH,’fmincon’);
58 end
59
60 population=[parents,mutantChildren];
61 populationFitness=[parentFitness,childFitness];
62 progressOverTime(i)=min(populationFitness);
63
64 figure(1)
65 subplot(2,1,1)
66 plot(populationFitness,’*’);
67 title(sprintf([’Generation ’ num2str(i) ’ of ’ ...
68 num2str(numberOfGenerations)]));
69 refline(0,min(populationFitness));
70 ylim([0 2]);
71 subplot(2,1,2)
72 plot(progressOverTime);
73
74 end
75
76 %find the most fit of the last population
77 [x_p_toMatchHardware,error2]=findTheWinner(population,populationFitness);
78 exitflag=0;
79 output2=0;
80
81 PhysicsUpperBound=PUB;
82 PhysicsLowerBound=PLB;
83
84 useGradientMethods=true;
85 functionToUse=’fsolve’;
86
87 if useGradientMethods==true
88 if strcmp(functionToUse,’fsolve’)
89 fsolveStartPoint=x_p_toMatchHardware;
90 %find the point
91 OPTIONS3 = optimset(’TolFun’, 1e-9,’Display’,’iter’,’MaxIter’,...
92 5000,’MaxFunEvals’,1000,’TolX’,1e-15);
93 [x_p_toMatchHardware,error3,exitflag,output2]=...
94 fsolve(@(x_p_toMatchHardware) GradientDifference(...
95 x_p_toMatchHardware,shift,gradH,’fsolve’),fsolveStartPoint...
96 ,OPTIONS3);
97 error2=sqrt(error3(1)ˆ2+error3(2)ˆ2+error3(3)ˆ2+error3(4)ˆ2+...
98 error3(5)ˆ2);
99 elseif strcmp(functionToUse,’fmincon’)

100 fminconStartPoint=x_p_toMatchHardware;%set up the starting point
101 %find the point
102 OPTIONS2 = optimset(’MaxFunEvals’,5000,’TolFun’,1e-7,’Display’,...
103 ’iter’,’MaxIter’,5000,’TolX’,1e-12);
104 [x_p_toMatchHardware,error2,exitflag,output2]=fmincon(@(...
105 x_p_toMatchHardware) GradientDifference(x_p_toMatchHardware,...
106 shift,gradH,’fmincon’),fminconStartPoint,[],[],[],[],...
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107 PhysicsLowerBound,PhysicsUpperBound,[],OPTIONS2); %#ok<ASGLU>
108 end
109 end
110 end
111
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