
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2012-07-19

Data Consistency and Conflict Avoidance in a
Multi-User CAx Environment
Robert Aaron Moncur
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Moncur, Robert Aaron, "Data Consistency and Conflict Avoidance in a Multi-User CAx Environment" (2012). All Theses and
Dissertations. 3675.
https://scholarsarchive.byu.edu/etd/3675

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3675&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F3675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3675&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F3675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3675?utm_source=scholarsarchive.byu.edu%2Fetd%2F3675&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Data Consistency and Conflict Avoidance

in a Multi-User CAx Environment

Robert A. Moncur

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

C. Greg Jensen, Chair
Chia-Chi Teng

Ed Red

Department of Mechanical Engineering

Brigham Young University

 July 2012

Copyright © 2012 Robert A Moncur

All Rights Reserved

ABSTRACT

 Data Consistency and Conflict Avoidance in a Multi-User CAx Environment

Robert A. Moncur
Department of Mechanical Engineering, BYU

Master of Science

This research presents a new method to preserve data consistency in a multi-user CAx
environment. The new method includes three types of constraints which work by constraining
and controlling both features and users across an entire multi-user CAx platform. The first type
of constraint includes locking or reserving features to enable only one user at a time to edit a
given feature. The second type of constraint, collaborative feature constraints, allows flexible
constraining of each individual feature in a model, and the data that defines it. The third type of
constraint, collaborative user constraints, allows the constraining of user permissions and user
actions individually or as a group while providing as much flexibility as possible.

To further present this method, mock-ups and suggested implementation guidelines are

presented. To demonstrate the effectiveness of the method, a proof-of-concept implementation
was built using the CATIA Connect multi-user CAD prototype developed at BYU. Using this
implementation usage examples are provided to show how this method provides important tools
that increase collaborative capabilities to a multi-user CAx system. By using the suggested
method design teams will be able to better control how their data is used and edited, maintaining
better data consistency and preventing data conflict and data misuse.

Keywords: Multi-user CAD, data consistency, collaborative design

ACKNOWLEDGEMENTS

 I would like to thank my family (especially my darling wife-to-be Lisa) for their support

and encouragement as I completed this work. I would also like to thank my advisor Dr. Jensen

and committee members Dr. Teng, and Dr. Red for their input and guidance in completing this

research. Additionally I would like to thank the NSF for their funding and support of the Center

for e-Design, BYU site in which this thesis and research were completed.

 v

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES ... ix

1 Introduction ... 1

1.1 Problem Statement .. 1

1.2 Thesis Objective ... 2

1.3 Problem Delimitation .. 2

1.4 Document Organization .. 3

2 Background ... 5

2.1 Collaboration and CAx ... 5

2.2 About Data Conflict .. 6

2.3 Data Consistency Approaches .. 7

2.4 Data Consistency Implementations .. 8

3 Methods .. 11

3.1 Usability and Design ... 11

3.2 System Overview .. 12

3.3 Data Consistency User Interface ... 12

3.3.1 Feature List & Feature Reservation .. 13

3.3.2 Collaborative Feature Constraints ... 18

3.3.3 User Awareness .. 20

3.3.4 Administrative Interface & Collaborative User Constraints 21

3.4 Backend Organization and Operation ... 23

3.4.1 Relational Database... 24

3.4.2 Collaborative CAx System Architecture .. 25

 vi

3.4.3 Generalized Data Model ... 25

3.5 Enforcing Reservations, Locks, and Constraints .. 28

4 Implementation ... 33

4.1 CATIA Connect .. 33

4.2 Data Consistency Method User Interface ... 35

4.3 Feature List & Feature Reservation .. 36

4.3.1 User Interface .. 36

4.3.2 Enforcing Locked/Reserved Features ... 38

4.4 Collaborative Feature Constraints .. 39

4.4.1 User Interface .. 39

4.4.2 Collaborative Feature Constraint Management .. 40

4.4.3 Collaborative Feature Constraints Enforcement ... 43

4.5 Administrative Interface and Collaborative User Constraints 43

4.5.1 User Interface .. 43

4.5.2 Collaborative User Constraints Enforcement ... 46

5 Usage Examples, Observations, And Benchmarking .. 49

5.1 Usage Examples .. 49

5.2 Engine Block Design Example ... 49

5.3 Functional Observations ... 56

5.4 Benchmarking ... 58

6 Conclusions and Future Work ... 61

6.1 Benefits ... 61

6.2 Drawbacks and Weaknesses ... 62

6.3 Future Work .. 63

REFERENCES .. 65

 vii

LIST OF TABLES

Table 4-1: Collaborative constraint definition for a CATIA pad ..40

Table 5-1: Starting model data ...57

Table 5-2: Final model data after several users attempted to edit data over a several
minute design session ..57

 ix

LIST OF FIGURES

Figure 3-1: Data consistency system overview ...13

Figure 3-2: Mock-up of a collaborative feature list form ..14

Figure 3-3: Colors and/or decals help users visualize the edit-ability of features16

Figure 3-4: Mock-up of a right-click context menu being used to toggle the state of a
feature ..17

Figure 3-5: Mock-up of features locked by tree branch ..18

Figure 3-6: Mock-up of collaborative feature constraint schema for a CAD extrusion20

Figure 3-7: Mock-up of user awareness interface ..21

Figure 3-8: Mock-up of the administrative form ...22

Figure 3-9: Mock-up of administrative form with all users selected24

Figure 3-10: Sample data model ..26

Figure 3-11: Mock-up of collaborative feature constraint interface (Siemens NX 7)29

Figure 3-12: Process showing the feature modification constraint enforcement31

Figure 3-13: Enforcement of the a collaborative user constraint controlling model
viewing permissions...31

Figure 3-14: Process for enforcing collaborative user constraints for the ability to
lock/reserve features ..32

Figure 3-15: Flowchart for enforcement of collaborative feature constraint creation32

Figure 4-1: CATIA Connect running along-side CATIA visual editor35

Figure 4-2: Feature list form ..37

Figure 4-3: Colored CATIA CAD model representing the state of its
locked/reserved/released features ..38

Figure 4-4: Collaborative constraint form for a CATIA pad ...40

Figure 4-5: Collaborative feature constraint object ...41

Figure 4-6: Method for defining collaborative feature constraints for a CATIA pad in
CATIA Connect ...44

 x

Figure 4-7: Code for collaborative feature constraints and feature locking enforcement
for a CATIA pad ..45

Figure 4-8: Administrative form ..46

Figure 5-1: Engine block to design ..50

Figure 5-2: First step of the engine block modeling ..50

Figure 5-3: Next two steps ...51

Figure 5-4: Piston cylinders are locked. (The blue color reflects their current state).51

Figure 5-5: Creating collaborative feature constraints for negative extrusions for heat
dissipation ..52

Figure 5-6: Creation of rib features and edit permissions warning dialog box53

Figure 5-7: Negative extrusions for camshaft and crankshaft ...53

Figure 5-8: Additional crankshaft geometry ..54

Figure 5-9: Admin form showing collaborative user constraints for the engine block55

Figure 5-10: Changes implemented from design review feedback56

Figure 5-11: Test part with several features ..57

1

1 INTRODUCTION

Engineering and product development, by nature, is a highly collaborative activity. With

increasing globalization of the world economy and the pressure for companies to shorten product

development time, the need for better collaborative engineering tools has arisen. With the

widespread reach of the internet, as well as the ever-increasing network bandwidths and

computer processing speeds, the technologies needed to improve collaboration in modern CAx

systems are in place. Unfortunately, single-user serial architectures in modern commercial CAx

systems inhibit concurrent engineering, in spite of the numerous research efforts into product

team cooperation, functional constraints, and data/model propagation and transparency [1]. To

improve the collaborative capacity of modern CAx systems, further research and development is

necessary.

1.1 Problem Statement

Traditionally, PLM applications manage data conflicts by restricting file editing access to a

single user, using secured file check-out and check-in methods. Multi-user tools will require

simultaneous editing access to those same files by a collaborating group, with new requirements

for data flow management and data consistency in a distributed user network. Without an

effective method to manage CAx data consistency (maintaining the desired form and intent for

the data in the midst of several users working on the same model and possibly the same features

2

within that model) multi-user CAx tools become useless as would any software tool that did not

maintain the integrity of a user’s data.

1.2 Thesis Objective

The primary research objective is to develop a data consistency architecture and system to

protect data and prevent data conflict in a collaborative CAx environment. First, situations that

could compromise data consistency and/or introduce data conflict in a collaborative design

session will be introduced. Next a methodology and implementation for avoiding and/or

preventing these situations will be presented. This system will include a user interface,

underlying data-model, and procedure that could be adapted to an existing CAx system through

its API. The user-interface, data-model, and procedure for the system will then be created and

implemented into the multi-user CAD plugin CATIA Connect although it could be developed

using a similar collaborative system working with one of several commercial CAx systems, as

the basic data structure of these systems would be adaptable to such a system. Finally usage

examples will be given, methods for comparing this method to other the data consistency

systems will be discussed, and conclusions will be given.

1.3 Problem Delimitation

It is important to note that this research is limited to demonstrating only that the

developed data consistency method improves collaboration. The software tools created for this

research are prototypes meant to be a proof-of-concept of the method described in this thesis, and

are not meant for distribution and thus lack the overall depth and sophistication of enterprise

software. While this new system provides an improved collaboration experience, it may not be

3

the best possible implementation of the tool, but is rather an embodiment of the proposed

method.

The method implementation will only be created for and tested using CATIA Connect

CAD running on a Microsoft Windows operating system with version 4.0 of the .NET platform.

Within that CAD package only a restricted subset of the CAD feature functionality has been

implemented to interface with the method described in this thesis. The scope of this research

will be general enough to apply to all CAE modeling operations, but the implementation will be

limited to the basic CAD modeling operations of positive and negative extrusions formed with

sketches of simple line and circle geometry. Additionally it is to be noted that current exposed

API functionality of the given CAD system may introduce additional limitations in the

implementation that could otherwise be developed given additional API functionality. Finally, it

should be noted that these delimitations are not the result of limitations on the capabilities of the

proposed method and that future work could extend these implementations to produce a

production quality implementation.

1.4 Document Organization

The next chapter will review relative prior research in the fields of collaborative CAD and

data consistency management. Chapter three presents the generalized method for improving

collaboration through the use of a data consistency management system. Chapter four describes

the implementation of this method using the API of the previously mentioned CAD system.

Chapter five presents a detailed usage example showing how the method could be used in a

collaborative design session, the results of functional observations, and a flexible method to

compared different data consistency management systems. Finally, chapter six details

conclusions that have been found from this research and presents suggestions for future work.

5

2 BACKGROUND

The method presented in this paper builds on the work done by other researchers. This

section has been divided into four relevant sections: Collaboration in CAx Software, About Data

Conflict, Current Constraint and Conflict Resolution Technology, and Current Data Consistency

Methods in CAx.

2.1 Collaboration and CAx

Over the last ten years researchers have implemented collaborative functionality into

CAx tools. This development has been done in two ways; the first being several new CAx tools

have been developed from the ground up, creating the software architecture in such a way that

collaborative features would be native to the software. Some of these software packages include

web-based systems such as WebSPIFF [2], WebCOSMOS [3], CADDAC [4], and NetFeature

[5]. In these systems there is a central modeling server where all modeling operations are

executed and the central CAD model stored. The clients are responsible for visualization tasks

and interaction between the clients and server. The data transmitted on the network is the faceted

CAD model data, which leads to heavy network traffic load. Approaches such as incremental

faceted model transmission adopted in WebCOSMOS [3], macro-files adopted in WPDSS [6]

are proposed to alleviate the data transmission problem, but the transmission problem still exists.

6

Additional collaborative CAx systems include CollabCAD and NXCollaborate. Most of these

systems were merely prototypes and never developed into commercial-grade software.

 The second method that has been used to develop collaborative CAx applications is

called transparent adaptation, which simply means that plugins that provide collaborative

capabilities are developed for existing CAx systems. This method allows the simplification of

adding of collaborative capabilities into already popular and industry accepted tools.

Transparent adaptation tools are implemented through the API of existing systems and thus no

code changes are needed to be made to existing commercial-grade software code to implement

collaborative features. However, this approach is limited by the exposed functionality of the

given CAx system’s API, which in some software packages is not robust enough to effectively

implement to support a collaborative plugin. Examples of transparent adaptation

implementations include NXConnect [7], a plugin for Siemens NX 6.0 that synchronizes CAD

geometry between multiple users, and CoMaya [8], a plugin for Autodesk Maya that also

synchronizes animation geometry between multiple users. Additional examples of transparent

adaptation collaborative plugins for the Microsoft office software are developed by CodoxWare

[9].

2.2 About Data Conflict

A collaborative CAx system based on a relational database is particularly vulnerable to

update conflicts and delete conflicts. This vulnerability arises as several users are updating and

deleting the same data simultaneously in the CAx system. An update conflict occurs when the

replication of an update to a row (of data in a database) conflicts with another update to the same

row. Update conflicts can happen when two database transactions originating from different sites

update the same row at nearly the same time. An update conflict could also occur if one client

7

has several local modifications which have not been propagated to the database (possibly due to

an interrupted network connection) then those changes are all propagated at once when the

network connection comes back online. If there are any modifications to existing data that

happened while the network connection was interrupted, an update conflict could occur. A

delete conflict occurs when two transactions originate from different sites, with one transaction

deleting a row and another transaction updating or deleting the same row, because in this case

the row does not exist to be either updated or deleted [10].

2.3 Data Consistency Approaches

Two major approaches have been used by researchers in constraining and controlling the

flow of data in collaborative software. The first approach, the optimistic approach, is an

approach where no restriction or locking of the data takes place in the system, thus resulting in a

less restricted feel by users, but also creating the potential for more challenges in data

consistency management. Such an approach has been effectively used in multi-user document

editors such as Google Docs, CodoxWord, and Microsoft SharePoint. To the author’s

knowledge a truly optimistic approach has never been successfully implemented in a CAx

system, likely due to the complexity of the data relationships within a CAx system. Augustina et

al. explain how such an approach is not possible using traditional collaborative data transfer

technology such as operational transformations because many data objects could have both

multiple parents and multiple children, thus not allowing the use of traditional operational

transform technology to manage data as is done in the multi-use text editors [8].

The second—and most common—approach for data consistency control in multi-user

CAx systems is the realistic (sometimes knows as pessimistic) approach, which involves locking

parts of the entire CAx model to prevent problems with data consistency. Advantages of realistic

8

approaches to data consistency in CAx systems are easy implementation (as no special

transformations of data are required as data is transferred) and the effective prevention of both

update and delete conflicts. The strictest realistic approaches fully lock the collaborative design

session allowing only one user to edit the model at a time, and the remaining collaborative users

to have a view-only mode of the model. More segmented approaches have been implemented in

some of the Microsoft Office 2010 collaborative document editing software, allowing certain

segments of the document to be locked for editing, while allowing the rest of the document to be

open for editing from other collaborators. Changes to the document are not propagated

automatically, rather are broadcast to other users when the document is saved and when the user

chooses to broadcast the changes.

2.4 Data Consistency Implementations

Several methods for managing data consistency in a collaborative setting have already

been proposed in current research. Jing, et al. use a local locking mechanism, based on

operational transforms, which helps avoid conflicts by distributing locks to local features in a

model in a replicated collaborative CAx system [11]. Bu, et al. use a semantic locking method to

prevent semantic violation. The locks are classified into region lock and object lock for resolving

violations at different levels of detail. User negotiation and versioning rules are used to resolve

conflicts among the collaborating users [12]. Chen, et al. apply three coordination rules

embedded in e-Assembly to satisfy collaborative assembly constraints in a client-server

environment. The coordination rules serve to maintain consistency among collaborators working

on different aspects of an assembly (atomic object, object links, and object interface constraints)

[13]. Lin, et al. explains the difficulty of applying constraint methods when several collaborators

are concurrently engaged in graphic design, while noting that constraint methods are proven

9

tools in single-user systems. Lin considers collaborative locking, masking, and time stamped

methods when constraints are applied to design operations such as moving a graphical object that

is subject to some geometrical or parametric constraint, and where multiple users manipulating

the same object would confuse the constraint relations [14]. Marshall recommends a task-based

method that will allow hierarchal administrative control over nearly the entire design process.

This system is very intricate and requires significant planning and setup to be effective [15].

Cera, et al. recommends a role-based system that only provides necessary geometry of a

collaborative CAD model based on a user’s role. Additionally details of the model can be

obscured to protect proprietary information in the model [16]. A more realistic method proposed

uses a token-based session, which only allows one user to edit the part at a time [17][18].

Additionally a softer “traffic light” method which visually warns users when it is ok to edit

model features was proposed by Bidarra et al. to lift some strict restrictions imposed by the more

rigid token-based systems [2].

11

3 METHODS

To facilitate CAx users to be able to comfortably work with a collaborative system (and

ease the fear of losing work due to data problems), a new method to protect and coordinate the

transfer of data as well as avoid data conflict and data loss has been developed.

This section presents the general method for the improvement of data consistency in a

collaborative CAx system. Note that while the method described is largely in the context of a

CAD system the method described is intended to be universally applicable to any collaborative

CAx system. For example, in the context of a collaborative CAD assembly, rather than CAD

part modeling, each part in the assembly could be treated as a feature and this method could be

an effective data consistency system for a CAD assembly system as well. The method steps will

be demonstrated with many examples and references in the context of a CAD system; however,

for the full details of the implementation please refer to section four.

3.1 Usability and Design

For a collaborative CAx data consistency method to be effective, it must appeal to the

user both visually and functionally. Such a system needs to be both simple enough to easily

understand, while versatile enough to provide useful and flexible functionality. Applying

modern software usability and design principles, this method has considered the end-user to

provide an intuitive and usable method to control data in a collaborative CAx setting. It is

12

designed to give the user instantaneous visual feedback about the flow of CAx data in a

collaborative system, and when it is and is not safe or allowed for them to edit existing features,

delete unwanted features, or add additional features. Additionally the system was designed to

adapt to both very strictly controlled and very open design collaborations to be able to work

effectively in both contexts.

3.2 System Overview

This section gives an overview of the method.

Figure 3-1 represents the data consistency system for this method running on one client (of

possible several connected to the database) in a multi-user CAx design session and shows how

the multi-user CAx layer works with the database to synchronize model data. This chapter will

explain how this data consistency system functions to protect CAx data in a multi-user

environment.

3.3 Data Consistency User Interface

First, the “front end” user-interactive parts of this method will be explained. This will

explain both the collaborative design session interface as well as an administrative form to help

manage the data consistency system as well as create collaborative user constraints.

13

Figure 3-1: Data consistency system overview

3.3.1 Feature List & Feature Reservation

This method for maintaining data consistency is controlled by CAx software users

through an information window that displays a representation of a part’s feature list. From this

form there will be several options that users in a collaborative design session can access to

control when and how the different features in a model can be edited. The appearance of this

collaborative feature list form could vary depending on the implementation of the collaborative

system (fully integrated vs. transparent adaptation) and the style/design of the software that it is

14

being implemented into, but the basic functionality should remain the same. Figure 3-2 is a

mock-up of a collaborative feature list (see Figure 4-2 for the implementation of this form).

Figure 3-2: Mock-up of a collaborative feature list form

The most basic functionality of the feature list reserves or locks a feature. By changing a

toggle button or select menu near the feature name in the feature list a user can change the 3-way

toggle to reserve, lock, or release the given feature. When the state of the feature is changed, it is

then broadcast to all other users currently in the collaborative design session. This switch or

button should visually represent the changed state of the feature (through color, font-style, etc.)

and also provide information about which user in the collaborative design session has locked or

15

reserved the feature. The mock-up example feature list in Figure 3-2 shows this toggle button as

white when a feature is released, blue when a feature is reserved, and a lock icon when the

feature is locked. The actual implementation of the state toggle should match the style of the

CAx application into which it is integrated.

When a feature is reserved, it means that the user who reserved the feature is able to edit

or delete the feature. A reservation can be made by any user at any time, even if the feature is

already reserved by another user (although this does not hold true if the feature is locked by

another user). Because a reservation can only be held by a single user at a time in a collaborative

design session, it prevents two users from editing the same feature at the same time. A

reservation could be thought of as a per-feature edit token, or a “soft” lock for edit permissions

for a given feature. This allows for relatively open collaboration between users and allows them

to work with a model collaboratively while preventing update and delete conflicts. The

reservation system would work well for a collaborative design session involving relatively few

people or involving a design that does not have strict design constraints/permissions about who

can or cannot edit the model.

A locked feature is very similar to a reserved feature; the only difference is that when a

feature is locked, the user who “owns” the lock must first release the lock before that feature can

be reserved, constrained, or locked by any other users. Locking allows tighter control over

features in a part, such as an interface feature with another model. The user interface could

additionally implement convenience features to allow users to request a lock be released via chat

message, email, icon transmit status, etc.

Depending on the current feature status (released/reserved/locked), feature items in the

collaborative feature list form should be highlighted with a certain color. The mock-up feature

16

list shown in Figure 3-2 displays released features as white, reserved features as blue, and locked

features as gray, although any color scheme could conceivably be used. The highlighted color

will visually convey the state of the feature to the user easily. A unique color for each user in the

collaborative design session could also be used to convey which user has reserved or locked a

given feature. For the feature list form, a one-click state toggle is recommended as it will make

it simple for users to set the state of several features which need to be reserved or locked for

editing. Additionally, the same color scheme could be applied to the rendered features inside the

CAx system visual editor to help users see which features are edit-able (Figure 3-3).

Decals/icons (such as a lock symbol) could also be applied to features in a CAx system’s visual

editor to further convey its current state to the user.

Figure 3-3: Colors and/or decals help users visualize the edit-ability of features

Additional user interface pieces could be used to toggle the state of features in the CAx

visual editor as well. One method would be to use a right-click context menu as shown in Figure

3-4. Another method to toggle the state of a feature would be to simply use a triple-click of the

mouse on that feature, which would allow users to quickly reserve and lock features while

keeping their cursor in the visual editor. The ability to select a group of features either from the

17

collaborative feature list or from the visual editor would also be very convenient to users who

will be editing an entire group or section of features.

Figure 3-4: Mock-up of a right-click context menu being used to toggle the state of a feature

The ideal implementation of the collaborative feature list functionality would be to

implement it directly into a CAx system’s existing feature list using the same look and feel of

that CAx system. Any other menus or buttons should be implemented similarly. This will make

users familiar with that particular CAx software feel more comfortable with the collaborative

features, and ultimately make it easier for them to learn and adopt the new features into their

existing workflow.

This feature-wise locking approach also provides additional capability for CAx model

decomposition. In addition to locking/reserving features individually, they could also be locked

or reserved in groups. If features are related in a tree-like structure, an entire branch of features

18

could be locked just by simply locking the parent-feature in the tree. As new features are added

to a model, if they are connected to existing features in that tree or group, those features could in-

turn inherit any lock/reservation properties from their parent feature. This functionality could

provide a way to effectively partition a CAx model, having individual users working on

individual groups of features in a model. It would also include less overhead than a spatial

model decomposition method that decomposes a model using planes and surfaces. Figure 3-5

shows a mockup of how features could be locked in a tree-like structure. Feature 3 and all of its

children are locked by User 1, and Feature 7 and all of its children are locked by User 2.

Figure 3-5: Mock-up of features locked by tree branch

3.3.2 Collaborative Feature Constraints

The advanced functionality of the collaborative feature list allows collaborative feature

constraints to be added to the model. Collaborative feature constraints allow exact control over

every aspect of the feature, which adds more flexibility to control the manipulation of the feature

(compared to simply locking the feature). These constraints could be accessed from a collapsible

19

or hide-able panel that can be accessed by users from the collaborative feature list using a single

click. If a collaborative feature constraint is defined, the name of the user who created the

constraint is displayed next to the constraint. Similar to locking, a convenience method could be

implemented for a user to contact the “owner” of the constraint in the event that it needs to be

modified or deleted.

Collaborative feature constraints will be specific to the type of feature that they govern

and are based on the different data parameters that define that specific feature. For example, in a

CAD system an extrusion is defined by a sketch (with its respective features [lines, arcs, etc.]

and plane) as well as a starting limit, and an ending limit. Constraints for a CAD extrusion could

constrain the “edit-ability” of the extrusion’s sketch features or sketch plane, the ability to delete

the feature, the ability to perform Boolean operations on the feature, as well as constrain the

starting and ending limits to a certain value, or a certain range of values. Figure 3-6 shows

collaborative constraints set for a CAD extrusion so that Extrusion.1’s sketch feature cannot be

edited, and that Limit 2 of the extrusion cannot be less than -150mm (also see Table 4-1).

Collaborative feature constraint definitions will be unique for each different type of feature in a

given CAx system and the best set of definitions will have to be determined depending on the

implementation and the types of features in that CAx system.

20

Figure 3-6: Mock-up of collaborative feature constraint schema for a CAD extrusion

3.3.3 User Awareness

Being aware of which other users are concurrently editing a document is an important

feature of an effective collaborative design system. Hence, another important user interface

element of this method includes a listing of the other users that are participating in the current

collaborative design session (see Figure 3-7). Icons next to each user’s name could indicate if

they are active, inactive, busy, etc. similar to popular internet chat applications. Additionally, a

chat bubble icon next to their name would allow users to initiate chat sessions between users as

they are working together in the collaborative design session. This section would also be a place

that other advanced communication features could be implemented such as audio/video chatting,

or automatic translation of a text chat in a multi-lingual collaborative design session [19].

Clicking on a user’s name could additionally reveal information about that user such as their

expertise, location, position, company, etc. This piece of the collaborative user interface tools

should be located near the collaborative feature list as there will likely be close interaction

between these forms as users work with each other during the collaborative design session.

21

Figure 3-7: Mock-up of user awareness interface

3.3.4 Administrative Interface & Collaborative User Constraints

The administrative interface allows even deeper control over the flow of CAx data in a

collaborative system, allowing administrative control over almost every aspect of the

collaborative model. The administrative interface allows an administrator to control visibility

and edit-ability of CAx data by user, by feature, by groupings of features (such as a part), by

groupings of groupings of features (such as assemblies and subassemblies), and any

combination of these groupings.

The administrative collaborative user constraint form as shown mocked-up in Figure

3-8 allows an administrator to enable or disable any number of different constraints for all the

users in the system (see Figure 4-8 for an image of the implemented form). The functionality

of these collaborative user constraints will vary depending on the implementation, but in this

method recommended constraints include the ability to view a model, the ability to reserve

features (and hence edit features), the ability to lock features, and the ability to create

collaborative feature constraints. In the example below, in Figure 3-8 User 1 is allowed to view

any CAD Model in the collaborative system (shown by the highlighted eye icon), as well as

make reservations (shown by the highlighted blue dot icon). This user, however, is not allowed

to create locks on any features (shown by the grayed-out lock icon), and is not allowed to create

22

collaborative constraints (shown by the grayed out constraint icon). On this form, suggestions

for usability would include tooltips that display when the cursor hovers over a certain option,

which will display the option name, as well as the status for that option. It is also

recommended that these options be toggled with a single click. Discussion of the enforcement

of collaborative user constraints is found in section 3.5.

Figure 3-8: Mock-up of the administrative form

When a specific user’s name is selected (highlighted in yellow) the permissions for this

user are displayed and can be set per assembly, per sub-assembly, and per feature. When one of

these options is toggled, the option could also be toggled for all children. For example, if

locking for a certain user is enabled at an assembly level, then all of the features in all child sub-

assemblies and parts could also have the locking enabled. The hierarchy (whether the global or

user-specific constraints are enforced over one another) of these collaborative user constraints

could also be modified to fit the needs of the specific application.

23

When the All Users option is selected, then the global collaborative constraints menu

becomes active for all features (see Figure 3-9). In addition to creating global permissions for

each assembly/sub-assembly/part/feature, this will allow the administrator to create or arbitrate

any collaborative constraints that need to be modified. Global permissions for each assembly,

sub-assembly, part, and feature will override the user-specific features. The hierarchy of the

global constraints could also be modified to fit the needs of the specific application. Also, this

form could potentially be used to manage task-based constraints or spatial model decomposition

as suggested by Marshall [15] if such were also available in the same implementation.

As recommended with the previous user interface forms for this method, the

administrative interface should be integrated directly into a CAx system using the same look and

feel as is used for other administrative menus and settings windows. As the look and feel is kept

consistent, it will make users feel more comfortable with the functionality that it provides.

3.4 Backend Organization and Operation

This section will detail the underlying data model and procedures that will be used to

implement the above explained data consistency system.

24

Figure 3-9: Mock-up of administrative form with all users selected

3.4.1 Relational Database

It is recommended that for an implementation of this method that a relational database

management system (or RDBMS), such as Microsoft SQL Server or MySQL, be used. A typical

CAx modeling system’s data is comprised of relational data which could easily be stored in an

RDBMS system. To effectively manage all the collaborative feature constraints and their

relations to the different features, parts, sub-assemblies, and assemblies, the RDBMS system

would be ideal.

25

3.4.2 Collaborative CAx System Architecture

There are varied architectures that could be used to construct collaborative CAx design

software implementations. For the method and implementation described in this thesis a client-

server architecture was assumed, as this architecture is most adaptable to methods explained

here. The methodology used here could also be implemented using other architectures such as

peer-to-peer.

3.4.3 Generalized Data Model

A sample data-model representing a basic collaborative CAD system has been included

in Figure 3-10. The underlying data-model of the data consistency method explained above

could vary depending on the implementation, but this generalized data-model illustrates the

concepts of how this method could be implemented.

The foundational piece of data of this data model is a group. All users, assemblies, and

parts belong to a group. The groups table has an admin_id which is a foreign key specifying

which user is the administrator for the group. The data-model could be slightly modified to

allow several users in the group to have administrative privileges. Each assembly will have a

group_id foreign key which relates it to its group. Sub-assembly nesting is created with the

foreign key assembly_id. Each part can also be related to an assembly using its assembly_id

foreign key. Each feature is related to a part through the part_id. This sample data model shows

only one table for features, but in an actual implementation there would be several feature tables

for each of the different kinds of features in the system. The data-model could be slightly

modified to allow a many-to-many relationship between parts and assemblies as well, but for

simplicity and purposes of this method it will be treated as a many-to-one relationship. The

user_constraints table is related to users through the foreign key user_id. The user_constraints

26

table is also designed to be related to assemblies, parts, and features through the columns

user_constraint_object_id, and user_constraint_type. This table allows for user-specific

constraints that can be made from the administrative form to be simply assigned to an object in

any table that supports these permission options. The name of the object type that it is

constraining goes in the user_constraint_type column, and the primary key of the object it is

constraining goes into the user_constraint_object_id column. The format of the user_constraints

table makes it very flexible and easily adaptable to new tables and new constraint types.

assemblies

PK assembly_id

FK2 group_id
FK1 parent_assembly_id
 assembly_name
 can_constrain
 can_lock
 can_reserve
 can_view
 created_at
 updated_at

users

PK user_id

FK1 group_id
 user_name
 password
 can_constrain
 can_lock
 can_reserve
 can_view
 created_at
 updated_at

groups

PK group_id

FK1 admin_id
 group_name
 created_at
 updated_at

parts

PK part_id

FK1 assembly_id
FK2 group_id
 part_name
 can_constrain
 can_lock
 can_reserve
 can_view
 created_at
 updated_at

example_features

PK feature_id

FK1 part_id
FK2 locked_user_id
 lock_type
 feature_name
 feature_value_1
 feature_value_1_limit_max
 feature_value_1_limit_min
 feature_value_1_limit_min_user_id
 feature_value_1_limit_max_user_id
 feature_value_1_fulllock_user_id
 feature_value_2
 feature_value_2_limit_max
 feature_value_2_limit_min
 feature_value_2_limit_min_user_id
 feature_value_2_limit_max_user_id
 feature_value_2_fulllock_user_id
 can_constrain
 can_lock
 can_reserve
 can_view
 locked_at
 created_at
 updated_at

user_constraints

PK user_constraint_id

FK1 user_id
FK2 user_constraint_object_id
 user_constraint_type
 can_constrain
 can_lock
 can_reserve
 can_view
 created_at
 updated_at

Figure 3-10: Sample data model

27

The data columns in the database tables users, assemblies, parts, and features are named

can_constrain, can_lock, can_reserve, and can_view. These data columns are Booleans that

enable or disable, respectively, the permissions to create collaborative user constraints, locks,

reservations, or to simply view the object in question. Two different approaches could be

implemented in the actual method implementation to determine which permissions override

others, either having the parent permissions override the child permissions, or the converse. It is

recommended that the child permissions override the parent permissions, as it would eliminate

confusing logic that would have to be implemented in the user form to toggle child permissions

as the parent permissions are changed. This approach is additionally more usable and intuitive

for the user as they will not be as confused by which table’s permissions ultimately govern the

objects in question.

While this example data model only has one feature table, in an actual implementation of

this method there would be several feature tables to represent the different kinds of features in

the system. In a CAD model, there would be features such as extrusions, revolutions, sketches,

planes, etc. which would all have different data relationships and data values needed to construct

that actual feature. For example, an extrusion definition needs a related sketch, as well as a

starting limit and ending limit. To enable locking and constraining of the different data values in

the table, five additional columns are needed for each data value. These columns include

maximum and minimum limits for each value, as well as a user_id that relates to the maximum

and minimum limits to the user who created them. The column

feature_value_x_fulllock_user_id relates a complete lock on that feature value to a user. If this

column is set then that feature value will be completely locked. If the column is null then the

feature value will be governed by any minimum/maximum limits set. If the minimum/maximum

28

user_ids and values are not set for that feature value then no constraints will be active for that

feature value.

When a user reserves or locks a feature from the user interface, their user_id will be

stored in the locked_user_id column for that feature. The lock_type column will then be set to

either “reserved” or “locked” respectively. The current time the feature was reserved or locked

will also be stored in the column locked_at. This information will be used to enforce locks and

reservations. When a user releases the reservation or lock, the values locked_user_id, lock_type,

and locked_at will be set to null.

It is to be noted that the example data model used for this section is extremely

generalized for simplicity and understanding of this thesis. The data model and data

relationships for an actual implementation of the described data consistency method would be

more complete. The provided data model was only meant to be a starting point for an actual

implementation.

3.5 Enforcing Reservations, Locks, and Constraints

The enforcement of reservations, locks, and collaborative constraints could be done in

two different ways, depending on the implementation and API access for the given CAx system.

For either method to be effective, it will be necessary to propagate modifications to any

collaborative constraints or reservations/locks to each client as quickly as possible. With the

information about these modifications each client program in the collaborative design session

could effectively enforce the constraints.

The best and most intuitive way to enforce these data consistency constraints would be to

implement the enforcement directly into the visual editor of the CAx software. If a feature was

reserved or locked, or a collaborative constraint was set, then the visual editor would disallow

29

the user from violating the feature locks or collaborative constraints. To be able to implement

such capabilities would require either modification of the source code of the given CAx system,

or API access to prevent editing of features. This method would be able to directly communicate

to users from the native CAx visual editor the current state (released/reserved/locked) of each

feature in the model, making the data consistency system more intuitive for users and more

usable. A mock-up of what integrating collaborative feature constraints directly into a CAD

software package (Siemens NX7) could look like is shown in Figure 3-11.

Figure 3-11: Mock-up of collaborative feature constraint interface (Siemens NX 7)

If neither the software’s source code nor sufficient API access is available to constrain

users from editing the model from the standard CAx visual editor (as is the case in many

commercial CAx software packages), then another approach could be used to enforce the locks

and reservations: see Figure 3-12. This approach works by checking the edit permissions of each

modified feature before modifications are propagated to the database. If the feature is not

30

reserved or locked by the user trying to modify the feature, or any collaborative constraints are

violated then the local modifications are not saved into the database, and the current CAx data is

reverted to the pre-modified state. In some cases, it may be necessary to check the permissions

of the parent feature as well when creating new features as some constraints, such as constraining

the ability to perform Boolean operations on a CAD feature, may relate to that constraint. This

enforcement approach is not as intuitive for users because the CAx visual editor will allow them

to still edit the feature locally even if it is locked by another user. To help users understand how

this works, a series of informative warnings would have to be displayed to notify the user how

the data consistency system works and when feature locks or constraints have been violated.

This enforcement method should also be implemented underneath of the first method described

in this section as a failsafe to prevent modifications to locked/reserved/constrained features in the

event that the collaborative constraint information is not immediately broadcast to all users. The

process used to enforce collaborative constraints for feature modification is shown in Figure

3-12.

Enforcing collaborative user constraints that are not directly linked to feature

modification can be done in a slightly different way. For example, to enforce a collaborative

user constraint that prevents a certain user from viewing or opening a part or assembly, the

process in Figure 3-13 could be used. Additionally, for the process of enforcing collaborative

user constraints that prevent a user from reserving or locking a feature, the process in Figure

3-14 could be used. Finally, the process of allowing users to create collaborative users

constraints can be found in Figure 3-15.

31

Figure 3-12: Process showing the feature modification constraint enforcement

Figure 3-13: Enforcement of the a collaborative user constraint controlling model viewing permissions

32

Figure 3-14: Process for enforcing collaborative user constraints for the ability to lock/reserve features

Figure 3-15: Flowchart for enforcement of collaborative feature constraint creation

33

4 IMPLEMENTATION

4.1 CATIA Connect

The implementation of the method explained in Chapter 3 of this thesis was integrated

into the CATIA Connect software plugin developed at Brigham Young University. CATIA

Connect is a transparent adaptation multi-user CAD plugin that synchronizes CAD features

between multiple clients. It was built using a client-server architecture which allows several

users to participate in a multiple user design session simultaneously. The CATIA connect

software is programmed to interface with CATIA CAD software using C# to interface with

CATIA through its COM Object interface. COM objects are flexible objects that can be

accessed by any .NET language such as Visual Basic, C++, or C# to manipulate data within an

application. The COM API is able to extract CAD features from a CATIA session and store

them in a Microsoft SQL Server 2008 database. The data defining each feature is then broadcast

to all other clients in the same design session, and updated as features are created, modified, or

deleted.

Because of limitations with the CATIA COM API such as a lack of event-driven call-

backs and advanced control over the visual editor, the implementation is not completely

seamless. New, modified, or deleted features for CATIA Connect are only pushed to the server

every few seconds (rather than instantaneously) because there is no event interrupt in the CATIA

COM API. A timer has been used in place of an event interrupt to push new geometry data to

34

the server. Additionally new features are only retrieved from the server every few seconds as

there is no server push system for the server to deliver new features to each client in the design

session as they are created. A server push architecture such as that developed by Winn [20]

could make retrieving new features from the server instantaneous and seamless, but is not

implemented in this version of CATIA Connect. Additionally, CATIA connect does not

implement user/part groups or assemblies as explained in section 3.4.3, and it can be assumed

that all parts belong to one global group. The current implementation, however, is functional and

has been created to a degree where it demonstrates a proof-of-concept of the functionality

described in the method section of this thesis.

The CATIA Connect software was programmed using Visual Studio 2010 using C#. The

user interface was built using the Visual Studio Windows Form Builder and is displayed as an

external window to CATIA. Ideally the user interface for CATIA Connect and the data

consistency method described in this thesis could be built directly into the CAx application using

its native user-interface as recommended by Xu [19]. Direct integration would make the system

more usable as it would feel more natural to users who were already familiar with the software.

Due to a lack of API functionality to manipulate and integrate forms directly into CATIA, the

user-interface has been implemented into forms external to the actual CAD system. Although

these windows are not directly integrated into the CAD system they do demonstrate all the

functionality needed to run the software effectively. The CATIA Connect form runs side-by-side

with the CATIA visual editor (Figure 4-1). After a user is logged into CATIA Connect, a list of

parts will be opened that can then be loaded. As the part is loaded, all the geometric features

defining the part, as represented by data in the database will be created in the CATIA visual

editor.

35

Figure 4-1: CATIA Connect running along-side CATIA visual editor

As the part is loaded into the CATIA visual editor, the implementation will also launch the

collaborative feature list form as well (Figure 4-2). From the collaborative feature list, the

collaborative user constraints form is accessible for each feature listed in the feature list.

4.2 Data Consistency Method User Interface

As the user interface was built, the main objective was to demonstrate the functionality of

the data consistency system as a proof-of-concept. As such, this implementation has only been

created to manage a small subset of the CAD features in CATIA Connect. Additionally, there

are several improvements that could be made to enhance the usability of the system given

additional time and resources. A commercial implementation (with more resources available) of

36

the same method would be more robust, complete, integrated, and usable. The user interface for

this implementation, however, will be functional and support as much functionality as possible

given the available access of the CATIA API.

4.3 Feature List & Feature Reservation

4.3.1 User Interface

The collaborative feature list (see Figure 4-2) for this implementation has been built to

mirror the feature list inside of the CATIA visual editor (a mock-up of this form is also available

in Figure 3-2). As new features are added locally or on remote users’ CATIA Connect sessions,

they will be created in the CATIA visual editor and listed in the collaborative feature list. From

the collaborative feature list, the lock/reserve/release functionality is very straight-forward to

operate. There is a very simple three-state checkbox that can be toggled easily with one click.

As the checkbox is clicked, the state column will update to display “released”, “reserved”, or

“locked”, and the by column will display the username of the user who has locked or reserved

the feature (it will be left blank if the feature is released).

As the state of a feature is changed, the color of the feature is updated instantly in the

CATIA visual editor to each user’s color (see Figure 4-3) and changes to the database are

propagated instantly. Remote clients will receive an update of the status change each time the

update timer process in CATIA Connect retrieves updates from the database.

37

Figure 4-2: Feature list form

If a user tries to change the state of a feature that is locked by another user, a warning will

be displayed, but the state of the checkbox will not be changed. If a user tries to change the state

of a reserved feature, the state of the checkbox will simply change, the state label and the by

label will be updated, and changes will be sent to the database immediately.

38

Figure 4-3: Colored CATIA CAD model representing the state of its locked/reserved/released features

4.3.2 Enforcing Locked/Reserved Features

With the CATIA Connect API, there is no way to limit what a user can edit in the CATIA

visual editor, so to enforce the unauthorized modification of features, a backend process must

monitor the current features with each cycle of the CATIA Connect update timer. If this process

finds a feature which is not locked or reserved by the current user, and has been edited, then the

modifications from that feature will automatically be reverted to their previous state the next

39

time that the update timer process checks the model. Additionally, a warning will be displayed

to notify the user that they must reserve or lock the feature to edit it. If a feature is detected as

modified and the user does have permission to edit this feature, then the changes will be sent to

the database and broadcast to all other users in the collaborative design session. The enforcement

of locked/reserved features is done in conjunction with the enforcement of collaborative

constraints as shown in Figure 3-12 and explained in section 4.4.3 and 4.5.2.

4.4 Collaborative Feature Constraints

4.4.1 User Interface

The collaborative constraints menu can be opened from the feature-tree menu by double-

clicking on one of the features or by selecting the feature and then clicking the Collaborative

Constraints button (Figure 4-2). Once open, the collaborative constraints menu (Figure 4-4) is

populated with the available collaborative constraints for the given features. The collaborative

constraints can then be enabled/disabled by clicking the checkbox next to the label. The values

for the collaborative feature constraints can also be edited directly from the form as well. The set

of collaborative constraints available will differ from feature to feature as different features are

defined using different parameter data. Full definitions for collaborative constraints for a

CATIA pad (or extrusion) are found in Table 4-1.

40

Figure 4-4: Collaborative constraint form for a CATIA pad

Table 4-1: Collaborative constraint definition for a CATIA pad

Collaborative Feature Constraint Definitions for a CATIA Pad
Limit 1 Full Lock Completely locks the ability to change the limit

1 for the extrusion
Limit 1 Maximum Limits the ability to make the limit 1 of the

extrusion greater than the specified value
Limit 1 Minimum Limits the ability to make the limit 1 of the

extrusion less than the specified value
Limit 2 Full Lock Completely locks the ability to change the limit

2 for the extrusion
Limit 2 Maximum Limits the ability to make the limit 2 of the

extrusion greater than the specified value
Limit 2 Minimum Limits the ability to make the limit 2 of the

extrusion less than the specified value
Direction Lock

Prevents the ability to change the direction of
the pad

Deletion Lock Prevents the ability to delete the pad

4.4.2 Collaborative Feature Constraint Management

Collaborative feature constraint definitions for each feature are managed by a set of

classes in C#. A set of LINQ-to-SQL ORM (object-relational-mapper) objects are generated

41

automatically from the database structure for CATIA Connect. There is a LINQ-to-SQL class

created for each database table, which is also allowed to be extended through a partial C# class.

These partial C# classes allow additional methods to be implemented for the feature object

which allow a great way to manage and modify collaborative constraints. Additionally, another

very simple class, collabconst, has been created to define collaborative user constraints, as

shown in Figure 4-5. A list of all the collaborative feature constraints for a certain feature

could be easily processed by a method in the corresponding partial LINQ-to-SQL class for that

feature.

public class collabconst {
 public bool state;
 public string label;
 public double? value;
 public string valType;

 public collabconst(bool _state, string _label, double? _value, string
_valType) {
 state = _state;
 label = _label;
 value = _value;

valType = _valType;
 }
}

Figure 4-5: Collaborative feature constraint object

The collabconst class contains four members and a constructor method. The state

member defines if the collaborative feature constraint is enabled. The label member defines the

text label that is displayed in the collaborative feature constraint menu for the constraint. The

value member defines a certain value that is assigned to the constraint. This member would be

used with a collaborative feature constraint containing a maximum or minimum limit but doesn’t

necessarily have to be used with all collaborative feature constraints. A constraint locking an

entire feature value would not have to have a value defined, and if the value was defined then the

42

value should not be editable. The valType member is used for convenience in converting values

from the database to the proper format for the form in which they are being displayed.

To create a list of collaborative feature constraint definitions for a given feature, a

method has been written in the partial c# class for each linq-to-sql object representing that

feature. When called, this method will return a list of the current collaborative feature constrains

active for the given feature object. Figure 4-6 shows the collaborative feature constraint

definition set used in this way for this implementation for CATIA Pads. This method will

typically be called when the collaborative feature constraint for is loaded for a feature and also

when collaborative feature constraints are enforced for a feature. Additional work could be done

to make the creation of collaborative feature constraints for additional features types more

extensible, such as storing collaborative feature constraint definitions for each feature type in a

database, but the approach explained above is effective for this implementation.

When a checkbox for any given collaborative feature constraint is checked in the form

shown in Figure 4-4, first the permissions are checked to make sure that the user has permission

to set a collaborative feature constraint, and that the collaborative feature constraint has not

already been set by another user. If this check fails, a warning is thrown, and the constraint will

not be set (similar to the process for reserving a feature shown in Figure 3-14). Otherwise, the

corresponding collabconst object is then passed to the parent feature class, handled by a

constraint processing method, and the data needed to set the constraint is immediately passed to

the database. The collaborative feature constraint data is then broadcast to all other users in the

collaborative design session and will be enforced by their local clients.

43

4.4.3 Collaborative Feature Constraints Enforcement

The enforcement of collaborative feature constraints is very straight-forward, and

happens at the same time that the enforcement of locked/reserved features (as explained in

section 4.3.2) takes place. After it is determined that a feature is editable (meaning the user has

reserved or locked the feature), then each of the collaborative feature constraints are checked. If

any of these constraints are violated, then the feature will be reverted to its original state in the

CATIA visual editor and a warning message will be thrown: see Figure 3-12. Sample code

enforcing collaborative feature constrains for a CATIA pad is provided in Figure 4-7.

4.5 Administrative Interface and Collaborative User Constraints

4.5.1 User Interface

Collaborative user constraints are controlled by the administrative form (Figure 4-8)

which can be opened only by CATIA Connect users who are designated as administrators

(mock-up can be seen in Figure 3-9). As CATIA Connect does not implement user groups,

administrators have global administration privileges. Having user groups that both parts and

users belong to would be the ideal grouping unit for the administrative control, but this

implementation does not employ such. The user permissions section of the administrative form

controls the permissions set for each user as described in Section 3.3.4 of this thesis. The part

permissions section of the administrative form allows the administrator to set the global

permissions for each part, modify the collaborative feature constraints for each feature, or set

administrative constraints for the currently selected user.

44

public List<collabconst> collaborativeConstraints() {
 List<collabconst> clist = new List<collabconst>();

 //Limit 1 full lock
 collabconst c1 = new collabconst(false, "Limit 1 Full Lock", null, "");
 c1.value = this.pad_limit_1;
 if (this.pad_limit_1_fulllock_user_id != null) c1.state = true;
 clist.Add(c1);

 //Limit 1 maximum
 collabconst c2 = new collabconst(false, "Limit 1 Maximum", null, "float");
 if (this.pad_limit_1_max_user_id != null) {
 c2.state = true;
 c2.value = this.pad_limit_1_max;
 }
 clist.Add(c2);

 //Limit 1 minimum
 collabconst c3 = new collabconst(false, "Limit 1 Minimum", null, "float");
 if (this.pad_limit_1_min_user_id != null) {
 c3.state = true;
 c3.value = this.pad_limit_1_min;
 }
 clist.Add(c3);

 //Limit 2 full lock
 collabconst c4 = new collabconst(false, "Limit 2 Full Lock", null, "");
 c4.value = this.pad_limit_2;
 if (this.pad_limit_2_fulllock_user_id != null) c4.state = true;
 clist.Add(c4);

 //Limit 2 maximum
 collabconst c5 = new collabconst(false, "Limit 2 Maximum", null, "float");
 if (this.pad_limit_2_max_user_id != null) {
 c5.state = true;
 c5.value = this.pad_limit_2_max;
 }
 clist.Add(c5);

 //Limit 2 minimum
 collabconst c6 = new collabconst(false, "Limit 2 Minimum", null, "float");
 if (this.pad_limit_2_min_user_id != null) {
 c6.state = true;
 c6.value = this.pad_limit_2_min;
 }
 clist.Add(c6);

 //Change Direction
 collabconst c7 = new collabconst(false, "Prevent Direction Change", null, "");
 if (this.can_modify_direction != null) c7.state = true;
 clist.Add(c7);

 //Prevent Deletion Direction
 collabconst c8 = new collabconst(false, "Prevent Deletion", null, "");
 if (this.can_delete != null) c8.state = true;

clist.Add(c8);

 return clist;
}

Figure 4-6: Method for defining collaborative feature constraints for a CATIA pad in CATIA Connect

45

//Checking if the current user can update the feature
if(databasePad.isEditable(session.user_id)) {

 //Checking pad collaborative feature constraints limit 1 -----
 if(databasePad.pad_limit_1_fulllock_user_id != null) { //if limit locked
 //if the user changed a locked limit
 if(CATIAPad.FirstLimit.Dimension.Value != databasePad.pad_limit_1)
 databasePad.revertLimit1();//Reversing the changes to the CAD Mode

 } else { //Checking the collaborative feature constraints

 // ----- Checking the limit 1 maximum -----
 if(databasePad. databasePad.pad_limit_1_max_user_id != null) {

 if(CATIAPad.FirstLimit.Dimension.Value > databasePad.pad_limit_1_max)
 CATIAPad.FirstLimit.Dimension.Value = (double)databasePad.pad_limit_1;

 // ----- Checking the limit 1 minimum -----
 if(databasePad.pad_limit_1_min_user_id != null) { //if constrained

 if(CATIAPad.FirstLimit.Dimension.Value < databasePad.pad_limit_1_min)
 CATIAPad.FirstLimit.Dimension.Value =
(double)databasePad.pad_limit_1;
 }

 // ----- Setting the database values to the new length -----
 databasePad.setLimit1(CATIAPad.FirstLimit.Dimension.Value);

 }

} else { //Reverting changes if the part was not "editable"

 databasePad.revertAllData();
 session.myPartTree.setMessageLabel("You cannot edit " +
databasePad.pad_name + ". Please reserve or lock it to edit");

}

// ----- Updating the changes to the database -----
session.myPartTree.getConnection().SubmitChanges();

Figure 4-7: Code for collaborative feature constraints and feature locking enforcement for a CATIA pad

46

Figure 4-8: Administrative form

4.5.2 Collaborative User Constraints Enforcement

When any one of the checkboxes for users, parts, or features (nested under parts) is

clicked, the underlying user, part, or feature object (in this implementation it is just CATIA pads)

will have a data member can_lock, can_constrain, can_reserve, or can_view set in the database.

This info will be immediately broadcast to all users in the collaborative design session. These

constraints will be enforced by each client locally. The can_lock and can_reserve constraints are

enforced when a user tries to lock or reserve a feature from the feature list menu; if the user does

not have the adequate permission, then a warning will be thrown and they will only be able to

modify the lock status of the feature according to their permissions. The can_constrain

constraint is enforced when a user tries to create or modify a collaborative user constraint; if the

user does not have this collaborative user constraint enabled, then they will not be allowed to

modify collaborative feature constraints, although they will still be able to view these constraints.

47

The can_view constraint will be enforced as the user tries to open a part; if the user does not have

permission to open the part, then they will not be able to open it. Another method to enforce this

constraint would be to simply hide the part from the user in the menu of available parts to open

(as seen in Figure 4-1). Flowcharts for the enforcement of collaborative user constraints are

found in section 3.5.

49

5 USAGE EXAMPLES, OBSERVATIONS, AND BENCHMARKING

5.1 Usage Examples

An example is provided in this section to illustrate how the developed method is effective

and how it could be used with designers to enhance collaboration. The examples are all given in

the context of a CAD system.

5.2 Engine Block Design Example

This example will demonstrate the functionality and the utility of the methods explained

in this thesis including the following:

• Feature reservation/locking

• Collaborative feature constraints

o Limit locking

o Limit tolerances

o Deletion prevention

• Collaborative user constraints

o Part viewing

o Feature reservation/locking

o Permission to create collaborative feature constraints

This example starts with the objective of three designers (User1, User2, and User3)

modeling the engine block seen in Figure 5-1 using CATIA Connect.

50

Figure 5-1: Engine block to design

For the first modeling operation, User1 creates the main engine block (Figure 5-2). This

user also places a deletion lock collaborative feature constraint, to prevent accidental deletion of

this key feature by other users.

Figure 5-2: First step of the engine block modeling

Immediately after the block is created, User1 and User2 are able to simultaneously create

several negative extrusions to continue the shaping of the engine block (Figure 5-3).

51

Figure 5-3: Next two steps

User1 then locks the negative extrusions that will be used for the piston cylinders. These

extrusions then immediately turn User1’s color, which is blue, communicating to the other users

that this particular feature is locked by User1, and that it cannot and should not be edited (Figure

5-4).

Figure 5-4: Piston cylinders are locked. (The blue color reflects their current state).

As soon as the cylinders for the pistons are created, User3 is able to begin the modeling

of additional negative extrusions around the piston cylinders to reduce weight and dissipate heat

52

(Figure 5-5). After creating this feature, User3 needs to place three collaborative feature

constraints on it. In order to do so, User3 must ask User1 (who is the administrator) to enable

the collaborative user constraint that allows this. User1 enables this collaborative user constraint

using the Administrative Form. After having this collaborative user constraint enabled, User3 is

able to create the following collaborative feature constraints:

• Limit 1 full lock

• Limit 2 maximum of 3.5 inches.

• Limit 2 minimum of 2 inches.

These collaborative feature constraints are created to keep the first limit of the extrusion flush

with the angled surface of the engine block, and to keep the depth of the extrusion within a

certain allowable tolerance. These collaborative feature constraints will allow this feature to be

adjusted according to heat-transfer and stress optimization analysis results, while preserving

other geometry that should not be modified.

Figure 5-5: Creating collaborative feature constraints for negative extrusions for heat dissipation

53

The modeling of the engine block continues as User2 simultaneously creates 4 ribs which

are formed through the entire block (Figure 5-6). While User2 is creating the ribs, User3 makes

a small mistake, and attempts to edit the piston cylinders. Luckily this feature was previously

locked by User1 so the change that User3 made was not allowed by CATIA Connect, preserving

the geometry of that feature. A warning was also displayed to notify User3 that they do not have

permission to edit this feature.

Figure 5-6: Creation of rib features and edit permissions warning dialog box

Once the ribs are created, User1 creates additional negative extrusions in the engine block for the

camshaft and the crankshaft (Figure 5-7).

Figure 5-7: Negative extrusions for camshaft and crankshaft

54

Next, analysis results are received from an analysis group via email that is sent to User1,

User2, and User3 at the same time. These results specify that the optimal value for the outer

piston hole extrusion limit 2 is 2.8 inches. As these results are received, all three users are eager

to update the model according to these results, and all attempt to reserve the feature to make the

appropriate modifications at the exact same time. As each user tries to make the reservation,

User1 is the user who is able to secure the reservation, and ultimately is the user who is able to

make the modification to this feature. As User2 and User3 see that the feature is reserved by

User1, they immediately know that User1 will be making the appropriate changes to that feature.

This also spurs a short chat conversation where User1 explains to the other two users that the

appropriate changes to this feature have been made, and clears up any confusion about who will

make the design changes.

After this situation is resolved, the final features are created to complete the engine block

design. The larger inner holes for the crankshaft are created by User2 (Figure 5-8 left), while

User3 is able to concurrently create the final rectangular slot to finish the geometry of the engine

block (Figure 5-8 right).

Figure 5-8: Additional crankshaft geometry

55

Now that the geometry for the engine block is complete, a design review will take place.

For this design review, the geometry for this part will be shared with several reviewers, some

which are remotely connected. To allow the reviewers access to the part, User 1, who is also an

administrator, enables the can_view collaborative user constraint for them. Additionally, to

protect the created feature data for this part, the reviewers will be restricted to a view-only mode

using collaborative user constraints (Figure 5-9). The collaborative user constraints for the

reviewers are enabled to prevent accidental or unauthorized modification of the model.

Figure 5-9: Admin form showing collaborative user constraints for the engine block

As the design review takes place, two design changes are recommended by the reviewers.

It is recommended that the slot on the bottom of the block is extended another two inches, and it

56

is recommended that another similar slot be placed in the other side of the engine block. The

first change is made by User2 by reserving the slot feature—turning it a green color—then

extending it two inches (Figure 5-10). The second change is made simultaneously by User1 who

creates the new slot feature (Figure 5-10). These changes are able to be made quickly by User1

and User2 and the reviewers are able to approve of the design changes in real-time. The design

review is now complete, and now the design of the part is done (Figure 5-1).

Figure 5-10: Changes implemented from design review feedback

5.3 Functional Observations

Additional validation for this implementation was done with a test run with several users

in a multi-user design session with CATIA Connect. In this test, several users in the multi-user

design session were challenged to edit several different features (Figure 5-11) that were either

reserved or locked. After several minutes, the test was stopped, and the original feature data

from the CAD model was compared to the final feature data of the CAD model. In all cases that

this test was performed, the original data was exactly the same as the final data of the CAD

57

model (Table 5-1, Table 5-2). This test demonstrates the functionality of this implementation

effectively in preventing unauthorized changing of feature data.

Figure 5-11: Test part with several features

Table 5-1: Starting model data

pad_id name direction limit_1 limit_2 created_at updated_at
128 rob.Pad.1 0 25.4 0 21:13:52.5 21:57:12.420
129 rob.Pad.2 0 76.2 0 21:13:52.5 21:57:11.320
130 rob.Pocket.3 1 76.2 0 21:13:52.5 21:57:11.919
131 rob.Pad.4 0 127 0 21:13:52.5 21:57:10.680
132 rob.Pocket.5 1 127 0 21:13:52.5 21:57:09.202
133 rob.Pad.6 0 50.8 0 21:13:52.6 21:57:10.121
134 rob.Pocket.7 1 50.8 0 21:13:52.6 21:57:08.567
135 rob.Pad.8 0 50.8 0 21:13:52.6 21:57:07.923

Table 5-2: Final model data after several users attempted to edit data over a several minute design session

pad_id name direction limit_1 limit_2 created_at updated_at
128 rob.Pad.1 0 25.4 0 21:13:52.5 22:03:35.473
129 rob.Pad.2 0 76.2 0 21:13:52.5 22:03:36.143
130 rob.Pocket.3 1 76.2 0 21:13:52.5 22:03:36.613
131 rob.Pad.4 0 127 0 21:13:52.5 22:03:37.440
132 rob.Pocket.5 1 127 0 21:13:52.5 22:03:37.880
133 rob.Pad.6 0 50.8 0 21:13:52.6 22:03:38.363
134 rob.Pocket.7 1 50.8 0 21:13:52.6 22:03:39.270
135 rob.Pad.8 0 50.8 0 21:13:52.6 22:03:39.690

58

5.4 Benchmarking

As research for this thesis has developed and other CAx model decomposition methods

have been reviewed, it has become evident that one decomposition method will not be perfect for

every CAx design situation. Depending on the type, size, shape, interfaces, or complexity of the

model, in addition to the number of users and the way these users interact with the model,

different decomposition methods may be most effective for different situations. As different data

consistency systems and model decompositions are implemented into multi-user CAx system,

each design project will have to decide which method is most effective, or in some cases if a

hybrid method is most effective.

One method that could be effective in comparing different data consistency and model

decompositions includes using a simple formula. This formula will help calculate a relative

productivity rate, P, for each method which could give users an idea of which method would be

best to use. It is recommended that a single-user CAx system be used as a baseline comparison,

in which the productivity rate would equal 1, i.e., P = 1.

 The ideal productivity rate for a multi-user CAx system with n users could then be

defined as P = n. The production or design time would roughly reduce proportional to the inverse

of P.

 In practice there will certainly be inefficiencies and overhead in managing a multi-user

model and some productivity will be lost as users coordinate their design efforts. To determine

the actual productivity of the multi-user method, adjustments can be added to the equation to

account for inefficiencies. The first type of adjustment is a user-dependent “friction-factor-like”

adjustment factor, µ, which accounts for system inefficiencies that grow as additional users

participate in the multi-user design session. Examples of such inefficiencies could include the

59

additional time and effort to lock or unlock features as edits are made, time spent in increased

communication while design changes are made, or time spent waiting for the current model to

synchronize. The second type of adjustment is a productivity overhead factor, o, which is

independent of the number of users participating in the collaborative design session. Examples

of productivity overhead could include time spent setting up collaborative user constraints,

creating model decomposition, etc. The productivity rate could then be determined as follows:

𝑃 = 𝑛 − (µ1 + µ2 + ⋯+ µ𝑖)𝑛 − (𝑜1 + 𝑜2 + ⋯+ 𝑜𝑗) 5.1

where i is the number of user-dependent efficiency adjustments, and j is the number of user-

independent efficiency adjustments. Calculated productivity rates for different CAx design

projects using different decomposition and data consistency methods could then be compared.

 This thesis will not try to calculate or define the efficiency adjustment factors as there

could be so much variability in their values, and likely would have to be determined

experimentally on a project-by-project basis. This benchmarking method is rather presented to

help designers estimate and determine which data consistency and model decomposition method

will be best for their multi-user CAx project. Regardless, using such a benchmarking technique

could feasibly help users and companies select the best multi-user data consistency and

decomposition methods for their specific needs.

61

6 CONCLUSIONS AND FUTURE WORK

To facilitate an environment where multiple users can operate collaboratively in a multi-

user CAx design session without data conflict, a new feature-based locking/reservation method

has been developed. This feature-based locking method as well as the integration of

collaborative feature constraints and collaborative user constraints successfully fulfills the

research objective, to develop a data consistency architecture and system to protect data and

prevent data conflict in a collaborative CAx environment, as stated in section 1.2.

6.1 Benefits

The benefits of this method are many. Firstly, this method provides an easy to use and

understand interface for users in a collaborative and multi-user CAx design environment to

eliminate update and delete data conflicts. The three-state selector to reserve/lock/release

features is simple to use and will help users collaborate within shared collaborative design space.

The visual awareness conveyed by the different coloring of features as they are locked or

reserved will serve as an additional avoidance method for data conflicts, as it lets users know

where in a CAx model other users are editing, and which features they are allowed to edit.

Secondly, the collaborative feature constraints developed for this thesis will help protect

precisely designed models as the CAx data is shared with several different users. This would be

important in the example of a CAD interface feature that was designed exactly to fit with another

62

part. By being able to create collaborative feature constraints, users can preserve painstakingly

designed interface features while allowing other collaborating designers to safely work on other

features of the model without the risk of modifying sensitive geometry.

Third, the administrative interface and collaborative user constraints will help a CAx

design team define the roles of individuals on their team and protect their data from being

changed inadvertently or by unauthorized individuals when it is shared with others. The

collaborative user constraints also allow flexibility for smaller or less constrained design teams

to be able to work together freely without meticulous setup. It also allows flexibility to add or

remove feature lock, and collaborative feature constraints when the user who created them is

unavailable.

Overall, this data consistency method allows collaborative CAx software to be used more

safely and more effectively because it protects the data created by the software, and controls how

the data is used, who can modify it, and who has access. The method outlined in this thesis

could be implemented in many different ways depending on the application, but the ideas will

improve the usability and overall quality of collaborative CAx software, and ultimately prevent

data conflict and protect data in a multi-user design session.

6.2 Drawbacks and Weaknesses

One drawback to using the method in this thesis to prevent data conflict and otherwise

protect data is the overhead required to reserve and lock features while they are being edited.

The process of locking/reserving features may get tiresome for experienced users who are

accustomed to a single user CAx application, and could deter adoption of an implementation of

the method. This method, however, does require less overhead setup time than would a spatial

decomposition method such as that developed by Marshall [15]. Although there is some

63

overhead to reserve or lock features, the protection to the data that this system provides will save

users time in the long run as they will avoid having to deal with errors and data cleanup. This

overhead could also be minimized with a well-designed and intuitive interface for the

implementation.

Another weakness of this method is that it does not have a well-defined way to control

the creation of new features in a CAx model. In this method the only way to prevent users from

creating new features in a model is to completely disable the user’s ability to create features.

This is an inherent weakness of this method and in order to improve collaboration, more flexible

methods of controlling the creation of new features in a model should be explored.

6.3 Future Work

While much has been done in this thesis to show its effectiveness, additional work could

be done to expand this research. Further work includes:

• Integrating the method directly into a wider variety of CAx systems such as CAM, FEA,

CAD drawings, and CAD assemblies, and analyzing the method’s effectiveness in actual

design situations.

• Expanding collaborative feature constraint definitions and looking at how collaborative

feature constraints could work with other CAx systems.

• Performing further usability testing with different user interface configurations for the

locking/reservation method, collaborative feature constraints, and administrative

interface to further enhance the ease-of-use of implementations of this method.

• Investigating how feature reservation/locking could integrate with other CAx model

decompositions, such as spatial decomposition, to create hybrid decomposition methods.

64

This investigation could improve control over the creation of new features in a CAx

model.

• Exploring additional ways to promote better user awareness in a CAx model using

labels, colors, etc.

• Optimization of bandwidth usage and network load using this method should be

investigated. A server-push system such as that developed by Winn could be used [20].

• Investigating ways to improve extensibility to make future integrations and development

of this system more scalable.

65

REFERENCES

[1] E. Red, V. Holyoak, C. G. Jensen, F. Marshall, J. Ryskamp, and Y. Xu, “ν-CAx : A
Research Agenda for Collaborative Computer-Aided Applications,” Computer-Aided
Design, vol. 7, pp. 1–18, 2010.

[2] R. Bidarra, E. van den Berg, and W. F. Bronsvoort, “A Collaborative Feature Modeling
System,” Journal of Computing and Information Science in Engineering, vol. 2, no. 3, p.
192, 2002.

[3] S. Zhou, X; Li, J; He, F; Gao, “Web-based synchronized collaborative solid modeling
system.” Chinese Journal of Computer Integrated Manufacturing Systems 9, pp. 960–965,
2003.

[4] K. Ramani, A. Agrawal, M. Babu, and C. Hoffmann, “CADDAC: Multi-Client
Collaborative Shape Design System with Server-based Geometry Kernel,” Journal of
Computing and Information Science in Engineering, vol. 3, no. 2, p. 170, 2003.

[5] L. Qiang, Y. F. Zhang, and a. Y. C. Nee, “A Distributive and Collaborative Concurrent
Product Design System through the WWW/Internet,” The International Journal of
Advanced Manufacturing Technology, vol. 17, no. 5, pp. 315–322, Feb. 2001.

[6] U. von Lukas, “Collaborative Geometric Modelling using CORBA Services,” OOGP’97,
vol. 7, no. 2, p. 91, 1997.

[7] J. D. Ryskamp, “Developing Intelligent Engineering Collaboration Tools Through the use
of Design Rationale,” Brigham Young University, 2010.

[8] A. Agustina, F. Liu, S. Xia, H. Shen, and C. Sun, “CoMaya: incorporating advanced
collaboration capabilities into 3d digital media design tools,” in Proceedings of the 2008
ACM conference on Computer supported cooperative work, 2008, pp. 5–8.

[9] “Codoxware: Connecting people and documents,” 2011. [Online]. Available:
http://www.codoxware.com/. [Accessed: 04-Jan-2012].

[10] R. Urbano, Oracle Database Advance Replication, vol. 33, no. Database issue. 2007.

66

[11] S. Jing, F. He, S. Han, X. Cai, and H. J. Liu, “A method for topological entity
correspondence in a replicated collaborative CAD system,” Computers in Industry, vol.
60, no. 7, pp. 467–475, 2009.

[12] J. Bu, B. Jiang, and C. Chen, “Maintaining semantic consistency in real-time collaborative
graphics editing systems,” IJCSNS, vol. 6, no. 4, p. 57, 2006.

[13] L. Chen, L; Song, Zhijie; Feng, “Internet-enabled real-time collaborative assembly
modeling via an e-Assembly system: status and promise,” Computer-Aided Design, vol.
36, no. 9, pp. 835–847, Aug. 2004.

[14] K. Lin, D. Chen, C. Sun, and G. Dromey, “Maintaining constraints in collaborative
graphic systems: the CoGSE approach,” in ECSCW 2005, 2005, no. September, pp. 185–
204.

[15] F. Marshall, “Model Decomposition and Constraints To Parametrically Partition Design
Space In a Collaborative CAx Environment,” Constraints, no. December, 2011.

[16] C. Cera, I. Braude, I. Comer, T. Kim, J. Han, and W. Regli, “Hierarchical Role-Based
Viewing for Secure Collaborative CAD,” in Proceedings of the 2003 ASME International
Design Engineering Technical Conferences & The Computer and Information in
Engineering Conference (DETC/CIE2003), 2003, p. 10.

[17] S. Chan, M. Wong, and V. Ng, “Collaborative solid modeling on the WWW,”
Proceedings of the 1999 ACM symposium on Applied computing - SAC ’99, pp. 598–602,
1999.

[18] W. Li, “An Internet-enabled integrated system for co-design and concurrent engineering,”
Computers in Industry, vol. 55, no. 1, pp. 87–103, Sep. 2004.

[19] Y. Xu, “A Flexible Context Architecture for a Multi-User GUI,” no. December, 2010.

[20] J. D. Winn, “Integration of Massive Multiplayer Online Role-playing Game Client-server
Architectures with Collaborative Multi-user Engineering CAx Tools,” no. April, 2012.

