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PUBLICATION THESIS OPTION

This thesis consists of the following two articles which will be submitted for publi-

cation as follows:

Paper I: Pages 11-21 are intended for submission to Scripta Materialia.

Paper II: Pages 22-29 are intended for submission to Scripta Materialia.
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ABSTRACT

Nanoparticle-enabled diffusion control has been shown to rapidly refine multiphase

microstructures during slowly cooled casting. This thesis characterizes the diffusion and the

mechanical properties of nanoparticle-enabled diffusion controlled materials. To charac-

terize diffusion properties, in-situ characterization is performed to verify the nanoparticle-

enabled diffusion control mechanism. Materials with nanoparticles were observed to de-

crease the diffusion coefficient by at least one order of magnitude under similar melting

conditions as compared to materials without nanoparticles. To understand mechanical

properties, the nanoparticles that assembled at the growing interface were characterized

under mechanical tensile stress. Nanoparticle-enabled interfaces were observed to im-

prove the interface bond between dissimilar materials, providing a method for improving

the interface strength without altering the original material system. Based on these find-

ings, nanoparticle-enabled diffusion control is shown to be a viable method for improving

microstructural design and mechanical properties of multiphase materials.



v

ACKNOWLEDGMENTS

This thesis is supported by the National Science Foundation (NSF) award number:

1562543.

I would like to express my gratitude to Dr. Lianyi Chen, my advisor, for his

guidance and patience during this process. I would also like to express gratitude to Dr.

Charles Wojnar and Dr. Frank Liou for serving on the committee. Additionally, I would

like to thank the research group for their assistance throughout the last two years. Any

friends and acquaintances I have met during my time at Missouri University of Science and

Technology produced an experience I certainly will not forget. Lastly, I would thank my

entire family for their love and support.



vi

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

SECTION

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. LITERATURE SURVEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1. OVERVIEW OF IMMISCIBLE ALLOYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2. IMMISCIBLE ALLOY DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3. NANOPARTICLE-ENABLED DIFFUSION CONTROL. . . . . . . . . . . . . . . . . . . . . 5

2.4. FABRICATIONUSINGNANOPARTICLE-ENABLEDDIFFUSIONCON-
TROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

PAPER

I. IN-SITU OBSERVATION OF NANOPARTICLE-ENABLED DIFFUSION CON-
TROL BY HIGH-SPEED SYNCHROTRON X-RAY IMAGING . . . . . . . . . . . . . . . . 11

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

II. INTERFACIAL STRENGTHENING OF NANOPARTICLE-ENABLED INTER-
FACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

SECTION

3. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



viii

LIST OF ILLUSTRATIONS

Figure Page

2.1 Schematic of NP-enabled diffusion growth control [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 SEM image of a single droplet influenced by NP-enabled diffusion growth [1]. . 6

2.3 Methodology for controlling phase growth during solidification [1]. . . . . . . . . . . . . . 7

2.4 Uniform dispersion of NPs within liquid melt achieved through ultrasonic cav-
itation [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

PAPER I

1 Schematic of the in-situ characterization experimental set-up used to observe
NP-enabled diffusion control. The thin plate specimen of the material, held
between two glassy carbon plates, is heated by a laser beam with a diameter
of 300 µm for 4 ms. The microstructure evolution during laser melting is
characterized by high-energy high-speed x-ray imaging with a frame rate of
54.31 kHz. Figure is not to scale for visual clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Backscatter SEM images of Al-20wt.%Bi (remeasured to Al-4.2wt.%Bi) (a)
and Al-20wt.%Bi with 2vol.% TiC0.70N0.30 NPs (b) initial microstructure taken
from the center of the ingot. (c) High magnification SEM image showing the
TiC0.70N0.30 particles assembled at the phase interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Dissolution of a singleminority phase under laser-inducedmelting conditions in
pure (a-d) and NP-enabled (e-h) alloy. The dotted line represents one specified
minority droplet. The arrow represents the motion of the specified minority
droplet until complete dissolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 (a) Calculated diffusion coefficient of pure and NP-enabled alloys for different
sized Bi droplets. (b) Calculated diffusion coefficient of pure and NP-enabled
alloys with different minority droplet velocities within the melt pool. . . . . . . . . . . . . 18

PAPER II

1 SEM images of the final deformed microstructure of the pure (a) and NP-
enabled (b) alloys. The NP-enabled alloy contained a greater concentration of
Bi than the pure alloy due to sedimentation. Both samples were extracted at
the same height of their respective ingots. Loading was applied in the vertical
direction in the images. The red outline denotes a specific minority droplet
examined in Figure 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



ix

2 SEM images of a specific similarly sized minority droplet from the pure (a)
and NP-enabled (b) alloys outlined in red in Figure 1. Pure alloy droplets expe-
rienced interface decohesion, while the NP-enabled alloy experienced droplet
fracture. The red outline denotes the specifc area of the interface examined in
Figure 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 SEM images of a freshly separated droplet surface from the pure (a) and NP-
enabled (b) alloys droplet interface outlined in red in Figure 2. Pure alloy
droplet surface was smooth, while the NP-enabled droplet had NPs embedded
on the droplet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



SECTION

1. INTRODUCTION

Metal-Matrix Nanocomposites (MMNCs), metals reinforced with nanoparticles

(NPs), are well known to enhance material properties required for overcoming a wide

range of engineering challenges. MMNC design typically focuses on dispersing NPs ho-

mogeneously throughout the matrix, with the NPs serving as the primary mechanism for

enhancing material properties. In addition, NPs can also be used to control phase growth,

offering additional mechanisms for improving the properties of existing material systems.

An extreme case highlighting the capabilities of controlling phase growth are im-

miscible alloys, which exhibit a liquid miscibility gap where the homogeneous liquid phase

nucleates into two immiscible liquids before solidification. Due to the liquid miscibility

gap, diffusion and convection based phenomena occur faster than solid-state phase trans-

formations, preventing a uniform distribution of the secondary phase through conventional

casting that has been used for the last hundred years.

Recently, NPs incorporated into an immiscible alloy produced a homogeneous

distribution of the secondary phase during slow cooling [1]. NPs were characterized

to restrict diffusional growth of minority droplets by rapidly assembling at the growing

interface. The specific growth control mechanism, referred to as NP-enabled diffusion

control, possesses immense potential for large scale manufacturing implementation by

eliminating restrictions to sample size and processing times.

However, further characterization is required for advancing this new class of mate-

rials. This thesis is comprised of two journal papers focused on characterizing diffusion

and mechanical properties of NP-enabled diffusion controlled materials. To quantify diffu-

sion properties, NP-enabled diffusion control is characterized through in-situ high-energy
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high-speed synchrotron X-ray imaging. Unlike previous ex-situ characterization of the final

solidified microstructure, in-situ characterization allows the NP-enabled diffusion control

mechanism to be observed during the phase transformation, and is capable of describ-

ing the exact behavior nanoparticles play in limiting droplet growth observed in the final

microstructure. Through in-situ imaging of the melting process, NP-enabled alloys were

characterized to limit diffusion of minority droplets to at least one order of magnitude

slower than those in the pure alloy, providing direct evidence of this transient phenomena.

For mechanical properties, NP-enabled interfaces observed under ex-situ microscopy of

the final deformed microstructure were demonstrated to be effective in strengthening the

interface compared to NP-absent interfaces. NP-enabled interfaces are shown to drastically

alter the failure mechanism of minority droplets under an applied load. By coating the

droplets with NPs, droplets were observed to fail from droplet fracture instead of interface

decohesion, indicating that the interface was strengthened to levels beyond interface deco-

hesion. These studies demonstrate the NP’s effectiveness in enhancing both microstructural

design andmechanical properties, and are instrumental for understanding property-structure

relationships necessary to further advance NP-enabled diffusion controlled materials.
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2. LITERATURE SURVEY

2.1. OVERVIEW OF IMMISCIBLE ALLOYS

Immiscible alloys, also known as monotectic alloys, are materials which exhibit

a miscibility gap where the homogeneous liquid transforms into two immiscible liquids

during solidification [1, 2]. Typical immiscible alloys such as Cu-Pb, Al-Pb, Al-Bi, Al-Id,

and Zn-Bi have been investigated as potential high quality wear resistance materials, with

the softer secondary phase lowering the coefficient of friction in applications such as self-

lubricating load bearings [1–5]. However, a homogeneous distribution of minority phase is

required and has been demonstrated to be difficult to achieve due to the miscibility gap.

Under equilibrium cooling of immiscible alloys, the minority phase initially nu-

cleates into small liquid droplets homogeneously distributed throughout the melt. During

cooling, in the miscibility gap, the small minority droplets experience diffusional growth,

occurring orders of magnitude faster in liquids compared to solids. Additionally, the liquid

droplets are free to migrate, coagulate, coalesce and Ostwald ripen, further increasing the

droplet size and droplet-to-droplet spacing. Significant density mismatch, typical of immis-

cible alloys, induce sedimentation, causing the larger droplets to sink and eventually form

a thick layer at the bottom of the crucible. Additionally, thermocapillary forces created

by concentration gradients within the melt also act on the minority droplets, driving them

radially towards the center of the melt pool, leading to collisions with other droplets.

Withminority droplets experiencing a variety of forces and kinetic processes, immis-

cible alloys represent an extreme case of phase growth control, which is required to produce

a homogeneous microstructure; discovering different methods for controlling immiscible

alloys can also be adopted for improving other less problematic material systems.
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2.2. IMMISCIBLE ALLOY DESIGN

Many processing solutions have been proposed to produce feasible immiscible alloys

for practical applications. Rapid solidification has been applied to immiscible alloys to limit

phase growth time and droplet transport during the miscibility gap. But at the same time,

high temperature gradients experienced within the melt can reduce homogeneity through

induced thermocapillary forces acting on the droplets [6, 7]. Casting in microgravity

environments can eliminate sedimentation, improving homogeneity parallel to gravity, but

not dispersed radially due to thermocapillary forces [7]. Thermoelectric magnetic forces

have been used to control melt flow and refine the distribution of minority droplets [8–10].

Mixed powders of individual alloy constituents processed through ball milling and sintering

can result in sufficiently homogeneous densified microstructures by avoiding the miscibility

gap. However, all the solutions presented here are limited to specific sample sizes and

processing windows and cannot be applied to satisfy large-scale manufacturing operations.

For large-scale manufacturing with a wide range of processing conditions, dispersed

NPs offers an innovative solution for limiting phase growth. NPs have been shown to serve

as effective inoculates, behaving as heterogeneous nucleation sites for minority phases

[11–13]. By reducing the nucleation barrier, additional droplets are allowed to nucleate,

producing smaller droplets unaffected by gravitational and thermocapillary forces. NPs

with lower thermal conductivity than the base metal can effectively remove the latent heat

to encourage further inoculation [14]. Particulates distributed in the melt can also increase

viscosity within the melt [15], restricting droplet coagulation within the melt pool [5].

Additionally, NPs ahead of the solidification front are capable of altering local temperature,

supersaturation, and diffusion flux, all critical factors for influencing phase distribution and

growth [14, 16].
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Figure 2.1. Schematic of NP-enabled diffusion growth control [1].

2.3. NANOPARTICLE-ENABLED DIFFUSION CONTROL

Recently, NPs present at the growing interface during slow solidification were

determined to improve the homogeneity of immiscible alloys by limiting droplet size and

motion [1, 4, 14]. For the microstructural refinement of the secondary phase achieved under

slow cooling, the primary growth limiting mechanism was attributed to NPs physically

blocking atomistic diffusion. By assembling and remaining at the growth interface during

solidification, NPs can serve as physical barriers preventing additional solute atoms from

diffusing into existing nucleated droplets as demonstrated in the schematic (Figure 2.1)

and observed in the microstructure under scanning electron microscopy (SEM) (Figure

2.2(a)). The coated layer around the droplet (Figure 2.2(a)), zoomed into the interface

(Figure 2.2(b)), was estimated to occur rapidly in approximately 4.4 ms based on the coated

microstructure obtained at a cooling rate of approximately 11, 340 s−1 [1]. This cooling

rate independent process has significant potential for large scale production, bypassing the

limitations of processing times and sizes in current methods.
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Figure 2.2. SEM image of a single droplet influenced by NP-enabled diffusion growth [1].

2.4. FABRICATION USING NANOPARTICLE-ENABLED DIFFUSION CONTROL

NP-enabled diffusion controlled materials are produced through ultrasonic-assisted

casting based on the following technique [1]. Immiscible alloys are first heated into the

homogeneous liquid phase L (Figure 2.3(a)). Then wettable NPs are distributed from the

top of the melt pool until submerged. NPs are typically clustered with other NPs on gas

bubbles within the melt due to strong intermolecular forces like van der Waals interactions.

To create a homogeneous distribution of NPs capable of coating the growing inter-

face everywhere within the melt, ultrasonic cavitation is pulsated on the top of the meltpool.

Ultrasonic cavitation (Figure 2.4) is used to break apart the agglomeration of NPs [17].

Cavitation occurs during expansion cycles by generating the sufficiently high pressures

needed to overcome the tensile strength bonding of the liquid. While the strength of the

liquid bond is generally higher than what most ultrasonic transducers can produce [18],

trapped gas bubbles typically found in the liquid and in NP clusters serves as weak zones
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Figure 2.3. Methodology for controlling phase growth during solidification [1].
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Figure 2.4. Uniform dispersion of NPs within liquid melt achieved through ultrasonic
cavitation [1].

or nuclei where stress is concentrated. During compression, the cavities collapse, however,

if high intensities are used during expansion, the cavities will not have time to react and

will continue to grow until a critical radius is reached. This will cause the trapped gas to

implode, generating "micro-hot spots," which can generate temperatures of 5000 ◦C, pres-

sures above 1000 atm, and cooling rates above 1010 K/s. This process lasts on the order of

pico-seconds and only affects a limited area [19]. The high shear stresses generated through

the rapid collapse has been shown to break apart NP clusters, while dispersing them in the

mold cavity through acoustic streaming generated by the probe vibrating the melt [17].

After dispersing NPs within the homogeneous liquid phase, the immiscible alloy

is cooled, undergoing the following phase transformation: L → L1 + L2 (Figure 2.3(a)).

Subsequently, the dispersed NPs, will attempted to minimize their energy state by residing

either in the majority phase L1 (pink), minority phase L2 (blue), or at the L1 − L2 interface.
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For NP-enabled diffusion control, NPs are required to be thermodynamically to remain at

the interface. Additionally, NPs must be chemically stable in the melt to remain solid in

order to physically block diffusion growth of minority droplets. If NPs significantly favor

the interface and are initially dispersed homogeneously, NPs will rapidly self-assemble at

the interface immediately after the minority phase has nucleated. The energy required to

keep the NPs at the liquid interface is equal to

∆G = min
[
πr2σ (1 ± cos(θ))2

]
, (2.1)

where r is the particle radius, σ is the interface free energy between the two liquids, θ is the

contact angle, and ’+’ and ’−’ refer to the energy required to remove the particle into the

bulk L2 and L1 phase, respectively. The interface free energy between the two liquids can be

derived empirically through wetting experiments. For the aluminum-bismuth immiscible

alloy (Al-Bi) specifically, the interface free energy can be related through temperature by

[11]

σ = 288.1
(
1 − T

1310 K

)1.26
mN m−1, (2.2)

where T is the temperature in kelvins. Additionally, NPs may begin to slowly move away

from the interface due to Brownian motion, with the energy,

Eb =
kT
2
, (2.3)

where k is the Boltzmann constant. Due to the inherent weakness of Brownian energy,

random NP motion only overcomes the interface energy for a short time after nucleation,

allowing the NPs to reside at the interface during solidification.

With the NPs accumulating at the interfaces of freshly nucleated droplets (Figure

2.3(c)), additional solute is unable to diffuse into a coated droplet and is forced to nucleate

elsewhere, limiting individual minority diffusion growth and Ostwald ripening. NP-coated
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droplets are also unable to coalesce with other minority droplets during collisions. Without

NPs, the freshly nucleated droplets experience unrestricted diffusion growth (Figure 2.3(b)).

These larger droplets are prone to thermocapillary forces, further increasing the overall

droplet size. Subsequently, sedimentation lowers the minority phase to the bottom of

the crucible, forming a sedimented layer and concentration gradient of minority phase

throughout the material. With NPs, the minority droplets are now homogeneously disperse

within the melt and are too small to induce sedimentation or thermocapillary motion

throughout the melt, improving the homogeneous dispersion of minority droplets from

Figure 2.3(b) to Figure 2.3(c).
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PAPER

I. IN-SITU OBSERVATION OF NANOPARTICLE-ENABLED DIFFUSION
CONTROL BY HIGH-SPEED SYNCHROTRON X-RAY IMAGING

J. L. Volpe1, Q. Guo1,2, C. Zhao3, L. H. Xiong1, T. Sun3, L. Y. Chen1,2,a)

1 Department of Mechanical and Aerospace Engineering, Missouri University of Science

and Technology, Rolla, Missouri 65409, USA
2 Department of Materials Science and Engineering, Missouri University of Science and

Technology, Rolla, Missouri 65409, USA
3 Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
a)Corresponding author, email: chenliany@mst.edu

ABSTRACT

Nanoparticles assembled at the phase interfacewere recently hypothesized to control

diffusion based on ex-situ characterization. However, the nanoparticle-enabled diffusion

control mechanism has not been verified by in-situ evidence, because of the challenges with

in-situ observation. In this study, the influence of nanoparticles assembled at the phase

interface on diffusion is investigated through in-situ high-energy high-speed synchrotron

X-ray imaging during laser melting of pre-cast alloys. Nanoparticles were observed to limit

the calculated diffusion coefficient, based on a diffusion controlled model, by at least one

order of magnitude compared to that of materials without nanoparticles. These findings

provide in-situ evidence of nanoparticle-enabled diffusion control, which is essential for

further advancing these new materials and manufacturing processes.
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Nanoparticles (NPs) have introduced innovative mechanisms for controlling phase

growth during solidification [1–8]. Controlling phase growth is essential for achieving

desired microstructures for enhancing material properties. Recently, NPs were discovered

to refine phase domains by assembling at the phase interfaces (both solid-liquid and liquid-

liquid interfaces) [1–3]. Based on ex-situ microscopy, NPs were hypothesized to control

phase growth by physically blocking and stalling diffusional transport of solute atoms [1–

3], referred to as NP-enabled diffusion control. However, ex-situ characterization cannot

directly observe the transient microstructure evolution during solidification. Whether the

NPs can effectively control diffusion during the solidification processing of metals is still

a matter of debate. A deeper understanding and testing of NP-enabled diffusion control

through in-situ characterization is essential for advancing NP-enabled diffusion control to

applications beyond homogeneous microstructure design.

However, in-situ characterization of NP-enabled diffusion control entails a plethora

of experimental challenges. Firstly, the NP-enabled inoculation [4–6] mechanism, where

particles behave as heterogeneous nucleation sites for initiating phase domains/grains, is

also capable of refining microstructures and will interfere with the observation of the

NP-enabled diffusion control mechanism. Current in-situ characterization techniques are

unable to observe the interaction of NPs with the newly formed phases, and are only able to

observe the evolution of the newly formed phase during solidification. With bothNP-enabled

inoculation and NP-enabled diffusion control capable of influencing the phase morphology,

accurately identifying the contribution of NP-enabled diffusion control on phase domain

refinement is immensely difficult. Secondly, metals are not transparent to visible light.

Observing inside the melt is extremely challenging by conventional characterization tools.

Thirdly, phase domain growth and NP-enabled diffusion control happen very fast, within

milliseconds [2].
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To address these challenges, a unique experimental approach is designed. To over-

come and avoid the interference from inoculation, pre-cast material melting, rather than

it’s solidification, is performed. However, melting of NPs pre-assembled at the interfaces

introduces additional challenges. Conventional slow furnace heating may degrade the NP-

coated interface during melting before dissolution occurs due to the long time effects of

Brownian motion [9], potential chemical reaction, and Ostwald ripening [10, 11]. To reduce

the extent of the NP coating degradation, rapid laser melting is performed to reduce the

heating time. Melting of a pre-cast NP-coated minority phase will also ensure that NPs are

initially present at the interface and are not initially dispersed between minority droplets.

To observe through metals and observe the fast dynamics of phase domain growth, we use

high-energy high-speed synchrotron X-ray imaging.

The experimental set-up for in-situ high-energy high-speed X-ray imaging during

laser melting is shown in Figure 1. Thin plate specimens of the material were clamped

between two glassy carbon plates, and encased in a stainless-steel chamber filled with argon.

A continuous wave fiber laser with a wave length of 1070 nm (IPG) was used to melt the

thin plate specimen, and was operated at 500 W with a focal spot diameter of 300 µm. The

top surface of the thin plates were heated and melted by the laser for 4 ms. A series of

images obtained by the X-ray penetrating through the melt pool were acquired at a rate of

54.31 kHz through a viewing window of 1024 µm × 1024 µm during laser melting.

Al-Bi immiscible alloys with and without TiC0.70N0.30 NPs (average diameter of

approximately 80 nm), with similar initial Bi droplet morphologies, were used to analyze

diffusion. The specimens suitable for in-situ characterization of NP-enabled diffusion con-

trol were prepared by ultrasonic processing. Ingots of Al-20wt.%Bi and Al-20wt.%Bi with

2 vol.% TiC0.70N0.30 NPs (also referred to as the pure and NP-enabled alloys, respectively)

were melted in an alumina crucible, processed by ultrasonic processing, and then cooled

to room temperature inside the furnace with a cooling rate of about 1 K/s. The details of
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FIG. 1. Schematic of the in-situ characterization experimental set-up used to observe
NP-enabled diffusion control. The thin plate specimen of the material, held between two
glassy carbon plates, is heated by a laser beam with a diameter of 300 µm for 4 ms. The
microstructure evolution during laser melting is characterized by high-energy high-speed
x-ray imaging with a frame rate of 54.31 kHz. Figure is not to scale for visual clarity.
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FIG. 2. Backscatter SEM images of Al-20wt.%Bi (remeasured to Al-4.2wt.%Bi) (a)
and Al-20wt.%Bi with 2vol.% TiC0.70N0.30 NPs (b) initial microstructure taken from the
center of the ingot. (c) High magnification SEM image showing the TiC0.70N0.30 particles
assembled at the phase interface.

ultrasonic processing are described in the reference [2] Once solidified, thin plates were cut

perpendicular to the base from the middle of the ingot and grinded into dimensions of 4

mm × 20 mm × 0.5 mm.

Before in-situ characterization, ex-situ microscopy was performed to determine the

distribution of NPs and Bi droplets prior to in-situ laser melting. The Al-Bi microstructure

without NPs is shown in Figure 2(a). Sedimentation (not shown in Figure 2(a)), significantly

lowered the Bi composition within the center of the ingot. The composition was remeasured

to be Al-4.2wt.%Bi determined by electron backscatter imaging. Figure 2(b) shows the NP-

enabled microstructure with the addition of TiC0.70N0.30 NPs. Figure 2(c) is a zoomed-in

image of Figure 2(b), which shows the NPs assembled at the Al-Bi interface.

From high-energy high-speed in-situ synchrotron X-ray imaging, the dissolution of

a single minority droplet is shown in Figure 3(a-d) for the pure alloy and Figure 3(e-h)

for the NP-enabled alloy. Bi droplets throughout different parts of the melt pool dissolved

at non-constant rates as the melting front proceeded into the thin plate. To evaluate the

diffusion properties, minority droplet size, droplet position, and the time required for the

droplets to completely dissolve were obtained from the images. Complete dissolution of

the liquid minority droplets based on the initial diameter of the minority droplet were solely

considered due to thermocapillary forces elongating droplets into irregular shapes during
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FIG. 3. Dissolution of a single minority phase under laser-induced melting conditions in
pure (a-d) and NP-enabled (e-h) alloy. The dotted line represents one specified minority
droplet. The arrow represents the motion of the specified minority droplet until complete
dissolution.

melting. Using ImageJ (National Institutes of Health, version 1.51q), the average diameters

and positions of minority droplets were carefully measured and averaged. The change in

dissolution time of an individual droplet was estimated to begin when a slight change in

droplet shape was observed, and ended when the droplet completely disappeared. Two and

four melting experiments of the pure and NP-enabled alloys were recorded, respectively.

Five minority phase droplets per experiment were examined, which also exhibited mini-

mal non-diffusional behavior such as droplet collisions, droplet splitting, and droplet-pore

interaction.

The following equation [12, 13] derived for diffusion-controlled dissolution was

used to calculate the diffusion coefficient D of a single spherical droplet,

R = R0 −
SDt
R0
− 2S
√
π

√
Dt, (1)
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where R0 and R are the initial radius and final radius, respectively, t the dissolution time,

and S the supersaturation. Since the temperature of the melt pool changes during heating,

an average supersaturation between the miscibility gap was used, and calculated based on

the equilibrium phase diagram using the following equation,

S =
1
2
(C0 − C1)
(C2 − C0)

, (2)

where C0 is the concentration of the minority phase, and C1 and C2 are the concentration of

majority-rich and minority-rich liquid at monotectic temperatures, respectively. The value

of S accounts for the differences in the equilibrium alloy composition and was calculated to

be 0.0013 and 0.032 for the pure and NP-enabled alloys, respectively.

Based on the diffusion controlled dissolution equation, the diffusion coefficient

calculated from each minority droplet are shown in Figure 4(a). The calculated diffusion

coefficients are on the order of 10−4 to 10−5 m2/s and 10−5 to 10−7 m2/s for pure and NP-

enabled alloys, respectively. A reduction of at least one order of magnitude is observed with

the presence of theNPs at the interface, which is consistent for similar sizedminority droplets

under identical melting conditions. Even with convective transport present in immiscible

alloys [14], an order of magnitude difference in calculated diffusion coefficients was still

observed regardless of average droplet velocities, as shown in Figure 4(b). Significant

variation among calculated diffusion coefficients for similar-sized droplets was observed as

each Bi droplets were measured at different times and locations throughout the melt pool

life span.

While a reduction of at least one order of magnitude was observed in the calculated

diffusion coefficient, previous ex-situ analysis on the same alloy system predicted a reduc-

tion of the calculated diffusion coefficients much larger than one order of magnitude [2].

However, the calculated diffusion coefficients for this in-situ characterization represent only
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FIG. 4. (a) Calculated diffusion coefficient of pure and NP-enabled alloys for different
sized Bi droplets. (b) Calculated diffusion coefficient of pure and NP-enabled alloys with
different minority droplet velocities within the melt pool.

a conservative underestimation of the order of magnitude reduction. The high temperatures

experienced during rapid melting may remove the NPs from the interface due to Brownian

motion, rendering the NPs ineffective in physically blocking atomistic diffusion.

Despite the laser melting overcoming the experimental challenges essential to an-

alyzing NP-enabled diffusion control, the calculated liquid diffusion coefficients of both

alloys were significantly higher than typical liquid diffusion coefficients on the order of

10−8 to 10−9 m2/s reported in literature [2, 14]. One possible explanation for the fast cal-

culated diffusion coefficients observed during laser melting may be attributed to individual

minority droplet’s local concentration being inconsistent with the equilibrium concentration

as assumed in equation 2. Under rapid melting conditions, the local minority concentration

at the dissoluting minority droplets may be much greater than the equilibrium concentration

as the high melting rate provides insufficient time for minority atoms to diffuse into equilib-

rium concentrations. A local minority concentration enrichment around minority droplets

will reflect a higher local supersaturation than the equilibrium supersaturation. Unable to

quantify the local droplet supersaturation, the underestimated equilibrium supersaturation
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used in equation 1 will overestimate the calculated diffusion coefficients with the spatial

and temporal measurements obtained through in-situ imaging. Accounting for the local

supersaturation may lower the calculated diffusion coefficients to standard liquid diffusion

coefficients and may yield an even larger order of magnitude difference than calculated with

the equilibrium supersaturation. However, despite this discrepancy, at least one order of

magnitude difference in the calculated diffusion coefficients was still characterized in-situ

under similar melting conditions and using equilibrium concentrations.

With a one order of magnitude reduction in the calculated diffusion coefficient

observed in-situ, NPs are shown to possess diffusion controlling properties. The primary

mechanism for NP-enabled diffusion control is the NP’s ability to stabilize at the phase

interface during dissolution. As the Bi droplets dissolve, the NPs adsorb on the interface

are able to physical restrict the flux of Bi atoms from crossing into the homogeneous liquid

phase [2]. Additionally, nanochannels formed by the incomplete stacking structure of

circular NPs assembled at the interface and by the Brownian motion of NPs crossing the

interface can also stall the diffusion transport of Bi atoms [15].

In conclusion, NP-enabled diffusion control is characterized in-situ for the first time.

Through in-situ high-energy high-speed synchrotron x-ray imaging of laser melting pure

and NP-enabled alloys, dissolution of NP-coated and uncoated liquid-liquid interfaces were

characterized. The calculated diffusion coefficients based on a diffusion based dissolution

model were shown to restrict diffusion by at least one order of magnitude when NPs were

assembled at the interface compared to when NPs were not used. This study overcomes

many difficult experimental challenges to provide direct in-situ evidence of NP-enabled

diffusion control. With diffusion underlying the physical phenomena in many fields [16–

21], such as material science, biology, chemistry, and physics, validation of NP-enabled

diffusion control through in-situ characterization is critical for further development in

effective diffusion control.
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ABSTRACT

Properties of dissimilar material systems are generally limited by their inherent inter-

face. Weak phase interfaces, observed in dispersion strengthened materials, under external

stresses can behave as initiation sites for void growth, leading to premature failure. Material

systems prone to interface decohesion are generally avoided, forcing material scientists

to select materials with inherently stronger interfaces, constraining the overall material

selection design. To overcome this design limitation, nanoparticles were assembled at

the phase interface. Nanoparticle-enabled interfaces under tensile testing conditions were

characterized to strengthen the interface, and were able to change the overall secondary

phase failure mechanism from interface decohesion to particle fracture. Nanoparticles are

shown to increase the overall contact area at the interface, creating stronger and additional

bonds between dissimilar materials. Furthermore, nanoparticle-enabled interfaces provide

a method for improving the strength of dissimilar interfaces, without compromising the

original material system.

Keywords: Metal Matrix-NanoComposite, Immiscible alloy, Nanoparticles, Interface

strengthening
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Interface strength between dissimilar materials can dictate overall material proper-

ties [1–9]. Interfaces are generally the weakest link in dissimilar materials systems, typically

behaving as an initiation sites for void growth. Despite these weaknesses, solid interface

bonds present in alloys, layered structures, welds, and composite materials have drastically

surpassed standard monolithic properties. However, advances in dissimilar materials sys-

tems bypass improving the interface, instead focusing more on improving systems with

inherently strong interfaces. The lack of improvement on material systems with inher-

ently poor interfaces severely restrict certain material design combinations, especially in

dispersed secondary phase alloys and composites.

Improving interfacial properties can be very challenging due to the lack of reliable

testing methods of solid-solid interface energy [10]. While hardening the matrix can be

used to prevent interface decohesion and strengthen the overall material, significant ductility

is lost [11] and requires altering the original material system.

To enhance dissimilar interfaces, intermediate phases favorable to both materials

have been shown to strengthen interfaces without compromising the original material sys-

tem. Interlayers between two dissimilar materials during laser welding were observed to

increase the overall strength of joint welds by suppressing the formation of certain inter-

metallic compounds [12]. Nanoscale transition layers improved the bonding of immiscible

systems by producing a semi-coherent atomic structure [13]. Laminated structures utiliz-

ing hard brittle phases by stacking ductile metal thin sheets between layers has also been

implemented to prolong ductility [14].

Additionally, improving interface strength through nanoparticles (NPs) also offers

a novel solution to enhancing dispersed secondary phase interface properties. NPs inserted

between accumulative roll bonded layers were shown to strengthen the layer interface [15].

Metallic NPs with organic residuals annealed between a double cantilever beam can greatly

increase the interface fracture strength [16].
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Recently, NPs were used to physically block and stall the diffusional transport of

the minority phase in liquid immiscible alloys during nucleation by rapid assembling on

the growing interface, forming a layer of NPs around the secondary phase, referred to

as NP-enabled interfaces [17–19]. NPs energetically driven to specific interfaces upon

solidification introduce a possible mechanism for interface strengthening, where the bonds

between the phases and NPs may potentially be stronger than the bonds between the phases

alone.

To determine whether NPs are capable of strengthening the interface, tensile testing

of materials with and without NP-enabled interfaces are performed. The NP’s influence

on the interface and mechanical behavior of dispersed secondary phase is observed and

compared to pure (NP-absent) interfaces. Here, NP-enabled interfaces are characterized to

improve the interface strength between dissimilar materials.

To characterized NP-enabled interfaces, Al-Bi immiscible alloys with and without

NPs were synthesized for mechanical testing using the following technique [17]. Al-

20wt.%Bi alloys were melted into the homogeneous liquid phase region in a resistance

furnace under an argon flux. For the NP-enabled alloy, two-volume percent of TiC0.70N0.30

NPs (average diameter of approximately 80 nm) were dispensed into the melt from the sur-

face using a double capsulate feeding method [17]. Ultrasonic cavitation was subsequently

used to break up NP clusters and achieve a homogeneous distribution of NPs within the melt

before cooling. NPs nor ultrasonic treatment were used for the fabrication of the pure alloy.

Both samples were cooled very slowly by removing the crucibles out of the furnace and into

the air atmosphere. Ingots of Al-20wt.%Bi and Al-20wt.%Bi with 2vol.% TiC0.70N0.30 NPs

(referred to as the pure and NP-enabled alloy, respectively) were cut by wire electrical dis-

charge machining (EDM) into tensile bars with a length of 10 mm. Both tensile specimens

were taken from the same height in the center of the ingot. The pure alloy composition was

remeasured using electron backscatter imaging to Al-4.2wt.%Bi in the center of the ingot to

account for sedimentation due to Al-Bi density mismatch. While the NP-enabled alloy had
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no sedimentation, both materials had the same initial droplet nucleation morphology prior

to NPs assembling at the interface. Tensile testing (Shimazu AGS-20kNG) was performed

for the pure and NP-enabled alloys at a strain rate of 0.001s−1. Droplet interfaces were

observed using a field emission scanning electron microscope (FESEM Zeiss LEO 1530).

Figure 1 shows the final deformed microstructure of the pure and NP-enabled alloy

tensile specimens. Tensile loading for both alloys were applied parallel to the vertical

direction of the image. The pure alloy (Figure 1(a)) shows significant inhomogeneity of Bi

phase throughout the length of the tensile bar compared to the NP-enabled alloy (Figure

1(b)). The pure and NP-enabled samples failed at 0.12 and 0.10 strain, respectively. The

NP-enabled alloy contains a far greater concentration of Bi phase, despite both samples

being extracted from similar heights of their respective ingot. For the NP-enabled alloy, a

partial coating of NPs were observed on many Bi droplets.

To compare the interface properties, two similarly sized droplets from each material

were specifically analyzed (Figure 2). Droplets with complete coating in the NP-enabled

alloy were solely analyzed. For the pure alloy, the Bi droplet experienced interface decohe-

sion (Figure 2(a)). Comparatively, the NP-enabled droplet (Figure 2(b)) observed droplet

fracture under a similar strain level. Additionally, the NP-enabled droplet also observed

interface decohesion to a lesser degree compared to the pure droplet. The freshly separated

interfaces for both droplets are shown in Figure 3. The droplet of the pure alloy is smooth

(Figure 3(a)), compared to the rough surface of NPs embedded on the coated droplet (Figure

3(b)).

With casting of the pure alloy containing 20% Bi distributed homogeneously within

the center ingot difficult due to sedimentation, a direct comparison between the NP-enabled

alloy under tensile stress makes analyzing NP-enabled interfaces difficult. Nonetheless,

the drastic differences in mechanical failure behavior between the NP-enabled and the pure

alloy interfaces are significant for characterization. The SEM images of the final deformed

droplets highlighted a change in the damagemechanism of the droplets, changing the overall
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FIG. 1. SEM images of the final deformed microstructure of the pure (a) and NP-enabled
(b) alloys. The NP-enabled alloy contained a greater concentration of Bi than the pure alloy
due to sedimentation. Both samples were extracted at the same height of their respective
ingots. Loading was applied in the vertical direction in the images. The red outline denotes
a specific minority droplet examined in Figure 2.

FIG. 2. SEM images of a specific similarly sized minority droplet from the pure (a) and
NP-enabled (b) alloys outlined in red in Figure 1. Pure alloy droplets experienced interface
decohesion, while the NP-enabled alloy experienced droplet fracture. The red outline
denotes the specifc area of the interface examined in Figure 3.
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FIG. 3. SEM images of a freshly separated droplet surface from the pure (a) and NP-
enabled (b) alloys droplet interface outlined in red in Figure 2. Pure alloy droplet surface
was smooth, while the NP-enabled droplet had NPs embedded on the droplet.

failure method from interface decohesion in the pure alloy to droplet fracture in the NP-

enabled alloy. This indicates that the NP-enabled interfaces increased the strength required

for interface decohesion beyond the threshold required to initiate droplet fracture [11].

Failure within the droplet instead of at the interface demonstrates the interface is no longer

the weakest link of this material system, which indicates the interface was strengthened.

The increase in interface strength can be attributed to not only the strengthened chemical

bonds formed between the intermediate NPs, but also a significant increase in the overall

contact area for chemical bonding created through the rough NP coated layer (Figure 3).

Beyond overcoming the stresses required to initiate interface decohesion, NPs also raised

the stress required to induce particle fracture by impeding dislocation motion until even

greater levels of stresses are achieved. Additionally, with Bi being softer and more brittle

than Al, a high wt.% of Bi in Al-Bi is typically expected to exhibit less plasticity than a

lower Bi concentration alloy. However, the NP-enabled alloy strain was similar to the strain

of the pure alloy containing five times more Bi in terms of wt.% than the pure alloy, leading

to the conclusion that NP-enabled interfaces increased the overall interface strength of the

entire microstructure.
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In conclusion, NP-enabled interfaces are shown to improve the interfaces between

dissimilar materials. NP-enabled interfaces are observed to induce a change in droplet

deformation behavior from interface decohesion in the pure alloy to droplet fracture in

the NP-enabled alloy under tensile loading conditions. NPs are shown to strengthen the

interface by strengthening the chemical bonds between each of the phases and by increasing

the overall number of bonds through the increased contact area gained using NPs. Despite

the NP-enabled alloys having five-times as much brittle phase compared to the pure alloy,

similar levels of strain were observed in the pure alloys, which corresponds to the interfaces

being strengthened throughout the microstructure. NP-enabled interface strengthening

highlights a new way to strengthen material interfaces without altering the original material

system.
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SECTION

3. CONCLUSIONS

Diffusion and mechanical properties of NP-enabled diffusion controlled materials

were characterized. NP-enabled diffusion control was observed in-situ under high-energy

high-speed synchrotron X-ray imaging, and was shown to reduced the diffusion coefficient

by at least one order of magnitude. In-situ characterization showcases direct evidence of

NP-enabled diffusion control, providing clarity to the conclusions obtained through ex-situ

microscopy. The NPs assembled at the growing interface, in addition to blocking diffusion,

were also characterized to improve interface strength. Based on ex-situ microscopy of

the deformed microstructure, NPs were determined to strengthen the dissimilar material

interfaces by improving the chemical bonds and increasing the overall contact area at the

interface. With interfaces known to be the weakest part of the microstructure, behaving as

initiation sites for void growth, strengthened NP-enabled interfaces were shown to change

the failure behavior of minority droplets from interface decohesion to fracture, providing a

general methodology for improving all material system interfaces. Both types of analyses

provide validity to these microstructural refinement and interface strengthening strategies,

which are necessary for continual advancement of this new class of materials.
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