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SUMMARY

In modern times, the ability to investigate the aeroelastic behavior of dynamic

components on rotorcraft has become essential for the prediction of their useful fatigue

life. At the same time, the aeroelastic modeling of a rotorcraft is particularly complex

and costly. Inaccuracies in numerical predictions are mostly due to imprecisions in

the structural modeling, to the presence of structural degradation or to the limited

information on aerodynamic loads. The integration of experimental measurements

on dynamic components such as rotor blades has the potential to improve fatigue

estimation, augment the knowledge of the dynamic behavior and inform numerical

models.

The objective of this research is the development of a combined numerical and

experimental approach, named Confluence Algorithm, that accurately predicts the

response of dynamic components with a limited set of experimental data. The inte-

gration of experimental measurements into a numerical algorithm enables the contin-

uous and accurate tracking of the dynamic strain and stress fields. The Confluence

Algorithm systematically updates the numerical model of the external loads, and

mass and stiffness distributions to improve the representation and extrapolation of

the experimental data, and to extract information on the response of the system at

non-measured locations.

The capabilities of this algorithm are first verified in a numerical framework and

with well-controlled lab experiments. Numerical results from a comprehensive UH-

60A multibody model are then compared with available experimental data. These

analyses demonstrate that the integration of the Confluence Algorithm improves the

accuracy of the numerical prediction of the dynamic response of systems characterized

xix



by a periodic behavior, even in presence of non-linearities. The algorithm enables the

use of simplified models that are corrected through experimental data to achieve

accurate tracking of the system.
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CHAPTER I

INTRODUCTION

1.1 Background

In modern times, the ability to investigate the aeroelastic behavior of dynamic com-

ponents on rotorcraft has become essential for the prediction of fatigue life. The

aeroelastic modeling of a rotorcraft is particularly complex and costly. It requires the

coupling of a structural dynamic module that predicts the dynamic response given the

loads applied to the system, a fluid dynamic module that computes the aerodynamic

loads acting on the structure, and an interaction module that captures aeroelastic

effects. The complexity of this coupled behavior leads to inaccuracies in numerical

predictions, which are mostly due to imprecisions in the structural modeling, to the

presence of structural degradation, or to the lack of information on the aerodynamic

loads. As a result, the life of rotorcraft components is often underestimated, which

undermines safety and dramatically increases operational costs. For these reasons, the

development of reliable response prediction methodologies for rotorcraft components

is an ongoing challenge for the research community.

Improvements to the estimate of fatigue life are expected to come from the addi-

tion of experimental monitoring of dynamic components (generally defined as Usage

Health Monitoring Systems - UHMS). The implementation of UHMS has the po-

tential for a component life increase of about two-and-half times beyond the design

fatigue life [77, 39]. The reason for this improvement is based on the fact that struc-

tural degradations that lead to potential failures may be detected, and that specific

maintenance processes can be implemented. This process may be classified as Con-

dition Based Maintenance (CBM), whereby maintenance operations are defined by
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inputs of the monitoring system, instead of being defined by a predefined maintenance

schedule.

Recent investigations performed at NASA and AFRL also suggest that the integra-

tion of experimental measurements and high-fidelity models into a real-time-mission-

life virtual “twin” of the system enables a continuous monitoring and forecast of the

health of the vehicle, including its remaining useful life and the probability of mission

success [64, 67, 75, 41, 74]. The integration of usage monitoring systems is therefore

expected to result in both improvements in the system safety and in a decrease in life

cycle costs.

The introduction of UHMS in complex rotating environments is however a chal-

lenging problem and can actually result in an increase in mechanical complexity that

could almost nullify the advantages. Moreover, the function of most UHMS is limited

to monitoring specific locations in the system (where sensors are installed), while

tracking of remote and non-accessible locations is not possible. Numerical algorithms

need to be designed and integrated into UHMS so that complete accurate predictions

of the response field (maps) of the rotorcraft can be obtained based on a minimal

number of experimental measurements.

1.2 Objectives

A numerical procedure, called Confluence Algorithm (CA), is presented in this work

that corrects inaccuracies in the structural modeling of a dynamic system and in the

prediction of the externally applied loads based on the analysis of the experimental

response measured at discrete locations. The objective is the achievement of accurate

and reliable maps of the dynamic response of the system through a continuous up-

dating of an initial model to create a tailored numerical model based on the measured

dynamic response at some locations in the systems. The advantage offered by this

process is a reduced cost of inspections as a more precise tracking of the response
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may allow the identification of structural degradations and heavy loads.

In the context of this thesis, the updating process of aeroelastic models is divided

into two separate components: (1) a module for the correction of the externally

applied loads, and (2) a module for the update of the physical properties. Initially, it

is assumed that inaccuracies in loads and in mass/stiffness matrices can be singularly

improved by neglecting the presence of the other source of error. First, the Load

Confluence Algorithm (LCA) identifies corrections to the external loads based on the

assumption that errors in numerical predictions are due to lack of information on the

external loads while physical properties are considered as accurately described. Next,

a separate procedure named Property Confluence Algorithm (PCA) is developed for

the correction of physical properties, which assumes that inaccuracies in the initial

prediction of the response can be attributed to the lack of knowledge on the actual

mass and stiffness distribution of the system. The assumption of a separate occurrence

of inaccuracies in loads and physical properties can be then removed, and the two

procedures can be combined into the System Confluence Algorithm (SCA), where

systematic corrections are applied to both the model of the external loads and to the

mass and stiffness matrices of the system to achieve a numerical model specifically

tailored to the experimental measurements.

The CA can be described as a fitting process that estimates the map of the re-

sponse of the system from a known number of measurements at control points (exper-

imental measurements/reference data). In the following, this process in often denoted

as mapping of the response. The possibility of mapping the response of a system from

a few experimental measurements to a detailed numerical model consists in a way to

track the history of a single machine, to tailor the model to the actual conditions each

machine encounters and to estimate its remaining life independently from its initial

design.

The process depicted in Figure 1 describes how the SCA could be embedded in

3



a UHMS to map the dynamic response of a system: from measured data during op-

erating conditions at few locations, the complete model of the machine is improved

so that the stresses and vibrations can be accurately predicted and provide accurate

information on the remaining life of the system. This approach represents a signifi-

cant step towards the implementation of CBM, because a set of maintenance actions

based on real-time or near-real time assessment of components from experimental

measurements could be defined [39].

Figure 1: Calibration of a numerical model to experimental measurements.

1.3 Applications to rotorcraft and wind turbines

The CA can be embedded in UHMS to continuously monitor the structural behavior

of rotor blades in helicopters and wind turbines. The advantage of this algorithm is

the possibility of providing information on the entire span of the blades from a limited

number of measurements at discrete locations. The Confluence Algorithm can also be

embedded into the control system for the rotor as an observer of the dynamics of the

state from measurements at discrete locations. The importance of the applications

to rotorcraft and wind turbines is described in this section.
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1.3.1 Applications to rotorcraft

Accurate prediction of rotor loads and vibrations is fundamental for effective rotor-

craft design and maintenance. High vibratory loads are, in fact, an important cause

of high maintenance man-hours per flight hour and of the need for frequent replace-

ments of components. The low helicopter reliability and the unsatisfactory ability

to predict vibration levels do not allow fatigue characteristics to be established and

to properly evaluate the performance of vibration reduction devices [7]. Major chal-

lenges are therefore associated with the development of new processes that allow a

quick and low cost evaluation of rotorcraft characteristics and performance.

Maintenance and parts replacement costs require potential vibration problems

and their effects to be diagnosed as early as possible during the development cycle of

an helicopter. Although vibration levels have been lowered considerably by improved

design and a variety of isolation and absorber systems, they are still of concern because

rotorcraft are flown faster and in more violent maneuvers where vibrations reach

the highest levels. In addition, more delicate instruments, more demanding visual

and tactile tasks, and demands for accurate sensor and weapon pointing lead to

requirements for very low vibration levels throughout the aircraft [24].

The versatility of operation of helicopters results in the fact that new uses are

added to the forecast design purposes, especially after production has been ongoing

for a number of years. Also, missions may extend well beyond the originally envisaged

design life. This means that helicopter designers can only make a “best guess” as to

what type of missions the helicopter will fly. If a monitoring device is installed on

each machine, it would be possible to establish the severity and type of missions

flown, or loads and vibrations experienced, and to appropriately adjust the safe-life

predictions [58].

Health and usage monitoring can therefore increase helicopter safety and has the

potential to decrease operating costs. However, major drawbacks of usage monitoring
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systems include high potential operating costs since they generally accumulate vast

quantities of data. In addition, there will inevitably be a delay between the time that

the data are recorded and processed unless a real-time procedure is provided.

One of the most common usage monitoring methods for helicopter applications,

called flight load monitoring (FLM), attempts to quantify in-flight fatigue cycles

from the output of strain gages mounted on several key components. The monitored

components are mainly those in the rotating system since they are the most prone

to fatigue failures. Once strains have been acquired, they are converted to loads.

These loads are then used to derive loads in non-strain-gaged components via the use

of transfer functions. After this, the fatigue damage can be determined. Currently,

FLM has been restricted to applications involving testing and research because of

problems associated with transferring strain gage signals from the rotating system

to the airframe. New technologies in sensor design (i.e. wireless sensors) open new

possibilities in this direction [58]. The CA represents a promising tool in this direction.

1.3.2 Applications to wind turbines

Another important application of the CA in combination with a structural health

monitoring system consists of wind turbines, whose importance as a renewable source

of energy is increasing over time because of their relative cost competitiveness and

technological maturity with respect to other renewable sources of energy. Their size

has been growing continuously to harvest more energy through higher efficiencies and

due to cost-effective considerations. The typical diameter of the rotor has in fact

increased about 10 times in the last two decades, and the improvement in power pro-

duction of about 100 times (Figure 2). This increase in dimensions and the remote

location in which wind plants are generally located make inspection and maintenance

work difficult, undermining their cost-effectiveness and safety. Maintenance and lo-

gistic costs are enormous, and downtime of the plant is recurrent (an average wind
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Figure 2: Wind turbine size evolution [42].

turbine is inactive for about a week per year for repairs and maintenance [43]) in an

effort to avoid catastrophic failures.

The continuous monitoring of wind turbines is expected to provide the means

to ensure that the turbine is in good condition [79]. Condition monitoring can be

performed either off-line or on-line: off-line monitoring requires that the wind turbine

is taken out of service and inspected while on-line systems continuously monitor

the machine. Off-line inspections are routinely scheduled at regular time intervals,

while on-line monitoring systems are incorporated into the turbine and continuously

monitor parameters such as temperature, speeds, and tower vibrations.

Among all the monitoring systems, structural health monitoring (SHM) systems

are of primary importance because the damage frequency of the structure and of

all the other mechanical systems is almost equal. In particular, blade damage, such

as surface damage, cracks, structural discontinuities, as well as catastrophic failures

of the whole blade (Figure 3) are the most common type of structural failure as

well as the most expensive type of damage to repair. It represents about 7% of total

unforeseen malfunctions in a turbine, resulting in an average of four days of downtime
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per year [43]. In addition, rotor blades are a key element in power generation and

account for about 15-20% of the total cost. The structural monitoring of rotor blades

is therefore of primary importance to ensure high efficiencies. A structural health

Figure 3: An example of catastrophic blade failure in a wind turbine.

monitoring system for rotor blades needs to be low cost, reliable and integrated into

the structure and can result in more affordable wind energy by minimizing inspection-

time, by preventing failures and by predicting the exact remaining life. SHM may

allow lighter blades that would provide higher performance with less conservative

margins of safety [32]. In addition, the data collected by SHM can be used to improve

designs for next generation wind turbines.

In this scenario, the CA could be embedded in a monitoring system for rotor

blades to provide continuous monitoring of the entire span from a limited number of

sensors located along the blade. With respect to traditional monitoring systems, it

would provide information for the blade even at inaccessible locations.

1.4 Mapping of the response from experimental measure-
ments

The improvements of dynamic models based on experimental measurements is a fun-

damental problem in dynamics, because of the limitations of numerical models in

representing real systems. Research in this field is very active and can be classified
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according to the objectives of each approach. Examples are the identification of ap-

plied loads (Force Reconstruction techniques, section 1.4.1, and Force Determination

techniques specifically formulated for rotorcraft, section 1.4.2), the mapping of the

deflected shape (Shape Sensing methods, section 1.4.3), the correct representation of

the kinematics (Inverse Dynamics methods, 1.4.4), and the updating of the physical

properties of the system in terms of mass, stiffness and damping. A separate section,

1.5, has been devoted to this last class of methods, called model updating techniques,

due to the maturity of the research in this field.

1.4.1 Force Reconstruction methods

The first class of methods is often denoted as Force Reconstruction (FR) techniques.

Their main goal is to locate and identify the external forces both in terms of magni-

tude and phase. FR techniques are generally classified into direct and optimization

methods [80]. Direct approaches are based on frequency response function (FRF)

measurements, from which the input force is estimated. When dealing with nonlinear

systems, these methods can be iteratively applied to achieve convergence [61]. Their

major limitations are that they require the knowledge of the point of application of

the input force, and they strongly rely on accurate measurements of the frequency

response functions. Optimization approaches are based on least-squares optimization

algorithms to match the estimated and measured response due to an unknown input

force. They can be formulated both in the time and frequency domain.

Force reconstruction approaches are mostly based either on finite difference dis-

cretization of the equations of motion or on modal expansion techniques [80]. Finite

difference based methods require a very detailed model of the structure, which rep-

resents a potential limitation for practical application. For example, in the analysis

of a simple square, isotropic plate, Pezerat et al. [63] needs a mesh refinement of

the model with an accuracy up to 2000 modes, and almost 200 measurement points
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over a 1 m2 area. Moreover, the algorithm encounters difficulties when the driving

frequency is close to the natural frequencies of the system [63].

Modal approaches identify the applied loads by projecting both the external forces

and the response functions into the modal space [57, 47]. In this case, the major

limitation consists in the necessity of employing a large number of basis functions

(of the order of 50-60) to accurately represent the forcing function, which requires

numerous measurement points. Due to the limitations of these approaches, force

reconstruction techniques are often considered as inefficient and impractical except

for very simple structural components, such as beam or plate structures.

1.4.2 Force Determination for rotorcraft

Few attempts have been made by the helicopter community to predict the airloads

from measured deformations, except for the CFD community. A methodology known

as Force Determination (FD) was developed in the early 1970’s for the early diag-

nosis of vibratory forces and moments [7, 38, 24, 50]. FD determines magnitudes

and phasing of vibratory forces and moments using measured accelerations and cal-

ibration data. Vibratory hub loads are related to in-flight measured accelerations

on the fuselage through the inverse of the acceleration mobility matrix, obtained ex-

perimentally from ground-tests. It is therefore assumed that the structural behavior

is linear. The approach requires a high degree of redundancy between the number

of hub loads to be determined and the measured signals to reduce the sensitivity to

errors in measurements (either in the mobility matrix or in fuselage accelerations).

For example, a degree of redundancy of ten was used in [7] (12 measurements, two

forces to be determined). Results indicate that FD is able to predict the hub forces

with a satisfactory accuracy (errors of the order of 5-9% in different flight conditions

[50]), but requires extensive ground testing for the evaluation of the mobility matrix
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and assumes linear structural behavior. Therefore, considerable engineering judg-

ment is required to identify the forcing coordinates that contribute to the in-flight

vibratory accelerations. The success of the method depends on both the accuracy of

the calibration mobilities and the proper selection of the forcing coordinates [24].

The possibility of computing the spanwise load distribution from bending moment

measurements as a way of obtaining an estimate of blade loading is investigated

by Bousman [21]. This method has the ability to obtain a good estimate of the

airloads acting on rotor blades using only information obtained from strain gages,

thus providing a simple technique to predict the rotor aerodynamic behavior. This

procedure is based on a modal expansion of the in-vacuo flap equation of motion, in

which the blade is used as a force balance. The technique has the advantage that

only a few modes (10) and in-flight measurements of flap bending moments (of the

order of 15-20) are required. The agreement between the computed airloads and the

measured ones is found to be good, especially at the inboard station of the blade.

However, the method has less satisfactory capabilities in case of rapid variations in

airloads as seen near the blade tip because of its inability to satisfy the boundary

condition of zero airload at the blade tip. The algorithm has been generalized for

the estimation of pitching moment in [78]. An application of the algorithm to wind

turbine blades is described in [68].

1.4.3 Shape Sensing method

Another class of approaches can be classified as Shape Sensing techniques [71, 72, 70],

for which the reconstruction of the displacement/strain field at every material point of

the structure is achieved from a set of discrete strain or displacement measurements.

This method, called Inverse Finite Element Method (iFEM), consists in fitting the

measurements through the finite element discretization of the structure and the asso-

ciated shape functions. Although an accurate identification of the stresses is possible,
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physical insight on the updated system and on the applied loads is not provided. Fur-

thermore, a large number of sensors is required. For example, in [72, 20], a cantilever

plate, of area of 252 cm2, is analyzed, and 28 measurement points are included in the

analysis. The number of sensors is definitely reduced with respect to FR approaches

but their quantity is still remarkable. Moreover, the applicability of this approach to

analyze complex rotating systems such as helicopter rotors or wind turbines has not

been attempted.

1.4.4 Inverse Dynamic methods in biomechanics

Methodologies for updating numerical models based on continuous experimental mea-

surements have been proposed also in the field of biomechanics to compute stresses

in human joints from body motion. These combined numerical and experimental

approaches enable to track human motion during everyday life, and to analyze the

resulting stresses in the system. The correct representation of the kinematics of a

system is particularly important in biomechanics for movement analysis and stress

predictions in joints [5]. The instantaneous position and orientation of the body is

measured through a set of markers located on the skin (skin-markers) and its motion

is reconstructed by image recording [25]. Since markers are not directly attached to

bones, high measurement inaccuracies due to skin movement (soft tissue artifacts)

are introduced, and they must be corrected before comparison with numerical simu-

lations [6]. Then, kinematic data are combined with numerical models of the body

(generally a multibody model of the system of the bones [5]) to solve the general

dynamic problem and to find the stresses in the joints. This can be achieved either

through a direct dynamic analysis with the objective of minimizing the differences

between the obtained and the prescribed motion, or through an Inverse Dynamic

Analysis (IDA) [4]. In IDA the net joint reaction forces and moments are computed

through a series of differential equations, based on the equations of motion, from the

12



measurements of the kinematics and of the externally applied forces such as ground

reaction forces.

These approaches are formulated as prescribed-motion problems and they require

the use of sets of markers, the movement of which is image-recorded. This technique

is therefore not practical for applications as complex as the analysis of flying vehicles.

Moreover, in biomechanical problems, the major contributor to externally applied

loads are gravity forces, while aerodynamic loads are negligible. This is not the case

in aeronautical applications, where aerodynamic loads play a fundamental role.

1.5 Finite element model updating

Inaccuracies in numerical predictions of dynamic response due to lack of knowledge in

the structural modeling and to the presence of structural degradation can be improved

based on experimental measurements through model updating techniques. These

approaches iteratively change some physical parameters of the model to make the

system better match the target structural response. Unlike in other fields, such

as control design, model updating in structural dynamic is performed off-line after

the acquisition. The improved model is then used to analyze alternative loading

arrangements and modified structural configurations.

The main objective of model updating in structural dynamics is the correction

of a numerical model based on experimental measurements at a few locations in the

system not only to achieve an accurate mimic of the dynamic response of the struc-

ture, but also to obtain a physically meaningful numerical model. Extensive review

of traditional updating techniques can be found in the work of Mottershead and

Friswell [60, 40]. Berman et al. [12, 16, 13, 15, 19, 17, 18, 14] extensively applied

these approaches to improve the predictions of helicopter dynamic response. Modal

updating techniques are based on measurements of natural frequencies, damping coef-

ficients and mode shapes at a few locations on the system. They offer the advantage of
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requiring a limited number of experimental measurements, but are generally limited

to the analysis of measured modal characteristics [3]. Discussion of major limitations

of model updating techniques can be found in [16, 15]. These papers describe the

major drawback of these approaches that constists in the existance of multiple so-

lutions for the correction of the model based on experimental measurements. The

uniqueness of the solution is therefore not guaranteed. Moreover, the limited number

of sensors introduces singularities in the updating procedure because of the spatial

incompleteness of the measurement system [40, 15].

Recent advances in testing techniques such as laser scanning vibrometry and high

speed cameras for digital correlation [45] allow for full-field response measurements,

that can be used as input to calibrate numerical models. These methods directly

compare finite element predictions and full-field measurements by projecting the mea-

surement points onto the numerical mesh using polynomial shape functions [56, 66],

or pattern recognition techniques [83, 82, 81] to reduce the number of measurements

required. However, these approaches still need to handle a large amount of data to

update the numerical model. They can be applied to analyze mode shapes [82, 81]

or deformations [83] of the system.

Model updating techniques can also be used in conjuction with operation modal

analysis (OMA) methods that identify the modal properties of the system from dis-

placement, acceleration and/or strain measurements [2, 44, 85]. Some OMA ap-

proaches do not need knowledge of the input (i.e. applied loads) and can be used to

monitor the system under operating conditions. However, these approaches are lim-

ited by strong assumptions on the form of the excitation, which often is required to

be close to white noise. This is not the case, for example, for rotating systems, where

important contributions are given by the harmonic components due to the rotation.

Several attempts are currently being made to relax this assumption by performing

initial analyses on the measured data to remove the harmonic contributions, after
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which standard OMA techniques can be applied [3, 37, 62].

1.6 CA Approach

The approach for response identification presented in this research belongs to the

shape sensing class, and it is based on the technique proposed by Bousman [21] for

the analysis of rotor blades. The identification process is divided in a Load Conflu-

ence Algorithm, that updates the external loads acting on a dynamic system, and a

Property Confluence Algorithm, that tailors the mass and stiffness distributions on

the actual behavior of the system. The approach of Bousman [21] is generalized to an-

alyze different systems other than rotor blades by applying a general Finite Element

(FE) procedure. In addition, the focus is placed on the accuracy of the reconstructed

response rather than on the estimation of the load distribution.

The Load Confluence Algorithm is formulated in a general FE framework, and it

is based on an iterative procedure which estimates and corrects the externally applied

load so that numerical predictions and measured quantities reach an agreement within

a specified tolerance. This procedure can accommodate nonlinearities in the structure

owing to its iterative nature. Moreover, due to the generality of the FE formulation,

the algorithm can include different types of measurements (strains, displacements,

velocities, accelerations) with very minor modifications to the algorithm [28, 27, 59,

26, 30]. The iterative approach computes linearized corrections to the non-linear

model based on experimental measurements. These linearized corrections are based

on the second order, undamped, linear equations of motion of the system. The

LCA operates in the modal domain, from which the response of the structure is

reconstructed using numerical modes. Reconstruction of modal loads is shown to

accurately identify the response field after a few iterations, while the identification

of physical loads requires a higher computational burden and detailed experimental

information. Non-smooth external loads in fact require an infinite number of modes
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to be represented, while they generate smooth response in the system that can be

represented by a lower order modal representation. Therefore, the LCA appears as

promising as it requires a limited number of measurements and of modal information

to achieve accurate predictions of the dynamic response.

The Property Confluence Algorithm is based on an iterative procedure that com-

putes new estimates of the physical parameters based on current measurements of

the dynamic response. The procedure assumes that the external loads are accurately

modeled, and that inaccuracies in the predicted response are solely due to inaccurate

knowledge of mass and stiffness properties. Mass and stiffness distributions of the

system are updated based on the measurements of the dynamic response at discrete

locations [31, 29]. Similar to the LCA, the response is assumed to be periodic.

The LCA and the PCA can then be combined into a comprehensive SCA to create

a tailored model of a system. The previous assumption of a separate occurrence of

inaccuracies in loads and physical properties is removed, and the SCA systematically

corrects both the external loads and the physical properties of the system based on

the measured response.

1.7 Organization of the work

This research investigates the development and validation of a combined analytical

and experimental method for the prediction of the response of dynamic components,

in particular of helicopter rotor blades, from a limited number of measurements.

The thesis is organized as follows: this initial chapter introduces the topic of load

and response identification from experimental measurements from the state-of-the-

art of available analysis methods to unsolved issues of fundamental importance. It

states the goal of the present research and explains the developed approach and

some possible applications. Chapter 2 describes the Load Confluence Algorithm, by

which external loads are corrected as a mean to improve the prediction of dynamic
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response. Applications of LCA to analyze one- and two-dimensional structures are

presented in Chapter 3, along with applications to complex rotorcraft cases. Chapter 4

introduces the Property Confluence Algorithm as a means to tailor a general model

onto a particular machine history. Its applications to a one-dimensional framework are

described in Chapter 5. The convergence properties of both LCA and PCA based on

Newton’s method are discussed in Chapter 6, while Chapter 7 provides a summary of

the activities, along with a roadmap to unify LCA and PCA into a System Confluence

Algorithm. Recommendations for future research are also given in the conclusions of

Chapter 7.
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CHAPTER II

THE LOAD CONFLUENCE ALGORITHM

2.1 Overview

The Load Confluence Algorithm (LCA) is an effective procedure for the mapping of

the dynamic response using experimental measurements. The motivation comes from

the need to monitor the response of components operating in rotating environments

under complex loading as in the case of rotor blades and other rotating components in

rotorcraft [59]. In this application, the main sources of vibrations are airloads, whose

accurate prediction remains an outstanding challenge [84]. In contrast, structural

dynamic codes have achieved an acceptable level of predictive accuracy, provided

accurate air loads are available. The lack of predictive accuracy, from an usage

monitoring perspective, leads to limited predictive capability in terms of fatigue,

which ultimately results in overly-conservative designs. Therefore, reliable load and

strain predictions are essential for fatigue tracking and life estimation of structural

components such as rotor blades.

Major challenges are associated with the complex dynamic environment and asso-

ciated loads, which make direct measurements and numerical predictions particularly

difficult. Specifically, prediction of the unsteady aerodynamic loads acting on blades

remains a difficult task, despite recent advances in computational fluid dynamics

(CFD) [69]. Moreover, detailed measurement of airloads is extremely complex, costly,

and impractical in most cases. A goal of this work is to determine a method where

simplified airloads can be used and corrected to achieve high prediction accuracy in

terms of fatigue cycles estimations with moderate computational costs. This general

observation and the application to the rotorcraft environment lead to the assumption
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that the applied loads vary periodically in time. Accordingly, the dynamic response

is considered periodic and can be expanded through a Fourier series. The method

can be applied to a variety of problems where the applied loads can be represented

through harmonic series.

In this chapter, the algorithm is first conceptually described, along with its details.

At the end of the chapter, an example in a numerical framework of an isotropic beam

problem with both rigid and flexible support demonstrates its applicability.

2.2 Concept

Based on the schematic of Figure 4, the objective of the LCA is to numerically

reconstruct the full-field dynamic response of the structure w(x) from a (limited)

number s of experimental measurements w(x), where x is a vector defining the

location of the sensors x = [x1, x2, ..., xs]
T . The reconstruction is achieved through

a modal expansion of the numerical model of the structure and an iterative process.

At each iteration, the external loads are corrected to obtain an agreement between

numerical predictions and experimental measurements at locations xn. Iterations are

needed in order to account for non-linearities, inaccuracies and unmodeled dynamics.

Figure 4: Schematic of the fitting process of the LCA through discrete measurements
in the system.

The LCA consists in a numerical model of the structure, which is assumed to be
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as accurate as possible, a set of experimental measurements at a limited number of

locations, and an iterative procedure, which estimates the applied loads and maps the

measured response over the structure. A schematic representation of the procedure

is presented in Figure 5.

Figure 5: Concept of the LCA.

The dynamic model of the structure is generally described in terms of a mass

matrix M and a stiffness matrix K, while the set of experimental measurements

is denoted as eE(x) (with subscript E as Experimental). The linearized correction

of the external loads is defined by approximating the behavior of the system with

second order, undamped and linear equations of motion. Inaccuracies in damping are

corrected by the external loads.

The following notation is used in the following: bold, lower case letters define

vectors, while bold, upper case letters denote matrices. For the configuration depicted

in Figure 4, for example, x = [x1, . . . , xs]
T , and eE(x) = [w(x1), . . . , w(xs)]

T . A

general formulation allows for the measurement vector eE(x) to include displacement,

strain, velocity, or acceleration measurements.

The process shown schematically in Figure 6 can be summarized as the following

sequence of steps:

• An initial guess for the load F0 is applied to the model.

• The dynamic response eM(x) (with subscript M as Model) is estimated at the
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sensor location x by solving the FE problem.

• Numerical and measured responses are compared and an error vector ∆e =

eM − eE is calculated.

• A load correction ∆F is calculated based on ∆e through the formulation of the

problem in the modal domain. This is performed through the modal mapping

procedure described in sections 2.3 and 2.4.

• The updated load F = F + ∆F and the corresponding numerical response are

computed, and a new error ∆e is estimated.

• The process is iterated until ∆e reaches the desired tolerance level.

At each iteration, the mapped response is expected to improve based on experimental

measurements, as illustrated in Figure 7.

An iterative procedure is particularly important in case of systems including non-

linearities, in the presence of unmodeled dynamics and noisy experimental data, or in

situations where the number of modes considered in the modal expansion is lower than

the number of experimental measurements. Discussion of the convergence properties

of LCA is presented in Chapter 6.

2.3 Modal procedure for load estimation

The core of the LCA is based on a linearized and undamped model of the system.

Damping (or differences in damping model) is considered as part of the external load

to be updated by the algorithm. The applications of the algorithm are therefore

not restricted to undamped systems. The modeling of structural damping is in fact

generally not physically representative, and the addition of these terms as known

terms would not to provide additional knowledge of the system. Nonlinearities in the

system are dealt through multiple iterations.
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Figure 6: Schematic of the Load Confluence Algorithm.

Consider the second order equations of motion of a general undamped linear sys-

tem:

M ü(t) +Ku(t) = F (t) (1)

whereM andK are the mass and the stiffness matrix of the system, array u(t) stores

the N degrees of freedom of the system, and F (t) is the vector of the generalized

applied loads. The modal expansion of Eq. (1) requires that:

u(t) = P q(t) (2)

where q(t) are the modal coordinates and matrix P contains the N eigenvectors of

the system. The generalized loads are expanded in a similar manner as

F (t) = M Pλ(t) (3)
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(a) Step 1

(b) Step 2

(c) Step 3

Figure 7: Effects of an iterative application of LCA.

for a unit-mass normalization of the eigenvectors (λ(t) = P TF (t), assuming Eq. (3)

λ(t) = P TM Pλ(t) = λ(t)).

A reduced modal base of m eigenvectors will be used to approximate the dynamic
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response. A finite number of sensors s can in fact reconstruct up to s number of

modes. The use of a complete modal expansion would therefore require an infinite

number of measurement points.

The governing equations of motion of the system reduce to:

q̈i(t) + ω2
i qi(t) = λi(t) i = 1, . . . ,m (4)

with ωi denoting the natural frequencies of the system. The response of the sys-

tem and the modal components of the loads are expanded using a Fourier series of

frequency Ω (Ω is the fundamental excitation frequency):

q(t) ' q0 +
∑M

j=1 [qcj cos jΩt+ qsj sin jΩt]

λ(t) ' λ0 +
∑M

j=1 [λcj cos jΩt+ λsj sin jΩt]
(5)

Measurements eE(t) = [e1, e2, . . . , es]
T in the structure are evaluated at s locations,

and may consist of strains, displacements, velocities, accelerations or their combina-

tion. The response of each sensor can be also expanded in Fourier series:

eE(xn, t) ' eE0(xn) +
M∑

j=1

[
eEcj

(xn) cos jΩt+ eEsj
(xn) sin jΩt

]
n = 1, . . . , s (6)

Moreover, the measurements and the generalized coordinates can be related through

the incomplete modal matrix B and its pseudo-inverse as:

eE(x, t) = B(x)q(t), q(t) = B+(x)eE(x, t) (7)

The definition of B depends on the measured quantities, that is, on the kind of

sensors. For example, if eEi
represents a displacement measurement at location (xi),

Bij represents the contribution of the j − th modal displacement at location i. If

strain gages are considered, Bij represents the contribution of the j− th modal strain

at location i. The number of measurements s and modes m retained define the

dimensions of matrix B, which are very important in the evaluation of its pseudo-

inverse B+. Discussion of the choice of type of sensors can be found in section 2.5.

24



Introducing relations (5), (6) and (7) into the governing equations of motion of the

problem, the following linear algebraic relationships among the Fourier components

of the applied loads and local measurements hold:

λ0 = diag (ω2
i )B

+eE0

λcj = diag (ω2
i − j2Ω2)B+eEcj

, j = 1, 2, ...,M

λsj = diag (ω2
i − j2Ω2)B+eEsj

, j = 1, 2, ...,M

(8)

These relations imply that if the time histories of the response are measured at a

number of locations on the structure, their Fourier components are closely related to

the Fourier coefficients of the modal loads, from which the equivalent applied load

vector can be reconstructed as:

F (t) = M Pλ(t) (9)

for a unit-mass normalization of the eigenvectors. This observation gives the ad-

vantage that only the Fourier components of the measured time histories have to

be stored during the acquisition, thus reducing the quantity of data. Moreover, a

limited number of experimental measurements is necessary and sensor locations are

not limited to the nodes of the finite element model. The measured data is in fact

projected into the model with polynomial functions (FE shape functions) and their

spatial incompleteness is recovered through the modal reconstruction of the system.

2.4 Procedure for response mapping

The modal procedure for load estimation described in section 2.3 is employed to

define the load correction to be applied to the FE model at each iteration to improve

the accuracy of the numerical response. The difference between experimental and

numerical response at the sensor location can be expressed in terms of their Fourier
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expansion as:

∆e(x, t) = eM(x, t)− eE(x, t)

= ∆e0(x) +
M∑

j=1

[∆ecj(x) cos jΩt+ ∆esj(x) sin jΩt] (10)

and:

∆q(t) = B+(x)∆e(x, t) (11)

Following the procedure described in section 2.3 for the computation of modal loads,

the load correction is given by:

∆F (t) = M P∆λ(t) (12)

These incremental loads are iteratively applied to the initial numerical system.

Iterations are stopped by the user after the desired number of applications of the

algorithm. As a consequence, the accuracy of the dynamic response at the control

points is improved once the system reaches steady-state. The improvement of numer-

ical predictions at measured locations results also in improvements in accuracy of the

response of the entire system, due to the modal projection of the local information

onto the entire domain. The application of this iterative procedure therefore produces

accurate representations of the map of the response.

2.5 Numerical example: analysis of a beam in bending

The application of LCA to analyze dynamic systems can be demonstrated in a nu-

merical framework, in which the reference data eE are numerically generated. This

solution allows for a detailed analysis of the obtained results that are not affected by

measurement inaccuracies and noise. Experimental cases are analyzed in Chapter 3.

This analysis considers a beam in bending, modeled using finite elements. The

beam is free at one end, and it is supported by a constraint of varying flexibility at

the other end. The flexible support is modeled through a linear spring of stiffness k.
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The presence of a flexible support introduces quasi-rigid body modes in the system,

which need to be investigated with attention as part of LCA.

In practical applications, the response of the system is monitored by measuring

different dynamic quantities, such as strains, displacements, velocities, accelerations

and forces at different locations. Therefore, the capabilities of LCA need to be inves-

tigated in the presence of different types of measurements simultaneously acquired.

Several examples are presented in this section to analyze the role of different types of

sensors in the convergence of LCA. The first two examples analyze the performance

of LCA in case of a cantilever beam. Initially, four strain sensors are considered as

reference (case Beam 1), then four displacement measurements (case Beam 2). Then,

the stiffness of the constraint is reduced, introducing a quasi-rigid-body mode in the

system. The capabilities of LCA are again evaluated in case of four strain measure-

ments (case Beam 3), and four displacements (case Beam 4). Next, mixed sensors are

used as reference points. Case Beam 5 considers three strain and one displacement

measurement, case Beam 6 three strains and one force measurement. Corrections

based only on strain information are in fact not expected to be able to retrieve the

information on rigid-body modes, for which different types of measurements (i.e. dis-

placement, force) need to be considered. All conditions considered for the analysis

are listed in Table 1.

Table 1: Description of parameters for analyzed cases for a spring-free beam config-
uration.

Case ID k sensor type

Beam 1. ∞ 4 strain
Beam 2. ∞ 4 displacement
Beam 3. 103 N/m 4 strain
Beam 4. 103 N/m 4 displacement
Beam 5. 103 N/m 3 strain, 1 displacement
Beam 6. 103 N/m 3 strain, 1 force
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The beam of length 430.0 mm is discretized with 15 Timoshenko beam ele-

ments. It has a rectangular section of thickness h = 8.4 mm. The axial stiffness

is EA = 9.7×106 N, the bending stiffness EI = 48 Nm2 and the shear stiffness is

kGA = 37.4×106 N. The mass per unit length of the beam is m = 0.38 kg/m, with a

distributed mass moment of inertia of I = 9.1025×10−5 kg m. The natural frequen-

cies of the beam are listed in Table 2 for a cantilever beam (k =∞) and for a flexible

support (k = 103 N/m).

The reference model and the initial numerical model (to be corrected by LCA)

are supposed to be characterized by the same mass and stiffness distributions and

boundary conditions, but differ in the definition of the external loads. Both systems

are characterized by proportional damping.

An harmonic concentrated force of frequency f = 10 Hz is applied at the free end

of the beam in the vertical direction. The reference external loads are a combination

of a sine and cosine function, each characterized by a unit value Fourier coefficient

(Fref (t) = sin 20πt + cos 20πt). The system to be updated is characterized by an

initial sinusoidal load of double amplitude (Fin(t) = 2 sin 20πt).

The reference values for LCA (denoted as eE(x) in section 2.3) are the dynamic

response at discrete locations of the beam for a load system for which the point of

application and time function are supposed to be unknown.

Table 2: Natural frequencies of the beam for different values of tip spring.

f [Hz] k =∞ k = 103 N/m

f1 36.7 12.2
f2 226.0 60.2
f3 614.4 307.5
f4 1156.7 732.7
f5 1823.7 1304.4
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2.5.1 Cantilever beam

The first case (Beam 1) consists of a cantilever beam. Four strain gages are considered

as reference points (Figure 8).

L

x

Figure 8: Beam 1. Cantilever beam. Strain sensors in red. Sensor 1 at the clamp.

Initially, a convergence analysis on the number of modes used in the modal ex-

pansion of the LCA is performed to define general criterions for the choice of number

of modes and therefore number of sensors. The performance of LCA are described

through convergence plots of the maximum difference in absolute value and phase

between the reference and the reconstructed signals at the sensors, Figures 9 and 10.

Given a Fourier representation of the response e = e0 +
M∑

j=1

[ecj cos jΩt+ esj sin jΩt],

the absolute value and phase at each control point i are defined as |ei| =
[

M∑

j=1

(e2
cji

+ e2
sji

)

]1/2

and φi =
M∑

j=1

tan−1 esji
ecji

. In the figures, the difference in absolute value |∆| is defined

as the mean difference between the experimental and numerical peak-to-peak dy-

namic response at sensor location, |∆| = 1

s

s∑

i=1

|(|eMi| − |eEi|)|. ∆φ is defined as the

mean phase difference between the experimental and numerical dynamic response at

sensor location, ∆φ =
1

s

s∑

i=1

(φMi − φEi). These analyses show that a few modes are

sufficient to accurately identify the dynamic response of the system, and to achieve

convergence of the iterative process. Results presented in the following as a baseline

case consider the first three modes and are converged after three iterations.
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(d) Modes 1-2-3.

Figure 9: Convergence analysis of the mean absolute value changing the modal
expansion included in LCA applied to a cantilever beam with four strain sensors.

The identified loads for the baseline case are represented in Figure 11 in terms

of its sine and cosine coefficients. The loads applied to the reference system are not

exactly identified, but instead an equivalent representation that accurately represents

the dynamic response. Even if the initial and reference loads are concentrated loads

applied to the tip, LCA identifies a set of nodal loads that represents the effect of the

real applied loads.

The actual time histories at the sensor locations for Beam 1 are shown in Figure 12

at control points 1 and 4. An initial discrepancy of about 25% between the reference

and initial strain is reduced to about 5% after one iteration and to less than 1% after

the second application of LCA. Even if the problem is linear, a multiple number of
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Figure 10: Convergence analysis of the mean phase changing the modal expansion
included in LCA applied to a cantilever beam with four strain sensors.

(a) Sine coefficient (b) Cosine coefficient

Figure 11: Beam 1. Sine and cosine coeffient of the applied load before and after the
application of LCA. Reference (o). Initial FEM (- -). Final LCA (-).
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iterations is required because of the presence of damping. The effect of damping on

convergence of LCA are discussed in Chapter 6.

0 1 2 3 4 5 6

−60

−40

−20

0

20

40

60

80

t [s]

µ
ǫ

 

 

FEM
Ref

(a) Sensor 1

0 1 2 3 4 5 6
−40

−30

−20

−10

0

10

20

30

40

t [s]

µ
ǫ

 

 

FEM
Ref
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Figure 12: Beam 1. Convergence of time history of the signal at control points.
Reference (- -). Predicted (-)

Snapshots of the dynamic response at the sensors location are presented in Fig-

ure 13, both at the beginning of the simulation and after the application of LCA.

Convergence is obtained not only on peak-to-peak values but also on the frequency

content of the signal, as demonstrated by the convergence history of the Fourier coeffi-

cients (Figure 14). After three iterations, zeroth, sine and cosine coefficients converge

to the reference values for all control points, and recover the initial differences between

the reference and the numerical system.

The identified loads result in a very accurate representation of the instantaneous

deformed shape of the beam (Figure 15), even if a slight inaccuracy is still present at

the tip of the beam, due to the concentration of control points in the first half of the

span. A more homogeneous sensor distribution results in improved overall response

but is not considered representative of an actual experimental condition, because of

the low strain level close to the free tip with respect to experimental noise.

A second case (Beam 2) considers four displacement sensors as control points,

located along the span of the beam as shown in Figure 16. The convergence plots of
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Figure 13: Beam 1. Snapshot of time history of sensor 1 (top) and 4 (bottom) at
the beginning of the analysis and after the application of LCA. Reference (o). Initial
FEM (- -). Final LCA (-).

the maximum difference in absolute value and phase between the reference and actual

signals at the sensor are shown in Figure 17. The analysis is converged after three

iterations also in this case. The time histories of the dynamic response at control

points are depicted in Figure 18, snapshots of time histories in Figures 19 and 20 and

the behavior of Fourier’s coefficients in Figure 21. Good convergence is observed in

this case similar to the cantilever beam case with strain gauges (Beam 1) previously

analyzed. The instantaneous deformed shape of the beam (Figure 22) is also well

simulated. Overall, no significant difference in behavior is observed whether strain or

displacement sensors are considered for a cantilever beam example.
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Figure 14: Beam 1. Convergence of Fourier coefficients of sensor 1 and 4 during the
analysis. Predicted (-). Reference (- -). Black line: constant coefficient. Red line:
first sine harmonic. Blue line: first cosine harmonic.
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Figure 15: Beam 1. Instantaneous deformed shape of the beam. Reference (o).
Initial FEM (- -). Final FEM (-).

2.5.2 Flexible support

The presence of a flexible support introduces quasi-rigid-body modes into the system

and affects the ability of the Load Confluence Algorithm to converge to the reference

data. A linear spring of stiffness k = 103 N/m is added at the left end of the beam, and

the clamp constraint is eliminated. The behavior of LCA in presence of strain sensors
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Figure 16: Beam 2. Cantilever beam. Displacement sensors in blue.
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Figure 17: Beam 2. Convergence analysis of maximum difference in absolute value
and phase between the reference and actual signals at the sensors’ location.
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(b) Sensor 4

Figure 18: Beam 2. Convergence of time history of the signal at control points.
Reference (- -). Predicted (-).

(Beam 3), displacement sensors (Beam 4), and mixed sensors (strain/displacement -

Beam 5, strain/force - Beam 6) is analyzed. In real operations, in fact, different types
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Figure 19: Beam 2. Snapshot of time history of sensor 1 at the beginning of the
analysis and after the iterations of LCA. Reference (o). Initial FEM (- -). Final
FEM (-).
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Figure 20: Beam 2. Snapshot of time history of sensor 4 at the beginning of the
analysis and after the iterations of LCA. Reference (o). Initial FEM (- -). Final
FEM (-).

of measurements are generally available to monitor the behavior of a system. The

position of the control points for case Beam 3 is shown in Figure 23.

Also in this case, the algorithm converges in three iterations considering three

modes in LCA, as observed from the convergence plots of the maximum difference

in absolute value and phase between the reference and actual signals at the strain

sensors (Figure 24). However, inaccuracies in the identification of the instantaneous

deformed shape are present (Figure 25) due to the quasi-rigid displacement of the
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Figure 21: Beam 2. Convergence of Fourier coefficients of sensor 1 and 4 during the
analysis. Final LCA (-). Reference (- -). Black line: constant coefficient. Red line:
first sine harmonic. Blue line: first cosine harmonic.
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Figure 22: Beam 2. Deformed shape of the beam at a particular time instant.
Reference (o). Initial FEM (- -). Final FEM (-).

beam that does not affect the strain values at the control points.

If displacement sensors are used in spite of strain measurements (position of control

points in Figure 26), the analysis converges after five iterations (Figure 27) and the

inaccuracies on the identified deformed shape (Figure 28) are reduced with respect

to the previous case. Displacement sensors are therefore able to recover both the

quasi-rigid and the flexible content of the response.
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Figure 23: Beam 3. Linear spring-free beam. Strain sensors in red.
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Figure 24: Beam 3. Convergence analysis of maximum difference in absolute value
and phase between the reference and actual signals at the sensors’ location.

Another case is represented by the mixture of strain gages with a displacement

sensor (case Beam 5, Figure 29(a)) or with a force sensor (Beam 6, Figure 29(b)).

This last analysis represents a realistic case since it is generally possible to measure

the load acting on an element of the system through a load cell sensor. The presence

of a displacement/force sensor recovers the behavior due to quasi-rigid displacements

and improves the behavior of LCA with respect to a pure strain case (Figures 30(a) -

30(b)).
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Figure 25: Beam 3. Instantaneous deformed shape of the beam. Reference (o).
Initial FEM (- -). Final FEM (-).
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Figure 26: Beam 4. Linear spring-free beam. Displacement sensors in blue.

2.6 Conclusions

This chapter demonstrated that LCA can accurately represent the response of a

system starting from a limited number of reference values at the control points in

the absence of experimental noise and model inaccuracies. The next chapter analyzes

the performance of LCA when reference values are experimentally generated. Three

different cases are analyzed: a one-dimensional beam test, a two-dimensional plate

experiment and in-flight tests of the UH-60A rotorcraft.
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Figure 27: Beam 4. Convergence analysis of maximum difference in absolute value
and phase between the reference and actual signals at sensor location.
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Figure 28: Beam 4. Instantaneous deformed shape of the beam. Reference (o).
Initial FEM (- -). Final FEM (-).

(a) Beam 5 (b) Beam 6

Figure 29: Vertical spring-free beam. Position of strain sensors in red (o). Position
of displacement sensor in blue (4). Position of force sensor in green (2).
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(b) Beam 6

Figure 30: Instantaneous deformed shape of the beam. Reference (o). Initial FEM (-
-). Final FEM (-).
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CHAPTER III

APPLICATION OF THE LOAD CONFLUENCE

ALGORITHM TO EXPERIMENTAL DATA

3.1 Overview

The efficiency of the Load Confluence Algorithm is initially evaluated through well-

controlled lab experiments performed on an aluminum rotor blade and an aluminum

plate. The objective of the experiments is to analyze the performance of LCA in

the presence of measurement’s errors and inaccuracies in the model as typical for

practical applications. Then, the analysis of a more complex problem is presented in

which flight test results of a UH-60A helicopter are used as reference.

3.2 Experiments on beams

3.2.1 Objectives

The first application of LCA to experimental results involves the analysis of a beam in

bending. In this set of experimental analyses, an aluminum rotor blade is excited by a

concentrated force and its response is measured through a set of strain gages [28, 26].

This one-dimensional test in a well-controlled environment allows to investigate the

performance of LCA in case of minimal inaccuracies in the numerical model of the

structure and minimal experimental noise. It provides indication of the characteristics

of the approach, that will then be generalized by two-dimensional and in-flight tests.

This analysis focuses on the behavior of LCA far from resonance. Its behavior close

to resonance is analyzed in section 3.3.
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3.2.2 Experimental set-up

The beam is straight and it is characterized by a thin-walled cross section (Figure 31).

The properties are uniform along the span. The geometry of the beam is listed in

Table 3.

Figure 31: Beam cross section.

Table 3: Physical and geometrical properties of the thin-walled beam.

Length L = 0.413 m
Airfoil NACA 0012
Chord c = 0.07 m
Mass m = 178 g

The beam is clamped at its bottom and it is excited by an electrodynamic shaker

located at two-thirds of its span, Figure 32, with a sinusoidal concentrated load of

frequency f = 10 Hz. This frequency is lower than the first natural frequency of the

beam, and it is not affected by the resonant behavior of the structure.

The response is characterized through velocity and displacement measurements

recorded by a scanning laser vibrometer (Polytec PSV-400). The laser scanning vi-

brometer measures the velocity of a grid of points on the surface of the beam. The

velocity signals are then integrated to obtain displacement measurements. In addi-

tion, strain measurements are performed at five locations along the span with linear

strain gages placed within two-thirds of the span close to the root. These locations

are chosen because strains are expected to reach higher values. The location of the

strain gages and a detail of a single strain gage mounted on the blade are shown in

Figure 33.
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Figure 32: Experimental setup for shaker excitation of the blade.

(a) Strain gages arrangement (b) Detail of a
single gage

Figure 33: Location of the strain gages along the blade span and detail of a gage.

3.2.3 Beam model

The blade is modeled with finite elements and is discretized by 15 Timoshenko beam

elements with third order polynomial shape functions (lock-free elements). This dis-

cretization is characterized by converged natural frequencies.

The mass and stiffness properties are optimized in order to match experimental

and numerical bending natural frequencies with acceptable accuracy. The parame-

ters for this simple optimization problem are the mass per unit length of the beam,

the bending and shear stiffnesses. The objective function is defined as the difference
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between estimated and experimental natural frequencies. Experimental natural fre-

quencies are evaluated from the behavior of the operational frequency response func-

tion for a random excitation. The resulting choice of parameters accurately represents

the dynamic behavior of the beam in terms of natural frequencies with inaccuracies

of the order of 5% on the lower modes, Table 4.

Table 4: Comparison between numerical (fn) and experimental (fe) bending natural
frequencies of the blade.

ID fe [Hz] fn [Hz] Error [%]

f1 36.21 36.63 1.2
f2 227.5 229.3 0.8
f3 632.5 641.1 1.3
f4 1197.5 1253.3 4.5

The external load is modeled as a nodal concentrated load applied at two-third

of the span, in correspondence of the position of the shaker in the experimental

setup. The system is excited with a sinusoidal load of frequency 10 Hz. Initial

differences exist between the magnitude and phase of the numerical and experimental

load function, that result in inaccuracies in the computation of the dynamic response,

both in its peak-to-peak values and in phase. LCA aims to correct these initial

inaccuracies, as described in the following section.

3.2.4 Results of LCA

The LCA is applied to an initial model of the blade whose dynamic response is charac-

terized by both phase and peak-to-peak differences with respect to the experimental

measurements due to inaccuracies in the representation of the load. The identifica-

tion process includes four strain sensors because the fifth sensor (closer to the tip, in

proximity of the attachment point of the shaker) is characterized by a low level of

measured strains, and it is therefore highly affected by measurement noise. In the

following, the sensor close to the root will be referred as the “root” sensor, as opposed
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to the “tip” sensor which is the closest to the tip.
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Figure 34: Measured and predicted strain at the root sensor at the beginning of the
analysis and after the application of LCA. Measured (o). Initial FEM (- -). Final
FEM (-).
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Figure 35: Measured and predicted strain at the tip sensor at the beginning of the
analysis and after the application of LCA. Measured (o). Initial FEM (- -). Final
FEM (-).

Figures 34 and 35 show the comparison between the time histories of the measured

and numerical strains estimated at the first step of the analysis and at the end of the

simulation. The numerical response at the control points is accurately corrected by

LCA. Initial differences of the order of 30µε on peak-to-peak values (Figure 36(a)) and
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of 70 deg on the phase (Figure 36(b)) are improved to less than 5µε and 5 deg after

the first iteration. Convergence of the algorithm is achieved after three iterations. As

a result of these improvements, the difference in time history of the signals becomes

almost constant (Figure 37).
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Figure 36: Convergence analysis of maximum difference in absolute value and phase
between the reference and numerical signals at the sensor location.
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Figure 37: Maximum difference in time history after each application of the mapping
algorithm.

This one-dimensional example shows that accurate representation of the response

through correction of the external loads based on experimental measurements are
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possible and accurate. The next section investigates the characteristic of LCA for a

two-dimensional experimental case.

3.3 Experiments on plates

3.3.1 Objectives

The algorithm is now applied to experimental measurements in a two-dimensional

problem. Due to its high flexibility, the LCA can in fact analyze many dynamic

systems without requiring ad-hoc modifications. In this set of experimental analyses,

an aluminum plate is excited by a concentrated force and its response is measured

in terms of velocity. This example expands the application of LCA with respect to

the previous one-dimensional analyses, showing the versatility of the algorithm [30].

It explores the performance of the algorithm in case of large discrepancies in the

representation of the applied load (both in terms of value and of location) and close

to resonant conditions.

3.3.2 Experimental set-up

Experiments are performed on an aluminum rectangular plate, 0.25 × 0.46 m of di-

mensions, and thickness 1.5 mm. The experimental set-up is shown in Figure 38.

Figure 38: Experimental configuration for an aluminum rectangular plate.
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The plate is partially cantilevered at its bottom edge and a concentrated force

is applied through an electrodynamic shaker (model LDS V201/3) located at xL =

0.125 m and yL = 0.355 m from the lower left corner of the cantilever plate. The

velocity distribution over the plate surface is measured by the scanning laser vibrom-

eter (Polytec PSV-400), set to measure the response in 209 points of a grid covering

the plate surface. The velocity field of the plate is integrated to obtain the corre-

sponding displacement distribution. The measured set of points is divided in two

subsets: a first small subset is used by LCA to identify the response, while a larger

subset compares the full-field numerical predictions with the measured response of

the plate. The two subsets are shown in Figure 39.

Figure 39: Measured grid points on the plate. Large subset: grey squares, small
subset: red circles.

3.3.3 Plate numerical model

A finite element model of the aluminum plate is developed using the material and ge-

ometrical properties listed in Table 5. They result from an optimization procedure to

match the numerical and experimental natural frequencies. The optimization param-

eters of this procedure consist of geometric dimensions (lengths of the plate in x- and

y-directions), thickness, Young modulus and density of the material. The objective
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function is defined as the difference in the lowest five natural frequencies between the

experimental and numerical systems. The numerical natural frequencies are computed

considering a mesh of 8x16, 8-node, Mindlin’s isoparametric plate elements. The plate

is partially clamped on one short edge and is excited by an harmonic concentrated

load. The experimental natural frequencies are evaluated from the frequency response

functions measured by the laser scanning vibrometer for a pseudo-random excitation.

The objective function is minimized through an optimization approach for constraint

problems. The results of this analysis define the physical properties of the system

that better match the experimental measurements in terms of natural frequencies and

are considered to define the input model to analyze the performance of LCA.

Table 5: Material and geometrical properties of the plate.

E 57136 MPa
ν 0.3
ρ 2600 kg/m3

Lx 0.251 m
Ly 0.46 m
t 1.5 mm

The natural frequencies of the model show a very good agreement with the ex-

perimental measurements (Table 6), and the same holds for the modal shapes of the

system. Therefore, a good correlation can be assumed between the numerical model

and the experimental system in terms of mass and stiffness distributions. A discrep-

ancy of 20% on the first natural frequency is observed due to excitation inaccuracies

of the shaker at low natural frequencies. This is the reason why the optimized elastic

modulus assumes a value that differ from the generally assumed value for aluminum.

The geometry and mesh are shown for different positions of the concentrated load

in Figure 40, with the corresponding boundary conditions and applied load.
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Table 6: Numerical fn and experimental fe natural frequencies for the plate.

Mode fn [Hz] fe [Hz] Error [%]

f1 6.10 5.00 22.0
f2 22.3 22.5 0.89
f3 37.8 37.5 0.80
f4 73.0 77.5 5.80
f5 104.1 100.0 4.10

3.3.4 Results

The harmonic response of the plate is analyzed for different excitation frequencies,

f = 10 Hz and f = 20 Hz, chosen as representative of the behavior of the algorithm.

Both the case of an initial accurate load distribution (concentrated load applied at

the shaker location, Figure 40(a)) and of inaccurate distribution (concentrated load

not applied at the shaker location, Figure 40(b)) are presented. The characteristics

of each analysis are summarized in Table 7.

Table 7: Cases analyzed for the plate configuration.

Case ID f [Hz] No. sensors, No. modes Load position

Plate 1 10 s = 4, m = 3 accurate
Plate 2 20 s = 3, m = 2 non-accurate

The dynamic responses at the beginning and end of each simulation are compared

to demonstrate the ability of the algorithm. This comparison is presented for the

following three points in the structure (Figure 41):

• Sensor 1 used by LCA as reference point.

• Point A (x = 0.05 m, y = 0.26 m, left edge of the plate) not used by LCA as

reference point.

• Point B (x = 0.20 m, y = 0.14 m, center of the plate) not used by LCA as

reference point.
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Figure 40: Geometry and mesh of the numerical model of the plate.

The first analysis considers an excitation frequency f = 10 Hz with an accurate

placement of the concentrated load (Figure 40(a)), and includes in the identification

process four sensors and three modes. This number of sensors and modes is seen to

give an accurate prediction of the full-field response of the structure. The correspond-

ing B matrix (refer to section 2.3) is in fact well-conditioned, as demonstrated by its

singular values listed in Table 8 that are characterized by the same order of magni-

tude. The singular values of B in fact give an indication on how well the considered

sensors are able to represent the modes included in LCA. The four sensors are placed

in the top section of the plate, two on the left and two on the right side, Figure 41.

Table 8: Singular values of matrix B for cases Plate 1-2.

ID σi σi/σmax

1 162.8 1.00
2 152.3 0.94
3 60.1 0.37

Initially, both magnitude and phase errors characterize the numerical response

at the control points (Figure 42(a)) when compared to the experimental measure-

ments. These differences are accurately recovered by LCA both at control points
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(Figure 42(b)) and at other locations in the domain (Figures 43, 44). These results

confirm the ability of LCA to identify the full-field response of the structure, as it is

demonstrated by comparing the experimental and numerical deformed shapes of the

plate before and after the application of the LCA (Figure 45). Moreover, the deformed

shapes of two midspan cross sections in x and y directions are shown in Figure 46.

The discontinuities in experimental response are due to measurement noise.

1 2

3 4

A

B

Figure 41: Location of control and comparison points used by LCA.
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Figure 42: Plate 1. Comparison of experimental and numerical response at sensor
1. Measured (o). Initial FEM (- -). Final FEM (-).

The reconstructed response shows a good agreement with the experimental results.

The peak-to-peak error is reduced of more than 90%, and the same behavior is noticed
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Figure 43: Plate 1. Comparison of experimental and numerical response at point A.
Measured (o). Initial FEM (- -). Final FEM (-).
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Figure 44: Plate 1. Comparison of experimental and numerical response at point B.
Measured (o). Initial FEM (- -). Final FEM (-).

for the phase difference between the signal, as shown in Figure 47.

In the second case, a large inaccuracy in load location is introduced into the model

and the algorithm needs to perform in a more critical condition. The load is applied

close to the left bottom corner of the plate (x = 0.063 m, y = 0.115 m, Figure 40(b)),

while in the experimental set-up (Figure 38) is located in the central-top part of the

plate. A reduced number of sensors and modes is also considered (s = 3, m = 2). The

convergence of the simulation is reached in seven iterations, as shown in Figure 48 by

the changes of the differences in absolute value and phase during the analysis.
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Figure 45: Plate 1. Comparison of numerical and experimental instantaneous de-
formed shapes before and after the application of LCA.

(a) Mid-Cross section in x-direction
y = 0.23 m

(b) Mid-Cross section in y-direction x = 0.13 m

Figure 46: Plate 1. Comparison of cross sections deformed shapes in x and y direc-
tions. Measured (- -). Initial FEM (o). Final FEM (-).
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Figure 47: Plate 1. Convergence of maximum absolute value and phase of the
reference sensors during the analysis.
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Figure 48: Plate 2. Convergence of maximum absolute value and phase of the
reference sensors during the analysis.

The time histories of the displacement of the plate are compared before the appli-

cation of the updating procedure and at the end of the simulation (Figures 49 and 50)

and an improved representation of the response is achieved in this case as well. The

experimental and numerical deformed shapes of the plate are compared before and

after the application of LCA in Figure 51. The deformed shape of two midspan cross

sections in x and y directions are shown in Figure 52. The experimental response is

dominated by the first mode of the plate, even if the excitation frequency is closer

to the second resonance (Figure 51(c)), because the shaker is located on a nodal line
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for the second mode. This is not true for the initial numerical response, because of

the inaccurate location of the concentrated load (Figure 51(a)). The LCA is able

to recover also this critical case in which the response of the two systems are dom-

inated by different modes, provided that all modes that participate in the response

are considered in the identification process (Figure 51(b)).
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Figure 49: Plate 2. Comparison of experimental and numerical response at point A.
Measured (o). Initial FEM (- -). Final FEM (-).
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Figure 50: Plate 2. Comparison of experimental and numerical response at point B.
Measured (o). Initial FEM (- -). Final FEM (-).

These results demonstrate that the reconstruction of the complete mapping of the

dynamic response is possible and accurate. In particular, Figures 46-52 show that

accurate representations of the response in general points of the structure are achieved
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Figure 51: Plate 2. Comparison of numerical and experimental deformed shapes
before and after the application of LCA.

with a small number of reference sensors and number of modes used in the modal

expansion. In both cases, a few iterations (less than ten) are necessary to achieve a

good accuracy of the numeral response in terms of peak-to-peak values and phase.

The reconstruction of the response is therefore possible when both the load magnitude

and the distribution are unknown.

3.4 UH-60A flight test data

A more complex scenario is investigated to understand the capabilities of the ap-

proach. In the previous sections, the LCA is applied to linear dynamical systems and

the effects of non-linearities is not investigated. A non-linear case is now presented

involving flight test data from a Sikorsky UH-60A rotorcraft as reference points to a

rotor system modeled with multibody techniques [48, 10, 9].
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Figure 52: Plate 2. Comparison of cross sections deformed shapes in x and y direc-
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3.4.1 Objectives

When using simplified aerodynamic models, state-of-the-art comprehensive codes pre-

dict the flapping bending moment distribution acting on the blade with fair accuracy,

while the torsion and edgewise moments are predicted with lower accuracy, particu-

larly at higher harmonics (3/rev and above) [1]. The accuracy of the prediction im-

proves when using advanced CFD codes or measured aerodynamic loads [52, 69, 76].

For example, Datta et al. [34, 36] compare the predictions of the structural loads for

the UH-60A helicopter when measured airloads are applied to the structural model

and the results of coupled CFD/CSD analysis (RANS CFD/comprehensive analysis)

with experimental measurements in three different flight conditions (high speed, low
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speed, high thrust). The common findings of the different analyses are:

• the peak-to-peak values for bending and torsion moments are well predicted

both by measured and CFD airloads. This is due to the fact that the low

harmonics (1-3/rev) are well predicted in magnitude. The peak-to-peak values

of the chord bending moment are instead generally underpredicted by both

schemes,

• the accuracy of the predicted vibratory flap bending moments highly depends on

the considered flight condition. The discrepancies are mostly due to the quality

of airloads predictions. The 3/rev harmonic is in all conditions the dominant

vibratory harmonic,

• the vibratory chord bending moment is predicted with large inaccuracies in

all flight conditions, especially in the magnitude values of the 4-5/rev (errors of

about 50%). These large errors are mainly due to structural dynamic deficiencies

since the airloads model does not result in any improvement,

• the predicted vibratory torsional moments show large discrepancies in particular

at 4-5/rev. The reason for these discrepancies is still not clear, probably related

to unmodeled structural dynamics.

Unfortunately, measured airloads are generally not available. On the other hand,

CFD formulations provide high fidelity, nonlinear aerodynamics that can overcome

many of the shortcomings of simplified aerodynamic analyses, but are computation-

ally too expensive to be considered in design and maintenance phases. However,

when simplified airloads, such as lifting line theories, are coupled with the structural

model, the predictions are less accurate [65, 49, 76]. Current trends [35] of rotorcraft

research aim to improve the predictions of modern modeling approach by developing

three-dimensional rotor structural dynamic analysis (coupled with three-dimensional
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CFD approaches) that can model generic structural components to determine crit-

ical couplings and stresses that are neglected by current simplified one-dimensional

representations of the dynamic of the blades. These methodologies require high com-

putational costs and are therefore not considered a feasible approach in the present

work, although their promising applications. This section demonstrates that the use

of simplified airloads in combination with experimental measurements of the response

can result in high prediction accuracy with moderate computational cost when LCA

is applied. In the following analysis, the system is modeled as a flexible multibody

system in which a simplified model of the airloads, based on lifting line theory, is

coupled with the structural model. The pitch angle of the blades is imposed as input

to the numerical model based on experimental measurements.

3.4.2 UH-60A dataset

Extensive in-flight experimental results of blade airloads and strain measurements

are available through the UH-60A Airloads Project, as described in [73, 23, 54].

Highly-instrumented blades were designed, built, and installed on a standard UH-

60A aircraft [52], as shown in Figure 53.

Figure 53: UH-60A instrumented blades with location of strain gages, accelerometers
and pressure transducers (from [23]).
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Of the four rotor blade, one blade was instrumented with a total of 221 pressure

transducers installed in nine spanwise arrays, and 21 pressure transducers installed

near the leading edge. A second blade was instrumented with strain gauges (9 sensors

for flapping moment, 8 sensors for edgewise moment, 4 sensors for torsion). and 8

accelerometers to measure the blade structural loads and response. The aircraft was

also instrumented to measure the vehicle state. The pressure data were sampled

so that the effective bandwidth corresponded to about 120 harmonics. Structural

data were recorded at a lower rate which corresponded to an effective bandwidth of

about 24 harmonics. Sixty-eight test points (counters) obtained during the UH-60A

Airloads Program are classified as maneuvers. This set includes classical maneuvers

such as symmetric pull-ups and pushovers, rolling pullouts, roll reversals, and diving

turns.

The LCA is applied to the analysis of three different flight conditions located at

the boundary of the UH-60A flight envelope and generally used in the literature as

benchmarks to assess numerical models. The first flight condition is characterized by

high speed (C8534), the second by high thrust and dynamic stall (C9017), the third

one by low speed (C8513). The application of the mapping algorithm has the advan-

tage that it does not require an accurate representation of the aerodynamic loads,

and simple aerodynamic models can be used thus reducing computational efforts [27].

3.4.3 Numerical model

The Sikorsky UH-60A is a four-bladed helicopter the physical properties of which

are described in [22] and references therein. The structural model is comprised of

four blades connected to the hub through blade root retention structures and lead-

lag hydraulic dampers. Figure 54 shows the configuration of a typical blade, which is

modeled using thirteen cubic beam elements. The system is modeled in DYMORE [9,

10, 8]. The root retention structure, from hub to blade, is separated into three
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segments, having three, two, and two cubic beam elements, respectively, and labeled

segment 1, 2 and 3 in Figure 54. The first segment is attached to the rigid hub. The

first two segments are connected to each other by an elastomeric bearing modeled by

three co-located revolute joints with the following sequence: lag, flap, pitch rotations.

The physical characteristics of the bearing are simulated by springs and dampers in

the joints. The next two segments are rigidly connected to each other and to the

pitch horn. Finally, the last segment is rigidly connected to the blade and damper

horn.

The pitch angle of the blade is set by the following control linkages: swashplate,

pitch link, and pitch horn. The pitch link, modeled by three cubic beam elements,

is attached to the rigid swashplate by means of a universal joint and to the rigid

pitch horn by a spherical joint. The damper arm and damper horn are modeled as

rigid bodies. The lead-lag damper is modeled as a hydraulic damper with pressure

relief valves; its end points are connected to the damper arm and horn; the physical

properties of the device and more detailed descriptions can be found in [46, 11].

3.4.4 High speed flight test data (counter C8534)

The application of LCA is analyzed for a level- high-speed flight condition (counter

8534: 158 kt, µ = 0.368, Cw/σ = 0.0783). This condition is associated with high

vibratory loads due to tip compressibility effects on the advancing side that result in

high operating and maintenance costs and reduced crew and system performance [34,

53].

The accuracy of the prediction of the internal loads is investigated when the

characteristic parameters of the LCA vary. The identified loads are influenced mainly

by the number and position of the experimental sensors s, the number of harmonics M

considered in the analysis, and the number of modes m used in the modal expansion.

However, since previous experimental data are considered as reference, the location
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Figure 54: Configuration of Sikorsky’s UH-60A rotor system: close-up view of
the blade root retention structure, pitch link, pith horn, swashplate, and hydraulic
damper (from [10]).

of the sensors cannot be modified. The convergence analyses focus on the influence of

number of harmonics M and modes m. Four different cases are considered, in which

up to six harmonics and ten modes are considered. In flight condition C8534, the

measurements of 15 sensors are used as reference data: six flapping moments located

at 20-30-40-60-70-90% of the span, six edgewise moments located at 20-30-40-60-70-

90% of the span and three torsions, located at 30-70-90% of the span.

The convergence of the simulation is highly sensitive to the number of harmonics

that are corrected by the LCA. The use of four harmonics and six modes, Figure 55,

leads to good convergence of flap bending moments, while the chord bending moment

and torsional moment are still not completely converged after 80 iterations of the

algorithm.

The inclusion of higher harmonics makes the convergence of the algorithm par-

ticularly critical. The correction of the aerodynamic loads up to the sixth harmonic
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Figure 55: Convergence of internal moments as the LCA is applied to the multibody
system, m = 6, M = 4. High speed flight condition C8534.

prevents the convergence of the simulation, Figure 56, because these higher harmonic

components cause high-frequency non-physical effects due to the fact that the fre-

quency content of the strain measurements is concentrated in the first 4-5 harmonics.

The choice of the number of harmonics included in the correction of the algorithm is

therefore critical, and has to be specified in accordance to the frequency content of

the experimental measurements.

The increase of the number of modes included in the modal expansion has instead

a beneficial effect on the convergence of torsional, flap, and chord bending moments.

In case of m = 6, Figure 55, the torsional and chord bending moments are still char-

acterized by an oscillatory behavior after 80 iterations, and they reach an accuracy of
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Figure 56: Convergence of internal moments as the LCA is applied to the multibody
system, m = 6, M = 6. High speed flight condition C8534.

approximately 10% and 25% respectively. The error is computed considering the dif-

ference between the numerical Fourier coefficients and the experimental measurements

at the control points. The addition of two modes, m = 8, improves the convergence

of the predictions, that reach a stable value after 70 iterations. Figure 57 shows that

the torsional moment is predicted with an accuracy of about 15% with respect to

the experimental measurements, and both the flap and chord bending moments are

characterized by an error within 20%. The addition of higher modes, m = 10, not

only results in a non-oscillating convergence after 50 iterations, but also improves the

accuracy of the final predictions: Figure 58 shows that the accuracy of the torsional

moment is improved to about 10%, the flap bending moments are predicted within
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15% the flight test and the chord bending moments are characterized by an error of

about 20%.
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Figure 57: Convergence of internal moments as the LCA is applied to the multibody
system, m = 8, M = 4. High speed flight condition C8534.

This behavior is better understood by comparing the time histories predicted by

the LCA. In Figure 59, the variation of the torsional moment over a period at 70%

span is presented for different choices of m and M . The choice of m = 6 and M = 4,

Figure 59(a), improves the initial prediction of the torsional moment, but it is still not

an adequate representation of the time history of the experimental measurements over

a period. The increase of the number of harmonics, M = 6, Figure 59(b), adds non-

physical high frequency content in the predictions, while the increase of the number

of modes remarkably improves the numerical results, as shown in Figure 59(c) with
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Figure 58: Convergence of internal moments as the LCA is applied to the multibody
system, m = 10, M = 4. High speed flight condition C8534.

8 modes, and in Figure 59(d) with 10 modes. Similar considerations hold for the flap

(Figure 60) and chord (Figure 61) bending moments. The number of modes is not

further increased because of the possible ill-conditioning in the computation of the

pseudo-inverse of matrix B. The number of modes must in fact be chosen to be lower

than the number of reference sensors used in the analysis. The choice of m = 10 and

M = 4 therefore appears as an optimal set of parameters in the LCA.

Extensive results are presented for flight counter C8534 to understand the pre-

dictive capabilities of the algorithm. The prediction of the pitch angle is shown in

Figure 62. The model accurately represents the collective and cyclic control of the

blade within 2-3%.
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Figure 59: Analysis of torsional moments at 70% span for different choices of the
number of modes m and harmonics M . High speed flight condition C8534. Steady
loads removed. Measured (o). Initial numerical (- -). Final numerical (-).

The prediction of the torsional moment (Figure 63) is important for the prediction

of the 4/rev servo-loads. Their accuracy is greatly improved with respect to the

initial results of the simulation across the span, although the predictions on the 3-

4/rev present significant discrepancies. The magnitude and phase values for each

harmonic across the span are shown in Figures 64 and 65, along with a comparison to

results obtained from comprehensive CFD/CSD analyses [34]. The magnitude of the

torsional loads is in general well predicted, in particular in the inboard part of the

blade. Discrepancies in the higher harmonics, in particular in phase values, are due

to structural modeling, as observed in [34], and are of the same order of magnitude

of CFD/CSD analyses. This behavior is due to the lack of experimental data, since

69



0 90 180 270 360

−1500

−1000

−500

0

500

1000

1500

Azimuth [deg]

F
la

p 
be

nd
in

g 
m

om
en

t [
lb

s−
ft]

(a) m = 6, M = 4

0 90 180 270 360

−1500

−1000

−500

0

500

1000

1500

Azimuth [deg]

F
la

p 
be

nd
in

g 
m

om
en

t [
lb

s−
ft]

(b) m = 6, M = 6

0 90 180 270 360

−1500

−1000

−500

0

500

1000

1500

Azimuth [deg]

F
la

p 
be

nd
in

g 
m

om
en

t [
lb

s−
ft]

(c) m = 8, M = 4

0 90 180 270 360

−1500

−1000

−500

0

500

1000

1500

Azimuth [deg]

F
la

p 
be

nd
in

g 
m

om
en

t [
lb

s−
ft]

(d) m = 10, M = 4

Figure 60: Analysis of flap bending moments at 70% span for different choices of the
number of modes m and harmonics M . High speed flight condition C8534. Steady
loads removed. Measured (o). Initial numerical (- -). Final numerical (-).

the torsional moment is measured at only three stations along the blade. The sensor

at 50% span is in fact characterized by noisy, zero-mean measurements.

The flap bending moment (Figure 66) is satisfactorily predicted both in peak-to-

peak magnitude values and in frequency content (Figures 67 and 68). The dominant

vibratory harmonics (3 and 5/rev) of the flap moments are the primary source of the

4/rev vibrations in the fuselage [1], and it is therefore important to be able to accu-

rately predict them. The 3/rev is predicted within 3-5% of the flight test value except

at the root. This achievement is very valuable considering the simplicity of the model

of the aerodynamic loads, and it is comparable with results from CFD/CSD coupled

analyses [33, 36, 34]. The 5/rev harmonic is not accurately predicted, similarly also
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Figure 61: Analysis of chord bending moments at 50% span for different choices
of the number of modes m and harmonics M . High speed flight condition C8534.
Steady loads removed. Measured (o). Initial numerical (- -). Final numerical (-).

in this case to CFD/CSD and to measured airloads analyses. This discrepancy is in

fact due to limitations of the structural model, and cannot be corrected simply by

updating the applied loads.

The chord bending moment (time histories at control points: Figure 69, harmonic

content: Figures 70 and 71) are satisfactorily predicted across the blade up to the

4/rev harmonic. The sharp gradients in the lag bending moments near 180-200 deg of

azimuth are directly related to the force in the damper. The numerical results capture

this abrupt change in the waveform, even if lower accuracy is achieved with respect

to the flapping moment distribution. Both magnitude and phase of the 2/rev and

4/rev harmonics are predicted within 8-12% the flight tests, while the discrepancy in
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Figure 62: Time history of the pitch angle over one revolution. High speed flight
condition C8534. Measured (o). Final numerical (-).

the 3/rev component is larger, but compatible with results in the literature [33, 36,

34]. The discrepancies in the magnitude predictions are probably due to unmodeled

dynamic effects, such as the dynamic of the rotor drive train and coupling with the

fuselage.

Consider now the abilities of LCA in recostructing the response of the system at

points along the span not used as control points. In fact, the measurements of the

flapwise bending moment at 50% span have not been considered as reference data in

the LCA. The error on the maximum value of the time response over a period is about

8-9%, as shown in Figure 72. The procedure is therefore able to accurately compute

the dynamic response across the span of the blade even at locations not included in

the LCA as reference.

3.4.5 High thrust flight test data (counter C9017)

Flight counter C9017 is a high-thrust high-altitude level flight condition at moderate

speed, and is dominated by dynamic stall events in the retreating side of the rotor.

Difficulties in simulating this flight condition are mainly due to the fact that large
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Figure 63: Prediction of the torsional moment at different sensors along the span.
High speed flight condition C8534. Steady loads removed. Measured (o), Initial
numerical (- -), Final numerical (-).

changes in control angles may not produce large changes in rotor loads since the

blades may stall. The pitch angle of the blade for flight counter C9017 is represented

in Figure 73, and it is predicted within 1-2% accuracy.

The convergence of the LCA for flight condition C9017 is critical because a lower

number of undamaged sensors is available. The total number of sensors included

in the algorithm as reference data is reduced to 11 (reduction of nearly 30% with

respect to C8534), which makes the achievement of accurate numerical predictions

more challenging. The sensors considered as control points are divided into five

flapping moments located at 10-20-40-60-70% of the span, two edgewise moments

located at 10-60% of the span and four torsions, located at 30-50-70-90% of the span.
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(d) Phase. 2/rev.

Figure 64: Torsional moment distribution along the span for harmonics 1 and 2.
High speed flight condition C8534. Experimental (�). Predicted (-). CFD/CSD (- -)
from Datta et al. [34]

The reduction of number of sensors requires also the reduction of the modes included

in the LCA. This analysis considers eight modes, m = 8, and four harmonics, M = 4.

Figure 74 presents examples for a torsional, a flapwise and edgewise sensor. The

overall accuracy of the predictions is also in this case greatly improved with respect

to the initial predictions, but inaccuracies of more than 20% are still generally present.

The 4/ and 5/rev harmonics of the torsional moment are the source of torsion

oscillations on the retreating blade, which are important for stall analyses, and are

represented in Figure 76 in terms of absolute value and phase variation along the

span. They are predicted within 20% accuracy, in accordance with CFD/CSD coupled
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(f) Phase. 5/rev.

Figure 65: Torsional moment distribution along the span for harmonics 3 to 5. High
speed flight condition C8534. Experimental (�). Predicted (-). CFD/CSD (- -) from
Datta et al. [34]

analyses [34]. It is expected that the availability of few more experimental stations (3-

4) would result in improvements in the prediction that are comparable to the C8534
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(e) 70 % span

0 90 180 270 360
−1500

−1000

−500

0

500

1000

1500

Azimuth [deg]

F
la

p 
m

om
en

t [
lb

s−
ft]

(f) 90 % span

Figure 66: Prediction of the flap bending moment at different sensors along the
span. High speed flight condition C8534. Steady loads removed. Measured (o).
Initial numerical (- -). Final numerical (-).

flight condition.
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Figure 67: Flap bending moment distribution along the span for harmonics 1 and 2.
High speed flight condition C8534. Experimental (�). Predicted (-). CFD/CSD (- -)
from Datta et al. [34]

3.4.6 Low speed flight test data (counter C8513)

The low speed case C8513 is dominated by blade-vortex interactions (BVI), which are

generally difficult to capture. The pitch angle is also in this case accurately predicted

as can be observed in Figure 77. As in flight condition C8534, the measurements

of 15 sensors are used as reference data: six flapping moments located at 20-30-40-

60-70-90% of the span, six edgewise moments located at 20-30-40-60-70-90% of the

span and three torsions, located at 30-70-90% of the span. This analysis considers

ten modes, m = 10, and four harmonics, M = 4. As in flight counter C8534, the

torsional and flap and lag bending moments are well predicted, Figures 78, 79, 80
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Figure 68: Flap bending moment distribution along the span for harmonics 3 to 5.
High speed flight condition C8534. Experimental (�). Predicted (-). CFD/CSD (- -)
from Datta et al. [34]

and 83 respectively. More accurate results are achieved in the representation of the

flap bending moment, with errors within 10% except at outboard stations (70% and
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(d) 60 % span
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(e) 70 % span
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(f) 90 % span

Figure 69: Prediction of the lag bending moment at different sensors along the span.
High speed flight condition C8534. Steady loads removed. Measured (o). Initial
numerical (- -). Final numerical (-).

90% of the span).

The torsion loads are shown in Figure 78. The trend of the waveform is accurately
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(d) Phase. 2/rev.

Figure 70: Chord bending moment distribution along the span for harmonics 1 and
2. High speed flight condition C8534. Experimental (�). Predicted (-). CFD/CSD (-
-) from Datta et al. [34]

predicted at 30% and 70% span, while the numerical analysis does not capture the

sharp gradients that characterize the 90% station because of unmodeled dynamics

of the swashplates and of the control chains. Investigation on the improvement of

the predictions for this flight condition is still an open problem for the rotorcraft

community [34].

The time histories of the flap bending moments are accurately predicted across

the span (Figures 79 and 80). The flap moment prediction at 50% is also in this

case an indicator of the ability of the algorithm to reconstruct the response at non-

reference locations, with an accuracy of about 10% over a period. The effect of the
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(f) Phase. 5/rev.

Figure 71: Chord bending moment distribution along the span for harmonics 3 to 5.
High speed flight condition C8534. Experimental (�). Predicted (-). CFD/CSD (- -)
from Datta et al. [34]

damper force is important particularly for the inboard stations and the retreating

side. Discrepancies within 5% characterize the 2/rev, 3/rev and 4/rev harmonics,
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Figure 72: Flap bending moment at 50% span. High speed flight condition C8534.
Steady loads removed. Measured (o). Initial numerical (- -). Final numerical (-).

0 90 180 270 360
0

5

10

15

20

25

ψ (deg)

P
itc

h 
A

ng
le

Figure 73: Pitch angle over a revolution. High-thrust flight condition 9017. Mea-
sured (o). Final numerical (-).
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(a) Torsion at 70% span
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(b) Flap moment at 70% span
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(c) Edge moment at 10% span

Figure 74: Internal moments. High-thrust flight condition 9017. Steady loads re-
moved. Measured (o). Initial numerical (- -). Final numerical (-).

Figures 81 and 82. These figures show that, as in case C8534, the application of the

LCA results in numerical predictions characterized by an accuracy compatible with

CFD/CSD analysis [34], even if much more simple aerodynamic models are employed

for this analysis.

The time histories of the lag moment over one revolution at different control points

are illustrated in Figure 83, and show the significant improvement with respect to

the initial representation of the system. The lag bending moment is predicted with

an exceptional accuracy, both in magnitude and phase values, Figures 84 and 85.

Harmonics 2/, 3/ and 4/rev are characterized by discrepancies within 5% with respect

to flight tests. The error increases up to 20-25% for the 5/rev harmonic and is due
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(d) Phase. 2/rev.

Figure 75: Torsional moment distribution along the span for harmonics 1 and 2.
High thrust flight condition C9017. Experimental (�). Predicted (-). CFD/CSD (-
-) from Datta et al. [34].

to unmodeled dynamics of the main rotor. These results are very satisfactory and

represent an improvement to current studies that employ simplified aerodynamic

theories [33]. The achieved errors can be considered of the same order of CFD/CSD

analyses [34].

3.5 Comments on the computational cost required by LCA

The computational cost required by the algorihm to converge to an accurate solution

is limited with respect to CFD/CSD analyses [69]. The analyses described in the

previous section have been performed on a Intel Duo Quad machine, characterized

by 8 Gb RAM, four core, 2.83 GHz of processor speed. The computational time
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Figure 76: Torsional moment distribution along the span for harmonics 3 to 5. High
thrust flight condition C9017. Experimental (�). Predicted (-). CFD/CSD (- -) from
Datta et al. [34].

required by the analyses have been listed in Table 9. In average, the analyses run in

about 0.4 hours (1500 sec), which represents a remarkable saving in time with respect
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Figure 77: Time history of the pitch angle over one revolution. Low speed flight
condition C8513. Measured (o). Final numerical (-).

Table 9: Computational Costs
Analysis Parameters CPU time

[sec]

C-8534 m=6, M = 4, N = 15 1497.8
C-8534 m=8, M = 4, N = 15 1444.5
C-8534 m=10, M = 4, N = 15 1518.2
C-9017 m=8, M = 4, N = 11 1439.9
C-8513 m=10, M = 4, N = 15 1507.2

to more complex analyses tools. CFD/CSD simulations require in general thousand

of times larger computational times on more powerful machines [69]. These CPU

time are instead comparable to comprehensive analyses [76] that result in much lower

accuracy in the representation of the response.

3.6 Conclusions

This chapter presented the applications of LCA to analyze experimental systems, such

as a beam in bending (one-dimensional example), a plate in bending (two-dimensional

case) and the behavior of a rotorcraft in multiple flight conditions [27]. All the

analyses show that accurate representations of the response is possible, even when
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Figure 78: Prediction of the torsional moment at different sensors along the span.
Low speed flight condition C8513. Steady loads removed. Measured (o),. Initial
numerical (- -). Final numerical (-).

simplified numerical models are used, by combining the experimental measurements

and the numerical analysis through the LCA.

The next chapter describes how an analogous algorithm can be formulated to

correct for changes in physical properties (mass and stiffness) of the system, called

the Property Confluence Algorithm. The characteristics of PCA are then evaluated

through a numerical example of a beam in bending.
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Figure 79: Prediction of the flap bending moment at different sensors along the
span close to the root. Low speed flight condition C8513. Steady loads removed.
Measured (o). Initial numerical (- -). Final numerical (-).
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Figure 80: Prediction of the flap bending moment at different sensors along the
span close to the tip. Low speed flight condition C8513. Steady loads removed.
Measured (o). Initial numerical (- -). Final numerical (-).
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Figure 81: Flap bending moment distribution along the span for harmonics 1 and 2.
Low speed flight condition C8513. Experimental (�). Predicted (-). CFD/CSD (- -)
from Datta et al. [34].
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Figure 82: Flap bending moment distribution along the span for harmonics 3 to 5.
Low speed flight condition C8513. Experimental (�). Predicted (-). CFD/CSD (- -)
from Datta et al. [34].
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Figure 83: Prediction of the lag bending moment at different sensors along the span.
Low speed flight condition C8513. Steady loads removed. Measured (o). Initial
numerical (- -). Final numerical (-).
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Figure 84: Chord bending moment distribution along the span for harmonics 1 and
2. Low speed flight condition C8513. Experimental (�). Predicted (-). CFD/CSD (-
-) from Datta et al. [34].
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Figure 85: Chord bending moment distribution along the span for harmonics 3 to 5.
Low speed flight condition C8513. Experimental (�). Predicted (-). CFD/CSD (- -)
from Datta et al. [34].
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CHAPTER IV

THE PROPERTY CONFLUENCE ALGORITHM

4.1 Overview

The goal of the Property Confluence Algorithm (PCA) is the identification of changes

in dynamic properties (natural frequencies and modes) of the system. The motivation

comes from the necessity of monitoring changes in mass and stiffness distribution of

components. Applications to a rotating environment as in the case of rotor blades

and wind turbines is of particular interest [31].

This chapter initially presents a conceptual view of the Property Confluence Al-

gorithm. Then, after its detailed description, numerical examples demonstrate its

application to one-dimensional dynamic systems.

4.2 Concept

The PCA consists in an initial numerical model of the structure, a set of experimental

measurements, and a procedure which estimates the difference in dynamic properties

between the numerical model and the experimental measurements. A schematic rep-

resentation of the procedure is presented in Figure 86. The application to a rotating

environment leads to the assumption that the applied loads, and as a consequence

the dynamic response, vary periodically with time and they can be expanded through

a Fourier series. The applied loads are assumed to be accurately known.

The procedure is closely related to the Load Confluence Algorithm, and can be

summarized as follows.

• A numerical model of the system is formulated from an initial guess of the

physical properties of the system.
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Figure 86: Schematic of the property identification algorithm.

• The solution of the FE model estimates the dynamic response eM(x) at the

sensor location x.

• The numerical and measured responses are compared and a error vector ∆e =

eM − eE is calculated.

• Corrections for the mass and/or stiffness matrices are calculated based on ∆e

through the formulation of the problem in the modal domain. This is performed

through a modal mapping procedure as described in section 4.3.

• The procedure is iteratively applied until convergence.

4.3 Modal procedure for property estimation

Consider a general undamped linear system:

Mü(t) +Ku(t) = F (t) (13)
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where M and K are the mass and the stiffness matrices of the system, array u(t)

stores the N degrees of freedom of the solution, and F (t) is the array of the generalized

applied loads. This system is characterized by natural frequencies ω and modes P .

4.3.1 Change in stiffness

Suppose inaccuracies exist in the estimation of the stiffness matrix. The real model

of the system is:

M ¨̂u+ (K + ∆K) û = F (t) (14)

with ∆K unknown. It is assumed that the applied loads are known and equal to the

loads applied to the initial system. This model is characterized by natural frequencies

ω̂ and modes P̂ . It is assumed that the eigenvectors of the real system P̂ are a linear

combination of the initial modes P through a matrix α of coefficients:

P̂ = Pα (15)

The change in stiffness matrix is assumed to take the form:

∆K =

Npar∑

k=1

γk
∂K

∂γk
(16)

and it can be reasonably assumed that ∂K
∂γk

is known (either analytically or by finite

difference). The difference between Eqns. (13) and (14) leads to:

M
(
ü− ¨̂u

)
+K (u− û) + ∆Kû = 0 (17)

with

u = Pq, û = P̂ q̂ = Pαq̂ (18)

Defining the difference of the two systems in generalized coordinates as:

∆z = q −αq̂ (19)

the difference in nodal displacement is expressed as:

u− û = Pq − P̂ q̂ = P (q −αq̂) = P∆z (20)
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Pre-multiply Eq. (17) by Eq. P T , and define Kk = P T ∂K

∂γk
P :

I∆z̈ + diag
(
ω2
i

)
∆z +

Npar∑

k=1

γkKkαq̂ = 0 (21)

Matrix Kk represents the change in stiffness due to each parameter projected in the

modal domain. Then, the response and the generalized coordinates can be related

through matrix B and its pseudo-inverse as:

eM(x, t) = B(x)q(t), eE(x, t) = B̂(x)q̂(t) (22)

The definition of B depends on the measured quantities, that is, on the kind of sen-

sors. Similarly to the procedure for load identification, a reduced number of modes

m can be used in the analysis.

Assume that the relation between matrices B and B̂ is the same as the relation be-

tween P and P̂ , such that B̂ = Bα. This assumption is valid in a linear or linearized

framework. The difference between numerical response and measured signals is:

eM − eE = B (q −αq̂) = B∆z, ∆z = B+∆e (23)

The externally applied loads are supposed to be harmonic, as well as the response of

the system, and can expanded with a Fourier series of frequency Ω:

∆e = ∆e0 +
M∑

j=1

(ec cos(jΩt) + es sin(jΩt)) (24)

Introducing Eqns. (23) and (24) into Eq. (21), by harmonic balance the system of

equations to be solved becomes:

diag (ω2
i )B

+∆e0 +
∑Npar

k=1 γkKkB
+eE0 = 0

diag (−j2Ω2 + ω2
i )B

+∆ec +
∑Npar

k=1 γkKkB
+eEc = 0

diag (−j2Ω2 + ω2
i )B

+∆es +
∑Npar

k=1 γkKkB
+eEs = 0

(25)

where the unknown of the system of equations are the changes in stiffness parameters

γk. Equation (25) is a linear rectangular system of equations, that can be solved for
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γk after rearranging it in matrix form, as in the following. A dimensional analysis

reveals that KkB
+êc is a column-vector

(
KkB

+êc ∈ RNx1
)
:

Kk ∈ Rmxm = RmxNRNxNRNxm

B ∈ Rsxm, B+ ∈ Rmxs

eE ∈ Rsx1

(26)

Equation (25) becomes:




K1B
+eE0 K2B

+eE0 · · · KNparB
+eE0

K1B
+eEc K2B

+eEc · · · KNparB
+eEc

K1B
+eEs K2B

+eEs · · · KNparB
+eEs








γ1

γ2

...

γNpar





=

= −





diag (ω2
i )B

+∆e0

diag (−j2Ω2 + ω2
i )B

+∆ec

diag (−j2Ω2 + ω2
i )B

+∆es





(27)

The system of equations in (27) is characterized by (1 + 2M)m equations in Npar

unknowns. By iteratively updating the stiffness matrix, the changes in properties in

the system can be identified.

4.3.2 Change in mass

The change in dynamical properties due to a change in mass is analogous to the

procedure described for the stiffness case. The differences between the two cases are

underlined in the following. The modified system is in this case characterized by an

unknown change in mass matrix such that:

(M + ∆M ) ¨̂u+Kû = F (t) (28)

The objective is the estimation of the difference in mass ∆M from the observation of

the response of the real system at a limited number of points. The difference between
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Eqns. (13) and (28) leads to:

M
(
ü− ¨̂u

)
+K (u− û) + ∆M ¨̂u = 0 (29)

The increment in mass matrix ∆M is approximated as a linear combination of the

contribution of all mass parameters µk. These parameters can be for example defined

as the mass per unit length of the elements of the finite element model. The relation

between each parameter µk and the mass increment is supposed to be known from

the assembly of the numerical model:

∆M =

Npar∑

k=1

µk
∂M

∂µk
(30)

that in modal coordinates is:

I∆z̈ + diag
(
ω2
i

)
∆z +

Npar∑

k=1

µkMkα¨̂q = 0 (31)

with Mk = P T ∂M

∂µk
P . Equation (31) becomes:

B+∆ë+ diag
(
ω2
i

)
B+∆e+

Npar∑

k=1

µkMkB
+ ¨̂e = 0 (32)

The application to rotating environments justifies the assumption that the system

is subjected to periodic loads, so that its response is harmonic. A Fourier’s series

expansion of all quantities and harmonic balance of Eq. (32) results into:

diag (ω2
i )B

+∆e0 = 0

diag (−j2Ω2 + ω2
i )B

+∆ec − j2Ω2
∑Npar

k=1 µkMkB
+eEc = 0

diag (−j2Ω2 + ω2
i )B

+∆es − j2Ω2
∑Npar

k=1 µkMkB
+eEs = 0

(33)

where the unknown of the system of equations are the changes in mass parameters

µk. The first equation on the zeroth harmonic is generally verified by itself, therefore

only the other two equations are brought forward. Rearranging Eq. (33) in matrix
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form, the resulting system of equations is:

j2Ω2




M1B
+eEc M2B

+eEc · · · MNparB
+eEc

M1B
+eEs M2B

+eEs · · · MNparB
+eEs








µ1

µ2

...

µNpar





=

=





diag (−j2Ω2 + ω2
i )B

+∆ec

diag (−j2Ω2 + ω2
i )B

+∆es





(34)

The system in Eq. (34) is characterized by 2Mxm equations in Npar unknowns. By

iteratively updating the mass matrix, the changes in properties in the system are

identified.

Generally, it is possible to assume that Kk and Mk do not change during the

analysis. This approximation is advantageous because it avoids the reassembly of the

finite element model at every iteration. Moreover, the iteration matrix in Eqns. (27)

and (34) does not change during the analysis, and the computation is more efficient.

The properties of the system depend on the initial definition of the model in terms

of choice of modes, number of harmonics, sensor location, initial properties of the

system, as well as reference response values (generally experimental measurements).

An indication of the convergence of the algorithm can be drawn by observing the

norm of the right-hand-side of Eqns. (27) and (34), as well as the norm of γk or µk.

The effect of this choice is analyzed in the next section.

4.4 Numerical example: analysis of a beam in bending

This section describes an example of application of the Property Confluence Algo-

rithm, in which numerical data are used as reference values. Consider a beam in

bending subject to a concentrated harmonic force, modeled with finite elements. The

beam is divided in 15 elements and it is characterized by two different properties
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along the span, as depicted in Figure 87. The beam is excited by a single harmonic

load with an excitation frequency of f = 10 Hz lower than the first natural frequency.

In this example, the PCA aims to update the bending stiffness EI of the two

portions of the beam, referred as EI1 and EI2. The effect of number of modes and

sensors considered by the updating algorithm is investigated, as well as the effects

on the results of different choices of tolerance parameters. Initially, the parameter to

establish convergence of the iterative procedure is defined as the norm of the changes

in stiffness γk, and it is set to 10−4.

Clamp 
1 12 16 

P.1 P.2 

Figure 87: Schematic of the numerical model, division in two properties of the beam,
with labels of boundary nodes.

The initial model is characterized by EI1 = 48 N m2, EI2 = 48 N m2, and the

reference model by EI1 = 40 N m2, EI2 = 50 N m2. The two models therefore differ

for a change of 20% on EI1, and of 4% on EI2. The number of modes and sensors

play an important role in the convergence of the algorithm. Table 10 shows in fact

that one mode is not sufficient to recover the difference in both parameters. Even

if the analysis quickly converges in six iterations (Figure 88), the algorithm cannot

properly identify the change in EI2, even with an increase in number of sensors. To

be able to properly represent both changes it is necessary to include the second mode.

The number of iterations required to converge significantly increases, but the error

on the identified properties decreases to less than 0.05%, Figure 91. The inclusion of

additional modes (i.e. up to four modes) does not play a particular role other than

increasing the number of iterations required to converge.

Even if a significant difference still exists on EI2 at the end of the analysis, the
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Table 10: Summary of identified stiffness properties. Initial properties: EI1 = 48
N m2, EI2 = 48 N m2. Reference properties EI1 = 40 N m2, EI2 = 50 N m2.

Updated
m N Nit EI1 [N m2] EI2 [N m2]

1 1 6 40.00 47.98
5·10−4% -4.0%

1 3 6 40.00 47.98
5·10−4% -4.0%

1 5 6 40.00 47.98
5·10−4% -4.0%

2 5 39 40.00 50.01
0.0% 0.02%

4 5 45 39.99 50.01
-1·10−3% 0.02%
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Figure 88: Identified stiffness parameters during iterations, s = 1, m =1.

deformed shape and the time history at the nodes are accurately represented, Fig-

ures 89 and 90. At this excitation frequency the response is in fact dominated by the

first mode, that is accurately represented by the identified model, Table 11.

A summary of the effects of number of modes is presented in Figures 92 and

93. It is interesting to note that the relation between the number of sensors and

modes also plays an important role. The choice of three sensors (Figure 92) does not

ensure convergence to the reference properties even if multiple modes (up to three) are

included in the analysis. It is observed that five sensors and two modes are necessary

to achieve accurate results for both parameters.
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Table 11: Comparison between initial, reference and identified natural frequencies.

f [Hz]
Reference Initial Updated

f1 33.56 37.75 33.56
- 8.7% 0.0%

f2 207.51 225.95 207.30
- -9.0% -0.1%

f3 573.74 614.40 571.56
- -7.5% -0.4%

f4 1093.5 1157.0 1086.8
- -6.5% -0.6%

f5 1721.4 1824.6 1710.9
- -6.7% -0.6%
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Figure 89: Instantaneous deformed shape, s = 1, m =1.

This simple example also allows investigating the effect of the choice of the toler-

ance parameter on the convergence of the algorithm. Two are the possible choices:

first, the norm of the right hand side of Eq. (27), second the norm of the changes in

properties γk. Figures 94 and 95 show both choices are appropriate to check whether

of not PCA is converged. The figures show the convergence of the two bending

stiffnesses for different tolerance values in the interval [10−1, 10−5], for two different

positions of the external concentrated load. The results of the identification are in
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Figure 90: Time history of sensor 1, s = 1, m =1.
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Figure 91: Identified stiffness parameters during iterations, s = 5, m =2.

fact dependent on the load applied to the system. It is interesting to notice that dur-

ing the analysis the accuracy on EI1 decreases from an error of 0.01% with respect to

the reference properties to 0.05% in order to improve the accuracy of EI2 from 2.3%

to 0.03%. The analysis therefore finds the best combination of parameters given the

response of the system.

The increase in number of iterations required for convergence is affected by the

definition of tolerance parameter. The total number of iterations is related to the
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Figure 92: Influence of number of modes on the updated EI1 and EI2. Reference
properties: EI1 = 40 N m2, EI2 = 50 N m2. EI1 (o), EI2 (2).
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Figure 93: Influence of number of sensors on the updated EI1 and EI2. Reference
properties: EI1 = 40 N m2, EI2 = 50 N m2. EI1 (o), EI2 (2).
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Figure 94: Influence of choice of convergence parameter on EI1 for different load
sets. Reference properties: EI1 = 40 N m2, EI2 = 50 N m2. |RHS| (o), γk (2).
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Figure 95: Influence of choice of convergence parameter on EI2 for different load
sets. Reference properties: EI1 = 40 N m2, EI2 = 50 N m2. |RHS| (o), γk (2).

computational cost of the algorithm. Figure 96 shows that the number of iterations

exponentially increases when the norm of the right hand side of Eq. (27) is considered,

while a lower number of iterations are required when the absolute value of the changes

in properties is considered. For this reason, |γk| is chosen as tolerance parameter of

the algorithm.
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Figure 96: Influence of choice of convergence parameter on the number of iterations
to converge for different load sets, m = 5, s = 5. Reference properties: EI1 = 40 N m2,
EI2 = 50 N m2. |RHS| (o), γk (2).

4.5 Conclusions

This example shows that the PCA is adequate to reconstruct the response of the sys-

tem in the presence of structural modifications such as changes in bending stiffnesses.

The reference system is numerically defined in order to ensure the absence of inaccu-

racies in the modeling of external loads and of experimental noise. The performance

of PCA to analyze experimental cases are assessed in the next chapter in the case of

changes in mass properties of the system.
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CHAPTER V

APPLICATION OF THE PROPERTY CONFLUENCE

ALGORITHM TO EXPERIMENTAL DATA ON A BEAM

5.1 Overview

The Property Confluence Algorithm is now applied to experimental reference data.

Starting from a uniform beam, three concentrated masses are progressively added to

the experimental system. The PCA aims to identify the presence of these masses

starting from a numerical model for the uniform beam configuration.

The analyses presented in the following are divided in two main groups. First, it is

assumed that the locations of the added masses are known, and the parameters to be

updated are nodal masses located in correspondence of the added masses (or blocks)

in the experimental system. Then, these cases are generalized and the algorithm

identifies a set of nodal masses on the entire beam span (the locations of the added

masses is not known a priori).

5.2 Experimental set-up

The experimental set-up on which PCA is tested is similar to the experimental config-

uration presented in section 3.2. The beam is clamped at its bottom and it is excited

by an electrodynamic shaker located at two-thirds of the span. The response is char-

acterized through velocity and displacement measurements recorded by a scanning

laser vibrometer, set to measure 93 points over the beam. The measured set of points

is divided into two subsets. A small subset is used by the optimization algorithm to

identify the response, while a larger subset is used to compare the full-field numerical

predictions with the actual response of the beam.
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The uniform beam case is considered as an initial guess for the PCA (Figure 97).

Then, three concentrated masses are progressively added to the system that will be

identified by the PCA starting from the uniform beam configuration. At first, a

concentrated mass is added in proximity of the tip of the beam. This increases the

total mass of the system by 22% (Figure 98(a)). Then, two masses are introduced

in the system (Figure 98(b)) that increase by 34% the total initial mass. Lastly,

a configuration with three masses is analyzed, providing a total increase in mass of

about 40% (Figure 98(c)). The physical properties of the system are listed in Table 12.

Figure 97: Experimental setup to define initial numerical guess.

Table 12: Mass properties of the experimental system.

Beam mass m = 178 g
length l = 41 cm

Mass 1 mass m1 = 42 g
location x1 = 40 cm

Mass 2 mass m2 = 22 g
location x2 = 25 cm

Mass 3 mass m3 = 12 g
location x3 = 31 cm

A schematic of the experimental setup and numerical properties is depicted in

Figure 99, with the location of the three masses and of the applied load.
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(a) one mass added (97%
of span)

(b) two masses added
(97% and 60% of span)

(c) three masses added
(97%, 75% and 60% of
span)

Figure 98: Experimental setup of the beam.

M1 M2 M3 

Shaker Clamp 

Figure 99: Schematic of the experimental setup.

The measured natural frequencies for the four different cases are listed in Table 13,

as well as the percentage difference given by the additional masses with respect to

the initial configuration. The addition of a mass (denoted as case: Mass 1) reduces

the first bending frequency of about 20%. The addition of two masses (case: Mass 2)

and three masses (case: Mass 3) lead to a frequency change of about 30%.

The frequency response functions (frf) for the different experimental cases are

compared in Figure 100 to show the effect of the added mass on the dynamic behavior

of the system. The frf are evaluated at the tip of the beam with respect to a pseudo-

random concentrated load applied through the electrodynamic shaker at two-thirds

of the span of the beam.
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Table 13: Experimental bending natural frequencies of the blade for different mass
distributions, with percentage difference with respect to the uniform beam configu-
ration.

f [Hz]
No Mass Mass 1 Mass 2 Mass 3

f1 33.7 26.3 23.7 23.7
- 22% 30% 30%

f2 232.5 197.5 183.7 182.5
- 15% 21% 22%

f3 642.5 568.7 552.5 540.0
- 11% 14% 16%

f4 1195.0 1060.0 1051.2 1031.0
- 11% 12% 14%
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Figure 100: Measured magnitude of frequency response function for different mass
configurations. No mass (-). With mass (- -).
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5.3 Numerical model

The numerical model used to predict the behavior of the system consists in a one-

dimensional beam finite element model. The beam is discretized with 20 Timoshenko

elements, whose physical properties are defined to match the experimental natural

frequencies of the uniform beam as close as possible, Table 14. The error on the

lowest frequencies range from 5.5% on f1 to less than 4% on higher frequencies. The

comparison between the numerical and experimental frequency response functions,

Figure 101, shows a good correlation. However, the model cannot capture the third

peak in the experimental frequency response function (at f = 420 Hz) because it

correponds to the first torsional mode. The torsional behavior is in fact neglected in

the finite element model of the beam.

Table 14: Numerical natural frequencies before the application of the property iden-
tification algorithm, with percentage error with respect to all four experimental con-
figurations.

Error [%]
f [Hz] No mass Mass 1 Mass 2 Mass 3

f1 35.6 -5.5 -35.6 -49.9 -49.9
f2 223.3 3.9 -13.1 -21.5 -22.4
f3 624.9 2.7 -9.9 -13.1 -15.7
f4 1223.6 -2.4 -15.4 -16.4 -18.7

The percentage errors between the initial numerical frequencies and all the exper-

imental cases are also listed in Table 14. The major differences are generally on the

first mode, with a difference of more than 35%.

A set of concentrated masses is then added to the model as nodal masses. Starting

from a zero value (uniform beam configuration), the PCA updates their values in

order to match the experimental response. At first, the location of the added mass

is assumed to be known and only the nodal masses corresponding to their physical

location in the experiments are updated (node 21 for one mass, nodes [13, 21] for two
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Figure 101: Comparison between experimental and numerical magnitude of fre-
quency response function for a uniform beam configuration with no added mass.
FEM (-). Experimental (- -).

masses, nodes [13, 16, 21] for three masses - node 1: root, node 21: tip). Then, this

assumption is removed and all the 21 nodal masses are considered as parameters to

be updated.

The details of the characteristics of the PCA are analyzed considering a single

excitation frequency at f = 50 Hz, at which the response of the system is dominated

by the first mode. All the experimental data are analyzed at this frequency.

5.4 Identification of a single nodal mass

Initially, the performance of the PCA is discussed considering the addition of a single

mass (Mass 1) to the uniform beam. Independently of the location and of the number

of parameters to be updated, the algorithm converges in five iterations. The algo-

rithm is considered converged when the change in total mass is lower than 5× 10−5.

Convergence of the PCA is considered to be achieved when the change in the norm

of the parameter vector is below the specified tolerance. A set of six control points is

considered in the identification, whose distances from the root are listed in Table 15.

Moreover, the PCA considers a single mode in the approximation of the response.

A typical behavior of the changes of the response during the analysis is shown in

Figure 102. These plots depict the changes in magnitude and phase at control point 1.
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Table 15: Position of the control points used by the PCA to approximate the response
of the beam.

ID Distance from root ID Distance from root

1 41 cm 4 22 cm
2 34 cm 5 16 cm
3 29 cm 6 11 cm

At first, both the magnitude and phase are characterized by large discrepancies with

respect to the measured response. The initial difference in magnitude between the

numerical and experimental signal measured at point 1 is 25%, and 13% on phase.

These errors are defined as the percentage difference between magnitude and phase of

the two signals. The update of the nodal masses progressively improves the prediction

of the absolute value, while it cannot correct existing phase differences between the

two systems. The additional mass in fact does not significantly influence the phase

of the response.
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Figure 102: Magnitude and phase of the response of the system at control point 1.
One mass added. Identification of a concentrated mass at node 21. Measured (- -).
FEM (-).

The first analyzed case updates the value of a nodal mass at node 21 (tip of the

beam). As shown on Figure 103, after five iterations ∆m reaches a converged value of

∆m = 15.3 g. Even if this value is far below the block added in the experiments, this
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increase in mass is sufficient to highly improve the accuracy of the numerical model.

For example, the error on the first natural frequency is reduced from 36% to 16%

(Table 16). This improvement is also testified by the change in frequency response

function, Figure 104.
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Figure 103: Identified mass during iterations. One mass added. Identification of a
concentrated masses at node 21.

Table 16: Comparison between numerical and experimental bending natural frequen-
cies of the blade for a single added mass, with percentage difference with respect to
the experimental case, Mass 1.

Final
Tests Initial Mass Mass

on node 21 on all nodes

f1[Hz] 26.2 35.6 30.5 30.5
- -35.6% -16.0% -16.0%

f2[Hz] 197.5 223.3 197.7 203.6
- -13.1% -0.1% -3.1%

f3[Hz] 568.7 624.9 565.3 574.9
- -9.9% 0.6% -1.1%

f4[Hz] 1060.0 1223.6 1124.7 1128.3
- -15.4% -6.1% -6.0%

The response of the system at control points is accurately identified by the PCA,

Figure 105, as well as in other locations along the span. The error between the
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Figure 104: Comparison between measured and numerical magnitude of frequency
response function before and after the application of PCA. One mass added. Identi-
fication of a concentrated masses at node 21. FEM (-). Experimental (- -).

experimental and numerical maximum displacement is reduced from 12% to 4%.

The instantaneous deformed shape of the system is depicted in Figure 106, and

demonstrates the ability of the algorithm to map the complete displacement field of

the system.

The removal of the assumption of a known location of the added mass results in

similar improvements to the accuracy of the numerical map of the response. Also in

this case, the total added mass converges in five iterations to a value of ∆m = 24.3 g

(Figure 107).

The algorithm identifies a distribution of concentrated masses along the span

(Figure 109), that corresponds to the form of the first mode shape, as depicted in

Figure 108.

This is due to the fact that the PCA considers a one mode expansion of the dy-

namic response of the system. This mass distribution does not physically correspond

to the added concentrated mass near the tip of the beam, but provides a remarkable

improvement to the natural frequencies of the system and to the map of the dynamic

response. The error on the first natural frequency, for example, is reduced from 35%

at the beginning of the analysis to 16% after the convergence of PCA (Table 16).
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(d) sensor 4
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(e) sensor 5

5.96 5.97 5.98 5.99 6

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t [s]

w
(x

) 
[m

m
]

 

 

Reference
Initial
Updated
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Figure 105: Response of the system at control points. One mass added. Identification
of a concentrated mass at node 21. Measured (o). Initial FEM (- -). Final FEM (-).

Moreover, the error on the maximum displacement of the system is reduced from

12% to 3% (Figure 110).
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Figure 106: Comparison between measured and numerical instantaneous deformed
shape before and after the application of PCA. One mass added. Identification of a
concentrated mass at node 21. Measured (o). Initial FEM (- -). Final FEM (-).
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Figure 107: Identified mass during iterations. One mass added. Identification of 21
nodal masses.

Not only the algorithm provides improved representation of the dynamic response

at control points, but also improves the map of the response along the span of the

beam, Figure 110.
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Figure 108: First beam mode. One mass added. Identification of 21 nodal masses.
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Figure 109: Distribution of identified masses along the span. One mass added.
Identification of 21 nodal masses.

5.5 Identification of multiple masses

In this section the performance of the PCA is discussed considering the addition

of multiple masses to the uniform beam. Two cases are described: first the PCA

identifies the presence of two masses, then of three. The algorithm converges in five

iterations also in these cases (convergence is achieved when incremental changes of
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Figure 110: Comparison between measured and numerical instantaneous deformed
shape before and after the application of PCA. One mass added. Identification of 21
nodal masses. Measured (o). Initial FEM (- -). Final FEM (-).

the total mass are lower than 5 × 10−5). A set of six control points is considered

in the identification (Table 15). Moreover, the PCA considers a single mode in the

approximation of the response.

It is now analyzed the two masses case, both assuming that the location of the

blocks are known (concentrated masses at nodes [13,21]) and considering the location

as unknown. In the first case, the algorithm identifies a total change in mass of

∆m = 20.3 g, Figure 111, in the second of ∆m = 27.8 g, Figure 111. Both cases

result in an improvement of the error on the first natural frequency from about 50%

to 26%, Table 17. The higher frequencies are more accurately approximated by the

PCA, with errors with respect to experimental measurements reduced from about

20% to less than 5% for a known location for the masses and about 10% for unknown

locations. Overall, the identication highly improves the accuracy of the numerical

predictions, even if, as in the previous case, the accuracy for the case of a known

location of the masses is higher than when their location is unknown. The error on

the maximum displacement at control points is reduced from about 11% before the

121



application of the PCA to less than 5% for both cases, as shown by the instantaneous

deformed shape, Figure 112.
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Figure 111: Identified mass during iterations. Two masses added.

Table 17: Comparison between numerical and experimental bending natural frequen-
cies of the blade for two added mass, with percentage difference with respect to the
experimental case, Mass 2.

Final
Tests Initial Mass Mass

on nodes [13, 21] on all nodes

f1[Hz] 23.7 35.6 29.9 29.9
- -49.9% -25.9% -25.9%

f2[Hz] 183.7 223.3 192.9 201.3
- -21.5% -5.0% -10.3%

f3[Hz] 552.5 624.9 559.9 569.4
- -13.1% -1.3% -3.1%

f4[Hz] 1051.2 1223.6 1110.5 1117.7
- -16.4% -5.6% -6.3%

Analogous results are obtained in the analyses of the three masses case, both

assuming that the location of the blocks are known (concentrated masses at nodes

[13, 16, 21]) and considering the location as unknown. In the first case, the algo-

rithm identifies a total change in mass of ∆m = 26.4 g, Figure 113, in the second of

∆m = 31.46 g, Figure 113. As in the two masses case, the error on the first natural

frequency is reduced from about 50% to 24%, Table 18, while the errors on higher
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Figure 112: Comparison between measured and numerical instantaneous deformed
shape before and after the application of PCA. Two masses added. Measured (o).
Initial FEM (- -). Final FEM (-).

frequencies are reduced from about 20% to less than 5% for a known location for

the masses and less than 10% for unknown locations. The error on the maximum

displacement at control points is reduced from about 11% before the application of

the PCA to less than 5% for both cases, as shown by the instantaneous deformed

shape, Figure 114.
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Figure 113: Identified mass during iterations. Three masses added.
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Table 18: Comparison between numerical and experimental bending natural frequen-
cies of the blade for two added mass, with percentage difference with respect to the
experimental case, Mass 3.

Final
Tests Initial Mass Mass

on nodes [13, 16, 21] on all nodes

f1[Hz] 23.7 35.6 29.4 29.4
- -49.9% -23.7% -23.7%

f2[Hz] 182.5 223.3 192.4 199.2
- -22.4% -5.4% -9.1%

f3[Hz] 540.0 624.9 544.3 563.9
- -15.7% -0.8% -4.4%

f4[Hz] 1031.0 1223.6 1091.3 1107.2
- -18.7% -5.8% -7.3%
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Figure 114: Comparison between measured and numerical instantaneous deformed
shape before and after the application of PCA. Three masses added. Measured (o).
Initial FEM (- -). Final FEM (-).

5.6 Influence of number of sensors

The number of control points used by the PCA is an important parameter in the

definition of the method. This section investigates how this parameter influences the

accuracy of the updated response of the system in the analysis of the experimental

set-up characterized by three added concentrated masses. This case is chosen as

representative to demonstrate the abilities of the proposed approach. The number
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of sensors is therefore reduced from five to one, in case of unknown locations of the

added masses (update of 21 nodal masses). The sensors that are eliminated in the

analysis are the ones closer to the root, as indicated by Table 15.

The change in mass identified by the algorithm varies from ∆m = 31.6 g (five

sensors) to ∆m = 32.6 g (one sensor) with a variation of the identified total mass

of less than 4% in the five cases. This small difference does not significantly affect

the natural frequencies identified in the five cases (Table 19), that primarely vary

less than 1%. All the analyses converge in less than six iterations. The change in

number of sensors slightly affects the identified displacement, as shown in Figure 115,

with errors on the maximum displacement ranging from 1% (one sensor) to 4% (five

sensors).

Table 19: Comparison between numerical and experimental bending natural frequen-
cies of the blade for three added masses, with percentage difference with respect to
the experimental case, when the number of control points is reduced. Identification
of 21 concentrated masses.

5 sensors 4 sensors 3 sensors 2 sensors 1 sensor

f1[Hz] 29.4 29.3 29.3 29.2 29.2
-23.7% -23.4% -23.4% -22.9% -22.9%

f2[Hz] 199.1 198.9 198.7 198.5 198.4
-9.1% -9.0% -8.9% -8.8% -8.7%

f3[Hz] 563.7 563.2 562.7 562.2 561.9
-4.4% -4.3% -4.2% -4.1% -4.0%

f4[Hz] 1106.8 1106.0 1105.0 1104.1 1103.5
-7.3% -7.3% -7.2% -7.1% -7.0%

5.7 Conclusions

In summary, the PCA improves the accuracy of the numerical dynamic behavior

(modal and physical response) with experimental results, both when the location of

the change in system properties is known and when it is not. However, the PCA does

not identify the real change in properties that occurs in the system, first of all because

of the approximation of the response through a limited number of modes and sensors,
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Figure 115: Comparison between measured and numerical instantaneous deformed
shape before and after the application of PCA when the number of control points
is increased. Three masses added. Identification of 21 concentrated masses. Mea-
sured (o). Initial FEM (- -). Final FEM (-).

and second due to the presence of other inaccuracies in the model, for example in the

modeling of external loads, and of noise in the experimental system [16, 15]. In the

analyzed cases, the PCA showed the ability to recognize differential changes in the

properties. For example, the ∆m identified in the Mass 1 case is lower than the other

two cases for a similar mass distribution. This capability is fundamental in giving

indications of increasing differences in the properties of the system, as for example in

cases of mass accumulation on blades due to debris or ice.

The discussion of the thesis shows that the tracking of experimental dynamic

response through a numerical model of the system is possible and accurate. Two
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different algorithms are described that improve the response either by iteratively

correcting the external loads (LCA) or the dynamic properties in terms of mass and

stiffness distributions (PCA). Examples in one- and two-dimensions are presented to

support the discussion.

The next chapter analyzes the convergence properties of LCA and PCA by means

of analytical examples. The discussion underlines the similarity of these approaches

to classical Newton methods, and exploits the well-known convergence properties of

this class of algorithms to describe the behavior of LCA and PCA.
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CHAPTER VI

CONVERGENCE ANALYSIS OF LOAD AND PROPERTY

CONFLUENCE ALGORITHMS

6.1 Overview

The Confluence Algorithm can be more generally formulated as an iterative Newton

method for the solution of nonlinear algebraic problems. This is particularly useful in

order to analyze the convergence properties of the approach. In fact, the CA aims to

correct a general non-linear model by applying linearized corrections obtained through

the approximation of the Jacobian matrix of the iterative method. This approxima-

tion may reduce the convergence rate of the algorithm, and the computational cost

of the method.

This chapter initally presents a brief review of the general formulation of Newton

method and its convergence properties. Then, the Load Confluence Algorithm is

formulated as a Newton approach, and its convergence properties are investigated

based on analytical examples. At the end of this chapter, the convergence of the

Property Confluence Algorithm is analyzed, and some examples presented to support

the discussion.

6.2 Newton method

A nonlinear system of equations can be expressed as:

F (p) = 0 (35)

where F (p) is a general non-linear vectorial functional of the parameters p. The

functional is linearized with a two-term linear expansion:

F (p) ≈ F (pk) + F ′(pk) (pk+1 − pk) ≈ 0 (36)
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for which the roots need to be computed. At each k − th iteration, the roots of the

system are defined as pk. The term F ′(pk) represents the Jacobian of the nonlinear

system at the k−th iteration. Newton method is formulated in terms of the transition

equation from the iterate k to a new iterate k + 1 as:

pk+1 = pk − F ′(pk)−1F (pk) (37)

For the method to converge to a solution, the following assumptions (defined as

standard assumptions) must hold [51]. It is required that an exact solution p∗ exists,

and that the Jacobian is Lipschitz continuous1 and non-singular. In addition, the

initial iterate needs to be sufficiently close to the exact solution.

Under the standard assumptions, the Newton iteration converges quadratically to

the exact solution p∗ as:

||ẽk+1|| ≤ K||ẽk||2 (38)

with ẽk = pk − p∗ error at each iteration2 and constant K.

In a classical Newton method, if the Jacobian F ′(p) is well-conditioned, the size

of the relative non-linear residual
||F (p)||
||F (p0)|| is a good indicator of the size of the error

at that iteration [51]

||ẽ||
4 ||ẽ0||κ(F ′(p))

≤ ||F (p)||
||F (p0)|| ≤

4 ||ẽ||κ(F ′(p))

||ẽ0||
(39)

where ẽ0 is the initial error, F (p0) the initial value of the function to be minimized,

and κ(F ′(p)) the condition value of the Jacobian. Near the solution, the size of the

step ||pk+1 − pk|| and the size of the error ||ẽk+1|| are essentially the same, therefore

the increment in the identified parameters is a good indicator of the convergence of

the approach.

1Lipschitz continuity is a strong form of uniform continuity for functions. Definition: let Ω ⊂ RN

and let G : Ω −→ RM . G is Lipschitz continuous on Ω with Lipschitz constant γ if ||G(x)−G(y)|| ≤
||x− y|| for all x, y ∈ Ω.

2Let the standard assumptions hold. Then there are K > 0 and δ > 0 such that if xc ∈ B(δ)
the Newton iterate satisfies ||ek+1|| ≤ K||ec||2. B(δ) denotes the ball of radius δ about x∗: B(δ) =
{x | ||e|| < δ} with e = x− x∗.
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Suppose now that both the function F (pk) and its Jacobian F ′(pk) are inaccu-

rately computed, and F +E and F ′+∆ are used instead of F and F ′ in the iteration.

The terms E and ∆ represent the error on the function and on the Jacobian and gen-

erally depend on the parameters to be identified. The transition equation is now

expressed as:

pk+1 = pk − [F ′(pk) + ∆(pk)]
−1 (F (pk) + E(pk)) (40)

If the error on the Jacobian ∆ is sufficiently small, the error at each iterate is reduced

to:

||ẽk+1|| ≤ K [||ẽk||2 + ||∆(pk)||||ẽk||+ ||E(pk)||] (41)

and the solution of the problem is an O(||E||) approximation of the exact solution.

In this case, the iteration reaches a stagnation point at which the non-linear residual

cannot be further reduced by the iterations. The effect of an inexact evaluation of

the Jacobian primarily consists in reduced convergence rates, but can be convenient

because it may not require its computation at each iteration.

Several methods can be formulated considering different approximations of the

Jacobian matrix, as for example the chord method and its variations. If the Jacobian

is approximated as A ≈ F ′(p), then:

||∆(pk)|| = ||A− F ′(pk)|| ≤ ||A− F ′(p∗)||+ ||F ′(p∗)− F ′(pk)|| (42)

and it can be proven that the error of the iterative procedure becomes:

||ẽk+1|| ≤ KA (||e0||+ ||A−E′(p∗)||) ||ẽk|| (43)

These general findings that characterize Newton method can be specified more

precisely for the Confluence Algorithm as described in the next sections.

6.3 Definition of the CA as a Newton method

In order to express the Confluence Algorithm as a Newton iterative approach, the

objective function of the analysis is defined as the difference between the numerical
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and the measured response of the dynamic system at specific locations in terms of

their Fourier coefficients:

F (p) = e(p)− eref = 0 (44)

with p general parameters on which the numerical response depends. The response of

the system can be expressed by tracking displacements, deformations, accelerations,

velocities of the system without loss of generality. The objective of the analysis is to

find the parameters p that best represent the experimental results in terms of forced

dynamic response. Changes in numerical parameters p do not affect the reference

response eref . In case of the Load Confluence Algorithm, parameters p are related

to the applied loads, while in case of the Property Confluence Algorithm they are

related to the physical properties of the system.

In order to find the transition equation that characterizes the CA, an harmonic

behavior of the system is assumed so that each quantity is approximated with a

Fourier series. The response of the numerical system is:

e(p, t) = e0(p) +
M∑

j=1

[ec(p) cos jΩt+ es(p) sin jΩt] (45)

and the reference response is:

eref (t) = e0ref +
M∑

j=1

[
ecref cos jΩt+ esref sin jΩt

]
(46)

where the subscript 0 denotes the constant coefficient, c the cosine and s the sine

terms. Each term of the objective function F (p) consists in the Fourier coefficients

of the difference between the numerical and reference response, F (p) = [e0(p) −

e0ref , ec(p)− ecref , es(p)− esref ]T .

The Jacobian can be approximated by using a simpler dynamic model of the

system. In this case, second-order linearized and undamped equations of motion

approximate the behavior of the system to approximate the Jacobian.

The following sections describe the details of the Newton formulation for the LCA

and PCA, and present some analytical examples.
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6.4 Load Confluence Algorithm as a Newton iterative method

The Load Confluence Algorithm assumes that the parameters to be updated p rep-

resent the applied loads.

Since the behaviour of the system is assumed to be periodic, the externally applied

loads can be represented in terms of Fourier series:

f = f0 +
M∑

j=1

[fc j cos jΩt+ fs j sin jΩt] (47)

and the parameters to be updated are defined in terms of its coefficients, p =

[f0,fc,fs]
T . At each iteration, the external loads fk are updated based on its har-

monic approximation. This assumption is adequate because only the steady-state

behavior of the system is of interest.

In order to approximate the Jacobian matrix of the system, the dynamic sys-

tem is approximated as a linear, undamped multi-degree-of-freedom system, whose

equations of motion are expressed as:

Mü+Ku = f (48)

In order to express the response of the system, and define its derivative with respect

to the parameters p of the problem, the behaviour of the system is projected to the

modal domain, and the response e(x) is approximated with a finite modal expansion:

e(p) ≈ Bq(p) (49)

where B is the incomplete modal matrix that relates the dynamic response at the

sensor location to the generalized modal coordinates, and q(p) the generalized modal

coordinates. In the LCA, p corresponds to the load of the system, and the B is not

affected by their changes. The Jacobian matrix is therefore expressed as:

F ′(p) =
∂e

∂p
≈ B ∂q

∂p
= B

[
∂q

∂f0

,
∂q

∂fc
,
∂q

∂fs

]T
(50)
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The first order derivative of the generalized coordinates
∂q

∂p
is defined from the lin-

earized, undamped equations of motion solved through a modal expansion and the

harmonic balance of the equation of motions, so that:

q0 = diag

(
1

ω2

)
P Tf0

qc/s j = diag

(
1

ω2 − j2Ω2

)
P Tfc/s j

(51)

with:

q = q0 +

Nh∑

j=1

[qc j cos jΩt+ qs j sin jΩt] (52)

The derivatives of the generalized coordinates are therefore defined as:

∂q0

∂f0

= diag

(
1

ω2

)
P T

∂qc/s j
∂fc/s j

= diag

(
1

ω2 − j2Ω2

)
P T

(53)

from which the derivatives of the physical response, that coincide with the terms of

the Jacobian matrix, can be reconstructed through matrix B as:

F ′0 =
∂e0

∂f0

= Bdiag

(
1

ω2

)
P T

F ′c/s j =
∂ec/s j
∂fc/s j

= Bdiag

(
1

ω2 − j2Ω2

)
P T

(54)

and, by introducing the unit-mass normalization3, its inverse is:

[F ′0]−1 = MPdiag (ω2)B+

[
F ′c/s j

]−1

= MPdiag

(
1

ω2 − j2Ω2

)
B+

(55)

where B+ is the pseudo-inverse of the incomplete modal matrix.

The transition equation for the LCA is therefore expressed as:

fk+10 = fk0 −MPdiag (ω2)B+ (ek0 − eref0)

fk+1c/s j
= fkc/s j

−MPdiag

(
1

ω2 − j2Ω2

)
B+

(
ekc/s j

− erefc/s,j
) (56)

3From the definition of matrix inverse of a general matrix A: AA−1 = I, thereforefor this case
P TP−T = P TMP−1 = I
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As defined in section 6.2, the convergence of the algorithm depends on the ap-

proximation of the Jacobian matrix and of the numerical response. The parameters

that influence this approximation are the proximity of the chosen approximate model

(linear and undamped) to the real model in which the response e(p) is evaluated,

the number of modes included in the modal approximation and the accuracy of the

representation of the model to the reference system.

Consider that the numerical response is evaluated through an incomplete modal

representation, so that an error in the evaluation of the function is introduced. Due

to the error in the function, the method converges to a stagnation point in which the

reference response is not properly represented. By increasing the number of modes,

the size of the error in the approximation of the function decreases, and the method

converges to the exact solution. The incompleteness of the modal approximation also

introduces an error in the evaluation of the Jacobian that in this case does not affect

the convergence of the algorithm. The truncation error in fact does not depend on

the load parameters, and is canceled in the computation of the derivatives.

In the previous section, Eq. (39) shows that the convergence of the method depends

on the well-conditioned nature of the Jacobian matrix. For the LCA Jacobian to be

well-conditioned, the matrix:

Bdiag

(
1

ω2 − j2Ω2

)
P T (57)

needs to be well-conditioned. The condition number of B plays a fundamental role

in the total condition number of the matrix, and is related to the choice of number of

sensors, of modes and to the location of the sensors. To have a well-conditionedB, the

control points must be sufficient to reconstruct the chosen modes. Therefore, when the

number of modes to be reconstructed increases, the number of control points needs to

increase as well. They also need to be properly spaced so that all included modes can

be observed. Another important term is given by the difference between the natural

frequencies and the driving frequency, and implies that an excitation at a resonant
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frequency may affect the convergence of the method. The term P T does not affect

the condition number of Eq. (57), because in case of real P , the condition number

of its transpose is always unity, according to the following relations: P TMP = I,

κ(P T ) = ||P T ||||P−T || = ||P T ||||MP || = 1.

6.5 Analysis of LCA with analytical examples

The convergence properties of the LCA are illustrated by way of an analytical example

describing a uniform beam in bending hinged at both ends. At the beginning of

the discussion, the Jacobian is expressed through a linear, undamped approximation

of the equations of motion. Then, the convergence properties of the algorithm for

different approximations of the response and for different definitions of the reference

system are analyzed.

Similarly to the discussion in the previous sections, the Jacobian matrix of the

system is approximated with linear, undamped equations of motion, that take the

form:

EIwIV (x, t) +mẅ(x, t) = f(x, t) (58)

where w(x, t) is the transverse displacement of the beam, f(x, t) the applied load, EI

its bending stiffness and m the mass per unit length. A simply supported beam is

characterized by null tip displacement and bending moment, that corresponds to the

boundary conditions:

w(0, t) = 0 w(L, t) = 0 EIwII(0, t) = 0 EIwII(L, t) = 0 (59)

with L denoting the length of the beam. It is assumed that its motion starts from a

rest position, so that the initial conditions on the displacement and velocity are:

w(x, 0) = 0 ẇ(x, 0) = 0 (60)

This equation of motion is solved conveniently by modal analysis. Assume a modal
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decomposition for the displacement of the beam:

w(x, t) =
∞∑

r=1

Pr(x) qr(t) (61)

The modal equation of motion results in:

q̈r(t) + ω2
rqr(t) = λr(t) r = 1, 2, ...,∞ (62)

with generalized modal loads λr(t) =
∫ L

0
Pr(x)f(x, t)dx. When the analysis is limited

to periodic loads, λr(t) = λr0 +
∑M

j=1 [λrc cos jΩt+ λrs sin jΩt], with Ω fundamental

excitation frequency, the solution of Eq. (62) can be computed by harmonic balance.

A further approximation on the spatial nature of the applied periodic loads is now

introduced to allow for an analytical solution. The load f(x, t) are assumed to be ap-

proximated by a Fourier series also along the span of the beam using the eigenvectors

of the system as spatial function, so that:

f(x, t) =

Nf∑

g=1

Pg(x)λg(t) =

Nf∑

g=1

Pg(x)

{
λg0 +

M∑

j=1

[
λgcj cos jΩt+ λgsj sin jΩt

]}
(63)

In this example, the LCA identifies the parameters λg, where Nf is the number of

modes required to describe the considered load distribution.

The natural frequencies and modes shapes of a simply supported beam have the

form

Pr(x) =

√
2

mL
sin
(rπx
L

)
, ωr = (rπ)2

√
EI

mL4
(64)

In order to express the Jacobian matrix, the objective function to be minimized

has to be expressed in terms of the load parameters for this specific case, and it is

defined as the difference between the approximated and the reference response at the

control points in terms of their Fourier coefficients. It is now assumed for sake of

clarity that the reference response is known in term of displacements at the control

point. It will be assumed in the following that e(xi) = w(xi). Each element of the
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approximated function F of Newton method from which F ′ is evaluated is therefore:

Fi0 = w0(xi)− wref0(xi) =
∞∑

r=1

Pr(xi)qr0 − wrefi0

Fic/sj = wc/sj(xi)− wrefc/sj (xi) =
∞∑

r=1

Pr(xi)qrc/sj − wrefic/sj

(65)

The approximated Newton function for the definition of the Jacobian is expressed

by:

Fi0(λg0) =
∞∑

r=1

Pr(xi)

ω2
r

∫ L

0

Pr(x)

Nf∑

r=1

Pg(x)λg0dx− wrefi0

=
∞∑

r=1

Pr(xi)

mω2
r

λr0 − wrefi0

Fic/sj (λgc/s) =
∞∑

r=1

Pr(xi)

ω2
r − j2 Ω2

∫ L

0

Pr(x)

Nf∑

r=1

Pg(x)λgc/sj dx− wrefic/sj

=
∞∑

r=1

Pr(xi)

m(ω2
r − j2 Ω2)

λrc/sj − wrefic/sj

(66)

The Jacobian at every control point follows from these relations as:

F ′i0 =
∂e0(xi)

∂λl
=
Pl(xi)

mω2
l

F ′ic/sj
=
∂ec/sj(xi)

∂λl
=

Pl(xi)

m(ω2
l − j2 Ω2)

(67)

This approximation of the Jacobian of the system will be used in the next sections

to assess the properties of LCA for linear, non-linear, and damped reference systems.

For sake of clarity, two constant coefficients are introduced, γg =
1

mω2
g

and ᾱg =

1

m(ω2
g − j2Ω2)

so that:

F ′i0 = Pl(xi)γl

F ′ic/sj
= Pl(xi)ᾱl

(68)

The general Newton iteration for each term is therefore expressed as

fg0k+1
= fg0k − [Pg(xi)γg]

−1 (w0k − wref0)

fgsjk+1
= fgsjk

− [Pg(xi)ᾱg]
−1 (wsjk − wrefs)

fgcjk+1
= fgcjk

− [Pg(xi)ᾱg]
−1 (wcjk − wrefc)

(69)
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The introduction of forms of damping in the definition of the Jacobian woul not

introduce complexity or increase the computational cost of the Load Confluence Al-

gorithm. However, it is generally not possible to reasonably estimate the damping

of a real system from experimental measurements, and/or to accurately represent it

with a numerical model. It is therefore preferable to identify any contribution to the

damping forces as general external loads. This approximation results in the fact that

the updated loads are not accurately achieved by a single-step correction and multiple

iterations are necessary to obtain a converged f(x, t).

6.5.1 Analysis of a linear system

Consider in this case that both the numerical and reference systems are linear, and

their motion can be approximated as:

EIwIV (x, t) +mẅ(x, t) + c ẇ(x, t) = f(x, t) (70)

with boundary oonditions:

w(0, t) = 0 w(L, t) = 0 EIwII(0, t) = 0 EIwII(L, t) = 0 (71)

and initial conditions:

w(x, 0) = 0 ẇ(x, 0) = 0 (72)

where L is the length of beam, EI its bending stiffness, m the mass per unit length

and c the damping. The cases of an undamped system, as well as proportionally and

non-proportionally damped systems are here investigated.

The response of a general linear system can be approximated according to Ritz

method by considering an approximation of the response through approximate shape

functions that correspond to the modes of the linear, undamped system, defined as

Pr(x), and unknown time functions qr(t):

w(x, t) =
Ne∑

r=1

Pr(x)qr(t) (73)
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In case of a periodic behavious of the structure, functions qr(t) in terms of their

Fourier coefficients can be obtained through harmonic balance of the equations of

motion of the system. Given a generic periodic load

f(x, t) =

Nf∑

g=1

Pg(x)

[
λg0 +

M∑

j=1

[
λgc j

cos jΩt+ λgs j
sin jΩt

]
]

(74)

the time-dependent functions are expressed as:

qr(t) = qr0 +
M∑

j=1

[
qrc j

cos jΩt+ qrs j
sin jΩt

]
(75)

In a proportionally damped system, each sine and cosine coefficient of each harmonic

term of qr(t) depend both on the sine and cosine coefficients of the corresponding

j − th harmonics of the external loads through the relations:

qr0 = γrλr0

qrsj = βrjλrcj + αrjλrsj

qrcj = αrjλgcj − βrjλgsj

(76)

with:

γr =
1

ω2
r

αrj =
ω2
g − j2Ω2

(ω2
g − j2Ω2)2 +

(
jΩc
m

)2

βgj =
jΩc
m

(ω2
g − j2Ω2)2 +

(
jΩc
m

)2

(77)

Eq. (76) is valid for a proportionally damped, linear, second order system. The

response of the system w(x, t) at location i is therefore expressed as:

w(xi, t) =
Ne∑

r=1

Pr(xi)
{
γrλr0 +

[
βrjλrcj + αrjλrsj

]
sin jΩt +

+
[
αrjλgcj − βrjλgsj

]
cos jΩt

} (78)

The terms λr0 , λrs j
, λrc j

are the unknown parameters that need to be found by LCA.

Relations (78) can now be specified for different values of the damping coefficient, so

that its effects can be evaluated.
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Case 1: perfect undamped linear model and linear loads This first case

considers a linear and undamped initial numerical system (to define ek) as well as

a linear and undamped reference system (to define eref ). The physical properties of

the reference system are exactly represented by the numerical model.

The reference response is described by the equation of motion and boundary and

initial conditions:

EIwIVref (x, t) +mẅref (x, t) = fref (x, t)

wref (0, t) = 0 wref (L, t) = 0 EIwIIref (0, t) = 0 EIwIIref (L, t) = 0

wref (x, 0) = 0 ẇref (x, 0) = 0

(79)

and the initial numerical response by:

EIwIV (x, t) +mẅ(x, t) = f(x, t)

w(0, t) = 0 w(L, t) = 0 EIwII(0, t) = 0 EIwII(L, t) = 0

w(x, 0) = 0 ẇ(x, 0) = 0

(80)

The reference response is therefore:

wref (xi, t) =
Ne∑

r=1

Pr(xi)
{
γrλrefr0 + ᾱrjλrefrsj sin jΩt+ ᾱrjλrefrcj cos jΩt

}
(81)

and the numerical response at the k − th iteration:

wk(xi, t) =
Ne∑

r=1

Pr(xi)
{
γrλr0k + ᾱrjλrsjk

sin jΩt+ ᾱrjλrcjk
cos jΩt

}
(82)

The transition equations result:

λg0k+1
= λg0k − [Pg(xi)γg]

−1 Pg(xi)γg

(
λg0k − λg0ref

)

λgc/sk+1
= λgc/sk − [Pg(xi)ᾱg]

−1 Pg(xi)ᾱg

(
λgc/sk − λgc/sref

) (83)

that are simplified to:

λg0k+1
= λg0ref

λgc/sk+1
= λgc/sref

(84)

The reference loads are therefore exactly found in one iteration.

140



The simplicity of this example allows analysing the contribution of the number

of modes and sensors introduced in the Newton iteration. It is in fact possible to

update only a few of the modal coefficients of the loads and still obtain an accurate

representation of the response of the system. Consider for example a uniform load

distribution f(x) = 1 N/m, that can be approximated by Fourier serie as:

f(x) =

Nf∑

g=1

sin
(gπx
L

)
fg (85)

with Nf =∞ and fg = 2
πg

[1− cos(gπ)].

If the response of the system is approximated with a number of modes m lower

than the number of terms in the load expansion Nf , the truncation error in the

evaluation of the function is:

E(λ)i =

Nf∑

r=m+1

Pr(xi)

m(ω2
r − j2 Ω2)

λr (86)

while the Jacobian is exactly defined. The modal content of the constant load f(x, t)

is shown in Figure 116. It is clear that the higher is the mode, the lower is its

contribution to the external loads. Figure 117 illustrates the cumulative sum of

the modal contribution of the loads with respect to its maximum value. This plot

illustrates that to achieve an accurate description of the loads, with truncation errors

of less than 10%, about 40 modes are necessary, and consequently of control points,

which is in general not possible because it would result in a very complex experimental

set-up. On the contrary, a good representation of the response of the system can be

achieved with a much lower number of modes. The modal content of the response is

in fact dominated by mode 3, as shown in Figure 118. The cumulative sum of the

modal contribution to the response, Figure 119, confirms this observation. Therefore,

the response of the system can be accurately predicted with only few modes.

Consider the case in which the response of the system is represented by a number

of modes that is higher than the number of modes used by LCA, i.e. m < Nf . An
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Figure 116: Variation of the modal content of the external loads λr for a uniform
distributed load.
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Figure 117: Cumulative sum of modal loads λ for a uniform distributed load as the
number of modes increases.

error in the evaluation of the function E is introduced, and LCA will not reach a zero

value, but the method converges to a stagnation point.

In order to identify the response, a sufficient number of control points needs to

be selected so that the components w(xi, t) are an effective representation of the
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Figure 118: Variation of a representative Fourier coefficient of the modal response
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Figure 119: Cumulative sum of modal response q for a uniform distributed load as
the number of modes increases

response of the beam. Moreover, in order to have a non-singular Jacobian, the num-

ber of response points must be larger than the number of load parameters, so that

the Jacobian can be inverted. This constraint implies that matrix B, with elements

Bgi = Pg(xi), is well-conditioned. The influence of the difference in frequencies on the
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Jacobian matrix is noticed only at exactly a resonant frequency. If the excitation fre-

quency is just a few percentage off a resonance frequency, no harm to the convergence

is noticed.

Case 2: influence of unmodeled damping This second case considers a linear

and undamped initial numerical system (to define ek) and a linear and proportionally

damped reference system (to define eref ). The damping in the reference system is

not represented in the model, and its effects are recovered as additional contributions

to the external loads. The mass and stiffness of the reference system are exactly

represented by the numerical model. The reference response is described by equations

of motion and boundary and initial conditions:

EIwIVref (x, t) + c ẇref (x, t) +mẅref (x, t) = fref (x, t)

wref (0, t) = 0 wref (L, t) = 0 EIwIIref (0, t) = 0 EIwIIref (L, t) = 0

wref (x, 0) = 0 ẇref (x, 0) = 0

(87)

and the numerical response is represented by:

EIwIV (x, t) +mẅ(x, t) = f(x, t)

w(0, t) = 0 w(L, t) = 0 EIwII(0, t) = 0 EIwII(L, t) = 0

w(x, 0) = 0 ẇ(x, 0) = 0

(88)

The reference response is therefore:

wref (xi, t) =
Ne∑

r=1

Pr(xi)
[
γrλrefr0 +

(
βrjλrefrcj + αrjλrefrsj

)
sin jΩt +

+
(
αrjλrefrcj − βrjλrefrsj

)
cos jΩt

] (89)

and the numerical response at the k − th iteration:

wk(xi, t) =
Ne∑

r=1

Pr(xi)
(
γrλr0k + ᾱrjλrsjk

sin jΩt+ ᾱrjλrcjk
cos jΩt

)
(90)

In this case both the sine and cosine components of the loads contribute to the

each sine and cosine coefficient of the response because of the presence of damping.
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However, the contribution of each mode is uncoupled. The transition equations for

the sine and cosine coefficients (the constant coefficient is not affected by the presence

of damping) are:

λg0k+1
= λg0k − [Pg(xi)γg]

−1 Pg(xi)γg

(
λg0k − λg0ref

)

λgsk+1
= λgsk − λgsk + [Pg(xi)ᾱg]

−1 Pg(xi)
(
αsjλgsref + βgjλgcref

)

λgck+1
= λgck − λgck + [Pg(xi)ᾱg]

−1 Pg(xi)
(
αgjλgcref − βgjλgsref

)
(91)

that are simplified to:

λg0k+1
= λg0ref

λgsk+1
=
αgj
ᾱg

λgsref +
βgj
ᾱg
λgcref

λgck+1
=
αgj
ᾱg

λgsref −
βgj
ᾱg
λgcref

(92)

Note that the updating equation of the zero coefficient does not change with respect

to the previous case, because not dependent on damping. Also in this case, iterations

of the approach are not necessary and LCA identifies a new set of loads so that the

numerical response accurately represents the reference response. However, Eq. (92)

shows that the identified loads do not exactly represent the real applied loads of the

reference system, but contain contributions of the damping terms. LCA identifies an

equivalent representation of the external loads that takes into account the differences

in damping loads.

If the reference system is characterized by non-proportional damping, such as a

concentrated damper along the span of the beam, each modal coefficient of the load

is coupled with the other modal coefficients. However, since no damping is considered

in the numerical model, no iterations would be necessary to find an equivalent form

of the reference load.

Case 3: influence of modeled damping Consider now a numerical model in

which damping is included in the system. In this case, iterations become necessary to

converge to a solution. The reference response is described by the equation of motion
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and boundary and initial conditions:

EIwIVref (x, t) + c ẇref (x, t) +mẅref (x, t) = fref (x, t)

wref (0, t) = 0 wref (L, t) = 0 EIwIIref (0, t) = 0 EIwIIref (L, t) = 0

wref (x, 0) = 0 ẇref (x, 0) = 0

(93)

and similarly the numerical response is represented by:

EIwIV (x, t) + c ẇ(x, t) +mẅ(x, t) = f(x, t)

w(0, t) = 0 w(L, t) = 0 EIwII(0, t) = 0 EIwII(L, t) = 0

w(x, 0) = 0 ẇ(x, 0) = 0

(94)

The reference response is therefore:

wref (xi, t) =
Ne∑

r=1

Pr(xi)
[
γrλrefr0 +

(
βrjλrefrcj + αrjλrefrsj

)
sin jΩt +

+
(
αrjλrefrcj − βrjλrefrsj

)
cos jΩt

] (95)

and the numerical response at the k − th iteration:

wk(xi, t) =
Ne∑

r=1

Pr(xi)
[
γrλkr0 +

(
βrjλkrcj + αrjλkrsj

)
sin jΩt +

+
(
αrjλkrcj − βrjλkrsj

)
cos jΩt

] (96)

The Newton iteration in this case becomes:

λg0k+1
= λg0ref

λgsk+1
= λgsk −

[
αgj
ᾱg

(
λgsk − λgsref

)
+
βgj
ᾱg

(
λgck − λgcref

)]

λgck+1
= λgck −

[
αgj
ᾱg

(
λgsk − λgsref

)
− βgj
ᾱg

(
λgck − λgcref

)]
(97)

that converges in few iterations to the reference loads.

Case 4: influence of unmodeled dynamics (linear elastic foundation) Con-

sider now the presence of a difference in the dynamic properties between the numerical

model and the reference system. As an example, the reference system consists in a

simply supported beam on a linear elastic foundation characterized by a distributed

146



spring kb, that is neglected in the numerical response. Also in this case, an iteration

is sufficient to reconstruct an equivalent representation of the external loads of the

reference system.

The reference response is described by the equation of motion and boundary and

initial conditions:

EIwIVref (x, t) + kbwref (x, t) +mẅref (x, t) = fref (x, t)

wref (0, t) = 0 wref (L, t) = 0 EIwIIref (0, t) = 0 EIwIIref (L, t) = 0

wref (x, 0) = 0 ẇref (x, 0) = 0

(98)

where kb is the stiffness of the elastic support, while the numerical response is repre-

sented by:

EIwIV (x, t) +mẅ(x, t) = f(x, t)

w(0, t) = 0 w(L, t) = 0 EIwII(0, t) = 0 EIwII(L, t) = 0

w(x, 0) = 0 ẇ(x, 0) = 0

(99)

The reference response is characterized by the contribution of the elastic foundation:

wref (xi, t) =
Ne∑

r=1

Pr(xi)

ω2
r

λrefr0 +
Pr(xi)

ω2
r + kb

m
− j2Ω2

[
λrefrsj sin jΩt+ λrefrcj cos jΩt

]

(100)

and the numerical response at the k − th iteration:

wk(xi, t) =
Ne∑

r=1

Pr(xi)
(
γrλr0k + ᾱrjλrsjk

sin jΩt+ ᾱrjλrcjk
cos jΩt

)
(101)

The transition equations become:

λg0k+1
= λg0k −

[
Pg(xi)

ω2
g

]−1
Pg(xi)

ω2
g

(
λg0k −

ω2
g

ω2
g + kb

m

λg0ref

)

λgsk+1
= λgsk −

[
Pg(xi)

ω2
g − j2Ω2

]−1
Pg(xi)

ω2
g − j2Ω2

(
λgsk −

ω2
g − j2Ω2

ω2
g + kb

m
− j2Ω2

λgsref

)

λgck+1
= λgck −

[
Pg(xi)

ω2
g − j2Ω2

]−1
Pg(xi)

ω2
g − j2Ω2

(
λgck −

ω2
g − j2Ω2

ω2
g + kb

m
− j2Ω2

λgcref

)
(102)
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that result into:

λg0k+1
=

ω2
g

ω2
g + kb

m

λg0ref

λgsk+1
=

ω2
g − j2Ω2

ω2
g + kb

m
− j2Ω2

λgsref

λgck+1
=

ω2
g − j2Ω2

ω2
g + kb

m
− j2Ω2

λgcref

(103)

The reconstructed load coincides with the equivalent loads acting on the reference

system:

feq(x, t) =

Nf∑

g=1

Pg(x)λg(t)− kbw(x, t) (104)

and:

λgeq(t) = λg(t)− kb
1

ω2
g + kb

m
− Ω2

λg(t) =
ω2
g − Ω2

ω2
g + kb

m
− Ω2

λg(t) (105)

Case 5: influence of imperfect loads and unmodeled dynamics (difference

in mass) Consider now a reference system that differs from the numerical model

both in the external loads and in the mass properties. The reference response is

described by the equation of motion and boundary and initial conditions:

EIwIVref (x, t) + m̂ ẅref (x, t) = fref (x, t)

wref (0, t) = 0 wref (L, t) = 0 EIwIIref (0, t) = 0 EIwIIref (L, t) = 0

wref (x, 0) = 0 ẇref (x, 0) = 0

(106)

and the numerical response is represented by:

EIwIV (x, t) +mẅ(x, t) = f(x, t)

w(0, t) = 0 w(L, t) = 0 EIwII(0, t) = 0 EIwII(L, t) = 0

w(x, 0) = 0 ẇ(x, 0) = 0

(107)

The reference response is therefore:

wref (xi, t) =
Ne∑

r=1

P̂r(xi)

ω̂2
r

λrefr0 +
P̂r(xi)

ω̂2
r − j2Ω2

[
λrefrsj sin jΩt+ λrefrcj cos jΩt

]
(108)

with m̂ distributed mass of the reference system, and P̂r(x) =
√

m
m̂
Pr(x) and ω̂r =

√
m
m̂
ωr modes and natural frequencies respectively. The numerical response at the
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k − th iteration is:

wk(xi, t) =
Ne∑

r=1

Pr(xi)
{
γrλr0k + ᾱrjλrsjk

sin jΩt+ ᾱrjλrcjk
cos jΩt

}
(109)

The transition equations become:

λg0k+1
=
m

m̂

ω2
r

ω̂2
r

λg0ref

λgsk+1
=
m

m̂

ω2
r − Ω2

ω̂2
r − Ω2

λgsref

λgck+1
=
m

m̂

ω2
r − Ω2

ω̂2
r − Ω2

λgcref

(110)

The identified loads correspond to equivalent loads that take into account both

of difference in load model and of physical properties of the system (in mass). LCA

converges in one iteration.

It is of interest to be able to separately identify the contributions of the external

loads and of the changes in properties, so that the occurrence of structural modifica-

tions could also be analyzed. In this case, an additional reference system is necessary

that is characterized only by differences in the external loads. The LCA identifies the

changes in load from this system, and then extract the changes in properties:

fa = fref

fb =
m

m̂

ω2
r − Ω2

ω̂2
r − Ω2

fref
(111)

Case 6: influence of noise in the reference response When noise affects

the reference response, the algorithm reconstructs the best averaged response that

represents the real response. As an example, a random noise is added to the reference

response, and the results of the identification process are analyzed. In this case,

iterations affect the results only in the measure in which damping is present. If

no damping is considered, a single-step identification is sufficient. An example of

reconstructed response with and without noise is shown in Figure 120.
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(b) Noise affects the response

Figure 120: Comparison of updated response with and without noise in the mea-
surements

6.5.2 Analysis of a non-linear system

Consider now the presence of non-linearities both in the numerical model and in the

reference system, as for example a cubic distributed spring. The reference response

is described by equations of motion:

EIwIVref (x, t) +mẅref (x, t) + kbwref (x, t) + εγ w3
ref (x, t) = f(x, t) (112)

and boundary and initial conditions

wref (0, t) = 0 wref (L, t) = 0 EIwIIref (0, t) = 0 EIwIIref (L, t) = 0

wref (x, 0) = 0 ẇref (x, 0) = 0
(113)

This equation can be solved considering a single mode Galerkin discretization [55].

This discretization procedure has three main drawbacks. First, nonlinear terms that

are orthogonal to the eigenmodes are neglected, second, the couplings between modal

components are not considered, third, the shape of the motion is fixed a priori. These

errors can be neglected in the present discussion, so that simplified close form ex-

pressions for the nonlinear terms can be evaluated. The response is approximated

as:

w(x, t) = φr(x)qr(t) (114)
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where qr(t) are the generalized modal coordinates, and φr(x) the seleted mode r of

the linear system:

φr(x) =

√
2

mL
sin

rπx

L
(115)

that results in the modal equation:

q̈r + ω2
rqr + ε

3

2m2L2
γq3

r = λr(t) (116)

with λr =
∫ L

0
f(x)φr(x)dx and ω2

r =
(
r4π4 EI

mL4 + kb
m

)
. Since the main interest of this

work deals with the steady state response of a forced system, an harmonic balance

approach is considered. Assume that cosinusoidal loads are applied to the system

λr(t) = Λr cos Ωt

qr(t) = Qr cos Ωt
(117)

After rearranging, Eq. (116) becomes:

(
−Ω2 + ω2

r

)
Qr cos Ωt+ ε

3

2m2L2
γQ3

r cos3 Ωt = Λr cos Ωt (118)

Introducing the relation between the cube of a cosine and linear terms, Eq. (118)

becomes:

(
−Ω2 + ω2

r

)
Qr cos Ωt+ ε

3

2m2L2
γ
Q3
r

4
(3 cos Ωt+ cos 3Ωt) = Λr cos Ωt (119)

By harmonic balance of the driving terms (only the response close to the forcing

frequency is of interest), the following relation is obtained:

(
−Ω2 + ω2

r

)
Qr + ε

9

8m2L2
γQ3

r = Λr (120)

This algebraic equation can be solved via a second order perturbation approach such

that:

Qr = Qr0 + εQr1 + ε2Qr2 +O(ε3) (121)
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and results in the following equations to be solved (up to the second order perturba-

tion):

O(ε0) :
(
−Ω2 + ω2

r

)
Qr0 = Λr

O(ε1) :
(
−Ω2 + ω2

r

)
Qr1 = − 9

8m2L2
γQ3

r0

O(ε2) :
(
−Ω2 + ω2

r

)
Qr2 = −3

9

8m2L2
γQ2

r0Qr1

(122)

Therefore the response is:

w(x, t) =
Pr(x)

−Ω2 + ω2
r

[
Λr − ε

9
8m2L2γ

(−Ω2 + ω2
r)

3
Λ3
r + ε23

81
64m4L4γ

2

(−Ω2 + ω2
r)

6
Λ5
r

]
cos Ωt (123)

Considering a sine load distribution in the span of the beam f(x, t) = fc sin πx
L

cos(Ωt),

the modal contribution is: Λr = fc

√
L

2m
. The Newton iteration is therefore expressed

as:

fk+1 = fk −
[
P1(xi)

1
ω2
1−Ω2

√
L
m2

]−1

P1(xi)
1

ω2
1−Ω2

√
L
m2

[(fk − εαf 3
k+

+ε2βf 5
k )−

(
fref − εαf 3

ref + ε2βf 5
ref

)]

fk+1 = fref + εα
(
f 3
k − f 3

ref

)
− ε2β

(
f 5
k − f 5

ref

)
(124)

with α = 9
16m3L(−Ω2+ω2

r)3
γ and β = 243

256m6L2(−Ω2+ω2
r)6
γ2.

An example of the convergence of a non-linear case is shown in Figure 121, in which

the loads are evaluated with different orders of non-linearity.For first and second order

approximations the load converges quickly to the reference loads even in case of large

initial discrepancies between the numerical and reference systems.

6.6 Property Confluence Algorithm as a Newton iterative
method

Similar to the LCA, the PCA can be expressed as a Newton approach. In this case,

the parameters p are related to the physical properties of the system, as for example

the mass per unit length of an element. As in the case of the LCA, in order to express

the Newton iteration it is first necessary to approximate the Jacobian of the system

at the k − th iteration. It is then assumed that the system is characterized by a

periodic behavior, so that each quantity can be approximated with a Fourier series.
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Figure 121: Convergence of the Newton iterations for a non-linear system in case of
first and second order approximations of the response.

Each Fourier coefficient of the dynamic response can be expressed through its modal

components by means of the incomplete modal matrix, e(p) = B(p)q(p). Differently

than the previous approach, the modal matrixB depends on the parameters p, and its

derivatives need to be evaluated in order to compute the Jacobian of the system. The

Jacobian matrix is evaluated from the second-order, linear and undamped equations of

motion. Initially, it is assumed that the system undergoes changes in mass properties

only and that the stiffness matrix and the external loads are accurately represented.

The equations of motion for the evaluation of the Jacobian are therefore:

Mkük +K0uk = F0 (125)

Derive Eq. (125) with respect to a parameter pl:

∂M

∂pl

∣∣∣∣
k

ük +Mk
∂ü

∂pl

∣∣∣∣
k

+K0
∂u

∂pl

∣∣∣∣
k

= 0 (126)

Due to the change in mass, at each k − th iteration the eigenvectors of the system

change. The new eigenvectors are assumed to be a linear combination of the eigen-

vectors of the initial system Pk = P0αk. These combination coefficients also link

matrix B at different iterations to the initial matrix Bk = B0αk. The derivative of

the dynamic response with respect to a parameter pl is therefore:

F ′(p) =
∂e

∂pl

∣∣∣∣
k

= B0
∂(αq)

∂pl

∣∣∣∣
k

(127)
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The derivative of the displacement similarly depends on the derivative of the gener-

alized modal coordinates:

∂u

∂pl

∣∣∣∣
k

= P0
∂(αq)

∂pl

∣∣∣∣
k

(128)

Introducing this relation into Eq. (126):

∂M

∂pl

∣∣∣∣
k

ük +MkP0
∂(αq̈)

∂pl

∣∣∣∣
k

+K0P0
∂(αq)

∂pl

∣∣∣∣
k

= 0 (129)

Assume now that the change in mass matrix linearly depends on the mass parameter

pl and that their relation
∂M

∂pl
is known and kept constant during the iterations, so

that:

Mk = Mk−1 +

Np∑

l=1

∂M

∂pl

∣∣∣∣
0

(
plk − plk−1

)
(130)

with Np number of parameters to be identified.

Similarly to the LCA, the dynamic response of the system is characterized by a

periodic response of frequency Ω, so that each element of the Newton function corre-

sponds to a Fourier coefficient of the response of the system. The derivative of each

sine and cosine coefficient with respect to each parameter pl therefore coincides. In or-

der to isolate the derivative of the generalized coordinates, Eq. (129) is pre-multiplied

by the initial eigenvectors of the system, and assuming an harmonic behavior of the

system:

−j2Ω2P T
0

∂M0

∂pl
uk +

(
−j2Ω2P T

0 MkP0 + P T
0 K0P0

) ∂αq
∂pl

∣∣∣∣
k

= 0 (131)

from which:

∂αq

∂pl

∣∣∣∣
k

=
[
−j2Ω2P T

0 MkP0 + P T
0 K0P0

]−1
[
j2Ω2P T

0

∂M0

∂pl
uk

]
(132)

The displacement of the system is linked to the generalized response of the system

through the incomplete modal matrix, uk = P0B
+
0 ek. The Jacobian results:

∂e

∂pl

∣∣∣∣
k

= B0

[
−j2Ω2P T

0 MkP0 + P T
0 K0P0

]−1
[
j2Ω2P T

0

∂M0

∂pl
P0B

+
0 ek

]
(133)
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and the transition equation:

pk+1 = pk −
{
B0 [−j2Ω2P0MkP0 + P0K0P0]

−1
[
j2Ω2P T

0
∂M0

∂p
P0B

+
0 ek

]}+

(ek − eref )

pk+1 = pk −
[
j2Ω2P T

0
∂M0

∂p
P0B

+
0 ek

]
[−j2Ω2P0MkP0+

+ P0K0P0]B+
0 (ek − eref )

(134)

In order to avoid singularities in the solution of this system, different approximations

for parameters p are obtained from the sine and cosine components. These values are

then averaged to find the best approximation of p.

Following a similar procedure, in case of a change in stiffness properties, the

transition equations are:

pk+1 = pk +

[
P T

0

∂K0

∂p
P0B

+
0 e0k

]
P0K0P0B

+
0

(
e0k − e0ref

)
(135)

for the constant coefficient, and:

pk+1 = pk +

[
P T

0

∂K0

∂p
P0B

+
0 ec/sk

] [
−j2Ω2P0MkP0 + P0K0P0

]
B+

0

(
ec/sk − ec/sref

)

(136)

for the sine and cosine coefficients.

6.7 Analysis of PCA with analytical examples

The convergence properties of PCA are investigated with the use of an analytical

example. A simply supported beam is considered with a change in mass per unit

length m.

The Jacobian of the iteration is found through the second order, linear, and un-

damped equations of motion with homogeneous boundary and initial conditions. Fol-

lowing the procedure described in the previous section, in case of a single harmonic

load, it is expressed as:

∂e(xi)

∂m
= P0(xi)

Ω

mk (ω2
k − Ω2)

(αkqk) (137)

with ωk natural frequencies of the system at iteration k.
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Case 1: exact representation of the external loads Consider a case in which

the numerical external loads exactly represent the reference system and in which both

systems are characterized by linear and undamped equations of motion. The reference

response is described by the equation of motion and boundary and initial conditions:

EIwIVref (x, t) + m̂ ẅref (x, t) = f(x, t)

wref (0, t) = 0 wref (L, t) = 0 EIwIIref (0, t) = 0 EIwIIref (L, t) = 0

wref (x, 0) = 0 ẇref (x, 0) = 0

(138)

and the numerical response is represented by:

EIwIV (x, t) +mẅ(x, t) = f(x, t)

w(0, t) = 0 w(L, t) = 0 EIwII(0, t) = 0 EIwII(L, t) = 0

w(x, 0) = 0 ẇ(x, 0) = 0

(139)

The reference response is therefore:

wref (xi, t) =
Ne∑

r=1

P̂r(xi)

ω̂2
r

λrefr0 +
P̂r(xi)

ω̂2
r − j2Ω2

[
λrsj sin jΩt+ λrcj cos jΩt

]
(140)

with P̂r(x) =
√

m
m̂
Pr(x), ω̂r =

√
m
m̂
ωr and m̂ modes, natural frequencies and mass of

the reference system respectively. The numerical response at the k − th iteration is:

wk(xi, t) =
Ne∑

r=1

Pr(xi)
{
γrλr0k + ᾱrjλrsjk

sin jΩt+ ᾱrjλrcjk
cos jΩt

}
(141)

The Newton iteration is expressed as:

mk+1 = mk −
mk (ω2

k − Ω2)

Ω2

[
1− mk (ω2

k − Ω2)

m̂ (ω̂2 − Ω2)

]
(142)

with m̂ and ω̂ distributed mass and natural frequencies of the reference system. No

errors in the evaluation of the Jacobian and objective function exist, so the iteration

converges to the reference solution.

Multiple iterations are necessary to converge to a solution even for this simple

case, Figure 122, due to the non-linear relation between the physical properties of the

system and its response.
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Figure 122: Convergence of the Newton iterations for a linear system in case of a
difference in distributed mass, f = 10 Hz.

Moreover, for this simple system, one mode is sufficient to extrapolate all the

information regarding the change in mass. In fact, the relationship between the

eigenvectors and natural frequencies at different iteration does not change for higher

modes, Pik =
√

mref

mk
Piref , ωik =

√
mref

mk
ωiref .

Case 2: inexact representation of the external loads When applying the

property identification algorithm to a real system, it can also happen that the exter-

nal loads are not exactly modeled, and that errors in its representation exist. In this

case, the identified properties represent both the inaccuracies in mass and stiffness

distributions and the errors on the external load. This introduces an error in the defi-

nition of the Jacobian and of the objective function that can prevent the convergence

of the Property Confluence Algorithm. The problem is in fact that the iterations try

to represent any error in the system as an inertial load (or elastic in case of differences

in stiffness), but not every external load can be represented in such a form. This is

very different from the Load Confluence Algorithm, since every change in properties

can be represented as an equivalent external load.
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The type of errors existing between the numerical and reference system are there-

fore critical for the ability of the iterations to converge. Figure 123 illustrates this

concept for different errors on the loads with respect to the case of exact represen-

tation of the loads. It shows that the progressive increase of the difference in loads

breaks the convergence of the iterations, and the identified mass becomes even neg-

ative. The iteration at this point is interrupted because a negative mass breaks the

physics of the dynamic system. This observation suggests that it is necessary to

ensure that the external loads are adequately represented by the numerical system.
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Figure 123: Convergence of the Newton iterations for a linear system in case of a
difference in distributed mass and loads, f = 10 Hz. Exact loads (o), inexact loads (H).
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6.8 Conclusions

This chapter shows that the LCA and PCA can be formulated as a Newton approach,

and their convergence properties can be analyzed through classical approaches. The

objective function to be minimized is defined as the difference between numerical and

reference response in terms of Fourier coefficients. The parameters to be evaluated

correspond to the external loads in LCA and to the increment in physical properties in

PCA. The algorithms converge to the reference response provided that the objective

function is represented with sufficient accuracy. This is achieved if all participat-

ing modes that characterize the dynamic response are included in the identification

process.
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CHAPTER VII

CONCLUDING REMARKS

7.1 Summary

The research presented in this work investigates the possibility of improving the accu-

racy of numerical models through a combined analytical and experimental algorithm,

called Confluence Algorithm. Experimental measurements of the dynamic response

(stresses, strains and displacements) are embedded into a non-linear numerical model

based on which linearized corrections of loads and properties of the system are up-

dated. The need for this research comes from the application to rotating environments

for which the accurate prediction of aerodynamic loads, as well as their measurement,

still remains a difficult task, and justifies the general assumption of periodic systems.

The integration of experimental measurements has the potential of improving fatigue

estimation for a less conservative design by correcting modeling inaccuracies.

The Confluence Algorithm is an iterative procedure that consists of two different

modules that update the dynamic response based on a correction of the external loads

or of the dynamic properties of the system. These corrections are determined through

the modal approximations of the undamped equations of motion of the system, and

are formulated assuming a periodic behavior, as typical for rotating components. The

first module, called Load Confluence Algorithm, updates the externally applied loads

to account for modeling inaccuracies and unmodeled dynamics. Reconstruction of the

external loads is shown to improve the accuracy of the dynamic response after a few

iterations, both in case of simple systems such as beams and plates and in case of com-

plex rotating systems. The second module, called Property Confluence Algorithm,
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corrects the dynamic response of the system by iteratively applying linearized correc-

tions to the mass and stiffness properties. An exact knowledge of the external loads

is assumed. Applications of the Property Confluence Algorithm to one-dimensional

structures indicate its promising possibilities for monitoring structural degradations

and modifications.

The Confluence Algorithm represents a valuable tool for the achievement of tai-

lored models for complex dynamic components. Accurate reconstruction of the re-

sponse of the structure from few experimental measurements is guaranteed in case

of inaccuracies in the modeling of external loads and/or dynamic properties, without

requiring strict assumptions on the nature of the inaccuracy. Moreover, a very ac-

curate model of the system is not necessary. Due to its flexibility and generality, it

can be applied to map the response of very different and complex systems, such as

helicopters and wind turbines. It therefore represents a general approach that can be

easily extended to different cases, or structures.

7.2 Research Contributions

The research presented in this work offers the following unique contributions:

• formulation and implementation of a combined analytical and experimental

procedure for loads and model updating,

• application of the algorithm to well-controlled experimental environments (one-

and two-dimensional),

• application of the algorithm to complex rotating systems, such as rotorcraft,

• analysis of the convergence properties of the iterative algorithm.
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7.3 Roadmap to the System Confluence Algorithm

The Load Confluence Algorithm and the Property Confluence Algorithm separately

correct the external loads and the mass and stiffness properties of the system. The

removal of the assumption of a separate occurrence of load and property inaccuracies,

and the desire to isolate these two kinds of errors, require the formulation of a new

algorithm, called System Confluence Algorithm, that relies on the measurement of

the response of multiple systems operating in similar conditions and applies multiple

times the LCA and PCA. In this way, the two algorithms are combined to create a

tailored, high-fidelity model of the dynamic system.

A possible formulation of the System Confluence Algorithm compares the dynamic

response of three different systems: an initial numerical model (“initial guess”), a

first reference system that differs from the initial model for the definition of external

loads, and a second reference that is subject to the same loads as the first reference

but differs from it for its physical properties (mass/stiffness) because of structural

modifications. The initial numerical system and this second reference system will

therefore differ both because of inaccuracies in the physical properties and in the

loads.

The difference in loads is extracted by comparing the response of the first reference

system and the guess model, by applying the Load Confluence Algorithm. Then, the

LCA is applied between the guess model and the second reference, and an equivalent

difference in loads is identified that accounts both for inaccuracies in loads and prop-

erties. The comparison of these two sets of identified loads extrapolates the difference

in physical properties.

The algorithm can be summarized as:

1. apply the Load Confluence Algorithm between the initial guess system and

reference system 1 in order to identify a first set of loads f1,
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2. apply the Load Confluence Algorithm between the initial guess system and

reference system 2 in order to identify a second set of loadsf2,

3. extract the difference in mass and stiffness properties between reference 1 and

2 from the difference between the two load sets (f2 − f1).

Following this procedure, the System Confluence Algorithm systematically cor-

rects the external loads and the physical properties of the initial model based on the

measured response. Practical applications in a rotating system could be implemented

as follows:

• initial properties of the system are accurately defined in the design and valida-

tion phase, and are assumed to be known thereafter. An initial model of the

system is constructed based on this information,

• a particular set of operating conditions is chosen as reference, and will be used

to compare the response of the system at different moments in its life,

• the dynamic response is measured and recorded in each reference condition, and

the model of the external loads is updated to match the experimental results

by applying the Load Confluence Algorithm,

• when the actual condition of the system needs to be checked, the response of

the structure in the specified set of reference flight conditions is recorded, and

external loads identified,

• the new set of loads is compared to the previously identified set of loads, and

the change in mass and stiffness that generated their eventual discrepancy is

computed according to the following linearized relations:

(M −∆M ) ü+ (K −∆K)u = F

Mü+Ku = F + ∆Mü+ ∆Ku︸ ︷︷ ︸
Feq

(143)
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A block diagram of the System Confluence Algorithm is shown in Figure 124 to

illustrate this concept.

Figure 124: Block diagram of the System Confluence Algorithm

7.4 Recommendation for future work

7.4.1 Validation of PCA and SCA

In this thesis, the applications of the Property Confluence Algorithm have been lim-

ited to linear numerical and experimental examples. However, the monitoring of

changes in mass and stiffness properties during operations is a challenging problem

for any type of systems, in particular for rotorcrafts and wind turbines. The PCA

needs therefore to be validate in case of non-linearities in the response.

More research needs to be done to define the formulation and validation of the

System Confluence Algorithm so that external loads and physical properties can be

simultaneously monitored during operations. In this case, CA can be included in

usage monitoring systems on helicopters and wind turbines as a step toward Condition

Based Maintenance.
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7.4.2 Estimation of servo loads on helicopters

Ample opportunities for further research are provided by the inaccuracy in the esti-

mation of servo loads on helicopters, such has the force in the hydraulic damper and

in the pitch-link, in order to monitor the fatigue behaviour of these components. The

LCA could be used as a means to improve their numerical prediction with respect to

experimental measurements, similarly to Force Determination techniques described

in section 1.4.2. By improving the accuracy of the response along the blades and

therefore at their root, it is expected that the servo-loads will be improved as well.

7.4.3 Addition of a bottom-up approach to include response of non-
rotating components

In this thesis, the CA is proposed for applications to rotorcrafts. In the previous

paragraph, the prediction of hub loads is obtained from measurements of the response

of the blades. This approach can be referred to as “top-down”. Another interesting

aspect to be studied deals with the development of a similar approach that, from

the measurements in the fixed frame, such as on the fuselage, predicts the hub loads

with a “bottom-up” approach. By unifying the two methods, both the information

in the rotating and in the fixed frame could be exploited to achieve very accurate

information on the hub-loads.

7.4.4 Analysis of non-periodic unsteady loading conditions

As described in [73, 23, 54] for the UH-60A, the flight envelope of a rotorcraft is limited

by level-flight conditions as well as manouvres. Manouvres often represent limiting

conditions for the helicopter and its components, and need therefore to be monitored

and well predicted in order to study their effects on critical components. The analysis

of LCA, and of PCA, are currently limited to study level-flight conditions. However,

their expansion to study more general flight conditions would be valuable. This

extension requires the formulation of the methods for non-periodic systems.
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7.4.5 Monitoring of the weight of helicopters during operations

The weight of an helicopter changes during operations due to fuel consumption, pay-

load release or increase. This value determines the inertial loads acting on the system,

and needs to be well-evaluated. The LCA and PCA could be expanded to monitor

the weight of the rotorcraft during operations and to provide its accurate estimate.

7.4.6 Application to trimming

Further opportunities for research are also provided by the study of the capabilities

of LCA to “train” a numerical model based on a limited number of flight conditions,

and to then use this model to analyze different flight conditions, and for trimming.

For example, the information presented in this thesis on flight condition C9017 could

be used to improve the predictions of similar manoeuvres, such as C9020, without

the need of reapplying the LCA, in order to achieve“blind” predictions.

7.5 Conclusions

The Confluence Algorithm represents a promising tool for the monitoring of dynamic

components at non-accessible locations. Examples in linear and non-linear conditions

demonstrates that CA could be implemented in conjunction with simple numerical

models of the experimental system and obtain accurate results with reduced compu-

tational effort.

The applicability of the algorithm to the analysis of periodic systems limits the

range of problems that can be analyzed. However, in case of rotating systems such

as wind-turbines and rotorcraft, it represents a simple and valuable tool for the im-

provement of numerical predictions.
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