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ABSTRACT

Modeling and Testing of Bistable Waterbomb Base Configurations

Brandon H. Hanna
Department of Mechanical Engineering, BYU

Master of Science

Origami is making an impact in engineering as solutions to problems are being found
by applying origami principles (eg. flat-foldability) and using specific crease patterns as
inspiration. This thesis presents an in-depth analysis of a particular origami fold – the
waterbomb base – to facilitate its use in future engineering problems. The watebomb base
is of interest due to its familiarity to the origami community, simple topology (can be made
by folding a single sheet of paper four times), scalability, generalizability, and interesting
kinetic behavior. It can behave as a nonlinear spring as well as a one- or two-way bistable
mechanism. This thesis presents models of the kinetic behavior of the traditional waterbomb
base as well as some non-traditional variants to be used as tools in future development of
waterbomb-base-inspired mechanisms. In all cases considered here, developability as well as
rotational symmetry in both the geometry and motion of the mechanisms are assumed.

The thesis provides an introduction to origami and reviews some of the ways in which
it has been studied and applied in engineering fields. The waterbomb base is also presented
as a specific origami fold with practical application potential.

Models for the behavior of the traditional waterbomb base are introduced and its
potential usefulness as a testbed for actuation methods is discussed. Models are developed
for its kinematic and bistable behavior, including the forces needed to transition between
stable states. These models are validated by comparison to physical prototype testing and
finite element analysis.

The thesis introduces the generalized waterbomb base (WB) and generalized split-
fold waterbomb base (SFWB). The WB maintains the pattern of alternating mountain and
valley folds around the vertex but in this generalized case any even number of folds greater
than or equal to 6 is allowed. An SFWB is created by splitting each fold of a WB into two
“half folds”, effectively doubling the number of folds and links but halving the deflection
at each fold. The same models that were developed for the traditional waterbomb base are
developed for the WB and the SFWB and a few potential applications are discussed.

Keywords: origami-based mechanism, waterbomb base, bistable mechanism, smart material
test bed
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CHAPTER 1. INTRODUCTION

1.1 Background

Origami has been practiced as an art form for hundreds of years. Recently, however, it

has been gaining attention for its potential to provide novel solutions to practical problems.

Some studies have focused on understanding the kinematics of origami folding for application

in robotics and the packaging industry [1,2]. Greater understanding of folding methods has

also led to the development of origami-based folding algorithms that have been used to

address complex challenges such as how to best fold automotive airbags [3].

In attempting to understand origami for use in design, one useful method of modeling

these mechanisms is to approximate the facets as rigid links and the folds as revolute joints

[4]. However, folded materials behave differently than traditional joints and this must be

accounted for. Several studies have investigated the behavior of creased and folded materials

[5–7], and these results can be used if they include the materials of interest. A more general

approach that is not restricted to a small number of materials is to consider origami structures

as compliant mechanisms. A compliant mechanism’s motion is accomplished at least in part

by the deflection of flexible members rather than by the rotation or translation of traditional

joints [8]. Because origami mechanisms rely on folded and deflected paper rather than

hinges or other joints for their motion, they are compliant mechanisms and can be modeled

as such [9].

By combining these various approaches, origami-based design has directly influenced

the development of collapsible kayaks [10], foldable dinnerware [11], space telescope lenses

[12] and deployable solar arrays [13], shock-absorbing automotive crash boxes [14], soft

robotic actuators [15], self-folding robots [16], and reprogrammable metamaterials [17].

These examples show that origami has the potential to inspire solutions to a wide range
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Figure 1.1: Waterbomb base fold pattern. Solid lines indicate mountain folds (facets point
upward at the fold) and dashed lines indicate valley folds (facets point downward at the
fold).

of problems, and this potential will expand as origami principles and designs are better

understood.

One origami design of interest is the waterbomb base. Although the name waterbomb

base has only been applied to it relatively recently [18], this origami mechanism has been in

use for centuries [19] and it is one of several basic starting points for more complex origami

designs. It is made from a square paper with only 4 folds, as shown in Figure 1.1.

The waterbomb base exhibits bistable behavior, as shown in Figure 1.2. When it is

initially folded it rests in its first stable position. If the vertex is deflected toward a plane

and released, it will return to its initial position. However, if the vertex is deflected past the

plane and released it will move into its second stable position. It is particularly interesting

to note that the mountain folds remain mountain folds in both positions and the valley folds

remain valley folds. This unique behavior has potential utility in a variety of engineering

systems and situations, such as a testbed for smart materials actuation [20].

1.2 Research objectives

The goal of this research is to develop a greater understanding of the behavior of

the waterbomb base and demonstrate its application to engineering and product design

problems. The focus is on how this base can be modified, adapted and controlled.
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(a) (b)

Figure 1.2: Waterbomb base bistable positions (a) 1 and (b) 2. Notice that mountain folds
remain mountain folds in both positions, and the same is true for valley folds.

The thesis research accomplished the following objectives:

• Develop kinematic relationships to define the waterbomb base in any state.

• Develop the means to predict and control bistable behavior of the waterbomb base.

• Validate mathematical models and derived relationships by testing physical prototypes.

• Explore variations and combinations of the waterbomb base.

• Identify potential applications for the waterbomb base.

1.3 Approach

A kinematic analysis of the waterbomb base is completed to define its position in any

state. This analysis is carried out using spherical kinematics.

A potential energy analysis is then completed to enable the prediction of where stable

states occur and how much energy is required to move between them. In this analysis the

facets are treated as rigid panels and the folds as small length-flexural pivots, utilizing

the methods of compliant mechanisms to model the energetic behavior of the mechanism.

Figure 1.3 is a sample potential energy plot from preliminary work with the waterbomb base.

Force-deflection behavior is also modeled by using the principle of virtual work in

conjunction with the previous analyses.

3



Figure 1.3: Potential energy plot from initial attempts to analyze the waterbomb base. V /k
is the nondimensionalized potential energy and θ is the input from which the position of the
waterbomb base is determined.

Position, potential energy, and force-deflection analyses are validated by comparisons

with 3-D CAD models, finite element analysis, and physical prototype tests. Prototypes are

produced by a combination of machining and laser cutting. Testing of prototypes is done

with an Instron tensile testing machine.

With this understanding of waterbomb base behavior in hand, variations and per-

mutations of the waterbomb base are explored to see how it can be modified to accomplish

different tasks. The location, orientation, and number of folds are changed and the effects

on bistable behavior and general motion are studied, and a few potential applications are

discussed.
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CHAPTER 2. WATERBOMB BASE: A SYMMETRIC SINGLE-VERTEX
BISTABLE ORIGAMI MECHANISM

2.1 Introduction

The purpose of this chapter is to develop a quantitative understanding of the origami

waterbomb base’s kinematic and bistable behavior to facilitate its use as a test bed for smart

material development and to enable its application to engineering and product design. The

origami waterbomb base is a fundamental origami fold that serves as a foundation for more

complex origami models [21]. The waterbomb base crease pattern is shown in Figure 2.1,

and folded versions are shown in Figure 2.2. It has spring-like and bistable properties that

may be considered for use outside of artistic origami, including use in materials other than

paper. The waterbomb base shows promise as a test bed for programmable materials and

embedded actuators. Test beds can be an effective way to evaluate, validate, and refine

actuation approaches. For example, a flat pattern that folds itself into a box is a common

test bed that has been used to investigate smart materials and actuators involving thermally

sensitive hydrogels [22], pre-strained polymers [23], magneto active elastomers (MAE) [24],

and foldable PCB arrays [25], to name a few examples. The waterbomb base has properties

that make it well suited for such a test bed. Some of these properties are shared with other

crease patterns, but the combination of properties makes it particularly useful. Several of

these are described below:

1. The topology is straightforward, which has the following advantages as a test bed:

(a) Manufacturable. It is easily manufactured.

(b) Transferable. The design (crease pattern) is transferable, enabling sharing be-

tween labs across the world.

5



(c) Scalable. It is scalable across a wide range of size domains for use with actuators

of different sizes and classes.

(d) Named. The fold pattern is commonly recognized by the name waterbomb base

and therefore is easily communicated.

2. The fold pattern is attractive from an engineering analysis and application perspective

due to the following properties:

(a) Rigid foldable. This pattern is comprised of rigid facets and all motion occurs at

the joints between facets, simplifying the kinematic and energy analyses compared

to patterns in which facets must deflect.

(b) Generalized and expanded for different designs. Variations of the waterbomb base

can be made with 6, 10, or any even number of folds greater than 2 to accomodate

different designs.

3. There are different phases of motion, each with different levels of actuation complexity,

making it appropriate for a wide range of tests for different classes of actuators. The

three primary phases of actuated motions are listed below:

(a) Nonlinear spring actuation. Its force-deflection curve is nonlinear but unimodal

when its motion is between the first stable equilibrium position and the unstable

equilibrium position.

(b) One-way bistable actuation. With a sufficiently large input displacement, the

device transitions from the first stable equilibrium position, through the unstable

equilibrium position, to the second stable equilibrium position.

(c) Reversible bistable actuation. In this case the device transitions from first to sec-

ond stable equilibrium positions, but also from second to first stable equilibrium

positions.

4. There are potential engineering applications of the waterbomb base (e.g. reconfigurable

surfaces, two-state membranes, switches), and successfully introducing integrated ac-
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tuation methods to the waterbomb base has the potential for direct application. It is

hoped that this work will facilitate the development of these applications.

An understanding of the waterbomb base motion, force-deflection relationship, and

bistable behavior will enable its use as a test bed and facilitate its use in engineering appli-

cation.

Although this is the first detailed exploration of the waterbomb base from an engineer-

ing perspective, many other origami structures and methods have been studied previously.

The kinematics of general origami folding have been investigated [1, 2] and folding algo-

rithms have been developed and applied to complex problems such as automotive airbag

folding [3] and deployable solar panels [13]. Complete origami structures have been modeled

by approximating folds as hinges and facets as rigid links [4]. By combining many of these

concepts, origami-inspired solutions have already been found for a variety of problems. For

example, the foldable/deployable nature of many origami structures are attractive in settings

where mechanisms must be small during transport and deploy to full size for use and have

already found use in the design of collapsible kayaks [10], foldable dinnerware [11], and space

telescope lenses [12]. Collapsing folds have also been used in the design of shock-absorbing

automotive crash boxes [26] and soft robotic actuators [15].

Several different approaches have been used to understand and model the behavior

of the folds themselves. Direct investigation of the mechanical response of creased and

folded paper materials undergoing deflection has found that these materials tend to display

nonlinear bending stiffness [5, 6, 27, 28]. Work has also been done to understand how the

crease behavior of other materials compares to that of paper [7]. The results of these studies

could be used to develop bending stiffnesses to use in modeling the waterbomb base, but

these functions would have to be reevaluated each time a new material is considered. A

more general approach is to approximate the fold as a compliant joint so that the results

are not restricted to a single material. A compliant mechanism is one in which motion is

accomplished completely or in part by the deflection of flexible members rather than by

traditional rotational or translational joints [8]. Since origami mechanisms do not make use

of hinges or other traditional joints and instead rely on deflection of the paper for motion,

they are compliant mechanisms and this method of modeling is appropriate [9].
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Mountain Fold

Valley Fold

Figure 2.1: Waterbomb base crease pattern. The waterbomb base is usually folded from a
square sheet of paper but a circular paper is used here so that all folds have the same length.

It is also worth noting that compliant mechanisms are well suited to bistable ap-

plications. Previous studies have considered the design and analysis of compliant bistable

mechanisms [29–32], and the general principles of bistable mechanisms apply.

This chapter describes the waterbomb base’s crease pattern and behavior. A kine-

matic analysis to define the waterbomb base in any state is completed followed by a potential

energy analysis to understand and enable the prediction of bistable behavior. To validate

these analyses, a physical prototype was constructed and tested. Finally, finite element and

virtual work analyses based upon the prototype were completed to investigate force-deflection

behavior.

2.2 Description

The crease pattern for a typical waterbomb base is shown in Figure 2.1. The solid

circle represents the outside edge of the paper and the straight lines are fold lines with all

8



(a) (b)

Figure 2.2: Waterbomb base (a) first stable equilibrium position and (b) second stable
equilibrium position. Mountain folds are indicated by solid lines and valley folds by dashed
lines. Note that mountain folds remain mountain folds and valley folds remain valley folds
in both positions.

neighboring pairs separated by 45◦. A circular sheet of paper is shown here so that the folds

all have the same length. Mountain folds (solid lines) are folded such that the two panels

that meet at the fold point upward while valley folds (dashed lines) are folded so that the

adjacent panels point downward, as shown in Figure 2.2.

The waterbomb base can be classified as a bistable mechanism because it has two

stable equilibrium states. It moves to one of these two positions when no external loads

are applied because the potential energy stored in the mechanism is at a local minimum at

each of these points [8]. When moved away from one of these positions (to a higher energy

state) and then released, it returns to the nearest stable position (the lower energy state).

Bistable mechanisms also have an unstable equilibrium position where the mechanism can be

in equilibrium but a small disturbance will cause it to leave this unstable position and move

to one of its stable states. (A light switch is an example of a common bistable mechanism

where its stable positions are the “on” and “off” positions.)

When a waterbomb base is folded it rests in one of two stable positions, as shown

in Figure 2.2. Figure 2.2(a) shows the first stable position, in which the vertex (the point

where all folds intersect) points up. If the vertex is displaced so that the structure flattens

9



Figure 2.3: Schematic of a sample spherical mechanism. The links rest on the surface of the
sphere and the axes of rotation intersect at the center of the sphere. The waterbomb base
is a spherical mechanism with 8 links in which the vertex (where all of the folds meet) is at
the center of the sphere.

out and approaches a plane, it will return to the original position when released. If, however,

the vertex is displaced past the plane, it snaps through the unstable position and moves to

the second stable position (Figure 2.2(b)). The second bistable position is also called a

“preliminary fold” [21].

The waterbomb base also qualifies as a spherical mechanism. By definition, a spherical

mechanism is one in which all axes of rotation intersect at a common point, as illustrated in

Figure 2.3. Bistable spherical compliant mechanisms have been considered previously [33,34],

but these mechanisms had fewer links than are found in a waterbomb base. Nevertheless,

some of the concepts used in these investigations are applicable to the current study.

An interesting behavior in the waterbomb base is that the direction of each fold does

not change throughout the bistable motion: the mountain folds remain mountain folds in

both stable positions and the valley folds remain valley folds, as shown in Figure 2.2.

In order to simplify the following analyses it is assumed that the waterbomb base is

symmetric. All sector angles (angles between neighboring folds) are the same, all mountain

10



folds have the same value at any instant, and the same is true for all valley folds. Symmetry

of motion is also assumed such that when the waterbomb base is deflected, all mountain

folds are deflected the same amount and at the same rate, and the same holds for all valley

folds. The symmetry is maintained for all positions investigated.

We note in passing that non-symmetric configurations – where sector angles and/or

the bias on dihedral angles vary – may also be considered, and that symmetric initial con-

ditions may well give rise to non-symmetric equilibrium states (spontaneous symmetry-

breaking). Analytical solutions to these non-symmetric configurations can be found but

involve large numbers of variables and several layers of nested trigonometric functions mak-

ing them less accessible for application compared to the special case. In-depth exploration

of these solutions will be left for future studies.

2.3 Position analysis

The waterbomb base was modeled by treating the panels as rigid links and the folds

as hinges. When symmetry is required and all folds are biased toward a set of initial angles,

the waterbomb base reduces from multiple degrees of freedom to a one degree of freedom

device and all link positions can be determined from a single input.

Because the waterbomb base can be classified as a spherical mechanism, the methods

of spherical kinematics are applicable and Figures 2.4–2.6 show the notation used in this

analysis. The input, θ, is the angle between a valley fold and the vertical axis, V, that

passes through the vertex. γm is the angle of each mountain fold and γv is the angle of

each valley fold (see Figure 2.4) where the fold angles are measured in terms of deviation

from straightness. Therefore, a fold angle of 0◦ indicates a straight condition (flat, unfolded

paper), valley folds are assigned positive values, and mountain folds are assigned negative

values.

The relationships between θ, γm, and γv are different on each side of the unstable

equilibrium position (θ=90◦), therefore one set of expressions is derived for 0◦≤θ≤90◦ (Range

a) and another set for 90◦≤θ≤135◦ (Range b). Note that θ has fewer possible values in

Range b than in Range a. This is because the two regimes of motion are non-symmetric and

interference between facets occurs at a different point in each regime.
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Figure 2.4: The input θ is the angle between any valley fold and the vertical axis V that runs
through the vertex. γm is the angle of all mountain folds and γv is the angle of all valley
folds.
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Figure 2.5: Spherical triangles used to compute γm and γv for 0◦≤θ≤90◦ (Range a).

2.3.1 0◦≤θ≤90◦ (Range a)

The spherical triangles shown in Figure 2.5 were used to find the relationships between

γm, γv, and θ. The radius of the sphere on which all of these triangles lie has been assigned
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a value of 1. The 45◦ links and 90◦ angle are direct results of the geometry of the waterbomb

base. Using the formulas for right and general spherical triangles [35] and applying A=B

and D=E due to symmetry, three intermediate values are solved as

c = cos−1[cos2(θ)] (2.1)

B = sin−1
[

sin(θ)
sin(c)

]
(2.2)

E = cos−1
[

sin(c)
cos(c)+1

]
(2.3)

where c is the hypotenuse of triangle ABC. Using these values, γm was determined using the

cosine law for sides and γv by summing all of the angles about the point O:

γm = cos−1[2cos(c)−1]−180◦ (2.4)

γva = 2(B +E −90◦) (2.5)

where γva is the value of γv in Range a (0◦≤θ≤90◦). Substituting from equations (2.1)–(2.3)

and simplifying produces

γm = cos−1[2cos2(θ)−1]−180◦ (2.6)

γva = 2
{

sin−1
[

sin(θ)
sin(c)

]
+cos−1

[
sin(c)

cos(c)+1

]
−90◦

}
(2.7)

2.3.2 90◦≤θ≤135◦ (Range b)

Using the same methods described in the previous section but with the spherical

triangles shown in Figure 2.6, c and γm are the same as defined in equations (2.1) and (2.6)

but γv in Range b, γvb, is defined as

γvb = 2
{

cos−1 [csc(c)− cot(c)]− sin−1
[

sin(θ)
sin(c)

]
+90◦

}
(2.8)
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Figure 2.6: Spherical triangles used to compute γm and γv for 90◦≤θ≤135◦ (Range b).

Figure 2.7 shows a plot of γm versus γv. Each point on the plot corresponds to a

unique value of θ between 0◦ and 135◦. The unstable equilibrium position occurs when

γm=γv=0◦, which corresponds to θ=90◦. Also, the plot is symmetric about the line that

passes through the points (-180,180) and (0,0). As an initial verification, a 3-D CAD model

was constructed and several of its positions were compared against the results shown above.

2.4 Potential energy analysis

The waterbomb base potential energy analysis was carried out by modeling each fold

as a compliant small-length flexural pivot with the parameters shown in Figure 2.8. The

potential energy stored in a small-length flexural pivot [8], and therefore in each fold, is given

by

V = 1
2k(Θ)2 (2.9)

where Θ is the rotational deflection away from the neutral position and the stiffness k is

given as
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Figure 2.7: Plot of γm and γv angles. Each of these points is unique to a value of θ between
0◦ and 135◦. The unstable equilibrium position occurs at the point where γm = γv = 0◦
(θ = 90◦). The plot is symmetric about the line passing through the points (-180,180) and
(0,0).

Figure 2.8: Parameters used to define small-length flexural pivots in the waterbomb base.
The lighter color indicates the flexible-joint material and the darker color represents the
rigid-link material.
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k = EI

l
(2.10)

where E is the Young’s modulus of the material, I is the second moment of area, and l is

length of the flexural pivot, as shown in Figure 2.8. Since the material in the fold came from

a flat sheet, the compliant model assumes that the cross section of the fold material remains

rectangular and the second moment of area is given as

I = bh3

12 (2.11)

where h and b are the thickness and width of the compliant segment, as shown in Figure 2.8.

Maintaining a symmetry condition requires that all γm folds have the same parameter

values and fold angles, and the same must be true for all γv folds. For the simplest case

in which all folds have the same dimensions and therefore the same stiffness k, the total

potential energy of the waterbomb base is expressed as

VT OT = 2k[(γm −γm0)2 +(γv −γv0)2] (2.12)

where γm and γv are functions of θ as defined in equations (2.6)–(2.8) and where γm0 and

γv0 are the initial, unstrained angles of the mountain and valley folds, respectively.

For the case in which all mountain folds have the same stiffness kγm and all valley

folds have stiffness kγv but kγm �=kγv , the total potential energy becomes

VT OT = 2[kγm(γm −γm0)2 +kγv(γv −γv0)2] (2.13)

For either case, once the appropriate k values have been calculated a potential energy

plot can be generated by choosing a starting θ0, determining the associated γm0 and γv0,

then solving equation (2.12) or (2.13) for all values of θ. In the simpler case with only a single

k value, this can be simplified by nondimensionalizing (making unitless) equation (2.12) by

dividing VT OT by k. Figure 2.9 is one example of a nondimensionalized potential energy

plot in which the first stable equilibrium state occurs when θ0=60◦, which corresponds to

γm0=-60◦ and γv0=25◦. The second stable state occurs when θ=99◦, which corresponds

16



V

k

θ

Unstable equilibrium 

position

First stable equilibrium 

postion

Second stable equilibrium 

postion

Figure 2.9: Nondimensionalized potential energy plot for θ0=60◦. The two minima are the
stable equilibrium positions and the sharp peak is the unstable equilibrium position.

to γm=-18◦ and γv=43◦. Cases with different kγm and kγv are considered further in the

discussion section.

2.5 Physical prototype

A physical prototype was made of acrylic and metallic glass (see Figure 2.10) to

validate the position and potential energy analyses. These materials were selected because

acrylic is easy to machine and recent studies have found that bulk metallic glass has favorable

properties for use in compliant mechanisms [36]. The rigid sections were laser cut from a

3.175 mm thick sheet of acrylic to create isosceles triangles with two sides measuring 75 mm

and the third side measuring 57.4 mm. To ensure that the first stable state was as close to

a zero-energy state as possible, the prototype was constructed in the first stable state. This

required that the edges at the γm joints be cut to 45◦ angles and those at the γv joints be

cut to 20◦ angles so that the joint material would be undeflected at the initial joint angles

γm0 and γv0. The resulting final outer dimensions of the triangles were 71 mm by 71 mm by

56 mm.
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Figure 2.10: Prototype constructed from acrylic and metallic glass

Metallic glass with thickness 0.02 mm and elastic modulus E=93 GPa was used as

the small-length flexural pivot. Each strip of metallic glass was 50 mm long by 9 mm wide

and was joined to the acrylic sections using a multipurpose adhesive spray.

A fixture held the edges of two adjacent acrylic pieces 0.5 mm apart while the metallic

glass was adhered. To account for differences present after assembly, the l dimension was

measured at both ends of each joint and the average of all measurements was taken as the

nominal value to be used in calculations. The b and h values were measured directly from

the metallic glass strips and therefore were not affected by the assembly process. The l, b,

and h values were used in equations (2.10) and (2.11) to calculate a stiffness to apply to all

joints. These dimensions and the stiffness are listed in Table 2.1.

To avoid delamination of the metallic glass from the acrylic at the γm joints, narrow

acrylic pieces were adhered over top of the glass (visible in Figure 2.11) to hold it flat up to

the edge of the joint and thereby maintain the same geometry throughout the motion.

Table 2.1: Prototype joint dimensions and stiffness.

l 0.714
Dimensions (mm) b 50

h 0.02032
Stiffness ( N•m/rad) k 0.00455
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--82

Figure 2.11: Measurement of one γm joint on the prototype.

2.5.1 Bistable behavior

The prototype’s stable positions were determined by measuring the γm and γv angles.

Photographs of each angle were analyzed to make measurements, as shown in Figure 2.11.

To get more accurate results, measurements were taken with the prototype in a variety of

orientations and then averaged together to determine the measured γm and γv angles shown

in Table 2.2.

To determine a prediction for the second stable position, the (γm0, γv0) pair from the

position analysis that was closest to the measured values was used in equation (2.12) to gen-

erate a potential energy plot. The value of θ associated with the second local minimum was

read off of this plot and then used in equations (2.6) and (2.8) to calculate the (γm1,γv1) that

define the second state. These predicted values are shown on the bottom row of Table 2.2.

Table 2.2: Prototype and predicted angles for bistable positions.

Position 1 Position 2
γm0 γv0 γm1 γv1

Prototype
Angles(◦) -82 32 -20 55

Predicted
Angles(◦) -76 32 -24 57
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2.5.2 Prototype testing

To gather data from the prototype to compare against the model’s predictions, force

and deflection data were recorded as the prototype was moved between its stable states using

an Instron tabletop tensile testing machine equipped with a Futek LSB200 Load cell. Two

tests were conducted: one for Range a and one for Range b. Two tests were done because

the points in contact with the lower and upper surfaces switch after the transition through

the unstable equilibrium position.

For one test (Range a) the prototype was placed upright on a flat acrylic sheet in the

first stable position so that it was resting on the γv joints, as shown in Figure 2.12. A flat

acrylic surface was chosen because it creates less friction than the test machine’s textured

metal plate as the joints slide across the surface. The output force was recorded as the

vertex was deflected down at a rate of 80 mm/min until the prototype transitioned through

the unstable equilibrium position to the second stable position. The other test (Range b)

began with the prototype inverted while in the second stable position and placed on acrylic

supports so that it was resting on the γv joints, as shown in Figure 2.13. A flat sheet was

not used for the inverted test because doing so would have left the waterbomb resting on the

γm joints rather than the γv joints, changing the boundary conditions of this test relative to

the upright test. As in the upright test, force was recorded as the vertex was deflected down

at 80 mm/min until the prototype snapped through to the first stable position.

The data from the upright and inverted prototype tests have been combined into a

single plot (Figure 2.14) to make it easier to view the data for the entire motion at once.

The upright test data covers the range of 55◦≤θ≤90◦ and the inverted test data is for

90◦≤θ≤105◦.

2.5.3 Energy change comparison

The mechanical work required to move the prototype between stable positions was

calculated by integrating the force-deflection data from the tensile tests. The energy changes

due to this work and also from the potential energy predictions are plotted against θ in

Figure 2.15 for comparison.
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Figure 2.12: Force-displacement testing of the prototype in Range a (θ≤90◦).

Figure 2.13: Force-displacement testing of the prototype in Range b (θ≥90◦). The fixture on
which the prototype rests ensures that the waterbomb base is supported on the same four
joints as in the tests for Range a. The areas that contact the waterbomb base are covered
in acrylic to mimic the conditions of the other tests.
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Figure 2.14: Force-deflection curve from prototype tensile testing.
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Figure 2.15: Energy changes due to work (as determined from tensile test results) and
potential energy storage throughout the waterbomb base’s bistable motion.

2.6 Force-deflection behavior

A nonlinear finite element analysis was completed using ANSYS to investigate force-

deflection behavior. The finite element model’s geometry and dimensions were chosen to

match the physical prototype using SHELL281 elements. The properties of the rigid and

flexible shell elements are listed in Table 2.3.

To make the analysis similar to the physical tests, the outermost nodes on the γv joints

were constrained not to move vertically while vertical displacement loads were applied to the

innermost nodes of each rigid portion (the vertex of the waterbomb base). The displacement
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loads were applied in several load steps until the vertex had been deflected below the plane of

the γv joints, at which point the final step removed all loads and the mechanism was allowed

to converge into its second stable position. Vertical forces and deflections were recorded at

each step and are shown in Figure 2.16.

A virtual work analysis was also completed to provide another, simpler means of

predicting force-deflection behavior. Using the results of the position analysis and the pro-

totype test geometry as starting points, the principle of virtual work [8] was used to find the

following expression for the force:

F =
4k[(γm −γm0)dγm

dθ +(γv −γv0)dγv
dθ ]

r sin(θ) (2.14)

where γm and γv are found in equations (2.6)–(2.8), r is the distance from the vertex to

the edge of the waterbomb base measured along a fold (see Figure 2.8), and the kinematic

coefficients are defined as

dγm

dθ
= −4cos(θ)sin(θ)

sin(γm) (2.15)

dγva

dθ
= − 4cos(θ)sin(θ)

sin(c)[cos(c)+1]
√

1− ( sin(c)
cos(c)+1)2

+2cos(θ)[sin2(c)−2cos(c)sin2(θ)]

sin3(c)
√

1− ( sin(θ)
sin(c) )2

(2.16)

Table 2.3: Finite element shell element properties.

Rigid Flexible
Thickness (mm) 3 0.02032
Poisson Ratio 0.35 0.27
Elastic Modulus (MPa) 3.2×103 93×103
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Figure 2.16: Force-deflection behavior measurements, FEA, and analytical predictions.

dγvb

dθ
= 2cos(θ)

sin3(c)

⎡
⎢⎢⎣−sin2(c)−2cos(c)sin2(θ)√

1− ( sin(θ)
sin(c) )2

+ 2sin(θ)(cos(c)−1)√
1− (csc(c)− cot(c))2

⎤
⎦ (2.17)

where c is defined in equation (2.1). Figure 2.16 shows the force-deflection curves from the

measurements, FEA, and virtual work analysis.

Figures 2.15 and 2.16 show that the prototype measurements and the analysis pre-

dictions are most similar at values of θ near the first stable position (lowest energy state)

and that they differ most in the range θ>90◦. These differences in both magnitude and

general trend are the result of an imperfect and asymmetric prototype. Since the proto-

type was manufactured in the first stable position, it is most similar to an ideal waterbomb

base when it is closest to this position. Any imperfections are exaggerated the further away

from this position it is moved, especially beyond the unstable change point as shown in the

force-deflection curves in Figure 2.16. The finite element model is an idealized version of the

prototype and therefore it should behave more like a perfect waterbomb base (which was

assumed for virtual work) than the prototype.
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2.7 Results and discussion

The two stable positions of a waterbomb base do not have the same (γm,γv) pair or

the same energy state even though they look similar at first glance. However, Figure 2.7

helps to illustrate why the positions must be different. For the second stable position to be

the same as the first position, both angles must simultaneously return to their original value

to return to the lowest potential energy state, which the figure shows is not possible.

When all folds have the same k value and the springs are considered to act within the

linear range, the spring constant magnitude influences the forces required to transition the

mechanism between stable states as well as the energy required to move the system. It does

not, however, affect the equilibrium locations. When all ks are equal, equilibrium locations

are determined only by the initial, undeflected position defined by (γm0,γv0). This is no

longer true when kγm and kγv are allowed to be different.

Figure 2.17 shows potential energy curves that were generated using equation (2.13)

with three different kγm :kγv ratios. Note how the location of the second stable position

changes and also how the energy differences between the stable positions vary as the joint

stiffnesses are varied. These plots illustrate how changing the joint stiffnesses, which can

be as easy as changing the lengths of the folds, can be used to tune the bistable behavior

of a waterbomb base. This tunability could make it possible to design waterbomb bases

for a variety of applications. Keeping the stable positions as far apart as possible creates

bistability that is useful in applications such as switches. On the other hand, moving one

stable position very near to the unstable position creates a “cocked” position where the

transition between stable states requires a small input, such as in the hair trigger of some

firearms.

2.8 Conclusion

A kinematic model was developed that defines the position of a symmetric origami

waterbomb base when a single input is known. Predictions of the bistable behavior of

the waterbomb base were determined by completing potential energy and finite element

analyses of this model, and force-deflection predictions were determined using finite element
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Figure 2.17: Potential energy curves for waterbomb bases with different kγm :kγv ratios. Note
how the second stable position moves as the ratio changes.

analysis and the principle of virtual work. The results were verified through comparison to

measurements taken from a physical prototype.

The two stable positions of a waterbomb base are not mirror images of each other

and they can be adjusted by changing the stiffness of either the γm or the γv joints. This

tunability could make the waterbomb base useful in a variety of bistable applications or in

development of compact nonlinear springs.

The waterbomb base is well suited as a test bed for comparing actuation methods

for origami-based systems. Its straightforward topology is manufacturable, transferable,

and scalable. It has several phases of motion with varying levels of complexity, including

function as a nonlinear spring, bistable mechanism, or bi-directional bistable mechanism.

The equations for the motion, force-deflection relationship, and bistable behavior can be

helpful in its use as a test bed and for engineering application.
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CHAPTER 3. FORCE-DEFLECTION MODELING FOR GENERALIZED
ORIGAMI WATERBOMB-BASE MECHANISMS

3.1 Introduction

The origami waterbomb base is a basic origami fold that is attractive for mechanism

adaptation due to its straightforward and well-known topology, generalizability, and tun-

able nonlinear spring and bistable behaviors [37]. The purpose of this work is to derive the

kinematic and static force-deflection equations for generalizations of two waterbomb base

classes – the generalized waterbomb base (WB) and the generalized split-fold waterbomb

base (SFWB). These two classes of mechanisms provide a wider range of kinetic and geomet-

ric variety for potential application than the traditional waterbomb base. The traditional

waterbomb base is made from a square sheet that has 4 valley folds alternating with 4 moun-

tain folds [21], as shown in Figure 3.1. This particular fold structure has been in use for

centuries [19], but the name “waterbomb base” has been applied to it relatively recently [18].

The behavior of the traditional waterbomb base has been modeled [37]. Generalized forms

of the waterbomb base (WB) have been made from triangular and hexagonal sheets with 6

and 12 folds, respectively [38], that maintain the pattern of alternating mountain and valley

folds, as shown in Figure 3.2. A split-fold waterbomb base (SFWB) is created by splitting

each fold of a WB into two “half folds”, as shown in Figure 3.3. Because each of these

variations of the waterbomb base behaves differently, the general forms add a wider range of

tunability to the spring-like and bistable behavior of the original waterbomb base as well as

adding greater flexibility to modify geometry, thus expanding the potential utility of these

mechanisms.

The waterbomb base is not the first origami fold to inspire a solution to a practical

problem. The Miura-ori fold has been considered in the development of deployable solar

panels [39] and mechanical metamaterials [17, 40], and has also been found to represent
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(a) (b)

(c)

Figure 3.1: (a) Traditional n=4 waterbomb base fold pattern, (b) folded base resting on the
flat plane, and (c) spherical mechanism representation.

(a) (b)

Figure 3.2: (a) n=3 and (b) n=6 waterbomb bases.
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(a)

Facets

Split-fold facets

(b)

(c)

Figure 3.3: Split-fold (a) n=4 waterbomb base fold pattern, (b) line drawing in first stable
state, and (c) line drawing in second stable state. Links with different folds on each side
(one mountain and one valley) are called facets and those with the same type of fold on both
sides (mountain-mountain or valley-valley) are split-fold facets.

one possible natural response to biaxial compression of stiff thin membranes on soft elastic

substrates [41]. Other folds have informed the design of deployable arrays [13], collapsing

cylinders used in automotive crashboxes [42] and soft robotic actuators [15], and deployable

mast structures [43–45] that are based on twisting fold lines that can be viewed from an

origami perspective. The idea that a flat sheet can be folded into a wide variety of shapes

has inspired the development of programmable matter [46] and self-folding machines [16].

In many technical explorations of origami the mechanisms are modeled as rigid-link

systems in which the facets are treated as rigid links and the folds as revolute joints [2, 4,

47, 48], and rigorous mathematical explorations of these types of rigid, non-self-intersecting

constructs have also been carried out [49]. Because the folds generally meet at one or several

vertices in a given design, the origami can often be kinematically modeled as a series of

spherical mechanisms [35, 50]. It is also appropriate to apply the methods of compliant
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mechanisms since it is the deflection of the paper at the folds rather than rotation of pins

or hinges that enable all motion [8,9]. The compliant mechanism model provides the added

benefit of accommodating a wide range of materials. The mechanical response of folded and

creased paper materials during deflection has been studied [5,6,27,28] and the crease behavior

of non-paper materials has been compared to that of paper for a specific set of materials [7].

Compliant mechanism methods extend that to any material in its elastic range.

The bistable behavior of waterbomb-base-type mechanisms is one point of interest

to this study. A bistable mechanism has two stable equilibrium positions at which the

potential energy of the mechanism is a local minimum and to which the mechanism tends to

move when no external loads are applied [8]. Between these stable positions is an unstable

equilibrium position where the mechanism can rest but any slight disturbance will offset the

equilibrium and the mechanism will settle into one of the stable states. Bistable mechanisms

are common in devices such as light switches and closures. Compliant bistable mechanisms

have the ability to use the same flexible members to accomplish both motion and energy

storage, eliminating the need for dedicated energy storing components. Such mechanisms

have been designed and analyzed in several studies [29–31] and have been suggested as

potential candidates for applications as varied as microfluidic microvalves, optical shutter

positioners, and zero-power switches and indicators [32, 51,52].

Previous work [37] has studied an important special case of the waterbomb base with

8 folds (4 mountain and 4 valley). The special case was proposed as a testbed for smart

materials and actuation because of its familiarity and straightforward topology, and thus

warranted independent in-depth study. While important for use as an actuation testbed,

there is a need for broader study to provide understanding of general waterbomb base con-

figurations that will be useful in a broader set of applications. But because of the unique

symmetries of the special case (which also make it an important special case), it is nontriv-

ial to extend the analysis to more general configurations. Thus, this chapter describes the

general symmetric forms of the waterbomb base and the kinematic, potential energy, and

force-deflection analyses are completed for a general number of folds, and the effects that the

number of folds has on behavior are explored. The bistable split-fold waterbomb base is also

introduced, with its corresponding analyses, including the effect that the relative magnitude
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of the split-fold panels has on device behavior. Two application examples are also presented

to illustrate some potential uses of the developed models.

3.2 Definition, assumptions, nomenclature for waterbomb base analysis

The waterbomb base (WB) is a single-vertex mechanism with an equal number of

alternating mountain and valley folds that can be folded and moved without deflecting any

of the facets. A mountain fold exists when the adjacent facets point up out of the flat

plane at the fold and a valley fold occurs when the facets point down where they meet,

as shown in Figures 3.1(a) and 3.1(b). The WB that is made from a square sheet with

8 folds (4 mountain folds alternating with 4 valley folds going around the vertex) is well

known and is a basic fold in origami [21], but variants that are triangular and hexagonal

with 6 and 12 folds, respectively, have been used in modern origami and are also considered

generalized waterbomb bases [38]. Therefore, in this study the generalized WB is allowed

any even number of folds greater than 6 within which there is an equal number of alternating

mountain and valley folds.

Simplifying assumptions are:

1. Developable vertices. Facet sector angles are assumed to sum to 360◦ (foldable from a

flat sheet). Non-developable waterbomb-like structures can be constructed but doing

so requires breaking away from the origami tradition of folding but not cutting.

2. Rigid foldable. The mechanism can be folded and moved when the facets are completely

rigid. Restricting all motion to the joints simplifies the kinematics compared to a

distributed-motion model, and folded paper often follows this behavior fairly closely.

Rigid foldability is an important characteristic because it enables extension to non-

paper materials.

3. Rotationally symmetric geometry. All facets of a waterbomb base have the same sector

angle.

4. Rotationally symmetric motion. All mountain folds are assumed to be of equal angle at

each point in the mechanism’s motion, and the same is true for all valley folds. One way
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of achieving this motion is by resting a waterbomb base on a flat plane and applying

a force at the vertex that is perpendicular to the plane. Although non-symmetric

deformations between symmetric states may be energetically preferential in some cases

(spontaneous symmetry breaking), those motions also increase the number of degrees

of freedom.

The WB can be modeled as a single-degree-of-freedom rigid-link mechanism when

each fold is treated as a revolute joint and each facet as a rigid link, and when the WB is

symmetric in both geometry and motion. Because all axes of rotation intersect at a common

point (the vertex), as shown in Figure 3.1(c), it can also be considered and analyzed as a

spherical mechanism [35,50].

The WB is bistable whenever the undeflected state is non-flat (folds have a non-zero

bias) and the hinges operate with elastic behavior. In these cases the mechanism rests in one

stable equilibrium state with the vertex pointing in one direction, the unstable equilibrium

state occurs when the vertex is deflected such that the paper flattens out, and when the

vertex is displaced past the flat plane the mechanism will transition to the second stable

state with the vertex pointing in the direction opposite that of the first state.

Fold angles are not measured as the angles between adjacent links but as deviations

from straightness across the fold. Therefore an angle of 0◦ indicates the original, nonfolded

flat state. A positive angle indicates folding that brings a facet above the flat sheet, and a

negative angle indicates folding a facet below the flat sheet.

Although the mountain and valley folds have different lengths in a waterbomb base,

making all of the folds of equal length produces a kinematically equivalent spherical mecha-

nism. Any effects that arise from the different fold lengths will influence the potential energy

and force analyses, but these are accounted for by allowing the mountain folds to have a

different stiffness than the valley folds.

Finally, since spherical mechanism analysis employs many trigonometric functions,

the following shorthand is used to condense the written solutions
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s(x) = sin(x); c(x) = cos(x); t(x) = tan(x);

cc(x) = csc(x); sc(x) = sec(x); ct(x) = cot(x)

3.2.1 Waterbomb base nomenclature

The parameter n is used to indicate the degree of the WB where n is equal to the

number of mountain folds (or valley folds) present in the folded state. This means that the

traditional, square WB has n=4. Figure 3.2 shows n=3 and n=6 WBs.

3.2.2 Split-fold waterbomb bases

To create a split-fold waterbomb base (SFWB), each fold of the WB is split into

two “half folds” as shown in Figure 3.3. This creates a “split-fold facet” where there was

previously a fold. The sector angle of either a facet or a split-fold facet is chosen, then the

sector angle of the other type of link is determined by this angle and n. To maintain a close

association with the WB from which each split-fold variant arises, n is now equal to the

number of mountain split-fold facets (or valley split-fold facets) rather than the number of

folds of each type. In these cases there is an upper bound to n that depends on the sizes of

the facets and split-fold facets, but the sum of the sector angles cannot exceed 360◦.

The geometric symmetry requirement in the SFWB is adjusted such that all facets

must have the same sector angles and the same is true for the split-fold facets, but a facet

and a split-fold facet may be different. The symmetric motion assumption is as before.

One reason that SFWBs are attractive is that each joint undergoes a smaller rotation

than in the equivalent WB, resulting in lower material strains in the joints. This broadens

the range of materials that can be considered for use in the joint. Another reason is that the

split-fold facets undergo less complex motions than the facets in a WB, making them easier

to interface with in applications. The energy and force behaviors are also different than for

a WB, which will be shown in detail later in the chapter.
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Figure 3.4: Spherical parameters used in WB analysis.

3.3 Waterbomb base (WB) analysis

Taking an approach similar to that used to solve for the traditional n=4 WB in [37],

the vertex is assumed to be centered on a circular disk of unit radius and a series of spherical

triangles are used to develop a set of analytical solutions for all n≥3 WBs. The parameters

used in the solutions are shown in Figure 3.4. α, d, and θ are the spherical links that form the

two spherical triangles and θ also serves as the general coordinate that is measured between

any valley fold and the vertical axis A that is perpendicular to the flat plane shown shaded

in Figure 3.1(b) and that passes through the vertex.

3.3.1 Position analysis

For a WB of degree n:

α = 180◦

n
(3.1)

β = 360◦

n
(3.2)

0 ≤ θ ≤ 180◦ −α (3.3)
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γ
γ

Figure 3.5: Position plots for n=3, n=4, and n=10 waterbomb bases. Note the symmetry
about the line passing through (0,0) and (-180,180).

where α is the sector angle of a facet and β is the angle between two folds of the same type

(between two mountains or between two valleys) measured about the vertical axis A.

Expressions for the dihedral angles are given as:

γm = −180+c−1
[
1+ c(d)−1

s2(α)

]
(3.4)

γv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−180+2c−1
[
ct(α)t

(
d
2

)]

+2c−1
[
ct(θ)t

(
d
2

)]
: for θ ≤ 90◦

180−2c−1
[
(c(d)−1)ct(θ)

s(d)

]

+2c−1
[
ct(α)t

(
d
2

)]
: for θ > 90◦

(3.5)

with

d = c−1[c2(θ)+s2(θ)c(β)] (3.6)

Figure 3.5 shows the mountain and valley fold angles for the full range of motion of

n=3, n=4, and n=10 WBs. Figure 3.6 shows the valley and mountain fold angles (γm and

γv) plotted against θ to show their relations to the generalized coordinate. 3D CAD models
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γ

Figure 3.6: γm and γv plotted against θ for an n=4 WB.

were built of a several different WBs to compare against the analytical model’s predictions.

Multiple positions were checked for each model, and all positions matched the predictions

well.

3.3.2 Potential energy analysis

To solve for the potential energy behavior, each fold is approximated as a revolute

joint with a zero-length torsional spring. The potential energy, V, for one of these joints is

V = 1
2k(Θ)2 (3.7)

where k is the stiffness and Θ is the angle of deflection of the joint. Therefore, a waterbomb

base with n mountain folds and n valley folds has a total potential energy of

VT OT = n

2 [kγm(γm −γm0)2 +kγv(γv −γv0)2] (3.8)

where γm0 and γv0 are the angles associated with the undeflected state at θ0 and the stiff-

nesses k are related to the material, sheet thickness, and length of the fold. Although

zero-length torsional springs were used here, the folds could also be modeled as compliant

conical sections or rectangular sections, as described in [37].
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θ

Figure 3.7: Potential energy plots for n=3, n=4, and n=10 waterbomb bases where θ0=30◦
and the stiffnesses of the mountain folds and valley folds are equal. The potential energy is
divided by the stiffness to facilitate comparison.

The potential energy curves for three WBs of different degree n but same θ0 are shown

in Figure 3.7. Note that since the unstable state occurs at θ=90◦ (the flat state), the initial,

undeflected state must occur somewhere else or there will be no bistability. θ0 was chosen

to be 30◦ here, but any valid θ could have been used. The energy behavior presented in the

figure is not dependent solely on the degree of the WB, however. Equation 3.8 shows that

the stiffness ratio kγm :kγv as well as the undeflected angles γm0 and γv0 affect the shape of

the energy curve. The effects of adjusting these variables will be discussed later on.

3.3.3 Force-deflection behavior

The principle of virtual work was used to analyze the force-deflection behavior for the

waterbomb base that is vertically supported on the outermost points of the valley folds while

a vertical force deflects the vertex, as shown in Figure 3.8. The force-deflection behavior is

F = −dV

dθ

dθ

dh

F =
n[kγm(γm −γm0)dγm

dθ +kγv(γv −γv0)dγv
dθ ]

s(θ)r (3.9)
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r

Figure 3.8: Boundary conditions for the force-deflection analysis of the n=4 WB. A vertical
force is applied at the vertex while the outermost points of the valley folds are vertically
supported.

where h=cos(θ)r is the height of the waterbomb base, r is the distance from the vertex to a

support point measured along a fold (see Figure 3.8), and the kinematic coefficients are

dγm

dθ
= [c(β)−1]s(2θ)cc2(α)cc(γm) (3.10)

dγv

dθ
= 2cc(d)[c(d)−1]

×
⎡
⎣ ct(α)cc(d)dd

dθ√
1− ct2(α)t2(d

2)

+
ct(θ)cc(d)dd

dθ − cc2(θ)√
1− ct2(θ)t2(d

2)

⎤
⎦ (3.11)

dd

dθ
= s(2θ)[1− c(β)]

s(d) (3.12)

The force-deflection curves for three WBs are given in Figure 3.9.

To validate these WB models the results for an n=4 WB were compared to the

experimental results given in [37] and found to match reasonably well.
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θ

Figure 3.9: Non-dimensionalized force-deflection plots for n=3, n=4, and n=10 waterbomb
bases.

3.3.4 Effects of varying θ0

Up to this point, WBs of different degree but same initial general coordinate (θ0) have

been compared, but it is important to note that varying θ0 while holding everything else

constant can have significant effects. To illustrate some of these effects, θ0 was chosen for

n=3 and n=10 WBs such that the arithmetic average of the initial mountain and valley folds,

γm0 and γv0, is the same. The resulting potential energy and force-deflection relationships

are shown in Figure 3.10.

3.4 Split-fold waterbomb base (SFWB) analysis

A series of spherical triangles and spherical fourbars was used to develop a set of

solutions for n≥3 SFWBs. The parameters used in the solutions are shown in Figure 3.11.

For the SFWBs, the general coordinate θ is measured between the centerline of a valley

split-fold facet and the vertical axis A that passes through the vertex and is perpendicular

to the flat plane.

3.4.1 Position analysis

Because there are two different links present, the size of one must be chosen to set the

geometry. α is the sector angle of the facets, b is the sector angle of the split-fold facets, and
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(b)

Figure 3.10: (a) Potential energy and (b) force deflection plots for n=3 and n=10 WBs for
which the average of the initial angles γm0 and γv0 is 54◦. For the n=3 WB, this average
occurs at θ0=48◦ and for the n=10 WB it occurs at θ0=54◦.
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Figure 3.11: Spherical parameters used to analyze SFWBs.
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β is the angle between the center points of “neighboring” split-fold facets measured about

the axis A.

If b is chosen first, then

α = 180◦ −nb

n
(3.13)

β = 360◦

n
(3.14)

The angle of each mountain fold is given as:

γm = −c−1
{

cc(α)sc
(

b

2

)
s

(
f

2

)
− ct(α)t

(
b

2

)}
(3.15)

which requires

f = c−1
{

c2
(

b

2

)
c(d)+s(b)s(d)s(ξ)

+s2
(

b

2

)[
c2(ξ)− c(d)s2(ξ)

]}
(3.16)

d = c−1{c2(θ)+s2(θ)c(β)} (3.17)

ξ = c−1
{

ct(θ)t
(

d

2

)}
(3.18)

The above expressions hold for the full range of motion.

The valley fold angles are

γv =

⎧⎪⎪⎨
⎪⎪⎩

φ−η : θ ≤ 90◦

φ+η : θ > 90◦
(3.19)

where φ and η are
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φ = 180◦ − c−1
{

cc(α)sc
(

f

2

)
s

(
b

2

)

−ct(α)t
(

f

2

)}
(3.20)

η = 2tan−1

⎧⎨
⎩−h3*+

√
h3*2 −h1*2 +h2*2

h1*−h2*

⎫⎬
⎭ (3.21)

with f defined in (3.16) and

h1* = k1*−k2*+s(ξ)k3* (3.22)

h2* = −k4*+s(ξ)k5* (3.23)

h3* =

⎧⎪⎪⎨
⎪⎪⎩

c(ξ)k6* : θ ≤ 90◦

−c(ξ)k6* : θ > 90◦
(3.24)

where

k1* = c(d)c(f)c
(

b

2

)
(3.25)

k2* = c
(

b

2

)
(3.26)

k3* = s(d)c(f)s
(

b

2

)
(3.27)

k4* = c(d)s(f)s
(

b

2

)
(3.28)

k5* = s(d)s(f)c
(

b

2

)
(3.29)

k6* = s(d)s(f) (3.30)

Position plots for three different SFWBs are given in Figure 3.12. As an initial verifi-

cation, 3D CAD models were built of a few different SFWBs to compare against the analytical

model’s predictions. For each point checked, the 3D and analytical models matched up well.
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γ
γ

Figure 3.12: Position plots for n=3, n=4, and n=10 split-fold waterbomb bases with b=5◦.
Note the symmetry about the line passing through (-100,100) and (0,0).

3.4.2 Potential energy analysis

As in the previous case, each fold is considered to be a small-length flexural pivot of

rectangular cross section, resulting in the total potential energy, VT OT , of

VT OT = n
[
kγm(γm −γm0)2 +kγv(γv −γv0)2

]
(3.31)

The potential energy curves for three SFWBs are shown in Figure 3.13.

3.4.3 Force-deflection behavior

The force-deflection behavior was analyzed with a vertical force applied to the vertex

while the waterbomb base is vertically supported at the centers of the outer edges of the

valley split-fold facets, as shown in Figure 3.14. The resulting force-deflection relationship is

F = −dV

dθ

dθ

dh

F =
2n

[
kγm(γm −γm0)dγm

dθ +kγv(γv −γv0)dγv
dθ

]
s(θ)r (3.32)
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θ

Figure 3.13: Potential energy plots for n=3, n=4, and n=10 split-fold waterbomb bases
where b=5◦ and θ0=30◦. The strain energy is nondimensionalised by dividing out the stiffness
k, where k=kγm=kγv.

F

r

Figure 3.14: Boundary conditions for the split-fold force-deflection analysis. A vertical force
is applied at the vertex while the midpoints of the valley split-fold facets are vertically
supported.

where h=cos(θ)r is the height of the waterbomb base, r is the distance from the vertex to

the point of support, and the kinematic coefficients are
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dγm

dθ
=

cc(α)sc
(

b
2

)
c

(
f
2

)
df
dθ

2
√

1−
{
cc(α)sc

(
b
2

)
s

(
f
2

)
− ct(α)t

(
b
2

)}2
(3.33)

dγv

dθ
=

⎧⎪⎪⎨
⎪⎪⎩

dφ
dθ − dη

dθ : θ ≤ 90◦

dφ
dθ + dη

dθ : θ > 90◦
(3.34)

with the following derivatives:

df

dθ
= 1

A

{
c2

(
b

2

)
s(d)dd

dθ

−s(b)
[
s(d)c(ξ)dξ

dθ
+s(ξ)c(d)dd

dθ

]

−s2
(

b

2

)
s(ξ)

[
−2[1+c(d)]c(ξ)dξ

dθ

+s(ξ)s(d)dd

dθ

]}
(3.35)

A =
{

1−
[
c2

(
b

2

)
c(d)+s(b)s(d)s(ξ)

+s2
(

b

2

)[
c2(ξ)− c(d)s2(ξ)

]]2⎫⎬
⎭

1/2

(3.36)

dd

dθ
= −s(2θ)[c(β)−1]

s(d) (3.37)

dξ

dθ
=

[
1−2c(2d)+c(β)+2c(4θ)s2

(
β
2

)]
t

(
d
2

)
4s2(d)s2(θ)s(ξ) (3.38)

dφ

dθ
=

sc
(

f
2

)[
cc(α)s

(
b
2

)
t

(
f
2

)
− ct(α)sc

(
f
2

)]
df
dθ

2
√

1−
[
cc(α)sc

(
f
2

)
s

(
b
2

)
− ct(α)t

(
f
2

)]2
(3.39)

dη

dθ
= 2

[h1*−h2*]2
[{

−h3*+B

h1*−h2*

}2
+1

] {[h1*−h2*]

×
[

1
B

(
h3*dh3*

dθ
−h1*dh1*

dθ
+h2*dh2*

dθ

)

−dh3*
dθ

]
− [B −h3*]

[
dh1*
dθ

− dh2*
dθ

]}
(3.40)
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Figure 3.15: Non-dimensionalized force-deflection plots for n=3, n=4, and n=10 split-fold
waterbomb bases with b=5◦ and θ0=30◦.

B =
√

h3*2 −h1*2 +h2*2 (3.41)
dh1*
dθ

= dk1*
dθ

+k3*c(ξ)dξ

dθ
+s(ξ)dk3*

dθ
(3.42)

dh2*
dθ

= −dk4*
dθ

+k5*c(ξ)dξ

dθ
+s(ξ)dk5*

dθ
(3.43)

dh3*
dθ

=

⎧⎪⎪⎨
⎪⎪⎩

−k6*s(ξ)dξ
dθ +c(ξ)dk6*

dθ : θ ≤ 90◦

k6*s(ξ)dξ
dθ − c(ξ)dk6*

dθ : θ > 90◦
(3.44)

dk1*
dθ

= −c
(

b

2

)[
c(d)s(f)df

dθ
+s(d)c(f)dd

dθ

]
(3.45)

dk3*
dθ

= −s
(

b

2

)[
s(d)s(f)df

dθ
− c(d)c(f)dd

dθ

]
(3.46)

dk4*
dθ

= s
(

b

2

)[
c(d)c(f)df

dθ
− s(d)s(f)dd

dθ

]
(3.47)

dk5*
dθ

= c
(

b

2

)[
s(d)c(f)df

dθ
+c(d)s(f)dd

dθ

]
(3.48)

dk6*
dθ

= s(d)c(f)df

dθ
+c(d)s(f)dd

dθ
(3.49)

The force-deflection curves for three SFWBs are given in Figure 3.15.
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Figure 3.16: (a) Position, (b) potential energy, and (c) force-deflection plots for b=1◦, b=10◦,
and b=20◦ SFWBs where n=4 and θ0=30◦.

3.4.4 Further tunability

It was shown in previous sections that the general forms of the waterbomb base are

tunable by varying the degree of the base n as well as by adjusting the stiffness ratio kγm :kγv .

The SFWB has another layer of tunability, however. This added control is accomplished

by varying the split-fold facet’s sector angle b. Figure 3.16 illustrates this with position,

potential energy, and force-deflection plots for SFWBs of the same degree and θ0 but different

values of b.
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3.5 Results and discussion

One of the assumptions used was that all joints operate elastically, and these results

can be used to ensure that a given design meets this assumption. The position plots like

those given in Figures 3.5, 3.12, and 3.16(a) show the maximum deflections the folds can

experience as the mechanism switches between stable states. These deflections are related

to the stresses the joints experience, and this can be used to modify the design such that the

elastic range of behavior is not exceeded.

The WB and SFWB have similarly tunable bistable and force-deflection behavior.

By adjusting the stiffness ratio kγm :kγv , the second stable state can be moved closer to the

unstable state to create a “cocked” position that requires only a small input to trigger the

switch, or it can be moved further away from the unstable state to create a second stable

state more like the first as shown in [37]. Also, the lower the degree n of the WB or SFWB,

the closer the second stable state will be to the unstable state. Therefore if the goal is a

cocked position, a low-degree mechanism is preferred. If, however, the objective is to have

more distance between the stable and unstable equilibrium states, the higher the degree the

better.

Another feature common to both the WB and SFWB is that if kγm=kγv , the equi-

librium locations are not affected by the magnitude of the torsional spring constant and the

equilibrium states are determined by the undeflected state (γm0,γv0) and the mechanism

geometry.

The models predict that, for all mechanisms considered here, the higher the degree

of the mechanism, the greater the potential energy and force involved in moving it around

and between its stable states. As the degree increases, the number of folds goes up while

the range of motion of each fold decreases. These two results have competing effects as a

higher number of active elements raises required force and energy while a lower active range

of motion for each element reduces those kinetic quantities. In the cases considered here, the

reducing effects of the higher degree’s reduced motion are not enough to offset the increases

from raising the number of folds. Therefore, the net effect is an increase in potential energy

and force as the degree of the mechanism is increased.
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The SFWB has an added layer of adjustability due to the presence of split-fold facets.

Changing the sector angle of the split-fold facets, b, affects the final position solution in

addition to the bistable properties and force-deflection behavior. This means that for a

given SFWB of degree n and stiffness ratio kγm :kγv , the solution set will be different for

every split-fold facet sector angle b. A comparison of the vertical axes of Figures 3.13 and

3.16(b) as well as of Figures 3.15 and 3.16(c) suggest that varying the degree n of the SFWB

may be best for coarse tuning of the mechanism and varying the split-fold facet angle b may

be good for smaller, finer adjustments. This provides for greater customizability than a WB

possesses in a broad range of potential applications.

The decision between using a WB or an SFWB can be influenced by several factors.

SFWBs tend to involve lower forces and potential energy magnitudes than the equivalent

WBs, so they may be better suited to sensitive applications. Geometry must also be con-

sidered, especially when the waterbomb base will be interfacing with other components. All

facets on a WB undergo translation in two directions and rotation in two directions as the

mechanism moves. On an SFWB the split-fold facets also translate in two directions but

rotate in only one direction. The difference of one extra rotation makes interfacing with an

SFWB’s split-fold facet easier than a WB’s facet.

The models presented here are for symmetric configurations and motions. One of

the reasons that these cases were chosen is that they are often empirically observed. If a

symmetric waterbomb base is folded, rested on a horizontal surface, and a vertical force is

applied at the vertex, symmetric motion is the result. Since strain energy varies with the

change in angle squared, as indicated in (3.8) and (3.31), this symmetric motion will also

keep strain energy levels at a minimum in most cases as it minimizes the average deviation

away from the undeflected state. This is not to say that symmetry will always result in the

lowest energy, however. There could be instances in which non-symmetric motion could be

energetically preferential, particularly in a higher-degree waterbomb base.

The results are expected to be helpful in designing for applications. A few illustrative

examples are described briefly here. The first is the use of the WBs as a testbed for actuation.

There are several common testbeds [37] for actuation techniques such as the folding box

[22–25]. Arrays of WBs could provide new mechanisms to be actuated. For example, rather
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(a) (b)

(c)

Figure 3.17: Actuation testbed example (a) flat pattern, (b) metallic glass prototype in
nearly flat state, and (c) prototype in erect state. The nearly flat state occurs when all WBs
are in one stable state and the erect state occurs when all WBs are switched to the other
stable state. Although a cube only has 12 edges, this pattern has 17 links. The extra links
enable overlap for additional stability in the erect state.

than folding a flat pattern into a box, a series of n=3 WBs could be designed to fold from

a roughly flat array in one state to the edge profile of a box when all WBs are in the other

stable state, as shown in Figure 3.17. The prototype in the figure was made from metallic

glass, which shows promise as a new compliant mechanism material [36]. Other examples of

potential actuation applications are “digital origami” strips and sheets, as shown in Figures

3.18 and 3.19, respectively, in which the waterbomb bases act as digital unit elements that

are turned “on” or “off” to contribute to the global shape of the sheet or strip.

As another example, different degrees of SFWB could be designed to grip specific

objects. The degree of the base could be chosen based upon the geometry of the object to

be gripped and the actual gripping surfaces could be almost any shape. In one stable state

the gripper would be open and in the other state it would be closed, but the amount of
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(a) (b) (c)

(d)

Figure 3.18: Digital origami strip as it transforms from (a) state with all WBs in “off”
position through (b), (c) intermediate states to (d) state with all WBs in “on” position.
Because the “on” and “off” states are non-identical, the global curvatures in (a) and (d) are
different.

compressive force applied in the closed position could be tuned by adjusting the location

of the closed state relative to the open one. Figure 3.20 is an example of an n=4 SFWB

grasper designed to grip a sphere.

3.6 Conclusion

Models have been developed to describe the behavior of the generalized waterbomb

base (WB), including the kinematic, potential energy, and force-deflection analyses. The

relative effect that the number of folds has on the behavior was analyzed, including the

effect on dihedral angles, potential energy curves, and actuation force. The bistable split-fold

waterbomb base was introduced, with its corresponding analyses, including the effect that

the split-fold panel size has on device behavior (e.g. dihedral angles, potential energy, and

actuation force). Potential energy analyses were completed to predict the bistable behavior
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(a) (b)

(c)

Figure 3.19: (a) A 4-unit by 5-unit digital origami sheet in (b) a wave configuration and (c)
an arch configuration. By choosing which WB elements are “on” and “off”, the global shape
of the sheet can be altered dramatically.

(a) (b)

Figure 3.20: Polycarbonate gripper prototype in the (a) open and (b) closed positions. It
was designed to grasp a sphere. Lines are shown on the plastic sheet to identify the crease
locations.

52



of both types of waterbomb base, and the principle of virtual work was used to develop

force-deflection predictions.

The WB and SFWB have some behavioral features in common. The stable states of

both can be adjusted by changing the kγm :kγv ratio so as to make the second stable state

either a “cocked” position or something closer in energy level to the first stable state. Also,

the lower the degree of the mechanism, the easier it is to achieve the cocked position. When

kγm=kγv , the magnitude of k does not affect where the stable states occur, but only the

magnitudes of the potential energy and acutation forces.

A few functional differences also exist. Lower force and potential energy values are

involved in the SFWBs when compared to their equivalent-degree WBs. The extra links

present in the SFWBs present opportunities for greater customizability than what is present

in the WB.
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CHAPTER 4. CONCLUSIONS AND RECOMMENDATIONS

This thesis presents models for the kinetic behavior of the traditional origami water-

bomb base as well as two of its generalized forms - the generalized waterbomb base (WB) and

the generalized split-fold waterbomb base (SFWB). Models of the kinematic and bistable

behaviors (including force-deflection behavior) of the traditional waterbomb base undergoing

symmetric motion were validated through comparison to 3-D CAD models, physical proto-

type testing, and finite element analysis. These models were then extended to degree n

rotationally symmetric, developable generalized WBs and SFWBs also undergoing rotation-

ally symmetric motion. Using these models, the positions and locations of bistable states,

as well as the forces required to move between them, can be predicted and tuned to suit

different situations and needs.

These models are meant to facilitate the development of this common origami fold

into useful mechanisms and other applications. Possible applications such as simple springs

or switches as well as more complicated devices such as customizable grippers or testbeds

for actuation are briefly discussed, but the geometric and behavioral modifiability of these

waterbomb bases could be attractive in a much broader range of uses. It is hoped that for

many of these applications, the models presented here will provide a valuable first step from

which designers can move toward a more complete design.

4.1 Recommendations for future work

Future work could be focused on designing novel mechanisms or integrating a WB

into an existing mechanism or design using these models. Subsequent studies could also

investigate waterbomb bases that are not so rigidly constrained as those considered here.

Non-developable (sum of all sector angles �= 360◦) and non-symmetric geometries would

require more complex models but would undoubtedly exhibit their own interesting behaviors.
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Symmetric configurations and motions are often empirically observed and will operate at

the lowest energy levels in many cases, but there may be instances in which non-symmetric

motion between stable states could be energetically preferential. This spontaneous symmetry

breaking, or buckling, would be an interesting topic for future investigation.
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