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ABSTRACT

Microstructural Factors of Strain Delocalization
in Model Metallic Glass Matrix Composites

Thomas J. Hardin
Department of Mechanical Engineering, BYU

Master of Science

Metallic glass matrix composites have enormous potential stemming from the interplay
between crystalline and amorphous phases. This work models such a composite using shear trans-
formation zone dynamics (a modified kinetic Monte Carlo method) for the amorphous phase, and a
local Taylor dislocation model for the crystalline phase. An N-factorial experiment using the model
is presented examining the effects of crystalline volume fraction, microstructure length scale, and
yield stress of the crystalline phase. Each replicate is analyzed for maximum stress, maximum
strain, strain energy dissipation, strain localization, and strain partitioning between phases. Re-
gression analysis is used to identify statistically-significant trends in the data. The experiment
shows that strain delocalization and the consequent ductility are facilitated by a crystalline phase
with a substantially lower yield stress than that of the amorphous matrix. It also shows that in-
creasing crystalline volume fraction alone is insufficient to promote strain delocalization in the
case of a crystalline phase with high relative yield stress, and that a lower yield stress for the crys-
talline phase implies lower maximum stresses supported by the composite. Therefore designers
must balance the need for ductility and delocalization against the composite yield stress by find-
ing an optimal combination of volume fraction and crystalline mechanical properties. This work
provides continuous functional forms for the relationships between these properties to aid in that
optimization process.

Keywords: metallic glass, amorphous, composite, STZ dynamics
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CHAPTER 1. INTRODUCTION

Metallic glass matrix composites (MGMC) have demonstrated enormous potential for im-

proved ductility and toughness over traditional bulk metallic glasses (BMG). Some MGMCs even

exhibit toughness comparable to that of aluminum or steel alloys [2, 3] while retaining impres-

sive strength and stiffness [4]. Of fundamental interest in the design of these MGMCs is the role

played by the various microstructural characteristics of the two contributing phases that enable

further optimization of these composites.

The crystalline inclusions in MGMCs are needed to improve the plasticity of BMGs be-

cause monolithic metallic glasses (amorphous metals) typically exhibit catastrophic failure by

shear banding upon yield. This extreme response results from the absence of a crystal lattice,

which precludes the plasticity mechanisms found in traditional crystalline materials. Plasticity in

amorphous metals occurs by incremental localized shear events called shear transformation zones

(STZ) [5]. These zones involve the collective rearrangement of several dozen atoms in response

to an applied shear stress. These thermally activated STZs typically have volumes on the order of

10−27m3 and shear over timescales of 10−12s [6–11]. STZs are energetically much more costly

than dislocations or twinning and differ in that they leave behind local structural changes involving

increased free volume [6]. These structural changes and the stress fields in the vicinity of an STZ

bias the energy landscape in favor of further STZ activation nearby; consequently, a chain of sub-

sequent STZs activate in this “softer” region, leading to the sudden, catastrophic failure mentioned

earlier [12]. As a result of this strain-softening behavior and accompanying catastrophic brittle

failure mode, monolithic metallic glasses have struggled to find engineering application leveraging

their extraordinarily high strength-to-weight ratio.

The introduction of a second, crystalline phase into the amorphous matrix (to form an

MGMC) breaks up shear band events that would otherwise cause failure. This second phase is

introduced either in the form of intrinsic crystalline dendrites which nucleate and grow in certain
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alloys under specific processing conditions [13, 14], or by addition of extrinsic metal whiskers or

particles [15–17].

Recent experimental work has focused on optimizing MGMCs for various loading con-

ditions; behavior under dynamic loading [18, 19] and ductility under tensile loading have been

of particular interest [4, 20–25]. Other experiments have studied how processing—specifically

cold rolling—enhances ductility of MGMCs [23, 24]. One recent development has demonstrated

strain-hardening behavior in MGMC alloys whose crystalline phase exhibits a martensitic trans-

formation [26–29].

Efforts to examine the microstructural factors governing MGMC behavior in a systematic

manner have yielded insight towards optimizing such composites. After chemistry, volume frac-

tion of the crystalline phase is the most-examined MGMC design variable [3, 30–35]; it seems

that increasing crystalline volume fraction tends to stabilize plasticity and delocalize strain, but to

decrease the macroscopic strength of the composite. Length scale of the dendritic phase has also

been investigated at length [3,4,14,22,30,34,36] in an effort to find an optimum balance of ductil-

ity and strength. Finally, a very few experiments have explicitly examined the effect of ductility or

brittleness of the second phase of the MGMC [35]; the effectiveness of the second phase appears to

be dependent on the ductility of that phase, and not merely on the inhomogeneity of the composite.

Computational models have also contributed to understanding of MGMC mechanics [11].

At the continuum level, a two-phase finite element model by Qiao [37] quantitatively describes

macroscopic MGMC deformation mechanics. The model is based on a five-step deformation

regime which starts with pure elastic deformation, then adds plasticity in the crystalline phase,

then goes through three stages where both phases yield, then the crystallites harden, and then

finally the composite softens and fails. Other finite element approaches have focused on stress het-

erogeneity and consequent plastic mismatch between the two phases [38], and on the distribution

of strain between the two phases at varying degrees of deformation [39].

On much smaller length and time scales, atomistic investigations have resolved many char-

acteristics of STZs and bulk metallic glass behavior [11, 40]. Molecular dynamics simulations of

MGMCs have yielded insight into shear band behavior around very small crystallites of varying

geometry, volume fraction, and arrangement [41]. Insight has also been obtained into shear band

deflection in amorphous/amorphous composites [42].
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Between the continuum and atomistic length and time scales, this paper develops a mesoscale

MGMC model based on Homer and Schuh’s STZ dynamics model [12, 43–45]. It outlines an N-

factorial experiment designed to isolate the effects of volume fraction, length scale, and yield stress

of the crystalline phase. The experiment design enables isolation of effects, helping designers to

better access the best that both the amorphous matrix and the crystalline reinforcement have to

offer. Seven metrics are developed to distill the experimental results, and regression analysis is

used to identify statistically significant trends. Finally, these trends are discussed in the context

of MGMC design. The principles and trends, and particularly the functional forms presented in

this work will enable greater understanding and optimization of MGMCs, bringing them closer to

widespread application.
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CHAPTER 2. MODEL

In the present model, the behavior of the amorphous matrix is given by the STZ dynamics

model, which is based on stochastic activation of coarse-grained STZs [43]. An STZ activation

represents an instantaneous, inelastic shearing of a cluster of atoms based on the cluster’s local

stress state. This is modeled by applying plastic strains to groups of elements in a finite element

mesh that represent a potential STZ. After an STZ activates, finite-element analysis solves for

the resultant stress and strain fields throughout the sample. The resulting stress and strain fields

encourage shearing of further STZs (element clusters), and the process repeats. Selection of STZs

to activate is controlled by a modified kinetic Monte Carlo (kMC) algorithm [46], based on the

individual activation rates of an ensemble of STZs.

The activation rate ṡ of an STZ is given by:

ṡ = v0 exp

(
−

∆F− 1
2τγ0Ω0

kT

)
(2.1)

where v0 is the attempt frequency (related to the Debye temperature), ∆F is the intrinsic barrier

height of the STZ transition, T is the temperature and k is the Boltzmann constant. The activation

rate is biased by the local stress state, τ . Finally, γ0 and Ω0 are the increment of shear strain applied

to an STZ and the volume of an STZ, respectively. The values for the parameters used in this model

are given in Table 2.1, and a characteristic stress-strain curve for the amorphous phase is shown in

Figure 2.1.
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Table 2.1: Model parameters for amorphous and crystalline phases.
Note that some parameters are set as levels for the experiment.

Amorphous Parameters
Property Symbol & value
Shear modulus µ =48.2 GPa
Poisson’s ratio ν =0.352
Debye temperature 372 K
Activation energy barrier ∆F =1.29 eV
STZ shear strain γ0 =0.1
STZ volume Ω0 =2.0 nm3

Crystalline Parameters
Property Symbol & value
Young’s modulus E =106.3 GPa
Poisson’s ratio ν =0.33
Yield stress ∝ exp. level r
Microstructure length exp. level l
Burger’s vector b =2.858 Å
Empirical constant a = 0.1
Hardening coefficient n = 0.07

0 0.5 1 1.5 2 2.5
0

500

1,000

1,500

2,000

ε (%)

σ
(M

Pa
)

Figure 2.1: Stress-strain curves for amorphous matrix (the dashed line) and crystalline inclusions
with two different yield points.

This paper reports extension of the STZ dynamics model to include a ductile phase, which

is used to simulate the crystalline phase of an MGMC. This is accomplished by partitioning the

mesh into the two phases, and applying the appropriate material or plasticity model to the elements
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of each phase. The finite element analysis solver evaluates the plastic deformation in the ductile

phase in each kMC timestep. A maximum timestep of 0.01s is enforced; see [46] for details.

Following the work of [37] and [22], the ductile plastic constitutive law is based on a

Taylor dislocation model [47–49]. This is implemented as a UMAT subroutine in Abaqus. It is

worth noting that the simulations in this work use microstructure length scales somewhat smaller

than those for which the plasticity model has been validated; however, it still captures the requisite

ductile behavior exhibited by MGMC microstructures. The plasticity model expresses the tensile

stress-strain relation as follows:

σ = σre f

√
(σy/E + ε p)(2n)+Lη (2.2)

where ε p is plastic strain, E is Young’s modulus, σy is yield stress, σre f = En/σn−1
y , n is a hard-

ening coefficient, L = 180b
(

aµ

σre f

)2
is an intrinsic material length with µ , b, and a being the shear

modulus, Burgers vector length, and an empirical constant between 0.1 and 0.5, and η is the av-

erage strain gradient, which is approximated by ε p/D where D is a characteristic diameter of the

crystalline phase microstructure. The quantities used in this experiment are shown in Table 2.1,

and tensile stress-strain curves are shown in Figure 2.1 for two different yield strengths evaluated

in this work.

The two models are merged in the finite-element model (see Fig. 2.2), which is partitioned

into amorphous and crystalline elements. The crystalline inclusions are circular and are distributed

pseudo-randomly across the sample (their positions were intially randomly seeded, then an op-

timization routine ensured that their positions were evenly distributed across the sample). The

amorphous elements provide the set of potential STZs for the kMC algorithm described above.

The crystalline elements’ plasticity model is evaluated directly by Abaqus. The boundary between

the two phases consists of coincident nodes—essentially a perfectly bound no-slip condition be-

tween the two. Time-steps are determined by kMC, and any stress or deformation loading can be

applied in accordance with standard finite-element methods.

All samples in this paper are two-dimensional rectangles, 300nm in height and 100nm in

width. These are meshed into 212440 triangular elements of approximate size 0.53nm on a side.

While these dimensions are smaller than typical studies of MGMCs, the dimensions are limited by

computational constraints. However, the trends observed do compare favorably to experiments on
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larger length scales. Samples are loaded in pure tension along the long (y) axis at a strain rate of

0.1s−1.

Each cluster of amorphous elements is a potential shear transformation zone.

Boundary between phases consists of coincident nodes.

Figure 2.2: Gray elements belong to the crystalline partition of the mesh, while white elements are
amorphous in character.
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CHAPTER 3. METHOD: FULL 3×23 FACTORIAL EXPERIMENT

Factorial experiments study the effect of more than one factor simultaneously [50]. A

few factors, three in this case, are selected for investigation, and then each of those factors are

modulated between a few levels, two in this case. For simplicity, the levels are often assigned

scaled values of –1 and +1 rather than using the actual experimental input quantities, and each

treatment is set as a combination of levels for each factor. Often several replicates are repeated for

each treatment, which reduces the statistical uncertainty of the results. By considering all possible

combinations of the selected factors and levels as is done in a full-factorial experiment, effects

and interactions between the factors can be isolated. Full-factorial designs of experiments can be

powerful enough to show causation between independent and dependent variables.

Often a center point (treatment (0,0,0)) is also added to full-factorial designs, which im-

proves statistical analysis and allows for estimates of nonlinearity in the data.

3.1 Independent Factors

The factors selected for this experiment are microstructure length scale of the crystalline

inclusions, crystalline volume fraction, and ratio of yield stresses between the two phases; these

are the principal variables of interest in most MGMC studies mentioned in the introduction of this

paper. These independent factors and their levels are summarized in Table 3.1, and are described

in detail in the following subsections.
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Table 3.1: Factors and levels for the 3∗23 +2∗1 factorial experiment.
Upper-case letters (V LR) refer to level codes -1, 0 , or +1, while

lower-case letters (vlr) refer to actual measured quantities.

Factor Symbol Low level Mid level High level
Volume Fraction v (V ) 40% (–1) 50% (0) 60% (+1)
Length Scale l (L) 20nm (–1) 25nm (0) 30nm (+1)
Yield Stress Ratio r (R) 50% (–1) 65% (0) 80% (+1)

3.1.1 Crystal Volume Fraction (V )

One of the factors varied in this experiment is the volume fraction (V ) of the crystalline

phase in an MGMC, since this has been shown to have a strong effect on composite behavior

[35, 51]. The level of 40% has been identified [16, 33] as a transition point between brittle and

ductile tensile behavior, and other recent work [19] used a 60% volume fraction; Hofmann [4]

used a 50% fraction. This study selects 40% and 60% as the two levels for this factor in an effort

to span an experimentally relevant and interesting region of volume fraction space. The quantity

50% serves as the center level.

3.1.2 Crystalline Inclusion Length Scale (L)

The second factor varied in this experiment is crystalline inclusion length scale (L). These

inclusions are modeled as circles distributed across the length and breadth of the sample. Since the

inclusions need to be small enough to be roughly homogenously distributed through a sample, and

the sample is only 100nm in width, the two length-scale levels are both very small: this experiment

uses L = 20nm and 30nm as the two inclusion diameter levels, with 25nm as the center level.

While it is again noted that these are small compared to many experiments, these crystallite length

scales are on the same order as those employed in atomistic studies [41] and those experimentally

observed in certain alloys [52, 53].
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3.1.3 Yield Stress Ratio (R)

The third factor varied in this experiment is the ratio of the yield stress (R) between the two

phases because research has shown that the ductility or brittleness of the crystalline second phase

has a strong effect on strain delocalization in MGMCs [51]. This is investigated in this experiment

by altering the yield stress of the crystalline phase as a fraction of the yield (failure) stress of the

amorphous matrix. Hoffmann [4] uses an alloy where the crystalline yield stress is 80% of the

glassy yield stress; hence, this study uses 80% as one of the levels for this factor. The second level

is selected to be softer, with a crystalline yield stress 50% that of the glass yield stress. The center

level is 65%.

3.2 Design of Experiment

A body-centered design of experiment is employed, with three replicates (experimental

samples with different inclusion arrangements but the same values of V , L, and R) at each corner

and two at the center (summarized in Table 3.1). Therefore, the experiment has 23 + 1 = 9 treat-

ments and 3×23 +1×2 = 26 total simulations. Each experiment is analyzed for seven dependent

statistics, which are described in the next section.

3.3 Dependent (Response) Variables

The simulated tensile tests are evaluated for both macroscopic responses (strength, ductil-

ity, and toughness) and microscopic behaviors (degree and nature of strain localization and parti-

tioning of strain between the two MGMC phases) using seven dependent variables. These seven

dependent variables are described in detail below.

3.3.1 Maximum Stress (σmax)

The maximum stress supported by the sample prior to failure is used as the first dependent

variable. It is important since high maximum stress is what makes metallic glass structurally inter-

esting and attractive, and the introduction of the crystalline phase typically comes at the expense

of this quantity.
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3.3.2 Tensile Strain to Failure (εmax)

The sample’s macroscopic strain at the failure is used as the second dependent variables

in this experiment since ductility without failure is a key quality for MGMCs. Unfortunately, the

model has no mechanism for failure, so a proxy variable must be selected to assess this quality.

This proxy variable is selected to be the magnitude of accumulated shear strain within the metallic

glass phase. Based on the notion that repeated activation of an STZ ultimately results in failure of

the metallic glass matrix, when any of the amorphous elements reach a shear strain of 0.325, the

sample is considered to have failed.

3.3.3 Strain Energy to Failure (E)

The toughness of the MGMC is used as the third dependent variable, and is evaluated as

the volumetric strain energy to failure. The value is obtained by integrating the area under the

stress-strain curve up to the failure condition described in Section 3.3.2. This variable combines

both the strength (the height of the curve) and the ductility (the length of the curve) of the sample

in one convenient metric.

3.3.4 Localization Index (Γ)

In contrast to the previous dependent variables, the fourth dependent variable, the local-

ization index, provides a measure of the distribution of the microscopic plasticity. This index is

similar to an atomistic participation ratio, and is introduced in [44]. It is calculated:

Γ = 1−
(
∑n γ2

n
)2

N ∑n γ4
n

(3.1)

where γn is the plastic strain associated with STZ activation in each of the N elements of the sample.

A value of 0 corresponds to totally uniform strain distribution, 1 corresponds to concentration of

strain in an infinitely small region, and 0.5 corresponds to very homogenous flow. This metric is

calculated at the failure step described in Section 3.3.2.
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3.3.5 Two-Point Statistic Localization (L2)

The fifth dependent variable also evaluates the microscopic plasticity, but does so using

a two-point statistical measure of strain localization. The two-point statistics of localization are

obtained by first mapping the element-wise strain at the failure step to a dense, evenly-spaced two-

dimensional grid. At each point in the grid corresponding to metallic glass, the spectral (induced

Euclidean) norm of the plastic strain tensor is computed—thus producing a rastered scalar field

P(~x) across the sample roughly capturing the amount of accumulated plastic strain (see panel (a)

of Figure 3.1 for an example of such a field). At points corresponding to crystalline inclusion, P is

set to zero.

The two-point statistics on P are generated by autocorrelation [54, 55]; that is, by evaluat-

ing:

T (~x) =
(

1√
n
F−1{F{P} ·F{P}}

)(1/2)

(3.2)

where n is the number of raster squares in P, F{◦} is a Fast Fourier transform, overline is complex

conjugation, and · is element-wise multiplication. The square root brings the units of T into agree-

ment with those of P; note that the n−1/2 factor may require adjusting for different Fast-Fourier

Transform implementations. An example of such an autocorrelation is shown as panel (b) in Fig-

ure 3.1. This map is related to the typical strain distribution around a strained point in the sample,

which can be thought of as being in the center of the autocorrelation map. That is, in some sense, T

reduces the distributed local plastic strain fields in P to a single “typical” local plastic strain field.

Large, concentrated strains near the center of T are indicative of high levels of localization, while

less concentrated strains in T suggest delocalization of strain.

The dependent variable for this two-point evaluation of localization can be reduced to a

single number by averaging the strain in a square around the center of T , then averaging the strain

everywhere else in T , and then taking the ratio of the two (inner/outer, see Figure 3.1). The cutoff

radius between the inner and outer portions is somewhat arbitrary; experimentation suggests that

5.3nm produces satisfactory results, so it is used in this study.

This metric is specifically implemented here for 2-dimensional experiments, though it

could trivially be extended to 3-dimensional cases.
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θ

O

cos(2θ −π/2)

Figure 3.1: Schematic of localization analysis using two-point statistics. (a) A plot of the spectral
norm of the plastic strain tensor across a sample, where white is amorphous, gray is crystalline,
red is STZ plasticity, and blue is crystalline plasticity. (b) The autocorrelation of the strain field in
(a), using only the amorphous portions of the mesh. The quantity L2 is determined by computing
the mean strain inside of a central box of radius RL2 , and the mean strain outside of that box,
and then taking the ratio of the two. (c) Schematic for computing the uniaxiality metric U . The
function cos(2θ −π/2) is plotted in polar coordinates with zero radius shifted to the dashed line.
In this way, integral contributions along the path Cr in the first and third quadrants are positive, and
contributions in the second and fourth quadrants are negative.

3.3.6 Uniaxiality of Strain Fields (U)

The sixth dependent variable is a measure of the uniaxial or biaxial nature of typical plastic

strain fields calculated by autocorrelation, since this may be correlated to strain delocalization.

Path integrals of the following form can be evaluated to provide a scalar measure of the uniaxiality

of the localization (i.e. does the localization tend to deflect and branch or continue in a straight

line), where Cr(θ) is a point located at angle θ on the circle of radius r centered at the origin, and

13



R is a cutoff radius, which in this study is set to 15.9nm:

U =
1
R

∫ R

0

[∫ 2π

0 T (Cr(θ))cos(2θ −π/2)dθ∫ 2π

0 T (Cr(θ))dθ

]
dr (3.3)

This integral evaluates to 0 in a case where the plastic strain field in T is biaxial, to about 1 in

a case where the plastic strain field is heavily biased with a positive 45◦ slope, and about -1 in

a case where the plastic strain field is heavily biased with a negative 45◦ slope. See panel (c) of

Figure 3.1.

3.3.7 Phase Strain Average Ratio (Rε )

The final dependent variable is a measure of the ratio of the mean strain in the crystalline

phase to the mean strain in the glassy phase as computed from the plastic strain spectral-norm map

mentioned in 3.3.5. This measure indicates the degree to which the crystalline phase strains with

respect to strain in the amorphous matrix.

3.4 Summary of Variables

To summarize, the independent variables are crystal volume fraction (V ), inclusion length

scale (L), and yield stress ratio (R) between the two phases. These three independent variables

permute between two levels each, with three replicates. A point at the center of all three variables

is also evaluated with two replicates. The dependent variables measure strength (maximum stress,

σmax), ductility (tensile strain to failure, εmax, and strain energy to failure, E), plastic localization

(localization index Γ and two-point localization L2), uniaxiality of strain (U), and the partitioning

of strain between the two phases (phase strain average ratio Rε ).

14



CHAPTER 4. RESULTS

The numerical results from the 26 experimental runs can be found in Table 4.1. This

is accompanied by Figure 4.1, which presents representative plastic deformation maps for each

factorial treatment, along with the stress-strain curves for all three replicates for each treatment.

From these data and figures a number of trends can be observed that correspond to the various

dependent variables of maximum stress, strain at failure, toughness, etc. Less intuitively, some

strain distributions appear to indicate significant localization that does not always translate into

expected stress drops. Fortunately, the full-factorial approach allows these relationships to be

determined with statistical significance by regression fits of the dependent variables.

4.1 Regression Analysis of Results

To analyze the raw results presented in Table 4.1, the results are normalized by a right-

preconditioning diagonal matrix Q; this has the effect of dividing each measured statistic by the

largest absolute value of that statistic. The preconditioned results can be found in the appendix. For

simplicity, analysis in this section is done with respect to the coded independent variables (which

assume values of –1, 0, and 1) rather than the actual measured values.

To isolate the statistically significant trends and relationships in the data, each dependent

statistic is considered in turn using regression analysis and analysis of variance (ANOVA) [50, 56,

57]. Analysis is performed using Mathematica 9.0. Only preconditioned dependent statistics are

considered—this keeps the magnitudes of the statistics roughly equal and reduces risk of numerical

error. An α level (statistical significance threshold) of 0.01 is selected for this study—that is,

roughly, there is less than a 1% probability that any given regression result shown here is the result

of chance alone.
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Figure 4.1: A map of the spectral norm of the plastic strain tensor is shown at failure for representa-
tives from each of the eight full-factorial treatment groups: white is amorphous, gray is crystalline,
red is STZ plasticity, and blue is crystalline plasticity. The three stress-strain curves are shown
below for each treatment group.
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Table 4.1: Results from the experiment.

Ind. Vars Dependent Variables
# v l r σmax εmax E Γ L2 U Rε

1 40 20 50 1.22145×109 0.015147 1.21035×107 0.951012 2.27557 0.102155 1.120130
2 40 20 50 1.20005×109 0.015570 1.23948×107 0.945286 2.39202 0.078021 0.950124
3 40 20 50 1.20533×109 0.016084 1.29371×107 0.952375 1.97476 0.075796 0.904394
4 40 20 80 1.42970×109 0.016041 1.36079×107 0.923209 2.12573 0.160913 0.311324
5 40 20 80 1.42553×109 0.012771 1.02310×107 0.955441 3.43555 0.170527 0.391929
6 40 20 80 1.42806×109 0.013684 1.10118×107 0.945380 3.08176 0.027093 0.299896
7 40 30 50 1.17014×109 0.015966 1.23276×107 0.953915 2.35938 0.057653 0.821222
8 40 30 50 1.13227×109 0.014811 1.10595×107 0.951899 2.60870 0.136984 0.854073
9 40 30 50 1.16379×109 0.015400 1.19345×107 0.953324 2.31110 0.116054 1.002170
10 40 30 80 1.37416×109 0.011802 8.89203×106 0.959090 3.81231 0.112234 0.262217
11 40 30 80 1.39382×109 0.012206 9.45912×106 0.943859 3.45492 0.107956 0.605190
12 40 30 80 1.37340×109 0.011725 8.59037×106 0.963572 6.04508 0.227131 0.219754
13 50 25 65 1.29636×109 0.016973 1.45640×107 0.939681 2.01810 0.058977 0.724940
14 50 25 65 1.29056×109 0.014752 1.20439×107 0.943955 2.37171 0.116748 0.590441
15 60 20 50 1.16796×109 0.023005 2.00759×107 0.877650 1.47679 0.027822 0.612016
16 60 20 50 1.15758×109 0.025050 2.24806×107 0.892223 1.42591 0.028514 0.635377
17 60 20 50 1.16865×109 0.023246 2.06116×107 0.904770 1.37711 0.035653 0.656064
18 60 20 80 1.40508×109 0.015221 1.32762×107 0.953116 2.22149 0.087493 0.407452
19 60 20 80 1.40497×109 0.013423 1.10434×107 0.948215 2.93793 0.155172 0.450214
20 60 20 80 1.37184×109 0.014830 1.24107×107 0.934866 2.63275 0.014151 0.253207
21 60 30 50 1.12700×109 0.025582 2.24897×107 0.885300 1.51928 0.005952 0.734462
22 60 30 50 1.13036×109 0.019881 1.64495×107 0.941500 1.60637 0.058043 0.879816
23 60 30 50 1.12602×109 0.027129 2.41414×107 0.875258 1.36370 0.008300 0.702401
24 60 30 80 1.38892×109 0.013527 1.07982×107 0.957243 3.64256 0.075311 0.337341
25 60 30 80 1.36923×109 0.014691 1.24378×107 0.928421 2.49704 0.105287 0.410972
26 60 30 80 1.37074×109 0.013383 1.06516×107 0.954781 3.28651 0.169609 0.371147

Figure 4.2: The model showed certain behaviors similar to those observed in physical samples, like
the distinctive “fingers” of shear localization between phases. Micrograph from [1], used without
permission.
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B←{V,L,R,V L, . . . ,R2,V LR} . The 10 initial basis functions
B←{{1},{1,V}, . . .} . 210 subsets of B, each unioned with {1}
for each B′ ∈B do

f ← Regression(B′) . f = ∑bi∈B′ cibi where regression sets ci
Pi← t-Test(ci) . P-value for each coefficient ci obtained by t-test
if any Pi ≥ α then

Discard f
continue to next B′

end if
Pf ← ANOVA( f ) . Full-fit P-value obtained by ANOVA
if Pf ≥ α then

Discard f
continue to next B′

end if
Add f to set F . f is statistically significant, save for later

end for
Calculate R2

ad j for each f ∈ F

return f with highest R2
ad j

Figure 4.3: Algorithm for selecting regression model.

The following ten basis functions are initially considered to fit the data for any single de-

pendent statistic: {V,L,R,V 2,LV,RV,L2,LR,R2,LRV}. Linear regression analysis is performed for

all 1024 possible subsets (each of ten basis functions is either present or not present in a subset,

for 210 total subsets) of those basis functions. A constant basis function is also included in each

regression. For each regression analysis, a t-statistic and accompanying P-value are computed for

the coefficient to each basis function included. Models containing any regression coefficient with

a P-value greater than α , indicating that the coefficient did not achieve statistical significance, are

discarded, ultimately leaving a small pool of potentially statistically significant regression models.

Analysis of Variance (ANOVA) is performed on each of those full regression models, and any

models generating an ANOVA P-value greater than α are also discarded. Out of this final pool of

certainly statistically significant regression models, the model featuring the highest R2
ad j is selected

for presentation in this paper. This process is outlined as an algorithm in Figure 4.3.

The full regression analyses can be found in the appendix; the regression coefficients, and

significance and goodness-of-fit metrics are summarized in Table 4.2. The regression functions

are visually compared to the measured data in Figure 4.4. Finally, having isolated the statistically
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Table 4.2: Summary of regressions for dependent variables. Blank entries indicate basis functions
not included in regression equations. Coefficients in a column have similar scaling and can be

compared to each other, though coefficients along a row have different scalings. ANOVA
P-values for the full regression fits are given, as are R2 goodness-of-fit metrics.

Basis σmax εmax E Γ L2 U Rε

1 0.8956 0.6123 0.5704 0.9714 0.4215 0.3928 0.5325
V –0.0096 0.0887 0.1076 –0.0149 –0.0682 - -
L –0.0136 - - - - - -
R 0.0806 –0.1130 –0.1149 0.0122 0.1136 - –0.2065

LV - - - - - - -
RV - –0.0677 –0.0771 0.0137 - - -
LR - - - - - - -

LRV - - - - - - -
P-value 0.0013 0.0014 0.0014 0.0014 0.0003 - 0.0001

R2 0.987 0.892 0.870 0.717 0.595 - 0.755

significant trends by regression, the implications of variation in each dependent variable can be

assessed.

The regression shows that the maximum stress σmax is heavily dependent on R, the crys-

talline phase yield stress. The maximum strain and strain energy depend about equally on R and

V , with maximum ductility at high crystalline volume fraction and low inclusion yield stress. The

localization metrics Γ and L2 report maximum localization at low volume fraction and high inclu-

sion yield stress. Uniaxiality U does not correlate with the independent variables and partitioning

of strain between phases depends only on the yield point of the second phase.
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Figure 4.4: Comparison of measured and regression-predicted dependent variable result values.
Each dot is an experimental treatment, with position indicating independent variables and color
indicating the average dependent variable value for that treatment. Results are shown on a precon-
ditioned scale. The direction of the gradient of the regression is represented by the black arrow in
the regression cube. 20



CHAPTER 5. DISCUSSION

Several distinct modes of interaction between the crystalline inclusions and shear bands in the

amorphous matrix are shown and described in Figure 5.1.

The most dominant trend across all the statistics is the absence of length scale effects. Even

in the one case where L features in the regression equation, its coefficient (implying, roughly, its

importance) is only 17% that of yield point ratio. This absence of statistically significant length

scale effects may be due to the very small mean particle size and lack of contrast between 20nm

and 30nm—in other words 20nm and 30nm particles are both so small, there’s very little difference

in effect. Regrettably, this experiment did not permit effective exploration of length scale variation,

which is known to be a critical variable to MGMCs [4].

An equally dominant but opposite trend is the primacy of R—the yield stress of the crys-

talline phase. This is probably the least-studied of the three variables, since it is (at least with

intrinsic composites) the least controllable of the three in composite design. Nonetheless, the rela-

tive ductility of the second phase is apparently critical to the alloy’s properties, and might prove to

be a powerful design variable.

Interestingly, an RV term frequently appears in regressions dominated by R and V terms,

and is the only interaction term that proved statistically significant. The combination of these three

terms can be thought of as an alias for a rule of mixtures (where Q is some property):

Q ∝ V1R1 +(1−V1)R2 (5.1)

Least-squares regression of εmax (not preconditioned) with respect to uncoded variables v and r,

using the form of Eqn (5.1) instead of the form given in Table 4.2 produces an R2 value of 0.884

(full fit ANOVA P=0.3963), indicating that about 88% of the variation in εmax may be explained

by the rule of mixtures. Least-squares regression of E using the form of Eqn (5.1) produces an R2

value of 0.854 (full fit ANOVA P=0.4263), and for Γ an R2 of 0.994 is obtained (full fit ANOVA
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(a) V=40, L=30, R=80, Rep 1 (b) V=60, L=30, R=80, Rep 3

(c) V=60, L=20, R=80, Rep 2 (d) V=40, L=30, R=50, Rep 2

Figure 5.1: Interaction modes between shear bands and inclusions, as observed in the experiment.
(a) band terminates in inclusion. (b) band fragments into smaller, less-concentrated shear bands.
(c) band “pathfinds” between inclusions. (d) band penetrates inclusions.

P=0.0000). It can therefore be concluded that the Γ localization index follows a rule of mixtures

with R as a proxy variable; and that ductility (εmax, E) requires more than a rule of mixtures ex-

planation, even if rule of mixtures does play a role. It does seem intuitive (and experimentally

consistent) that increasing the ductile volume fraction would produce more ductile composite be-

havior, and vice-versa.

Of course, the partitioning of strain between the two phases is secondary to the spatial

concentration of—or lack thereof– strain in the amorphous matrix, since that concentration is what

ultimately causes failure. The regression analysis shows that increasing volume fraction decreases
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strain localization—as would be expected—and that decreasing the yield stress of the crystalline

phase also decreases strain localization. These results provide statistical evidence of the conclusion

in [51] that percolation (which is largely a function of volume fraction) of the second phase is only

helpful if that second phase is ductile.

The localization metric L2 correlated strongly negatively with both εmax and E (Pearson

product-moment correlation coefficient rL2X = −0.76 for both X = εmax and E); in other words,

this study shows a statistical correlation between strain delocalization and tensile ductility, as might

be expected.

5.1 Implications for Design

This study highlights the statistical relationships between the ductility and volume fraction

of the second phase, the ultimate tensile strength of the composite, and strain localization (and

consequently, the failure mode) in the sample. High yield strength (R) of the crystalline phase

produces samples that sustain higher stress, but that exhibit a high degree of localization regard-

less of volume fraction. Conversely, very ductile crystalline phases produce samples with lower

maximum stresses but with much less strain localization. However, this mitigation of strain lo-

calization effect is strongly dependent on volume fraction of the second phase. Designers must

therefore balance the delocalizing effect of a soft second phase against the macroscopic strength

of the composite, which benefits from a minimal, less ductile second phase.
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CHAPTER 6. CONCLUSIONS

The present work examines the statistical significance of microstructural factors that control

plasticity in metallic glass matrix composites (MGMC). The statistical study is carried out using a

model metallic glass matrix composite, which incorporates STZ-dynamics to control plasticity in

the amorphous phase and a Taylor dislocation plasticity model to control plasticity in the crystalline

phase.

An N-factorial experiment is performed to investigate three microstructural variables criti-

cal to MGMC performance, namely: crystalline volume fraction, inclusion length scale, and yield

strength ratio of the second phase.

Regression analysis of results indicate statistical significance of a number of results:

• Strain delocalization and the consequent ductility are facilitated by a crystalline phase with

a substantially lower yield stress than that of the amorphous matrix.

• Increasing volume fraction alone is insufficient to promote strain delocalization in the case

of a crystalline phase with a high relative yield stress.

• A lower yield stress for the crystalline phase implies lower maximum stresses supported by

the MGMC.

These results are consistent with experimental work, but strengthen the conclusions in that the

present study provides statistical evidence for these trends. The regression analysis also provides

concise continuous functional forms for future MGMC constitutive equations.

6.1 Looking Forward

Future work on the model would include addition of free-volume to the STZ dynamics

model (work already in progress [58]), and implementation of thermal gradients in the sample.
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These two additions would provide more accurate modeling of the shear-softening behavior fre-

quently observed in bulk metallic glasses. On the crystalline side of the model, the next step is

implementation of crystal plasticity to supplant the simple Taylor dislocation model in this work.

More broadly, the dramatic effect of the character of the crystalline phase in this work strongly

suggests the utility of experimental studies into the character of the crystalline phase across the

various MGMC systems.
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APPENDIX A. CODED VARIABLES AND PRECONDITIONED RESULTS

Table A.1: Coded independent variables and preconditioned results for regression.

Ind. Vars Preconditioned Dependent Variables
# V L R σP

max εP
max EP ΓP LP

2 UP RP
ε

1 –1 –1 –1 0.85434 0.55833 0.50136 0.98697 0.37643 0.44976 1.00000
2 –1 –1 –1 0.83937 0.57393 0.51343 0.98102 0.39570 0.34351 0.84823
3 –1 –1 –1 0.84307 0.59287 0.53589 0.98838 0.32667 0.33371 0.80740
4 –1 –1 +1 1.00000 0.59129 0.56367 0.95811 0.35165 0.70846 0.27794
5 –1 –1 +1 0.99708 0.47075 0.42380 0.99156 0.56832 0.75079 0.34990
6 –1 –1 +1 0.99885 0.50441 0.45614 0.98112 0.50980 0.11928 0.26773
7 –1 +1 –1 0.81845 0.58852 0.51064 0.98998 0.39030 0.25383 0.73315
8 –1 +1 –1 0.79196 0.54595 0.45811 0.98789 0.43154 0.60311 0.76248
9 –1 +1 –1 0.81401 0.56766 0.49436 0.98936 0.38231 0.51096 0.89470
10 –1 +1 +1 0.96115 0.43503 0.36833 0.99535 0.63065 0.49414 0.23410
11 –1 +1 +1 0.97490 0.44992 0.39182 0.97954 0.57153 0.47530 0.54029
12 –1 +1 +1 0.96062 0.43219 0.35584 1.00000 1.00000 1.00000 0.19619
13 0 0 0 0.90674 0.62564 0.60328 0.97521 0.33384 0.25966 0.64719
14 0 0 0 0.90268 0.54377 0.49889 0.97964 0.39234 0.51401 0.52712
15 +1 –1 –1 0.81693 0.84799 0.83160 0.91083 0.24430 0.12249 0.54638
16 +1 –1 –1 0.80967 0.92337 0.93121 0.92595 0.23588 0.12554 0.56724
17 +1 –1 –1 0.81741 0.85687 0.85379 0.93898 0.22781 0.15697 0.58571
18 +1 –1 +1 0.98278 0.56106 0.54994 0.98915 0.36749 0.38521 0.36376
19 +1 –1 +1 0.98270 0.49478 0.45745 0.98406 0.48600 0.68318 0.40193
20 +1 –1 +1 0.95953 0.54665 0.51408 0.97021 0.43552 0.06230 0.22605
21 +1 +1 –1 0.78828 0.94298 0.93158 0.91877 0.25133 0.02620 0.65570
22 +1 +1 –1 0.79063 0.73283 0.68138 0.97709 0.26573 0.25555 0.78546
23 +1 +1 –1 0.78759 1.00000 1.00000 0.90835 0.22559 0.03654 0.62707
24 +1 +1 +1 0.97148 0.49862 0.44729 0.99343 0.60257 0.33158 0.30116
25 +1 +1 +1 0.95770 0.54152 0.51521 0.96352 0.41307 0.46355 0.36690
26 +1 +1 +1 0.95876 0.49331 0.44122 0.99088 0.54367 0.74675 0.33134

Preconditioners: 6.995×10−10 36.86 4.142×10−8 1.038 0.1654 4.403 0.8928
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APPENDIX B. REGRESSION DETAILS

B.1 Maximum Stress (σmax)

The regression model for σP
max uses the set {1,V,L,R} as its basis functions. Their least-

squares coefficients, t-statistics, and P-values are shown in Table B.1, along with ANOVA results

for the full model. All P-values are less than α , signifying that all coefficients and the regression

itself are statistically significant.

Table B.1: Regression analysis for σP
max:

R2 = 0.987, R2
ad j = 0.985, s = 0.0098.

Regression Coefficients
Basis Estimated Standard
Function Coefficient Error t-Statistic P-Value
1 0.895642 0.00192442 465.41 0.0000
V -0.00959846 0.002003 -4.79205 0.0001
L -0.0135911 0.002003 -6.7854 0.0000
R 0.0805778 0.002003 40.2286 0.0000

Analysis of Variance
Source DF SS MS F P
Regression 3 542.847 180.949 7.39599 0.0013
Error 22 538.248 24.4658
Total 25 0.164589
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B.2 Tensile Strain to Failure (εmax)

The regression model for εP
max uses the set {1,V,R,RV} as its basis functions. Their least-

squares coefficients, t-statistics, and P-values are shown in Table B.2, along with ANOVA results

for the full model. All P-values are less than α , signifying that all coefficients and the regression

itself are statistically significant.

Table B.2: Regression analysis for εP
max:

R2 = 0.892, R2
ad j = 0.878, s = 0.0575.

Regression Coefficients
Basis Estimated Standard
Function Coefficient Error t-Statistic P-Value
1 0.612317 0.0112864 54.2528 0.0000
V 0.0887135 0.0117472 7.55187 0.0000
R -0.112989 0.0117472 -9.6184 0.0000
R V -0.0676843 0.0117472 -5.76173 0.0000

Analysis of Variance
Source DF SS MS F P
Regression 3 1.40471×106 468237. 7.33403 0.0014
Error 22 1.40458×106 63844.5
Total 25 0.678092
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B.3 Strain Energy to Failure (E)

The regression model for EP uses the set {1,V,R,RV} as its basis functions. Their least-

squares coefficients, t-statistics, and P-values are shown in Table B.3, along with ANOVA results

for the full model. All P-values are less than α , signifying that all coefficients and the regression

itself are statistically significant.

Table B.3: Regression analysis for EP:
R2 = 0.870, R2

ad j = 0.852, s = 0.0709.

Regression Coefficients
Basis Estimated Standard
Function Coefficient Error t-Statistic P-Value
1 0.570397 0.0139083 41.0112 0.0000
V 0.107556 0.0144762 7.42986 0.0000
R -0.11494 0.0144762 -7.93994 0.0000
R V -0.0770909 0.0144762 -5.32535 0.0000

Analysis of Variance
Source DF SS MS F P
Regression 3 1.80548×106 601827. 7.33381 0.0014
Error 22 1.80536×106 82062.
Total 25 0.847992
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B.4 Localization Index (Γ)

The regression model for ΓP uses the set {1,V,R,RV} as its basis functions. Their least-

squares coefficients, t-statistics, and P-values are shown in Table B.4, along with ANOVA results

for the full model. All P-values are less than α , signifying that all coefficients and the regression

itself are statistically significant.

Table B.4: Regression analysis for ΓP:
R2 = 0.717, R2

ad j = 0.678, s = 0.0155.

Regression Coefficients
Basis Estimated Standard
Function Coefficient Error t-Statistic P-Value
1 0.971359 0.00304519 318.982 0.0000
V -0.0149193 0.00316953 -4.70709 0.0001
R 0.0122237 0.00316953 3.85661 0.0009
R V 0.0137163 0.00316953 4.32756 0.0003

Analysis of Variance
Source DF SS MS F P
Regression 3 56357.2 18785.7 7.33349 0.0014
Error 22 56356. 2561.64
Total 25 0.0187476
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B.5 Two-Point Statistic Localization (L2)

The regression model for LP
2 uses the set {1,V,R} as its basis functions. Their least-squares

coefficients, t-statistics, and P-values are shown in Table B.5, along with ANOVA results for the

full model. All P-values are less than α , signifying that all coefficients and the regression itself are

statistically significant.

Table B.5: Regression analysis for LP
2 :

R2 = 0.595, R2
ad j = 0.560, s = 0.1117.

Regression Coefficients
Basis Estimated Standard
Function Coefficient Error t-Statistic P-Value
1 0.421539 0.0218966 19.2514 0.0000
V -0.0681646 0.0227907 -2.9909 0.0065
R 0.113611 0.0227907 4.985 0.0000

Analysis of Variance
Source DF SS MS F P
Regression 2 491.98 245.99 11.7585 0.0003
Error 23 481.164 20.9202
Total 25 0.708012
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B.6 Uniaxiality (U)

None of the potential regression models for U achieved P < α for all parameters—so the

regression equation is simply U ≈ 0.392784, with s = 0.2542.

B.7 Phase Strain Average Ratio (Rε )

The regression model for RP
ε uses the set {1,R} as its basis functions. Their least-squares

coefficients, t-statistics, and P-values are shown in Table B.6, along with ANOVA results for the

full model. All P-values are less than α , signifying that all coefficients and the regression itself are

statistically significant.

Table B.6: Regression analysis for RP
ε :

R2 = 0.755, R2
ad j = 0.745, s = 0.1175.

Regression Coefficients
Basis Estimated Standard
Function Coefficient Error t-Statistic P-Value
1 0.532504 0.0230476 23.1046 0.0000
R -0.20651 0.0239887 -8.60864 0.0000

Analysis of Variance
Source DF SS MS F P
Regression 1 4914.98 4914.98 24.1442 0.0001
Error 24 4885.63 203.568
Total 25 1.35497
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APPENDIX C. STRAIN FIELDS AND TWO-POINT CORRELATIONS FOR ALL RUNS
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Figure C.1: Strain and two-point localization plot for v = 50, l = 25, r = 65.
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Figure C.2: Strain and two-point localization plot for v = 40, l = 20, r = 50.
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Figure C.3: Strain and two-point localization plot for v = 40, l = 20, r = 80.
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Figure C.4: Strain and two-point localization plot for v = 40, l = 30, r = 50.
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Figure C.5: Strain and two-point localization plot for v = 40, l = 30, r = 80.
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Figure C.6: Strain and two-point localization plot for v = 60, l = 20, r = 50.
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Figure C.7: Strain and two-point localization plot for v = 60, l = 20, r = 80.
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Figure C.8: Strain and two-point localization plot for v = 60, l = 30, r = 50.
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Figure C.9: Strain and two-point localization plot for v = 60, l = 30, r = 80.
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APPENDIX D. REGRESSION ANALYSIS MATHEMATICA CODE

C l e a r A l l [ ” Global ‘ * ” ] ;

S e t D i r e c t o r y [ N o t e b o o k D i r e c t o r y [ ] ] ;

L a b e l s = Im po r t [ ” S t a t 6 . mat ” , ” L a b e l s ” ] / / Q u i e t ;

S t a t 6 = I mpo r t [ ” S t a t 6 . mat ” ] / / Q u i e t ;

X= S t a t 6 [ [ P o s i t i o n [ Labe l s , ”X ” ] [ [ 1 , 1 ] ] ] ] ;

Y= S t a t 6 [ [ P o s i t i o n [ Labe l s , ”Y ” ] [ [ 1 , 1 ] ] ] ] ;

YP= S t a t 6 [ [ P o s i t i o n [ Labe l s , ” YP ” ] [ [ 1 , 1 ] ] ] ] ;

DepVarLabels= S t a t 6 [ [ P o s i t i o n [ Labe l s , ” DepVarLabels ” ] [ [ 1 , 1 ] ] ] ] / /

F l a t t e n ;

I n d V a r L a b e l s = S t a t 6 [ [ P o s i t i o n [ Labe l s , ” I n d V a r L a b e l s ” ] [ [ 1 , 1 ] ] ] ] / /

F l a t t e n

XC= Tab le [ (X[ [ i , j ] ]− (Max [X[ [ All , j ] ] ] + Min [X[ [ All , j ] ] ] ) / 2 ) / ( ( Max [X[ [

Al l , j ] ] ]−Min [X[ [ All , j ] ] ] ) / 2 ) ,{ i , 1 , Length [X]} ,{ j , 1 , Length [X

[ [ 1 ] ] ] } ] ;

Matr ixForm [ T r a n s p o s e [ T r a n s p o s e [XC] ˜ J o i n ˜ T r a n s p o s e [X] ˜ J o i n ˜

T r a n s p o s e [Y ] ] ]

Matr ixForm [ T r a n s p o s e [ T r a n s p o s e [XC] ˜ J o i n ˜ T r a n s p o s e [X] ˜ J o i n ˜

T r a n s p o s e [YP ] ] ]

Map [ Max , T r a n s p o s e [ Abs [Y] ] ] ˆ −1

Matr ixForm [ T r a n s p o s e [ T r a n s p o s e [XC] ˜ J o i n ˜ T r a n s p o s e [YP ] ] ]

C e n t e r P o s = F l a t t e n [ P o s i t i o n [Map[ Norm ,XC ] , 0 . 0 ] ]

CubePos=Complement [ Tab le [ i ,{ i , 1 , Length [XC] } ] , C e n t e r P o s ]

ExpMatCube [ i ] : = T r a n s p o s e [ T r a n s p o s e [XC[ [ CubePos ] ] ] ˜ J o i n ˜{YP [ [

CubePos , i ] ] } ]
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ExpMatCenter [ i ] : = T r a n s p o s e [ T r a n s p o s e [XC[ [ C e n t e r P o s ] ] ] ˜ J o i n ˜{YP [ [

Cen te rPos , i ] ] } ]

ExpMatAll [ i ] : = ExpMatCube [ i ] ˜ J o i n ˜ ExpMatCenter [ i ]

Rnd [ x , i ] : = Round [ x * 1 0 ˆ ( i +1) , 1 0 ] / 1 0 . 0 ˆ ( i +1)

A n o v a F u l l F i t [ lm , dep ] : = Module [{YPhat , YBar , SSE , SST , SSR , k , n , d f r e g ,

d f r e s ,MSR,MSE, F , P , lmfn } ,

lmfn [{ a , b , c } ] : = lm [ a , b , c ] ;

YPhat=Map[ lmfn ,X ] ;

YBar=Mean [YP [ [ All , dep ] ] ] ;

SSE= T o t a l [ ( YPhat−YP [ [ All , dep ] ] ) ˆ 2 ] ;

SST= T o t a l [ ( YP [ [ All , dep ]]−YBar ) ˆ 2 ] ;

SSR= T o t a l [ ( YPhat−YBar ) ˆ 2 ] ;

k= Length [ lm [ ” B a s i s F u n c t i o n s ” ] ] −1 ;

n= Length [ YPhat ] ;

d f r e g =k ;

d f r e s =n−k−1;

MSR=SSR / d f r e g ;

MSE=SSE / d f r e s ;

F=MSR/MSE;

Needs [ ” H y p o t h e s i s T e s t i n g ‘ ” ] ;

P= I f [ NumberQ [MSR] , OneSidedPValue / . FRa t ioPValue [ F , d f r e g , d f r e s ] , 0 ] ;

{TableForm [{{” R e g r e s s i o n ” , d f r e g , SSR ,MSR, F , P} ,{” E r r o r ” , d f r e s , SSE ,

MSE} ,{” T o t a l ” , d f r e s + d f r e g , SST }} ] , P} ]

A n o v a F u l l F i t [ lm ] : = Module [{Ydat , Yhat , YBar , SSE , SST , SSR , k , n , d f r e g ,

d f r e s ,MSR,MSE, F , P , lmfn } ,

Ydat=lm [ ” Data ” ] [ [ Al l , −1 ] ] ;

Yhat=lm [ ” P r e d i c t e d R e s p o n s e ” ] ;

YBar=Mean [ Ydat ] ;

SSE= T o t a l [ ( Yhat−Ydat ) ˆ 2 ] ;

SST= T o t a l [ ( Ydat−YBar ) ˆ 2 ] ;
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SSR= T o t a l [ ( Yhat−YBar ) ˆ 2 ] ;

k= I f [ MemberQ [ lmRoM[ ” B a s i s F u n c t i o n s ” ] , 1 ] , Length [ lm [ ” B a s i s F u n c t i o n s

”]]−1 , Length [ lm [ ” B a s i s F u n c t i o n s ” ] ] ] ;

n= Length [ Yhat ] ;

d f r e g =k ;

d f r e s =n−k−1;

MSR=SSR / d f r e g ;

MSE=SSE / d f r e s ;

F=MSR/MSE;

Needs [ ” H y p o t h e s i s T e s t i n g ‘ ” ] ;

P=Rnd [ I f [ NumberQ [MSR] , OneSidedPValue / . FRa t ioPValue [ F , d f r e g , d f r e s

] , 0 ] , 4 ] ;

{TableForm [{{” R e g r e s s i o n ” , d f r e g , SSR ,MSR, F , P} ,{” E r r o r ” , d f r e s , SSE ,

MSE} ,{” T o t a l ” , d f r e s + d f r e g , SST }} ] , P} ]

OutTabFn [ lmReg , dep ] : = Module [{ P r e s e n t V a r s , UniqueXC , UniqueMeanY ,

RegXC , RegYhat , OutTab , lmRegFn , GradVect } ,

UniqueXC=Union [XC ] ;

UniqueMeanYP= Tab le [ Mean [YP [ [ F l a t t e n [ P o s i t i o n [XC, UniqueXC [ [ i ] ] ] ] ,

dep ] ] ] , { i , 1 , Length [ UniqueXC ] } ] ;

RegXC=UniqueXC ;

P r e s e n t V a r s =Union@Cases [ lmReg [ ” B e s t F i t ” ] , Excep t [ Symbol ? (

Context@ #===” System ‘”&) , Symbol ] ,{1 , I n f i n i t y } ] ;

RegXC [ [ All , 1 ] ] = I f [ MemberQ [ P r e s e n t V a r s ,V] , RegXC [ [ All , 1 ] ] , RegXC [ [

Al l , 1 ] ] * 0 ] ;

RegXC [ [ All , 2 ] ] = I f [ MemberQ [ P r e s e n t V a r s , L ] , RegXC [ [ All , 2 ] ] , RegXC [ [

Al l , 2 ] ] * 0 ] ;

RegXC [ [ All , 3 ] ] = I f [ MemberQ [ P r e s e n t V a r s , R] , RegXC [ [ All , 3 ] ] , RegXC [ [

Al l , 3 ] ] * 0 ] ;

RegXC=Union [ RegXC ] ;

lmRegFn [{ a , b , c } ] : = lmReg [ a , b , c ] ;
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RegYPhat=Map[ lmRegFn , RegXC ] ;

GradVect= Tab le [D[ lmRegFn [{V, L , R} ] , v ] ,{ v ,{V, L , R } } ] / . V−>0/.L−>0/.R

−>0;

GradVect= I f [ Norm [ GradVect ] ! = 0 . 0 , 0 . 8 0 * GradVect / Norm [ GradVect ] ,

GradVect ] ;

OutTab= T r a n s p o s e [ UniqueXC ] ˜ J o i n ˜{UniqueMeanYP } ˜ J o i n ˜ T r a n s p o s e [

RegXC ] ˜ J o i n ˜{RegYPhat } ˜ J o i n ˜ Tab le [{−GradVect [ [ q ] ] } , { q , 1 , 3 } ] ˜

J o i n ˜ Tab le [{2* GradVect [ [ q ] ] } , { q , 1 , 3 } ] ;

OutTab=OutTab ˜ F l a t t e n ˜{2} ;

Ex po r t [ ” ExpTab”<>T o S t r i n g [ dep ]<>”. t x t ” , OutTab , ” Tab le ” ] ;

OutTab / / TableForm ]

n =2;

AnovaFns=Sum [ (Vˆ i ) * (L ˆ j ) * (Rˆ k ) ,{ i , 0 , n } ,{ j , 0 , n−i } ,{k , 0 , n−i−j } ] ;

AnovaFns= Monomia lLis t [ AnovaFns ,{V, L , R} , ”

N e g a t i v e D e g r e e L e x i c o g r a p h i c ” ] ˜ J o i n ˜{V L R}

C l e a r [ n ] ;

A l l S u b s e t s = S u b s e t s [ AnovaFns [ [ 2 ; ; − 1 ] ] ] ;

A l l S u b s e t s = Tab le [{1} ˜ J o i n ˜ A l l S u b s e t s [ [ i ] ] , { i , 1 , Length [ A l l S u b s e t s

] } ] ;

Alpha = 0 . 0 1 ;

Analyze [ dep ] : = Module [{ LinModels , LinModelsPMax , Val idLinModelPos ,

Val idLinModels , L inModelsFu l lP , L inMode lsSor t , GradVect , lmRegFn } ,

LinModels= Tab le [ Q u i e t [ L i n e a r M o d e l F i t [ ExpMatAll [ dep ] , A l l S u b s e t s [ [ i

] ] , {V, L , R} ] ] , { i , 1 , Length [ A l l S u b s e t s ] } ] ;

LinModelsPMax= Tab le [Max [ LinModels [ [ i ] ] [ ” P a r a m e t e r P V a l u e s ” ] ] , { i , 1 ,

Length [ LinModels ] } ] ;

Val idLinModelPos = F l a t t e n [ P o s i t i o n [ LinModelsPMax , ?(#<Alpha&) ] ] ;

Va l idL inMode l s =LinModels [ [ Val idLinModelPos ] ] ;

L inMode l sFu l lP = Tab le [ A n o v a F u l l F i t [ Va l idL inMode l s [ [ i ] ] , dep ] [ [ 2 ] ] , {

i , 1 , Length [ Va l idL inMode l s ] } ] / / Q u i e t ;
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Val idLinModelPos = F l a t t e n [ P o s i t i o n [ LinModelsFu l lP , ?(#<Alpha&) ] ] ;

Va l idL inMode l s = Va l idL inMode l s [ [ Val idLinModelPos ] ] ;

L inMode l sSo r t = Tab le [{ Val idL inMode l s [ [ i ] ] [ ” Ad jus t edRSquared ” ] ,

Va l idL inMode l s [ [ i ] ] } , { i , 1 , Length [ Va l idL inMode l s ] } ] ;

L inMode l sSo r t = S o r t [ L inMode l sSo r t ] ;

lmReg= LinMode l sSo r t [ [ − 1 ] ] [ [ 2 ] ] ;

lmRegFn [{ a , b , c } ] : = lmReg [ a , b , c ] ;

{DepVarLabels [ [ dep ] ] , lmReg [ ” B a s i s F u n c t i o n s ” ] , lmReg [ ”

P a r a m e t e r T a b l e ” ] , A n o v a F u l l F i t [ lmReg , dep ] [ [ 1 ] ] , { ” s ” , S q r t [ lmReg

[ ” E s t i m a t e d V a r i a n c e ” ] ] } , { ” RSquared ” , lmReg [ ” RSquared ” ]} ,{ ”

AdjRSquared ” , lmReg [ ” Adjus t edRSquared ” ]} , OutTabFn [ lmReg , dep ] } / /

Matr ixForm ]

Analyze [ 1 ]

Tab le [ Analyze [ i ] ,{ i , 1 , Length [ DepVarLabels ] } ]

dep =4

y=Y[ [ All , dep ] ]

ExpMat= T r a n s p o s e [ T r a n s p o s e [X] ˜ J o i n ˜{ y } ] ;

ExpMat [ [ Al l , 1 ] ] = ExpMat [ [ Al l , 1 ] ] / 1 0 0 ;

ExpMat [ [ Al l , 3 ] ] = ExpMat [ [ Al l , 3 ] ] / 1 0 0 ;

ExpMat / / Matr ixForm

RoMFns={ ( r *v ) ,(1−v ) }

lmRoM= L i n e a r M o d e l F i t [ ExpMat , RoMFns ,{ v , l , r } , I n c l u d e C o n s t a n t B a s i s−>

F a l s e ]

lmRoM[ ” RSquared ” ]

lmRoM[ ” P a r a m e t e r T a b l e ” ]

A n o v a F u l l F i t [ lmRoM]

51


