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ABSTRACT 
 

Analytical Thermal Model of Friction Stir Welding with 
Spatially Distributed Heat Source  

 
Gordon Reese 

Department of Mechanical Engineering 
Master of Science 

 
Friction stir welding (FSW) has been studied extensively for the past two decades. 

Thermal modeling has been of particular interest, as the quality of the weld is dependent upon 
the temperature history of the work piece during the process. Since direct temperature 
measurements of the welded zone are not possible, an analytical model was developed to predict 
the temperature in this area. This model requires parameters that cannot be easily experimentally 
determined, so a best fit for these parameters was acquired via regression analysis by comparing 
the model to experimental data acquired outside of the weld zone. The model was then validated 
by comparing it to additional temperature data, not including the data used for regression 
analysis.  
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NOMENCLATURE 
 
L length of workpiece, m 

W half width of workpiece, m 

S depth of workpiece, m 

v velocity of FSW tool, m/s 

T temperature, K 

q̇ volumetric heat generation, W/m3 

k thermal conductivity, W/m-K 

𝛼t thermal diffusivity, m2/s 

t time, s 

Dshoulder diameter of tool shoulder, m 

α shoulder cone angle 

Hprobe height of probe, m 

Dprobe diameter of probe, m 

rs outer length of heat source model, m 

rp inner length of heat source model, m 

rs outer width of heat source model, m 

rp inner width of heat source model, m 

hs inner depth of heat source model, m 

hp outer depth of heat source model, m 

Qs heat generated by shoulder, W 

Qp heat generated by probe, W 

fs heat fraction 𝑄𝑠
𝑄𝑡𝑜𝑡

 

fo heat fraction 𝑄𝑜
𝑄𝑡𝑜𝑡

 

Qtot total heat generated, W 

Qo heat transferred through the backing plate, W 

H Heaviside step function 

δ Dirac delta function 
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h convection coefficient, W/m2-K 

U overall heat transfer coefficient through backing plate, W/m2-K 

T∞ ambient temperature, K 

ξ nondimensional length 𝑥
𝐿
 

η nondimensional width 𝑦
𝑊

 

ζ nondimensional depth 𝑧
𝑆
 

τ nondimensional time 𝛼𝑡𝑡
𝐿2

 

ξo nondimensional velocity 𝑣𝑡
𝐿

 

θ nondimensional temperature 𝑊𝑆𝑘
𝑄𝑡𝑜𝑡𝐿

(𝑇 − 𝑇∞) 

Bi Biot number ℎ𝐿
𝑘

 

μ ratio of surface heat transfer 𝑈
ℎ
 

ξs nondimensional length 𝑟𝑠
𝐿

 

ξp nondimensional length 𝑟𝑝
𝐿

 

ηs nondimensional width 𝑟𝑠
𝑊

 

ηp nondimensional width 𝑟𝑝
𝑊

 

ζs nondimensional depth 𝑟𝑠tan (𝛼)
𝑆

 

ζp nondimensional depth ℎ𝑝
𝑆

 

A length ratio 𝑊
𝐿

 

B length ratio 𝑆
𝐿
 

fp heat fraction 𝑄𝑝
𝑄𝑡𝑜𝑡

 

ω angular speed of tool, rad/s 

Pmech mechanical power of FSW tool, W  

ftherm fraction of FSW tool power converted to heat 𝑄𝑡𝑜𝑡
𝑃𝑚𝑒𝑐ℎ
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1 INTRODUCTION 

1.1 Background 

Friction stir welding (FSW) is a solid-state joining process developed by researchers at 

The Welding Institute in 1991 (Thomas 1991). A rotating tool plunges into a joint interface (see 

Figure 1-1), generating frictional heat and stirring material together to create a welded joint (see 

Figure 1-2). The solid-state nature of this process results in welds with superior properties when 

compared to conventional welding processes, as the temperature of the material remains below 

its melting point. 

 

Figure 1-1: Diagram of FSW tool and process 

 

Figure 1-2: Different regions of the FSW process 
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Primarily, FSW is applied in the joining of aluminum parts where post-weld heat 

treatment is difficult or impossible. Aerospace, automotive, railway, and shipbuilding industries 

have successively applied this technology, including the manufacturers of the Delta series 

rockets (Uday 2010). Applications with different metals are now being investigated, as the solid-

state nature of the joining process of FSW results in very desirable weld properties, without the 

porosity or cracking due to solidification found in conventional welding techniques (Gould 

1998). 

Phenomena associated with FSW involve complex thermomechanical interactions 

between the tool and the workpiece material. The rapidly rotating tool induces three-dimensional 

mixing of the material while containg the material flow with downward force. Additionally, the 

process is asymmetric about the weld line. The side of the weld line where the FSW tool is 

rotating towards the direction of the tool path is referred to as the advancing side, while the other 

side is referred to as the retreating side (Cho 2005). 

The mechanical properties of material undergoing a FSW process are dependent upon its 

temperature history, so it is of interest to manufacturers to either directly measure the 

workpiece’s temperature or predict it using a model. Direct measurement in the stirred weld zone 

itself is impossible, as instruments placed there would be destroyed by the stirring process. 

Additionally, direct measurement requires extensive preparation and drilled holes for 

thermocouple placement, making this method of evaluating temperature of welds prohibitively 

time-consuming and expensive. Therefore, an accurate analytical thermal model remains the 

lowest cost and most desirable method of predicting the temperature history inside the stirred 
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weld zone. An accurate model can be parameterized and used to optimize for cooling rates and 

peak temperatures to achieve desired temperature histories in manufacturing applications. 

1.2 Discussion of Previous Work 

Thermal modeling of FSW is complicated by the coupling of the work done by the FSW 

tool to deform the welded material and the frictional heat generated (Nandan 2008). Many 

numerical models have been employed, using the finite element method to account for such 

complexities such as variable contact resistance between the workpiece and the backing plate 

(Soundararajan 2005), torque-based heat input (Khandkar 2003), and the mechanical 

deformation of the workpiece material (Hamilton 2008). Results from these models agree well 

with experimental data, although they require significant computational resources and set up 

(Schmidt 2008).  

Significant work has also been performed on analytical models for FSW, which are less 

computationally expensive than numerical models. Most of these analytical models are based on 

Rosenthal’s foundational study on moving punctual heat sources (Rosenthal 1941). Much of the 

work on these analytical models focuses on the proper treatment of the heat generation in FSW. 

One of the earlier studies in this area, conducted by McClure et al (McClure 1998) described the 

heat generated by the FSW tool in terms of rotational speed and pressure against the workpiece. 

Schmidt et al (Schmidt 2004) developed a more detailed model that allows the heat generation of 

the FSW tool to be expressed as a function of the stirred material’s yield stress, the geometry of 

the FSW tool, the tool’s rotational speed, and the frictional condition at the tool-workpiece 

interface. Ferro and Bonollo (Ferro 2009) built upon this model of heat generation and used an 

iterative approach to determine the temperature field of a workpiece undergoing FSW. Vilaca et 
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al (Vilaca 2005) developed a similar analytical model, also accounting for the asymmetry in 

temperature distribution due to the rotating motion of the tool. 

These analytical thermal models of FSW are fairly sophisticated and have been 

demonstrated to agree reasonably well with experimental data under specific circumstances 

(Nandan 2008). Generally, these models either rely on input data from previous experiments for 

best accuracy, or only show accurate results when compared to a limited set of data in the 

midplane of the workpiece. Additionally, since these thermal models are based on Rosenthal’s 

mathematical treatment (Rosenthal 1941) in which the source is modeled using a singular Dirac 

delta function, the predicted temperatures near the heat source are significantly overestimated. 

Since it is of great interest to determine the thermal history of the entire workpiece—especially 

in the stirred zone, near the heat source—an alternative analytical model for the heat source that 

will accurately predict temperatures is herein proposed. This analytical model may be applied to 

different welds and compare favorably with data obtained at various depths and distances from 

the welding tool. 

1.3 Objective 

The purpose of this study is to develop an analytical model of friction stir welding that 

predicts the thermal history at any location within the workpiece during a FSW process. The 

frictional heat generated at the FSW tool-workpiece interface is modeled with a spatially 

distributed heat source, rather than the point source used in other current analytical models 

(Ferro 2009). This distributed heat source allows for finite temperature predictions near the FSW 

tool, unlike the unrealistically high temperatures predicted near the tool with point source 

models. 
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This model will be hereafter referred to as the analytical distributed source (ADS) model. 

In the ADS model, the total heat input used in this model is calculated with Schmidt’s model 

(Schmidt 2004) and the heat source is distributed over a volume, rather than modeled as a point 

source. The ADS model predicts finite temperatures in the stirred zone and throughout the 

workpiece. Schmidt’s model (Schmidt 2004) requires parameters that describe the heat 

generation and the thermal boundary conditions, which are determined by inverse modeling of 

far-field temperature measurements. A small subset of data collected by Huang (Huang 2008) 

and Furse (Furse 2010) is used to obtain estimates for these key model parameters, such as the 

conductance through the backing plate and the fraction of tool power converted to heat by the 

shoulder and pin. The ADS model’s predicted temperatures are compared with the remaining 

data collected by Huang (Huang 2008) and Furse (Furse 2010). 

1.4 Overview 

The development of the ADS model is detailed in the following chapter. The resulting 

governing equation and boundary conditions applied are presented with a discussion of the key 

parameters and assumptions made in the development of the model. The experiments used to 

assess the model are also outlined at the end of Chapter 2. The results from this validation are 

shown in Chapter 3, along with observations about the model's behavior. Temperature contours 

calculated by the model are given in the end of Chapter 3. Chapter 4 draws conclusions from the 

results depicted in Chapter 3. 
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2 MODEL DESCRIPTION AND VALIDATION 

2.1 Solution of Heat Diffusion Equation 

2.1.1 Governing Equation 

The three-dimensional, transient heat diffusion equation describes the transfer of heat 

within the workpiece based on Langrangian perspective, which is illustrated in Figure 2-1. The 

thermophysical properties of the workpiece are assumed to be uniform and independent of 

temperature. 

 

Figure 2-1: Diagram of the workpiece and the moving heat source 

Under these conditions, the governing differential equation is as follows. 

 
𝜕2𝑇
𝜕𝑥2

+
𝜕2𝑇
𝜕𝑦2

+
𝜕2𝑇
𝜕𝑧2

+
𝑞
𝑘
̇
=

1
𝛼𝑡
𝜕𝑇
𝜕𝑡

 

 

2-1 
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2.1.2 Overall Energy Balance 

The mechanical energy of the FSW tool is converted into thermal energy as heat and into 

the kinetic energy associated with the bulk motion of workpiece material and the vibration of the 

supporting structures. The fraction of the total power, Qtot, converted to heat and transferred into 

the workpiece is defined by the factor ftherm, which is discussed further in Section 2.2.2. Consider 

a section of the workpiece to be the system as illustrated in Fig. 2-2. In the ADS model, heat is 

assumed to be generated due to friction within the t-shaped region shown below. This heat is 

stored within the system, or it is transferred out of the system. Heat is transferred out of the 

system by convection from the exposed surface or is conducted further into the workpiece and 

into the supporting plate below.  

 

Figure 2-2: Diagram of control volume for energy balance 

2.1.3 FSW Tool Description 

The FSW tool itself is a cylindrical piece consisting of a “probe” and a “shoulder,” as 

depicted in Figure 2-3, which rotates at speed ω. The probe plunges into the workpiece while 

the shoulder moves across the surface. Frictional heating at the rotating surfaces softens the 

workpiece material such that material begins to plastically deform about the FSW tool. This 
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heating can be modeled as the product of the friction stress at the interface and the relative tool 

velocity. Commonly, this friction stress is modeled as Coulomb friction, using the downward 

pressure of the tool and the proportionality coefficient μ (Maalekian 2008). 

 

Figure 2-3: Detailed view of the FSW tool 

Frictional heating in FSW is complicated by the plastic deformation of the workpiece 

material. This deformation results in significant variation in the stress at the tool-workpiece 

interface, as the material shears with the rotating tool surfaces, rather than rubbing against them. 

This condition is sometimes referred to as “sticking,” and the extent to which this occurs is 

highly dependent upon the temperature and mechanical properties of the material (Schmidt 

2005). Additionally, the flow of the workpiece material induces viscous dissipation, serving to 

increase the local temperature (Moraitis 2010). 

  

2.1.4 FSW Tool Model Description 

Given the complex nature of the FSW process, finite element methods are usually 

employed, such as the model used by Moraitis et al (Moraitis 2010) or Hamilton et al (Hamilton 

Dshoulder 

Dprobe 

hprobe 
α 
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2008). As discussed earlier, these models require significant set up and computational resources 

to evaluate. In order to develop a mathematically tractable analytical solution, approximations 

are required. 

The heat source created by the FSW tool is modeled as shown below in Figure 2-4. The 

subdivisions within the heat source approximate the spatial variation in heat input. The 

dimensions in the x- and y- directions are constrained to the outer and inner radii of the FSW 

tool. The outer and inner divisions approximate the heat generation contribution by the tool 

shoulder and the probe, respectively. The depth of the shoulder portion is the radius of the 

shoulder multiplied by the tangent of the shoulder cone angle α. The depth of the probe portion 

of the heat source is set to hprobe. 

 

Figure 2-4: Details of the partitions of the moving heat source used in the thermal model 

Equation 2-2 describes the heat generation as shown in Equation 2-1, where Qs and Qp 

represent the heat generated in the shoulder and probe zones, respectively. These values sum to 

Qtot, the total heat input. The values used for these parameters are calculated by models proposed 

  
rshoulder rprobe 

rshoulder 

rprobe 

 
 

hprobe 

Dshoulder*tan(α)/2 

Surfaces of 
workpiece 

x 

y 
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by Schmidt (Schmidt 2004). A thermal sink is introduced using the parameter Qo.  This sink term 

is included because the localized pressure exerted by the FSW tool significantly reduces the 

thermal contact resistance immediately beneath the tool, resulting in a higher rate of heat transfer 

into the supporting plate beneath the tool. The inverse modeling technique used to obtain the 

value of Qo is described in Section 2.2.6. 

 

�̇� = 𝑄𝑠
𝑟𝑠tan (𝛼)(4𝑟𝑠2−4𝑟𝑝2)

�[𝐻(𝑥 − 𝑣𝑡 + 𝑟𝑠) − 𝐻(𝑥 − 𝑣𝑡 − 𝑟𝑠)][1 −

𝐻(𝑦 − 𝑟𝑠)][1 − 𝐻(𝑧 − 𝑟𝑠tan (𝛼))]− �𝐻�𝑥 − 𝑣𝑡 + 𝑟𝑝� −

𝐻�𝑥 − 𝑣𝑡 − 𝑟𝑝���1 − 𝐻�𝑦 − 𝑟𝑝��[1 − 𝐻(𝑧 − 𝑟𝑠tan (𝛼))]� +

𝑄𝑝
4ℎ𝑝𝑟𝑝2

��𝐻�𝑥 − 𝑣𝑡 + 𝑟𝑝� − 𝐻�𝑥 − 𝑣𝑡 − 𝑟𝑝���1 − 𝐻�𝑦 − 𝑟𝑝���1 −

𝐻�𝑧 − ℎ𝑝��� −
𝑄𝑜
4𝑟𝑠2

{[𝐻(𝑥 − 𝑣𝑡 + 𝑟𝑠) − 𝐻(𝑥 − 𝑣𝑡 − 𝑟𝑠)][1 −

𝐻(𝑦 − 𝑟𝑠)]𝛿(𝑧 − 𝑆)}  

2-2 

 

2.1.5 Boundary Conditions 

The boundary conditions and initial condition applied to Equation 2-1 are shown below. 

Convective conditions were applied on all surfaces except for the workpiece-backing plate 

interface. This interface was modeled with an overall heat transfer coefficient U. A symmetrical 

boundary condition was implemented across the y-axis, which ignores the effects of the 

enhanced heat generation on the advancing side of the tool. This approximation was made in 

order to achieve a mathematically tractable solution to the governing differential equations. 

 
𝑘
𝜕𝑇
𝜕𝑥

|𝑥=0 = ℎ(𝑇 − 𝑇∞) 2-3 

 
−𝑘

𝜕𝑇
𝜕𝑥

|𝑥=𝐿 = ℎ(𝑇 − 𝑇∞) 2-4 

 𝜕𝑇
𝜕𝑦

|𝑦=0 = 0 2-5 
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 −𝑘
𝜕𝑇
𝜕𝑦

|𝑦=𝑊 = ℎ(𝑇 − 𝑇∞) 2-6 

 
𝑘
𝜕𝑇
𝜕𝑧

|𝑧=0 = ℎ(𝑇 − 𝑇∞) 2-7 

 
−𝑘

𝜕𝑇
𝜕𝑧

|𝑧=𝑆 = 𝑈(𝑇 − 𝑇∞) 2-8 

 𝑇(𝑥,𝑦, 𝑧, 0) = 𝑇∞ 2-9 

2.1.6 Solution of Governing Equation 

Equation 2-1 was solved using an eigenfunction expansion. The nondimensional 

temperature distribution was assumed to be described by the summation in Equation 2-10. The 

heat source described by Equation 2-2 is also expressed as a summation in 0. 

 𝑇(𝑥,𝑦, 𝑧, 𝑡) = ���𝑐𝑝𝑞𝑟(𝑡)𝑋𝑝(𝑥)𝑌𝑞(𝑦)𝑍𝑟(𝑧)
∞

𝑟=1

∞

𝑞=1

∞

𝑝=1
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The eigenfunctions and eigenvalues used in Equation 2-10 are a result of solving the 

corresponding Sturm-Liouville problems in each direction. The details of this solution are shown 

in Appendix A.  The resulting eigenfunctions are shown in the following equations. 

 𝑋𝑝 = sin �𝜆𝑝
𝑥
𝐿
� +

𝜆𝑝
𝐵𝑖

cos �𝜆𝑝
𝑥
𝐿
�  where tan�𝜆𝑝� =

2𝜆𝑝𝐵𝑖
𝜆𝑝2 − 𝐵𝑖2
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 𝑌𝑞 = cos �
𝑊
𝐿
𝛽𝑞

𝑦
𝑊
�  where tan �

𝑊
𝐿
𝛽𝑞� =

𝐵𝑖
𝛽𝑞
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 𝑍𝑟 = sin �
𝑆
𝐿
𝛾𝑟
𝑧
𝑆
� +

𝛾𝑟
𝐵𝑖

cos �
𝑆
𝐿
𝛾𝑟
𝑧
𝑆
�  where tan �

𝑆
𝐿
𝛾𝑟� =

𝐵𝑖𝛾𝑟(1 + 𝜇)
𝛾𝑟2 − 𝐵𝑖2𝜇
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The expansion coefficients are given in the following equation. 

 𝑐𝑝𝑞𝑟 =
�𝐵𝑖�𝜆𝑝2+𝛽𝑞2+𝛾𝑟2�+

𝜆𝑝
2𝑣𝐿
𝛼𝑡

� sin�𝜆𝑝
𝑣𝑡
𝐿 �+�𝜆𝑝�𝜆𝑝

2+𝛽𝑞2+𝛾𝑟2�−
𝐵𝑖𝜆𝑝𝑣𝐿
𝛼𝑡

� cos�𝜆𝑝
𝑣𝑡
𝐿 �

2𝑁𝑝𝑁𝑞𝑁𝑟
𝑊
𝐿 𝜆𝑝𝛽𝑞𝐵𝑖��𝜆𝑝

2+𝛽𝑞2+𝛾𝑟2�
2
+
𝜆𝑝
2𝑣2𝐿2

𝛼𝑡
2 �

 

��
 𝑄𝑠𝑄𝑡𝑜𝑡

�𝑟𝑠𝐿 �
𝑟𝑠
𝐿
𝑟𝑠
𝑊−

𝑟𝑝
𝐿
𝑟𝑝
𝑊��𝑆𝐿𝛾𝑟

��𝑠𝑖𝑛 �𝛽𝑞
𝑊
𝐿
𝑟𝑝
𝑊
� 𝑠𝑖𝑛 �𝜆𝑝

𝑟𝑝
𝐿
� −
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𝑠𝑖𝑛 �𝛽𝑞
𝑊
𝐿
𝑟𝑠
𝑊
� 𝑠𝑖𝑛 �𝜆𝑝

𝑟𝑠
𝐿
�� �𝑐𝑜𝑠 �𝛾𝑟

𝑆
𝐿
𝑟𝑠tan (𝛼)

𝑆
� − 1 − 𝛾𝑟

𝐵𝑖
𝑠𝑖𝑛 �𝛾𝑟

𝑆
𝐿
𝑟𝑠tan (𝛼)

𝑆
���� −

𝑄𝑝
𝑄𝑡𝑜𝑡

�
𝑟𝑝
𝐿
𝑟𝑝
𝑊
ℎ𝑝
𝑆 �

𝑆
𝐿𝛾𝑟

�𝑠𝑖𝑛 �𝛽𝑞
𝑊
𝐿
𝑟𝑝
𝑊
� 𝑠𝑖𝑛 �𝜆𝑝

𝑟𝑝
𝐿
� �𝑐𝑜𝑠 �𝛾𝑟

𝑆
𝐿
ℎ𝑝
𝑆
� − 1 − 𝛾𝑟

𝐵𝑖
𝑠𝑖𝑛 �𝛾𝑟

𝑆
𝐿
ℎ𝑝
𝑆
��� −

𝑄𝑜
𝑄𝑡𝑜𝑡

�𝑟𝑠𝐿
𝑟𝑠
𝑊�

�𝑠𝑖𝑛 �𝛽𝑞
𝑊
𝐿
𝑟𝑠
𝑊
� 𝑠𝑖𝑛 �𝜆𝑝

𝑟𝑠
𝐿
� �𝑠𝑖𝑛 �𝛾𝑟

𝑆
𝐿
� + 𝛾𝑟

𝐵𝑖
𝑐𝑜𝑠 �𝛾𝑟

𝑆
𝐿
����  

 Equation 2-10 shows that the temperature is dependent upon time, position, input heat, 

fractions of input heat contributed by the shoulder and the probe, convection coefficient, 

workpiece-supporting plate conductance, dimensions of the workpiece, dimensions of the FSW 

tool, the velocity of the tool, and the thermophysical properties of the workpiece material. In 

order to evaluate for temperatures within the workpiece, it is required to find suitable values for 

all unknown parameters. Input heat, convection, and conductance between the workpiece and the 

supporting plate are obtained in the manner described in the following section. 

2.2 Determination of Unobservable Parameters 

2.2.1 Heat Generation 

There are several parameters that need to be assigned values before Equation 2-10 can be 

evaluated. The most important parameter is the heat input. Schmidt et al (Schmidt 2004) 

proposed an analytical model for the mechanical power, Pmech, in FSW which is dependent upon 

the contact condition between the FSW tool and the workpiece. Schmidt considers this 

mechanical power to be approximately equal to the total heat generation. 

Two FSW tool-workpiece contact conditions are suggested by Schmidt: the “sticking” 

and the “sliding” conditions. The “sticking” condition assumes that workpiece material in 

contact with the rotating tool shears off from the underlying workpiece material, leading to 

contact stress being the shear stress of the material, τyield. Assuming a constant stress, the heat 
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generation due to sticking can be modeled as the product of the rotational speed of the tool, the 

surface area of the tool, and the shear stress. The three terms in the following equation represent 

the contributions from the shoulder, the probe tip, and the probe sides. 

 
𝑃𝑚𝑒𝑐ℎ,𝑠𝑡𝑖𝑐𝑘𝑖𝑛𝑔 = 2

3
𝜋𝜏𝑦𝑖𝑒𝑙𝑑𝜔 ��𝑅𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟3 − 𝑅𝑝𝑟𝑜𝑏𝑒3 �(1 + tan(𝛼)) +

𝑅𝑝𝑟𝑜𝑏𝑒3 + 3𝑅𝑝𝑟𝑜𝑏𝑒2 𝐻𝑝𝑟𝑜𝑏𝑒�  
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With the above equation, Pmech can be estimated for the sticking condition. The sliding 

condition describes contact where the tool slides along the surface of the workpiece without 

moving material. Schmidt develops the model further to account for a hybrid between the 

sticking and sliding conditions (Schmidt 2004), introducing additional unknown parameters. For 

the ADS model, the sticking condition is assumed to predict the mechanical power used in the 

FSW process. Because the sticking condition necessarily requires that mechanical power be 

consumed in bulk motion of workpiece material, an estimate for the fraction of the total 

mechanical power converted to thermal energy must be made. 

2.2.2 Fraction of Heat Transferred to Workpiece 

The fraction ftherm, approximates the portion of Pmech converted to thermal energy and 

transferred to the workpiece, rather than conducted up the FSW tool. Qtot then becomes the 

product of Pmech and ftherm. Nandan et al (Nandan 2007) modeled this fraction with Equation 2-16 

as a function of the tool and workpiece thermal properties.  
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 𝑓𝑡ℎ𝑒𝑟𝑚 =
��𝑘𝜌𝑐𝑝�𝑤𝑜𝑟𝑘𝑝𝑖𝑒𝑐𝑒

��𝑘𝜌𝑐𝑝�𝑡𝑜𝑜𝑙
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This equation results from the analysis of two semi-infinite dissimilar materials in contact 

with a point heat source at the interface (Carslaw 1959). The FSW tool, relative to the 

workpiece, is quite large, so considering the two materials as semi-infinite is an approximation. 

No contact resistance is assumed between the two solids, and the two solids are assumed to start 

at thermal equilibrium. Lienert et al (Lienert T.J. 2003) found this expression to provide good 

estimates for this fraction in FSW on AISI 1018 mild steel. This expression gives an estimate for 

ftherm, but it does nothing for approximating the amount of mechanical energy converted to 

thermal energy. Inverse modeling is employed to find the best fit value, which is described in 

Section 2.2.6. 

2.2.3 Thermal Contact Resistance Between Workpiece and Supporting Plate 

The overall backside heat transfer coefficient U, which models the heat loss through the 

supporting plate underneath the workpiece, is a critical parameter that greatly influences thermal 

cycles in FSW. Researchers have suggested different values for an overall heat transfer 

coefficient, from 500 W/m2-K (Chao 1998) to as great as 10000 W/m2-K (Khandkar 2003). 

Given the complex nature of thermal contact resistance, the value of U was determined by 

optimization techniques.  

In addition to the complexity of the thermal interaction between the workpiece and the 

supporting plate, there is a significant reduction in thermal contact resistance due to the 

downward force exerted by the FSW tool. The tool effectively increases the heat transfer to the 

supporting plate directly beneath it. To mathematically represent this moving region of reduced 
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thermal contact resistance, the parameter fo, which is the result of the localized heat loss (Qo) 

divided by the total heat input (Qtot), is employed. Like U, the best value for fo was determined 

with optimization techniques. 

2.2.4 Convection Coefficient 

To obtain an estimate of the convection coefficient for the surfaces of the workpiece, the 

McAdams horizontal flat plate correlation in Equation 2-17 was used, which is available in 

literature (Incropera 2007).  

 𝑁𝑢 = 0.15𝑅𝑎𝐿
1
3 

2-17 

 The natural convection from the surfaces of the workpiece was assumed to be turbulent, 

with an ambient temperature of 300 K and an average surface temperature of 400 K. This 

correlation results in a convection coefficient h of approximately 10 W/m2-K.  

The following figures show the relatively small effect of the precise value of h for free 

convection ranges (5 to 50 W/m2-K). The temperature profiles were calculated for a 

thermocouple location (x = 73.08 cm, y = 10.08 mm, z = 1.27 mm) in the Furse weld (Furse 

2010) using ftherm (referred to in the figure as ftherm) = 0.7, U = 200 W/m2-K, fo (referred to as 

qo) = 0.7, and varying h. Note that all temperature profiles in this section are calculated at the 

same x location. 
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Figure 2-5: Effect of variation of h on the thermal history at y=10.08mm and z=1.27mm 

Note that the value of h has a small effect on the temperature profile at any point in the 

workpiece. At locations farther from the center of the weld line, h has a slightly larger impact on 

the thermal history within the workpiece. It can be seen that while the overall cooling rate is 

enhanced with increasing convection, it is not the dominating factor in the cooling rate.  

Since the value of the convection coefficient h does not significantly impact the ADS 

model’s temperature predictions, the value of 10 W/m2-K will be used in all subsequent 

calculations. 

It should also be noted that there is “ringing” in the temperature curve of Figure 2-7, near 

the boundaries of the solution space (surfaces and edges of the workpiece). 
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Figure 2-6: Effect of variation of h on the thermal history at y=5mm and z=5mm 

 

Figure 2-7: Effect of variation of h on the thermal history at y=1mm and z=0.5mm 
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2.2.5 Fractions of Qtot Assigned to Shoulder and Pin Zones 

The total heat input, Qtot, is divided across two zones, as referenced in Figure 2-4. The 

fractions of the total heat assigned to the shoulder and the probe zones, fs and fp can be modeled 

with Equations 2-18 and 2-19, as derived by Schmidt (Schmidt 2004). These fractions summed 

together yield 1. 

Eliminating the convection coefficient as a significant parameter and solving for fs and fp 

with the previous equations, the remaining input parameters to solve the governing differential 

equations must be found by inverse analysis of available data. This inverse analysis allows the 

model to be better “trained” to provide the most accurate results for the weld under investigation. 

Details of this method to obtain values for ftherm, U, and fo are discussed in the following section.  

2.2.6 Optimization Techniques Used in Determining Unobservable Parameters 

To obtain the best values for ftherm, U, and fo, Equation 2-10 and its accompanying 

equations that determine the solution’s eigenvalues (see 0) were written into a Maple procedure, 

such that the procedure uses these unknown parameters as inputs to output the modeled 

temperature profile. Then, experimental temperature data from a variety of depths and horizontal 

distances from the center of the weld were selected to compare with the modeled temperature 

 

𝑓𝑠 =
𝑄𝑠
𝑄𝑡𝑜𝑡 

=
�𝑅𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟3 − 𝑅𝑝𝑟𝑜𝑏𝑒3 �(1 + tan(𝛼))

��𝑅𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟3 − 𝑅𝑝𝑟𝑜𝑏𝑒3 �(1 + tan(𝛼)) + 𝑅𝑝𝑟𝑜𝑏𝑒3 + 3𝑅𝑝𝑟𝑜𝑏𝑒2 𝐻𝑝𝑟𝑜𝑏𝑒�
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 𝑓𝑝 =
𝑄𝑝
𝑄𝑡𝑜𝑡 

=
𝑅𝑝𝑟𝑜𝑏𝑒3 + 3𝑅𝑝𝑟𝑜𝑏𝑒2 𝐻𝑝𝑟𝑜𝑏𝑒

��𝑅𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟3 − 𝑅𝑝𝑟𝑜𝑏𝑒3 �(1 + tan(𝛼)) + 𝑅𝑝𝑟𝑜𝑏𝑒3 + 3𝑅𝑝𝑟𝑜𝑏𝑒2 𝐻𝑝𝑟𝑜𝑏𝑒�
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profile. Evaluating the model at the corresponding spatial location for each experimental dataset, 

the model temperature value at each time step in the data was subtracted from the experimental 

value to determine the residual. Each residual was squared, and the residuals were summed 

together. Implementing the sum of the squared residuals with a set of experimental data into the 

original procedure, an input of the unknown parameters outputs the error see. In Figure 2-8, a 

temperature profile at location subscript 1 is plotted versus time. At each point, the residuals 

between the predicted temperature and the data were summed to produce Error1, the squared 

sum of residuals for location subscript 1. 

 

Figure 2-8: Description of how error is calculated for a set of thermocouple data 

With the sum of the squared residuals as the objective function, bounds were placed on 

the allowable values of the unknown parameters such that they remain nonnegative and that ftherm 

and fo do not exceed unity. The sum of the squared residuals was then minimized using 

sequential quadratic programming (Bonnans 2006), resulting in the best unobservable parameter 
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values for a given location within the workpiece. Using the optimized results from multiple 

locations, these parameter values were averaged to obtain best fit values for the entire workpiece. 

After this inverse modeling, all the required parameters now are defined, allowing for the 

evaluation of Equation 2-10. In order to demonstrate how the optimized parameters can affect 

the predicted temperature profiles from the ADS model, various values of ftherm, U, and fo will be 

compared at different depths and distances from the center of the weld line. This will also 

demonstrate what the optimization procedure does to find a best fit for these parameters to the 

training data. 

2.3 Effect of Unobservable Parameters 

2.3.1 Effect of Variation in ftherm 

Variation in the fraction ftherm describes variation in the amount of energy transferred into 

the workpiece as heat compared to the heat transferred to the tool and the energy used in plastic 

deformation of workpiece material. This parameter has the largest effect on the modeled peak 

temperature, as it effectively varies the amount of heat input in the ADS model. The model is 

quite sensitive to modest changes in this value. As expected, the time to cool to ambient 

temperature is extended for higher values of ftherm, due to the higher peak temperature. 

The effect of varying ftherm is demonstrated by displaying temperature profiles at x = 

73.08 cm in the following figures. The parameters used are displayed in each figure, and the y 

and z locations are described in the captions. 
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Figure 2-9: Effect of variation of ftherm on the thermal history at y=10.08mm and z=1.27mm 

 

Figure 2-10: Effect of variation of ftherm on the thermal history at y=5mm and z=5mm 
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Figure 2-11: Effect of variation of ftherm on the thermal history at y=1mm and z=0.5mm 

The impact of ftherm is rather significant, and it becomes increasingly meaningful at 

locations closer to the surface, where the same change in ftherm produces larger changes in peak 

temperature than at locations deeper within the workpiece. 

2.3.2 Effect of Variation in U 

Variation in the overall heat transfer coefficient U describes the degree to which heat 

flows from the workpiece to the supporting plate beneath it, which is dependent upon the amount 

of thermal contact resistance between the two plates. This parameter is demonstrated to have 

very little impact on the peak temperature. However, the cooling rate is highly dependent on the 

value of this parameter—larger values result in rapid cooling, and smaller values lengthen the 

time required for the workpiece to return to room temperature. 
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The effect of varying U is demonstrated by displaying temperature profiles at x = 73.08 

cm in the following figures. The parameters used are displayed in each figure, and the y and z 

locations are described in the captions. 

 

Figure 2-12: Effect of variation of U on the thermal history at y=10.08mm and z=1.27mm 

 

Figure 2-13: Effect of variation of U on the thermal history at y=5mm and z=5mm 
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Figure 2-14: Effect of variation of U on the thermal history at y=1mm and z=0.5mm 

 Changing values of U has similar impact at all locations within the workpiece, as 

demonstrated by the preceding figures. At locations near the bottom surface (see Figure 2-13), U 

has a somewhat more significant influence over the cooling rate than at other locations. 

2.3.3 Effect of Variation in fo 

Variation in the fraction fo describes the extent to which the local contact resistance 

between the workpiece and the supporting plate is decreased due to the downward pressure of 

the FSW tool. It is defined as the ratio of Qo to Qtot. This parameter affects both the peak 

temperature and the cooling rate at any given location within the workpiece. Lower values serve 

to simultaneously reduce the peak temperature and decrease the cooling rate, and higher values 

do the opposite. The cooling rate is not affected to as great an extent by fo as it is by U. 
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The effect of varying fo is demonstrated by displaying temperature profiles at x = 73.08 

cm in the following figures. The parameters used are displayed in each figure, and the y and z 

locations are described in the captions. 

 

Figure 2-15: Effect of variation of fo on the thermal history at y=10.08mm and z=1.27mm 

 

Figure 2-16: Effect of variation of fo on the thermal history at y=5mm and z=5mm 
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Figure 2-17: Effect of variation of fo on the thermal history at y=1mm and z=0.5mm 

The most apparent increase in significance of fo is for locations closer to the stirred zone, 

which is the area most affected by the decrease in workpiece-supporting plate thermal contact 

resistance. The influence of fo is reduced at locations farther away from the stirred zone (see 

Figure 2-15). 

2.4 Validation of Model 

The analytical model developed was validated with data collected from two different 

friction stir welding experiments.  
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2.4.1 Huang Experiment 

The first experiment, conducted by Huang (Huang 2008), was performed on a 1.22 m x 

0.203 m x .635 cm Inconel 718 plate using a PCBN tool of shoulder diameter 2.54 cm, probe 

diameter 0.6096 cm, and probe height 0.384 cm. The FSW tool traveled at 2.53 mm/s, rotating at 

200 RPM, with a 39.6 kN axial force. 56 thermocouples were placed at various depths and 

locations within the workpiece to measure the temperature. 

2.4.2 Furse Experiment 

The second experiment, conducted by Furse (Furse 2010), was performed on a 1.22 m x 

.203 m x 0.635 cm 304L stainless steel plate using a PCBN tool of shoulder diameter 2.36 cm, 

probe diameter 0.721 cm, and probe height 0.483 cm. The FSW tool traveled at 1.69 mm/s, 

rotating at 400 RPM, with a 33.3 kN axial force. Like Huang’s experiment, 56 thermocouples 

were embedded in the workpiece to record the temperature distribution. 

2.4.3 Effect of Thermocouple Response 

In comparing the thermal model to experimental data, the response of the 0.032 inch 

grounded K-type thermocouples was taken into consideration. Assuming a first-order response, 

the temperature of the thermocouple can be described with Equation 2-20, where Ttc represents 

the thermocouple temperature, Tm represents the model temperature of the plate (as calculated 

from Equation 2-10), and τ represents the time constant of the thermocouple. Lumped into the 

time constant is the thermal contact resistance between the thermocouple bead and the material 

of the plate, as well as the thermal capacitance of the thermocouple itself. 

 

 𝑑𝑇𝑡𝑐
𝑑𝑡

=
1
𝜏

(𝑇𝑚 − 𝑇𝑡𝑐) 2-20 
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 𝑇𝑡𝑐(𝑡 = 0) = 𝑇∞ 2-21 

Solving Equation 2-20 for Ttc with the initial condition, Equation 2-21, yields the 

following equation. 

 𝑇𝑡𝑐 = 𝑒−
𝑡
𝜏 ��

𝑇𝑚
𝜏
𝑒
𝑡
𝜏𝑑𝑡 + 𝑇∞� 2-22 

The thermocouples used in both experiments were analyzed by Owen (Owen 2006). By 

measuring the time taken for a thermocouple to reach thermal equilibrium with a large mass of 

known temperature, it was determined that the time constant value is best approximated as 0.385 

s. This resulted in the thermocouple temperature being about 5 K offset from the plate 

temperature. As can be seen from Figure 2-18, the difference between the temperature response 

of the thermocouple and the predicted plate temperature is negligible. Figure 2-19 more clearly 

shows the shift in phase and amplitude of the thermocouple from the plate’s predicted 

temperature. The ADS model was evaluated with the parameters for the Furse weld (Furse 2010) 

at x = 93.24 cm, y = 10.08 mm, and z = 2.5 mm. 

 

Figure 2-18: Comparison of predicted temperature profiles with a thermocouple time constant of 0.385s 
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Figure 2-19: Detailed view of the predicted effect of thermocouple response time on temperature profile  

2.4.4 Difference in Advancing and Retreating Sides 

The temperature field observed in FSW is asymmetrical due to the effect of rotating tool. 

Temperatures on the advancing side, where the tool is rotating into the direction of the traveling 

tool, are generally higher compared to the retreating side (Nandan 2006). This effect can be seen 

in the experimental data shown in the figures below. It is observed that the Huang data is more 

symmetric across the weld line than the Furse data. In an effort to incorporate the differences in 

peak temperature across the weld, the model was also optimized to fit the advancing and 

retreating sides, resulting in different sets of values for the unobservable parameters. In Sections 

3.1.3 (for the Huang data) and 3.2.3 (for the Furse data) the thermal history obtained using 

advancing side parameters will be compared to the advancing side data, and similarly the thermal 

history obtained using retreating side parameters will be compared to the retreating side data. 
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Figure 2-20: Advancing side data (circles) compared to retreating side data (crosses) for Huang data 

 
Figure 2-21: Advancing side data (circles) compared to retreating side data (crosses) for Furse data 
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3 RESULTS 

3.1 Comparison to Huang Data 

Huang performed FSW on a 1.22 m X 0.203 m X 6.35 mm plate of Inconel 718. 56 holes 

of varying depths and locations were drilled into the workpiece, into which thermocouples were 

placed. The polycrystalline cubic boron nitride tool proceeded at 2.53 mm/s, rotating at 200 

RPM, and pressing downwards with an approximate 39.6 kN force (Huang 2008). The 

thermocouple placements are described in Appendix B. 

The number of thermocouples used exceeded the number of available data acquisition 

channels. To obtain pertinent data, thermocouples were disconnected after the FSW tool passed 

over their location and exchanged with thermocouples located ahead of the tool. Because of this, 

limited cooling data was obtained, with the exception of the thermocouples located towards the 

end of the workpiece. 

In determining the unobservable parameters, four different thermocouple measurements 

(different distances from the weld and different depths, namely Holes 4, 15, 19, 41 as shown in 

Appendix B) were used in the optimization analysis. From this step, ftherm was averaged at 0.286, 

U at 211 W/m2-K, and fo at 0.501. The data used for the optimization was not used in the 

following plots. 
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3.1.1 Model Comparisons at same Depth 

The first series of plots compare the thermal model with data collected at the same depth 

into the workpiece and at locations progressively closer to the center of the weld line. The model 

is depicted as a solid red line, and the experimental data as black points. Locations for the 

thermocouples correspond with the hole numbers listed in Appendix B. Note that the displayed 

plots are all at locations on the advancing side of the workpiece. 

 
Figure 3-1: Hole 23, 0.1mm beneath top surface 

 
Figure 3-2: Holes 8, 11, and 15, 0.6mm beneath top surface 
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The effect of the distributed heat source is markedly more pronounced closer to the 

surface, as Figure 3-1 shows. Also, the predicted peak is overestimated by about 70 K. The 

predicted peak temperature is more accurate at a depth 0.6 mm (Figure 3-2). However, the 

predicted cooling rate is more rapid than what was measured. 

 
Figure 3-3: Holes 18, 22, and 26, 1.2mm beneath top surface 

 
Figure 3-4: Holes 3, 7, and 14, 1.8mm beneath top surface 
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Figure 3-5: Holes 13, 17, and 25, 2.4mm beneath top surface 

 
Figure 3-6: Holes 20, 24, 2, 6, and 10, 2.9mm beneath top surface 

These plots show more accurate model predictions for the cooling rate, especially at the 

2.9 mm depth. Note that peak temperature is underestimated at locations closer to the center of 
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the weld line. Additionally, locations closer to the center of the weld line have longer predicted 

cooling periods than measurements show. 

 
Figure 3-7: Hole 16, 2.95mm beneath top surface 

 
Figure 3-8: Holes 1, 5, 9, and 12, 3.4mm beneath top surface 

There are a few general observations that can be made from these plots. First, the 

predicted peak temperature is at average 40 K below the measured peak. Much larger deviations 
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are observed closer to the center of the weld line (as time increases the locations of the observed 

locations on the graphs move towards the center, see Figure 3-1, Figure 3-3, Figure 3-4, and 

Figure 3-5). Also, the nature of the mathematical techniques used to develop the model results in 

erroneous temperature values at early times (up to around the first 70 seconds), as seen in Figure 

3-8—the solution “rings” more near the system boundaries. While increasing the number of 

terms used to plot the model can mitigate this ringing to some extent, it cannot eliminate it. 

Lastly, as the model is evaluated at deeper locations, the cooling trend becomes shallower than 

observed. Note that at locations above 2.9 mm, the model predicts faster cooling than measured, 

whereas below this point, the model predicts slower cooling than detected. 

3.1.2 Model Comparisons at same Distance from Center Line 

The second series of plots compare the model with data at locations progressively closer 

to the surface of the workpiece. In both series, the model is depicted as a solid red line, while the 

thermocouple data are depicted as black dots. The hole numbers correspond to the locations of 

the thermocouples shown in Appendix B. Only advancing side data were used in the following 

plots. 

 
Figure 3-9: Holes 20, 13, 3, 18, 4, and 19, 10.25mm from center of weld line 
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Figure 3-10: Holes 8 and 23, 9.65mm from center of weld line 

The model fairly accurately predicts peak temperature at these locations farther from the 

center of the weld line, within about 30 K. Again, Hole 23, as seen in Figure 3-10, exhibits the 

effect of the distributed heat source, being close to the surface of the workpiece, with the high 

peak temperature rapidly diminishing once the tool passes by. With the exception of this 

location, the cooling rate predicted by the model is more rapid than that measured 

experimentally. 

 
Figure 3-11: Holes 1, 24, 17, 7, 22, and 11, 8.75mm from center of weld line 
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Figure 3-12: Holes 2 and 15, 6.85mm from center of weld line 

 
Figure 3-13: Holes 5 and 26, 5.8mm from center of weld line 
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Figure 3-14: Holes 9 and 14, 3.35mm from center of weld line 

 
Figure 3-15: Holes 10 and 12, 1.32 mm from center of weld line 
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Figure 3-16: Holes 16 and 27, directly on center of weld line 

These plots demonstrate that at locations closer to the center of the weld line, the model 

underestimates the rate of cooling, while at locations farther out, the model overestimates this 

rate. The accuracy of the predicted peak temperature is more influenced by the depth with in the 

workpiece, rather than the distance to the center of the weld line. 

3.1.3 Model Comparisons Across Weld Line  

The third series of plots compare the thermal model with data collected at equal distances 

on opposite sides of the center of the weld line. The advancing side results are shown in red, 

while the retreating side results are shown in blue. Modeled temperatures are depicted with 

dashed lines, and data are shown as with points.  

As discussed in Section 2.4.4, the model was also trained to best fit advancing and 

retreating sides, rather than averaging parameters across the entire weld as was done in the 
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previous sections. The values of the parameters for the advancing side data used in calculating 

the model were obtained from Holes 33, 37, 41, and 49. The obtained parameters were averaged, 

with ftherm as 0.446, U as 142 W/m2-K, and fo as 0.570.  

The values of the parameters for the retreating side data used in calculating the model 

were obtained from Holes 4, 8, 11, and 19. The obtained parameters were averaged, with ftherm as 

0.497, U as 149 W/m2-K, and fo as 0.683. Note that this difference in parameters can have a 

significant effect on the resulting model predictions. In the case of this experiment, which was 

fairly symmetrical across the weld line, training to the advancing and retreating sides of the weld 

separately had a negative impact on the fit to the measured data, as can be seen in the following 

plots. 

 
Figure 3-17: Pairs 20-46, 13-43, and 3-32, 10.15mm from center of weld line 
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Figure 3-18: Pairs 18-48, 4-33, and 19-49, 10.15mm from center of weld line 

 
Figure 3-19: Pairs 8-37 and 23-29, 9.65mm from center of weld line 
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Figure 3-20: Pairs 1-30, 24-50, and 17-47, 8.75mm from center of weld line 

The data from this experiment show a minimal temperature difference (at most 15 K) 

between the advancing and retreating sides of the FSW process. Seven cases of the eleven shown 

above demonstrate a higher peak temperature on the advancing side, and three cases show a 

higher temperature on the retreating side.  

 
Figure 3-21: Pairs 7-36, 22-28, and 11-41, 8.75mm from center of weld line 
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Figure 3-22: Pair 5-34, 5.4mm from center of weld line 

 
Figure 3-23: Pair 26-52, 5.4 mm from center of weld line 
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The average value of the squared summed residuals for the model as compared to the 

temperature data obtained by Huang is 1.35 x 107 K2, corresponding to an overall average error 

of 76 K. 

3.2 Comparison to Furse Data 

Furse performed FSW on a 1.22 m X 0.203 m X 6.35 mm plate of 304L stainless steel. 

56 holes of varying depths and locations were drilled into the workpiece, into which 

thermocouples were placed. The polycrystalline boron nitride tool travelled at 1.69 mm/s, 

rotating at 400 RPM, and with a controlled axial force of 33.3 kN. The locations for the 

thermocouples are shown in Appendix C. 

Four different thermocouple measurements (Holes 4, 16, 39, 50 as shown in Appendix C) 

were used in the optimization analysis to determine the unobservable parameters for the model. 

These parameter values used were averaged from the results of the optimization analysis. The 

fraction ftherm was approximated at 0.695, U at 166 W/m2-K, and fo at 0.716. Again, the data used 

to determine these parameters was not used to validate the model. 

3.2.1 Model Comparisons at same Depth 

The first series of plots compare the thermal model with data collected at the same depth 

into the workpiece and at locations progressively closer to the center of the weld line. The model 

is depicted as a solid red line, and the experimental data as black points. Locations for the 

thermocouples correspond with the hole numbers listed in Appendix C. Note that the displayed 

plots are all at locations on the advancing side of the workpiece. 
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Figure 3-24: Holes 20, 23, and 26, 0.25mm beneath top surface 

 
Figure 3-25: Holes 8 and 12, 0.76mm beneath top surface 
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Figure 3-26: Holes 19, 22, and 25, 1.27mm beneath top surface 

 
Figure 3-27: Holes 3, 7, 11, and 15, 2.29mm beneath top surface 

At these relatively shallow locations, the model underestimates the peak temperature 

compared to thermocouple measurements. Additionally, the degree to which the peak 
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temperature is underestimated is increased at locations closer to the center of the weld line. The 

cooling rate predicted by the model is also significantly higher than the measured cooling rate. 

 
Figure 3-28: Holes 14, 18, 21, and 24, 3.3mm beneath top surface 

 
Figure 3-29: Holes 2 and 6, 4.32mm beneath top surface 



49 

 At these moderate depths within the workpiece, the peak temperature is more accurately 

predicted than at the depths seen in Figure 3-24 through Figure 3-27. It is also of interest to note 

that the model predicts a longer heating period than that measured. At these depths, the model 

overestimates the length of the cooling period as well. 

Unlike with the comparison to Huang’s experiment, there are significant deviations in the 

predicted peak temperature. Generally, at locations deeper than 4.32mm, the model 

overestimates the peak temperature, while above this point the model underestimates, sometimes 

by as much as 200 K. Additionally, the initial ramp in temperature is predicted to be much 

slower than observed in the measured data at these deep locations closer to the backing plate. 

Similar to the comparison with Huang’s experiment, the model has best agreement with the 

cooling rate at moderate depths, overestimating the rate at shallower depths while 

underestimating below 3.3mm. 

 
Figure 3-30: Holes 27, 1, 5, 9, and 13, 5.08mm beneath top surface 
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3.2.2 Model Comparisons at same Distance from Center Line 

The second series of plots compare the model with data at locations progressively closer 

to the surface of the workpiece. In both series, the model is depicted as a solid red line, while the 

thermocouple data are depicted as black dots. The hole numbers correspond to the locations of 

the thermocouples shown in Appendix C. Only advancing side data were used in the following 

plots. 

 
Figure 3-31: Holes 14, 3, and 19, 10.08mm from center of weld line 

 
Figure 3-32: Holes 8 and 23, 9.58mm from center of weld line 
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Figure 3-33: Holes 1, 18, 7, 22, 12, and 26, 8.57mm from center of weld line 

 
Figure 3-34: Holes 2 and 16, 6.8mm from center of weld line 

Figure 3-31 shows that the model underestimates the peak temperature by approximately 

50 K 10.08 mm outside of the center of the weld line. The cooling rate is predicted to be more 
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rapid than the measured rate is from 8.57 mm and farther out. The peak temperature is 

underestimated to a greater extent at locations closer to the center of the weld line. Figure 3-34 

indicates that at 6.8 mm from the center of the weld line, the model begins to predict longer 

cooling periods than that which is measured. 

 
Figure 3-35: Holes 5, 21, and 25, 5.8mm from center of weld line 

 
Figure 3-36: Hole 6, 4.54mm from center of weld line 
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Figure 3-35 demonstrates that the model is most accurate at predicting the peak 

temperature at depths near the center of the workpiece. Hole 5 is located at a 5.1 mm depth, and 

the model overestimates the peak temperature there. Hole 21 is located at a 3.3 mm depth, and 

the model closely predicts the peak temperature at that location. Hole 25 is located at a 1.3 mm 

depth, and the model underestimates the peak temperature there. In both of the preceding figures, 

the cooling rate is predicted by the model to be longer than measured data shows. 

 
Figure 3-37: Holes 9 and 15, 3.28mm from center of weld line 

 
Figure 3-38: Hole 24, 2.27mm from center of weld line 
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Figure 3-39: Hole 13, 1.26 mm from center of weld line 

 
Figure 3-40: Holes 27 and 17, directly on center of weld line 

Generally, the model underestimates the peak temperature (by as much as 300 K) at 

locations farther out than 4.54mm from the center of the weld line. Within this distance, the 

model overestimates the peak temperature (by as much as 100 K). 
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3.2.3 Model Comparisons Across the Weld Line 

The third series of plots compare the thermal model with data collected at equal distances 

on opposite sides of the center of the weld line. The advancing side results are shown in red, 

while the retreating side results are shown in blue. Modeled temperatures are depicted with 

dashed lines, and data are shown as with points. 

As discussed in Section 2.4.4, the model was also trained to best fit advancing and 

retreating sides, rather than averaging parameters across the entire weld as was done in the 

previous sections. The values of the parameters for the advancing side data used in calculating 

the model were obtained from Holes 33, 39, and 50. The obtained parameters were averaged, 

with ftherm as 0.668, U as 211 W/m2-K, and fo as 0.594.  

The values of the parameters for the retreating side data used in calculating the model 

were obtained from Holes 4, 12, 16, and 26 (see Appendix C). The obtained parameters were 

averaged, with ftherm as 0.638, U as 166 W/m2-K, and fo as 0.716. Note that this difference in 

parameters can have a significant effect on the resulting model predictions. In the case of this 

experiment, which demonstrated some amount of asymmetry across the weld line, treating the 

advancing and retreating sides independently enhances the accuracy of the predicted 

temperatures as compared to the parameters used in the preceding sections. The difference in 

temperatures between the retreating and advancing sides can be quite large in some locations, as 

shown in the following plots (sometimes on the order of 100 K). 

The temperature profiles calculated from the ADS model are presented in descending 

distance from the center of the weld line. 
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Figure 3-41: Pairs 14-41, 19-45, and 20-46, 10.08mm from center of weld line 

 
Figure 3-42: Pairs 8-36 and 23-30, 9.58mm from center of weld line 

As can be seen from the preceding figures, this experiment demonstrated a greater 

difference in temperature between the advancing and retreating sides. Since the model was 

developed with a symmetric boundary condition, it does not account for this variation. Collected 
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data were somewhat inconsistent, as some cases show higher temperatures on the advancing 

side, and others show higher temperatures on the retreating side. 

 
Figure 3-43: 18-44, 22-29, and 12-39, 8.57mm from center of weld line 

 
Figure 3-44: Pairs 21-28 and 25-49, 5.8mm from center of weld line 
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Figure 3-45: Pair 6-35, 4.54mm from center of weld line 

 In this weld, the differences between the advancing and retreating sides are more 

pronounced. The advancing side of the weld is warmer than the retreating side, as the relative 

velocity of the FSW tool is greater there, generally contributing to greater heat input. This results 

in temperature differences across the center of the weld line of at times over 100 K.  

 The average value for the squared sum residuals of the model as compared to the data 

obtained by Furse is 8.4 x 107 K2, corresponding to an overall average temperature error of 200 

K. 

3.3 Modeled Contours in Weld Zone 

Having compared the model to experimental data, the model was then examined along 

the weld line where it was not possible to obtain direct temperature readings. The model was first 

evaluated in a longitudinal cross-section of the workpiece, and then examined along the top 

surface of the workpiece. 
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Figure 3-46: Temperature contours (K) of model corresponding to the Huang weld. Depth is measured from 
the surface of the workpiece (top surface is at z=0) 

 

Figure 3-47: Temperature contours (K) of model on the top surface of the workpiece corresponding to Huang 
weld. 
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The contours generated from the model estimate the maximum temperature in the 

workpiece to be about 825 K, near the surface. Huang estimated the maximum temperature to be 

about 1300 K by finite element methods (Huang 2008). Additionally, the contours show steep 

temperature gradients just ahead of the FSW tool in the x direction, as well as to either side of the 

tool in the y direction (Figure 3-47). 

The model predicted a much higher maximum temperature with the parameters from the 

Furse weld than that predicted with the Huang weld parameters. As can be seen in Figure 3-48, 

the maximum temperature near the surface of the workpiece is about 1250 K, as compared to 

1600 K as predicted with the finite element model employed by Furse (Furse 2010). The 

contours also exhibit the same steep gradients in the x and y directions as seen using the Huang 

weld parameters. 

 

Figure 3-48: Temperature contours (K) of model corresponding to the Furse weld. Depth is measured from 
the surface of the workpiece (top surface is at z=0) 
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Figure 3-49: Temperature contours (K) of model on the top surface of the workpiece corresponding to Furse 

weld. 

 For additional consideration, the results obtained from the Penn State finite element 

model employed by Furse, as developed by (Nandan 2006) are show in Figure 3-50. The top 

contour plot places the bottom surface of the workpiece on the z axis, rather than on the top 

surface as in Figure 3-48. Note the higher temperatures near the surface centered around 6 mm 

from the center of the weld line, which are a result of the interfacial heat generation of the 

shoulder of the tool. Except for these regions of elevated temperature and the asymmetry 

between the advancing and retreating sides, the contours in the z direction for the Penn State 

model are comparable to those seen in Figure 3-48. The FSW tool is depicted as moving to the 

left in Figure 3-50, and the temperature gradients in the x direction are steeper than those seen in 

the analytical model in Figure 3-49. 
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Figure 3-50: Quasi-steady temperature contours generated by the Penn State model for the Furse weld 
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4 CONCLUSIONS 

An analytical model of a FSW process based on a distributed volumetric heat generation 

rate was developed, and the predicted near-field temperatures obtained using this model 

remained finite. Key physical parameters of the model were optimized with a limited set of 

experimental data, taken from different depths and distances from the center of the stir zone. The 

model was then compared with data taken at various locations within the workpiece in order to 

validate the results obtained.  

 The ADS model matches the Huang data better than the Furse data. The average 

difference between the temperature profile and the Huang data is 76 K. The maximum 

temperature in the workpiece during the FSW process was predicted to be 845 K, as compared to 

the finite element analysis estimate of 1300 K, as conducted by Huang (Huang 2008). The total 

heat input into the model was 889.8 W. The model’s accuracy was best at locations farther from 

the center of the weld line, close to the midplane. 

 The Furse data showed significant differences from the temperature profiles generated by 

the analytical model, resulting in an average temperature error of 200 K. The maximum 

temperature in the workpiece predicted by the model was 1560 K, which compares well to the 

peak value obtained using the Penn State model (Nandan 2006). The total heat input into the 

model for this weld was 1965.6 W. Again, the model performed best at locations farther from the 

center of the weld line, close to the midplane. 
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 The model exhibited two main areas of difficulty when compared to data. The peak 

temperature tended to be lower than measurements at locations near the top surface of the 

workpiece, while it tended to be higher than measurements at locations near the bottom surface 

of the workpiece, near the supporting plate. The cooling rate is more rapid than the 

measurements indicate farther from the center of the weld line, and lower than the measurements 

depict nearer to the center of the weld line. The locations used in optimization to obtain the 

physical parameters used in the model were spread throughout the workpiece (different depths 

and distances from the weld line). The optimization algorithm drove to reduce the overall 

difference between the training data and the ADS predicted temperatures, in order to give values 

that would be the best fit for the variety of locations observed. If only locations near the surface 

were used in optimization, for example, the resulting parameters would skew predicted 

temperatures to be much higher than what is measured deeper within the workpiece. 

Previous analytical thermal models, discussed in the introduction, have been 

demonstrated to fairly accurately predict temperature profiles for several FSW cases. However, 

in studies using these models only a few sets of temperature data, taken at mid-depth within the 

workpiece far outside the stirred zone, were compared to the model outputs. Thus, their 

performance at a wider range of depths and distances from the weld line cannot be adequately 

compared to the model developed here. This model does perform as well as these other models 

in the locations examined. 

The model developed in this work has demonstrated that finite temperature fields 

throughout the entire workpiece can be predicted with a small set of experimental data. When 

compared with measured data, the model maintains, on average, a peak temperature accuracy 

within 40-50 K. There are only a few parameters determined by regression analysis, but they 
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have been demonstrated to have a significant degree of influence of the temperature history of 

the process. It is hoped that future researchers may utilize this model for an early prediction of 

expected temperatures and cooling rates for friction stir welding experiments. 

Despite all the work put into thermal modeling, no model can as of yet be fully validated 

with experimental data, as temperature measurements in the primary area of interest, the center 

of the weld line, are as of yet unobtainable. Finite element models incorporate the greatest 

amount of physical phenomena in their formulation, while analytical models must make certain 

assumptions to be mathematically tractable. Without data, it is not possible to definitively state if 

one model is more accurate than another within the weld zone. 

In order to improve the model, the heat generation model will need to more accurately 

predict the heat input for a given FSW process. The interaction between the FSW tool and the 

workpiece is complex, requiring modeling of the flow of stirred material around the pin and 

shoulder to determine the stresses and the resulting frictional generation of heat. Without an 

accurate value of input heat, peak temperature cannot be very accurately predicted. Also, the heat 

transfer into the supporting plate will need to be more thoroughly addressed, i.e., there is 

increased thermal contact resistance at locations farther from the center of the weld line due to 

bending of the workpiece by the FSW tool. The mathematical model also required isotropic and 

constant values of thermal diffusivity throughout the workpiece, which does vary to some 

Differences in temperature between the advancing and retreating side also need to be accounted 

for—this would necessitate more detailed modeling of plastic flow about the FSW tool. 
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APPENDIX A.  SOLUTION TO STURM-LIOUVILLE PROBLEM 

Beginning with the 

dimensional form of 

2-1, apply the 

following 

nondimensionalization. 

𝜕2𝑇
𝜕𝑥2

+
𝜕2𝑇
𝜕𝑦2

+
𝜕2𝑇
𝜕𝑧2

+
𝑞
𝑘
̇
=

1
𝛼𝑡
𝜕𝑇
𝜕𝑡

 

 

A-1 

 

 𝜉 =
𝑥
𝐿

 A-2 

 𝜂 =
𝑦
𝑊

 A-3 

 ζ =
𝑧
𝑆

 A-4 

 τ =
𝛼𝑡𝑡
𝐿2

 A-5 

 𝜉𝑜 =
𝑣𝑡
𝐿

 A-6 

 𝜉𝑠 =
𝑟𝑠
𝐿

 A-7 

 𝜉𝑝 =
𝑟𝑝
𝐿

 C-8 

 𝜂𝑠 =
𝑟𝑠
𝑊

 C-9 
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 𝜂𝑝 =

𝑟𝑝
𝑊

 A-10 

 ζs =
𝑟𝑠tan (𝛼)

𝑆
 A-11 

 ζp =
ℎ𝑝
𝑆

 A-12 

 𝐴 =
𝑊
𝐿

 A-13 

 𝐵 =
𝑆
𝐿

 A-14 

 𝜃 =
𝑊𝑆𝑘
𝑄𝑡𝑜𝑡𝐿

(𝑇 − 𝑇∞) A-15 

Nondimensional form 

of 2-1. 
𝜕2𝜃
𝜕𝜉2

+
1
𝐴2

𝜕2𝜃
𝜕𝜂2

+
1
𝐵2

𝜕2𝜃
𝜕𝜁2

+ 𝒬 =
𝜕𝜃
𝜕𝜏

 A-1 

Nondimensional form 

of 2-2. 

𝒬 =
𝑓𝑠

4𝜁𝑠(𝜉𝑠𝜂𝑠 − 𝜉𝑝𝜂𝑝) 
 [(𝐻(𝜉 − 𝜉𝑜 + 𝜉𝑠 )

− 𝐻(𝜉 − 𝜉𝑜 − 𝜉𝑠))(1 − 𝐻(𝜂
− 𝜂𝑠))(1 − 𝐻(𝜁 − 𝜁𝑠)) − (𝐻(𝜉
− 𝜉𝑜 + 𝜉𝑝 ) − 𝐻(𝜉 − 𝜉𝑜
− 𝜉𝑝))(1 − 𝐻(𝜂 − 𝜂𝑝))(1
− 𝐻(𝜁 − 𝜁𝑠))]  

+
𝑓𝑝

4𝜉𝑝𝜂𝑝𝜁𝑝 
 [(𝐻(𝜉 − 𝜉𝑜 + 𝜉𝑝)

− 𝐻(𝜉 − 𝜉𝑜 − 𝜉𝑝))(1 − 𝐻(𝜂
− 𝜂𝑝 ))(1− 𝐻(𝜁 − 𝜁𝑝))]

−
𝑓𝑜

4𝜉𝑠 𝜂𝑠  
 [(𝐻(𝜉 − 𝜉𝑜 + 𝜉𝑠)

− 𝐻(𝜉 − 𝜉𝑜 − 𝜉𝑠))(1 − 𝐻(𝜂
− 𝜂𝑠  ))𝛿(𝜁 − 1)] 

A-2 

Divide A-1 into spatial components, representing them as Xl, Ym, and Zn with eigenvalues λl, βm, 

and γn respectively. This results in the solution to A-1, as seen in 2-10. Xl will be solved for first. 
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 𝑑2𝑋𝑙
𝑑𝜉2

+ 𝜆𝑙2𝑋𝑙 = 0 A-3 

Solve A-3. 𝑋𝑙 = 𝑐1 sin(𝜆𝑙𝜉) + 𝑐2cos (𝜆𝑙𝜉) A-4 

Solve for the unknown constants in A-4 by applying the nondimensionalized boundary 

conditions by differentiating and evaluating at the boundaries. 

 𝑑𝑋𝑙
𝑑𝜉

|𝜉=0 = 𝜆𝑙𝑐1 cos(0) − 𝜆𝑙𝑐2 sin(0) = 𝜆𝑙𝑐1 A-5 

 
Nondimensional 

form of 2-3. 
𝑑𝑋𝑙
𝑑𝜉

|𝜉=0 = 𝐵𝑖𝑋𝑙(0) = 𝐵𝑖(𝑐1 sin(0) + 𝑐2 cos(0)) = 𝐵𝑖𝑐2 A-6 

 
Set A-6 equal to 

A-5, solve for 

c2. 

𝑐2 =
𝜆𝑙
𝐵𝑖
𝑐1 A-7 

 
 𝑑𝑋𝑙

𝑑𝜉
|𝜉=1 = 𝜆𝑙𝑐1 cos(𝜆𝑙) −

𝜆𝑙2

𝐵𝑖
𝑐1 sin(𝜆𝑙) A-8 

Nondimensional 

form of 2-4. 
𝑑𝑋𝑙
𝑑𝜉

|𝜉=1 = −𝐵𝑖𝑋𝑙(1) = −𝐵𝑖𝑐1 �cos(𝜆𝑙) −
𝜆𝑙
𝐵𝑖

sin(𝜆𝑙)� A-9 

Set A-8 equal to 

A-9. 
𝜆𝑙𝑐1 cos(𝜆𝑙) −

𝜆𝑙2

𝐵𝑖
𝑐1 sin(𝜆𝑙)

= −𝐵𝑖𝑐1 �cos(𝜆𝑙) −
𝜆𝑙
𝐵𝑖

sin(𝜆𝑙)� 

A-10 

Rearranging A-10 results in the eigencondition found in 2-11. The unknown constant c1 will be 

solved later. 

 tan�𝜆𝑝� =
2𝜆𝑝𝐵𝑖
𝜆𝑝2 − 𝐵𝑖2

 A-11 

Now solve for Ym. 
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 1
A2
𝑑2𝑌𝑚
𝑑𝜂2

+ 𝛽𝑚2 𝑌𝑚 = 0 A-12 

 
Solve A-11. 𝑌𝑚 = 𝑐3 sin(𝐴𝛽𝑚𝜂) + 𝑐4cos (𝐴𝛽𝑚𝜂) A-13 

Differentiate 

and evaluate. 
𝑑𝑌𝑚
𝑑𝜂

|𝜂=0 = 𝐴𝛽𝑚𝑐3 cos(0) − 𝐴𝛽𝑚𝑐4 sin(0) = 𝐴𝛽𝑚𝑐3 A-14 

Nondimensional 

form of 2-5. 
𝑑𝑌𝑚
𝑑𝜂

|𝜂=0 = 0 A-15 

 
Set A-15 equal 

to A-14, solve 

for c3. 

𝑐3 = 0 A-16 

 
 𝑑𝑌𝑚

𝑑𝜂
|𝜂=1 = −𝐴𝛽𝑚𝑐4 sin(𝐴𝛽𝑚) A-17 

 
Nondimensional 

form of 2-6. 
𝑑𝑌𝑚
𝑑𝜂

|𝜂=1 = −𝐵𝑖𝐴𝑌𝑚(1) = −𝐵𝑖𝐴(𝑐4 cos(𝐴𝛽𝑚)) A-18 

Set A-17 equal 

to A-18. −𝐴𝛽𝑚𝑐4 sin(𝐴𝛽𝑚) = −𝐵𝑖𝐴(𝑐4 cos(𝐴𝛽𝑚)) A-19 

Rearranging A-19 results in the eigencondition found in 2-12. The unknown constant c4 will be 

solved for later. 

 tan(𝐴𝛽𝑚) =
𝐵𝑖
𝛽𝑚

 A-20 

Now solve for Zn. 
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 1
𝐵2

𝑑2𝑍𝑛
𝑑𝜁2

+ 𝛾𝑛2𝑍𝑛 = 0 A-21 

Solve A-21. 𝑍𝑛 = 𝑐5 sin(𝐵𝛾𝑛𝜁) + 𝑐6 cos(𝐵𝛾𝑛𝜁) A-22 

Differentiate 

and evaluate. 
𝑑𝑍𝑛
𝑑𝜁

|𝜁=0 = 𝐵𝛾𝑛𝑐5 cos(0) − 𝐵𝛾𝑛𝑐6 sin(0) = 𝐵𝛾𝑛𝑐5 A-23 

Nondimensional 

form of 2-7. 

𝑑𝑍𝑛
𝑑𝜁

|𝜁=0 = 𝐵𝑖𝐵𝑍𝑛(0) = 𝐵𝑖𝐵(𝑐5 sin(0) + c6 cos(0))

= 𝐵𝑖𝐵𝑐6 

A-24 

Set A-23 equal 

to A-24, solve 

for c6. 

 
 
𝑐6 =

𝛾𝑛
𝐵𝑖
𝑐5 

 

A-25 

 
 
 
 𝑑𝑍𝑛

𝑑𝜁
|𝜁=1 = 𝐵𝛾𝑛𝑐5 cos(𝐵𝛾𝑛) −

𝐵𝛾𝑛2

𝐵𝑖
sin(𝐵𝛾𝑛) A-26 

Nondimensional 

form of 2-8. 

𝑑𝑍𝑛
𝑑𝜁

|𝜁=1 = −𝐵𝑖𝐵𝜇𝑍𝑛(1)

= −𝐵𝑖𝐵𝜇 �𝑐5 sin(𝐵𝛾𝑛) +
𝛾𝑛
𝐵𝑖
𝑐5 cos(𝐵𝛾𝑛)� 

A-27 

 
Set A-26 equal 

to A-27. 
𝛾𝑛𝑐5 �cos(𝐵𝛾𝑛) −

𝛾𝑛
𝐵𝑖

sin(𝐵𝛾𝑛)�

= −𝐵𝑖𝜇𝑐5 �sin(𝐵𝛾𝑛) +
𝛾𝑛
𝐵𝑖

cos(𝐵𝛾𝑛)� 
A-28 

Rearranging A-28 results in the eigencondition found in 2-13. The unknown constant c5 will be 

solved for later. 

 tan(𝐵𝛾𝑛) =
𝐵𝑖𝛾𝑛(1 + 𝜇)
𝛾𝑛2 − 𝐵𝑖2𝜇

 A-29 

Substituting A-4, A-13, and A-22 into 2-10 results in the following equation. 
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𝜃(𝜉, 𝜂, 𝜁, 𝜏)

= �� �𝑐𝑙𝑚𝑛(𝜏) �𝑐1 sin(𝜆𝑙𝜉)
∞

𝑛=1

∞

𝑚=1

∞

𝑙=1

+
𝜆𝑙
𝐵𝑖
𝑐1 cos(𝜆𝑙𝜉)� (𝑐4 cos(𝐴𝛽𝑚𝜂)) �𝑐5 sin(𝐵𝛾𝑛𝜁)

+
𝛾𝑛
𝐵𝑖
𝑐5 cos(𝐵𝛾𝑛𝜁)� 

A-30 

The unknown constants can all be absorbed into clmn, resulting in the expressions for Xl, Ym, and 

Zn as seen in Equations 2-11, 2-12, and 2-13. 

 It is necessary to determine whether zero eigenvalues should be included in the 

summations shown in A-31. To do this, Equations A-3, A-12, and A-22 are to be solved with 

their respective zero eigenvalues. The case for Xo will be examined first. 

 𝑑2𝑋𝑜
𝑑𝜉2

= 0 A-32 

 
Solve A-32. 𝑋𝑜 = 𝑐1𝜉 + 𝑐2 A-33 

Differentiate 

and evaluate. 
𝑑𝑋𝑜
𝑑𝜉

= 𝑐1 A-34 

 𝑑𝑋𝑜
𝑑𝜉

|𝜉=0 = 𝐵𝑖𝑋𝑜(0) = 𝐵𝑖(𝑐1(0) + 𝑐2) A-35 

 

 
𝜃(𝜉, 𝜂, 𝜁, 𝜏) = �� �𝑐𝑙𝑚𝑛(𝜏) �sin(𝜆𝑙𝜉)

∞

𝑛=1

∞

𝑚=1

∞

𝑙=1

+
𝜆𝑙
𝐵𝑖

cos(𝜆𝑙𝜉)� (cos(𝐴𝛽𝑚𝜂)) �sin(𝐵𝛾𝑛𝜁)

+
𝛾𝑛
𝐵𝑖

cos(𝐵𝛾𝑛𝜁)� 

A-31 
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Set A-34 equal 

to A-35, solve 

for c1. 

𝑐1 = 𝐵𝑖𝑐2 A-36 

 𝑑𝑋𝑜
𝑑𝜉

|𝜉=1 = −𝐵𝑖𝑋𝑜(1) = −𝐵𝑖(𝑐2(1) + 𝑐2) A-37 

Set A-34 equal 

to A-37, 

rearrange. 

𝐵𝑖 = −2 A-38 

Since the Biot number must always be positive, the zero eigenvalue should not be used when 

summing over l. The case for Yo will be examined next. 

 1
𝐴
𝑑2𝑌𝑜
𝑑𝜂2

= 0 A-39 

 
Solve A-39. 𝑌𝑜 = 𝑐3𝜂 + 𝑐4 A-40 

Differentiate 

and evaluate. 
𝑑𝑌𝑜
𝑑𝜂

= 𝑐3 A-41 

Solve for c3. 𝑑𝑌𝑜
𝑑𝜂

|𝜂=0 = 0 = 𝑐3 A-42 

 𝑑𝑌𝑜
𝑑𝜂

|𝜂=1 = −𝐵𝑖𝐴𝑌𝑜(1) = −𝐵𝑖𝐴𝑐4 A-43 

 
Set A-43 equal 

to A-41. 𝐵𝑖𝐴𝑐4 = 0 A-44 

Since the Biot number and A are nonzero values, Yo reduces to the trivial case. Thus, the zero 

eigenvalue should not be used when summing over m. The case for Zo will be examined next. 
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 1
𝐵
𝑑2𝑍𝑜
𝑑𝜁2

= 0 A-45 

Solve A-45. 𝑍𝑜 = 𝑐5𝜁 + 𝑐6 A-46 

Differentiate 

and evaluate. 
𝑑𝑍𝑜
𝑑𝜁

= 𝑐5 A-47 

 𝑑𝑍𝑜
𝑑𝜁

|𝜁=0 = 𝐵𝑖𝐵𝑍𝑜(0) = 𝐵𝑖𝐵(𝑐5(0) + 𝑐6) A-48 

Set A-47 equal 

to A-48, solve 

for c5. 

𝑐5 = 𝐵𝑖𝐵𝑐6 A-49 

 𝑑𝑍𝑜
𝑑𝜁

|𝜁=1 = −𝐵𝑖𝐵𝜇𝑍𝑜(1) = −𝐵𝑖𝐵𝜇(𝑐5(1) + 𝑐6) A-50 

 

Since the Biot number, B, and μ are positive, the zero eigenvalue should not be used when 

summing over n. 

 The expression for the nondimensional temperature in Equation A-31 can be substituted 

into Equation A-1, the nondimensional governing equation. The terms found in Equation A-31 

are replaced with Xl, Ym, and Zn. The summation describing the heat source, is also included in 

the following equation. 

Set A-50 equal 

to A-47, 

rearrange. 

𝐵𝑖 = −
𝜇 + 1
𝐵𝜇

 A-51 
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�� �𝑐𝑙𝑚𝑛 �
𝑑2𝑋𝑙
𝑑𝜉2

𝑌𝑚𝑍𝑛 +
1
𝐴2

𝑋𝑙
𝑑2𝑌𝑚
𝑑𝜂2

𝑍𝑛

∞

𝑛=1

∞

𝑚=1

∞

𝑙=1

+
1
𝐵2

𝑋𝑙𝑌𝑚
𝑑2𝑍𝑛
𝑑𝜁2

� + 𝑏𝑙𝑚𝑛𝑋𝑙𝑌𝑚𝑍𝑛

=
𝑑𝑐𝑙𝑚𝑛
𝑑𝜏

𝑋𝑙𝑌𝑚𝑍𝑛 

A-52 

Substituting from Equations A-3, A-12, and A-22, the derivatives can be substituted as follows. 

 

�� �𝑐𝑙𝑚𝑛 �−𝜆𝑙2𝑋𝑙𝑌𝑚𝑍𝑛 −
1
𝐴2

𝑋𝑙𝛽𝑚2 𝐴2𝑌𝑚𝑍𝑛

∞

𝑛=1

∞

𝑚=1

∞

𝑙=1

−
1
𝐵2

𝑋𝑙𝑌𝑚𝛾𝑛2𝐵2𝑍𝑛� + 𝑏𝑙𝑚𝑛𝑋𝑙𝑌𝑚𝑍𝑛

=
𝑑𝑐𝑙𝑚𝑛
𝑑𝜏

𝑋𝑙𝑌𝑚𝑍𝑛 

A-53 

Simplifying and 

rearranging 

A-53. 

�� ��−
𝑑𝑐𝑙𝑚𝑛
𝑑𝜏

− (𝜆𝑙2 + 𝛽𝑚2 + 𝛾𝑛2)𝑐𝑙𝑚𝑛

∞

𝑛=1

∞

𝑚=1

∞

𝑙=1

+ 𝑏𝑙𝑚𝑛�𝑋𝑙𝑌𝑚𝑍𝑛 = 0 

A-54 

 According to theory for Sturm-Liouville problems, Xl, Ym, and Zn form an orthogonal set, 

with the following properties. 

 � 𝑋𝑙𝑋𝑝𝑑𝜉
1

0
= �

0 𝑖𝑓 𝑙 ≠ 𝑝
𝑁𝑝 𝑖𝑓 𝑙 = 𝑝 A-55 

 � 𝑌𝑚𝑌𝑞𝑑𝜂
1

0
= �

0 𝑖𝑓 𝑚 ≠ 𝑞
𝑁𝑞 𝑖𝑓 𝑚 = 𝑞 A-56 

 � 𝑍𝑛𝑍𝑟𝑑𝜁
1

0
= � 0 𝑖𝑓 𝑛 ≠ 𝑟

𝑁𝑟 𝑖𝑓 𝑛 = 𝑟 A-57 

Equation A-54 can then be multiplied by ∫ 𝑋𝑝𝑑𝜉 ∫ 𝑌𝑞𝑑𝜂
1
0 ∫ 𝑍𝑟𝑑𝜁

1
0

1
0 , resulting in the following 

equation after simplification (for the nontrivial case). 
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 �� ��−
𝑑𝑐𝑙𝑚𝑛
𝑑𝜏

− (𝜆𝑙2 + 𝛽𝑚2 + 𝛾𝑛2)𝑐𝑙𝑚𝑛

∞

𝑛=1

∞

𝑚=1

∞

𝑙=1

+ 𝑏𝑝𝑞𝑟�𝑁𝑝𝑁𝑞𝑁𝑟 = 0 

A-58 

Simplify 

further. �
𝑑𝑐𝑝𝑞𝑟
𝑑𝜏

+ �𝜆𝑝2 + 𝛽𝑞2 + 𝛾𝑟2�𝑐𝑝𝑞𝑟 − 𝑏𝑝𝑞𝑟� = 0 A-59 

 It is necessary to determine bpqr before the solution can be evaluated. Recall that it 

describes the heat source. Multiplying by ∫ 𝑋𝑝𝑑𝜉 ∫ 𝑌𝑞𝑑𝜂
1
0 ∫ 𝑍𝑟𝑑𝜁

1
0

1
0  and simplifying results in the 

following equation. 

 𝑏𝑝𝑞𝑟 =
1

𝑁𝑝𝑁𝑞𝑁𝑟
� � � 𝒬(𝑋𝑝𝑌𝑞𝑍𝑟)𝑑𝜉𝑑𝜂𝑑𝜁

1

0

1

0

1

0
 A-60 

 Equation A-2 is the nondimensionalized expression for the moving heat source in the 

model, and it is a function of ξ, η, ζ, and τ. The required integration is extensive, so it will be 

divided into three smaller portions, representing the different parts of the heat source. The sum of 

all these portions yields the entire moving heat source. 

The first portion examined is fs, the outer portion of the heat source, representing the 

shoulder of the tool. The Heaviside step functions, when integrated, alter the limits of integration 

to the interval where there are nonzero. 

 

𝑏𝑝𝑞𝑟𝑓𝑠 =
𝑓𝑠

�4𝜁𝑠(𝜉𝑠𝜂𝑠 − 𝜉𝑝𝜂𝑝)�𝑁𝑝𝑁𝑞𝑁𝑟
 

�� � � 𝑋𝑝𝑌𝑞𝑍𝑟𝑑𝜉𝑑𝜂𝑑𝜁
𝜁𝑠

0

𝜂𝑠

0

𝜉𝑜+𝜉𝑠

𝜉𝑜−𝜉𝑠

− � � � 𝑋𝑝𝑌𝑞𝑍𝑟𝑑𝜉𝑑𝜂𝑑𝜁
𝜁𝑠

0

𝜂𝑝

0

𝜉𝑜+𝜉𝑝

𝜉𝑜−𝜉𝑝
� 

A-61 
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Integrate. 

𝑏𝑝𝑞𝑟𝑓𝑠 =
2𝑓𝑠

�𝜁𝑠 �𝜉𝑠𝜂𝑠 − 𝜉𝑝𝜂𝑝��𝑁𝑝𝑁𝑞𝑁𝑟𝐴𝐵𝜆𝑝𝛽𝑞𝛾𝑟
 

�−sin�𝛽𝑞𝐴𝜂𝑠� sin�𝜆𝑝𝜉𝑠� �sin�𝜆𝑝𝜉𝑜� + 𝜆𝑝cos�𝜆𝑝𝜉𝑜�
𝐵𝑖

� �cos�𝛾𝑟𝐵𝜁𝑠� −

1 − 𝛾𝑟
𝐵𝑖

sin�𝛾𝑟𝐵𝜁𝑠�� + 2sin�𝛽𝑞𝐴𝜂𝑝� sin�𝜆𝑝𝜉𝑝� �sin�𝜆𝑝𝜉𝑜� +
𝜆𝑝cos�𝜆𝑝𝜉𝑜�

𝐵𝑖
� �cos�𝛾𝑟𝐵𝜉𝑠𝜁𝑠� − 1 − 𝛾𝑟

𝐵𝑖
sin�𝛾𝑟𝐵𝜉𝑠𝜁𝑠���  
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The next portion examined is fp, which represents the FSW tool probe, the inner portion 

of the moving heat source. Like with the previous portion, the Heaviside step functions change 

the limits of integration. 

 
𝑏𝑝𝑞𝑟𝑓𝑝

=
𝑓𝑝

�𝜉𝑝𝜂𝑝𝜁𝑝�𝑁𝑝𝑁𝑞𝑁𝑟
� � � 𝑋𝑝𝑌𝑞𝑍𝑟𝑑𝜉𝑑𝜂𝑑𝜁

𝜁𝑝

0

𝜂𝑝

0

𝜉𝑜+𝜉𝑝

𝜉𝑜−𝜉𝑝
 

A-63 

 

Integrate. 

𝑏𝑝𝑞𝑟𝑓𝑝

=
2𝑓𝑝

�𝜉𝑝𝜂𝑝𝜁𝑝�𝑁𝑝𝑁𝑞𝑁𝑟𝐴𝐵𝜆𝑝𝛽𝑞𝛾𝑟
�sin �𝛽𝑞𝐴𝜂𝑝� sin �𝜆𝑝𝜉𝑝� �sin�𝜆𝑝𝜉𝑜�

+
𝜆𝑝cos�𝜆𝑝𝜉𝑜�

𝐵𝑖
� �cos�𝛾𝑟𝐵𝜁𝑝� − 1 −

𝛾𝑟
𝐵𝑖

sin�𝛾𝑟𝐵𝜁𝑝��� 

A-64 

 The last portion examined is fo, which represents the region of reduced thermal contact 

resistance beneath the moving heat source. Like with the previous portions, the Heaviside step 

functions change the limits of integration. The Dirac delta function results in the evaluation of its 

dependent functions at the location of its impulse when integrated. 

 𝑏𝑝𝑞𝑟𝑞𝑜 =
−𝑓𝑜

(𝜉𝑠𝜂𝑠)𝑁𝑝𝑁𝑞𝑁𝑟
� � 𝑋𝑝𝑌𝑞𝑍𝑟(1)𝑑𝜉𝑑𝜂

𝜂𝑠

0

𝜉𝑜+𝜉𝑠

𝜉𝑜−𝜉𝑠
 A-65 
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Integrate. 

𝑏𝑝𝑞𝑟𝑓𝑜

=
−𝑓𝑜

(2𝜉𝑠𝜂𝑠)𝑁𝑝𝑁𝑞𝑁𝑟𝐴𝐵𝜆𝑝𝛽𝑞
�sin �𝛽𝑞𝐴𝜂𝑠� sin�𝜆𝑝𝜉𝑠� �sin�𝜆𝑝𝜉𝑜�

+
𝜆𝑝cos�𝜆𝑝𝜉𝑜�

𝐵𝑖
� �sin�𝛾𝑟𝐵� +

𝛾𝑟
𝐵𝑖

cos�𝛾𝑟𝐵��� 

A-66 

 Note that bpqr contains ξo, which is a function of τ. It is necessary to separate out all the 

terms that contain it. The portion not containing ξo is lumped into the following parameter. 

 

𝐷 =
1

𝑁𝑝𝑁𝑞𝑁𝑟𝐴𝐵𝜆𝑝𝛽𝑞
�� 𝑓𝑠

�𝜁𝑠�𝜉𝑠𝜂𝑠−𝜉𝑝𝜂𝑝��𝛾𝑟
�−𝑠𝑖𝑛�𝛽𝑞𝐴𝜂𝑠� 𝑠𝑖𝑛�𝜆𝑝𝜉𝑠� �𝑐𝑜𝑠(𝛾𝑟𝐵𝜁𝑠) − 1 −

𝛾𝑟
𝐵𝑖
𝑠𝑖𝑛(𝛾𝑟𝐵𝜁𝑠)� + 2𝑠𝑖𝑛�𝛽𝑞𝐴𝜂𝑝� 𝑠𝑖𝑛�𝜆𝑝𝜉𝑝� �𝑐𝑜𝑠(𝛾𝑟𝐵𝜉𝑠𝜁𝑠) − 1 −

𝛾𝑟
𝐵𝑖
𝑠𝑖𝑛(𝛾𝑟𝐵𝜉𝑠𝜁𝑠)��� + 2𝑓𝑝

�𝜉𝑝𝜂𝑝𝜁𝑝�𝛾𝑟
�𝑠𝑖𝑛�𝛽𝑞𝐴𝜂𝑝� 𝑠𝑖𝑛�𝜆𝑝𝜉𝑝� �𝑐𝑜𝑠�𝛾𝑟𝐵𝜁𝑝� − 1 −

𝛾𝑟
𝐵𝑖
𝑠𝑖𝑛�𝛾𝑟𝐵𝜁𝑝��� −

𝑓𝑜
(2𝜉𝑠𝜂𝑠)

�𝑠𝑖𝑛�𝛽𝑞𝐴𝜂𝑠� 𝑠𝑖𝑛�𝜆𝑝𝜉𝑠� �𝑠𝑖𝑛(𝛾𝑟𝐵) + 𝛾𝑟
𝐵𝑖
𝑐𝑜𝑠(𝛾𝑟𝐵)���  

A-67 

The remainder can simply be described as Xp(ξo), thus bpqr can then be defined as the following 

equation. 

 𝑏𝑝𝑞𝑟 = 𝐷𝑋𝑝(𝜉𝑜) A-68 

 Now it is possible to solve for cpqr, as described in Equation A-59, with bpqr known. 

Because bpqr is a function of τ, the differential equation will need to be solved with an integrating 

factor. 

 𝐸 = 𝜆𝑝2 + 𝛽𝑞2 + 𝛾𝑟2 A-69 

Substitute A-69 

into A-59. 𝑒(𝐸)𝜏𝑐𝑝𝑞𝑟 = � 𝐷𝑋𝑝(𝜉𝑜)
𝜏

0
𝑒(𝐸)𝜏𝑑𝜏 A-70 
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Rearrange and 

expand. 
𝑐𝑝𝑞𝑟
𝐷

𝑒𝐸𝜏 = � �sin�
𝜆𝑝𝑣𝐿𝜏
𝛼

� +
𝜆𝑝
𝐵𝑖

cos�
𝜆𝑝𝑣𝐿𝜏
𝛼

�� 𝑒𝐸𝜏𝑑𝜏
𝜏

0
 A-71 

 𝐹 = �
𝜆𝑝𝑣𝐿𝜏
𝛼

� A-72 

Substitute A-72 

into A-71. 
𝑐𝑝𝑞𝑟
𝐷

𝑒𝐸𝜏 = � �sin(𝐹𝜏) +
𝜆𝑝
𝐵𝑖

cos(𝐹𝜏)� 𝑒𝐸𝜏𝑑𝜏
𝜏

0
 A-73 

Integrate. 

𝑐𝑝𝑞𝑟
𝐷

𝑒𝐸𝜏

=
(𝐹 − 𝐹𝑒𝐸𝜏 cos(𝐹𝜏) + 𝐸𝑒𝐸𝜏 sin(𝐹𝜏))

𝐸2 + 𝐹2

+
𝜆𝑝
𝐵𝑖

(−𝐸 + 𝐹𝑒𝐸𝜏 cos(𝐹𝜏) + 𝐹𝑒𝐸𝜏 sin(𝐹𝜏))
𝐸2 + 𝐹2

 

A-74 

After simplifying and expanding Equation A-74, cpqr becomes as Equation 2-14 shows. 

 

𝑐𝑝𝑞𝑟 =

�𝐵𝑖�𝜆𝑝2+𝛽𝑞2+𝛾𝑟2�+
𝜆𝑝2𝑣𝐿
𝛼 � sin�𝜆𝑝𝜉𝑜�+�𝜆𝑝�𝜆𝑝2+𝛽𝑞2+𝛾𝑟2�−

𝐵𝑖𝜆𝑝𝑣𝐿
𝛼 �cos (𝜆𝑝𝜉𝑜)

2𝑁𝑝𝑁𝑞𝑁𝑟𝐴𝜆𝑝𝛽𝑞𝐵𝑖��𝜆𝑝2+𝛽𝑞2+𝛾𝑟2�
2
+
𝜆𝑝2𝑣2𝐿2

𝛼2
�

�� 𝑓𝑠
�𝜁𝑠�𝜉𝑠𝜂𝑠−𝜉𝑝𝜂𝑝��𝐵𝛾𝑟

��𝑠𝑖𝑛�𝛽𝑞𝐴𝜂𝑝� 𝑠𝑖𝑛�𝜆𝑝𝜉𝑝� −

𝑠𝑖𝑛�𝛽𝑞𝐴𝜂𝑠� 𝑠𝑖𝑛�𝜆𝑝𝜉𝑠�� �𝑐𝑜𝑠(𝛾𝑟𝐵𝜁𝑠) − 1 − 𝛾𝑟
𝐵𝑖
𝑠𝑖𝑛(𝛾𝑟𝐵𝜁𝑠)��� −

𝑓𝑝
�𝜉𝑝𝜂𝑝𝜁𝑝�𝐵𝛾𝑟

�𝑠𝑖𝑛�𝛽𝑞𝐴𝜂𝑝� 𝑠𝑖𝑛�𝜆𝑝𝜉𝑝� �𝑐𝑜𝑠�𝛾𝑟𝐵𝜁𝑝� − 1 − 𝛾𝑟
𝐵𝑖
𝑠𝑖𝑛�𝛾𝑟𝐵𝜁𝑝��� −

𝑓𝑜
(𝜉𝑠𝜂𝑠)

�𝑠𝑖𝑛�𝛽𝑞𝐴𝜂𝑠� 𝑠𝑖𝑛�𝜆𝑝𝜉𝑠� �𝑠𝑖𝑛(𝛾𝑟𝐵) + 𝛾𝑟
𝐵𝑖
𝑐𝑜𝑠(𝛾𝑟𝐵)���  

   
A-75 

 

 By substituting 2-14 into 2-10, the nondimensional temperature θ can be found at any 

nondimensional location and time. The temperature can be obtained by using the relations in 

Section 2.1.6. 
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APPENDIX B. HUANG THERMOCOUPLE PLACEMENT 

The following table shows the locations of the 53 thermocouples used in validation and 

comparison with the analytical model. The x origin is relative to the lengthwise edge of the 

workpiece, from where the FSW tool began to advance. The y origin is on the weld line, with 

negative y positions being on the advancing side of the weld line. The z origin is relative to the 

top of the workpiece plate, positive with increasing depth into the plate. 

Table B-1: Location data for Huang Thermocouples 

Hole 
No. 

Channel-
Switch X (cm) Y (cm) Z (cm) 

 Hole 
No. 

Channel-
Switch X (cm) Y (cm) Z (cm) 

1 1-1 8.79 0.875 0.340  28 8-3 69.75 -0.875 0.120 
2 1-2 31.65 0.685 0.290  29 8-4 87.53 -0.965 0.010 
3 1-3 51.97 1.015 0.180  30 9-1 8.79 -0.875 0.340 
4 1-4 74.83 1.015 0.060  31 9-2 31.65 -0.710 0.290 
5 2-1 11.33 0.580 0.340  32 9-3 51.97 -1.015 0.180 
6 2-2 34.19 0.452 0.290  33 9-4 74.83 -1.015 0.060 
7 2-3 57.05 0.875 0.180  34 10-1 11.33 -0.580 0.340 
8 2-4 77.37 0.965 0.060  35 10-2 34.19 -0.465 0.290 
9 3-1 13.87 0.335 0.340  36 10-3 57.05 -0.875 0.180 

10 3-2 36.73 0.132 0.290  37 10-4 77.37 -0.965 0.060 
11 3-4 79.91 0.875 0.060  38 11-1 13.87 -0.370 0.340 
12 4-1 16.41 0.130 0.340  39 11-2 36.73 -0.185 0.290 
13 4-2 39.27 1.015 0.240  40 11-3 59.59 -0.710 0.180 
14 4-3 62.13 0.335 0.180  41 11-4 79.91 -0.875 0.060 
15 4-4 82.45 0.685 0.060  42 12-1 16.41 -0.190 0.340 
16 5-1 18.95 0.000 0.295  43 12-2 39.27 -1.015 0.240 
17 5-2 44.35 0.875 0.240  44 12-3 62.13 -0.370 0.180 
18 5-3 64.67 1.015 0.120  45 12-4 82.45 -0.710 0.060 
19 5-4 84.99 1.015 0.010  46 13-1 24.03 -1.015 0.290 
20 6-1 24.03 1.015 0.290  47 13-2 44.35 -0.875 0.240 
21 6-2 46.89 0.580 0.240  48 13-3 64.67 -1.015 0.120 
22 6-3 69.75 0.875 0.120  49 13-4 84.99 -1.015 0.010 
23 6-4 87.53 0.965 0.010  50 15-1 29.11 -0.875 0.290 
24 7-1 29.11 0.875 0.290  51 15-2 49.43 -0.275 0.240 
25 7-2 49.43 0.232 0.240  52 15-3 72.29 -0.580 0.120 
26 7-3 72.29 0.580 0.120  53 15-4 90.07 -0.875 0.010 
27 8-1 6.25 0.000 0.340       
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APPENDIX C. FURSE THERMOCOUPLE PLACEMENT 

The following table shows the locations of the 50 thermocouples used in validation and 

comparison with the analytical model. The x origin is relative to the lengthwise edge of the 

workpiece, from where the FSW tool began to advance. The y origin is on the weld line, with 

negative y positions being on the advancing side of the weld line. The z origin is relative to the 

top of the workpiece plate, positive with increasing depth into the plate. 

Table C-1: Location data for Furse Thermocouples 

Hole 
No. 

Channel-
Switch X (cm) Y (cm) Z (cm)  Hole 

No. 
Channel-

Switch X (cm) Y (cm) Z (cm) 

1 1-1 17.64 0.857 0.508  26 7-4 98.28 0.857 0.025 
2 1-2 40.32 0.680 0.432  27 8-1 15.12 0 0.508 
3 1-3 60.48 1.008 0.229  28 8-2 55.44 -0.580 0.330 
4 1-4 83.16 1.008 0.076  29 8-3 78.12 -0.857 0.127 
5 2-1 20.16 0.580 0.508  30 8-4 95.76 -0.958 0.025 
6 2-2 42.84 0.454 0.432  31 9-1 17.64 -0.857 0.508 
7 2-3 65.52 0.857 0.229  32 9-2 40.32 -0.706 0.432 
8 2-4 85.68 0.958 0.076  33 9-4 83.16 -1.008 0.076 
9 3-1 22.68 0.328 0.508  34 10-1 20.16 -0.580 0.508 
10 3-2 45.36 0.126 0.635  35 10-2 42.84 -0.454 0.432 
11 3-3 68.04 0.680 0.229  36 10-4 85.68 -0.958 0.076 
12 3-4 88.20 0.857 0.076  37 11-1 22.68 -0.378 0.508 
13 4-1 25.20 0.126 0.508  38 11-0 45.36 -0.176 0.432 
14 4-2 47.88 1.008 0.330  39 11-4 88.20 -0.857 0.076 
15 4-3 70.56 0.328 0.229  40 12-1 25.20 -0.202 0.635 
16 4-4 90.72 0.680 0.076  41 12-2 47.88 -1.008 0.330 
17 5-1 27.72 0 0.406  42 12-4 90.72 -0.706 0.076 
18 5-2 52.92 0.857 0.330  43 13-1 32.76 -1.008 0.432 
19 5-3 73.08 1.008 0.127  44 13-2 52.92 -0.857 0.330 
20 5-4 93.24 1.008 0.025  45 13-3 73.08 -1.008 0.127 
21 6-2 55.44 0.580 0.330  46 13-4 93.24 -1.008 0.025 
22 6-3 78.12 0.857 0.127  47 15-1 37.80 -0.857 0.432 
23 6-4 95.76 0.958 0.025  48 15-2 57.96 -0.277 0.330 
24 7-2 57.96 0.227 0.330  49 15-3 80.64 -0.580 0.127 
25 7-3 80.64 0.580 0.127  50 15-4 98.28 -0.857 0.025 
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APPENDIX D. MAPLE PROCEDURE FOR EVALUATING FURSE TEMPERATURE 

> restart; 
> with(plots); 
> L := 1.2192; 
> W := .2032; 
> S := 0.635e-2; 
> rprobe := 0.254e-1*(.5*.284); 
> hprobe := .19*0.254e-1; 
> rshoulder := 0.254e-1*(.5*.93); 
> NULL; 
> k := 22.6; 
> cp := 557; 
> rho := 7900; 
> alpha := k/(cp*rho); 
> m^2*per*s; 
> sigma := 0.16e9; 
> `&tau;y` := evalf(sigma/sqrt(3)); 
>  
> FTHERM := 0.333e5; 
> omega := evalf((1/60)*(400*2)*Pi); 
> ang := (10*(1/360))*Pi; 
> Qslide := evalf(((2/3)*FTHERM/rshoulder^2*.25)*omega*((rshoulder^3-
rprobe^3)*evalf(1+tan(-ang))+rprobe^3+3*rprobe^2*hprobe)); 
                          2826.289097 
> Qstick := evalf((2/3)*`&tau;y`*omega*((rshoulder^3-rprobe^3)*evalf(1+tan(-
ang))+rprobe^3+3*rprobe^2*hprobe)); 
                          4374.868821 
> h := 10; 
> U := 210.5; 
                             210.5 
> fractionp := .695478; 
> Qin := fractionp*Qslide; 
>  
> fs := .884693; 
> fp := .115306; 
 
> fo := .715615; 
> Tinf := 295; 
> v := 0.1693e-2; 
> m*per*s; 
 
> tau := alpha*t/L^2; 
 
> Bi := h*L/k; 
> mu := U/h; 
> `&xi;not` := v*t/L; 
> A := W/L; 
> B := S/L; 
> `&xi;s` := rshoulder/L; 
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> `&eta;s` := rshoulder/W; 
> `&xi;p` := rprobe/L; 
> `&eta;p` := rprobe/W; 
 
 
> `&zeta;s` := hprobe/S; 
> `&zeta;p` := evalf(rshoulder*tan(ang))/S; 
> tend := L/v; 
 
#Sturm-Liouville Problem 
%; 
 
 
> lambdafinder := (lambda^2-Bi^2)*tan(lambda)-2.0*lambda*Bi; 
plot(lambdafinder, lambda = 0 .. 10, y = -20 .. 20); 
%; 
   /      2               \                                  
   \lambda  - 0.2910268306/ tan(lambda) - 1.078938053 lambda 
> n := 1; 
> for m to 210 do a := fsolve(lambdafinder = 0, lambda = (m-.9999999)*2.5 .. 
2.5*m); if type(a, float) then lambda[n] := a; n := n+1 end if end do; for i 
to 4 do lambda[i] end do; 
                          0.9942614112 
                          3.451668608 
                          6.450072235 
                          9.537780113 
> P := n-1; 
                              168 
> NULL; 
>  
                              NULL 
>  
>  
> betafinder := beta*tan(A*beta)-Bi; plot(betafinder, beta = -5 .. 100, y = -
80 .. 80); 
%; 
           beta tan(0.1666666667 beta) - 0.5394690265 
 
> n := 1; 
 
 
for m to 160 do b := fsolve(betafinder = 0, beta = (m-1)*10 .. 10*m); if 
type(b, float) then beta[n] := b; n := n+1 end if end do; for i to 4 do 
beta[i] end do; 
                          1.772594584 
                          19.01969256 
                          37.78477053 
                          56.60584764 
> Q := n-1; 
                               85 
>  
>  
> NULL; 
 
> gammafinder := (g^2-Bi^2*mu)*tan(B*g)-Bi*g*(mu+1.0); plot(gammafinder, g = 
-100 .. 1000, y = -50000 .. 50000); 
%; 
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    / 2              \                                       
    \g  - 6.126114784/ tan(0.005208333333 g) - 11.89529203 g 
>  
> n := 1; 
 
 
for m to 90 do c := fsolve(gammafinder = 0, g = (m-.99999)*200 .. 200*m); if 
type(c, float) then g[n] := c; n := n+1 end if end do; for i to 4 do g[i] end 
do; 
                          47.36561339 
                          606.9482875 
                          1208.261759 
                          1810.818603 
> R := n-1; 
                               30 
                             n := 1 
 
 
> for i to P do NX[i] := (Bi^2+lambda[i]^2+2*Bi)/(2*Bi^2) end do; for i to 4 
do NX[i] end do; 
                          4.052067351 
                          22.82260545 
                          73.83064410 
                          158.6438168 
 (??); #   
 
> for i to P do X[i] := sin(lambda[i]*xi)+lambda[i]*cos(lambda[i]*xi)/Bi end 
do; for i to 4 do X[i] end do; 
    sin(0.9942614112 xi) + 1.843037065 cos(0.9942614112 xi) 
     sin(3.451668608 xi) + 6.398270222 cos(3.451668608 xi) 
     sin(6.450072235 xi) + 11.95633469 cos(6.450072235 xi) 
     sin(9.537780113 xi) + 17.67994017 cos(9.537780113 xi) 
> for i to Q do NY[i] := (A*Bi^2+A*beta[i]^2+Bi)/(2*A*(beta[i]^2+Bi^2)) end 
do; for i to 4 do NY[i] end do; 
                          0.9714102155 
                          0.5044702470 
                          0.5011333540 
                          0.5005050400 
> for i to Q do Y[i] := cos(A*beta[i]*eta) end do; for i to 4 do Y[i] end do; 
%; 
                     cos(0.2954324307 eta) 
                      cos(3.169948761 eta) 
                      cos(6.297461756 eta) 
                      cos(9.434307942 eta) 
> for i to R do NZ[i] := 1/2+g[i]^2/(2*Bi^2)+(g[i]/(2*B*Bi^2)-
1/(2*B*g[i]))*sin(B*g[i])*cos(B*g[i])+sin(B*g[i])^2/(B*Bi) end do; for i to 4 
do NZ[i] end do; 
                          7575.667186 
                                      5 
                        6.368307154 10  
                                      6 
                        2.512105962 10  
                                      6 
                        5.637535390 10  
> for i to R do Z[i] := sin(B*g[i]*zetta)+g[i]*cos(B*g[i]*zetta)/Bi end do; 
for i to 4 do Z[i] end do; 
sin(0.2466959031 zetta) + 87.80043165 cos(0.2466959031 zetta) 
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  sin(3.161188997 zetta) + 1125.084588 cos(3.161188997 zetta) 
  sin(6.293029994 zetta) + 2239.724061 cos(6.293029994 zetta) 
  sin(9.431346890 zetta) + 3356.668342 cos(9.431346890 zetta) 
 
> p := 'p'; q := 'q'; r := 'r'; 
 
NULL; 
>  
> for p to P do for q to Q do for r to R do c[p, q, r] := 
((Bi*(lambda[p]^2+beta[q]^2+g[r]^2)+lambda[p]^2*v*L/alpha)*sin(lambda[p]*`&xi
;not`)+(lambda[p]*(lambda[p]^2+beta[q]^2+g[r]^2)-
Bi*lambda[p]*v*L/alpha)*cos(lambda[p]*`&xi;not`))/(NX[p]*NY[q]*NZ[r]*Bi*((lam
bda[p]^2+beta[q]^2+g[r]^2)^2+lambda[p]^2*v^2*L^2/alpha^2))*(-
(1/2)*(Bi*fo*sin(A*beta[q]*`&eta;s`)*sin(B*g[r])*sin(lambda[p]*`&xi;s`)*`&zet
a;s`*B*g[r]*`&zeta;p`*`&xi;p`^2*`&eta;p`^2+Bi*fp*sin(A*beta[q]*`&eta;p`)*cos(
`&zeta;p`*B*g[r])*sin(lambda[p]*`&xi;p`)*`&zeta;s`*`&xi;s`*`&eta;s`*`&xi;p`*`
&eta;p`-
Bi*fo*sin(A*beta[q]*`&eta;s`)*sin(B*g[r])*sin(lambda[p]*`&xi;s`)*`&zeta;s`*B*
g[r]*`&zeta;p`*`&xi;p`*`&eta;p`*`&xi;s`*`&eta;s`-
Bi*fp*sin(A*beta[q]*`&eta;p`)*sin(lambda[p]*`&xi;p`)*`&zeta;s`*`&xi;s`*`&eta;
s`*`&xi;p`*`&eta;p`-
Bi*fp*sin(A*beta[q]*`&eta;p`)*cos(`&zeta;p`*B*g[r])*sin(lambda[p]*`&xi;p`)*`&
zeta;s`*`&xi;s`^2*`&eta;s`^2+Bi*fs*sin(A*beta[q]*`&eta;p`)*cos(B*g[r]*`&zeta;
s`)*sin(lambda[p]*`&xi;p`)*`&zeta;p`*`&xi;p`*`&eta;p`*`&xi;s`*`&eta;s`+Bi*fs*
sin(A*beta[q]*`&eta;s`)*sin(lambda[p]*`&xi;s`)*`&zeta;p`*`&xi;p`*`&eta;p`*`&x
i;s`*`&eta;s`-
Bi*fs*sin(A*beta[q]*`&eta;s`)*cos(B*g[r]*`&zeta;s`)*sin(lambda[p]*`&xi;s`)*`&
zeta;p`*`&xi;p`*`&eta;p`*`&xi;s`*`&eta;s`+Bi*fp*sin(A*beta[q]*`&eta;p`)*sin(l
ambda[p]*`&xi;p`)*`&zeta;s`*`&xi;s`^2*`&eta;s`^2-
Bi*fs*sin(A*beta[q]*`&eta;p`)*sin(lambda[p]*`&xi;p`)*`&zeta;p`*`&xi;p`*`&eta;
p`*`&xi;s`*`&eta;s`+fp*sin(A*beta[q]*`&eta;p`)*sin(`&zeta;p`*B*g[r])*sin(lamb
da[p]*`&xi;p`)*`&zeta;s`*g[r]*`&xi;s`^2*`&eta;s`^2+fo*sin(A*beta[q]*`&eta;s`)
*g[r]^2*cos(B*g[r])*sin(lambda[p]*`&xi;s`)*`&zeta;s`*B*`&zeta;p`*`&xi;p`^2*`&
eta;p`^2+fs*sin(A*beta[q]*`&eta;s`)*sin(B*g[r]*`&zeta;s`)*sin(lambda[p]*`&xi;
s`)*g[r]*`&zeta;p`*`&xi;p`*`&eta;p`*`&xi;s`*`&eta;s`-
fp*sin(A*beta[q]*`&eta;p`)*sin(`&zeta;p`*B*g[r])*sin(lambda[p]*`&xi;p`)*`&zet
a;s`*g[r]*`&xi;s`*`&eta;s`*`&xi;p`*`&eta;p`-
fo*sin(A*beta[q]*`&eta;s`)*g[r]^2*cos(B*g[r])*sin(lambda[p]*`&xi;s`)*`&zeta;s
`*B*`&zeta;p`*`&xi;p`*`&eta;p`*`&xi;s`*`&eta;s`-
fs*sin(A*beta[q]*`&eta;p`)*sin(B*g[r]*`&zeta;s`)*sin(lambda[p]*`&xi;p`)*g[r]*
`&zeta;p`*`&xi;p`*`&eta;p`*`&xi;s`*`&eta;s`)/(`&zeta;s`*(-
`&xi;s`*`&eta;s`+`&xi;p`*`&eta;p`)*B*g[r]*A*beta[q]*lambda[p]*Bi^2*`&zeta;p`*
`&xi;p`*`&eta;p`*`&xi;s`*`&eta;s`)) end do end do end do; 
%; 
> c[1, 1, 1]; 
                        -7                       
          4.684724000 10   sin(0.001380646793 t) 
 
                             -7                       
             + 5.875984466 10   cos(0.001380646793 t) 
>  
> p := 'p'; q := 'q'; r := 'r'; 
> theta := sum(sum(sum(c[p, q, r]*X[p]*Y[q]*Z[r], r = 1 .. R), q = 1 .. Q), p 
= 1 .. P); 
> `&theta;XYZ` := subs([xi = x/L, eta = y/W, zetta = z/S], theta); 
> Tfinal := Qin*L*`&theta;XYZ`/(W*S*k)+Tinf; 
>  
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APPENDIX E. MAPLE PROCEDURE FOR OPTIMIZING PARAMETERS FOR 
FURSE DATA 

> restart; 
> with(plots); 
> L := 1.2192; 
> W := .2032; 
> S := 0.635e-2; 
> k := 22.6; 
> cp := 557; 
> rho := 7900; 
> alpha := k/(cp*rho); 
> Tinf := 295; 
> v := 0.1693e-2; 
> tau := alpha*t/L^2; 
> `&xi;not` := v*t/L; 
> A := W/L; 
> B := S/L; 
> tend := L/v; 
> rshoulder := 0.254e-1*(.5*.93); 
> rprobe := 0.254e-1*(.5*.284); 
> hshoulder := evalf(rshoulder*tan((10*(1/360))*Pi)); 
> hprobe := .19*0.254e-1; 
> `&xi;s` := rshoulder/L; 
> `&xi;p` := rprobe/L; 
> `&eta;s` := rshoulder/W; 
> `&eta;p` := rprobe/W; 
> `&zeta;s` := hshoulder/S; 
> `&zeta;p` := hprobe/S; 
> h := 10; 
> U := 330; 
> Bi := h*L/k; 
> mu := U/h; 
> fs := .85; 
> fp := .15; 
> fo := .5; 
> Qin := 2827; 
> TC := convert(ExcelTools[Import]("Furse Digestible Data.xls", "Sheet1", 
"E2:E6171"), Vector[column], datatype = float[8]); 
> TClocs := convert(ExcelTools[Import]("Furse Digestible Data.xls", "Sheet2", 
"B2:D51"), Matrix, datatype = float[8]); 
> Timer := ExcelTools[Import]("F2procdata.xls", "Sheet1", "A2:A6171"); Time 
:= Vector(6170, 1, proc (i) options operator, arrow; Timer[i, 1] end proc, 
datatype = float[8]); 
> TC; 
                Vector[column](%id = 444041632) 
lambdafinder := (varlambda^2-Bi^2)*tan(varlambda)-2.0*varlambda*Bi: 
lambda:=Vector(80,datatype=float[8]): 
n := 1: 
for m to 80 do 
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   a := fsolve(lambdafinder = 0, varlambda = (m-.9999999)*2.5 .. 2.5*m); 
   if type(a, float) then lambda[n] := a; n := n+1 end if; 
end do: 
P := n-1; 
betafinder := varbeta*tan(A*varbeta)-Bi: 
beta:=Vector(60,datatype=float[8]): 
n := 1: 
for m to 60 do 
   b := fsolve(betafinder = 0, varbeta = (m-1)*10 .. 10*m); 
   if type(b, float) then beta[n] := b; n := n+1 end if; 
end do: 
Q := n-1; 
 
                               64 
                               32 
assign(eval([xi=x/L,eta=y/W,zetta=z/S],[x=TClocs[4,1],y=TClocs[4,2],z=TClocs[
4,3]])); 
NX:=Vector(P,(i)->(Bi^2+lambda[i]^2+2*Bi)/(2*Bi^2),datatype=float[8]): 
X:=Vector(P,(i)-
>sin(lambda[i]*xi)+lambda[i]*cos(lambda[i]*xi)/Bi,datatype=float[8]): 
NY:=Vector(Q,(i)-
>(A*Bi^2+A*beta[i]^2+Bi)/(2*A*(beta[i]^2+Bi^2)),datatype=float[8]): 
Y:=Vector(Q,(i)->cos(A*beta[i]*eta),datatype=float[8]): 
>  
> EIGEXP3 := proc (fractionp::float, fs::float, fp::float, fo::float, 
U::float) mu := U/h; gammafinder := (varg^2-Bi^2*mu)*tan(B*varg)-
Bi*varg*(mu+1.0); g := Vector(60, datatype = float[8]); n := 1; for m to 30 
do c := fsolve(gammafinder = 0, varg = 200*m+200*(-.99999) .. 200*m); if 
type(c, float) then g[n] := c; n := n+1 end if end do; R := n-1; NZ := 
Vector(R, proc (i) options operator, arrow; 
1/2+(1/2)*g[i]^2/Bi^2+((1/2)*g[i]/(B*Bi^2)-
(1/2)/(B*g[i]))*sin(B*g[i])*cos(B*g[i])+sin(B*g[i])^2/(B*Bi) end proc, 
datatype = float[8]); Z := Vector(R, proc (i) options operator, arrow; 
sin(B*g[i]*zetta)+g[i]*cos(B*g[i]*zetta)/Bi end proc, datatype = float[8]); 
THETA := 
add(add(add(((Bi*(lambda[p]^2+beta[q]^2+g[r]^2)+lambda[p]^2*v*L/alpha)*sin(la
mbda[p]*`&xi;not`)+(lambda[p]*(lambda[p]^2+beta[q]^2+g[r]^2)-
Bi*lambda[p]*v*L/alpha)*cos(lambda[p]*`&xi;not`))*(-
1/2)*(Bi*fo*sin(A*beta[q]*`&eta;s`)*sin(B*g[r])*sin(lambda[p]*`&xi;s`)*`&zeta
;s`*B*g[r]*`&zeta;p`*`&xi;p`^2*`&eta;p`^2+Bi*fp*sin(A*beta[q]*`&eta;p`)*cos(`
&zeta;p`*B*g[r])*sin(lambda[p]*`&xi;p`)*`&zeta;s`*`&xi;s`*`&eta;s`*`&xi;p`*`&
eta;p`-
Bi*fo*sin(A*beta[q]*`&eta;s`)*sin(B*g[r])*sin(lambda[p]*`&xi;s`)*`&zeta;s`*B*
g[r]*`&zeta;p`*`&xi;p`*`&eta;p`*`&xi;s`*`&eta;s`-
Bi*fp*sin(A*beta[q]*`&eta;p`)*sin(lambda[p]*`&xi;p`)*`&zeta;s`*`&xi;s`*`&eta;
s`*`&xi;p`*`&eta;p`-
Bi*fp*sin(A*beta[q]*`&eta;p`)*cos(`&zeta;p`*B*g[r])*sin(lambda[p]*`&xi;p`)*`&
zeta;s`*`&xi;s`^2*`&eta;s`^2+Bi*fs*sin(A*beta[q]*`&eta;p`)*cos(B*g[r]*`&zeta;
s`)*sin(lambda[p]*`&xi;p`)*`&zeta;p`*`&xi;p`*`&eta;p`*`&xi;s`*`&eta;s`+Bi*fs*
sin(A*beta[q]*`&eta;s`)*sin(lambda[p]*`&xi;s`)*`&zeta;p`*`&xi;p`*`&eta;p`*`&x
i;s`*`&eta;s`-
Bi*fs*sin(A*beta[q]*`&eta;s`)*cos(B*g[r]*`&zeta;s`)*sin(lambda[p]*`&xi;s`)*`&
zeta;p`*`&xi;p`*`&eta;p`*`&xi;s`*`&eta;s`+Bi*fp*sin(A*beta[q]*`&eta;p`)*sin(l
ambda[p]*`&xi;p`)*`&zeta;s`*`&xi;s`^2*`&eta;s`^2-
Bi*fs*sin(A*beta[q]*`&eta;p`)*sin(lambda[p]*`&xi;p`)*`&zeta;p`*`&xi;p`*`&eta;
p`*`&xi;s`*`&eta;s`+fp*sin(A*beta[q]*`&eta;p`)*sin(`&zeta;p`*B*g[r])*sin(lamb
da[p]*`&xi;p`)*`&zeta;s`*g[r]*`&xi;s`^2*`&eta;s`^2+fo*sin(A*beta[q]*`&eta;s`)
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*g[r]^2*cos(B*g[r])*sin(lambda[p]*`&xi;s`)*`&zeta;s`*B*`&zeta;p`*`&xi;p`^2*`&
eta;p`^2+fs*sin(A*beta[q]*`&eta;s`)*sin(B*g[r]*`&zeta;s`)*sin(lambda[p]*`&xi;
s`)*g[r]*`&zeta;p`*`&xi;p`*`&eta;p`*`&xi;s`*`&eta;s`-
fp*sin(A*beta[q]*`&eta;p`)*sin(`&zeta;p`*B*g[r])*sin(lambda[p]*`&xi;p`)*`&zet
a;s`*g[r]*`&xi;s`*`&eta;s`*`&xi;p`*`&eta;p`-
fo*sin(A*beta[q]*`&eta;s`)*g[r]^2*cos(B*g[r])*sin(lambda[p]*`&xi;s`)*`&zeta;s
`*B*`&zeta;p`*`&xi;p`*`&eta;p`*`&xi;s`*`&eta;s`-
fs*sin(A*beta[q]*`&eta;p`)*sin(B*g[r]*`&zeta;s`)*sin(lambda[p]*`&xi;p`)*g[r]*
`&zeta;p`*`&xi;p`*`&eta;p`*`&xi;s`*`&eta;s`)*X[p]*Y[q]*Z[r]/(NX[p]*NY[q]*NZ[r
]*Bi*((lambda[p]^2+beta[q]^2+g[r]^2)^2+lambda[p]^2*v^2*L^2/alpha^2)*`&zeta;s`
*(-
`&xi;s`*`&eta;s`+`&xi;p`*`&eta;p`)*B*g[r]*A*beta[q]*lambda[p]*Bi^2*`&zeta;p`*
`&xi;p`*`&eta;p`*`&xi;s`*`&eta;s`), q = 1 .. Q), p = 1 .. P), r = 1 .. R); 
Tfinal := THETA*fractionp*Qin*L/(W*S*k)+Tinf; unTfinal := unapply(Tfinal, t); 
ret := evalf(unTfinal(Time[4500])-TC[4500])^2+evalf(unTfinal(Time[4317])-
TC[4317])^2+evalf(unTfinal(Time[5001])-
TC[5001])^2+evalf(unTfinal(Time[4310])-
TC[4310])^2+evalf(unTfinal(Time[6000])-TC[6000])^2; if type(bestfound, 
extended_numeric) and ret < bestfound then bestfound := ret; userinfo(1, 
EIGEXP3, `new best objective value found:`, ret) end if; ret end proc; 
objf3 := proc(V::Vector) 
  EIGEXP3(V[1],V[2],V[3],V[4],V[5]); 
end proc: 
objf3gradient := proc(X::Vector,G::Vector) 
  G[1] := fdiff( EIGEXP3, [1], [X[1],X[2],X[3],X[4],X[5]] ); 
  G[2] := fdiff( EIGEXP3, [2], [X[1],X[2],X[3],X[4],X[5]] ); 
  G[3] := fdiff( EIGEXP3, [3], [X[1],X[2],X[3],X[4],X[5]] ); 
  G[4] := fdiff( EIGEXP3, [4], [X[1],X[2],X[3],X[4],X[5]] ); 
  G[5] := fdiff( EIGEXP3, [5], [X[1],X[2],X[3],X[4],X[5]] ); 
  NULL; 
end proc: 
> Aeq := Matrix([[0, 1, 1, 0, 0]], datatype = float); 
> beq := Vector([1], datatype = float); 
> lc := [NoUserValue, NoUserValue, Aeq, beq]; 
>  
infolevel[Optimization]:=6: 
bestfound:=infinity: 
infolevel[EIGEXP3]:=1: 
Optimization:-NLPSolve( 5, objf3,lc, 
        [<0.1,0.01,0.01,0.01,50.0>, <1.0,1.0,1.0,1.0,1000.0>], 
        'objectivegradient'=objf3gradient, 
        'initialpoint'=Vector([0.5796,0.8767,0.1233,0.6365,160.4]), 
'method'='sqp',iterationlimit=200); 
NLPSolve: calling NLP solver 
NLPSolve: using method=sqp 
NLPSolve: number of problem variables 5 
NLPSolve: number of nonlinear inequality constraints 0 
NLPSolve: number of nonlinear equality constraints 0 
NLPSolve: number of general linear constraints 1 
NLPSolve: feasibility tolerance set to 0.1053671213e-7 
NLPSolve: optimality tolerance set to 0.3256082241e-11 
NLPSolve: iteration limit set to 200 
NLPSolve: infinite bound set to 0.10e21 
NLPSolve: trying evalf mode 
attemptsolution: number of major iterations taken 75 
     [706.049475164990440,Vector[column](%id = 446225208)]> 


