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ABSTRACT

A Method for Exploring Optimization Formulation Space
in Conceptual Design

Shane K. Curtis
Department of Mechanical Engineering, BYU

Master of Science

Formulation space exploration is a new strategy for multiobjective optimization that fa-
cilitates both divergent searching and convergent optimization during the early stages of design.
The formulation space is the union of all variable and design objective spaces identified by the
designer as being valid and pragmatic problem formulations. By extending a computational search
into the formulation space, the solution to an optimization problem is no longer predefined by any
single problem formulation, as it is with traditional optimization methods. Instead, a designer is
free to change, modify, and update design objectives, variables, and constraints and explore design
alternatives without requiring a concrete understanding of the design problem a priori. To facil-
itate this process, a new vector/matrix-based definition for multiobjective optimization problems
is introduced, which is dynamic in nature and easily modified. Additionally, a set of exploration
metrics is developed to help guide designers while exploring the formulation space. Finally, sev-
eral examples are presented to illustrate the use of this new, dynamic approach to multiobjective
optimization.

Keywords: design space exploration, multiobjective optimization, conceptual design
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g Vector of inequality constraints
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Subscripts and Subscripts
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[ ](+) Upper bound in inverse optimization
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CHAPTER 1. INTRODUCTION

Advancements in computational power have transformed the way engineers perform prod-

uct design, especially during the later, detailed stages of the design process. Computer-aided de-

sign software, finite element analysis, computational fluid dynamics, and numerical optimization

are just a few of the computational tools at the designer’s disposal. However, many of these tools,

especially numerical optimization, are rarely utilized during early, conceptual design stages. There

are many reasons for this, but most stem from the nature of conceptual design, which is typically

qualitative and fluid in nature. Numerical optimization, on the other hand, usually requires quanti-

tative, well-defined problems to solve. Thus, there is a disconnect between numerical optimization

and conceptual design. The objective of this thesis is to provide a numerical optimization method

that is well-suited for use during conceptual design, allowing designers to benefit from the power

of computational assistance and make more informed decisions earlier in the design process when

their impact is the greatest.

Conceptual design has been defined in various ways by several researchers [1–3]. A

common thread among all these definitions is the generation and discovery of design require-

ments/possibilities, coupled with the analysis and selection of design concepts for further devel-

opment. Prevalent activities during conceptual design include benchmarking, conducting market

research, abstracting the problem, sketching new ideas, brainstorming, building rudimentary pro-

totypes, developing low fidelity analytical models, and testing design concepts by simple experi-

mentation. Clearly, if computational assistance is to be utilized during conceptual design, then an

analytical model in some form is needed. Therefore, in the context of this thesis, a design concept

is defined as an idea that has evolved to the point where there is a parametric model that represents

one or more aspects of its performance [4].

Consider a hypothetical, conceptual design process depicted in Fig. 1.1. The top portion

of the figure represents the designer’s actions, while the bottom represents the computer’s. Impor-
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Figure 1.1: A synergistic design exploration process is displayed. The boxes on the top indicate
human activities, while the boxes on the bottom are performed by the computer.

tantly, this structure is designed to be synergistic, placing the designer in a position of creativity

and exploration, while positioning the computer for computational searching and mundane calcu-

lations. The first step is for the designer to enter a concept input – a sketch for example. The input

is then interpreted and parameterized by the computer. After the computer has parameterized the

design input, the design parameters are presented to the designer for use in exploring different opti-

mization problem formulations (i.e., specifying design variables, constraints, and objectives). The

ensuing iterative procedure of optimizing, viewing the results, and reformulating the optimization

problem is called formulation space exploration and is more formally introduced in Chapter 4 of

this thesis. In this manner, the designer is able to generate, analyze, explore, and select design

concepts with the aid of computational assistance.

While the process in Fig. 1.1 is hypothetical, the ideas presented therein have the potential

to enhance existing conceptual design procedures. The purpose of this thesis is to develop the

supporting theories and methods to carry out the steps inside the dashed box. Specifically, the goal

here is to provide an optimization framework that (i) allows engineers to evolve and search a design

space efficiently and interactively during the divergent, exploratory phases of product design, and

(ii) adapts easily to new design requirements as they are discovered.

2



CHAPTER 2. LITERATURE REVIEW

Success in engineering design is closely tied to a designer’s ability to make rational, in-

formed decisions throughout the product development process. Decisions that typically have the

largest impact on a design’s outcome occur during early conceptual design when the least is known

about design objectives or constraints [5–8]. While many ad-hoc, heuristic methods [1, 2, 9, 10]

exist to support conceptual design decision making, computational search methods are rarely uti-

lized until the later, detailed design stages. Thus, to a large extent, the valuable information that

is provided through computational search (i.e., numerical optimization) is only available when its

impact on the design’s outcome is less noticeable.

Accordingly, several researchers have begun to address the difficulties of implementing

numerical optimization techniques during the early stages of product development. For example,

to capture and represent qualitative objectives, researchers have turned to interactive genetic algo-

rithms [11–14], fuzzy logic systems [15, 16], and preference based modeling [17]. Multiobjective

optimization strategies have been applied to concept generation [18] and concept selection [4,19],

both of which are common conceptual design activities. Several engineering applications where

multidisciplinary design optimization has been applied during conceptual design include aircraft

configurations [20], communication satellites [21], multistage space launch vehicles [22], and gas

turbine engines [23]. Thus, there is significant promise that numerical optimization can be utilized

to an even greater extent during conceptual design. Despite these advances, there are still chal-

lenges that currently limit the extent to which designers can use computational search methods to

assist in early-stage design decision making.

One challenge is that much of early-stage, conceptual design is qualitative in nature. De-

signers use sketches and rough prototypes to explore concept ideas; very little quantitative model-

ing takes place. To help bridge this gap, some have used sketch recognition software to transform

hand-drawn sketches into parametric, computational models [24–28]. When analytical models do

3



exist, they are often used to explore a large design space; therefore, computationally inexpensive

models are advantageous because they allow the designer to quickly explore many design alter-

natives [29, 30]. To this end, the use of Fourier series [31] and metamodeling/surrogate modeling

techniques [32,33] have been used to obtain adequate analytical models for use during conceptual

design exploration and optimization. Of course, decreasing the model’s fidelity will inevitably

introduce uncertainty; fortunately, methods exist for assessing the uncertainty in surrogate mod-

els [34, 35].

Uncertainty is pervasive in design and is caused by variations in consumer perception,

available market data, material properties, manufacturing precision. As such, the effects of uncer-

tainty can and should significantly affect decision making in engineering design. Within the liter-

ature, two broad categories of non-deterministic approaches to determining levels of uncertainty

are identified: reliability-based design methods [36–39] and robust design based methods [40–46].

Reliability-based design optimization focuses on assessing the probability of design failure and

reduces such probabilities by shifting the mean performance away from constraint limits [39].

Robust design optimization focuses on optimizing the mean performance and minimizing perfor-

mance variation, while maintaining feasibility with probabilistic constraints [44, 47, 48].

While quantifying uncertainty is important to effective decision making [49], it is also crit-

ical to allow for adaptation due to uncertainty. This is especially important during conceptual

design due to its dynamic nature—design parameters, variables, constraints, objectives, and limits

are likely to change and evolve over time as the designer learns more about the design problem.

With traditional optimization, one must know and clearly define the design parameters, variables,

constraints, and objectives before optimization can begin [50]; however, when the optimization

problem definition is improperly formulated (i.e., objectives and constraints are erroneously as-

sumed), the designer will likely be unsatisfied with the results [51, 52]. Therefore, in a conceptual

design environment where constraints and objectives are unclear, the probability of a designer im-

properly formulating the optimization problem increases, and as a result this decreases designer

confidence in the optimization results. In order to be more effective in conceptual design, the op-

timization problem formulation should be dynamic in nature—easy to formulate, reformulate, and

allow for expansion into regions beyond the space defined by the initial parameterization [53].

4



Exploration into regions that are not initially defined as part of the search space is called di-

vergent exploration. The purpose of divergent exploration during conceptual design is to discover

a rich set of novel design alternatives, from which a solution can be selected for further develop-

ment during detailed design [54, 55]. Without fully exploring the design space in this manner, it

is difficult, if not impossible, to know if a designer has truly found an optimal design. One of the

major disadvantages with traditional product development processes is that they tend to converge

quickly, and not necessarily to a suitable solution space. If a poor solution is initially chosen, then

time and money are wasted during costly design iterations [56]. Thus, it is in the designer’s best

interest to diverge and explore the design space early in design.

Creativity plays an important role in design space exploration. An abundance of research

has been performed in the area of design creativity to determine the factors that facilitate or hinder

innovation [57–60]. If a designer understands the do’s and don’ts of creativity, they can avoid

idea affixation and explore the design space more effectively. This is especially important in early

design when it is beneficial to generate as many potential design solutions as possible. While

traditional ideation methods, such as brainstorming [61], morphology [62], and synectics [63],

have been around for decades and are very useful, they do not capitalize on computation power. If

partnered synergistically, humans and computers have a great potential to enhance design creativity

[64, 65]. On the other hand, traditional computer design tools, such as computer-aided design

(CAD), finite element analysis (FEA), and computational fluid dynamics (CFD) software, may

actually hinder the creativity of the designer because they require detailed information and can

therefore have clumsy interfaces [66]. In fact, it has been shown that premature idea fixation may

occur if the perceived cost of modifying a CAD model is too expensive [67]. If computational

assistance is to be effectively used in conceptual design, the designer must be allowed to remain in

an exploratory, creative mind-set. Specific to numerical optimization, the human designer needs to

remain in the loop as the rational decision maker. In this sense, optimization is designed to support

human decision making—not replace it [68, 69].

The objective of this thesis is to provide a numerical optimization method that is tailored

for the early, creative stages of engineering design. As identified in the literature above, the method

must (i) allow for adaptation due to the dynamic nature of conceptual design, (ii) allow for both

divergent and convergent searches, and (iii) keep the designer in the loop.

5



The remainder of the thesis is organized as follows: In Chapter 3, the standard multi-

objective optimization problem is reviewed. In Chapter 4, the fundamental theory for divergent

exploration is introduced, followed by the presentation of a new, dynamic optimization problem

formulation in Chapter 5. Exploration metrics to help guide the designer during the exploration

process are given in Chapter 6. Three use scenarios for formulation space exploration are explained

in Chapter 7. The theories developed in this paper are then illustrated with two case studies in

Chapter 8, and concluding remarks are offered in Chapter 9.
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CHAPTER 3. TECHNICAL PRELIMINARIES

The generic deterministic multiobjective optimization problem formulation is typically

given as Problem 1 (P1):

min
x
{µ1(x,p), µ2(x,p), ..., µn(x,p)} (n≥ 2) (3.1)

subject to inequality constraints, equality constraints, and side constraints

gr(x,p)≤ 0 {r = 1,2, ...,ng} (3.2)

hs(x,p) = 0 {s = 1,2, ...,nh} (3.3)

xl,i ≤ xi ≤ xu,i {i = 1, ...,nx} (3.4)

where µi denotes the i-th generic design objective function; x is a vector of design variables; p is a

vector of fixed design parameters; and ng, nh, and nx, are the total number of inequality constraints,

equality constraints, and design variables, respectively. As a note, µ , g, and h may be linear or

non-linear functions of x and p.

As formulated above, P1 yields a set of optimal design alternatives—those belonging to

the Pareto frontier. This is shown graphically in Fig. 3.1, where the feasible design objective space

for two minimized objectives (µ1 and µ2) is plotted. In the figure, any point residing on or in

the shaded region represents a feasible design solution, meaning that the inequality, equality, and

side constraints for the design are satisfied. Each solution comprising the frontier is said to be

Pareto optimal, which means there are no other designs for which all objectives are better satisfied

[70–73]. Designers generally seek Pareto solutions because they indicate that the objectives have

been improved as much as possible without sacrificing the performance of another competing

objective [70].

7
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Figure 3.1: Feasible design objective space is shown shaded and the Pareto frontier is shown as the
bolded curve.

Other important definitions associated with P1 include the utopia point and the nadir point.

The utopia point, µU , is the point where every objective is simultaneously at its best, or

µ
U = [µU

1 ,µU
2 , ...,µU

n ]T (3.5)

where µU
i is defined as

µ
U
i = min

x
µi(x,p) (3.6)

subject to the inequality, equality, and side constraints on P1. Likewise, the nadir point, µN , is the

point where every objective is simultaneously at its worst, or

µ
N = [µN

1 ,µ
N
2 , ...,µ

N
n ]

T (3.7)

where µN
i is defined as

µ
N
i = max

x
µi(x,p) (3.8)

subject to the same constraints. Typically, neither the utopia or nadir points are on the Pareto

frontier nor are they typically realizable; however, they are helpful for characterizing the bounds

of an optimization problem search space [74].

Problem 1 is well suited for optimization routines used later in the design process when

design objectives and constraints are known and the goal is to converge to the optimal solution.

However, in early-stage design, design objectives and constraints may be unknown and the goal is

8



often to diverge and explore many design alternatives, building designer confidence that a better

design has not been overlooked [1].
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CHAPTER 4. FORMULATION SPACE EXPLORATION

A primary objective of this thesis is to introduce a new optimization strategy that is well-

suited for use during conceptual design. The fundamental concept behind this method will be

introduced using a simple, yet popular engineering problem: the two-bar truss. The truss is de-

picted and labeled at the top of Fig. 4.1. The graphs below the truss, labeled (a) through (d),

represent a traditional view of the design space for the two-bar truss. The graphs in (e) and (f) in-

troduce a new concept in optimization, which is centered on the idea that the design variable space

and objective space of a particular formulation represent only a portion of a larger space known as

the formulation space, the exploration of which is beneficial to the designer.

The two-bar truss at the top of Fig. 4.1 is composed of circular tubing. The solid lines

indicate the undeflected state of the truss, while the dashed lines represent the deflected state. The

independent design parameters and variables defined in the figure include the height (H), base

length (B), tube diameter (d), tube wall thickness (t), material density (ρ), modulus of elasticity

(E), and vertical load (P). The mass (M), stress (σ ), buckling stress constraint (σbuckling), and

deflection (δ ), are calculated using a strength/mechanics of materials model [75]. Using these

equations, it is possible to formulate an optimization problem for the truss. For instance, δ and M

can be minimized by changing t and H, subject to inequality constraints on σ and σbuckling.

Figure 4.1(a) represents the design variable space for t and H. Here, each design variable

is shown on one of two orthogonal axes for this two-variable problem. Clearly design spaces are

not limited in concept to two dimensions. However, this is done here for illustration purposes. The

shaded region is the feasible design variable space. Any point in the space that resides in this region

satisfies all constraints placed on the design variables. The points or designs in the design variable

space map to the design objective space through the objective functions. The design objective

space for δ and M is shown in Fig. 4.1(b). Again, the set of feasible designs in the design objective

space is represented by the shaded region. All solutions in this region satisfy all the constraints of

10
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the problem formulation. Recall that for two or more objectives, the Pareto frontier (see Chapter 3)

exists if two or more objectives are in conflict—which is the case here, since a decrease in material

(and therefore, mass) can be expected to result in an increase in the deflection (δ ) of the truss.

It is essential to note that both the design variable space and the design objective space are

completely defined by the optimization problem formulation. In fact, if the optimization problem

is reformulated to include B as a design variable (i.e., minimize δ and M by changing t, H, and

B subject to the same inequality constraints on σ and σbuckling), then different design variable and

objective spaces result, which are the darker shaded regions in Fig. 4.1(c) and (d). The new design

variable space in (c) is a 3-dimensional space due to the adjusted values of the design variable B.

It maps to a completely separate design objective space in (d). The design of least mass, seen as

an asterisk in the graphs, is different depending on the optimization formulation. Thus, a common

argument against numerical optimization methods is that the optimal solution to the problem is

predefined by the problem formulation—in other words, the optimal solution is defined before the

search begins. For many practical problems this predefinition is not a drawback since numerical

optimization is employed to simply carry out the mundane search for the solution that the designer

knows he or she wants. For other design problems, not of this nature, the designer is genuinely

interested in exploring the design options without having to have formed a concrete understanding

of the problem or definition of the formulation. In such cases, which are abundant in early design,

an alternative concept for numerical optimization is needed.

The new strategy presented here expands the exploration of design possibilities to another

space—the formulation space, meaning the optimization problem formulation space. Exploration

into this space is divergent, as it expands from the traditional consideration of design variable and

design objective spaces for only one problem formulation. Figures 4.1(e) and (f) illustrate the

formulation space for design variables t and H, and the formulation space for design objectives δ

and M, respectively. For notation purposes, a bar is placed under the symbol to indicate that it is in

the formulation space. To elaborate, consider Fig. 4.1(e), which is the formulation space for design

variables. Shown here is a large, shaded region labeled as the formulation design variable space.

The regions enclosed by the dashed lines represent the 2-dimensional projections of the design

variable spaces formed by the previous optimization problem formulations from above. As shown,

the formulation space encompasses the previous formulations, and expands into design spaces that
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have not explicitly been introduced here. The formulation space is the union of all design variable

and objective spaces identified by the designer as being valid and pragmatic problem formulations.

By expanding the exploration into the formulation space, the optimal solution is no longer

predefined by the optimization formulation; instead, the solution is formed through divergent ex-

ploration of the formulation space. Importantly, this places the designer at the center of the opti-

mization loop, where his or her judgment can be utilized to rationally interpret the results of the

computational search.

Divergence in early design is crucial to avoid missing a potentially superior solution, only

to later discover its existence and have to perform costly design iterations [1]. With P1, once the

problem is formulated, convergence begins and divergence can no longer occur unless modifica-

tions are made to the programming of the problem formulation. Changing the formulation in P1

after it has been executed is non-trivial, as the designer must transition from a creative, explo-

rative mind-set to an analytical mental disposition to reprogram the optimization problem. This

is not conducive to design exploration; the designer is less likely to ask “what if” questions if he

or she must exert a significant amount of effort to reformulate the optimization problem. In CAD

modeling, studies have shown that premature idea fixation is likely to occur if the perceived cost of

changing the model is too high (see Chapter 2). The same is true for optimization—if the perceived

cost of reformulating the optimization problem is high, then a designer will not likely explore the

formulation space. Thus, a dynamic optimization problem formulation is required, one that allows

the designer to optimize and reoptimize with modified variables, constraints, or objectives at a low

cost.
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CHAPTER 5. DYNAMIC MULTIOBJECTIVE OPTIMIZATION PROBLEM

Formulation space exploration requires us to look at optimization problem statements in a

new light—one in which design variables can seamlessly turn into design parameters, or inequality

constraints into design objectives, etc. As optimization problem formulations change, so do the

individual components; what was a design parameter in one formulation could be implemented as a

design objective in the next formulation. Thus, to avoid confusion and to illustrate that the designer

does not have to commit to variables, parameters, constraints, or objectives, these components of an

optimization formulation will be referred to as design objects. With this understanding, a generic

dynamic multiobjective optimization problem is presented as Problem 2 (P2):

min
y
{µ1(x), µ2(x), ..., µnx(x)} (nx ≥ 2) (5.1)

subject to the side constraints

yl,i ≤ yi ≤ yu,i {i = 1, ...,ny} (5.2)

zl,i ≤ zi ≤ zu,i {i = 1, ...,nz} (5.3)

where

µ = w∗x (5.4)

w =


w1,1 . . . 0

... . . . ...

0 . . . wnx,nx

 (5.5)

x =
[
y1,y2, ...,yny ,z(y)1,z(y)2, ...,z(y)nz

]T (5.6)
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Table 5.1: A description of the conditions that dictate design object behavior in P2.

Design Object xi Condition
Minimized Objective wi,i > 0
Maximized Objective wi,i < 0
Non-Objective wi,i = 0
Design Parameter yl,i = yu,i
Design Variable yl,i 6= yu,i
Equality Constraint zl,i = zu,i
Inequality Constraint zl,i 6= zu,i

and x is a vector composed of independent design objects (model inputs), y, and dependent design

objects (model outputs), z; w is a diagonal matrix where each element along the diagonal is bound

between -1 and 1 (i.e., −1 ≤ wi,i ≤ 1); nx, ny, nz are the number of design objects, independent

design objects, and dependent design objects, respectively.

Problem 2 is very similar to Problem 1, with a few exceptions. Beginning with Eq. 5.1

in P2, the dynamic multiobjective optimization problem is minimized over all independent design

objects in y instead of only the design variables in x. In fact, assume the nature of x has changed;

it now includes all independent and dependent design objects, whereas in P1, x only contained

independent design variables. The role of each design object in x is determined by the lower

and upper bounds on y and z in Eqs. 5.2 and 5.3, as well as the values in the diagonal of w in

Eq. 5.5. If in Eq. 5.2, yl,i = yu,i, then yi (or xi) is a design parameter; otherwise, yi is a design

variable. Likewise, if in Eq. 5.3, zl,i = zu,i, then zi (or xi+ny) is an equality constraint; otherwise, zi

is an inequality constraint. Thus, the inequality, equality, and side constraints for P1 are satisfied

with Eqs. 5.2 and 5.3. If in Eq. 5.5 wi,i = 0, then the corresponding xi is not a design objective.

If wi,i > 0, then xi is an objective that is minimized; if wi,i < 0, then xi is an objective that is

maximized. The magnitude of wi,i indicates the objective weight. It is assumed that the designer

has properly scaled his or her design objects so that the choice of units for any particular design

object does not alter the results of the optimization. The conditions that determine a design object’s

behavior are summarized in Table 5.1.

Importantly, P1 and P2 will yield the same Pareto frontiers; however, by describing the

multiobjective optimization problem with P2, formulations are more easily manipulated, allowing
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Table 5.2: Required changes in terms of lines of pseudocode to add, delete, or mutate design
objects in P1 and P2. Numerical value changes are not counted.

Action Design Object P1 P2

Add Design
Object (New)

Objective (Independent) 5 5
Objective (Dependent) 3 6
Constraint 4 5
Variable 4 4
Parameter 2 4
Sub Total 18 24

Delete Design
Object

Objective 1 0
Constraint 1 0
Variable 4 4
Parameter 2 4
Sub Total 8 8

Modify or Mutate
Design Object
(Existing)

Constraint to Objective 1 0
Variable to Objective 1 0
Parameter to Objective 7 0
Parameter to Variable 6 0
Inequality Constraint to Equality 3 0
Add Bound to Constraint 2 0
Sub Total 20 0
TOTAL 46 32

the designer to quickly and efficiently explore all feasible and pragmatic design spaces. If, for

example, the designer wants to switch a design variable to a minimized objective, then he or she

simply changes the corresponding value in the w matrix—no additional programming is necessary.

Likewise, if he or she wants to change a parameter to a design variable, only the values in yl and yu

need to be changed. To illustrate, consider Table 5.2, which presents the number of required line

changes to generic pseudocode (see Appendix A) to modify an optimization problem formulated

with P1 and P2. The number of line changes are tallied for adding and deleting design objects from

the formulation, as well as modifying or mutating existing design objects. Changes to values in the

code were not counted, as such actions are considered trivial; for example, if the upper bound on

a design variable changes from a value of 3.50 to 4.00, this is not included in the tally. As shown,

on average, P2 requires 14 less lines of code to change than P1.

There are some drawbacks to the dynamic optimization formulation. The required number

of changes to lines of pseudocode for adding a design object is greater for P2 than for P1. However,
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this discrepancy will be often be compensated for by the decreased number of changes to lines of

pseudocode for modifying that new object after it has been created. Because a designer will often

have little prior experience with this new design object in his or her formulation, modifications are

expected often, mitigating to some extent the negative aspect of this drawback. Also, depending

on the optimization algorithm used, computational efficiency may decrease. Since P2 minimizes

over all independent design objects (y) including those that act as fixed design parameters, many

gradient-based optimization algorithms will attempt to perturb fixed independent design objects

and waste function calls. While any computational inefficiency is obviously undesirable, this is

generally not a significant problem during conceptual design, because the models are typically

computationally inexpensive (see Chapter 2). Moreover, other non gradient-based algorithms such

as simulated annealing or genetic algorithms will see no significant efficiency losses. A closer look

at the benefits and drawbacks of P2 is provided in Chapter 8.
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CHAPTER 6. EXPLORATION METRICS

To aid the designer during the exploration process, several exploration metrics are pro-

vided in this chapter. These metrics help the designer to determine (i) how well the exploration

process has expanded the formulation space, (ii) how much improvement to objectives has been

added through formulation space exploration, and (iii) when the exploration process is no longer

diverging. These metrics loosely correspond to metrics of ideation effectiveness, as proposed by

Shah and Vargas-Hernandez [76]—namely novelty, variety, quality, and quantity. The difference

here is that design alternatives are being explored rather than new design concepts being generated.

These metrics describe improvements made to the formulation space in terms of novelty, preferred

variety, and quality.

For each of the metrics introduced in this section, there is an assumed baseline formulation

objective space, denoted with the superscript [ ](0). This benchmark design space is the first to

comprise the formulation space. If there is no improvement over the benchmark, then the value of

the metric is zero. Higher values of each metric indicate improvement. Feasibility is assumed in

formulation space exploration; by definition, a space that is not pragmatic or valid is not included

in the formulation space.

6.1 Novelty

Novelty, as defined by Shah and Vargas-Hernandez [76], is a measure of how well the

exploration process expands the search into regions that are not perceived to be within the design

space. Thus, during formulation space exploration any region of the formulation space outside the

original design objective space is considered novel. The metric for formulation space novelty, Mn,

is given by

Mn =
‖Ω‖−‖Ω(0)‖
‖Ω(0)‖

(6.1)
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Figure 6.1: (a) Depiction of the novelty metric. (b) Depiction of the preferred variety metric. (c)
Depiction of the quality metric. The darkly shaded regions are the original design space, and the
lightly shaded regions represent the formulation space.

where Ω is the diagonal of the hypercube containing the entire formulation objective space, Ω(0)

is the diagonal of the hypercube containing the original design objective space, and in general Ω(i)

is the diagonal of the hypercube containing the i-th space [74], or

Ω
(i) = µ

N,(i)−µ
U,(i) (6.2)

and µN,(i) and µU,(i) are the nadir point and utopia point, respectively, for the i-th space. This is

depicted graphically for a two-dimensional formulation space in Fig. 6.1(a). The darker shaded re-

gion represents the original design space within the formulation space, shown as the lighter shaded

region. The hypercubes containing both the original design objective space and the formulation

space are also shown—Mn measures the difference in the vector lengths that connects the utopia

and nadir points of both spaces. If design preferences are truly known, Mn is not highly valued,

as it can reward exploration into regions that are not desirable. If the designer has an interest in

divergently exploring a product’s design space, however, this metric provides him or her with a

way to quantify to what extent new design alternatives are being discovered due to the exploration

process. Even if a new optimal solution is not found, the designer may gain confidence in his or

her original solution after having seen the potential benefits and drawbacks of other, previously

unconsidered, designs.
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6.2 Preferred Variety

Preferred variety is a measure of how well the formulation space expands into desirable

regions. The metric for preferred variety, Mv, is given by

Mv =
‖µU −µU,(0)‖
‖µU,(0)‖

(6.3)

Preferred variety is depicted graphically for a two-dimensional space in Fig. 6.1(b). In the figure, as

the vector between µU and µU,(0) grows in length, Mv also increases. If objectives are constrained

to be positive, Mv will be bounded between 0 and 1; otherwise, values greater than 1 for Mv will

be possible, indicating the percent improvement of the formulation space over the initial space. In

situations where a designer has not yet settled on specific objective weights, this metric may be of

particular interest to him or her as a means of showing overall improvement of the Pareto frontier.

6.3 Quality – Best Design Alternative

The metric for the quality of the exploration process, Mq is measured in terms of the “best”

design alternative (see Fig. 6.1(c)), or

Mq =
J(µ∗,(0))− J(µ∗)

|J(µ∗,(0))|
(6.4)

where µ∗,(0) is the best design alternative at the beginning of the exploration process, µ∗ is the best

design alternative at the end of formulation exploration, and J is an aggregate objective function

(AOF). Many methods exist for formulating the AOF such as weighted sum methods [72], com-

promise programming methods [41], and physical programming [71]. The most suitable method

for each specific problem is determined by the designer. If an AOF is never formally defined, then

this metric can be calculated using an even weight for all objectives, essentially assigning values

to solutions based upon their Euclidean distances to the origin.
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6.4 Exploration Value to Effort Ratio

Formulation space exploration must be advantageous in order to be useful. As the name

suggests, the exploration value to effort ratio is defined as

ε ≡ value
effort

(6.5)

where value can be defined as any individual metric or combination of the metrics defined above.

For instance, value could be assessed by the best design alternative with Eq. 6.4. The effort can be

measured in terms of coding complexity [77,78], number of function calls in the optimization algo-

rithm, or in computation time. Regardless of method, there is an associated cost with formulation

space exploration; therefore, it is pivotal to monitor the metrics described in this section to ensure

that value is being added through the exploration process. When the exploration process ceases

to produce novel design alternatives, improve objective values, or discover new “best” designs

according to the user-defined AOF, the formulation space is no longer diverging and subsequent

exploration will likely decrease ε .

A noted weakness in the provided metrics is their dependency on the original formulation.

Each metric is scaled to show an improvement with respect to that formulation, which means that

identical final formulation spaces may exhibit differing values for these metrics, due to differences

in the original formulations from which they sprang. This dependency suggests that these metrics

are more effectively used as a means of recognizing the amount of improvement of a particular

formulation space, rather than as a comparison between multiple exploration processes.

The metrics were created to be a design tool—the designer can review these metrics after

each optimization formulation to determine if “value” is being added by the exploration process.

For example, this can be done on a run-sequence chart; when the metrics flatline in the chart, the

designer will know that the formulation space may no longer be diverging in a useful manner.

Since the designer is reviewing the results of the optimization process at each iteration, the de-

signer literally becomes part of the optimization loop, using his or her judgement to help guide the

exploration process. More information on how to use these metrics as a design tool is provided in

Chapter 8.
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CHAPTER 7. USE SCENARIOS FOR FORMULATION SPACE EXPLORATION

In this chapter, three scenarios are presented for using the dynamic optimization problem

formulation presented in Chapter 5. All three scenarios can be encountered during conceptual

design, after at least one design concept has been developed. The applicability of each scenario is

governed by the amount of information a designer truly knows at that point in the design process.

Sec. 7.1, discusses a scenario where the designer has solidified the objectives of the project and is

ready for concept selection. Sec. 7.2 describes a situation where the designer knows little about

the design objectives and is more interested in the formulation space as a whole rather than any

particular Pareto frontier. And Sec. 7.3 investigates how to explore regions of infeasibility, with

the intent of learning more about the design, its trade-offs, and potential future design possibilities.

7.1 Scenario 1: s-Pareto Generation for Multiple Formulations

Perhaps the most obvious use for an optimization problem is to converge to an optimal

solution. In this section, the dynamic multiobjective optimization approach is combined with an

s-Pareto generation and selection strategy presented by Mattson and Messac [4]. Consider the

two formulation spaces shown in Fig. 7.1. An s-Pareto frontier is defined as the Pareto optimal

µ1

µ2
Concept 2

Concept 1

Figure 7.1: Design objective formulation spaces for two concepts are shown. The resulting s-Pareto
frontier is outlined in bold and spans both concepts and multiple formulations.
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solutions for a set of concepts. In this case, however, an s-Pareto frontier in a formulation space is

shown, because it is the Pareto optimal solutions for the set of all formulations and concepts. This

is evident in the figure because the bolded line, representing the s-Pareto frontier, spans multiple

concepts and formulations. With the s-Pareto frontier defined, concept selection can proceed with

a qualitative or quantitative analysis of concept goodness as described in [79].

The optimization problem given by P2 (Eqs. 5.1–5.6) needs to be modified to account for

multiple concepts. The generic, dynamic multiobjective optimization problem capable of compar-

ing multiple concepts is given by Problem 3 (P3):

min
k

{
min
y(k)

{
µ
(k)
1 (x(k)), µ

(k)
2 (x(k)), ..., µ

n(k)x
(x(k))

}}
(n(k)x ≥ 2) (7.1)

where the superscript [ ](k) indicates that [ ] is associated with formulation or concept k. Equa-

tions 5.2–5.6 from P2 are still valid here for P3, although each equation will be specific to the

formulation or concept k. Note that Eq. 7.1 is a minimization problem nested within another mini-

mization problem; in other words, solving P3 will find the minimum of all formulation or concept

minima. By using P3, the designer is able to diverge the design space by considering the formula-

tion spaces of all concepts, and then converge or select the concept that is most likely to meet the

final design specifications.

The objectives minimized in P3 are set objectives, meaning that they are comparable across

all formulations and concepts. The inputs to the concept models that generate set objectives may

be unique. For example, the required variable inputs needed to calculate the mass of a bevel

gear and a spur gear may be different, yet the mass of the two types of gears is comparable.

Additionally, it is possible for a formulation or concept to have one or more objectives that are

specific to the formulation or concept. To illustrate, consider a design concept that contains a

hazardous material. It may be necessary to maximize the safety of this concept, whereas other

design concepts generated may not contain the hazardous material, obviating the need to maximize

safety. These formulation and concept specific objectives are easily included as constraints in x.

More information on how to handle formulation or concept specific objectives can be found in [4].
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Figure 7.2: The results of four different optimization formulations are overlaid on the design ob-
jective space.

7.2 Scenario 2: Formulation Space Boundary Exploration

A second scenario where the dynamic formulation allows the engineer to explore and learn

more about a product’s design space is through formulation space boundary exploration. If design

objectives and preferences are truly unknown, which is often the case in early design, then finding

an s-Pareto frontier for a set of concepts is less meaningful than finding the full boundaries of

the feasible space for a given formulation. For example, when designing a vehicle for use in

different environments, it may be necessary to either minimize trunk space or maximize trunk

space, depending on the final function of the vehicle – either extreme could be considered ideal. In

this bimodal scenario, information about the design space as a whole may be better suited to help

guide the designer toward a final decision about the true objectives of this design.

Formulation space boundary exploration is fully possible with either P1 or P2, however,

this procedure will only be explicitly presented with P2. Recall that in P2, objectives are controlled

by the values along the diagonal in w. For a two-dimensional problem of a single optimization

formulation, such as the one seen in Fig. 7.2, it is possible to obtain the boundary of the design

objective space using four different w matrices in P2 and the normal boundary intersection method

or a modified normal constraint method [80,81]. For example, in w(1) in the figure, both objectives

are minimized (i.e., wi,i corresponding to µi for both objectives is 1); this results in an optimization

problem that produces the lower left boundary of the design space. The three remaining boundaries

can be obtained by toggling the requisite values in w between 1 and -1. A similar process can be

used to find the boundaries of the formulation space.
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Figure 7.3: A flow chart is shown for determining the boundaries of a formulation space using the
dynamic optimization formulation.

The general process for finding the boundaries of the formulation space is shown in Fig. 7.3.

First, the designer chooses the design objects of interest from the vector x, the total number of

which is nd , and stores the indices that correspond to x in a vector, d. Second, the designer

generates a 2nd two-level, full factorial matrix, f, in standard form. For example, if nd = 2, the

following matrix would be displayed.

f =


−1 −1

1 −1

−1 1

1 1

 (7.2)
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Figure 7.4: An original design objective space is darkly shaded, with a feasible point shown as a
circle on the interior of this space. A star represents a design point of interest that is not feasible.
The lighter shaded, dashed region represents a new space obtained through inverse optimization.

Next, P2 is executed 2nd times in a loop. For every iteration in the loop, w(i) is generated by setting

wl,l to the the i-th row and the m-th column of f, where l is the m-th entry in d. For every loop,

the solution is added to the set S and i is incremented. Once i is greater than 2nd , the process

is repeated for any remaining concepts or formulations, the total number of which is nk. This

allows the designer to see the extreme boundaries of the formulation space with respect to any

combination of objectives.

7.3 Scenario 3: Inverse Optimization

A third scenario for using the dynamic optimization problem formulation is to perform de-

sign feasibility studies, or inverse optimization. Consider the feasible design space shown as the

dark shaded region in Fig. 7.4. If the designer wants to see designs near the black circle, he or she

could easily run an optimization (using P1 or P2) that minimizes the Euclidean distance to that

point in the design objective space [52]. However, if the designer would like to see designs near

the black star in Fig. 7.4, which is located outside of the feasible design space, then the problem

constraints need to change (yl , yu, zl and zu need to be modified) to extend the searchable space

towards the star. This scenario could occur if a designer highly desires a particular performance

in the product, and is willing and able to compromise some of the constraints of the design. For

example, consider a project where a design team has been given a certain budget, which they un-

derstand to be a constraint. The team wants to know, however, how much more it would cost to get

to a particular performance level that they currently cannot reach, given the monetary constraints
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of the budget. If the increase in cost is fairly small for a significant increase in performance, this

may justify a request for a change in budget, or a change in the constraints that they have been

given. In this manner, the optimization formulation itself becomes a part of the optimization.

Presented here is an optimization formulation with two objectives functions to explore

infeasible regions of interest as Problem 4 (P4):

min
xl ,xu

{
f1(xl,xu,v), f2(xl,xu,x

(0)
l ,x(0)u )

}
(7.3)

subject to the side constraints

x(−)l,i ≤ xl,i ≤ x(+)
l,i {i = 1, ...,nx} (7.4)

x(−)u,i ≤ xu,i ≤ x(+)
u,i {i = 1, ...,nx} (7.5)

and

f1(xl,xu,p) = min
y
‖γ(y)−v‖ (7.6)

f2(xl,xu,x
(0)
l ,x(0)u ) = ‖(xl−x(0)l )‖+‖(xu−x(0)u )‖ (7.7)

where the superscripts [ ](−) and [ ](+) indicate a lower or upper bound on [ ], respectively, and the

superscript [ ](0) indicates that [ ] is from the original formulation (i.e., the formulation that defines

the feasible objective space – the dark shaded region in Fig. 7.4). The vector xl is the concatenation

of yl and zl , or xl = [yl;zl]; likewise, xu = [yu;zu]. The vector v represents a point of interest in

the current infeasible objective space, or the star in Fig. 7.4, and γ(y) is the set of objectives in

x that correspond to v. According to Eq. 7.3, the designer attempts to minimize the Euclidean

distance between γ(y) and v while also minimizing the changes made to the original optimization

formulation. As with most optimization problems, proper scaling of the design objects will produce

better results; this is especially critical when calculating f2 with Eq. 7.7, as a relatively small

change in one constraint could be large in comparison to another.

Successfully solving P4 will result in a Pareto frontier of solutions, each of which points

to an optimization formulation that searches in a design objective space that includes the point of

interest, if possible. In other words, this is an inverse optimization process, where the designer
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picks a point of interest, and the optimization formulation that can find that point is returned.

Ultimately, the designer will discover the minimum cost to obtain a desired performance.
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CHAPTER 8. CASE STUDIES

In this chapter, two case studies are presented. The first example in Sec. 8.1 is used to

compare the performance of the standard multiobjective optimization problem (Problem 1 from

Chapter 3) to the dynamic optimization problem (Problem 2 from Chapter 5). The second exam-

ple in Sec. 8.2 illustrates how formulation space exploration can be used in various scenarios to

produce valuable information for designers.

8.1 Case Study: Conceptual Sizing of an Aircraft

The purpose of this case study is to illustrate how to use formulation space exploration pre-

sented in Chapter 4 to search a product’s design space in both a divergent and convergent manner

during conceptual design. As part of the study, the benefits and limitations of the dynamic opti-

mization problem formulation from Chapter 5 are quantified and used to compare its performance

with the standard multiobjective optimization problem formulation.

The case study is based upon the conceptual sizing problem of an antisubmarine warfare

aircraft, initially presented in Aircraft Design: A Conceptual Approach [3], where a rudimentary

analytical model for sizing any aircraft from a conceptual sketch is developed from statistical and

historical data. The conceptual sketch for this case study is shown in Fig. 8.1(a), and the mission
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(a) (b)

Figure 8.1: (a) Antisubmarine warfare aircraft conceptual sketch. (b) Flight mission details. Im-
ages are adapted from Aircraft Design: A Conceptual Approach [3]
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Table 8.1: Summary of inputs and outputs to the antisubmarine warfare aircraft concept model.

Inputs Outputs
Weight of Payload Wetted Aspect Ratio
Weight of Crew Maximum Lift to Drag Ratio
Cruise Speed Lift to Drag Ratio During Cruise
Wing Aspect Ratio Lift to Drag Ratio During Loiter
Wetted Area Ratio Unknown Fuel-Weight Fractions of Mission
Cruise Range Take-off Weight
First Loiter Time
Second Loiter Time
Known Fuel-Weight Fractions of Mission
Empty Weight Fraction Model Coefficients

profile in (b). The model inputs and outputs are summarized in Table 8.4. A total of 17 independent

design objects and 11 dependent design objects are included in the model. This model is well suited

for formulation space exploration because it is a well-known example of conceptual design, where

the expressed intent for its use is in evaluation and refinement, with the customer, of the design

requirements [3].

Eight optimization problem formulations are created here using P2 as the template; each

formulation is summarized below:

• Formulation 0 - Maximize cruise range and minimize take-off weight subject to lower and

upper constraints on all model outputs and by allowing the wing aspect ratio and cruise range

to vary between side constraints. All other model inputs are fixed independent design objects

(i.e., fixed design parameters).

• Formulation 1 - Same as Formulation 0, except the weight of the payload varies.

• Formulation 2 - Same as Formulation 1, except the wetted area ratio varies.

• Formulation 3 - Same as Formulation 2, except the weight of the payload is added as a

maximized objective and the total fuel-weight fraction is added as a minimized objective.

• Formulation 4 - Same as Formulation 3, except the total fuel-weight fraction is removed as

a minimized objective.
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Figure 8.2: (a) Formulation objective space for cruise range and take-off weight. Darker shaded re-
gion is baseline formulation. (b) Novelty, preferred variety, and quality metrics versus formulation
number.

• Formulation 5 - Same as Formulation 4, except the input values are changed to represent a

composite aircraft instead of one fabricated out of aluminum.

• Formulation 6 - Same as Formulation 4, except the cruise speed is allowed to vary and

change input values to simulate a low-bypass turbofan engine rather than a high-bypass

turbofan.

• Formulation 7 - Same as Formulation 4, except the first mission loiter time is allowed to

vary.

The results from the formulation exploration process are shown in Fig. 8.2. In (a), a two-

dimensional slice of the formulation space is shown for cruise range and take-off weight (shown as

the lighter shaded region, with the baseline formulation shown as the darker shaded region and all

other formulations shown as dashed lines); in reality, the formulation space is three-dimensional

since there are three objectives in this problem. The exploration metrics from Chapter 6 have been

plotted in (b). The novelty metric at the end of the exploration process is 2.13, meaning that the

diagonal of the hypercube containing the entire formulation space is 2.13 times larger than the

baseline. The preferred variety metric ends at a value of 0.44, meaning that the distance between
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the formulation utopia point and the baseline utopia point 0.44 times the distance of the baseline

utopia point. The quality metric is at 0.65, indicating that the AOF value, which in this case is

determined with a weighted sum, of the formulation space is 0.65 times better than the baseline

AOF value.

An important role of the exploration metrics is to help indicate when the formulation space

is no longer diverging. Figure 8.2(b) shows that the slope of the exploration metrics after Formula-

tion 5 is zero; this likely indicates that no new solutions are being found by the exploration process

(i.e., the formulation space is no longer diverging). Note that at Formulation 5, the quality metric

(Mq) reached its maximum value. If Formulation 5 had been formulated first in the exploration

process, there would have been no improvement in Mq in subsequent formulations; in other words,

the slope of Mq would never increase and the value of Mq would remain at zero. However, there

may have been improvement in the other metrics. If the designer was only interested in Mq, then

they may not have tried the remaining formulations.

The benefits from formulation space exploration are not only measured by the metrics

above, but by what information is gleaned from the process. It is clear that various trade-off

studies are possible through formulation space exploration. Obtaining the Pareto frontier for the

formulation space provides a rich set of design alternatives from which the designer can “shop” for

the most suitable solution [51]. For example, consider points α and β in Fig. 8.2(a). Point α is a

design alternative from the first optimization formulation, and point β is a design alternative from

the three-dimensional formulation space Pareto frontier, originating from Formulation 5 where a

composite aircraft is simulated. These designs are juxtaposed in Table 8.2. While the weight of

the payload and take-off weights are similar, the range for Design β is significantly greater.

Formulation space exploration can be done with P1 or P2. However, with P2 it is simpler

to formulate and reformulate the optimization problem. According to Table 5.2, the formulation

space exploration process presented in this section would require 27 lines of code to be changed

if P1 is used, whereas with P2 no lines of code need to be changed (only the values of yl , yu, zl ,

zu, and w need to be changed). However, as stated in Chapter 5, there are some limitations. To

illustrate, the baseline problem (Formulation 0) is formulated using P1 and P2 and is executed

with various optimization algorithms including two gradient based methods with a weighted-sums

AOF: sequential quadratic programming (SQP) and Interior-point; and an evolutionary algorithm:
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Table 8.2: Details about two design alternatives in the formulation space.

Weight
of Pay-

load
(lbs)

Wing
As-
pect

Ratio

Wetted
Area
Ratio

Range
(Nm)

Weight
Fraction
Coeffi-
cient

Wetted
As-
pect

Ratio

Max
Lift
to

Drag
Ratio

Total
Fuel

Weight
Fraction

Take-
off
Weight
(lbs)

Design
α

10,000 8.40 5.50 1520 1.00 1.53 16.96 0.36 53,639

Design
β

10,154 8.17 5.19 1715 0.95 1.57 17.24 0.39 54,184

Table 8.3: Comparison of computation performance for P1 and P2 on an Intel Core 2 Quad
2.67GHz processor.

SQP Interior-Point Genetic Algorithm
Time (s) Function Count Time (s) Function Count Time (s) Function Count

P1 2.37 48 2.66 77 28.60 1240
P2 9.08 288 11.18 369 28.07 1240

genetic algorithm. The computation time and function call count for each algorithm are summa-

rized in Table 8.3. As shown, P1 outperforms P2 when using the gradient-based algorithms; how-

ever, no significant difference is seen in the evolutionary algorithm. The baseline problem includes

2 design variables as part of 17 independent design objects. When the ratio of design variables to

independent objects is low, as it is here, P2 does not perform as well as P1 with gradient-based

algorithms. As the ratio approaches one, the computational efficiency differences between P1 and

P2 diminishes. For this example, the computation time difference between P1 and P2 is only a few

seconds.

Another way to compare the performance between P1 and P2 is with the exploration value

to effort ratio (see Chapter 6). In this example, the value in Eq. 6.5 is the sum of all exploration

metrics above—Mn, Mv, and Mq—multiplied by 100 for proper scaling. The value added is the

same whether P1 or P2 is used. Effort is approximated as the time it takes to code each formulation

plus the computation time. This method for approximating effort does not take into account the

time spent interpreting results, planning future formulations, etc. Nonetheless, it is sufficient for
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the purpose at hand. Assume that it takes 10 seconds to change each line of code (27 lines for

P1 and 0 for P2). Using the genetic algorithm computation times from Table 8.3, the exploration

value to effort ratio for P1 is 1.08, and for P2 is 11.47. If instead an SQP algorithm is used in

conjunction with the normal constraint method [74] to generate 30 Pareto optimal solutions, the

value to effort ratio for P1 is 0.94, and for P2 is 1.18. In each case, P2 outperforms P1.

8.2 Case Study: Impact Driver Design

The purpose of this case study is to illustrate how to use the dynamic optimization explo-

ration processes under the different scenarios presented in Chapter 7. Although this case study is

anecdotal in nature, it illustrates several important points: (i) By searching the formulation space,

designers are able to search the design space in both a divergent and convergent manner. (ii) For-

mulation space exploration requires the human designer to be intimately involved in the search

process, allowing their judgement and rational decision-making capabilities to guide the search.

(iii) Using the dynamic optimization problem formulation promotes design exploration. The focus

here is not to defend the practicality of the proposed product, but rather to show how the methods

presented in this thesis could be used in the development of a new product.

The case study is based upon a proposed new type of impact driver, which is a specialized

tool that applies high torque to fasteners by the means of a hammer mechanism. The novel aspect

of this new type of impact driver is depicted in Fig. 8.3. On the left side of the figure, a backpack

holding several batteries is shown. The batteries connect to a power cord which runs from the

backpack, down the user’s arm and into a special glove with electrical contacts embedded in the

palm of the glove (shown on the right in the figure). There are corresponding electrical contacts

on the impact driver. Thus, a complete, electrical circuit is made when the user grabs the impact

driver with the glove on.

The goals of the design are to (i) reduce arm fatigue for those who use the impact driver for

long periods of time, such as outdoor deck fabricators, sheetrock hangers, or general construction

workers; (ii) increase the battery life between charges (more batteries can fit in a backpack than

directly on a typical impact driver); and (iii) maintain the mobility of a cordless impact driver. For

the remainder of the case study, attention will be directed towards how a designer might develop

an impact driver to accompany the backpack and glove – specifically, how to design a DC motor

34



Electrical�
 Contacts in 

Glove

Electrical 
Cord Runs 
Down Arm

Batteries in 
Backpack

Figure 8.3: General idea for new type of impact driver. A backpack holds several batteries, which
connect to a special glove via a power cord. The glove has electrical contacts that correspond and
connect power to an impact driver. Image courtesy of Garrett Bodily at Brigham Young University.

Figure 8.4: Two existing functional prototypes for new impact driver – the left prototype corre-
sponds to Concept 1 in the case study and the right prototype is represented by Concept 4.

impact driver with no battery attachment. Two different groups of engineering graduate students

at Brigham Young University (BYU) designed and built functional prototypes of this novel type of

impact driver. Both prototypes are shown in Fig. 8.4; the results of the exploration process will be

compared with these designs.

Five impact driver concepts have been generated that could potentially fulfill the design

specifications of this case study, shown as Concepts 1 through 5 in Fig. 8.5. In each case, the

geometry and product architecture is altered, and the drive train components are added or sub-

tracted to achieve the desired goals. Each concept uses the same impact assembly, which has been
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designed previously and is the existing impact assembly for a 12V Hitachi (model WH10DFL)

impact driver. Each concept is described in greater detail below:

• Concept 1 - In this concept, the impact assembly (I) is oriented horizontally above the trig-

ger assembly (T). Two sets of bevel gears (G) connect the impact driver to the motor (M),

which is oriented horizontally and located where batteries are typically found on most com-

mercially available impact drivers.

• Concept 2 - This concept is similar to Concept 1; however, the motor is oriented vertically.

Only one set of bevel gears is needed to connect the motor to the impact assembly. Addi-

tionally, a counterweight (W) is added to the design.

• Concept 3 - In this concept, the motor is directly attached to the impact assembly, obviating

the need for any bevel gears. The counterweight from Concept 2 is included to help improve

balance.

• Concept 4 - In this concept, the impact assembly is oriented vertically, with a set of bevel

gears at the output to allow the user to drive fasteners horizontally. A gear train consisting of

four spur gears (S) connects the impact driver to the motor, which is also oriented vertically.

The trigger assembly is located directly above the motor.

• Concept 5 - This concept is similar to Concept 4; however, the motor is located directly

below the trigger assembly and the impact assembly. No gear train is needed in this concept

as the motor is directly inline with the impact assembly.

Five separate models have been developed to analyze the concepts. The model inputs (y)

and outputs (z) are summarized in Tab. 8.4. For every model, the origin is defined as the upper

corner of the trigger assembly that faces the front of the impact driver (see Fig. 8.5); assume

the ideal center of mass of the impact driver is at that point, which is approximately true for the

commercially available 12V Hitachi impact driver. While the inputs to every model vary, each

model includes a total mass estimate, a total cost estimate, torque output, speed output, as well

as various other outputs of interest. With models defined for each concept, formulation space

exploration can begin.
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Figure 8.5: Five concepts for an impact driver with no batteries.

Table 8.4: Model inputs and outputs for the five impact driver concepts.

Concepts Model Input (y)
1, 2, 3, 4, 5 Drive Shaft Materials
1, 2, 3, 4, 5 Drive Shaft Sizes
1, 2, 4, 5 Gear Material
1, 2, 4, 5 Gear Type

1, 2, 3, 4, 5 Motor Type
1, 2, 3, 4, 5 Motor Location
1, 2, 3, 4, 5 Impact Assembly Location

2, 3 Counterweight Location
2, 3 Counterweight Material
2, 3 Counterweight Size

Concepts Model Output (z)
1, 2, 3, 4, 5 Drive Shaft Locations
1, 2, 3, 4, 5 Shaft Stress Constraint
1, 2, 4, 5 Gear Locations
1, 2, 4, 5 Gear Torque Constraint

1, 2, 3, 4, 5 Total Mass
1, 2, 3, 4, 5 Center of Mass
1, 2, 3, 4, 5 Total Cost
1, 2, 3, 4, 5 Number of Collisions
1, 2, 3, 4, 5 Torque Supplied
1, 2, 3, 4, 5 Torque Difference
1, 2, 3, 4, 5 Speed Supplied
1, 2, 3, 4, 5 Speed Difference
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Figure 8.6: Boundary exploration for the center of mass of Concept 1.

8.2.1 Boundary Exploration

Recall that a main goal of the design is to reduce arm fatigue for those who use the impact

driver for long periods of time. Thus, it is reasonable to begin formulation space exploration with

the assumption that a designer would want to minimize the total mass of the impact driver and

minimize the Euclidean distance between the ideal center of mass (located at the origin of the

models) and the actual center of mass of each concept. Nevertheless, other objectives are still

unclear at this point; it is in this scenario where boundary exploration is most useful. Concept 1

will be considered first. A preliminary optimization problem is formulated, and using the process

outlined in Fig. 7.3 (with nd = 2 and nk = 1) boundaries for the x and y locations of the center

of mass are explored. The result is shown in Fig. 8.6. The plot illustrates that the ideal center of

mass (0,0) is not possible, given the current optimization formulation. Additionally, the x-location

of the center of mass ranges from -30mm to 105mm and the y-location from -90mm to -10mm.

Using this data, worst case scenario experiments can be run with rudimentary, physical prototypes

to determine whether the x-location or y-location has a greater effect on arm fatigue and use this

information in subsequent optimization formulations.
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Figure 8.7: Visualization of design alternatives for two formulations.

8.2.2 Visualization

Using the results from the previous section, a new optimization problem has been formu-

lated that now includes a third objective: minimize the x-location of the center of mass. The

projection of this new 3-dimensional design objective space is plotted in a two-dimensional plane

as the dashed lines in Fig. 8.7 and labeled as k = 0′. The x-axis in the figure is the total mass of

the impact driver in the grams and the y-axis is the distance to the ideal center of mass in millime-

ters. An architectural layout for one design alternative on the Pareto frontier of this formulation

is depicted on the right in the plot; the labels are the same as those in Fig. 8.5. Notice that the

vertical drive shaft of this design is relatively distant from the trigger assembly. From a design

usability standpoint, the vertical shaft should fit inside the impact driver handle, along with the

trigger assembly. In this particular design alternative, it is clear that in order for both components

to fit inside the handle, the handle needs to be quite large – too large, in fact, for a hand to grip

easily. Moreover, the vertical distance between the impact assembly and the motor is too small.

In other words, this space is not pragmatic or valid, and by definition does not contribute to the

formulation space.

With what has been learned from k = 0′, a new optimization problem (k = 0) has been

formulated with an added objective: minimize the distance between the trigger assembly and the

vertical shaft. The constraint on the y-location of the motor has also been updated to allow more
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vertical space for a hand to grip the impact driver. The resulting design space is shown as the

region enclosed by solid lines in Fig. 8.7. A design alternative from this Pareto frontier is depicted

on the left – notice that there is no horizontal space between the vertical drive shaft and the trigger

assembly, and there is adequate vertical space between the impact assembly and the motor. As seen

here, visualization of optimization results is critical to effective formulation space exploration. In

this case, the architectural layouts are generated by a concept analytical model, and while low

in fidelity, provide adequate information to decision-makers. However, visualization of design

alternatives is not always practical, nor is it possible to directly and simultaneously plot formulation

spaces that exist in more than three dimensions. Optimization visualization is a topic of ongoing

research, and several methods exist that could potentially facilitate formulation space exploration

[52, 82–84].

8.2.3 Inverse Optimization

Suppose that a designer wants to learn the minimum amount of change to the current op-

timization formulation (k = 0) that would result in an objective space that contains the following

point of interest: (mass = 600g, distance to ideal center of mass = 30mm). The star in Fig. 8.8(a)

represents this point of interest. Using P4, an optimization algorithm is allowed to modify the cur-

rent lower and upper bounds of the weight of the motor, the length of the motor, the torque output

of the motor, and the shaft stresses within new ranges that are defined. These ranges are contained

in x(−)l , x(+)
l , x(−)u , and x(+)

u . Solving P4 results in a Pareto frontier of optimization formulations,

shown in Fig. 8.8(b). The minimum scaled distance to the point of interest is shown on the x-axis,

and the number of changes to the original optimization formulation is on the y-axis. One of these

optimization formulations is highlighted as k = 1′. Using the lower and upper bounds on x from

this formulation in P2, the design objective space is plotted in Fig. 8.8(a) with dashed lines. As

shown, this space has the point of interest on its Pareto frontier, and contains most of the previous

formulation (k = 0). Although this region is assumed to be infeasible, the minimum change to the

formulation that would be required in order to obtain the objective values of the point of interest

comes from lowering the upper constraint on the motor mass by 95g and the motor torque by 201

N-mm.
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Figure 8.8: (a) A point of interest (the star) is selected, and an optimization problem is formulated
to modify the constraints of the design space in thin solid lines so that it includes the point of
interest. The resulting space is shown with dashed lines. Another space, shown in bold, is then
formulated to approximate the results of the inverse optimization. (b) This is the Pareto frontier of
the inverse optimization problem.

With this information, a different motor can be found for the design that will approximate

the results of the inverse optimization. With a new motor, additional constraints in the formulation

are needed to ensure that the torque and speed of the impact driver are appropriate. The design

space of the new formulation (k = 1) is shown in bold in Fig. 8.8(a). While formulation 1 does not

match the performance of formulation 1’ exactly, it is noticeably better than formulation 0.

8.2.4 s-Pareto Generation and Concept Selection

Six more formulations are created for Concept 1 and shown in Fig. 8.9. As long as the

designer finds each explored region to be pragmatic and useful, the union of these regions becomes

the formulation space. Using the metrics developed in Chapter 6, the goodness of this formulation

space exploration process can be quantified in terms of three aspects: novelty, preferred variety,

and quality. Novelty is a measure of how expansive the search has been. Preferred variety indicates

how well the search has expanded in useful directions. And quality indicates improvement in the

“best” design as determined by an aggregate objective function. For the formulation exploration

of Concept 1, the values of 0.35, 0.11, and 0.08 are achieved for novelty, preferred variety, and
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Figure 8.9: Formulation space for Concept 1.

quality, respectively. Each is an indication of improvement over the baseline design space (k = 0),

and provide evidence that the exploration process has added value to the search.

A similar exploration process is performed for the remaining impact driver concepts. In

each case, P3 is used to find a suitable optimization problem formulation. The chosen formula-

tions for each concept are numbered in Fig. 8.10. Three data points corresponding to the physical

prototypes in Fig. 8.4 and to the Hitachi impact driver are also included in the plot. The asterisk

marked with C1 represents the prototype for Concept 1, the asterisk marked with C4 represents the

prototype for Concept 4, and the asterisk marked as H represents the 12V Hitachi impact driver.

Since the featured models did not include the mass of the plastic casing, it was not included bench-

mark designs’ mass in the plot. Also, these prototypes use a different motor than the one modeled,

and therefore fall outside design spaces depicted for these concepts. In the figure, Concept 3 con-

tains the largest portion of the s-Pareto frontier, and the predicted performance is significantly

better than that of the existing prototypes. Perhaps if the BYU designers had access to this infor-

mation which was provided by the exploration process, they would have made different decisions,

and according the models, would have seen potentially better results.
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Figure 8.10: Comparison of five impact driver concepts. The asterisk marked ”H” represents the
Hitachi WH10DFL model, and the asterisks marked ”C1” and ”C4” represent the prototypes from
Fig. 8.4.
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CHAPTER 9. CONCLUDING REMARKS

An optimization strategy has been presented that facilitates both convergence and diver-

gence during conceptual design. Using this strategy, a computational search is not confined to the

search space defined initially by an optimization problem formulation. Instead, a designer may

search the formulation space, which has been defined as the union of all design variable and ob-

jective spaces identified by the designer as being valid and pragmatic problem formulations, to

form the solution as he or she learns more about the design problem. This can open the door to

early stage design exploration with computational assistance. As part of this strategy, a generic,

vector/matrix-based, dynamic multiobjective optimization problem has been introduced, which al-

lows the designer to easily modify and adapt the optimization problem as needed. Additionally, a

set of exploration metrics has been developed, and three use scenarios for formulation space explo-

ration have been identified. The theories and methods in this thesis have been demonstrated in two

case studies involving the conceptual design of an antisubmarine warfare aircraft and an impact

driver.

While the results of this thesis are promising, there are several avenues for improvement

that can be made in future research.

• First, if the vision for the synergistic designer/computer design environment in Fig. 1.1 is

to be realized, methods for inputting design concepts into the computer and automatically

interpreting and parameterizing these concepts need to be developed or improved. The goal

here is to let the human designer remain in a creative mind-set, while leaving the computer

in place to execute numerical calculations.

• Second, the dynamic multiobjective optimization problem presented in Chapter 5 has a few

limitations. It has been shown to be computationally inefficient when using gradient-based

optimization algorithms. Moreover, it is required to separate design objects into independent

and dependent objects, meaning, for example, that a dependent design constraint cannot
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be implemented directly as a design variable. Improvements in the dynamic optimization

problem formulation should increase efficiency and allow for more flexibility.

• Third, as shown in the case studies in Chapter 8, proper visualization of optimization results

can have a significant impact on formulation space exploration. An in-depth study of existing

visualization methods and their application to formulation space exploration is warranted.

• Finally, several commercial optimization packages are currently available, including MAT-

LAB, iSIGHT, and OptdesX to name a few. If optimization is to be widely used during

conceptual design in industry, then software packages like these will have to “think outside

the box” and begin to provide optimization methods that are more conducive to the concep-

tual design environment. Incorporating the ability to explore the formulation space would

be a good starting point.

Improvements in these areas, coupled with the findings in this thesis, can facilitate the use of

computational search methods throughout the design process. This will allow design engineers to

make more informed design decisions, and ultimately, create better products.

45



REFERENCES

[1] Ulrich, K. T., and Eppinger, S. D., 2004. Product Design and Development., third ed.
McGraw-Hill/Irwin. 1, 3, 9, 13

[2] Pahl, G., Beitz, W., Feldhusen, J., and Grote, K.-H., 2007. Engineering Design: A Systematic
Approach. Springer. 1, 3

[3] Raymer, D. P., 1992. Aircraft Design: A Conceptual Approach., 2 ed. American Institute of
Aeronautics and Astronautics. 1, 29, 30

[4] Mattson, C. A., and Messac, A., 2003. “Concept selection using s-pareto frontiers.” AIAA
Journal, 41(6), pp. 1190–1198. 1, 3, 22, 23

[5] Ishii, K., 1995. “Life-cycle engineering design.” Journal of Mechanical Design, 117, June,
pp. 42–47. 3

[6] Homan, B. S., and Thornton, A. C., 1998. “Precision machine design assistant: A constraint-
based tool for the design and evaluation of precision machine tool concepts.” Artifical Intel-
ligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 12(5), pp. 419–429.
3

[7] Wang, J., 2001. “Ranking engineering design concepts using a fuzzy outranking preference
model.” Fuzzy Sets and Systems, 119, pp. 161–170. 3

[8] Mattson, C. A., and Messac, A., 2002. “A non-deterministic approach to concept se-
lection using s-pareto frontiers.” In ASME IDETC/CIE2002, Montreal, Quebec, Canada,
DETC2002/DAC-34125. 3

[9] Olewnik, A. T., and Lewis, K. E., 2003. “On validating design decision methodologies.” In
ASME DETC/DTM 2003, Chicago, Illinois, USA, DETC2003/DTM-48669. 3

[10] Pugh, S., 1996. Creating innovative products using total design: the living legacy of Stuart
Pugh. Addison-Wesley, Reading, Massachusetts. 3

[11] Brintrup, A. M., Ramsden, J., and Tiwari, A., 2007. “An interactive genetic algorithm-based
framework for handling qualitative criteria in design optimization.” Computers in Industry,
58, pp. 279–291. 3

[12] Brintrup, A. M., Ramsden, J., Takagi, H., and Tiwari, A., 2008. “Ergonomic chair design
by fusing qualitative and quantitative criteria using interactive genetic algorithms.” IEEE
Transactions on Evolutionary Computation, 12(3), June, pp. 343–354. 3

46



[13] Takagi, H., 2001. “Interactive evolutionary computation: Fusion of the capabilities of ec
optimization and human evaluation.” Proceedings of the IEEE, 9(9), September, pp. 1275–
1296. 3

[14] Gong, D., and Yuan, J., 2011. “Large population size IGA with individuals fitness not as-
signed by user.” Applied Soft Computing, 11, pp. 936–945. 3

[15] Oduguwa, V., Roy, R., and Farrugia, D., 2007. “Development of a soft computing based
framework for engineering design optimisation with quantitative and qualitative search
spaces.” Applied Soft Computing, 7(1), January, pp. 166–188. 3

[16] Huber, M., Petersson, O., and Baier, H., 2008. “Knowledge-based modeling of manufacturing
aspects in structural optimization problems.” Advanced Materials Research, 43, pp. 111–122.
3

[17] Barnum, G. J., and Mattson, C. A., 2010. “A computationally-assisted methodology for
preference-guided conceptual design.” Journal of Mechancial Design, 132(12), p. 121003. 3

[18] Patel, J., and Campbell, M. I., 2010. “An approach to automate and optimize concept gener-
ation of sheet metal parts by topological and parametric decoupling.” Journal of Mechanical
Design, 132, May, p. 051001. 3

[19] Mattson, C. A., Muller, A., and Messac, A., 2009. “Case studies in concept exploration and
selection with s-pareto frontiers.” International Journal of Product Development, 9(1/2/3),
pp. 32–59 Special Issue on Space Exploration and Design Optimization. 3

[20] Morino, L., Bernardini, G., and Mastroddi, F., 2006. “Multi-disciplinary optimization for the
conceptual design of innovative aircraft configurations.” Computer Modeling in Engineering
Sciences, 13(1), May, pp. 1–18. 3

[21] Hassan, R. A., and Crossley, R. A., 2002. “Multi-objective optimization of conceptual de-
sign of communication sattelites with a two-branch tournament genetic algorithm.” In 43rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 3

[22] Qazi, M., and Linshu, H., 2005. “Rapid trajectory optimization using computational in-
telligence for guidance conceptual design of multistage space launch vehicles.” In AIAA
Guidance, Navigation and Control Conference. 3

[23] Dye, C., Staubach, J. B., Emmerson, D., and Jensen, C. G., 2007. “CAD-based parametric
cross-section designer for gas turbine engine MDO applications.” Computer-Aided Design &
Applications, 4(1-4), pp. 509–518. 3

[24] Davis, R., 2007. “Magic paper: Sketch-understanding research.” Computer, 40(9), sept.,
pp. 34 –41. 3

[25] Alvarado, C. J., and Davis, R., 2007. “Sketchread: a multi-domain sketch recognition en-
gine.” In ACM SIGGRAPH 2007 courses, SIGGRAPH ’07, ACM. 3

[26] Zeleznik, R., Miller, T., van Dam, A., Li, C., Tenneson, D., Maloney, C., and LaViola, J. J.,
2008. “Applications and issues in pen-centric computing.” IEEE Multimedia, 15, pp. 14–21.
3

47



[27] LaViola, J. J., 2011. “Mathematical sketching: An approach to making dynamic illustrations.”
In Sketch-based Interfaces and Modeling, J. Jorge and F. Samavati, eds. Springer London,
pp. 81–118. 3

[28] Landay, J. A., and Myers, B. A., 2001. “Sketching interfaces: toward more human interface
design.” Computer, 34(3), mar, pp. 56 –64. 3

[29] Kuehmann, C. J., and Olson, G. B., 2009. “Computational materials design and engineering.”
Materials Science and Technology, 25(4), pp. 472–478. 4

[30] Shelley, J. K., Giullian, N. C., and Jensen, C. G., 2007. “Incorporating computational fluid
dynamics into the preliminary design cycle.” Computer-Aided Design & Applications, 4(1-4),
pp. 235–245. 4

[31] Willcox, K., and Megretski, A., 2005. “Fourier series for accurate, stable, reduced-order
models in large-scale applications.” SIAM Journal for Scientific Computing, 42(3), pp. 944–
962. 4

[32] Wang, G. G., and Shan, S., 2007. “Review of metamodeling techniques in support of en-
gineering design optimization.” Journal of Mechanical Design, 129, April, pp. 370–380.
4

[33] Shao, T., Krishnamurty, S., and Wilmes, G. C., 2007. “Preference-based surrogate modeling
in engineering design.” AIAA Journal, 45(11), November, pp. 2688–2701. 4

[34] Allaire, D., and Willcox, K., 2010. “Surrogate modling for uncertainty assessment with ap-
plication to aviation environmental system models.” AIAA Journal, 48(8), August, pp. 1791–
1803. 4

[35] Galbally, D., Fidkowski, K., Willcox, K., and Ghattas, O., 2010. “Nonlinear model reduction
for uncertainty quantification in large-scale inverse problems.” International Journal for
Numerical Methods in Engineering, 81(12), March, pp. 1581–1608. 4

[36] Kiureghian, A. D., 1996. “Structural reliability methods for seismic safety assessment: A
review.” Engineering Structures, 18(6), p. Engineering Structures. 4

[37] Frangopol, D. M., and Corotis, R. B., 1996. “Reliability-based structural system optimiza-
tion: Stateof-the-art verses state-of-the-practice.” In Proceedings of the Twelfth Conference
on Analysis and Computation, pp. 67–78. 4

[38] Thanedar, P. B., and Kodiyalam, S., 1991. “Structural optimization using probabilistic con-
straints.” In AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Con-
ference, number AIAA-91-0922-CP. 4

[39] Melchers, R. E., 1999. Structural Reliability: Analysis and Prediction. Ellis Horwood Series
in Civil Engineering. John Wiley & Sons. 4

[40] Parkinson, A., Sorensen, C., and Pourhassan, N., 1995. “A general approach for robust
optimal design.” ASME Journal of Mechanical Design, 115, pp. 74–80. 4

48



[41] Chen, W., M.Wiecek, M., and Zhang, J., 1999. “Quality utility - a compromise programming
approach to robust design.” ASME Journal of Mechanical Design, 121, June. 4, 20

[42] Chen, W., Sahai, A., Messac, A., and Sundaraj, G. J., 2000. “Exploring the effectiveness
of physical programming in robust design.” ASME Journal of Mechanical Design, 122(2),
pp. 155–163. 4

[43] Su, J., and Renaud, J. E., 1997. “Automatic differentiation in robust optimization.” AIAA
Journal, 35(6), pp. 1072–1079. 4

[44] Taguchi, G., 1993. Taguchi on Robust Technology Development: Bringing Quality Engineer-
ing Upstream. ASME Press, New York. 4

[45] Messac, A., and Ismail-Yahaya, A., 2002. “Multiobjective robust design using physical pro-
gramming.” Structural and Multidisciplinary Optimization, 23(5), pp. 357–371. 4

[46] Chen, W., and Wassenaar, H. J., 2001. “An approach to decision-based design.” In Proceed-
ings of DETC01, ASME 2001 Design Engineering Technical Conference and Computers and
Information in Engineering Conference, number DETC2001/DMT-21683, Pittsburgh, Penn.
4

[47] DeVor, R. E., Chang, T. H., and Sutherland., J. W., 1992. Statistical Quality Design and
Control: Contemporary Concepts and Methods. Prentice Hall, New Jersey, pp. 525–535. 4

[48] Koch, P. N., 2002. “Probabilistic design: Optimizing for six sigma quality.” In AIAA 43rd
AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, num-
ber AIAA20021471. 4

[49] Scott, M. J., 2007. “Quantifying uncertainty in multicriteria concept selection methods.”
Research in Engineering Design, 17, pp. 175–187. 4

[50] Arora, J. S., 2004. Introduction to Optimum Design. Elsevier Academic Press. 4

[51] Balling, R., 1999. “Design by shopping: A new paridigm?.” In Third World Congress of
Structural and Multidisciplinary Optimization, Vol. 1, pp. 295–297. 4, 32

[52] Stump, G., Lego, S., Yukish, M., Simpson, T., and Donndelinger, J., 2009. “Visual steering
commands for trade space exploration: User-guided sampling with example.” Journal of
Computing Information Science in Engineering, 9, pp. 044501–1–044501–10. 4, 26, 40

[53] Agate, J., de Weck, O., Sobieszczanski-Sobieski, J., Arendson, P., Morris, A., and Spieck, M.,
2010. “MDO: Assessment and direction for advancement – an opinion of one international
group.” Structural and Multidiscipilnary Optimization, 40(1), pp. 17–33. 4

[54] Finger, S., and Dixon, J. R., 1989. “A review of research in mechanical engineering design
part I: descriptive, prescriptive, and computer-based modes of design processes.” Research
in Engineering Design, 1(1), pp. 51–67. 5

[55] Evbuomwan, N. F. O., Sivaloganathan, S., and Jebb, A., 1996. “A survey of design
philosophies, models, methods and systems.” Journal of Engineering Manufacture, 210(42),
pp. 301–320. 5

49



[56] Yadav, O., Nepal, B. P., and Jain, R., 2007. “Managing product development process com-
plexity and challenges: a state-of-the art review.” Journal of design research, 6(4), pp. 487–
508. 5

[57] Markman, A. B., and Wood, K. L., 2009. Tools for Innovation. Oxford University Press. 5

[58] Linsey, J., and Viswanathan, V., 2011. “Enhancing engineering innovation through physical
representation.” In Proceedings of 2011 NSF Engineering Research and Innovation Confer-
ence, Atlanta, Georgia. 5

[59] Tumer, I. Y., Stone, R., Tumer, K., Oman, S., and Nix, A., 2011. “Collaborative research:
Quantifying creativity in automated design through multi-agent coordination framework.” In
Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Geor-
gia. 5

[60] Schunn, C., Wood, K., Cagan, J., Chan, J., Fu, K., and Kotovsky, K., 2011. “The effects
of example distance and familiarity on conceptual ideation in engineering design: Initial
results.” In Proceedings of 2011 NSF Engineering Research and Innovation Conference,
Atlanta, Georgia. 5

[61] Osborne, A., 1953. Applied Imagination. Charles Scribner and Sons, New York. 5

[62] Zwicky, F., 1948. The Morphological Method of Analysis and Construction. Wiley Inter-
science, New York Courant Anniversary Volume. 5

[63] Gordon, W. J. J., 1961. Synectics. Harper and Row, New York. 5

[64] Lubart, T., 2005. “How can computers be partners in the creative process: Classification and
commentary on the special issue.” International Journal of Human-Computer Studies, 63,
pp. 365–369. 5

[65] Kara, L. B., 2011. “Learning geometric knowledge from conceptual sketches and its utiliza-
tion in shape design and optimization.” In Proceedings of 2011 NSF Engineering Research
and Innovation Conference, Atlanta, Georgia. 5

[66] Herold, J., and Stahovich, T. F., 2011. “Aligning speech and sketch modalities in multi-modal
descriptions of engineering designs.” In Proceedings of 2011 NSF Engineering Research and
Innovation Conference, Atlanta, Georgia. 5

[67] Robertson, B. F., and Radcliffe, D. F., 2009. “Impact of cad tools on creative problem solving
in engineering design.” Computer-Aided Design, 41(3), March, pp. 136–146. 5

[68] Mistree, F., and Allen, J. K., 1997. “Optimization in decision-based design.” In Decision-
Based Design Workshop, Orlando, Florida Position Paper. 5

[69] Simpson, T. W., and Martins, J. R. R. A., 2010. “The future of multidisciplinary design opti-
mization: advancing the design of complex engineered systems.” In NSF Workshop Report,
Fort Worth, Texas, September 16, 2010. 5

[70] Miettinen, K. M., 1999. Nonlinear Multiobjective Optimization. International Series in Op-
erations Research & Management Science. Kluwer Academic Publishers. 7

50



[71] Messac, A., and Mattson, C. A., 2002. “Generating well-distributed sets of pareto points
for engineering design using physical programming.” Optimization and Engineering, 3(4),
pp. 431–450. 7, 20

[72] Steuer, R. E., 1986. Multiple Criteria Optimization, Theory Computations and Applications.
John Wiley & Sons, New York. 7, 20

[73] Belegundu, A., and Chandrupatla, T., 1999. Optimization Concepts and Applications in
Engineering. Prentice Hall, New Jersey. 7

[74] Messac, A., and Mattson, C. A., 2004. “Normal constraint method with guarantee of even
representation of complete pareto frontier.” AIAA Journal, 42(10), pp. 2101–2111. 8, 19, 34

[75] Fox, R. L., 1971. Optimization Methods in Engineering Design. Addison-Wesley. 10

[76] Shah, J. J., and Vargas-Hernandez, N., 2003. “Metrics for measuring ideation effectiveness.”
Design Studies, 24, pp. 111–134. 18

[77] Halstead, M. H., 1977. Elements of Software Science. Elsevier North-Holland, Inc., Amster-
dam. 21

[78] McCabe, T. J., 1976. “A complexity measure.” IEEE Transactions on Software Engineering,
2(4), December, pp. 308–320. 21

[79] Mattson, C. A., and Messac, A., 2005. “Pareto frontier based concept selection under uncer-
tainty with visualization.” Optimization and Engineering, 6(1), pp. 85–115. 23

[80] Das, I., and Dennis, J. E., 1998. “Normal-boundary intersection: a new method for gener-
ating the pareto surface in nonlinear multicriteria optimization problems.” SIAM Journal on
Optimization, 8(3), August, pp. 631–657. 24

[81] Messac, A., Ismail-Yahaya, A., and Mattson, C. A., 2003. “The normalized normal constraint
method for generating the pareto frontier.” Structural Multidisciplinary Optimization, 25,
pp. 86–98. 24

[82] Blasco, X., Herrero, J. M., Sanchis, J., and Martı́nez, M., 2008. “A new graphical visual-
ization of n-dimensional pareto front for decision-making in multiobjective optimization.”
Information Sciences, 178(20), October, pp. 3908–3924. 40

[83] Huang, C. H., and Bloebaum, C. L., 2004. “Visualization as a solution aid for multi-objective
concurrent subspace optimization in a mulidisciplinary design environment.” In Proceedings
of 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 40

[84] Jones, C. V., 1996. Visualization and Optimization. Springer. 40

51



APPENDIX A. PSUEDO CODES

Define Design Variable Limits... 
Define Design Parameter Values... 
Construct x0 
Construct xL 
Construct xU 
Construct P 
Call [x*, mu*] = optimize(x0, xL, xU, P) 
 
function [objectives] = objectiveFunction(x, P) 
Call [outputs] = model(x, P) 
Calculate objectives 
 
function [g, h] = constraintFunction(x, P) 
Call [outputs] = model(x, P) 
Define Equality Constraint Values... 
Calculate h... 
Define Inequality Constraint Values... 
Calculate g... 
 
function [outputs] = model(x, P) 
Extract x... 
Extract P... 
Calculate outputs...

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23

Define Independent Design Object Limits... 
Define Dependent Design Object Limits... 
Construct y0 
Construct yL 
Construct yU 
Construct zL 
Construct zU 
Define w... 
Call [x*] = optimize(y0, yL, yU, zL, zU, w) 
 
function [objectives] = objectiveFunction(y, w) 
Call [z] = model(y) 
Calculate x = [y;z] 
Calculate objectives = w*x 
 
function [constraints] = constraintFunction(y, zL, zU) 
Call [z] = model(y) 
Calculate constraints = [zL-z; z-zU] 
 
function [z] = model(y) 
Extract y... 
Calculate z...

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22

Standard Multiobjective Optimization Code (P1) Dynamic Multiobjective Optimization Code (P2)
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