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SUMMARY 

Technology advancements have greatly extended the application scope of 

Collaborative Information Networks (CINs). Due to the unique application fields of CINs 

and the nature of this construction, the connectivity of the inter-connection structure 

under impairments is a profound but challenging requirement for a CIN. Most of the 

existing topological connectivity robustness measures were proposed from a pure 

structural perspective with little or no consideration of the capability of a network. They 

can describe the ability of a network to resist network fragmentation under impairments. 

However, the current evaluation practice provides no direct mapping between the 

measured connectivity robustness and the capability robustness of a network. By seeing 

this gap, the research objective of this thesis is to develop a method to measure the 

capability-based connectivity robustness of a CIN against link failures by using existing 

topological connectivity robustness measures. 

A network model was chosen to represent the architecture of a CIN. The key to 

measure capability-based connectivity robustness is to link the capability of a CIN to its 

architecture structure. This can be done through network modeling. Network topological 

analysis is usually deployed to study the structure of a network. This thesis demonstrated 

the flexible use of network modeling. By modifying the network model of an 

infrastructure, network topological analysis can be used beyond pure structural analysis. 

It was observed that, in order to output capability, one or more major information 

flows of a CIN should be maintained. The major information flows can be collapsed into 

the connection between several critical node pairs. To measure the capability-based 

connectivity robustness of a CIN is to measure the (structural) connectivity robustness of 

critical node pairs. The connectivity robustness of a node pair ( 𝑖, 𝑗 ) can be directly 

quantified by the average number of link failures until its disconnection happens (�̅�𝑖,𝑗
𝑋 ), 

which can be estimated using the effective resistance between that node pair (𝐸𝑅𝑖,𝑗). This 
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estimation method is fast and scalable. The estimation error stabilizes as network node 

number increases. 

Centrality analyses for both existing and non-existing network entities were also 

performed in terms of their importance to the capability-based connectivity robustness of 

a network. The centrality of a network entity can be evaluated using the Moore-Penrose 

Pseudoinverse of a network Laplacian (𝐿+). Since 𝐿+ is also used to calculate 𝐸𝑅𝑖,𝑗, the 

proposed centrality evaluation methods do not require any extra heavy computation other 

than several basic operations. As a result, the proposed methods can be used to help 

quickly allocate limited resources to protect network against impairments or to add 

additional links to strengthen connectivity. 

In addition, a framework for the fast evaluation of the capability-based 

connectivity robustness of a CIN was constructed and was demonstrated on the example 

CIN followed by an alternative topology design generation process. 

Assigning substitution nodes can also help strength connectivity. In this thesis, it 

was demonstrated how the proposed capability-based connectivity robustness measure 

can be used to evaluate the effects of having substitution nodes, which is a dynamic 

failure copying mechanism. 

Finally, the effects of the capability-based connectivity robustness of a network 

on the required information processing capacity of each network node was also explored.
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CHAPTER I 

MOTIVATION AND INTRODUCTION 

Humans are currently in the Information Age, which is also known as the 

Computer Age, Digital Age, or New Media Age. It is a period in human history 

characterized by the shift from traditional industry to an economy based on information 

computerization. The onset of the Information Age is associated with the Digital 

Revolution, just as the Industrial Revolution marked the onset of the Industrial Age. The 

entire human society is going towards the idea that, individuals will be able to transfer 

information freely, and to have instant access to knowledge that would have been 

difficult or impossible to be found previously. As we are marching towards that goal, our 

ways of doing things have been remarkably changed. 

Information is useable data, inferences from data, or data descriptions [1]. The 

ability of gathering, translating and making sense of information has become one 

important factor that determines the success of an individual or an organization in the 

current knowledge-based society. Information exchange is critical to the performance of 

many networked systems, such as internet, air and ground transportation networks, 

business firms, military systems, and emergency respond systems [2], just to name a few. 

In order to increase the overall information level as to enhance performance or to 

complete tasks that are impossible to be achieved by individual participants alone, 

individual entities always work in collaboration 1  and form collaborative information 

networks. A collaborative information network (CIN) is a network within which 

component systems generate information and share it with others in the network via 

                                                           
1 Collaboration means to work together in group(s) to achieve a common task or goal and irrespective of 

geographical separation. 3. Durugbo, C., et al., Modelling collaboration using complex networks. 

Information Sciences, 2011. 181(15): p. 3143-3161.. 

http://en.wikipedia.org/wiki/Digital_Revolution
http://en.wikipedia.org/wiki/Digital_Revolution
http://en.wikipedia.org/wiki/Industrial_Revolution


2 
 
 

 

information links to enhance the overall situation awareness and to increase performance 

and efficiency [4].  

Rapid technological advances on electronic, sensor and communication 

technologies have greatly extended the scope of CIN operations with enhanced flexibility. 

One example is the use of networked small Unmanned Air Vehicles (SUAVs). SUAVs 

encompass the Micro, Mini and Close Range categories of Unmanned Air Vehicles 

(UAVs). According to [5], this classification means SUAVs have maximum takeoff 

weight less than or equal to 150 kg, maximum range of 30 km, and maximum altitude of 

5 km mean sea level. Single-UAV systems have been in use for military missions since 

the beginning of UAV flight, due to their abilities to effectively operate in dirty, dull or 

dangerous missions [6]. Comparing to the use of Single-UAV systems, using a group of 

networked SUAVs has many advantages because of their better scalability [7], higher 

flexibility [8], greater accessibility [9], smaller radar cross-section [10] and relatively 

lower operation expenses[11]. The aforementioned technology advances have also 

enabled the ability to design and manufacture agile SUAVs at lower cost. As a result, the 

range of both military and civilian applications of networked SUAVs are getting wider, 

such as military target search and destroy operations [12], persistent surveillance [13-16], 

target tracking [17], wildfire control [18, 19], environment and weather monitoring [20-

23], disaster management [24], and law enforcement [25]. 

For a CIN, especially when its operation scale is large, often than never, it is very 

hard to obtain well-documented performance data. The absence of performance data 

coupled with the increasing size and complexity of its interacting systems presents a large 

degree of uncertainty around a CIN operation [13]. This is especially pragmatic when the 
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CIN operation environment is at high stake. Hence, it is important to design a CIN with 

enough robustness to maintain its capability2 under adverse changes during operation. 

As mentioned earlier, effective communication is crucial for the cooperation and 

collaboration between entities within a CIN. Therefore, the capability robustness of a 

CIN highly depends on whether its architecture can provide robust networked 

communication. To achieve this, the most profound but challenging requirement is to 

maintain connectivity under network impairments [2, 30-32]. Network impairments refer 

to any kind of attack, multiple or cascading failures that can occur upon a network [33]. 

That is to say, connectivity loss under network impartments is a major cause for the 

capability loss of a CIN during operation. 

Using networked SUAVs as an example. Unlike larger UAVs, SUAVs are in a 

unique regime where their capabilities to carry onboard connectivity loss mitigating 

technologies are limited yet their potential to be damaged is high [5] for the following 

reasons. 

1. SUAV Platform Constraints 

2. Adverse Environment Conditions 

3. High Operation Mobility 

The payload and space limitations of an SUAV are much higher than a traditional 

UAV. Those tighter constraints pose an important issue for the performance of SUAVs 

due to relative lower onboard power, sensing, communication and computation 

capabilities. Lower onboard power and communication capabilities can result in less 

reliable wireless communication channels and shorter communication ranges [34]. The 

operation environments of networked SUAVs are usually adverse, such as natural 

                                                           
2 A capability is the ability to achieve a desired effect under specified standards and conditions through 

combinations of ways and means to perform a set of tasks.  26. Government. Systems Engineering Guide for 

Systems of Systems. 2008. 
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disaster scenes and impediment terrain structures. Under such circumstances, it can be 

hard or even impossible to maintain the communication links between SUAVs. Due to 

the high motilities of SUAVs, collision avoidance between SUAVs and SUAVs, SUAVs 

and obstacles becomes an important issue. Undoubtedly, lower sensing and 

communication capabilities increase the probability of collision [35]. In addition, as 

written in [36], latency is one of the most important design issues for all types of 

networks. Limited communication and onboard computation capabilities of SUAVs can 

not only increase the potential of vehicle loss [5, 37] but also diminish the overall 

delivered capability, especially when information timeliness is valued high [38]. 

Hence, to design a CIN that can maintain connectivity under network impairments 

during operation is essential for its capability robustness. In other words, that is to design 

a connectivity robust CIN to maintain desired overall capability. 

1.1 Capability-Based Connectivity Robustness Measure 

Connectivity robustness is not a new topic. It is defined as the ability of a network 

to remain connected when its component systems experience impairments [2]. As 

mentioned earlier, the connectivity robustness of a CIN should be directly linked to its 

capability robustness. In order to design and evaluate the connectivity robustness of a 

CIN, and understand how it supports the capability robustness, we need to be able to 

measure it first. 

In recent years, a large amount of researches has been conducted on measuring 

the connectivity robustness of a network. According to [39], the most suitable 

connectivity robustness measure should be chosen based on the problem under 

investigation and the size of the network under analysis. 
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In general, connectivity robustness can be evaluated via direct simulation or 

topological measures. The problem of simulation results is that they lack transparency 

and the method itself is not scalable well to large networks. Whereas topological 

measures are more intuitive and have better scalability. In addition, they are more 

suitable when timely analysis result is critical. 

An initial review of existing topological connectivity measures shows that almost 

all of the measures were proposed from a pure structural perspective with little or no 

consideration of the capability of a network. They can describe the ability of a network to 

resist network fragmentation under impairments. However, the current evaluation 

practice provides no direct mapping between the measured connectivity robustness and 

the capability robustness of a network. 

Instead, a new type of connectivity robustness called capability-based 

connectivity robustness was proposed. It is defined as the ability of a network to maintain 

connectivity among component systems in a way that retains network capability under 

impairments. Mathematically, the capability-based connectivity robustness of a network 

can be expressed as following. 

 𝑅𝐶𝑁𝐶𝑃 ∝ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐼𝑚𝑝𝑎𝑖𝑟𝑚𝑒𝑛𝑡𝑠 𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒|𝐶𝑃 

where, 

𝑅𝐶𝑁𝐶𝑃 represents capability-based connectivity robustness; 

𝐶𝑃 represents capability. 

1

 

Equation 1 in essence says that, the capability-based connectivity robustness of a 

network should be proportional to the amount of network impairments a CIN can sustain 

while still outputs capability. 

Many studies have shown that, a network can have different robustness behaviors 

depending on the type of impairments [2, 40-44]. The most basic way is to categorize 



6 
 
 

 

impairments by hit point type, which is either an individual entity or a communication 

link. Network impairments can also be grouped into either random or targeted. Random 

impairments are usually failures. In this thesis, focus will be given to link (random) 

failures for the following reasons. 

1. Failures exist among all CIN operations, while attacks can only happen in certain 

operations. 

2. An entity failure is equivalent to a set information transmission line failures. 

3. For a CIN, communication link outrage happens more frequently than entity lose 

[5, 36]. 

1.2 Network Model 

A model is a useful approximation of the object under modeling to aid the 

understanding and/or predicting of its behavior [45]. Since in this thesis topological 

measures are selected for evaluating the capability-based connectivity robustness of a 

network, it is nature to abstract or represent a CIN through a network model. 

Network models have been widely used to represent and study the inter-

connection structures of complex networks. They have simple constructions, elegant 

mathematical representation and unique capabilities to support various analyses that can 

yield fruitful results. Network models are based on graphs. The associated theory is 

network theory. Network theory origins in graph theory and is an area of applied 

mathematics. Network theory concerns itself with the study of graphs as a representation 

of either symmetric relations or, more generally, asymmetric relations between discrete 

objects. Sometimes, the term “network theory” is used interchangeable with “graph 

theory”. For the purpose of analysis, network models are grouped into two categories: 

real network models and synthetic network models. Real network models are abstractions 
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of real world networks. They are used to analyze or investigate existing networked 

architectures. Synthetic network models are usually used to generate networks or groups 

of networks with similar characteristics according to customized rules to study the 

general trends of certain network properties.  

A network model is denoted as 𝐺 = (𝑉, 𝐸). 𝑉is the set of nodes (vertices) and 𝐸 

is the set of links (edges). Network nodes (vertex) represent the entities in CIN network, 

and network links (edges) represent the communication links between network entities. 

Network topology is the graph that indicates the arrangement of the nodes and links of a 

network model. 

If the starting and ending vertices of a link are the same, then that link forms a 

loop. A network without loops is a simple network. A network with no nodes and no 

links is an empty network. A network with only one node and no link is a trivial graph. In 

this thesis, are network models studied are simple and nontrivial. The most common way 

to categorize a network model is based on whether its links are directed (directed network) 

or not (undirected network). If the links of a directed network are all bidirectional, then 

such a directed network can be simply modeled as an undirected network.  Figure 1 is a 

simple example of an undirected network. 

 

Figure 1. Network Topology of an Undirected Network 𝑮 = (𝑽, 𝑬) 
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A more elegant way to represent a network topology than graph is to use an 

adjacency matrix. Although an adjacency matrix is less intuitive and graphic than graph, 

it is more suitable to represent large-scale network topologies and enables mathematical 

operation on network topologies. Figure 2 provides two adjacency matrix examples. One 

is an undirected network topology, and the other one is a directed network topology. 

 

Figure 2. Adjacency Matrices for Directed and Undirected Networks 

1.3 Congestion Consideration 

As discussed earlier, connectivity loss results from network impairments (only 

link failures are considered in this thesis). By making that statement, there is a 

presumption, which is, all the component entities (network nodes) have enough 

information processing capabilities so that none of them will experience congestion 

during the CIN operation. Congestion is a result of information overload. When the total 

information input rate of a network node is higher than its information processing rate, 

information will accumulate at this node and eventually, this node will be overloaded and 

starts to experience congestion.  
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Network congestion can result in information lose, delay and impair network 

connectivity. Network connectivity loss will result in communication route loss or 

changes that may lead to information overload on one or more nodes. This means 

network congestion and network connectivity loss are inter-related. As mentioned above, 

researches on network connectivity always presume that no congestion will happen. 

While researches on network congestion always presume that no network topology 

change. By doing so, the two problems: connectivity and congestion are isolated, which 

can significantly simplify the analysis process. However, in reality those two problems 

should be considered simultaneously when design a CIN. Hence, in this thesis, both of 

the two problems are considered. In order to simplify the analysis process, congestion is 

viewed as a node (individual entity) level design requirement that can be derived from 

network topology (inter-connection structure) and its connectivity situation. First, assume 

all the network nodes have enough information processing capabilities to ensure no 

congestion will happen at any point of the CIN operation, even under network 

impairments. Next, re-examine that assumption by performing congestion analysis to 

derive node level design requirement, which in specific is the information processing 

capabilities of each network node. 

Real world design practices are never conducted without a consideration on cost. 

For a CIN, by deploying more participant entities with high information processing 

capabilities, more communication channels (such as all entities can communicate to each 

other, a P2P structure3) with high reliability, the network can have very high capability-

based connectivity robustness, but at a very high acquisition cost. On the other hand, 

even with the same number of participant entities, or communication channels, different 

                                                           
3 For most operations, the current communication technologies and computation abilities are not able to 

support large scale, long distance P2P architecture. 36. Bekmezci, I., O.K. Sahingoz, and Ş. Temel, 

Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 2013. 11(3): p. 1254-1270. 
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inter-connection structures can incur different costs due to different individual level 

design requirements, such as the information processing capabilities discussed earlier. 

The goal of this thesis is to provide a capability-based connectivity robustness measure 

for a CIN. The measure should be able to provide design insights on how the connectivity 

robustness of a CIN affects its capability robustness. In order to yield practical design 

insights or design guidelines, when the measure is used to analyze or design CINs, cost 

must be considered as well.  

1.4 Research Objective and Research Questions 

The rapid technological advances on electronic, sensor and communication 

technologies have greatly extended the scope of CIN operations with enhanced flexibility. 

However, there are many challenges to be addressed. Due to the unique application fields 

of CINs and the nature of this construction, its connectivity robustness against 

impairments is a profound but challenging requirement on a CIN design. Most of the 

existing topological connectivity robustness measures were proposed from a pure 

structural perspective with little or no consideration of the capability of a network. They 

can describe the ability of a network to resist network fragmentation under impairments. 

However, the current evaluation practice provides no direct mapping between the 

measured connectivity robustness and the capability robustness of a network. By seeing 

this gap, the research objective of this thesis is to develop a method to measure the 

capability-based connectivity robustness of a CIN against link failures by using existing 

topological connectivity robustness measures. 

A network model is used to represent the inter-connection structure of a CIN. 

Since the objective is to use existing topological connectivity robustness measures, we 

need to transform the problem of measuring capability-based connectivity robustness into 
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the problem of measuring conventional (structural) connectivity robustness. With this, the 

following two research questions were developed. 

Research Question 1: How to incorporate capability into the conventional network 

modeling process? 

Research Question 2: Which existing topological connectivity robustness measure should 

be chosen? 

1.5 The Example Problem 

In this thesis, a disaster management application of networked SUAVs is used as 

the example problem. The example problem is illustrated in Figure 3. The SUAVs in this 

scenario forms a CIN. The main advantage of using networked SUAVs is to collect 

reliable data from a wide field of dangerous disaster scenes in an affordable way.  

 

Figure 3. Disaster Management Application of Networked SUAVs 

In this scenario, a city was struck by a severe earthquake. After the earthquake, a 

group of networked SUAVs equipped with sensors and cameras are to be dispatched for 

post-disaster inspection. Each SUAV is responsible for a field of the city and sends 

regular updates of its responsible field back to the command center. Using the collective 

information, the command center makes decision on where to send search and rescue 
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teams, and ends position update information back to the SUAVs. An SUAV also sends its 

position information to its nearby SUAVs to avoid collision and to keep each other within 

the communication rage. During the mission, an SUAV can send information back to the 

command center directly or relaying through other SUAVs. If no path exists between an 

SUAV and the command center, an SUAV cannot establish a new path itself either by 

relaying through other SUAVs or by directly connecting to the command center.  

Therefore, an SUAV cannot send useful information back to the command center 

if there is no communication path established between the SUAV and the command 

center or if the SUAV moves too far away from its responsible field. Moreover, there are 

obstacles, hazardous weather conditions, such as strong wind, and heavy clouds, which 

can impair the wireless communication links of the CIN. 

 Since the major objective of this operation is to collect and stream-back 

sufficiently good quality data to the command center, those aforementioned connectivity 

loss issues can affect the outputted capability of this CIN so that it may not successfully 

complete this operation.  

In order to make sure the CIN maintain connectivity to support its capability 

output during operation, it is asked to measure the capability-based connectivity 

robustness of the CIN. This CIN operation is a rapid response deployment to a natural 

disaster, so a timely result is critical.  
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CHAPTER II 

CAPABILITY-BASED NETWORK MODELING 

In Section 1.2, a brief introduction on the conventional network modeling process 

has been given. To construct a conventional network model for the CIN in the example 

problem, model the component SUAVs and their responsible fields as network nodes. 

Model the information transmission lines as network links. Use solid lines to represent 

the information transmission between the SUAVs and the command center. Use dashed 

lines to represent the information transmission between the SUAVs and their responsible 

fields. To simply the problem under examination, in this thesis, assume all the 

information transmission lines are bidirectional. This means a CIN can be simply 

modeled as an undirected network. For the information transmission lines between the 

SUAVs and the command center, it is not hard to conceive the bidirectional information 

transmission situation. For the information transmission between the SUAVs and their 

responsible fields, it is to assume the sensor equipped to the SUAVs are active sensors. 

Furthermore, ignore the characteristics of the information transmission lines, which is to 

assume all the network links are unweighted. 

The conventional network model of the example CIN is shown in Figure 4. 𝐶 

represents the command center; 𝑢1 to 𝑢6 represent the SUAVs; and 𝑓1 to 𝑓6 represent the 

inspection fields of the SUAVs.  
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Figure 4. Conventional Network Model of the CIN in the Example Problem 

By definition, the capability of a CIN is completely dependent on information 

sharing. In the representation of a CIN via a network model, the capability of a CIN 

manifests itself as a set of key information flows with logical relationships [45-47]. 

Hence, any CIN capability can then be represented as a series of logical operations on the 

key information flows. To incorporate the CIN capability into a conventional network 

model is to reflect the logical operations on the key information flows through network 

modeling. 

There are two types of logical operations, one is OR and the other one is AND. 

OR operation is performed on the set of flows that have OR relationship, which means, as 

long as one of the key information flows is maintained, the capability of a CIN can be 

sustained. Use the example CIN as an example, the key information flows are the ones 

between the command center (node 𝐶) and the inspection fields (𝑓1 to 𝑓6). Assume the 

relationship between those key information flows are OR. To reflect the OR relationship, 

collapse the key information flows into the connection between a node pair, which is 

denoted as the critical node pair. For the example CIN, this network modification is 

shown in Figure 5. In this example, to reflect the OR operation, it is to combine all the 

nodes that represent the inspection fields into one single node. The critical node pair 

resulted from this modification is node pair 𝐶, 𝐹. With this modification, to measure the 

capability-based connectivity robustness of a CIN is to measure the structural 



15 
 
 

 

connectivity robustness of the connection between the critical node pair, which in this 

example is the connection between the command center and the combined inspection 

field. Mathematically, it means 𝑅𝐶𝑁𝐶𝑃 = 𝑅𝐶𝑁𝐶,𝐹 , where 𝑅𝐶𝑁𝐶,𝐹  represents the 

connectivity robustness between the critical node pair 𝐶, 𝐹. 

 

 

Figure 5. Network Modification to Reflect OR Operation on the Example CIN 

AND operation is performed on a set of key information flows that have AND 

relationship, which means, all the key information flows have to be connected in order to 

sustain the capability of a CIN. In this case, all the key information flows are critical. To 

reflect the AND operation through network modeling, evaluate the structural connectivity 

robustness of each critical / AND flow separately. For the example CIN, the key 

information flows are still the ones between the command center (node 𝐶 ) and the 

inspection fields (𝑓1 to 𝑓6). However, this time assume all the key information flows have 

AND relationship and hence all the key information flows are critical as shown in Figure 

6. The capability-based connectivity robustness of a CIN in this case, is the minimum 

structural connectivity robustness among all the critical node pairs (each critical flow 

forms a critical node pair), which in this example is the minimum structural connectivity 

robustness among the connection between the command center and the inspection fields. 

Mathematically, it means 𝑅𝐶𝑁𝐶𝑃 = min (𝑅𝐶𝑁𝐶,𝑓𝑖), where 𝑖 = 1, 2, … , 6. 
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Figure 6. Network Modification to Reflect AND Operation on the Example CIN 

What if both OR and AND relationships exist among the key information flows of 

a CIN? For example, modify the CIN in the example problem as shown in Figure 7 on the 

left and the conventional network model for this modified CIN is shown on the right. 

 

Figure 7. Variation of the Example CIN 

The key information flows are still the ones between the command center and the 

inspection fields. However, this time, there are two OR flow groups. Within each OR 

group, the key information flows have OR relationship, and the two OR groups have 

AND relationship. In the situation when both OR and AND relationships exist, first 

perform OR operation within each OR group. Each OR group results in a critical node 

pair. Evaluate the structural connectivity robustness of each critical node pair. Next, 
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perform AND operation among the critical node pairs, which is to take the minimum 

structural connectivity robustness among all the critical node pairs. For the variation of 

the example CIN, first, collapse the key information flows within each OR group into the 

connection between a critical node pair as shown in Figure 8 and 𝑅𝐶𝑁𝐶𝑃 =

min (𝑅𝐶𝑁𝐶,𝐹1 , 𝑅𝐶𝑁𝐶,𝐹2). 

 

Figure 8. Network Modification to Reflect OR and AND Operations on the Example CIN Variation 

The previous discussion can be summarized into a capability-based network 

modeling process.  

1. Construct a conventional network model of a CIN. 

2. Identify the key information flows and their logical relationships. 

3. Apply logical operations on the key information flows and simplify the network 

model into the connection between critical node pairs. 

4. Calculate the structural connectivity robustness of each critical node pair.  

5. Take the minimum structural connectivity robustness among all the critical node 

pairs as the capability-based connectivity robustness of the CIN. The critical node 

pair with the smallest structural connectivity robustness is referred to as the 

capability critical node pair of the CIN. 
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 𝑅𝐶𝑁𝐶𝑃 = min(𝑅𝐶𝑁𝑖,𝑗) = 𝑅𝐶𝑁𝑖∗,𝑗∗ 

where, 𝑖, 𝑗 denotes general critical node pairs and 𝑖∗, 𝑗∗ denotes the 

capability critical node pair of a CIN. 

2 

Now with a capability-based network model, the problem of measuring the 

capability-based connectivity robustness of a CIN is successfully transformed into the 

problem of measuring the structural connectivity robustness between critical node pairs. 

With this, the first research question has been successfully answered. The next task is to 

find the answer to the second research question, which is to select a topological measure 

for the structural connectivity robustness between an arbitrary node pair against link 

failures. 
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CHAPTER III 

MEASURING CAPABILITY-BASED CONNECTIVITY 

ROBUSTNESS 

From now on, connectivity robustness will be used to refer to the structural 

connectivity robustness between a node pair against link failures. For the capability-based 

connectivity robustness of a CIN, it will always be specified. 

In order to facilitate the selection of existing topological connectivity robustness 

measures, a set of requirements were developed. First a candidate measure should be 

quantitative to facilitate comparison. Next, since the problem has been transformed into 

measuring the connectivity robustness of critical node pairs, a candidate measure should 

be applicable to a node pair. In addition, with the pre-defined research scope, a candidate 

measure should be able to capture the connectivity change between a node pair under link 

failures. Finally, such a measure should also account for the effects of alternative (backup) 

paths between a node pair. It has been shown that the number of alternative paths or 

back-up paths and the extent to which they overlap are directly linked to the concept of 

connectivity robustness [48, 49].   

3.1 Review of Existing Connectivity Robustness Measures 

The following is a brief review of the current available topological connectivity 

robustness measures. There are two types of topological connectivity robustness 

measures according to [48]: classical and spectral.  
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3.1.1 Classical Robustness Measures 

The classical measures refer to those directly related to the topology of a network. 

The following discussion covers four representative groups of classical connectivity 

robustness measures. 

Connectivity Related Measures 

The original connectivity measure is a binary measure, which is essentially just a 

graph connectivity indicator. It can only distinguish if a graph is a connected whole 

(value: 1) or has several disconnected components (value: 0). It cannot provide any 

detailed information on network structure other than being as an indicator. Apart from the 

classical connectivity measure, node/ link connectivity is defined as the minimal number 

of nodes/ links to be removed to disconnect a given network [48]. This measure was 

applied to study the connectivity robustness of a military architecture by Dekker in [50]. 

The major drawback of the node/link connectivity is that it cannot explicitly reflect any 

information on alternative or backup paths. 

Distance Based Measures 

The measures in this group are quite plenty, and the following is just a brief 

introduction of selected some. 

Geodesic distance is the shortest path length from one node to another node in a 

network. There may be and often are more than one geodesic path between two nodes 

[51]. Average geodesic distance, which is usually considered as the characteristic path 

length of a network, is the averaged geodesic distance among all the node pairs of a 

network. It characterizes the average ability of two nodes in a graph to communicate with 

each other [40]. Diameter is the longest geodesic distance among all the nodes pairs of a 

network. This is used to measure the eccentricity of a given network topology and is 



21 
 
 

 

applied to detect abnormal change of a network [48]. Because the characteristic path 

length is more sensible to changes of network topology, it is used more often than 

diameter as a network connectivity robustness measure. When a network is disconnected, 

the values of those two measures will both be infinite. To deal with that issue, Latora and 

Marchiori proposed to use the reciprocal of the geodesic distance to calculate the 

characteristic reciprocal path length, which was introduced as network global efficiency 

in [42]. However, none of those measures considers alternative paths between node pairs 

[48].   

Clustering Coefficient 

A cluster in a graph refers to a group of nodes having relatively denser relations 

with each other than with the rest of the nodes in the graph. The clustering degree of a 

network is measured by clustering coefficient, which is a number ranging between 0 and 

1. Although clustering coefficient was originally designed to study social networks, it is 

highly correlated with the notion of network robustness, since the number of alternative 

paths grows with the number of network triangles [48]. The problem of clustering 

coefficient is that, it cannot evaluate the connectivity situation between two specific 

nodes. It only considers the averaged connection density of the whole network, or the 

averaged neighborhood connection density of a single node. 

Component Size Based Measures 

A component is the maximal connected subgraph of a network. The largest 

component of a network is the one contains the largest number of nodes. Giant 

components refer to the ones whose component sizes (number of nodes) are larger than 

the giant component threshold. Examples of connectivity robustness measures related to 

this concept are the largest component size, the average component size, the fraction of 
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giant components. The measures in this group also surfer from the same problem as 

clustering coefficient.  

3.1.2 Spectral Robustness Measures 

Different from classical connectivity robustness measures, spectral connectivity 

robustness measures are not directly derived from network topologies. They are obtained 

based on spectrum graph theory, which more specifically is the Laplacian of a network. 

The Laplacian matrices of networks have great theoretical and practical importance [52]. 

For a network 𝐺 = (𝑉, 𝐸), denote its adjacency matrix as 𝐴 and its degree matrix as 𝐷. 

The degree matrix, 𝐷 of a network is a diagonal matrix of network node out-degrees. 

 

𝐷𝑖,𝑗 =

{
 
 

 
 
∑𝑎𝑖,𝑘

𝑁

𝑘=1

   𝑖𝑓 𝑖 = 𝑗

0              𝑖𝑓 𝑖 ≠ 𝑗

 

where,  

𝑁 = |𝑉| is the number of nodes of a network. 

3 

 

Then the Laplacian 𝐿 of network 𝐺 can be obtained by taking difference between 

𝐷 and 𝐴. 

 𝐿 = 𝐷 − 𝐴 4 

Symmetric Laplacians associated to undirected graphs and their applications on 

analyzing network robustness have been deeply studied [53-57]. While asymmetric 

Laplacians that are associated with directed graphs are less explored. In order to 

symmetrize asymmetric Laplacians so that to apply those operations developed for 

symmetric Laplacians (e.g. Moore-Penrose pseudoinverse, Eigenvalue analysis), some 

normalization techniques on the asymmetric Laplacians are usually used. Depending on 

the research contents and analysis focuses, different normalization techniques have been 
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proposed. Although asymmetric Laplacians are now attracting more and more attentions 

[52, 57-61], it is still a working concept without conscience upon normalization 

techniques as well as the physical meanings behind them.  

As discussed earlier, in this thesis, CINs are abstracted as undirected, unweighted 

networks. Therefore, in the following section, the focus will be given to spectral 

connectivity measures developed for undirected networks.  

Singe Eigenvalue Based Connectivity Measure 

A symmetric Laplacian is positive semidefinite and its rows sum up to 0. 

Therefore, its eigenvalues are real, non-negative and the smallest eigenvalue is 0. Denote 

the Eigenvalues of a symmetric Laplacian as 𝜆𝑖  for 𝑖 = 1, … , 𝑁 and 𝑖 is ordered in the 

following fashion 0 = λ1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑁. Then 𝜆𝑁  and 𝜆2 can be used to indicate the 

connectivity robustness of an undirected network. In general, networks associated with 

larger eigenvalues have more node and link disjoint paths between node pairs. And the 

largest eigenvalue, 𝜆𝑁   can provide bounds on network connectivity robustness with 

respect to both link and node removals [27, 62]. The second smallest eigenvalue 𝜆2 , 

which is also referred to as algebraic connectivity, is a more accurate measure to unfold 

the connectivity robustness of complex networks [63-65]. The larger the 𝜆2value, the 

harder it is to break a network into islands or individual components. The problem of 

using λ2 and λ𝑁 as candidate connectivity robustness measures is that they can only be 

applied to a network as a whole but not a single node pair. 

Average Eigenvalue Based Connectivity Measure 

According to [48, 66], the number of spanning trees in a network (a spanning tree 

is a subgraph containing 𝑁-1 edges and no cycles) can be used as an indicator of network 

robustness. The number of spanning trees surfers from the same problem as λ2 and λ𝑁. 
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𝜉 =
1

𝑁
∏𝜆𝑖

𝑁

𝑖=2

 5 

Moore-Penrose Inverse Based Connectivity Robustness Measure 

The measure to be highlighted in this section is called effective resistance (𝐸𝑅). 

Different from the spectral measures discussed previously, which are only applicable for 

a network as a whole, 𝐸𝑅 can be used to measure connectivity robustness for both a 

single node pair and the entire network. In addition, by nature, effective resistance can 

capture the effects of alternative paths on network connectivity robustness against link 

failures. Use 𝐸𝑅𝑖,𝑗 to denote pairwise effective resistance and 𝐸𝑅𝐺  to denote the effective 

resistance of a network. For both 𝐸𝑅𝑖,𝑗 and 𝐸𝑅𝐺 , smaller values are desired. 

The notion of pair wise effective resistance was originally developed to represent 

the resistance of the total system when a voltage source is connected between a node pair. 

That notion can be applied to calculate the connectivity robustness between a node pair 

within a network by seeing the network as an electrical circuit, where a link corresponds 

to a resistor of resistance 𝑟 [67, 68]. 𝑟 can be calculated as a function of link weights and 

the function form depends on the network type and the physical meaning of link weights. 

After defining the resistance of each link, the effective resistance between a node pair can 

be calculated using Kirchhoff's circuit Laws as illustrated in Figure 9. 

 

Figure 9. Effective Resistance between Two Points a and b in Simple Graphs [67] 

For small and simple networks, it is viable to calculate 𝐸𝑅𝑖,𝑗  using Kirchhoff's 

circuit Laws. However, using Kirchhoff's circuit Laws to solve for pairwise effective 
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resistance has serious scalability issues and can be very cumbersome when the size of a 

network grows larger with more complex structures. A more elegant way to calculate 

𝐸𝑅𝑖,𝑗  without scalability issues is to use the Moore-Penrose pseudoinverse. Use 𝐿+ to 

denote the Moore-Penrose pseudoinverse of a symmetric Laplacian. Then 𝐸𝑅𝑖,𝑗  can be 

calculated through the following equation: 

 𝐸𝑅𝑖,𝑗 = 𝐿𝑖,𝑖
+ − 2𝐿𝑖,𝑗

+ + 𝐿𝑗,𝑗
+  6 

𝐸𝑅𝐺  can be obtained by summing the pairwise effective resistances over all node 

pairs of a network 𝐺.  

 𝐸𝑅𝐺 = ∑ 𝐸𝑅𝑖,𝑗
1≤𝑖<𝑗≤𝑁

 7 

According to [68], the 𝐸𝑅𝐺  can also be calculated through aggregating Laplacian 

Eigenvalues as shown below. 

 

𝐸𝑅𝐺 = 𝑁∑
1

𝜆𝑖

𝑁

𝑖=1

 8 

Table 1 is a summary of the findings based on the above discussion.  

Table 1. Summary of Network Connectivity Robustness Measures 
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3.2 Pairwise Effective Resistance 

It seems that only effective resistance (𝐸𝑅), in specific 𝐸𝑅𝑖,𝑗 , satisfies all the 

requirements. In the literatures, 𝐸𝑅𝑖,𝑗  is always used to compare the connectivity 

robustness of node pairs connected via the same number of nodes; when used to compare 

two arbitrary node pairs, a normalization against the network node number 𝑁  is 

suggested [54-56]. This leads to the first hypothesis of this thesis. Since there are two 

embodiment forms for the connectivity robustness under investigation (structural 

connectivity robustness against link failures between a node pair),  �̅�𝑖,𝑗
𝑋  and 

�̅�𝑖,𝑗
𝑋

𝑀
, 

Hypothesis 1 has two forms. (�̅�𝑖,𝑗
𝑋  is the average number of link failures until the node 

pair of interest 𝑖, 𝑗 disconnects; 
�̅�𝑖,𝑗
𝑋

𝑀
 is the average fraction of link failures until the node 

pair of interest 𝑖, 𝑗 disconnects.) The reason for using the inverse form is that smaller 

values of effective resistance should correspond to larger numbers / fractions of link 

failures required until disconnection happens. 

𝐻1𝑎: 
𝑁

𝐸𝑅𝑖,𝑗
 has higher correlation with �̅�𝑖.𝑗

𝑋  then 
1

𝐸𝑅𝑖,𝑗
. 

𝐻0
1𝑎: 

𝑁

𝐸𝑅𝑖,𝑗
 does not have higher correlation with �̅�𝑖.𝑗

𝑋  then 
1

𝐸𝑅𝑖,𝑗
. 

𝐻1𝑏: 
𝑁

𝐸𝑅𝑖,𝑗
 has high correlation with 

�̅�𝑖.𝑗
𝑋

𝑀
 then 

1

𝐸𝑅𝑖,𝑗
  

𝐻0
1𝑏: 

𝑁

𝐸𝑅𝑖,𝑗
 does not have higher correlation with 

�̅�𝑖.𝑗
𝑋

𝑀
 then 

1

𝐸𝑅𝑖,𝑗
. 

In order to test 𝐻1𝑎, 𝐻1𝑏 the following experiment plan was developed. First an 

undirected synthetic network model, Step-Min network model was proposed to help 

systematically examine the relationship between connectivity robustness and 𝐸𝑅𝑖,𝑗. 

As known, for a network with node number 𝑁, the maximum effective resistance 

value between a node pair is 𝑁 − 1. This corresponds to a line network with 𝑁 nodes, 
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where the two end nodes form the node pair of interest. A line network with 𝑁 nodes is 

the least robust connection structure between a node pair that 𝑁 nodes can form. The 

minimum effective resistance value between a node pair is 
2

𝑁
. This corresponds to a fully 

connected network with 𝑁 nodes and any node pair within the fully connected network 

can be the node pair of interest. A fully connected network is the most robust connection 

structure between a node pair with 𝑁 nodes. Given a node number 𝑁, denote the node 

pair of interest as 1,𝑁. A Step-Min network family with 𝑁 nodes is constructed in a way 

to thoroughly and systematically explore the range of possible 𝐸𝑅1,𝑁  values between 

[
2

𝑁
, (𝑁 − 1)] without having to resort to a full factorial. 

To construct a Step-Min network family, first, decide the number of network 

nodes 𝑁. Then, connect the 𝑁 nodes as a line. Index the nodes in the following fashion. 

Denote one end of the line as 1, and then increase the node index along the line until 

reaching the last node, whose index should be 𝑁. Now the network should have 𝑁 nodes 

connected by (𝑁 − 1) links as a line. This line network will be referred to as the base 

network for network family 𝑁 and the index of the base network of each network family 

will always be 1. In addition, node pair 1,𝑁 will always be the node pair of interest. Next, 

starting with the base network, each step add one link to the network that minimizes the 

decrease of 𝐸𝑅1,𝑁 (According to [56], for a given node pair within a network, adding a 

link to the network will not increase the effective resistance between that node pair.). 

Repeat this process until a fully connected network is obtained. This process is illustrated 

in Figure 10. 

 

Figure 10. The Construction Process of Step-Min Network Family with 4 Nodes 
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Algorithm 1 is the pseudo code of this Step-Min network model. A Matlab 

program was written accordingly to generate Step-Min network families and calculate the 

𝐸𝑅1,𝑁 value of each network. Figure 11 is the 𝐸𝑅1,𝑁 value history along link addition. 

______________________________________________________________________________________ 

Algorithm 1. Step-Min Network Model 

1. INPUT: 𝑉  𝑁 // Network node number (network family index) 

2. 𝐺1  An undirected line network with 𝑁 nodes. Index the two ends of this network 

as 1 and 𝑁 separately. 

3. |𝐸∗| = 𝑁 − 1; 𝐺∗ = 𝐺1; Δ𝐸𝑅𝑒
∗  INFINITY; 𝐸∗  𝐸𝐺∗; 𝑠𝑡𝑒𝑝  1 

4. WHILE |𝐸∗| ≠
𝑁(𝑁−1)

2
 DO 

5.  FOR 𝑎  1 to (𝑁 − 1) DO 

6.   FOR 𝑏  𝑎 to 𝑁 DO 

7.    IF 𝑎, 𝑏 ∉ 𝐸∗ THEN 

8.     IF (Δ𝐸𝑅𝑎,𝑏 <  Δ𝐸𝑅𝑒
∗) THEN 

9.      Δ𝐸𝑅𝑒
∗  Δ𝐸𝑅𝑎,𝑏; 𝐸∗  𝑎, 𝑏 

10.     END IF 

11.    END IF 

12.   END FOR 

13.  END FOR 

14.  |𝐸∗||𝐸∗| + 1; 𝐺∗ 𝐺∗ ∪ 𝑒∗;  Δ𝐸𝑅𝑒
∗
NFINITY;  𝐸∗𝐸𝐺∗; 𝑠𝑡𝑒𝑝𝑠𝑡𝑒𝑝 + 1    

// This is to connect Node Pair 𝑎, 𝑏 through an undirected link. 

15.   RETURN 𝐺𝑠𝑡𝑒𝑝 𝐺
∗ 

16. END WHILE 
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Figure 11. 𝑬𝑹𝟏,𝑵 History along Link Addition (Step-Min) 

As can be seen in Figure 11, the networks with the same node number comprise a 

network family. Moreover, the 𝐸𝑅1,𝑁 trend lines of different Step-Min network families 

have very similar behaviors. 

Well established classical networks were also used to test 𝐻1𝑎, 𝐻1𝑏 . To generate 

networks, two famous synthetic network models were used. One is the Barabasi-Albert 

(BA) scale free (SF) network model proposed in [69], and the other one is the Erdos-

Renyi (ER) random (Rand) network model proposed in [70]. In the following discussions, 

for each of the two network models, two undirected networks were generated, one with 

30 nodes and 60 links and the other one with 50 nodes and 100 links. 

BA SF network model begins with an initially connected network of 𝑁0 nodes 

and this network is called the base network. New nodes are added to the network one at a 

time. Each new node is connected to 0 ≤  𝑛 ≤ 𝑁0 existing nodes with a probability that is 

proportional to the number of links that the existing nodes already have. Denote the 

probability for each existing node to be chosen at each step as 𝑝𝑖.  𝑝𝑖 can be calculated 
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through the following equation. Continuously adding nodes until the desired network 

node number 𝑁 is achieved. 

 
𝑝𝑖 =

∑ 𝑎𝑖,𝑘
𝑁
𝑘=1

Σ𝑖=1
𝑁 ∑ 𝑎𝑖,𝑘

𝑁
𝑘=1

 
9 

ER Rand network model begins with 𝑁 network nodes. The probability for a node 

pair to be connected (𝑝 ) is the same and independent from each other. Using this 

probability, randomly select 𝑀 unique node pairs to add links, where 𝑀 is the designated 

network link number.  

Next, a discrete-time link failure simulation model was constructed to obtain �̅�𝑖,𝑗
𝑋  

and 
�̅�𝑖,𝑗
𝑋

𝑀
. Given a network, choose a node pair of interest, and denote this node pair as 𝑖, 𝑗. 

First, apply a filter on a network to filter out all the redundant links for the 

connection between node pair 𝑖, 𝑗. A redundant link does not contribute to the connection 

between node pair 𝑖, 𝑗. In the example shown in Figure 12, the node pair of interest is 1,4 

and link 3,5 is a redundant link for the connection between node pair 1,4. The reason to 

add this filter is that we want to study the relationship between �̅�𝑖,𝑗
𝑋  / 

�̅�𝑖,𝑗
𝑋

𝑀
 and 𝐸𝑅𝑖,𝑗. The 

existence of redundant links will not affect the value of 𝐸𝑅𝑖,𝑗, however, they will inflate 

the value of �̅�𝑖,𝑗
𝑋  obtained from simulation. If this filter is not applied, the simulation 

result will be inflated and will not correspond to 𝐸𝑅𝑖,𝑗. 
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Figure 12. Example of a Pure Redundant Link (Link 3,5) 

In the following discussion, the term “link failures” actually refers to structural 

link failures. “Redundant link failures” and “total link failures” are used to distinguish 

redundant and the overall link failures (both structural and redundant link failures) apart 

from structural link failures.  

This filter can be turned off. When it is off, the simulation result obtained is the 

number of total link failures until node pair 𝑖, 𝑗  disconnects. To implement the filter, 

temporarily disconnect network nodes one at a time to see if 𝐸𝑅𝑖,𝑗  increases. To 

temporarily disconnect a node 𝑛 is to temporarily set all the entries in the 𝑛𝑡ℎ row and the 

𝑛𝑡ℎ column of the network adjacency matrix to 0. Now the network nodes are separated 

into two groups: one whose removal results in 𝐸𝑅𝑖,𝑗 increase (Group 1), and one whose 

removal does not affect 𝐸𝑅𝑖,𝑗 (Group 2). The links with one or two end nodes within 

Group 2 are marked as redundant links and will be filtered out when the redundant link 

filter is on. Algorithm 2 is the pseudo code of this filter. 

______________________________________________________________________________________ 

Algorithm 2. Network Redundant Link Filter 

1. INPUT: 𝐺 = (𝑉, 𝐸); Node Pair of Interest: 𝑖, 𝑗 

2. 𝐴∗𝐴; 𝐸𝑅𝑖,𝑗
∗
𝐸𝑅𝑖,𝑗; 𝐸𝑟∅; 𝐸𝑏∅; 𝑉1∅;𝑉2∅ 

3. Redundant_Flag1 // Decide if Filter is On (1) or Off (0) 
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4. //Classify network nodes 

5. FOR 𝑎  1 to 𝑁\{𝑖, 𝑗} DO  

6.  FOR 𝑏  1 to 𝑁 DO 

7.    𝐴𝑎,𝑏0; 𝐴𝑏,𝑎0 

8.   END FOR 

9.   IF 𝐸𝑅𝑖,𝑗 > 𝐸𝑅𝑖,𝑗
∗  THEN 

10.    𝑉1𝑉1 ∪ 𝑎 

11.   ELSE 

12.    𝑉2𝑉2 ∪ 𝑎 

13.   END IF 

14.   𝐴𝐴∗ 

15. END FOR 

16. //Redundant link filter 

17. IF Redundant_Flag == 1 THEN 

18.  𝐸𝑟: A Collection of Network Links with One or Two End Nodes within 𝑉2 

19. END IF 

20. RETURN 𝐺(𝑉1, 𝐸 \𝐸𝑟) 

 

After going through the filter (if the filter is turned off, then nothing will be done 

to the network), at each (time) step, a link is randomly chosen among the remaining links 

and is removed from the network. For an undirected network, if 𝑎, 𝑏 𝜖 𝐸 is chosen, then 

both the values of 𝐴𝑎,𝑏 and 𝐴𝑏,𝑎 in the adjacency matrix will be set to zero. For a directed 

network, if 𝑎, 𝑏 𝜖 𝐸 is chosen, then only the value of 𝐴𝑎,𝑏 in the adjacency matrix will be 

set to zero. After each step, a new network topology can be obtained. Check the 

connectivity between node 𝑖 and node 𝑗. One easiest way to check their connectivity is to 
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calculate the shortest distance between node 𝑖 and node 𝑗. Since none of the network 

under investigation in this thesis has negative weights, Dijkstra’s Algorithm was used to 

calculate the shortest distance for easy implementation and efficiency consideration. 

Continuously removing links one at a time until node  𝑖  and node  𝑗  are 

disconnected. Document the number of link failures until 𝑖 and 𝑗 are disconnected (𝑚𝑖,𝑗
𝑋 ). 

Repeat the entire process for several times (10000 is used in this thesis) and obtain the 

average number of link failures until disconnection �̅�𝑖,𝑗
𝑋  and the average fraction of link 

failures until disconnection 
�̅�𝑖,𝑗
𝑋

𝑀
. The following is the pseudo code for this simulation 

model and a C++
 program was written accordingly to realize the model and carry out the 

simulations. 

______________________________________________________________________________________ 

Algorithm 3. Link Failure Simulation Model 

1. INPUT: 𝐺 = (𝑉, 𝐸); Node Pair of Interest: 𝑖, 𝑗; Total Iteration: 𝐼  

2. 𝑒∗  ∅; 𝑚𝑖,𝑗
𝑋   {0}; 𝑐𝑜𝑢𝑛𝑡  0; 𝜎𝑖,𝑗0 

3. Execute Algorithm 2 to obtain a filtered network 

4. FOR 𝑖𝑛𝑑𝑒𝑥 = 1 to 𝐼 DO 

5.  WHILE 𝜎𝑖,𝑗 < 𝐼𝑁𝐹𝐼𝑁𝐼𝑇𝑌 DO 

6.   𝑒∗  𝑅𝑎𝑛𝑑𝑜𝑚(𝐸); 𝐸  𝐸\𝑒∗; 𝑐𝑜𝑢𝑛𝑡  𝑐𝑜𝑢𝑛𝑡 + 1 

7.  END WHILE 

8.  𝑚𝑖,𝑗
𝑋 [𝑖𝑛𝑑𝑒𝑥] = 𝑐𝑜𝑢𝑛𝑡 

9. END FOR 

10.  RETURN 𝑚𝑖,𝑗
𝑋  
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Simulations were conducted on the previous generated Step-Min networks within 

each network family ( 𝑁 = 4,…10) with 10000 iterations per network. The results are 

summarized in Figure 13, Figure 14, Figure 15 and Figure 16. 

In Figure 13, each data point is from the analysis of one network, where for each 

network, the two end nodes, 1,𝑁 form the node pair of interest. The blue data is �̅�1,𝑁
𝑋  

obtained from simulation, and it is being compared to calculated values of 
𝑁

𝐸𝑅1,𝑁
 (green) 

and 
1

𝐸𝑅1,𝑁
 (red). In Figure 13, the data is sorted along the X-axis, first by number of nodes, 

and then by �̅�1,𝑁
𝑋 . Both 

1

𝐸𝑅1,𝑁
 and 

𝑁

𝐸𝑅1,𝑁
 trend well with �̅�1,𝑁

𝑋  within each Step-Min 

network family, suggesting that either could be used to measure connectivity robustness 

(in terms of �̅�1,𝑁
𝑋  ) of node pairs connected via the same number of nodes. 

However if the data is only sorted by �̅�1,𝑁
𝑋  as shown in Figure 14, then the 

relationship is not nearly as clear. 

 

Figure 13. 𝑯𝟏𝒂 Test Results: Step-Min Network Families Sorted by 𝑵, then by �̅�𝟏,𝑵
𝑿  
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Figure 14. 𝑯𝟏𝒂 Test Results: Step-Min Network Families Sorted by �̅�𝟏,𝑵
𝑿  

In Figure 15, again each data point is from the analysis of one network, where for 

each network, the two end nodes, 1,𝑁 for the node pair of interest. The blue data now 

is 
�̅�1,𝑁
𝑋

𝑀
  obtained from simulation, and it is being compared to calculated values of 

𝑁

𝐸𝑅1,𝑁
 

(green) and 
1

𝐸𝑅1,𝑁
 (red). The data is sorted along the X-axis, first by the number of nodes, 

and then by 
�̅�1,𝑁
𝑋

𝑀
. Both 

1

𝐸𝑅1,𝑁
 and 

𝑁

𝐸𝑅1,𝑁
 trend well with 

�̅�1,𝑁
𝑋

𝑀
, suggesting that either could be 

used to measure connectivity robustness (in terms of 
�̅�1,𝑁
𝑋

𝑀
) of node pairs connected via 

the same number of nodes. However if the data is only sorted by 
�̅�1,𝑁
𝑋

𝑀
 as shown in Figure 

16, it seems only 
1

𝐸𝑅1,𝑁
 can capture the trend of 

�̅�1,𝑁
𝑋

𝑀
.  
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Figure 15. 𝑯𝟏𝒃 Test Results: Step-Min Network Families Sorted by 𝑵, then by 
�̅�𝟏,𝑵
𝑿

𝑴
 

 

 

Figure 16. 𝑯𝟏𝐛 Test Results: Step-Min Network Families Sorted by 
�̅�𝟏,𝑵
𝑿

𝑴
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Comparing the above observation results, it seems only 1/𝐸𝑅𝑖,𝑗  (for Step-Min 

network families, 𝑖, 𝑗 = 1,𝑁) can be used to measure the connectivity robustness of two 

arbitrary node pairs in terms of 
�̅�1,𝑁
𝑋

𝑀
. 

Similar observations and conclusions can be made for the four classical networks 

as shown in Figure 17 and Figure 18. Since the classical networks do not come with pre-

defined node pairs of interest, 20 node pairs were selected randomly for each network. 

In Figure 17 and Figure 18, each data point is from the analysis of one node pair. 

In Figure 17,  �̅�𝑖,𝑗
𝑋  is being compared to 

𝑁

𝐸𝑅𝑖,𝑗
  and 

1

𝐸𝑅𝑖,𝑗
 and the data is only sorted by �̅�𝑖,𝑗

𝑋 . 

In Figure 18, 
�̅�𝑖,𝑗
𝑋

𝑀
 is being compared to 

𝑁

𝐸𝑅𝑖,𝑗
  and 

1

𝐸𝑅𝑖,𝑗
 and the data is only sorted by 

�̅�𝑖,𝑗
𝑋

𝑀
. 

Again, it seems that only 
1

𝐸𝑅𝑖,𝑗
 can be used to compare the connectivity robustness of two 

arbitrary node pairs in terms of 
�̅�𝑖,𝑗
𝑋

𝑀
. 

 

Figure 17. 𝑯𝟏𝒂 Test Results: Classical Networks Sorted by �̅�𝒊,𝒋
𝑿  
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Figure 18. 𝑯𝟏𝒃 Test Results: Classical Networks Sorted by 
�̅�𝒊,𝒋
𝑿

𝑴
 

The above observations suggest rejecting 𝐻0
1a and failing to reject 𝐻0

1𝑏. Hence it 

can be concluded that when to compare the connectivity robustness of two arbitrary node 

pairs in terms of 
�̅�𝑖,𝑗
𝑋

𝑀
, 

1

𝐸𝑅𝑖,𝑗
 should be used.  

3.3 Estimating �̅�𝒊,𝒋
𝑿  from 𝑬𝑹𝒊𝒋 

As discussed earlier, connectivity robustness can be measured either in terms of 

the average fraction of link failures (
�̅�𝑖,𝑗
𝑋

𝑀
) or in terms of the average number of link 

failures (�̅�𝑖,𝑗
𝑋 ). Comparing to 

�̅�𝑖,𝑗
𝑋

𝑀
, �̅�𝑖,𝑗

𝑋  is a more straight forward characterization of 

connectivity robustness. To be able to compare the connectivity robustness of two 

arbitrary node pairs in terms of �̅�𝑖,𝑗
𝑋 , a way to estimated �̅�𝑖,𝑗

𝑋  from 𝐸𝑅𝑖,𝑗 is needed. 

The first step in estimating �̅�𝑖,𝑗
𝑋  involved going back to the results of the Step-Min 

network families, to find the transformation that would best linearize the relationship 
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between 
1

𝐸𝑅1,𝑁
 and 

�̅�1,𝑁
𝑋

𝑀
 for a given number of nodes. The transformation is summarized 

below in Equation 10 and Equation 11. 

 

{
 
 

 
 (

1

𝐸𝑅𝑖,𝑗
)

′

= 𝑙𝑜𝑔 (
1

𝐸𝑅𝑖,𝑗
)     𝑖𝑓 𝐸𝑅𝑖𝑗 > 1

(
1

𝐸𝑅𝑖,𝑗
)

′

= 𝑙𝑜𝑔 (
1

𝐸𝑅𝑖,𝑗
1/𝜃 

)     𝑖𝑓 𝐸𝑅𝑖𝑗 ≤ 1

 

where, 

𝜃 is a function of network node number. 

 

10 

 

 

(
�̅�𝑖,𝑗
𝑋

𝑀
)

′

= 𝑙𝑜𝑔 (
�̅�𝑖,𝑗
𝑋

𝑀
) 11 

To find the equation for 𝜃, the following optimization problem was formulated. 

The reason for choosing the following formulation will be discussed later. 

𝑀𝑖𝑛: 𝑍 =∑(�̃̅�𝑖,𝑗
𝑋 )

𝑁𝑛
− (�̅�𝑖,𝑗

𝑋 )
𝑁𝑛

𝑛

 

𝑛 ∈ {Networks within Step −Min Network Family 𝑁} 

where, 

(�̃̅�𝑖,𝑗
𝑋 )

𝑥
= 𝑀𝑥 ∗ 10[

 
 
 
 
 

((
1

𝐸𝑅𝑖,𝑗
)
′

𝑥

−(
1

𝐸𝑅𝑖,𝑗
)
𝐿𝐼𝑁𝐸

′

)

(
�̅�𝑖,𝑗
𝑋

𝑀
)

𝐹𝑈𝐿𝐿

′

− (
�̅�𝑖,𝑗
𝑋

𝑀
)

𝐿𝐼𝑁𝐸

′

(
1

𝐸𝑅𝑖,𝑗
)
′

𝐹𝑈𝐿𝐿

− (
1

𝐸𝑅𝑖,𝑗
)
𝐿𝐼𝑁𝐸

′  + (
�̅�𝑖,𝑗
𝑋

𝑀
)

𝐿𝐼𝑁𝐸

′

]
 
 
 
 
 

 

{
 
 

 
 (

1

𝐸𝑅𝑖,𝑗
)

′

= 𝑙𝑜𝑔 (
1

𝐸𝑅𝑖,𝑗
)     𝑖𝑓 𝐸𝑅𝑖,𝑗 > 1

(
1

𝐸𝑅𝑖,𝑗
)

′

= 𝑙𝑜𝑔 (
1

𝐸𝑅𝑖,𝑗
1/𝜃
)     𝑖𝑓 𝐸𝑅𝑖,𝑗 ≤ 1

 

(
�̅�𝑖,𝑗
𝑋

𝑀
)

′

= 𝑙𝑜𝑔 (
�̅�𝑖,𝑗
𝑋

𝑀
) 
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This optimization problem was solved through Bisection Search method and the 

results were rounded to the second decimal place, which gives the following table from 

𝑁 = 3 to 𝑁 = 30. 

Table 2. 𝜽 Value of Different 𝑵 

N 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

𝜽 1.00 1.72 2.34 2.86 3.27 3.68 3.73 3.84 3.95 3.99 4.10 4.13 4.24 4.25 

N 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

𝜽   4.29 4.40 4.41 4.45 4.49 4.54 4.56 4.67 4.69 4.70 4.81 4.82 4.83 4.88 

 

According to Table 2, it seems that as 𝑁 getting bigger, the value of 𝜃 becomes 

more stabilized as shown in Figure 19.  

 

Figure 19. The Behavior of 𝜽 over Different 𝑵 Values 

The optimization to obtain 𝜃 relays on knowing all the networks within a Step-

Min network family of node number 𝑁.  As 𝑁  grows bigger, it becomes more time 

consuming to construct the entire Step-Min network family. As already known, different 

Step-Min network families share similar characteristics since they are generated by the 
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same synthetic network mode. Observing the trend of 𝜃 as 𝑁 increases, it seems that the 

value of 𝑒𝜃 is a linear function of 𝑁. Through the 28 data pairs shown in Table 2, the 

following fitting equation can be obtained. 

  𝑒�̃�  = 4.588 ∗ 𝑁 − 4.699 12 

lm(formula = exp_theta ~ N) 

 

Residuals: 

    Min       1Q       Median      3Q         Max  

-8.0687  -2.6945   -0.2667    3.5992   7.6413  

 

Coefficients: 

                   Estimate   Std. Error    t value     Pr(>|t|)     

(Intercept)  -4.6986     1.9437         -2.417       0.023 *   

N                 4.5880     0.1058         43.363     <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 4.522 on 26 degrees of freedom 

Multiple R-squared:  0.9864, Adjusted R-squared:  0.9858  

F-statistic:  1880 on 1 and 26 DF,  p-value: < 2.2e-16 

 

According to the fitting summary, it seems that Equation 12 fits the data very well. 

To further check the validity of this model (Equation 12) for extrapolation, the prediction 

(estimation) result of this model for 𝑁 = 50 is compared with its actual optimization 

result as shown in Table 3. Since the error is only 1.81%, Equation 12 is used in this 

thesis for obtaining a close estimation of the 𝜃 value of a fully connected network with 

𝑁 ≥ 30 nodes. 

Table 3. Estimation Accuracy Summary of Equation 12 for 𝑵 = 𝟓𝟎 

�̃� 𝜽 Error in % 

5.41 5.51 1.81% 

 

Figure 10 is an example plot for the linearized data of the Step-Min network 

family with 𝑁 = 10 using the proposed linearization method. In Figure 10, each data 
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point is the result of a network, where for each network, the two end nodes, 1,𝑁 form the 

node pair of interest. 

 

Figure 20. Example of the Linearized Data for the Step-Min Network Family with 10 Nodes 

Next, the bounds on 
1

𝐸𝑅𝑖,𝑗
 and 

�̅�𝑖,𝑗
𝑋

𝑀
 can be directly calculated given a network with 

𝑁 nodes and 𝑀 links through the following equation. It is important that these bounds 

can be calculated without any simulation, as the goal is to have a topological-based 

method that does not involve any costly simulation. 

 

 1

𝐸𝑅𝑖,𝑗
∈ [

1

𝑁 − 1
,
𝑁

2
] 

where, 

1

𝑁−1
 corresponds to a line network with 𝑖, 𝑗 as two ending nodes; 

𝑁

2
 corresponds to a fully connected network. 
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 �̅�𝑖,𝑗
𝑋

𝑀
∈ [

1

𝑀
,
(�̅�𝑖,𝑗

𝑋 )
𝐹𝑈𝐿𝐿

𝑀
] 

where, 

1

𝑀
 corresponds to a line network with 𝑖, 𝑗 as two ending nodes; 

(�̅�𝑖,𝑗
𝑋 )

𝐹𝑈𝐿𝐿

𝑀
 corresponds to a fully connected network and (�̅�𝑖,𝑗

𝑋 )
𝐹𝑈𝐿𝐿

 is a 

function of network node number. 

14 

The value of (�̅�𝑖,𝑗
𝑋 )

𝐹𝑈𝐿𝐿
 can be obtained by feeding a fully connected network 

into the aforementioned link failure simulation mode. The simulation results obtained are 

summarized in Table 4 for 𝑁 = 3 to N=30. 

Table 4. (�̅�𝒊,𝒋
𝑿 )

𝑭𝑼𝑳𝑳
from 𝑵 = 𝟑 to 𝑵 = 𝟑𝟎 

𝑵 3 4 5 6 7 8 9 

(�̅�𝒊,𝒋
𝑿 )

𝑭𝑼𝑳𝑳
 2.34 4.52 7.65 11.75 16.83 22.85 29.90 

𝑵 10 11 12 13 14 15 16 

(�̅�𝒊,𝒋
𝑿 )

𝑭𝑼𝑳𝑳
 37.96 46.90 56.96 67.97 80.03 93.06 107.15 

𝑵 17 18 19 20 21 22 23 

(�̅�𝒊,𝒋
𝑿 )

𝑭𝑼𝑳𝑳
 122.07 138.12 155.03 173.15 192.01 212.20 233.16 

𝑵 24 25 26 27 28 29 30 

(�̅�𝒊,𝒋
𝑿 )

𝑭𝑼𝑳𝑳
 255.04 277.97 301.98 327.08 352.93 380.13 407.97 

 

Although theoretically using simulation, it is possible to obtain the 

(�̅�𝑖,𝑗
𝑋 )

𝐹𝑈𝐿𝐿
value a fully connected network (undirected) with any node number  𝑁. the 

running time for such simulation exponentially increases as 𝑁 becomes larger. It would 
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be very beneficial if a close estimation for (�̅�𝑖,𝑗
𝑋 )

𝐹𝑈𝐿𝐿
 can be obtained from a simple 

equation. 

The set of all fully connected networks can be viewed as a series of networks 

generated by a single synthetic network model. The model is, given the node number 𝑁, 

connecting each node with all the other nodes within the network except itself. As 

mentioned earlier, the networks generated by the same synthetic network model have 

similar characteristics. Therefore, all the fully connected networks should have similar 

characteristics. Plot the data summarized in Table 4 in Figure 21. The Y-axis of Figure 21 

is for the (�̅�𝑖,𝑗
𝑋 )

𝐹𝑈𝐿𝐿
 value and the X-axis of Figure 21 is for network node number. 

Figure 21 indicates that the values of (�̅�𝑖,𝑗
𝑋 )

𝐹𝑈𝐿𝐿
 is a polynomial function of 𝑁. 

 

Figure 21. Behavior of (�̅�𝒊,𝒋
𝑿 )

𝑭𝑼𝑳𝑳
 from 𝑵 = 𝟑 to 𝑵 = 𝟏𝟔 

Fitting a second order linear regression model using those data, the following 

fitting equation was obtained using R. 

   (�̅�𝑖,𝑗
𝑋 )

𝐹𝑈𝐿𝐿
= 0.4979395 ∗ 𝑁2 − 1.415395 ∗ 𝑁 + 2.2533249 15 
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The fitting summary is shown below, based on which we can conclude the model 

fits the data very well. To further check the goodness-of-fit for 𝑁 values that are greater 

than 30, 𝑁 = 50  is fed into Equation 15 to obtain the value of (�̅�𝑖,𝑗
𝑋 )

𝐹𝑈𝐿𝐿
of a fully 

connected network with 50 nodes. The result is compared to the actual value of 

(�̅�𝑖,𝑗
𝑋 )

𝐹𝑈𝐿𝐿
obtained from simulation and summarized in Table 5. Since the error is only 

0.16%, Equation 15 is used in this thesis for obtaining a close estimation of the 

(�̅�𝑖,𝑗
𝑋 )

𝐹𝑈𝐿𝐿
value of a fully connected network with 𝑁 > 30 nodes. 

Residuals: 

lm(formula = mdis ~ N_2 + N) 

 

Residuals: 

      Min        1Q    Median        3Q       Max  

-0.151395 -0.043599  0.006139  0.051579  0.152053  

 

Coefficients: 

                   Estimate       Std. Error       t value       Pr(>|t|)     

(Intercept)  2.2533249    0.0586286      38.43        <2e-16 *** 

N_2            0.4979395    0.0002386      2087.29    <2e-16 *** 

N               -1.4153950    0.0080582    -175.65      <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.07353 on 25 degrees of freedom 

Multiple R-squared:      0.97, Adjusted R-squared:      0.99  

F-statistic: 4.028e+07 on 2 and 25 DF,  p-value: < 2.2e-16 

F-statistic: 4.813e+06 on 2 and 27 DF,  p-value: < 2.2e-16 

 

Table 5. Estimation Accuracy of Equation 15 for 𝑵 = 𝟓𝟎 

(�̃̅�𝟏,𝑵
𝑿 )

𝑭𝑼𝑳𝑳
 (�̅�𝟏.𝑵

𝑿 )
𝑭𝑼𝑳𝑳

 Error % 

1176.33 1178.25 0.16% 

 

With the data linearized and two bonding points available, linear interpolation can 

be used to estimate 
�̅�𝑖,𝑗
𝑋

𝑀
 using the 𝐸𝑅𝑖,𝑗 value of a node pair. Multiplying the estimated 
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�̅�𝑖,𝑗
𝑋

𝑀
 value by the number of links (𝑀 ), an estimation for �̅�𝑖,𝑗

𝑋  can be obtained. The 

estimation equation is shown below. 

(�̃̅�𝑖,𝑗
𝑋 )

𝑥
= 𝑀𝑥 ∗ 10[

 
 
 
 
 

((
1

𝐸𝑅𝑖,𝑗
)
′

𝑥

−(
1

𝐸𝑅𝑖,𝑗
)
𝐿𝐼𝑁𝐸

′

)

(
�̅�𝑖,𝑗
𝑋

𝑀
)

𝐹𝑈𝐿𝐿

′

− (
�̅�𝑖,𝑗
𝑋

𝑀
)

𝐿𝐼𝑁𝐸

′

(
1

𝐸𝑅𝑖,𝑗
)
′

𝐹𝑈𝐿𝐿

− (
1

𝐸𝑅𝑖,𝑗
)
𝐿𝐼𝑁𝐸

′  + (
�̅�𝑖,𝑗
𝑋

𝑀
)

𝐿𝐼𝑁𝐸

′

]
 
 
 
 
 

 

{
 
 

 
 (

1

𝐸𝑅𝑖,𝑗
)

′

= 𝑙𝑜𝑔 (
1

𝐸𝑅𝑖,𝑗
)     𝑖𝑓 𝐸𝑅𝑖𝑗 > 1

(
1

𝐸𝑅𝑖,𝑗
)

′

= 𝑙𝑜𝑔 (
1

𝐸𝑅𝑖,𝑗
1/𝜃
)     𝑖𝑓 𝐸𝑅𝑖𝑗 ≤ 1

 

(
�̅�𝑖,𝑗
𝑋

𝑀
)

′

= 𝑙𝑜𝑔 (
�̅�𝑖,𝑗
𝑋

𝑀
) 

16 

With Equation 16, the physical meaning of this optimization function is to find 

out the 𝜃 value that minimize the total squared error of �̃̅�𝑖,𝑗
𝑋  summed over all networks 

within a Step-Min network family of 𝑁 nodes. 

The estimation results for �̅�1,𝑁
𝑋  via Equation 16 for Step-Min network families 

from 𝑁 = 4  to 𝑁 = 10  are shown in Figure 22. The estimation errors for Step-Min 

network families from 𝑁 = 4 to 𝑁 = 10 and 𝑁 = 30, 50 are summarized in Table 6. 
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Figure 22. Estimation Results vs. Simulation Results for Step-Min Network Families 

Table 6. Estimation Errors of Step-Min Network Families 

𝑵 4 5 6 7 8 9 10 30 50 

Average 

Error 
1.5% 2.3% 3.0% 3.8% 4.1% 4.8% 5.2% 7.9% 9.2% 

 

As can be observed from Figure 22 and Table 6, the proposed method can provide 

very good estimation for the �̅�1,𝑁
𝑋  value of the node pair of interest within each Step-Min 

network. 

The estimation results for node pairs within the classical networks are 

summarized in Figure 23 and Table 7. Again, the proposed method can provide close 

estimation for the �̅�1,𝑁
𝑋  values of the node pairs within each classical network.  

0

10

20

30

40

4 5 6 7 8 9 10

N

Simulated Estimated



48 
 
 

 

 

Figure 23. Estimation Results vs. Simulation Results for Node Pairs within Classical Networks 

Table 7. Estimation Errors of Classical Networks 

Network Rand_30_60 Rand_50_100 SF_30_60 SF_50_100 

Average 

Error 
7.4% 4.4% 5.9% 3.4% 

3.4 Redundant Links 

Unlike structural links, the effects of redundant links on the number of link 

failures before node pair 𝑖, 𝑗  disconnected against link failures are null or zero since 

redundant links do not contribute to the connection between node pair 𝑖, 𝑗 and hence their 

existence or removal does not affect the value of 𝐸𝑅𝑖,𝑗. That is to say, redundant links do 

not affect the structural connectivity robustness between node pair 𝑖, 𝑗  against link 

failures. However, this does not mean the existence of redundant links is useless. Under 

random link attacks, redundant links can server as “camouflage” and attract attacks away 

from structural links. This decreases the probability of structural links to be hit during 
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random attacks and as a result protects the network structure. Is it possible to quantify the 

effects of redundant links under random link attacks? 

Group the links within a network 𝐺 into two sets as shown below in Figure 24. 

The links in Set 1 are structural links (𝐸1), and the links in Set 2 are redundant links (𝐸2). 

Assume there are in total 𝑀 links with 𝑀1 in Set 1 and 𝑀2 in Set 2.  

 

Figure 24. Partition of 𝑬 

Next assuming remove (𝑚𝑖,𝑗
𝑋 )

𝐸1
 links from Set 1 will result in the disconnection 

between node pair 𝑖, 𝑗. Apparently (𝑚𝑖,𝑗
𝑋 )

𝐸1
is a random variable based on the previous 

discussion. For a given network and a given node pair 𝑖, 𝑗, the sample space of (𝑚𝑖,𝑗
𝑋 )

𝐸1
 is 

countable and limited. Assuming in total there are 𝛾 unique values within the sample 

space of (𝑚𝑖,𝑗
𝑋 )

𝐸1
. Rearrange its elements in the following fashion: (𝑚𝑖,𝑗

𝑋 )
𝐸1

1
< (𝑚𝑖,𝑗

𝑋 )
𝐸1

2
<

⋯(𝑚𝑖,𝑗
𝑋 )

𝐸1

𝛾
. Use (𝑚𝑖,𝑗

𝑋 )
𝐸

to denote the total number of link failures from Set 1 and Set 2 

that will result in the disconnection between node pair 𝑖, 𝑗 . (𝑚𝑖,𝑗
𝑋 )

𝐸
is also a random 

variable and its mean value, (�̅�𝑖,𝑗
𝑋 )

𝐸
 or the ratio between (�̅�𝑖,𝑗

𝑋 )
𝐸

 and (�̅�𝑖,𝑗
𝑋 )

𝐸1
is what we 

want to estimate here. Mathematically, we have 
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(�̅�𝑖,𝑗

𝑋 )
𝐸
= 𝐸 [(𝑚𝑖,𝑗

𝑋 )
𝐸
] = 𝐸 [𝐸 [(𝑚𝑖,𝑗

𝑋 )
𝐸
|(𝑚𝑖,𝑗

𝑋 )
𝐸1

𝑙
]]   

where 𝑙 = 1,2, … , 𝛾 

17 

Using indicator variables, we have 

 

𝐸 [(𝑚𝑖,𝑗
𝑋 )

𝐸
|(𝑚𝑖,𝑗

𝑋 )
𝐸1

𝑙
] = (𝑚𝑖,𝑗

𝑋 )
𝐸1

𝑙
+
𝑀2 ∗ (𝑚𝑖,𝑗

𝑋 )
𝐸1

𝑙

𝑀1 + 1
 

where 𝑙 = 1,2, … , 𝛾 

18 

Then the following equation can be obtained for (�̅�𝑖,𝑗
𝑋 )

𝐸
 

 (�̅�𝑖,𝑗
𝑋 )

𝐸
= 𝐸 [(𝑚𝑖,𝑗

𝑋 )
𝐸
] 

=∑[(𝑚𝑖,𝑗
𝑋 )

𝐸1

𝑙
+
𝑀2(𝑚𝑖,𝑗

𝑋 )
𝐸1

𝑙

𝑀1 + 1
] ∗ 𝑝𝐸1

𝑙

𝛾

𝑙=1

 

=∑[(𝑚𝑖,𝑗
𝑋 )

𝐸1

𝑙
∗ 𝑝𝐸1

𝑙 ]

𝛾

𝑙=1

+∑[
𝑀2(𝑚𝑖,𝑗

𝑋 )
𝐸1

𝑙

𝑀1 + 1
∗ 𝑝𝐸1

𝑙 ]

𝛾

𝑙=1

 

= (�̅�𝑖,𝑗
𝑋 )

𝐸1
+
𝑀2(�̅�𝑖,𝑗

𝑋 )
𝐸1

𝑀1 + 1
=
𝑀 + 1

𝑀1 + 1
(�̅�𝑖,𝑗

𝑋 )
𝐸1
                          

19 

Assuming the ratio between 𝑀1 and 𝑀2 is 𝜑 (𝜑 =
𝑀2

𝑀1
), then based on Equation 19, 

the ratio between (�̅�𝑖,𝑗
𝑋 )

𝐸
 and (�̅�𝑖,𝑗

𝑋 )
𝐸1

is  

 
𝜙 =

𝑀 + 1

𝑀1 + 1
=

𝜑𝑀1
𝑀1 + 1

+ 1 
20 

In order to check the validity of the expression (Equation 19 or Equation 20), the 

following was added to the link failure simulation model. At the beginning of a 

simulation, a redundancy ratio 𝜑 is decided. If a filtered network with 𝑀1 structural links 

is fed into the simulation, then 𝑀2 = ⌊𝜑𝑀1⌋ dummy links will be added to the original 

link pool, which forms an augmented link pool. During the simulation, a link is randomly 



51 
 
 

 

chosen at a step from the augmented link pool until the key node pair 𝑖, 𝑗 disconnected. If 

the expression is right, then the 𝜙 value obtained from Equation 20 should correspond to 

the values obtained from simulation.  

First, simulations were conducted on networks within the Step-Min network 

family with 𝑁 = 30.  For networks within this network family, the key node pair is 

always 1,30. The following 𝜑 values: 1, 0.8, 0.6, 0.4, 0.2, were used. The simulation 

results are presented Figure 25. The numbers at the lower right corner is the 

corresponding 𝜑 value of each plot. Y-axes are for plotting quantities, and X-axes are 

networks indices. The networks are ordered in increasing order of link number. Since 

network index does not matter, they are removed from the plots in Figure 25. The blue 

lines are the 𝜙 values obtained from simulation (𝜙𝑠𝑖𝑚𝑢) and the red lines are the 𝜙 values 

calculated through Equation 20 (𝜙𝑡ℎ𝑒𝑜). As can be seen from Figure 25, the lines of 

𝜙𝑠𝑖𝑚𝑢 follow the trend of 𝜙𝑡ℎ𝑒𝑜 very well especially for networks whose link numbers 

are large. In order to quantitatively show how well 𝜙𝑡ℎ𝑒𝑜  corresponds to 𝜙𝑠𝑖𝑚𝑢 , the 

percentage difference between 𝜙𝑠𝑖𝑚𝑢 and 𝜙𝑡ℎ𝑒𝑜 were taken using the following equation. 

The distributions of 𝜀 are shown in Figure 26. 

 
𝜀 =

𝜙𝑡ℎ𝑒𝑜 − 𝜙𝑠𝑖𝑚𝑢
𝜙𝑠𝑖𝑚𝑢

 21 
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Figure 25. Co-plot of 𝝓𝒔𝒊𝒎𝒖 and 𝝓𝒕𝒉𝒆𝒐 for Step-Min Network Faimly of 𝑵 = 𝟑𝟎  

Ordered by Link Number 
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Figure 26. Distribution of  𝜺 for Step-Min Network Faimly of 𝑵 = 𝟑𝟎 

As can be seen from Figure 26, given a 𝜑  value, the percentage error 𝜀  for 

networks within the Step-Min network family of 𝑁 = 30 almost symmetrically 

distributed around 0 with the maximum absolute percentage error smaller or equal to 4%. 

Most of the data points are around 0 and as the absolute percentage error getting higher, 

the density becomes smaller. Those observations indicate that, Equation 20 and hence 

Equation 19 are valid. They can provide direct quantification of the effects of redundant 

links on the number of link breakdowns until the node pair of interest disconnects under 

random link attacks. 
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In order to confirm this conclusion, the above redundant link added link failure 

simulation was re-conducted on 80 node pairs that randomly selected from the two SF 

networks and the two Rand networks. For a given 𝜑  value, for each node pair, its 

percentage error 𝜀 can be obtained, with which, the average percentage error 𝜀 of each 

network can also be obtained (average over the 20 node pairs of each network). The 

results are summarized in Table 8. Since the average errors are low for all the four 

classical networks, it is confirmed that Equation 20 and hence Equation 19 are valid. 

Table 8. Average Percentage Error 𝜺 of Classical Networks 

Network Type 0.2 0.4 0.6 0.8 1.0 

Rand_30_60 0.8% 0.9% 0.9% 0.9% 0.8% 

Rand_50_100 0.7% 0.8% 0.8% 0.7% 0.8% 

SF_30_60 1.0% 1.1% 1.1% 1.1% 1.0% 

SF_50_100 3.3% 3.3% 3.4% 3.4% 3.4% 

 

3.5 Chapter Summary 

In Chapter 1, capability-based connectivity robustness (𝑅𝐶𝑁𝐶𝑃) was defined as 

the ability of a network to maintain inter-connection among individual entities to support 

network capability output under network impairments. The general mathematical 

expression of 𝑅𝐶𝑁𝐶𝑃 was given in Equation 1.  

To reflect the relationship described in Equation 1, a capability-based network 

modeling process was developed as the answer to the first research question. With a 

capability-based network model, the problem of measuring the capability-based 

connectivity robustness of a network can be successfully transformed into the problem of 

measuring the connectivity robustness of critical node pairs. 
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In search for the answer to the second research question, a set of requirements on 

candidate connectivity robustness measures were proposed to help the measure selection 

process. 

1. Quantitative 

2. Be applicable to a node pair 

3. Be able to capture the connectivity change between a node pair under link failures 

4. Accounts for alternative paths between a node pair 

Pairwise effective resistance 𝐸𝑅𝑖,𝑗  was identified as a candidate measure. By 

testing Hypothesis 1, it was concluded that, 𝐸𝑅𝑖,𝑗  can be used to compare the 

connectivity robusntess of two arbitrary node pairs in terms of the average fraction of link 

failures until disconnection happens ( 
�̅�𝑖,𝑗
𝑋

𝑀
). In order to compare the connectivity 

robustness of two arbitrary node pairs in terms of the average number of link failures 

until disconnection happens ( �̅�𝑖,𝑗
𝑋 ), Equation 16 was proposed to provide a close 

estimation for  �̅�𝑖,𝑗
𝑋  given the 𝐸𝑅𝑖,𝑗 value of a node pair. 

Finally, the effects of redundant links were discussed. The existence of redundant 

links does not affect the average number of link failures that a node pair can sustain 

before disconnection. This is because redundant links do not contribute to the connection 

between node pair 𝑖, 𝑗. However, under random link attacks, redundant links can serve as 

“camouflage” and attract attacks away from structural links. This decreases the 

probability of structural links to be hit during random attacks and as a result protects the 

network structure. The effect can be quantified using either Equation 19 or Equation 20. 

The validity of Equation 19 or Equation 20 was confirmed via simulation. 

. 
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CHAPTER IV 

CENTRALITY ANALYSES 

In graph theory and network analysis, the centrality of a node or a link (network 

entity) is a quantitative value representing the importance of a network entity to a 

network property of interest [73]. The concept of centrality was first developed in social 

network analysis and now have many other applications, such as to help identify the 

super-spreaders of disease, the most critical infrastructures in the Internet, the bottlenecks 

in transportation network. In general, the centrality of a network entity is characterized by 

its position and/or the connectedness of network entities within networks, and depending 

on the research content, the centrality of the same network entity can be evaluated 

differently. In this chapter, the centrality of a network entity is measured by the extent to 

which it affects the capability-based connectivity robustness (𝑅𝐶𝑁𝐶𝑃) of a given network. 

In the following discussion, 𝐶𝑘
𝑉 will be used to denote the centrality of node 𝑘 ∈ 𝑉(𝐺) 

and 𝐶𝑘,𝑙
𝐸  will be used to denote the centrality of link 𝑘, 𝑙 ∈ 𝐸(𝐺). The contents of this 

chapter are arranged as following. First, the general equation for the centrality of a 

network entity in terms of 𝑅𝐶𝑁𝐶𝑃  will be given followed by a review of existing 

centrality measures. Next, the centrality measure for network nodes and network links 

proposed will be discussed followed by some analysis results. 

One argument that can be derived from the definition of the centrality of a 

network entity is the that, the higher the centrality, the higher the impact of the removal 

of this network entity on the corresponding network quantity of interest [74, 75]. Based 

on this, the general mathematical expression of the centrality of a network entity in terms 

of 𝑅𝐶𝑁𝐶𝑃 can be written as below. 
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 𝐶𝑘
𝑉 = Δ𝑅𝐶𝑁𝐶𝑃(𝑘) 22 

 𝐶𝑘,𝑙
𝐸 = Δ𝑅𝐶𝑁𝐶𝑃[(𝑘, 𝑙)] 23 

Based on the discussion in Chapter 2 and Chapter 3, Equation 22 (for network 

nodes) or Equation 23 (for network links) can be rewritten as following, where node pair 

𝑖∗, 𝑗∗ is the capability critical node pair of the network under study. 

 𝐶𝑘
𝑉 = 𝛥�̅�𝑖∗,𝑗∗

𝑋 (𝑘)   24 

 𝐶𝑘
𝑉 = 𝛥�̅�𝑖∗,𝑗∗

𝑋 (𝑘, 𝑙)   25 

In general, there are two ways to calculate the centrality of a network entity. The 

first way is to measure it through Equation 24 (for network nodes) or Equation 25 (for 

network links) directly. This way of quantifying the centrality of a network entity is often 

referred to as sensitivity analysis or dynamic centrality in the literatures. It is sometimes 

normalized to the percentage form. The second way is to measure the centrality of a 

network entity through an indicator directly obtained through network topological 

analysis and often can reveal more information on the role of a network entity. In this 

thesis, the second method is used to calculate the centrality of a network entity. 

In the literatures, several different centrality measures have been proposed to 

characterize the role of a network entity in different ways for different analysis purposes 

[72]. The simplest one is by degree. It is usually referred to as node degree centrality 

since this measure can only be applied to network nodes. Node degree is a local measure 

since it is only measured by the number the immediate neighbors of a node and not by, 

for example, the two-hop and three-hop neighbors of that node. Because of that, it is also 

referred to as first order/one-hop connectedness index. By increasing the number of hops, 

second order degree centrality, third order degree centrality and so on can be defined, 

which however, are used less often comparing to the first order one. Regardless of its 

order, degree centrality measure usually cannot help determine the overall position or the 
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connectedness of nodes within a network except for networks that display the so called 

rich-club connectivity [40, 72, 76, 77]. 

Another type of centrality is called geodesic closeness [78, 79]. Although the 

concept can be extended for network links, geodesic closeness is usually defined for 

network nodes. It is calculated through taking (the reciprocal of) the average geodesic 

distance from a selected node to all the other nodes in a network. Since information 

transmission between network nodes is not always through the geodesic path between 

them, other types of node distance are used to accommodate different information 

transmission rules and alternative information transmission paths. For example, 

information centrality proposed in [80], random-walk centrality proposed in [81] and 

effective resistance based centrality proposed in [72] are based on some all paths between 

node pairs within a network by using the random-walk path length instead of the geodesic 

distance between node pairs. 

Another class of centrality is called betweenness and is defined based on how a 

pair of nodes are connected to each other. Betweenness can be defined for both network 

nodes and network links. In general, it is the number of node pair paths that pass through 

a node or a link and sometimes is normalized by the total number of node pair paths [82]. 

The path between a node pair is determined by routing rules, which can be either 

deterministic or stochastic. The two most commonly used betweenness centrality 

measures are geodesic path betweenness centrality (deterministic) and random walk 

betweenness centrality (stochastic). If link weights are considered, they can be modeled 

as network flows and use flow based centrality measure [82] or simply the weighted 

version of certain betweenness centrality measures. Betweenness centrality measures 

have been widely applied to different research fields due to their capability of reflecting 

the role played by a network entity in the communication between node pairs [72].  
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Some other types of centrality measures, which are used less often than the 

aforementioned ones, were proposed in association with certain network measures. In 

general, the choice of centrality measure should reflect the role of a network entity in 

affecting the network quantity under study and correspond to the way that quantity is 

measured. Therefore, in this thesis, the centrality measure used should correspond to the 

capability-based connectivity robustness measuring process developed in Chapter 3, 

which in specific is Equation 24 or Equation 25. In other words, the centrality measure 

should be able to capture the change of  �̅�𝑖,𝑗
𝑋  (connectivity robustness) of a given node 

pair when a network entity is removed. 

In [72], the author proposed a way to measure the centrality of a network entity 

based on effective resistance in affecting the connectivity robustness of the entire 

network. In [72], a quantity was proposed in the process of developing the centrality of a 

network node in affecting the connectivity robustness of a network as a whole. It was 

only used as an intermediate quantity in [72] and nothing was mentioned that it actually 

captures the centrality of a node in affecting the connectivity robustness between a node 

pair. In the following discussions, first, it will be shown that this quantity can reflect the 

node centrality in affecting �̅�𝑖,𝑗
𝑋 . Then, from there, a new quantity was developed for 

measuring the centrality of a network link followed by some additional analyses and 

discussions. 

4.1 Node Centrality 

Before going into the equation for calculating the node centrality in affecting �̅�𝑖,𝑗
𝑋 , 

first, the concept of random walk will be introduced. Random walk has been briefly 

mentioned in the previous discussion. As defined in [83], a random walk is a finite 

Markov Chain that is time-reversible and hence is a discrete stochastic process. The walk 
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starts at a given node 𝑖 , which is usually called the source, and selects one of its 

neighbors to visit according to a designated probability distribution (usually node degree) 

as the time step increases by 1. The process repeats until reaching the destination node 𝑗. 

There are three concepts developed from the concept of a random walk that are closely 

related to the node centrality measure to be discussed here. One is the hitting time of a 

random walk from node 𝑖 to node 𝑗, which will be denoted as 𝐻𝑖,𝑗. 𝐻𝑖,𝑗  is the expected 

number of steps for a random walk starting from node 𝑖 to hit node 𝑗 for the first time. 

The second one is the commute time (distance) of a round trip random walk between 

node 𝑖 and node 𝑗 (𝑈𝑖,𝑗). The relationship between 𝐻𝑖,𝑗 and 𝑈𝑖,𝑗 is shown in Equation 26. 

 𝑈𝑖,𝑗 = 𝐻𝑖,𝑗 + 𝐻𝑗,𝑖 = 𝑈𝑗,𝑖 26 

The connection between the effective resistance and the random walk between a 

node pair lies in the following equation,  

 𝑈𝑖,𝑗 = 2𝑀(𝐿𝑖,𝑖
+ − 2𝐿𝑖,𝑗

+ + 𝐿𝑗,𝑗
+ ) = 2𝑀𝐸𝑅𝑖,𝑗 27 

where 𝑀 is the number of links of a network. 

The last term is random detour, which is defined as the random walk from node 𝑖 

to node 𝑗 that is forced to bypass a node 𝑘. 𝐻𝑖,𝑘,𝑗   will be used to denote the expected 

number of steps for a random detour from node 𝑖 to node 𝑗 via node 𝑘. This is the core 

concept that leads to the measure of node centrality that will be discussed here [72]. For a 

given node pair 𝑖, 𝑗, the difference between 𝐻𝑖,𝑘,𝑗 and 𝐻𝑖,𝑗 can be calculated. Denote that 

difference as Δ𝐻𝑖,𝑘,𝑗. Δ𝐻𝑖,𝑘,𝑗 is the expected extra number of steps of a random walk from 

node 𝑖  to node 𝑗 if it is forced to bypass node 𝑘 . Using the definition of Δ𝐻𝑖,𝑘,𝑗 , the 

following equation can be obtained. 

 Δ𝐻𝑖,𝑘,𝑗 = 𝐻𝑖,𝑘 + 𝐻𝑘,𝑗 − 𝐻𝑖,𝑗 28 
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In general  𝐻𝑖,𝑗 ≠ 𝐻𝑗,𝑖 . Hence, in general Δ𝐻𝑖,𝑘,𝑗 ≠ Δ𝐻𝑗,𝑘,𝑖 , which means, the 

network has directed properties. However, as discussed earlier, the networks to be 

investigated in this thesis are all undirected networks, which require undirected network 

properties. To achieve this, instead of using Δ𝐻𝑖,𝑘,𝑗 or Δ𝐻𝑗,𝑘,𝑖, Δ𝑈𝑖,𝑘,𝑗 will be used. Δ𝑈𝑖,𝑘,𝑗 

is defined as the expected extra number of steps of a round trip random walk between 

node 𝑖  and node 𝑗  if it is forced to bypass node 𝑘 . Δ𝑈𝑖,𝑘,𝑗  can be calculated using 

Equation 29. 

 Δ𝑈𝑖,𝑘,𝑗 = Δ𝐻𝑖,𝑘,𝑗 + Δ𝐻𝑗,𝑘,𝑖 = Δ𝑈𝑗,𝑘,𝑖 29 

Inserting Equation 27 into Equation 29 yields 

 Δ𝑈𝑖,𝑘,𝑗 = Δ𝑈𝑗,𝑘,𝑖 = 2𝑀(𝐸𝑅𝑖,𝑘 + 𝐸𝑅𝑘,𝑗 − 𝐸𝑅𝑖,𝑗) 30 

 

 Δ𝑈𝑖,𝑘,𝑗 = Δ𝑈𝑗,𝑘,𝑖 = 4𝑀(𝐿𝑘,𝑘
+ + 𝐿𝑖,𝑗

+ − 𝐿𝑖,𝑘
+ − 𝐿𝑗,𝑘

+ ) 31 

From the definition of random walk and random detour, it can be seen that, Δ𝑈𝑖,𝑘,𝑗 

is a nonnegative number. Intuitively, for the same network, the more peripheral node 𝑘 is 

to the connection between node 𝑖 and node 𝑗, the greater the value of Δ𝑈𝑖,𝑘,𝑗 will be. And 

hence, the less important node 𝑘 is to the connectivity robustness between node 𝑖 and 

node 𝑗 . Therefore, it is reasonable to hypothesize that −Δ𝑈𝑖,𝑘,𝑗  can be used as the 

centrality measure of a network node corresponding to �̅�𝑖,𝑗
𝑋  as mathematically expressed 

below.  

 
𝐶𝑘
𝑉 = −

Δ𝑈𝑖,𝑘,𝑗

4𝑀
 

32 

Since for a given network topology, the number of network links are constant 

when doing the centrality analysis of network entities, Δ𝑈𝑖,𝑘,𝑗  is divided by 4𝑀  to 

simplify the calculation process. 
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According to the definition of node centrality, the more important of a node is to 

the connectivity robustness between a given node pair  𝑖, 𝑗 , the higher the impact its 

removal will have on �̅�𝑖,𝑗
𝑋 , and hence the greater the value of Δ�̅�𝑖,𝑗

𝑋  will be. 

𝐻2: −Δ𝑈𝑖,𝑘,𝑗 is highly correlated with 𝛥�̅�𝑖,𝑗
𝑋 (𝑘). 

𝐻0
2: −Δ𝑈𝑖,𝑘,𝑗 is not highly correlated with 𝛥�̅�𝑖,𝑗

𝑋 (𝑘). 

In order to test Hypothesis 2, the following experiment was developed using the 

two SF networks and the two Rand networks discussed earlier in Chapter 3. For each 

network, randomly select 20 different node pairs. In total, there are 80 node pairs for four 

networks. First, for each node pair 𝑖, 𝑗, feed the original network 𝐺 into the link failure 

simulation model stated in Algorithm 3 (with 10000 runs) to obtain the expected number 

of link failures before that node pair disconnects (�̅�𝑖,𝑗
𝑋 ). Next, at each step, remove a 

network node 𝑘 from the original network and this will result in a new network 𝐺′ =

𝐺\{𝑘}. Feed this newly obtained network 𝐺′ into the link failure simulation mode (with 

10000 runs) to obtain the expected number of link failures before node pair 𝑖, 𝑗 

disconnects (�̅�𝑖,𝑗
𝑋 ′). Repeat this process for each node pair until all the nodes except node 

𝑖 and node 𝑗 within the original network have been removed once. So for a network with 

𝑁 network nodes, for each randomly selected node pair, the process should be repeated 

for (𝑁 − 2) times in total. 

For each network, we can obtain a series of data pairs [𝛥�̅�𝑖,𝑗
𝑋 (𝑘), −Δ𝑈𝑖,𝑘,𝑗], where 

𝛥�̅�𝑖,𝑗
𝑋 (𝑘) = 𝑎𝑏𝑠(�̅�𝑖,𝑗

𝑋 ′
− �̅�𝑖,𝑗

𝑋 ) = �̅�𝑖,𝑗
𝑋 − �̅�𝑖,𝑗

𝑋 ′
. To test 𝐻0

2 , calculate the nonlinear 

correlation between 𝛥�̅�𝑖,𝑗
𝑋 (𝑘) and −Δ𝑈𝑖,𝑘,𝑗  by fitting 𝛥�̅�𝑖,𝑗

𝑋 (𝑘) as a semi-parametrically 

estimated function, for example, a generalized additive model (GAM) of −Δ𝑈𝑖,𝑘,𝑗. This is 

to fit the following model as shown in Equation 33. 

 𝐸(𝛥�̅�𝑖,𝑗
𝑋 (𝑘)|−Δ𝑈𝑖,𝑘,𝑗) = 𝛼 + 𝑓(−Δ𝑈𝑖,𝑘,𝑗) + 𝜖𝑘 33 
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This can be done by using the GAM() function in R. The fitting summary of a 

node pair within the Rand_30_60 network is shown below. A plot of the fitting model is 

also given to characterize the nature of the relationship between 𝛥�̅�𝑖,𝑗
𝑋 (𝑘) and −Δ𝑈𝑖,𝑘,𝑗 as 

shown in Figure 27. 

Family: gaussian  

Link function: identity  

 

Formula: 

Delta_m_dis_ij ~ s(Detour_k) 

 

Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  2.77788    0.06419   43.28   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Approximate significance of smooth terms: 

              edf Ref.df     F p-value     

s(Detour_k) 3.503  4.337 172.2  <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

R-sq.(adj) =  0.965   Deviance explained =   97% 

GCV = 0.13746  Scale est. = 0.11535   n = 28 
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Figure 27. Plot of the Example GAM Model between 𝚫�̅�𝒊,𝒋
𝑿 (𝒌) and −

𝚫𝑼𝒊,𝒌,𝒋

𝟒𝑴
 

For each node pair, fit the GAM between 𝛥�̅�𝑖,𝑗
𝑋 (𝑘) and −Δ𝑈𝑖,𝑘,𝑗  and document 

the adjusted 𝑅2 value. Calculated the averaged adjusted 𝑅2 value of a network based on 

the 20 randomly node pairs. The results are summarized in Table 9. 

Table 9. GAM Model Summary for Node Pairs within Classical Networks (Node Centrality) 

Network Rand_30_60 Rand_50_100 SF_30_60 SF_50_100 

Average 

Adjusted 𝑹𝟐 
0.94 0.83 0.93 0.95 

 

Since the average adjusted 𝑅2 values of all the classical networks are high, 𝐻0
2 is 

rejected. Hence, −Δ𝑈𝑖,𝑘,𝑗 could be used as a measure for the centrality of a network node 

in terms of the connectivity robustness between a given node pair.  
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4.2 Link Centrality 

In the previous section, it has been successfully shown that, the more peripheral a 

node is to the connection between a node pair, or in other words the greater the value of 

Δ𝑈𝑖,𝑘,𝑗, the less importance of node 𝑘 to the connectivity robustness between node pair 

𝑖, 𝑗 . Intuitively, for a link 𝑘, 𝑙 , the higher the values of Δ𝑈𝑖,𝑘,𝑗  and Δ𝑈𝑖,𝑙,𝑗 , the more 

peripheral the position of link 𝑘, 𝑙 is to the connection between node pair 𝑖, 𝑗. Therefore 

the less important link 𝑘, 𝑙 is to the connectivity robustness between node pair 𝑖, 𝑗. This 

suggests the following relationship. 

 𝐶𝑘,𝑙
𝐸 ∝ −(𝛥𝑈𝑖,𝑘,𝑗 + 𝛥𝑈𝑖,𝑙,𝑗) 34 

Next, the following network property is used. For a network, the number of link 

failures that any link can sustain until all the node pairs within a network disconnect is 1. 

This means for the connection between all the node pairs of a network, the structural 

contributions of all the links are the same. For simplicity, a constant, 𝑊, is used to 

quantify the structural contribution of a link to the connection between all the node pairs 

of a network. According to the definition of link centrality, the following equation can be 

written. 

 

∑∑𝑓(𝐶𝑘,𝑙
𝐸 )

𝑁

𝑗=1

𝑁

𝑖=1

= 𝑊 

where, 

𝑊 is a constant; 

𝑓( ) is a function with undefined properties. 

35 

 

In [72], the author proved the following relationship as written in Equation 36.  

 1

𝑁2
∑∑𝛥𝑈𝑖,𝑘,𝑗

𝑁

𝑗=1

𝑁

𝑖=1

= Δ𝑈𝑘 = 4𝑀𝑙𝑘,𝑘
+  36 
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So if 𝐶𝑘,𝑙
𝐸  is in the following form, Equation 35 is satisfied. 

 
𝐶𝑘,𝑙
𝐸 = −

𝛥𝑈𝑖,𝑘,𝑗 + 𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘 + Δ𝑈𝑙
 37 

This leads to the third hypothesis of this thesis.  

𝐻3: −
𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
 is highly correlated with 𝛥�̅�𝑖,𝑗

𝑋 (𝑘, 𝑙). 

𝐻0
3: −

𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
is not highly correlated with 𝛥�̅�𝑖,𝑗

𝑋 (𝑘, 𝑙). 

The experiment to test Hypothesis 3 is similar to the one used for testing 

Hypothesis 2. The detailed process of the experiment is as following. For each of the four 

networks (two SF networks and two Rand networks), randomly select 20 node pairs. 

First, for each node pair 𝑖, 𝑗, feed the original network 𝐺 into the link failure simulation 

model stated in Algorithm 3 (with 10000 runs) to obtain the expected number of link 

failures before that node pair disconnects (�̅�𝑖,𝑗
𝑋 ). Next, at each step, remove a network 

link 𝑘, 𝑙 from the original network and this will result in a new network 𝐺′ = 𝐺\{(𝑘, 𝑙)}. 

Feed this newly obtained network 𝐺′ into the link failure simulation mode (with 10000 

runs) to obtain the expected number of link failures before node pair 𝑖. 𝑗  disconnects 

(�̅�𝑖,𝑗
𝑋 ′). Repeat this process for each node pair until all the links within the original 

network have been removed once. So for a network with 𝑀 network links, for each node 

pair, the process should be repeated for 𝑀 times in total. 

For each network, we can obtain a series of data pairs [𝛥�̅�𝑖,𝑗
𝑋 (𝑘, 𝑙), −

𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
]. 

To test 𝐻0
3, calculate the nonlinear correlation between 𝛥�̅�𝑖,𝑗

𝑋 (𝑘, 𝑙) and −
𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
 by 

fitting 𝛥�̅�𝑖,𝑗
𝑋 (𝑘, 𝑙) as a semi-parametrically estimated function, for example, a generalized 

additive model (GAM) of −
𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
. This is to fit the following model as shown in 

Equation 38. 
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𝐸 (𝛥�̅�𝑖,𝑗

𝑋 (𝑘, 𝑙)|−
𝛥𝑈𝑖,𝑘,𝑗 + 𝛥𝑈𝑖,𝑙,𝑗
Δ𝑈𝑘 + Δ𝑈𝑙

)

= 𝛼 + 𝑓 (−
𝛥𝑈𝑖,𝑘,𝑗 + 𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘 + Δ𝑈𝑙
) + 𝜖𝑘,𝑙 

38 

This can be done by using the GAM() function in R. The fitting summary of a 

node pair within the Rand_30_60 network is shown below. A plot of the fitting model is 

also given to characterize the nature of the relationship between 𝛥�̅�𝑖,𝑗
𝑋 (𝑘, 𝑙)  and 

−
𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
 as shown in Figure 28. 

Family: gaussian  

Link function: identity  

 

Formula: 

Delta_m_dis_ij ~ s(Detour_k_l) 

 

Parametric coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -31.65853    0.03861    -820   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Approximate significance of smooth terms: 

                edf Ref.df    F p-value     

s(Detour_k_l) 8.827   8.99 1416  <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

R-sq.(adj) =  0.995   Deviance explained = 99.6% 

GCV = 0.10696  Scale est. = 0.089444  n = 60 
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Figure 28. Plot of the Example GAM Model between 𝚫�̅�𝒊,𝒋
𝑿 (𝒌, 𝒍) and −

𝜟𝑼𝒊,𝒌,𝒋+𝜟𝑼𝒊,𝒍,𝒋

𝚫𝑼𝒌+𝚫𝑼𝒍
 

For each node pair, fit the GAM between 𝛥�̅�𝑖,𝑗
𝑋 (𝑘, 𝑙)  and −

𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
 and 

document the adjusted 𝑅2 value. Calculated the averaged adjusted 𝑅2 value of a network 

based on the 20 randomly node pairs. The results are summarized in Table 10. 

Table 10. GAM Model Summary for Node Pairs within Classical Networks (Link Centrality) 

Network Rand_30_60 Rand_50_100 SF_30_60 SF_50_100 

Average 

Adjusted 𝑹𝟐 
0.99 0.99 0.99 0.99 

 

Since the average adjusted 𝑅2 values of all the classical networks are high, 𝐻0
3 is 

rejected. Hence, −
𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
 could be used as a measure for the centrality of a network 

link in terms of the connectivity robustness between a given node pair.  
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4.3 Chapter Summary 

In this Chapter, the centrality of network entities were discussed. The discussion 

started by giving general definition of the centrality. Depending on the research content, 

there are different types of centralities. The one considered here is the centrality of a 

network entity in terms of its impacts on the capability-based robustness of a network, the 

mathematical representations of which are provided in Equation 24 or Equation 25. 

Depending on the research content, there are different types of centrality measures. 

In general, the choice of centrality measure should reflect the role of network entities in 

affecting the network quantity under study and correspond to the way that quantity is 

measured. Therefore, in this thesis, a candidate centrality measure should correspond to 

the capability-based connectivity robustness measuring process developed in Chapter 3. 

Based on the discussion in Chapter 3, a candidate centrality measure should be able to 

measure importance of a network entity to the connectivity robustness of a give node 

pair. 

The proposed node centrality and link centrality measures are based on the 

concept of random detour as given in Equation 32 and Equation 37. By testing 

Hypothesis 2 and Hypothesis 3, the validity of the two proposed measures were 

confirmed. 

  



70 
 
 

 

CHAPTER V 

A CAPABILITY-BASED CONNECTIVITY ROBUSTNESS 

EVALUATION FRAMEWORK 

To summarize the discussions from Chapter 2 to Chapter 4 leads to a framework 

for the fast evaluation of the capability-based connectivity robustness of a CIN. The 

process is summarized in Figure 29. The application of this framework is demonstrated 

on the example described in Section 1.5. 

The first step of the framework is to construct a capability-based network mode. 

This has already been done along the discussion in Chapter 2. Assume all the key 

information flows have OR relationship, then the capability-based network model of the 

example problem is the one illustrated in Figure 5 and the capability critical node pair is 

node pair 𝐶, 𝐹. 

The second step is to measure the connectivity robustness of node pair 𝐶, 𝐹 , 

which is the capability critical node pair of the example CIN. First, calculate the effective 

resistance between that node pair and that gives 𝐸𝑅𝐶,𝐹=1.16. Next, plug 𝑁 = 8,𝑀 =

12, 𝐸𝑅𝐶,𝐹 = 1.61  into Equation 16, and we can obtain (�̃̅�𝐶,𝐹
𝑋 ) = 5.16 . To check the 

accuracy of this estimation, the network topology of the CIN in this example problem 

was fed into the link failure simulation model. The simulation result (�̅�𝐶,𝐹
𝑋 ) and the 

accuracy of the above estimation are presented below in Table 11.  

Table 11. Summary of the Accuracy of �̃̅�𝑪,𝑭
𝑿  

�̅�𝑪,𝑭
𝐗  5.14 

�̃̅�𝑪,𝑭
𝑿  5.16 

% Diff 0.4% 
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As can be seen in Table 11, the difference between �̃̅�𝐶,𝐹
𝑋  and �̅�𝐶,𝐹

X  is only 0.4% 

and is negligible. Hence,  �̃̅�𝐶,𝐹
𝑋  is a close estimation for �̅�𝐶,𝐹

𝑋 . 

The third step is to evaluate the centrality of network entities in terms of their 

importance to the capability-based connectivity robustness of a CIN. The centrality of 

network nodes calculated via Equation 32 is summarized in Table 12. The centrality of 

network inter-connection links calculated via Equation 37 is summarized in Table 13. 

Table 12. Summary of Node Centrality 𝑪𝒌
𝑽 and Impacts of Node Removal 𝜟�̅�𝑪,𝑭

𝑿 (𝒌) 

Node 

Index 
𝑪𝒌
𝑽 𝚫�̅�𝑪,𝑭

𝑿 (𝒌) 

𝑢1 0 5.14 

𝑢2 -0.23 4.14 

𝑢3 -0.26 3.22 

𝑢4 -0.55 0.78 

𝑢5 -0.55 0.78 

𝑢6 -0.55 0.79 

 

Table 13. Summary of Link Centrality 𝑪𝒌,𝒍
𝑬  and Impacts of Link Removal 𝜟�̅�𝑪,𝑭

𝑿 [(𝒌, 𝒍)] 

𝒌 𝒍 𝑪𝒌,𝒍
𝑬  𝜟�̅�𝑪,𝑭

𝑿 [(𝒌, 𝒍)] 

𝐵  𝑢1 0 5.14 

𝑢1 𝑢2 -0.34 4.14 

𝑢2 𝑢3 -0.96 3.22 

𝑢3 𝑢4 -1.19 0.80 

𝑢3 𝑢5 -1.19 0.81 

𝑢3 𝑢6 -1.19 0.82 
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As can be seen in Table 12 and Table 13, the proposed measures (Equation 32 and 

Equation 37) successfully captured the importance of network links/nodes to the 

connectivity robustness between node pair 𝐶, 𝐹. 

According to Table 12, SUAV 1 is of the most importance. The failure SUAV 1 

will result in immediate disconnection between node pair 𝐶, 𝐹, and hence the failure of 

the entire operation. The reason for SUAV 1 to be the most important node is its 

bottleneck role to the connection between node pair 𝐶, 𝐹. The second important node is 

SUAV 2, which is also due to its bottleneck position. However unlike SUAV 1, whose 

failure will completely disconnect the connection between node pair 𝐶, 𝐹, node pair 𝐶, 𝐹 

is still connected if only SUAV 2 fails. The next important node is SUAV 3, which relays 

SUAV 4, SUAV 5 and SUAV 6 to the command center. SUAV 4, SUAV 5 and SUAV 6 

are of the same importance due to their structural similarity. They are also of the least 

importance. This is because the impact of the failure of any of them is isolated and will 

not impact the other pathways that connecting node pair 𝐶, 𝐹. According to Table 13, the 

inter-connection link between the command center and SUAV 1 is the most important 

link in terms the connectivity robustness between node pair 𝐶, 𝐹 . This is due to its 

bottleneck role. The second important inter-connection link is the one between SUAV 1 

and SUAV 2; while the third important link is the one between SUAV 2 and SUAV 3. 

Based on the above centrality analysis results, to strengthen the capability-based 

connectivity robustness of the network in the example problem, additional failure 

protection mechanisms can be applied to network nodes, such as SUAV 1, SUAV 2 or to 

individual inter-connection links, such as the one between the command center and 

SUAV 1. 
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Figure 29. A Framework for the Fast Evaluation of the Capability-Based Connectivity Robustness of 

a CIN 
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5.1 The Practicality of the Proposed Framework 

In the previous section, it has been demonstrated how the framework can help 

evaluate a given CIN. In this section, the discussion focuses on the practicality of the 

proposed connectivity robustness measure. 

The key element of the proposed framework is to find the Moore-Penrose 

pseudoinverse of a network topology Laplacian, which is denoted as 𝐿+. As written in 

[96], the Moore-Penrose pseudo inverse and the sub-matrix inverses of the Laplacian can 

reveal significant topological characteristic of a graph and have been applied to fields as 

diverse as probability and mathematical chemistry, collaborative recommendation 

systems and social networks, epidemiology and infrastructure planning. Alas, despite 

such versatility, the pseudo inverse and the sub-matrix inverses of the Laplacian suffer a 

practical handicap. Using the standard matrix factorization and inversion based methods 

(e.g. Cholesky factorization and inversion) on a serial processor to compute 𝐿+  has 

an 𝑂(𝑁3) computational time, where 𝑁  is the number of network nodes. This means 

using the conventional methods, it is very expensive to compute 𝐿+. This clearly impedes 

the practical utilities of the proposed connectivity robustness measure and the subsequent 

analyses as network size grows. This is especially problematic during the CIN design and 

optimization process that regular 𝐿+ re-computations are required. In response to this, 

researchers have proposed several novel approaches to increase the efficiency of 

computing 𝐿+ . With a parallel architecture equipped with many processors, the time 

complexity of using the standard factorization and inversion methods to calculate 𝐿+ 

could be reduced to 𝑂(𝑁)  or even 𝑂(𝑙𝑜𝑔𝑁)  [97, 98]. If parallel computing is not 

available, using a divide-and-conquer based approach as proposed in [96] , the cost of 

computing 𝐿+ of an undirected graph is at a cost of 𝑂(𝑁2).  With those, the time 

complexity of the proposed method is no longer a problem. 
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5.2 An Alternative Design Generation Process 

In the following discussion, how the proposed measure can help design a CIN in 

terms of capability-based connectivity will be shown. The discussion starts by 

formulating the problem. The design problem will be decomposed into four sub-problems. 

Unconstrained situation will be considered first and then design constraints will be added 

gradually. 

The base sub-problem is to design a CIN with enough capability-based 

connectivity robustness to complete an operation without specify the number of entities 

(nodes) and links. Of course, the more nodes and the more links used, the more 

connectivity robust the CIN is. However, real world design practices are never conducted 

without a consideration on cost. For a CIN, by deploying more participant entities with 

high information transmission capabilities, more communication channels (such as all 

entities can communicate to each other, a P2P structure) with high reliability, the network 

can have very high capability-based connectivity robustness, but also a very high 

acquisition cost. Hence, usually, a CIN design will specify the maximum number of 

entities that can be used for a specific operation. This formulates Sub-Problem 1. On the 

other hand, network links are also established at a cost. In order to be able to 

communicate within the network, a network node needs to be equipped with enough 

information transmission capabilities, such as bandwidth, information processing 

capacity, range, and power to enable the communication. The higher and the more 

comprehensive the information transmission capabilities, the higher the acquisition cost. 

Sometimes some of the required information transmission capabilities are not practical 

due to design constraints, such as the space, take-off weight constraints of SUAVs. Hence, 

link constraints are required. Unlike the node constraint, which is the number of network 
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nodes that can be deployed, link constraints are more complex. In this thesis, the 

following link constraint: the feasibility of establishing a link, will be considered. With 

this constraint, Sub-problem 2 is formulated.  

This is to consider the feasibility of establishing a link considering the physical 

distance, interoperability between network entities. As defined in [99], interoperability is 

the ability of two or more systems or components to exchange resources in the form of 

data, information, materiel, and services, and to use the resources that have been 

exchanged to enable them to operate effectively together. 

Finally, in Sub-problem 3, the network topology selection criteria are set and the 

best network topology design or designs are selected accordingly using the framework 

discussed earlier in this Chapter. Guided by the above problem decomposition, the 

following CIN design process was proposed. 

The design activity corresponding to Sub-problem 0 or the base design problem is 

to specify the operation to be performed by a CIN. This is usually done by mission 

statement. For the example problem, the operation is to have a group of networked 

SUAVs operate over some fields and send regular updates to the command center 

regarding to the fields they monitor. 

The design activity corresponding to Sub-problem 1 is to specify the number of 

network nodes and their general roles including the physical location of each network 

node. For the example problem, there are six monitoring fields. The original CIN design 

(Figure 3) uses six SUAV. Hence, there are in total eight network nodes within the 

corresponding network model with one node representing the command center (node 𝐶), 

six nodes representing those SUAVs and one node for the information source (node 𝐹). 
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The design activity corresponding to Sub-problem 2 starts by firstly constructing 

a fully connected network using all the network nodes. Then, decide the sets of infeasible 

network links and remove those links from the fully connected network. 

Next, remove network links one at a step using the following rules. At each step, 

calculate the centrality of the existing network links in terms of �̅�𝑖∗,𝑗∗
𝑋  using the method 

proposed in Chapter 4 (Equation 37). Name the links whose removal will not result in 

any non-information source node disconnected from the command center as candidate 

links. Select the candidate link with the smallest link centrality. If there are more one 

candidate link with the smallest link centrality, then randomly select one. Remove the 

selected link from the network topology. Repeat the selection and removal process until 

no link left in the candidate link pool. The design process will stop here. Document the 

network topology obtained at each step, and calculate the average number of link failures 

until the capability critical node pair disconnects for each network topology. Need to note 

here, the capability critical node pair may vary along the design generation process. 

Name the network topologies obtained as the candidate network topologies. 

For the example problem, the design activities corresponding to Sub-problem 2 

starts with a fully connected undirected network with eight nodes as shown in Figure 30. 

Assume the physical impossible links are link 𝐵, 𝑢4 , link 𝐵, 𝑢5 , and link 𝐵, 𝑢6 . Next, 

using the above “link minus” approach, the link failure history for the example problem 

is shown in  

Table 14. During the “link minus” process, all links selected are both feasible and 

viable. 
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Figure 30. The Starting Topology of the Sub-Problem 2 for the Example CIN 

Table 14. Results of the “Link Minus” Procedure 

Step 𝑴 𝒌 𝒍 𝑬𝑹𝑪,𝑭 �̃̅�𝑪,𝑭
𝑿  

�̃̅�𝑪,𝑭
𝑿

𝑴
 

0 24 ----- 0.52 16.84 70.2% 

1 23 𝑢5 𝑢4 0.52 16.14 70.2% 

2 22 𝑢6 𝑢4 0.52 15.44 70.2% 

3 21 𝑢6 𝑢5 0.52 14.74 70.2% 

4 20 𝑢4 𝑢2 0.53 14.02 70.1% 

5 19 𝑢5 𝑢2 0.53 13.29 70.0% 

6 18 𝑢6 𝑢2 0.54 12.56 69.8% 

7 17 𝑢6 𝑢3 0.55 11.83 69.6% 

8 16 𝑢4 𝑢3 0.56 11.10 69.4% 

9 15 𝑢5 𝑢3 0.57 10.35 69.0% 
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10 14 𝑢3 𝑢2 0.57 9.66 69.0% 

11 13 𝑢2 𝑢1 0.57 8.95 68.9% 

12 12 𝑢3 𝑢1 0.58 8.24 68.7% 

Original Design 12 ------ 1.61 5.16 43.0% 

 

In Table 14, the first column is the step number. Step 0 corresponds to the base 

network topology obtained by removing all the physical impossible links. The second 

column is the number of network links within the network topology of each step. The 

third and the fourth columns contain the two ending nodes of the link removed at each 

step. The fifth column contains the effective resistance value between the critical node 

pair at each step. (Along the design generation process, node pair 𝐶, 𝐹  is always the 

capability critical node pair of the CIN). The last second column contains the estimated 

average number of link failures that will result in the disconnection between the 

capability critical node pair of each step. Finally, the last column is the estimated average 

fraction of link failures that will result in the disconnection between the capability critical 

node pair of each step. The average fraction of link failures until the capability critical 

node pair disconnects can be viewed as the structural efficiency of a CIN. 

From this table, the first observation can be made is, the capability-based 

connectivity robustness and the structure efficiency of all the candidate designs are higher 

than the original design. Next, plot the average number of disconnection link failures and 

the average fraction of disconnection link failures vs. the link number of each step as 

shown in Figure 31. All the candidate designs have similar structure efficiency.  
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Comparing the 𝐸𝑅𝐶,𝐹  column and the average fraction of disconnection link 

failures, the values in both columns are very stable. As the average fraction decreases, the 

𝐸𝑅𝐶,𝐹value increases. 

The design activity corresponds to the Sub-problem 3 is to specify the desired 

capability-based connectivity robustness (to link failures). Using the measure proposed in 

Chapter 3, it is to specific the minimum average number of link failures that can be 

tolerated during the CIN operation. Name that as the critical average number of link 

failures (�̅�𝑖∗,𝑗∗
𝑋 )

𝐶
, where 𝑖∗, 𝑗∗  is the capability critical node pair of the CIN. For the 

example problem, in order to maintain operation at the minimum level, node 𝐶 and node 

𝐹 have to remain connected. The value of (�̅�𝐶,𝐹
𝑋 )

𝐶
is decided to be five. In addition, from 

economic design perspective, the network topology with the smallest link number is 

selected (Step 12) and is shown in Figure 32. Comparing the optimized design and the 

original design, we can see the structural benefits are achieved by eliminating extra 

relaying hubs. 
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Figure 31. Co-plot of �̃̅�𝑪,𝑭
𝑿  and 

�̃̅�𝑪,𝑭
𝑿

𝑴
 vs. 𝑴 

 

Figure 32. The Optimized Network Topologies of the Example CIN 
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5.3 Chapter Summary 

The focus of this chapter is on the practical use of the proposed capability-based 

connectivity robustness measure and the subsequent analyses. First, a framework for the 

fast evaluation of the capability-based connectivity robustness of a CIN was proposed by 

summarizing the discussions provided in Chapter 2 to Chapter 4. The framework was 

demonstrated on the example discussed in Section 1.5. Next, the practicality of the 

proposed capability-based connectivity measure was discussed by stating its 

computational complexity. The key of the proposed measure and any subsequent analyses 

is to find the Moore-Penrose pseudoinverse of the Laplacian of a network topology, 

which is denoted as 𝐿+. With a parallel architecture equipped with many processors, the 

time complexity of using the standard factorization and inversion methods to calculate 𝐿+ 

could be reduced to 𝑂(𝑁) or even 𝑂(𝑙𝑜𝑔𝑁). This greatly enhanced the practical use of 

the proposed measure and the subsequent analyses. Finally, an alternative design 

generation procedure was proposed. It is very easy for the proposed procedure to 

incorporate design constraints. The design process is repeatable and generates a pool of 

design candidates. It enables rapid trade-offs between capability-based connectivity 

robustness and other considerations, such as link number and information transmission 

range. Although the process demonstrated in Section 5.2 focuses on the capability-based 

connectivity robustness of a CIN, it is flexible to be used as a sub-design process of a 

more comprehensive, complex design process. 

 



83 
 
 

 

CHAPTER VI 

HOW TO STRENGTHEN CAPABILITY-BASED 

CONNECTIVITY ROBUSTNESS 

This chapter demonstrates how the measuring process for the capability-based 

connectivity robustness developed in Chapter 3 and the corresponding centrality 

measures discussed in Chapter 4 can be used to help develop some strategies to 

strengthen the capability-based connectivity robustness of a CIN. This is just to 

strengthen the connectivity robustness between the capability critical node pair of the 

CIN, or more specifically, to increase the value of �̅�𝑖∗,𝑗∗
𝑋 . Two different strategies are 

considered. The first one is to add a new link into the existing network. This is to increase 

the static connectivity robustness between the capability critical node pair. The second 

strategy is to prepare a substitution for a network node, which is usually of great 

importance to the connectivity robustness between the capability critical node pair. 

6.1 How to Add a Link 

In this section, the strategy of adding a link will be discussed. The goal is to find a 

way to quickly determine the location to add a new link that increases the �̅�𝑖,𝑗
𝑋  value of a 

given node pair most. Such a position will be referred to as the optimal position and 

denoted as 𝑒+. 

The most straightforward way to find 𝑒+ is to quantify the effects of adding a link 

on �̅�𝑖,𝑗
𝑋 , and then to conduct an exhaustive search to identify the link whose addition 

results in the most �̅�𝑖,𝑗
𝑋  increase. For a given network topology, adding a link does not 

change the network node number. Use 𝐸𝑅𝑖,𝑗
𝑒  to denote the new effective resistance value 
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between node pair 𝑖, 𝑗 after link 𝑒  is added to the original network. According to the 

discussion in Chapter 3, to compare the effects of adding a network link 𝑒 on �̅�𝑖,𝑗
𝑋  is to 

compare the value of 
1

𝐸𝑅𝑖,𝑗
𝑒 . In other words, to find the link whose addition results in the 

most �̅�𝑖,𝑗
𝑋  increase is to find the one with the lowest 𝐸𝑅𝑖,𝑗

𝑒  value. 

Hence, the complexity of comparing the effects of adding a link on the �̅�𝑖,𝑗
𝑋  is on 

the same order of calculating 𝐸𝑅𝑖,𝑗. As discussed earlier, using conventional calculation 

method on a serial processor, the complexity order of calculating 𝐸𝑅𝑖,𝑗 is 𝑂(𝑁3) [55]. 

The network topologies of most CINs are sparse. This means the number of non-existing 

network links of a CIN network topology is on the same order of 𝑂(𝑁2). As a result, the 

total complexity order of finding 𝑒+ through an exhaust search could be  𝑂(𝑁5). Clearly, 

there is a need for methods that determine 𝑒+ in a computationally scalable fashion with 

high accuracy. 

In [55], the authors proposed four different methods for finding 𝑒+ in terms of the 

connectivity robustness of a whole network. The one based on 𝐿+  has the best 

performance for all the networks tested. Motivated by that, in this section, a method 

based on 𝐿+ for finding 𝑒+ in terms of �̅�𝑖,𝑗
𝑋  was developed. Among all the possible link 

positions, the proposed method chooses the one with the highest Ω𝑒 value. Assume the 

two ending nodes of a link 𝑒  are 𝑘  and 𝑙 , Ω𝑒 or Ω𝑘,𝑙 can be calculated through the 

following equation. 

 
𝛺𝑘,𝑙
𝑖,𝑗
 = −

𝛥𝑈𝑖,𝑘,𝑗 + 𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘 + Δ𝑈𝑙
−
𝛥𝑈𝑘,𝑖,𝑙 + 𝛥𝑈𝑘,𝑗,𝑙

Δ𝑈𝑖 + Δ𝑈𝑗
 39 

The superscript 𝑖, 𝑗  is added to indicate that the node pair of interest is 𝑖, 𝑗 . 

Equation 39 contains two parts. Referring back to the discussion in Chapter 3, the first 

part of  𝛺𝑘,𝑙
𝑖,𝑗
 can be viewed as the centrality of the originally non-existing link 𝑘, 𝑙 . 
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According to Hypothesis 3, the higher the centrality of an existing link as calculated by 

Equation 3738, the higher the impact of its removal on the value of �̅�𝑖,𝑗
𝑋 . Hypothesis 3 

has passed its test. However, this does not necessary mean failing to reject the following 

statement: The higher the centrality of a non-existing link as calculated by Equation 37 

38is, the higher the impact of its addition to �̅�𝑖,𝑗
𝑋 . In order to address this, the second part 

of Equation 39 was added. The second part measures the importance of the connectivity 

robustness between node 𝑖 and node 𝑗 to the connectivity robustness between node 𝑘 and 

node 𝑙. The argument is that, if the non-existing link 𝑘, 𝑙 is truly very important to the 

connectivity between node 𝑖 and node 𝑗, either the value of 
𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
 or 

𝛥𝑈𝑘,𝑖,𝑙+𝛥𝑈𝑘,𝑗,𝑙

Δ𝑈𝑖+Δ𝑈𝑗
 

should be relatively small. This forms the fourth hypothesis of this thesis. 

𝐻4: 𝛺𝑘,𝑙
𝑖,𝑗

 can indicate the benefits of adding a non-existing link into a network on �̅�𝑖,𝑗
𝑋 . 

𝐻0
4: 𝛺𝑘,𝑙

𝑖,𝑗
 cannot indicate the benefits of adding a non-existing link into a network on 

�̅�𝑖,𝑗
𝑋 . 

Hypothesis 4 was tested using the following experiment, which is a modified 

version of the one used in [55]. For a given key node pair 𝑖, 𝑗, the 𝐸𝑅𝑖,𝑗
𝑒  values of all the 

possible link additions are calculated. Next, calculate the 𝛺𝑒
𝑖,𝑗

 values of all the possible 

link additions. Order the 𝐸𝑅𝑖𝑗
𝑒  value in ascending order, and denote this as (𝐸𝑅𝑖,𝑗

𝑒 )
∗
. Now 

for a key node pair, the following data series can be obtained: [𝛺𝑒
𝑖,𝑗
, 𝐸𝑅𝑖,𝑗

𝑒 , (𝐸𝑅𝑖,𝑗
𝑒 )

∗
]. List 

the three columns together in the following fashion. For each non-existing network link, 

we can have a 𝛺𝑒
𝑖,𝑗

 value and a 𝐸𝑅𝑖,𝑗
𝑒  value. Sort the data pairs in the two columns in 

descending order of 𝛺𝑒
𝑖,𝑗

. Finally, attach the (𝐸𝑅𝑖,𝑗
𝑒 )

∗
 column to the sorted data table. 

Refer to this newly obtained data table the performance table of node pair 𝑖, 𝑗. After the 
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three columns are properly listed, the absolute relative difference between  𝐸𝑅𝑖,𝑗
𝑒  and 

(𝐸𝑅𝑖,𝑗
𝑒 )

∗
is calculated for each link (each row). Denote the difference as 𝐸𝑟𝑟𝑒

𝑖,𝑗
. 

 
𝐸𝑟𝑟𝑒

𝑖,𝑗
=
| 𝐸𝑅𝑖,𝑗

𝑒 − (𝐸𝑅𝑖,𝑗
𝑒 )

∗
|

(𝐸𝑅𝑖,𝑗
𝑒 )

∗  
4

0 

The experiments was carried out on the two SF networks and the two Rand 

networks developed in Chapter 3. For each network, 20 node pairs were randomly 

selected. The experiment results are summarized in Table 15 and Table 16. Table 15 

contains the results of the two SF networks and Table 16 contains the results for the two 

Rand networks. In both tables, “first 1” is the 𝐸𝑟𝑟𝑒
𝑖,𝑗

 value of the first row (link) in the 

performance table for node pair 𝑖, 𝑗. It represents the accuracy of 𝛺𝑘,𝑙
𝑖,𝑗
 identifying 𝑒+ for a 

given node pair. “First 2” is the average 𝐸𝑟𝑟𝑒
𝑖,𝑗

 value of the first two rows (links) in the 

performance table for key node pair 𝑖, 𝑗. It represents the accuracy of 𝛺𝑘,𝑙
𝑖,𝑗

 identifying the 

optimal link 𝑒+, and the second optimal link. “Overall” is the averaged 𝐸𝑟𝑟𝑒
𝑖,𝑗

 value over 

all the rows in the performance table for node pair 𝑖, 𝑗. It represents the overall accuracy 

of using 𝛺𝑘,𝑙
𝑖,𝑗

 to compare the impact of the addition of non-existing network links. 

From Table 15 and Table 16, it can be observed that, the “first 1” 𝐸𝑟𝑟𝑒
𝑖,𝑗

 values of 

almost all the node pairs are 0, which means 𝛺𝑘,𝑙
𝑖,𝑗

 can successfully identify the optimal 

non-existing link. In addition, the “first 2” 𝐸𝑟𝑟𝑒
𝑖,𝑗

 values and the “overall” 𝐸𝑟𝑟𝑒
𝑖,𝑗

 values 

of all the node pairs are so small that 𝐻0
4 is rejected. The fact that, for most of the node 

pairs, the “first 2” 𝐸𝑟𝑟𝑒
𝑖,𝑗

values are bigger than the corresponding “overall” 𝐸𝑟𝑟𝑒
𝑖,𝑗

 values 

suggests the performance of 𝛺𝑘,𝑙
𝑖,𝑗

 fluctuates and eventually stabilizes when identifying the 

benefits of adding a non-existing link as the link’s �̅�𝑖,𝑗
𝑋  benefit decreases.  
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Table 15. Performance of 𝜴𝒌,𝒍
𝒊,𝒋

 for Different Node Pairs (Rand) 

NODE PAIR 

INDEX 

Rand_30_60 Rand_50_100 

First 1 First 2 Overall First 1 First 2 Overall 

1 0.00% 1.17% 0.66% 0.00% 1.10% 0.51% 

2 0.00% 0.00% 0.58% 0.00% 3.84% 0.72% 

3 0.00% 1.39% 0.64% 0.00% 2.40% 0.59% 

4 0.00% 0.43% 0.73% 0.00% 1.73% 0.46% 

5 0.00% 1.63% 0.53% 0.00% 5.16% 0.52% 

6 0.00% 1.33% 0.65% 0.00% 1.66% 0.55% 

7 0.00% 0.05% 0.52% 0.00% 4.66% 0.72% 

8 0.00% 0.99% 0.49% 0.00% 3.76% 0.62% 

9 0.00% 3.15% 0.74% 0.00% 1.25% 0.32% 

10 0.00% 3.73% 0.86% 0.00% 0.82% 0.33% 

11 0.00% 3.31% 0.68% 0.00% 0.55% 0.34% 

12 0.00% 0.41% 0.53% 0.00% 1.03% 0.36% 

13 1.94% 3.08% 0.41% 0.00% 2.63% 0.62% 

14 0.00% 0.00% 0.81% 0.00% 1.03% 0.36% 

15 0.00% 0.89% 0.35% 0.00% 1.44% 0.44% 

16 0.00% 0.32% 0.62% 0.00% 3.55% 0.74% 

17 0.00% 0.00% 0.72% 0.00% 3.40% 0.51% 

18 0.00% 0.00% 0.97% 0.00% 4.85% 0.64% 

19 0.00% 2.65% 0.57% 0.00% 4.53% 0.34% 

20 0.00% 1.66% 0.58% 0.00% 0.08% 0.19% 

AVERAGE 0.10% 1.31% 0.63% 0.00% 2.47% 0.49% 

STD 0.42% 1.22% 0.15% 0.00% 1.57% 0.15% 
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Table 16. Performance of 𝜴𝒌,𝒍
𝒊,𝒋

 for Different Node Pairs (SF) 

NODE PAIR 

INDEX 

SF_30_60 SF_50_100 

First 1 First 2 Overall First 1 First 2 Overall 

1 0.00% 0.00% 0.44% 0.00% 0.85% 0.79% 

2 0.00% 0.93% 0.55% 0.00% 0.24% 0.68% 

3 0.00% 2.26% 0.67% 0.00% 4.62% 0.64% 

4 0.00% 0.36% 0.37% 0.00% 3.03% 0.60% 

5 0.00% 0.11% 0.53% 0.00% 0.00% 0.42% 

6 0.00% 1.60% 0.48% 0.00% 0.58% 0.59% 

7 0.00% 1.20% 0.38% 0.00% 0.78% 0.71% 

8 0.00% 5.55% 0.61% 0.00% 2.81% 0.75% 

9 0.00% 4.01% 0.53% 0.00% 0.00% 1.10% 

10 0.00% 3.70% 0.68% 0.00% 2.63% 0.90% 

11 0.00% 5.90% 0.55% 0.00% 0.34% 0.69% 

12 0.00% 4.05% 0.62% 0.00% 0.00% 0.79% 

13 0.00% 4.05% 0.62% 0.00% 0.00% 0.88% 

14 0.00% 2.28% 0.48% 0.00% 0.00% 0.93% 

15 0.00% 1.14% 0.38% 0.00% 0.00% 0.84% 

16 0.00% 2.04% 0.60% 0.00% 1.05% 0.73% 

17 0.00% 1.45% 0.44% 0.00% 0.80% 0.95% 

18 0.00% 6.12% 0.68% 0.00% 3.44% 0.88% 

19 0.00% 5.73% 0.33% 0.00% 2.50% 0.97% 

20 0.00% 2.11% 0.45% 0.00% 0.09% 0.65% 

AVERAGE 0.00% 2.73% 0.52% 0.00% 1.19% 0.77% 

STD 0.00% 1.96% 0.11% 0.00% 1.39% 0.16% 
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6.2 How to Prepare a Substitution 

Resilience has the same fundamental motivation and ultimate goal as robustness. 

They both originated as system level design concepts. Unlike robustness that has a 

concrete definition, resilience is a “work in progress” concept which, at present, could 

have a number of different meanings [84]. [85] provides a good review of existing 

definitions on resilience, and summaries that, robustness is the ability to resist or 

counteract adverse events, while resilience is the ability to adapt to or recover from those 

adverse events, while stability is acquired in a new state.  

In Chapter 3, the capability-based connectivity robustness of a CIN is measured 

through analyzing the inter-connection structure of a CIN (network topology). In the 

following discussion, it will be shown that concept of capability-based connectivity 

robustness can be generalized and the proposed measuring process can be used to 

indicate the effectiveness of a prescribed link failure coping mechanism (resilience). The 

robustness obtained through the inter-connection structure of a CIN will be referred to as 

static robustness and the robustness achieved though some dynamic coping mechanism 

will be referred to as dynamic robustness. 

Some researchers argue that robustness is a passive design character against 

adverse events, and resilience is an active design character against adverse events. Hence, 

resilience should be pursued instead of robustness. However, robustness and resilience 

are not two competing concepts. They both have their own merits. For an individual 

system, robustness in general is much easier to achieve comparing to resilience, which 

usually requires “self-healing” ability. Although it can be easier for a CIN to achieve 

resilience since the “self-healing” ability can be achieved by the interaction between 

different agents, there are many real issues to be addressed for practical resilience. Use 

networked SUAVs as an example. One proposed way to achieve resilience is through 
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network re-wiring or re-configuration. This may sound easy on paper. But in reality, to 

achieve that, an SUAV needs to be equipped with a very powerful sensor system for 

service discovery, a high computation capability for information processing and 

information transmission routing calculation, a strong information processing capacity to 

cope with information surge caused by information transmission routing change and 

SUAV-SUAV coordination, a high battery capacity and so on. It also requires enough 

space and take-off weight to carry all these supporting equipments [5, 36]. Even though 

instead of using distributed decision making, centralized decision making can lift the 

computation burden on each individual SUAV, strong if not stronger information 

processing capabilities are still required to send the control information to each individual 

SUAV in a timely manner. Moreover, most of the hardware technologies that can provide 

those aforementioned supports with high reliability are still open research questions [36]. 

As a result, built-in static robustness could be a more practical solution that delivers 

similar effects. 

In summary, robustness and resilience are not two competing concepts. It is hard 

to say which one is better. To have how much robustness and how much resilience built 

in is design dependent. In general, robustness is easier to achieve and “act” immediately 

with no delay; while resilience can be harder and more costly to achieve and usually 

incurs a delay in action upon impairments, but it has the potential to be more effective 

and cost-efficient considering the entire acquisition life cycle of a CIN.  

In this section, the strategy of preparing substitutions for some nodes will be 

discussed. The core concept is to build in substitution mechanism in a network for one or 

more important nodes. So that when such nodes malfunction or are unreachable, their 

substitution nodes can take on their responsibility and sustain the CIN operation. 

Different from the strategy of adding a link, this strategy does not change the topology of 
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a CIN. This strategy does not strength the connectivity robustness between the capability 

critical node pair of a CIN through increasing its static robustness. This strategy responds 

to network impairments dynamically through substitution nodes and strengthens the 

connectivity robustness between the capability critical node pair by building in dynamic 

robustness or in other words, resilience.  

The key of using this concept lies in finding the right substitution for a given node. 

This requires a method to quantify the effects of this strategy. The following discussion 

starts with an example of this strategy: assigning a deputy leader and shows that the 

proposed capability-based connectivity robustness evaluation process discussed in 

Chapter 3 can also be used to quantify the effectiveness of this link failure coping 

mechanism, 

Assuming in a CIN, collected information is merged up to a commander for 

decision-making and then decision information is transferred down to each entity within 

the network. The key to sustain the CIN operation is to keep the commander informed 

during the operation and make sure its decisions can be executed at the operation field. 

Because of the importance of the commander’s role to the entire operation, a deputy 

commander role is assigned to another node within the network. In case something 

happens to the commander that it is disconnected from the network or malfunction, the 

deputy commander will take on the commander role and sustain the operation (if the 

deputy commander node functions well). This example is illustrated in Figure 33.  

In Figure 33, 𝐶 node represents the commander node and 𝐶′ node is the node that 

assigned as the deputy commander. 𝐼  represents information field. The solid lines 

represent the information transmission between network nodes. While the dashed lines 

represent information transmission between field and network nodes. The dashed lines 

can comprise more network nodes and the interconnection between them. However, for 
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the purpose of illustrating this strategy, they are not shown in details. With the existence 

of a deputy commander, the operation can be sustained as long as there is a connection 

between node 𝐼 and node 𝐶 or node  𝐼 and node 𝐶′. 

 

Figure 33. Example of Assigning a Deputy Commander in a CIN 

(No Common Incident Nodes; Commander and Deputy Commander Not Connected) 

Next, the capability-based connectivity robustness evaluation process proposed in 

Chapter 3 is used to evaluate the effectiveness of this strategy. Before the evaluation, 

some modification on a network topology is required to reflect this dynamic failure 

copying mechanism. As mentioned earlier, this strategy, in essence says, the CIN 

operation can be sustained as long as a connection exists between node 𝐼 to either node 𝐶 

or node 𝐶′ , this is to shorting node 𝐶  and node 𝐶′. In electrical engineering, shorting 

means to have the resistance between two nodes infinitely small. With this, the network 

can be modified by collapsing node 𝐶 and node 𝐶′ together as illustrated in Figure 34. 

 

Figure 34. Modified Network Topology by Shorting Node 𝑪 and Node 𝑪′  

(No Common Incident Nodes; Commander and Deputy Commander Not Connected) 
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If there is no common node that is incident to the two collapsed nodes and the two 

collapsed nodes are not connected, then to quantify the effectiveness of this strategy is to 

measure the capability-based connectivity robustness of the modified network topology. 

For this example, it is to measure �̅�𝐶(𝐶′),𝐼
𝑋  on the modified network, which will be 

denoted as (�̅�𝐶(𝐶′),𝐼
𝑋 )

𝐺′
, and to compare it with (�̅�𝐶,𝐼

𝑋 )
𝐺

. 

However, if there is any common node that is incident to the two collapsed nodes 

or the commander node and the deputy commander node are connected, then the 

effectiveness measured by the above process, which is to compare (�̅�𝐶(𝐶′),𝐼
𝑋 )

𝐺′
 to  

(�̅�𝐶,𝐼
𝑋 )

𝐺
, will not yield the right result. An example of this scenario is shown in Figure 35. 

 

Figure 35. Example of Assigning a Deputy Commander in a CIN 

(Common Incident Nodes; Commander and Deputy Commander Connected) 

As shown in Figure 35, node 1 is connected to both node 𝐶 and node 𝐶′ and node 

𝐶  and node 𝐶′  are connected to each other. When node 𝐶  and node 𝐶′  are collapsed 

together, there are actually two links connecting node 𝐶(𝐶′) and node 1, which cannot be 

reflected by Figure 34. It seems that this issue can be solved by simply adding another 

link between node 𝐶(𝐶′) and node 1 in Figure 34, which results in a non-simple graph 

(more than two links between a node pair) or a weighted network. However, the proposed 

evaluation process can only handle simple, unweighted networks. In order to use the 
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results obtained from Chapter 3, Figure 35 needs to be simplified into a simple, 

unweighted network. 

This can be achieved by first calculating (�̅�𝐶(𝐶′),𝐼
𝑋 )

𝐺′
without considering those 

extra links. Treat any extra link as a redundant link and inflate (�̅�𝐶(𝐶′),𝐼
𝑋 )

𝐺′
using the 

method discussed in Section 3.4. This method is depicted in Figure 36. If there is 𝑀 links 

in the original network topology, and the network resulted from this modification has 𝑀′ 

non-redundant links, then (�̅�𝐶(𝐶′),𝐼
𝑋 )

𝐺′
 should be inflated by 

𝑀+1

𝑀′+1
. 

 

Figure 36. Modified Network Topology by Shorting Node 𝑪 and Node 𝑪′  

(Common Incident Nodes; Commander and Deputy Commander Connected) 

In order to test the performance of the proposed evaluation method, the following 

experiment was carried out on the two SF and the two Rand networks. For each network, 

20 node pairs were randomly selected. 

Denote the two end nodes of a node pair as 𝑖 and 𝑗. For each node pair, randomly 

select a node within the network that is different from 𝑖 and 𝑗. Name this node 𝑘. Node 𝑘 

is used as the substitution of node 𝑗. Keep a copy of the original network topology and 

denote it as 𝐺. Then modify the original network topology using the network topology 

modification method illustrated in Figure 36. This is to collapse node 𝑗 and node 𝑘, and 

consider all the extra links resulted from this modification as pure redundant links. The 

network topology obtained from this modification will be denoted as 𝐺′. Feed the two 
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network topologies, 𝐺 and 𝐺′into the link failure simulation model developed in Chapter 

3 with 10000 runs (the pure redundant links need to be removed first before feeding into 

the simulation model). For network 𝐺, stop each simulation run when both node pair 𝑖, 𝑗 

and node pair 𝑖, 𝑘  are disconnected. Take the average number of link failures of the 

10000 runs and denote it as (�̅�𝑖,𝑗(𝑘)
𝑋 )

𝐺
.  For network 𝐺′, stop the simulation when node 

pair 𝑖, 𝑗(𝑘) is disconnected. Denote the average number of link failures as (�̅�𝑖,𝑗(𝑘)
𝑋 )

𝐺′
. As 

mentioned earlier, (�̅�𝑖,𝑗(𝑘)
𝑋 )

𝐺′
needs to be adjusted to account for the effects of extra links 

resulted from node collapsing. The adjusted average number of link failures will be 

denoted as (�̅�𝑖,𝑗(𝑘)
𝑋 )

𝐺′

′
. Compare the value (�̅�𝑖,𝑗(𝑘)

𝑋 )
𝐺′

′
 to the value of (�̅�𝑖,𝑗(𝑘)

𝑋 )
𝐺

and 

calculate their percentage differences (errors) using to the following equation, which will 

be denoted as 𝐸𝑟𝑟
𝐺′
𝑖,𝑗(𝑘)

. 

 

𝐸𝑟𝑟
𝐺′
𝑖,𝑗(𝑘)

=
|(�̅�𝑖,𝑗(𝑘)

𝑋 )
′

𝐺′
− (�̅�𝑖,𝑗(𝑘)

𝑋 )
𝐺
|

(�̅�𝑖,𝑗(𝑘)
𝑋 )

𝐺
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For each node pair, the above process was repeated until all the network nodes 

within a network that are different from node 𝑖 and node 𝑗 have been selected once. For 

each network node pair, calculate the average percentage error over all the network nodes 

that are different from node 𝑖 and node 𝑗. The experiment results are summarized in Table 

17. The estimation errors of the proposed evaluation method of all the node pairs are 

negligible regardless of network types. Hence, it can be concluded that, the proposed 

evaluation method can provide a close estimation for the effects of designating a 

substitution node within a network. In addition, based on the previous discussion, the 

effects can be directly estimated (measured) without using simulation. 
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Table 17. Performance of the Proposed Resilience Evaluation Method on Classical Networks 

 

NODE PAIR 

INDEX 
Rand_30_60 Rand_50_100 SF_30_60 SF_50_100 

1 1.08% 2.32% 1.54% 1.32% 

2 0.84% 2.75% 1.56% 2.19% 

3 0.86% 2.16% 2.29% 1.76% 

4 1.17% 0.98% 2.71% 2.10% 

5 2.12% 2.06% 2.22% 2.72% 

6 0.86% 1.71% 1.60% 1.19% 

7 1.45% 1.21% 1.32% 1.62% 

8 1.49% 1.28% 2.87% 2.24% 

9 1.16% 1.21% 1.47% 2.83% 

10 1.73% 1.10% 2.70% 1.43% 

11 1.53% 0.83% 2.90% 2.15% 

12 0.76% 1.19% 3.29% 2.10% 

13 2.39% 1.08% 3.21% 1.97% 

14 1.13% 1.03% 3.79% 1.89% 

15 1.62% 0.78% 2.13% 2.44% 

16 1.43% 1.20% 1.39% 1.11% 

17 1.20% 0.89% 1.27% 2.31% 

18 1.48% 1.21% 2.28% 2.33% 

19 1.19% 0.89% 2.16% 2.25% 

20 1.56% 1.19% 3.94% 2.41% 

AVERAGE 1.35% 1.35% 2.33% 2.02% 

STD 0.41% 0.54% 0.80% 0.47% 
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6.3 Chapter Summary 

In this chapter, two different strategies were proposed to strengthen the capability-

based connectivity robustness of a CIN. Based on the discussion in Chapter 3, the goal 

can be translated to strengthen the connectivity robustness between a given node pair. 

The first strategy is to add a new link to an original network, which is to increase 

the static connectivity robustness. The second strategy is to designate substitution nodes 

for one or more important nodes within a network, which is to increase the dynamic 

connectivity robustness. 

The first strategy was discussed in Section 6.1. The key of the first strategy is 

have a method to quickly determine the optimal position to add an additional link within 

a network in terms of increasing �̅�𝑖,𝑗
𝑋 . 𝛺𝑘,𝑙

𝑖,𝑗
 was proposed as an indicator for the impact of 

an originally non-existing link on �̅�𝑖,𝑗
𝑋 . 𝛺𝑘,𝑙

𝑖,𝑗
 can be calculated through Equation 39. 

The bigger the 𝛺𝑘,𝑙
𝑖,𝑗

 value is, the more impact the originally non-existing link has 

on �̅�𝑖,𝑗
𝑋 . Equation 39 was validated by rejecting 𝐻0

4. 

The second strategy was discussed in Section 6.2. The key of using this strategy 

lies in finding the right substitution for a given node. This requires a method to quantify 

the effectiveness of this strategy. It was demonstrated that the capability-based 

connectivity robustness evaluation process proposed in Chapter 3 together with a simple 

network topology modification procedure could be used to quantify the effectiveness of a 

dynamic link failure coping mechanism as illustrated in Figure 37. 
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Figure 37. Summary of the Proposed Evaluation Methods 
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CHAPTER VII 

CONGESTION CONSIDERATION 

As discussed in Section 1.3, information congestion can also result in connectivity 

loss. The discussion in Chapter 3 is based on the assumption that congestion will not 

happen. In other words, the assumption says that each network node is always congestion 

robust. In the literatures, congestion robustness of a network node is defined as the ability 

of a network node to sustain information overload. It is also defined as the tendency of a 

network node to experience congestion. In order to avoid congestion, each network node 

should be equipped with enough information processing capacity.  

For a CIN comprised by a given number of links and nodes, there is an upper 

boundary on the capability-based connectivity robustness of the CIN against link failures 

assuming that all the entities have enough information processing capacity. To further 

increase the capability-based connectivity robustness, one can add links or nodes to the 

architecture. It may seem that to add a network link between existing network nodes is 

much cheaper than adding another network node. However, only adding links between 

existing network nodes may be neither economically viable nor technically feasible due 

to the extra information processing capacity required on relevant nodes. 

Network node congestion robustness depends on the information exchange 

dynamics within a network, which includes [2, 86, 87]: 

1. Information processing behaviors 

a. Information output rate (constrained by bandwidth) 

b. Queue type, queue capacity, queue discipline, and service rate (information 

processing capacity) 
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2. Information distribution behaviors 

a. The probability of information exchange to exist between a node pair 

b. The probability of the information exchange path between a given node pair 

to include a particular node 

In [86, 88, 89], Z. P. Hu etc. investigated the effects of network structures, packet 

information generation rate, routing plans, queue types and disciplines on the information 

exchange dynamics and congestion robustness of a given network through simulation. In 

Section 7.1, focus will be given to individual nodes to understand how information 

exchange dynamics affect the congestion behaviors of individual nodes. 

Changes to any element within the above list may affect the congestion robustness 

of a network node. A thorough study of the relationship between information 

transmission dynamics and congestion robustness itself can be the content of a thesis. For 

the analysis purpose of this thesis, only the following scenario was considered. 

Table 18.  Information Transmission Scenario 

Packet Output Rate Uniform 𝝀 

Routing Strategy Shortest Path 

Queue Type 
Single Server, Limited Capacity 

(Discard) 

Queue Service Rate 

(Information Processing Capacity ) 
Uniform Γ 

Queue Capacity Uniform Υ 

Queue Principle FIFO 

Exchange Matrix Modified Uniform 

For simplicity, assume all the network nodes have the same packet output rate, 

which is denoted as 𝜆. Shortest path routing strategy is used. The shortest path routing 

strategy is a global routing strategy, which means when a packet information is generated, 

its transmission route will be associated with it. Next, assume each node is a single server, 
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First-In-First-Out (FIFO) queue with uniform information processing capacity (service 

rate) Γ. Moreover, assume each node has limited queue capacity Υ and all the network 

nodes have the same queue capacity. If a packet of information transmitted to an 

intermediate node that does not have enough capacity to store that packet, that packet of 

information will be discarded. Last, a node chooses its destination node according to a 

probability matrix, which is the information exchange matrix in Table 18. Details of this 

matrix will be given in the following discussion. 

7.1 Understanding Congestion Behaviors 

A discrete-time model is usually used to study the traffic dynamics within a 

complex network [86, 88-90] assuming time is slotted (discretized). Hence, a discrete-

time simulation model on information transmission and processing within a network was 

developed based on the scenario described in Table 18. During each time slot (stamp), 

each network node generates a packet at rate 𝜆 and picks the destination node for this 

newly generated information packet according to the exchange matrix specified in Table 

18. During each time slot (stamp), each node also processes and transfers information out 

to one of its neighbor according to the shortest path routing plan. When a packet reaches 

an intermediate node, it can be processed immediately (no queue and enough remaining 

information processing capacity), stored (enough queue space but not enough remaining 

information processing capacity), or discarded (not enough queue space and not enough 

remaining information processing capacity). When a packet reaches its destination, it is 

either absorbed by the destination node (the destination node can be viewed as the 

information sink for that information packet) or discarded if the queue of the destination 

node is full. Besides the settings given in Table 18, the model is also based on the 

following assumptions. 
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1. Undividable Information 

An information packet can only be sent or accepted as a whole at once during 

each time stamp.  

2. No information addition or loss during transmission unless being absorbed or 

discarded. 

After an information packet is generated, unless it is absorbed or discarded, its 

packet size will keep constant. 

3. Ignore the time required for information processing. 

4. The information transmission time between any adjacent nodes is the same. 

Ignore the actual distance between two connected nodes within a network. 

5. All information needs to be proceed before sent out by a network node. 

This is to simplify the information transmission and processing model by not 

distinguishing information by its generation source. In addition, all the 

information outputted by a node needs to be proceed and takes the information 

processing capacity of that node. 

6. A node cannot choose itself as information destination. 

A discrete-time information transmission and processing simulation model 

captures the reality well. In reliability, one of the most popular wireless information 

transmission and processing method is packet switching and processing. Packet switching 

is a digital network communication method that groups all transmitted data into suitably 

sized blocks, called packets, which are transferred via a medium that might be shared by 

multiple simultaneous communication sessions. Packet processing refers to the wide 

variety of algorithms that are applied to a packet data or information as it moves through 

the various network elements of a communication network. The reason that packet 

switching and processing receives widely acceptance is that it can increase network 
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efficiency, robustness and enables technological convergence of many applications 

operating on the same network.  [91] 

The detailed simulation process was carried out on two different network 

topologies: SF_10_20 and Rand_10_20. The two network topologies were generated 

separately using the BA SF model and the ER Rand model. Sample from a uniform 

distribution matrix to obtain an information exchange matrix. Each cell of this uniform 

distribution matrix is a uniform distribution between 0 and 1. The size of the matrix is the 

same as the adjacency matrix of the network. A raw information exchange matrix 

generated by this will have cell entries that are too small to be meaningful, which will 

hinder the investigation of node congestion behaviors (too distributed information traffic 

results in no prominent congestion behaviors). In order to correct this, set the values of 

those cells with probability less than or equal to 0.5 to 0. Re-normalize the matrix to 

make sure each row adds up to 1 and the newly obtained matrix will be used as the 

information exchange matrix. This process was carried out twice and two different 

information exchange matrices were obtained. The values of the two matrices are 

provided in Appendix I.  

For each information exchange probability matrix, choose three different valued 

for the information processing capacity of each node Γ: 1, 1.5, and 2. For each Γ value, 

change the packet out rate 𝜆 from 0.05 to 0.95 with 0.05 increment (19 different 𝜆 values 

in total). Further, there are two different queue capacity settings Υ: 5, 10. For each input 

combination (network topology 𝐺 , information exchange matrix 𝑃(𝑗|𝑖) , information 

processing capacity Γ, packet output rate 𝜆, and queue capacity Γ), the simulation was 

carried out with 300 time stamps. The simulation results will be discussed below. To 

facilitate the discussion, the following quantities will be used based on [89]: 

1. Internal Information Size: 𝐼𝑖(𝑡)   
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Internal information size of a network node at time stamp t. 

2. Total Delivery Rate: 𝐷𝐿𝐺(𝑡)  

The total information packets delivery rate of the entire network at stamp 𝑡. 

3. Total Packet Discard Rate: 𝐷𝑆𝐺(𝑡) 

The total information packets discard rate of the entire network at stamp 𝑡. 

4. Total Deliver Time 𝜏𝐺(𝑡):  

The time for a packet information to be delivered within a network averaged from 

time stamp 0 to time stamp 𝑡. 

Figure 38 and Figure 39 are two figures for the time averaged internal information 

size of each network node ( 𝐼�̅� =
∑  𝐼𝑖(𝑡)
300
𝑡=1

300
) versus 𝜆. Figure 38 is for SF_10_40 network 

and Figure 39 is for Rand_10_40 network. The network nodes that are not plotted in 

Figure 38 and Figure 39 have 𝐼�̅� values constantly 0. Such nodes do not serve as inter-

transmission nodes for information exchange between any node pair. 

Therefore, the first conclusion can be drawn is that if a network node does not 

serve as an inter-transmission node for information exchange between any node pair as 

prescribed in the information exchange probability matrix, it will never experience 

congestion as long as its packet output rate does not exceed its information processing 

capacity. 

As 𝜆 increases, eventually a network nodes will experience congestion. This can 

be seen in both Figure 38 and Figure 39. In all the plots, initially the 𝐼�̅� value of each 

network node is close to zero and then gradually increases as 𝜆 increases. Some nodes 

will experience a surge of its 𝐼�̅� value as 𝜆 continuously increases and passes a certain 

value. Then their 𝐼�̅� values will peak to its queue capacity level or a level close to its 

queue capacity with little fluctuations. As 𝜆  continuously increases, eventually the 𝐼�̅� 

values of all the network nodes (except those whose 𝐼�̅� value is constantly 0) reach the 
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queue capacity level or a level close to the queue capacity little fluctuations. Based on 

this observation, a quantitative congestion definition for nodes with limited queue 

capacity can be given: node congestion occurs when its total internal information size 

increases to the level close to its queue capacity with little fluctuations. Name the 𝜆 value 

when a node starts to experience congestion as the critical 𝜆 value of this node, which 

will be denoted as 𝜆𝑖
𝐶. 

In [89], three traffic stages were proposed to characterize the congestion 

behaviors of a network based on the total internal information size of the entire network. 

The concepts of the three states are adapted in the following discussion. Instead of using 

the average total internal information size of the entire network, the average internal 

information size of each network node (𝐼�̅�) will be used. 

1. Light Traffic State (LTS) 

In this state,  𝐼�̅� remains almost unchanged or gradually increases as 𝜆 increases.  

2. Moderate Congestion State (MCS) 

As 𝜆 increases, after 𝜆 ≥ 𝜆𝐺
𝐶𝐿, the 𝐼�̅� value of one or more nodes starts to increase 

dramatically and reaches the level close to queue capacity Υ . 

𝜆𝐺
𝐶𝐿  is the lower critical 𝜆 value of network 𝐺. It is the 𝜆 value when the first node 

congestion happens, and 𝜆𝐺
𝐶𝐿 = min( 𝜆𝑖

𝐶) , 𝑖 ∈ 𝑉. 

3. Heavy Congestion State (HCS) 

If 𝜆 continuously increases, after 𝜆 ≥ 𝜆𝐺
𝐶𝑈, the 𝐼�̅� values of all network nodes are 

close to queue capacity Υ. 

𝜆𝐺
𝐶𝑈  is the upper critical 𝜆 value of network 𝐺. It is the 𝜆 value when the last node 

congestion happens, and 𝜆𝐺
𝐶𝑈 = max( 𝜆𝑖

𝐶) , 𝑖 ∈ 𝑉. 
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Those three congestion stages can be observed in both Figure 38 and Figure 39. 

Regardless of the network topology type and the information exchange matrix used, the 

higher the information processing capacity is, the higher the values of 𝜆𝐶𝑖  are for all 

network nodes. Therefore, the higher the values of 𝜆𝐺
𝐶𝐿   and 𝜆𝐺

𝐶𝑈. With everything else the 

same, different network topologies affect the node congestion behaviors differently. This 

can be seen by the difference between the set of nodes whose 𝐼�̅� values are greater than 0 

and their 𝜆𝑖
𝐶  values. Similar observation can be made for the effects of different 

information exchange probability matrices. By increasing the information processing 

capacity of a network node, its congestion can be delayed to occur at a greater 𝜆 value, 

which in other words is to increase its 𝜆𝑖
𝐶 value. If the values of min( 𝜆𝑖

𝐶) and max(𝜆𝑖
𝐶) 

are affected and increased, the onsite of MCS and HCS stages of the entire network can 

also be delayed. 

It can be seen in both Figure 38 and Figure 39 that, it is possible that more than 

one nodes whose 𝜆𝑖
𝐶  values are equal to min(𝜆𝑖

𝐶).  However, those nodes can have 

different 𝐼�̅�(𝜆𝑖
𝐶) values. 𝐼�̅�(𝜆𝑖

𝐶) is the 𝐼�̅� value of a network node when 𝜆 reaches 𝜆𝑖
𝐶. Under 

the simulation scenario prescribed by Table 18, the node that has the highest 𝐼�̅� value is 

the most prone to congestion. The reason that several nodes can have the same 𝜆𝑖
𝐶 values 

that equal to min(𝜆𝑖
𝐶) while different 𝐼�̅�(𝜆𝑖

𝐶) values is the nature of the simulation model. 

As discussed earlier, the model is for packet switching information transmission and 

processing method and is a discrete-time simulation model. In addition, the increment of 

𝜆  is 0.05. Those discreteness results in less discretion of 𝜆𝑖
𝐶  values. Because of this, 

instead studying the exact 𝜆𝑖
𝐶 value of each network node, group the 𝜆𝑖

𝐶 values of network 

nodes into different tier. The nodes that experience congestion first as 𝜆 increases have 

their 𝜆𝑖
𝐶 values equal or close to 𝜆𝐺

𝐶𝐿. They start to experience congestion with a sudden 
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jump in their  𝐼�̅� values. Group such nodes into the first tier. The onsite of the congestion 

of the first tire nodes marks the change of network congestion state from LTS to MCS. 

For the nodes that enter congestion state latest as 𝜆 increases, their 𝜆𝑖
𝐶 values are equal or 

close to 𝜆𝐺
𝐶𝑈 . Those nodes also enter congestion states with a surge in their 𝐼�̅�  values. 

Group such nodes into the third tier. The onsite of the congestion of the third tier nodes 

marks the change of network congestion state from MCS to HCS. In between the onsites 

of MCS and HCS, there is a congestion development period as 𝜆 increaes. During the 

development period, the nodes that do not belong to either the first tier or the third tier 

start to experience 𝐼�̅� increase (e.g. node 8 and node 10 in Figure 39) as 𝜆 increases before 

experiencing congestion. Those nodes will be grouped into the second tier. Different 

from the nodes from the first tier and the third tier, the congestion of the second tier 

nodes is gradually developed.  
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Figure 38. Plots of  �̅�𝒊 versus 𝝀 for SF_10_20 
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Figure 39. Plots of  �̅�𝒊 versus 𝝀 for Rand_10_20 
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Next, the time averaged total information delivery rate (𝐷𝐿̅̅ ̅̅ 𝐺 ) and the time 

averaged information discard rate (𝐷𝑆̅̅ ̅̅ 𝐺) versus 𝜆 were plotted as shown in Figure 40 and 

Figure 41. The gray lines in those plots represent the summation of the 𝐷𝐿̅̅ ̅̅ 𝐺  and 𝐷𝑆̅̅ ̅̅ 𝐺 , 

which represents the average amount of information packets generated per time stamp 

within the network. Since there are 10 nodes within each network, and at each time stamp 

each network node generates 1 packet information, theoretically the average amount of 

information packets generated per time stamp should be 10. As can be seen in those plots, 

the gray lines always stay on the level of 10, which proves the validation of this 

simulation. Next, look at the red lines, which are for 𝐷𝐿̅̅ ̅̅ 𝐺. In all the plots, for all the 

simulation scenarios, the trend lines for 𝐷𝐿̅̅ ̅̅ 𝐺 have several stages, which correspond to the 

LTS, MCS and HCS stages (when Γ = 2, there is no HCS stage) discussed previously. At 

LTS stage, 𝐷𝐿̅̅ ̅̅ 𝐺 stays at 10, which is the total amount of information packets generated 

per time stamp. This means there is no information loss at LTS stage. At MCS stage, the 

value of 𝐷𝐿̅̅ ̅̅ 𝐺  decreases to an intermediate level between 0 and 10 as congestion starts to 

develop within network nodes and further decreases to the lowest level at HCS stage. At 

each network congestion stage, the value of 𝐷𝐿̅̅ ̅̅ 𝐺  stays relatively constant. Since the 

addition of 𝐷𝐿̅̅ ̅̅ 𝐺  and 𝐷𝑆̅̅ ̅̅ 𝐺  stays constant, same observations can be made for the trend 

lines of 𝐷𝑆̅̅ ̅̅ 𝐺 (blue lines) except the value change direction as 𝜆 increases. 

The above discussion reveals one of the adverse impacts of congestion, which is 

information loss. As can be seen from Figure 40 and Figure 41, information loss starts 

(𝐷𝑆̅̅ ̅̅ 𝐺 greater than 0) as soon as the network enters MCS congestion stage. 
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Figure 40. Co-plot of 𝑫𝑳̅̅ ̅̅ 𝑮, 𝑫𝑺̅̅ ̅̅ 𝑮versus 𝝀 for SF_10_20 
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Figure 41. Co-plot of 𝑫𝑳̅̅ ̅̅ 𝑮, 𝑫𝑺̅̅ ̅̅ 𝑮 versus 𝝀 for Rand_10_20 
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Figure 42 is a comparison between the 𝐼�̅� value of each network node under the 

first information exchange matrix, with Γ = 1 and Υ = 5 and 10 separately. From Figure 

42, one immediate observation can be made is that, increasing the queue capacity from 5 

to 10 does not affect the 𝜆𝑖
𝐶 value of any network node. Moreover, the plots within Figure 

42 contain the same set of network nodes and the shapes and trends of the lines within 

each plot are very similar to each other. This suggests very similar information exchange 

dynamics and congestion behaviors between Υ =5 scenario and Υ = 10 scenario. From 

those observations, we can conclude that, when the node queue capacity is higher than a 

certain value, further increasing its value will not yield any additional congestion benefits.  

According to the plots, apparently node congestion can happen at LTS when its queue 

capacity is low enough. Name such kind of node congestion as early congestion. Early 

congestion prevents the information processing capacity of a node to be fully used and 

results in non-economic designs. Hence, each network node should be equipped with 

enough information storage space (queue capacity) to prevent early congestion. 
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Figure 42. Plots of  �̅�𝒊 versus 𝝀 for SF_10_20 under Different 𝚼 Values 

 

7.2 Critical Information Processing Capacity 

In Section 7.1, it has been shown that, the information processing capacity Γ of network 

nodes can affect their congestion behaviors. In addition, the effects vary under different CINs 

(network topologies) and different information exchange matrices. In this section, focus will be 

given to deriving the required information processing capacity of each network node. 

There are two guidelines based on the conclusions made in the previous section. 
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1. Each network node should be equipped with enough information processing capacity 

Γ𝑖 so that no node will experience congestion during operation. Denote the critical 

Γ𝑖 value as Γ𝑖
𝐶. Γ𝑖

𝐶 is the minimum information processing capacity node 𝑖 required to 

avoid congestion. 

2. Γ𝑖
𝐶 of all the network nodes should be set in they way that minimum the network 

polarization value of Γ𝑖
𝐶 about min(Γ𝑖

𝐶), which will be denoted as 𝜋Γ𝐶. 

For a network quantity, its polarization can be defined as following: 

 
𝜋∗ =

|∗𝑚𝑎𝑥/𝑚𝑖𝑛 −<∗>|

<∗>
 

where,  

<∗> means the average of quantity *. 

 

42 

 

The first guideline is to ensure that no network node will experience congestion 

due to inadequate information processing capacity. The second guideline aims for 

economic CIN designs. The above two guidelines are rather qualitative. Based on these 

two design requirements, in the following discussion, a quantitative design requirement 

on Γ𝑖
𝐶 will be given. It is desired to know the required information processing capacity of 

each network node that can be derived from the inter-connection structure and the 

connectivity situation of a CIN. 

7.2.1 Static Critical Information Processing Capacity 

 In order to achieve that, a link between Γ𝑖
𝐶 , network topology and node 

congestion robustness is needed. The relationship between a network topology and node 

congestion robustness is usually quantified by betweenness (centrality). The betweenness 

of a node is the number of paths between all the other node pairs that pass through that 

node [73]. The paths are decided by the information routing strategy and the network 
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topology deployed. Since the shortest distance routing strategy is used in this thesis 

(Table 18), the shortest path (𝜎) betweenness will be used. Node betweenness centrality 

can be viewed as normalized node betweenness. Equation 43 is the equation for 

calculating node betweenness centrality. Betweenness (centrality) can also be defined for 

network links. In this thesis, only node betweenness centrality will be discussed. For 

simplicity, in the following discussions, when referring to betweenness centrality, it 

means node betweenness centrality. 

 

𝐵𝐶𝑘
𝑉 =∑∑

𝜎𝑖𝑗(𝑘)

𝜎𝑖,𝑗

𝑁

𝑗=1
𝑗≠𝑖
𝑗≠𝑘

𝑁

𝑖=1
𝑖≠𝑘

 43 

 

 From the discussion in Section 7.1, information exchange matrix can also affect 

the congestion behavior of a node. Betweenness (centrality) only considers the routing 

strategy and the topology of a network. It does not incorporate any information on the 

information exchange matrix used. Instead, the following augmented betweenness 

centrality will be used to incorporate the effects different information exchange matrices. 

 

𝑎𝐵𝐶𝑘
𝑉 =∑∑𝑝(𝑗|𝑖)𝑝(𝑘|𝑖, 𝑗)

𝑁

𝑗=1
𝑗≠𝑖
𝑗≠𝑘

𝑁

𝑖=1
𝑖≠𝑘

 

where,  

𝑝(𝑗|𝑖) is the probability of node 𝑖  choosing node 𝑗  as its information 

destination; 

𝑝(𝑘|𝑖, 𝑗)  is the probability for node 𝑘  to be on the information 

transmission path from node 𝑖 to node 𝑗. 

 

44 

 

Equation 44 is motivated by the probabilistic interpretation of betweenness 

centrality and the (traffic-aware) node utilization proposed in [92]. There are two 
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differences between the augmented betweenness centrality proposed here and the 

betweenness utilization proposed in [92]. First, the augmented betweenness centrality 

utilizes conditional probability to quantify the information distribution behaviors within a 

network. Second, the augmented betweenness centrality separates the effect of the 

information exchange matrix (𝑝(𝑗|𝑖)) from the effect of the network topology and the 

routing strategy (𝑝(𝑘|𝑖, 𝑗)) of a CIN. The information exchange matrix of a CIN reflects 

the collaboration relationship (structure) between individual entities. To separate the 

effects allows the effects of different information exchange matrices on network 

congestion behaviors to be explored. 

  According to Equation 44, 𝑎𝐵𝐶𝑘
𝑉 represents the probability for node 𝑘 to relay 

information within a network. Incorporating 𝑎𝐵𝐶𝑘
𝑉 with the information transmission rate 

between node pairs and dividing it by the information processing capacity of node 𝑘 

yields a ratio that represents the average information accumulation rate within node 𝑘. 

Name this ratio as information congestion centrality denoted as 𝐼𝐶𝑘
𝑉. The following is the 

mathematical representation of 𝐼𝐶𝑘
𝑉 . 

 

𝐼𝐶𝑘
𝑉 =

∑ ∑ 𝑝(𝑗|𝑖)𝑝(𝑘|𝑖, 𝑗)𝑁
𝑗=1
𝑗≠𝑖
𝑗≠𝑘

𝑁
𝑖=1
𝑖≠𝑘

𝜆𝑖,𝑗 + 𝜆𝑘

Γk
 

where,  

𝑝(𝑗|𝑖) is the probability of node 𝑖 choosing node 𝑗 as its information 

destination; 

𝑝(𝑘|𝑖, 𝑗)  is the probability for node 𝑘  to be on the information 

transmission path from node 𝑖 to node 𝑗; 

𝜆𝑖,𝑗 is the information output rate from node 𝑖 to node 𝑗; 

Γk is the information processing capacity of node 𝑘. 

 

45 
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Under uniform information output rate and processing rate scenario, Equation 45 

becomes: 

 
𝐼𝐶𝑘

𝑉 =
𝜆

Γ
(𝑎𝐵𝐶𝑘

𝑉 + 1) 46 

If it can be shown that 𝐼𝐶𝑘
𝑉 is an indicator for node congestion robustness, it can 

be used to derive Γ𝑖
𝐶 . For each simulation case plotted in Figure 38 and Figure 39, the 

values of 𝐵𝐶𝑘
𝑉 , 𝑎𝐵𝐶𝑘

𝑉, 𝐼𝐶𝑘
𝑉 and 𝜆𝑘

𝐶, 𝐼�̅�(𝜆𝑘
𝐶) are summarized together in Table 19 sorted by 

the value of 𝐼𝐶𝑘
𝑉.  
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Table 19. Summary of  𝑩𝑪𝒌, 𝒂𝑩𝑪𝒌, 𝑰𝑪𝒌
𝑽, 𝝀𝑪𝒌 , �̅�𝒌(𝝀𝑪𝒌) Values   

(For Simulation Scenarios Plotted in Figure 38 and Figure 39) 

 

a. SF_10_20 

𝒌 𝑩𝑪𝒌
𝑽 𝒂𝑩𝑪𝒌

𝑽 
𝑷𝟏, 𝚪 = 𝟏, 𝚼 = 𝟓 𝑷𝟏, 𝚪 = 𝟏. 𝟓, 𝚼 = 𝟓 𝑷𝟏, 𝚪 = 𝟐, 𝚼 = 𝟓 

𝑰𝑪𝒌
𝑽 𝝀𝒌

𝑪 �̅�𝒌(𝝀𝒌
𝑪) 𝑰𝑪𝒌

𝑽 𝝀𝒌
𝑪 �̅�𝒌(𝝀𝒌

𝑪) 𝑰𝑪𝒌
𝑽 𝝀𝒌

𝑪 �̅�𝒌(𝝀𝒌
𝑪) 

2 0.22 2.28 0.82 0.25 0.65 0.77 0.35 0.98 0.82 0.50 1.21 

5 0.18 2.28 0.82 0.25 0.51 0.77 0.35 0.67 0.82 0.50 1.30 

4 0.12 1.28 0.68 0.30 0.44 0.76 0.50 0.91 0.74 0.65 1.01 

6 0.02 0.30 0.65 0.50 0.01 0.65 0.75 0.34 -- -- -- 

1 0.02 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 

 

 

𝒌 𝑩𝑪𝒌
𝑽 𝒂𝑩𝑪𝒌

𝑽 
𝑷𝟐, 𝚪 = 𝟏, 𝚼 = 𝟓 𝑷𝟐, 𝚪 = 𝟏. 𝟓, 𝚼 = 𝟓 𝑷𝟐, 𝚪 = 𝟐, 𝚼 = 𝟓 

𝑰𝑪𝒌
𝑽 𝝀𝒌

𝑪 �̅�𝒌(𝝀𝒌
𝑪) 𝑰𝑪𝒌

𝑽 𝝀𝒌
𝑪 �̅�𝒌(𝝀𝒌

𝑪) 𝑰𝑪𝒌
𝑽 𝝀𝒌

𝑪 �̅�𝒌(𝝀𝒌
𝑪) 

5 0.18 2.43 0.86 0.25 0.77 0.80 0.35 0.94 0.86 0.50 1.51 

2 0.22 2.33 0.83 0.25 0.66 0.78 0.35 0.89 0.83 0.50 1.37 

4 0.12 1.46 0.74 0.30 0.58 0.82 0.50 0.81 0.80 0.65 1.16 

6 0.02 0.43 0.72 0.50 0.04 0.72 0.75 0.41 -- -- -- 

1 0.02 0.10 0.55 0.50 0 0.55 0.75 0.11 -- -- -- 

3 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 
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b. Rand_10_20 

𝒌 𝑩𝑪𝒌
𝑽 𝒂𝑩𝑪𝒌

𝑽 
𝑷𝟏, 𝚪 = 𝟏, 𝚼 = 𝟓 𝑷𝟏, 𝚪 = 𝟏. 𝟓, 𝚼 = 𝟓 𝑷𝟏, 𝚪 = 𝟐, 𝚼 = 𝟓 

𝑰𝑪𝒌
𝑽 𝝀𝒌

𝑪 �̅�𝒌(𝝀𝒊
𝑪) 𝑰𝑪𝒌

𝒗 𝝀𝒌
𝑪 �̅�𝒌(𝝀𝒊

𝑪) 𝑰𝑪𝒌
𝑽 𝝀𝒌

𝑪 �̅�𝒌(𝝀𝒌
𝑪) 

5 0.16 1.71 0.81 0.30 0.76 0.90 0.50 1.13 0.88 0.65 1.50 

2 0.12 1.49 0.75 0.30 0.56 0.83 0.50 0.83 0.81 0.65 1.16 

4 0.04 1.08 0.62 0.30 0.29 0.69 0.50 0.38 0.68 0.65 0.84 

6 0.12 0.93 0.97 0.50 1.16 0.97 0.75 1.49 -- -- -- 

1 0.06 0.91 0.96 0.50 1.26 0.96 0.75 1.53 -- -- -- 

3 0.04 0.47 0.74 0.50 0.17 0.74 0.75 0.49 -- -- -- 

7 0 0 0 0 0 0 0 0 0 0 0 

8 0.06 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 

 

 

 

𝒌 𝑩𝑪𝒌
𝑽 𝒂𝑩𝑪𝒌

𝑽 
𝑷𝟐, 𝚪 = 𝟏, 𝚼 = 𝟓 𝑷𝟐, 𝚪 = 𝟏. 𝟓, 𝚼 = 𝟓 𝑷𝟐, 𝚪 = 𝟐, 𝚼 = 𝟓 

𝑰𝑪𝒌
𝑽 𝝀𝒌

𝑪 �̅�𝒌(𝝀𝒊
𝑪) 𝑰𝑪𝒌

𝒗 𝝀𝒌
𝑪 �̅�𝒌(𝝀𝒊

𝑪) 𝑰𝑪𝒌
𝑽 𝝀𝒌

𝑪 �̅�𝒌(𝝀𝒊
𝑪) 

5 0.12 1.75 0.83 0.30 0.97 0.92 0.50 1.64 0.89 0.65 1.66 

2 0.16 1.58 0.77 0.30 0.56 0.86 0.50 0.91 0.84 0.65 1.22 

4 0.12 1.11 0.63 0.30 0.33 0.70 0.50 0.55 -- -- -- 

6 0.06 0.99 1.00 0.50 0.3 1.00 0.75 1.69 -- -- -- 

1 0.04 0.74 0.87 0.50 0.53 0.87 0.75 1.12 -- -- -- 

3 0.04 0.32 0.66 0.50 0.06 0.66 0.75 0.42 -- -- -- 

7 0.06 0.27 0.64 0.50 0.03 0.64 0.75 0.29 -- -- -- 

8 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 
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The following observations can be made from Table 19. First, 𝐵𝐶𝑘
𝑉  cannot 

capture the information transmission criticalness of node 𝑘 relaying information within a 

network. However, under uniform packet output and processing rates, 𝑎𝐵𝐶𝑘
𝑉 can.  

This conclusion is made by the following observations. Firs, compare the values 

of 𝐵𝐶𝑘
𝑉and 𝑎𝐵𝐶𝑘

𝑉 to the values of 𝜆𝑘
𝐶 and 𝐼�̅�(𝜆𝑘

𝐶). As can be seen in the four sub-tables, 

under uniform packet output and processing rates, it is always the case that the network 

nodes with bigger  𝑎𝐵𝐶𝑘
𝑉  values have smaller 𝜆𝑘

𝐶  values regardless of the simulation 

setting. In addition, for the network nodes with the same 𝜆𝑘
𝐶  value, the ones with higher 

𝑎𝐵𝐶𝑘
𝑉 values also have the higher 𝐼�̅�(𝜆𝑘

𝐶  ) values. While the same observation cannot be 

made for  𝑎𝐵𝐶𝑘
𝑉 . Second, if a node does not serve as intermediate node for any 

information transmission, its information processing capacity will only be used for 

processing the packet generated by itself. As long as the packet output rate of such a node 

does not exceed its information processing rate, it will not experience congestion and its 

𝐼�̅�(𝜆𝑘
𝐶  ) value should always be zero. Since in all the simulation settings, the packet 

output rate is smaller than the information processing rete of a node, the 𝐼�̅�(𝜆𝑘
𝐶  ) values of 

the non-relaying nodes should be zero. As can be observed from the four sub-tables, the 

 𝑎𝐵𝐶𝑘
𝑉 values of the nodes whose 𝐼�̅�(𝜆𝑘

𝐶  ) values are zero are also zero. While the same 

observations cannot be made for 𝐵𝐶𝑘
𝑉 . Therefore, comparing to 𝐵𝐶𝑘

𝑉 , 𝑎𝐵𝐶𝑘
𝑉  is a better 

quatity that captures the criticalness of a node relaying information within a network. 

If keep everything else the same but assume information can be sent and 

processed in a more continuous manner, then a bigger 𝜆𝑘
𝐶 value can be observed for each 

network node under the same simulation setting. It is because for packet switching and 

processing, if a packet information exceeds the size of the remaining information 
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processing capacity of a network node, the packet cannot be processed and have to wait 

in queue until there is enough available information processing capacity.  

According to the physical meaning of Equation 46 and the definition of node 

congestion, under continuous situation information transmission and processing situation, 

a network will enter into MCS from LTS when the 𝐼𝐶𝑘
𝑉  value of any network node 

exceeds one. Hence in order to avoid the onsite of MCS within a network, 𝐼𝐶𝑘
𝑉 should not 

exceed one during the entire CIN operation period. With this, the following relationship 

can be developed to avoid the onsite of MCS within a network.  

 
𝐼𝐶𝑘

𝑉 =
max (𝜆)

Γ
(𝑎𝐵𝐶𝑘

𝑉 + 1) ≤
𝜆𝑘
𝐶

Γ
(𝑎𝐵𝐶𝑘

𝑉 + 1) = 1   ∀𝑘 ∈ 𝑉 

where, 

max (𝜆) is the maximum information output rate during a CIN operation. 

 

47 

 

Rewrite Equation 47 as shown in Equation 48. Clearly, Γ𝑘
𝐶 = max(𝜆) (𝑎𝐵𝐶𝑘

𝑉 +

1). 

 Γ ≥ Γ𝑘
𝐶 = max(𝜆) (𝑎𝐵𝐶𝑘

𝑣 + 1) 48 

Equation 48 seems fine except that it does not consider the discreteness of packet 

switching and processing method. For packet switching and processing method, with 

everything else the same, using packet switching and processing method would result in 

lower 𝜆𝑘
𝐶 values for network nodes comparing to using continuous packet switching and 

processing method. That means for packet switching and processing method, a network 

would enter into MCS from LTS when the 𝐼𝐶𝑘
𝑣 value of any network node exceed a 

value smaller than one. This can be confirmed by observing the first row of each sub-

table within Table 19. Therefore, for packet switching and processing method, Equation 

47 and Equation 48 should be modified as following. 

 
𝐼𝐶𝑘

𝑉 =
max (𝜆)

Γ
(𝑎𝐵𝐶𝑘

𝑉 + 1) ≤
𝜆𝑖
𝐶

Γ
(𝑎𝐵𝐶𝑘

𝑉 + 1) < 1   ∀𝑘 ∈ 𝑉 
 

49 
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 Γ𝑘
𝐶 > max(𝜆) (𝑎𝐵𝐶𝑘

𝑣 + 1) 

or 

Γ𝑘
𝐶 = [max(𝜆) (𝑎𝐵𝐶𝑘

𝑉 + 1) + 𝜀𝑘] 

50 

 

51 

For uniform Γ situation, the critical Γ value can be decided as 

 Γ𝐶
𝐺 = max (Γ𝑘

𝐶) 52 

If information can be sent and processed in a continuous manner, then setting Γ𝑘 

to Γ𝑘
𝐶  will meet the two design guidelines proposed at the beginning of this section 

simultaneously. For packet switching and processing, the task now becomes to select the 

𝜀𝑘 value for each network node so that to meet the two design guidelines at the same 

time. The exact value 𝜀𝑘 depends on the packet output rate and is a more complex issue 

that will not be addressed in the content of this thesis. 

max(𝜆) (𝑎𝐵𝐶𝑘
𝑉 + 1)  can be viewed as the minimum required information 

processing capacity of each network node for avoiding congestion regardless of the 

information transmission and processing method used. For packet switching and 

processing, it is easy to see from Equation 50 and Equation 51. However, why it is also 

the case if continuous information switching and processing?  

That is because regardless of the method used, the above discussion assumes no 

network impairments. In other words, the network topology used to calculate 𝑎𝐵𝐶𝑘
𝑉 does 

not change. When a network is impaired, the information traffic within that network will 

experience redistribution. If network nodes are impaired or link impairments that result in 

network disconnectness, then the network will also experience decease in the total 

information generation rate. Information redistribution can induce congestion in an 

originally not congested node if more information has to be relayed through that node. It 
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can also alleviate the information transmission burden placed on network nodes due to 

decrease in total information generation rate. 

Those are two competing effects on node congestion situations within a network. 

Normally under light network impairments situation, the effect of information 

redistribution dominates. As impairment scale increases, the effect of the decrease in total 

information generation rate starts to be more dominant. To show this, the SF_10_20 

network was fed into the link failure simulation model with 1000 runs. Within each run, 

randomly select and remove a network link one at a time until node 3 and node 6 

disconnected. After each link failure, calculate and document the 𝑎𝐵𝐶𝑘
𝑉value of each 

network node. The first information exchange matrix as shown in Table 21 will be used. 

For run number 𝑟, denote the 𝑎𝐵𝐶𝑘
𝑉 value of node 𝑘 corresponding to the number 

of link failures that does not result in discussion between node 3 and node 6 as 

(𝑎𝐵𝐶𝑘
𝑉)𝑟
𝑚3,6 . Taking the average of (𝑎𝐵𝐶𝑘

𝑉)𝑟
𝑚3,6  over the 1000 runs yields (𝑎𝐵𝐶̅̅ ̅̅ ̅̅

𝑘
𝑉)𝑚3,6 

(𝑚3,6 represents the number of impaired links that does not result in discussion between 

node 3 and node 6.). In Figure 43, the  (𝑎𝐵𝐶̅̅ ̅̅ ̅̅
𝑘
𝑉)𝑚3,6 values of all the 10 network nodes are 

plotted together against the values of 𝑚3,6. 

According to Equation 46, under uniform packet output and processing rate, 

𝑎𝐵𝐶𝑘
𝑉  can be used to compare the congestion robustness of network nodes. If 𝜆 and Γ 

stay constant along network impairment process, then 𝑎𝐵𝐶𝑘
𝑉 can also be used to compare 

the congestion robustness of network nodes along network impairment process.  

As can be seen in Figure 43, except node 4 and node 5, the  (𝑎𝐵𝐶̅̅ ̅̅ ̅̅
𝑘
𝑉)𝑚3,6 values of 

all the other nodes firstly increase and then decrease as 𝑚3,6  increases.  (𝑎𝐵𝐶̅̅ ̅̅ ̅̅
4
𝑉)𝑚3,6 

slightly decreases when 𝑚3,6 is very small and then increases back to its original level 

before decreases to zero. (𝑎𝐵𝐶̅̅ ̅̅ ̅̅
5
𝑉)𝑚3,6  first decreases at a very small rate and then 

decreases to zero at a much bigger rate when the (𝑎𝐵𝐶̅̅ ̅̅ ̅̅
𝑘
𝑉)𝑚3,6 values of the other nodes 



125 
 
 

 

start to decrease. This observation supports the previous discussion on the two competing 

effects of network impairments on node congestion situations. 

 

Figure 43. Plot of (𝒂𝑩𝑪̅̅ ̅̅ ̅̅
𝒌
𝑽)
𝒎𝟑,𝟔

 vs. 𝒎𝟑,𝟔 for SF_10_20 
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So even for continuous information transmission and processing, if each network 

node within a network is equipped with Γ𝐶
𝐺 = max(𝜆) (𝑎𝐵𝐶𝑘

𝑉 + 1)  information 

processing capacity, no network node will experience information congestion if the 

network is not impaired. However, under network impairments, it is very possible that 

one or more network nodes will experience congestion due to the effect of information 

traffic redistribution. Therefore, max(𝜆) (𝑎𝐵𝐶𝑘
𝑉 + 1)  is the minimum required 

information processing capacity of each network node for avoiding congestion regardless 

of the information transmission and processing method used. 

7.2.2 Dynamic Critical Information Processing Capacity 

Continue the discussion under the previous link failure experiment. To decide 

how much more information processing capacity node 𝑘 needs to avoid congestion under 

network impairments, the value of max(𝑎𝐵𝐶𝑘
𝑉) is needed. And Equation  51 becomes  

 Γ𝑘
𝐶 = max(𝜆) [max(𝑎𝐵𝐶𝑘

𝑉) + 1] + 𝜀𝑘 53 

However, in reality, it may not necessary to obtain the max(𝑎𝐵𝐶𝑘
𝑉) value over the 

entire 𝑚𝑖,𝑗 value field. What needed is the max(𝑎𝐵𝐶𝑘
𝑉) value over a practical 𝑚𝑖,𝑗 value 

field in terms of CIN operation. “Practical” means the probability of node pair 𝑖, 𝑗 to stay 

connected with  𝑚𝑖,𝑗  number of link failures during the operation period of a CIN is 

significant. Denote such a probability as 𝑝(𝑚𝑖,𝑗) and its significant level as 𝑝0(𝑚𝑖,𝑗). 

Hence the practical field of 𝑚𝑖,𝑗   is from 0 to some value determined by 𝑝0, and denote 

the 𝑚𝑖,𝑗  value corresponds to 𝑝0  as (𝑚𝑖,𝑗)𝑝0 . 𝑝(𝑚𝑖,𝑗)  can be obtained by taking the 

product of the probability of exact 𝑚𝑖,𝑗  number of link failures during operation, 

𝑝1(𝑚𝑖,𝑗), and the probability of node pair 𝑖, 𝑗 to stay connected after 𝑚𝑖,𝑗 number of link 

failures, 𝑝2(𝑚𝑖,𝑗). 
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 𝑝(𝑚𝑖,𝑗) = 𝑝1(𝑚𝑖,𝑗)𝑝2(𝑚𝑖,𝑗) 54 

To decide the practical 𝑚𝑖,𝑗  value field is to find out all the 𝑚𝑖,𝑗  values that 

satisfy: 

 𝑝(𝑚𝑖,𝑗) ≥ 𝑝0 55 

The probability of a link to fail during operation is determined by its reliability. 

Assume the reliability distributions of all the network links are iid and follow an 

exponential distribution with scale parameter Θ equals MTTF. Figure 44 is the PDF and 

CDF of an exponential distribution with scale parameter Θ = 8 (hours). The PDF is the 

probability of the “life time length” of a link under the previous assumption. The CDF 

represents the probability of a link failure after operating length 𝑡. 
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Figure 44. PDF and CDF of an Exponential Distribution (Scale = 8)  
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Assume an operation has length T, then the number of exact 𝑚𝑖,𝑗  link failures 

during operation is a passion distribution with rate 
𝑇

Θ
. 

 𝑝1(𝑚𝑖,𝑗) = 𝑝
𝑃𝑜𝑠𝑠𝑖𝑜𝑛(

T
Θ
)
(𝑚𝑖,𝑗) 56 

Review the definition of 𝑚𝑖,𝑗, which is the number of link fails that will not result 

in node pair 𝑖, 𝑗 disconnection. Hence, the probability node pair 𝑖, 𝑗 to stay connected after 

𝑚𝑖,𝑗 number of link failures can be expressed as following. 

 𝑝2(𝑚𝑖,𝑗) = 1 − 𝑃𝑖,𝑗
𝑋 (𝑚𝑖,𝑗

𝑋 ≤ 𝑚𝑖,𝑗) 57 

In Equation 57, 𝑃𝑖,𝑗
𝑋 (𝑚𝑖,𝑗

𝑋 ≤ 𝑚𝑖,𝑗) represents the probability of node pair 𝑖, 𝑗  to 

disconnect after 𝑚𝑖,𝑗  link failures. It is the CDF of the probability of node pair 𝑖, 𝑗 to 

disconnect at exact 𝑚𝑖,𝑗 link failures. Equation 57 in essence says, the probability of node 

pair 𝑖, 𝑗 to stay connected after 𝑚𝑖,𝑗 link failures is equal to 1 minus the probability of 

node pair 𝑖, 𝑗 to disconnect after 𝑚𝑖,𝑗 link failures.  

In order to obtain 𝑝2, the key is to find 𝑝𝑖,𝑗
𝑋  (PMF) or 𝑃𝑖,𝑗

𝑋  (CDF). Unlike 𝑝1, it is 

usually hard to obtain the exact distribution for either 𝑝𝑖,𝑗
𝑋  or  𝑃𝑖,𝑗

𝑋  given an arbitrary 

network topology. Here, a method based on the principle of maximum entropy to 

estimate the distribution of 𝑝𝑖,𝑗
𝑋  is proposed. This method also uses the 𝐸𝑅𝑖,𝑗 based �̅�𝑖,𝑗

𝑋  

estimation method proposed in Chapter 3. 

Given a network 𝐺 with 𝑁 nodes, using the method proposed in Chapter 3, we 

can easily obtain close estimations for (�̅�𝑖,𝑗
𝑋 )

𝐹𝑈𝐿𝐿
 and �̅�𝑖,𝑗

𝑋 . Now there are three pieces of 

information handy for estimating 𝑝𝑖,𝑗
𝑋 : its central or typical value (�̃̅�𝑖,𝑗

𝑋 ), its sample space 

([0, (�̃̅�𝑖,𝑗
𝑋 )

𝐹𝑈𝐿𝐿
]) and it is a discrete probability distribution (rounding of (�̃̅�𝑖,𝑗

𝑋 )
𝐹𝑈𝐿𝐿

]) is 

necessary if its value is not integer). 
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Next, the principle of maximum entropy will be used to construct the PMF of 𝑝𝑖,𝑗
𝑋 . 

The principle of maximum entropy states that when one searches for a probability 

distribution that satisfies some constrains (evidence or information) known, the correct 

one to choose is the one that maximizes the uncertainty or entropy subject to these 

constrains [93-95]. The maximum entropy distribution that satisfies the three pieces of 

information known is Poisson distribution. Hence, the PMF equation of 𝑝𝑖,𝑗
𝑋  is shown 

below. 

 
𝑝𝑖,𝑗
𝑋 = 𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆 )(𝑚𝑖,𝑗

𝑋 ) =
𝑆𝑚𝑖,𝑗

𝑋

𝑒−S

𝑚𝑖,𝑗
𝑋 !

 

where, 

𝑆 = �̃̅�𝑖,𝑗
𝑋  

𝑚𝑖,𝑗
𝑋 ∈ [0,1,2, … , (�̃̅�𝑖,𝑗

𝑋 )
𝐹𝑈𝐿𝐿

] 

 

58 

For the SF_10_20 network and node pair 3,6, the values for �̃̅�𝑖,𝑗
𝑋  and (�̃̅�𝑖,𝑗

𝑋 )
𝐹𝑈𝐿𝐿

is 

shown in Table 20. The corresponding maximum entropy distribution is shown in Figure 

45. 

Table 20. �̃̅�𝒊,𝒋
𝑿  and (�̃̅�𝒊,𝒋

𝑿 )
𝑭𝑼𝑳𝑳

of SF_10_20 

�̃̅�𝟑,𝟔
𝑿  (�̃̅�𝟑,𝟔

𝑿 )
𝑭𝑼𝑳𝑳

 

12.3 38 
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Figure 45. The Maximum Entropy Distribution of 𝒑𝟑,𝟔
𝑿  

On the other hand, as can be seen in Figure 45, the probability for both tails of the 

distribution are very small (< 2%). Those 𝑚𝑖,𝑗
𝑋  numbers are very unlikely to happen in 

real networks. Therefore, the following modifications were proposed for the PMF shown 

in Equation 58. That is to set the probability to zero if it is smaller than 2% and re-

normalize the values to sum up to one.  

 
𝑝𝑖,𝑗
𝑋 =

𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆 )
0.02 (𝑚𝑖,𝑗

𝑋 )

∑ 𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆 )
0.02 (𝑚𝑖,𝑗

𝑋 )
(�̃̅�𝑖,𝑗

𝑋 )
𝐹𝑈𝐿𝐿

0

 

where, 

𝑆 = �̃̅�𝑖,𝑗
𝑋  

𝑚𝑖,𝑗
𝑋 ∈ [0,1,2, … , (�̃̅�𝑖,𝑗

𝑋 )
𝐹𝑈𝐿𝐿

] 

𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆 )
0.02 (𝑚𝑖,𝑗

𝑋 ) = {
0                      if 𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆 )(𝑚𝑖,𝑗

𝑋 ) < 0.02

𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆 )(𝑚𝑖,𝑗
𝑋 )          otherwise
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In Figure 46, the blue lines are the PMF and CDF of 𝑝3,6
𝑋  constructed using 

Equation 59 and the red lines are the PMF and CDF of 𝑝3,6
𝑋  constructed using the 
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simulation results. As can be seen in Figure 46, the blue lines resembles the shape of the 

red lines very well, which means that Equation 59 can provide a good estimation for 𝑝𝑖,𝑗
𝑋 . 

 

 

Figure 46.  PDF and CDF of 𝒑𝟑,𝟔
𝑿  Constructed by Equation 59 and Simulation Results 

With Equation 56, Equation 57 and Equation 59, Equation 54  can be rewritten as 

below. Figure 47 is an example plot for 𝑝(𝑚3,6) with 𝑇 = 10 (hours) and Θ =8 (hours). 

 𝑝(𝑚𝑖,𝑗) = 𝑝𝑃𝑜𝑠𝑠𝑖𝑜𝑛(T
Θ
)
(𝑚𝑖,𝑗)[1 − 𝑃𝑖,𝑗

𝑋 (𝑚𝑖,𝑗
𝑋 ≤ 𝑚𝑖,𝑗)] 

where,  

𝑝𝑖,𝑗
𝑋 =

𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆 )
0.02 (𝑚𝑖,𝑗

𝑋 )

∑ 𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆 )
0.02 (𝑚𝑖,𝑗

𝑋 )
(�̃̅�𝑖,𝑗

𝑋 )
𝐹𝑈𝐿𝐿

0
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𝑆 = �̃̅�𝑖,𝑗
𝑋  

𝑚𝑖,𝑗
𝑋 ∈ [0,1,2, … , (�̃̅�𝑖,𝑗

𝑋 )
𝐹𝑈𝐿𝐿

] 

𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆 )
0.02 (𝑚𝑖,𝑗

𝑋 ) = {
0                      if 𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆 )(𝑚𝑖,𝑗

𝑋 ) < 0.02

𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆 )(𝑚𝑖,𝑗
𝑋 )          otherwise

 

Θ is the MTTF of a link 

𝑇 is the length of a CIN operation 

 

 

Figure 47. Example Plot of 𝒑(𝒎𝟑,𝟔) with 𝑻 = 𝟏𝟎 (Hours) and 𝚯 = 8 (Hours) 

Go back to the discussion at the beginning of this section. The reason that the 

distribution of 𝑝(𝑚𝑖,𝑗) is needed is to obtain a practical 𝑚𝑖,𝑗 value field, [0, (𝑚𝑖,𝑗)𝑝0], for 

deciding the value ofmax(𝑎𝐵𝐶𝑘
𝑉). According to Equation 53, the higher the value of 

max(𝑎𝐵𝐶𝑘
𝑉) the more information processing capacity is needed for a network node. 

Hence, it is desired to have a small max(𝑎𝐵𝐶𝑘
𝑉)  value. To restrict the value of 

max(𝑎𝐵𝐶𝑘
𝑉) can be achieved by controlling the value of (𝑚𝑖,𝑗)𝑝0. In order to show the 
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effects of (𝑚𝑖,𝑗)𝑝0  on max(𝑎𝐵𝐶𝑘
𝑉), overlay Figure 43 and Figure 47 together as shown 

below. 

 

Figure 48. Overlay of Figure 43 and Figure 47 

As can be seen in Figure 48, the value of max(𝑎𝐵𝐶𝑘
𝑉) will decrease (most likely) 

or at least stay at the same level as the value of (𝑚3,6)𝑝0  decreases. It is not hard to see 

that this observation is true for any node pair within any network topology.  

Based on Equation 60, under the information transmission scenario prescribed in 

Table 18, for a given 𝑝0(𝑚𝑖,𝑗) value, CIN operation length 𝑇, CIN topology, to decrease 

the value of (𝑚𝑖,𝑗)𝑝0  can be achieved through increasing the value of Θ, which is to 

increase the MTTF (reliability) of a link. 

According to Equation 60, to increase the value of Θ  will affect 𝑝(𝑚𝑖,𝑗)  by 

increasing the probability of 𝑝1(𝑚𝑖,𝑗) for smaller 𝑚𝑖,𝑗 values. Therefore, to increase the 

MTTF of network links through increasing the reliability of network links (system design) 

will decrease the value of (𝑚𝑖,𝑗)𝑝0 ,  and hence decrease the critical information 

processing capacity of each network node (Γ𝑘
𝐶). 
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From now on, the congestion behaviors without any network impairment will be 

called as static congestion behaviors and those under network impairments will be named 

as dynamic congestion behaviors. Moreover, refer to the Γ𝑘
𝐶  value calculated without 

considering network impairments (Equation 51) as static Γ𝑘
𝐶, or (Γ𝑘

𝐶)𝑠 and refer to the Γ𝑘
𝐶 

value calculated considering network impairments (Equation 53) as dynamic  Γ𝑘
𝐶 , of 

(Γ𝑘
𝐶)𝑑. From the previous discussion, it can be seen that, the value of (Γ𝑘

𝐶)𝑑 depends on 

the value of (Γ𝑘
𝐶)𝑠, and the (Γ𝑘

𝐶)𝑠 value can be viewed as the lower bond of the (Γ𝑘
𝐶)𝑑 

value.  

As mentioned earlier in Chapter 1, a CIN network is usually constructed by 

SUAVs. The payload and space limitations are much higher than traditional UAVs. This 

poses a much tighter constraint on the communication and computation capabilities an 

SUAV can be equipped. It is possible that the required information processing capacity, 

(Γ𝑘
𝐶)𝑑, cannot not be met by the current available technologies or can only be met at a 

very high acquisition cost on supporting technologies. Under such circumstance, based 

on the discussion in Section 7.2, the required information processing capacity, (Γ𝑘
𝐶)𝑑, can 

be decreased.  

First, for a CIN, to decrease the value of (Γ𝑘
𝐶)𝑑 can be achieved by decreasing the 

corresponding (Γ𝑘
𝐶)𝑠  value. The discussion in Section 7.2.1 says that to decrease the 

value of (Γ𝑘
𝐶)𝑠  can be done by carefully selecting the network topology, the routing 

strategy (𝑝(𝑘|𝑖, 𝑗)), and the collaboration structure (𝑝(𝑗|𝑖)) of the CIN. Based on the 

discussion in Section 7.2.2, with the network topology selected, for a given CIN 

operation length, the value of (Γ𝑘
𝐶)𝑑 can be further decreased by increasing the reliability 

of network links.  

Most existing studies related to network congestion are mainly on static 

congestion behaviors. Till now, this thesis has provided some experiment results and 
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discussions on dynamic congestion behaviors and a quantitative design requirement on 

the critical information processing capacity of network nodes (Equation 51 and Equation 

53). Since the research objective of this thesis is on measuring the capability-based 

connectivity robustness of a CIN, the discussion on network dynamic congestion 

behaviors will not be extended further. This topic will be deemed as future work that will 

be discussed in more details in Chapter 8. 

7.3 A Final Note 

During a CIN operation, it is very possible that the collaboration structure 

between network nodes changes during the operation period. This will result in more than 

one information exchange matrix among network entities. Along the previous discussion, 

it is assumed that the information exchange matrix is fixed. In order to include the effects 

of different information exchange matrix on Γ𝑘
𝐶 , the following approach can be used. 

Assume the set of information exchange matrices and the duration of each matrix to be 

used during a CIN operation is known. Then the following two equations can be 

obtained. 

 Γ𝑘
𝐶 = max[(Γ𝑘

𝐶)𝑡] 

where,  

(Γ𝑘
𝐶)𝑡 is the critical information processing capacity of node 𝑘 

calculated using the 𝑡𝑡ℎ information exchange matrix. 

61 

 

 

 Γ𝑘
𝐶 =∑𝑇𝑡(Γ𝑘

𝐶)𝑡
𝑡=1

 

where,  

(Γ𝑘
𝐶)𝑡 is the critical information processing capacity of node 𝑘 

62 
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calculated using the 𝑡𝑡ℎ information exchange matrix; 

𝑇𝑡 is the duration of a CIN operation segment when the 𝑡𝑡ℎ information 

exchange matrix.is used. 

Equation 61 considers the effects of different information exchange matrices by 

taking the maximum value of the critical information processing capacity of node 𝑘 

during the entire CIN operation period. While Equation 62 considers the effects of 

different information exchange matrices by taking the time averaged critical information 

processing capacity of node 𝑘 during the entire CIN operation period. 

Equation 61 and Equation 62 are two examples meant to show how to incorporate 

the effect of having more than one information exchange matrix during a CIN operation. 

The method should be chosen based on the problem at hand and the design emphases. 

On the other hand, both Equation 51 and Equation 53 were derived based on 

Equation 45 assuming uniform information packet output rate. If remove this assumption, 

similar equations can be derived by using the original form of Equation 45, which is 

Equation 46. 

 

Γ𝑘
𝐶 = max

(

 
 
 
∑∑𝑝(𝑗|𝑖)𝑝(𝑘|𝑖𝑗)

𝑁

𝑗=1
𝑗≠𝑖
𝑗≠𝑘

𝑁

𝑖=1
𝑖≠𝑘

𝜆𝑖𝑗

)

 
 
 
+ 𝜆𝑘 + 𝜀𝑘 

where,  

𝑝(𝑗|𝑖) is the probability of node 𝑖 choosing node 𝑗 as its information 

destination; 

𝑝(𝑘|𝑖, 𝑗)  is the probability for node 𝑘  to be on the information 

transmission path from node 𝑖 to node 𝑗; 

𝜆𝑖𝑗 is the information output rate from node 𝑖 to node 𝑗; 

 

63 

 



138 
 
 

 

𝜀𝑘 is the extra information transmission capability required for using 

packet switching and processing method. 

Again, if Equation 63 is evaluated using the original network topology without 

considering network impairments, then the result is the minimum information processing 

capacity required to be equipped for a network node in order to avoid congestion. In 

order to decide how much more information processing capacity a node needs to avoid 

congestion under network impairments, Equation 63 should be evaluated over the set of 

practical network topologies under network impairments. 

7.4 Chapter Summary 

Information congestion will result in both connectivity and information loss 

during CIN operation. It may also result in hardware impairments due to information 

surge. Hence, congestion should be avoided. The discussion in the previous chapters are 

based on the assumption that no congestion will happen within a network. In other words, 

the assumption says that, each network node is congestion robust. Congestion robustness 

of a network node is defined as the ability of a network node to sustain information 

overload or its tendency to experience congestion. In the literatures, congestion 

robustness and connectivity robustness are usually studied in different contexts because 

they are two coupling issues. In this chapter they were studied within the same context. In 

order to simplify the problem, congestion robustness was treated as a system level design 

requirements on each network node. The discussions from Chapter 3 to Chapter 6 

focused on connectivity robustness assuming that no network node will experience 

information congestion under any circumstance. In this chapter, focus was given to that 

assumption.  
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Many things that can affect the congestion robustness of a network node and 

hence there are many system level design requirements for network nodes to be 

congestion robust during a CIN operation. Since the focus of this thesis is to study the 

capability-based connectivity robustness of a network, only the required information 

processing capacity of each network node was investigated. In addition, the discussion 

was constrained to the information transmission scenario specified in Table 18. 

The congestion behaviors without any network impairment are referred to as 

static congestion behaviors and those under network impairments are referred to as 

dynamic congestion behaviors.  

First, a discrete time simulation model for information transmission was 

constructed under the scenario specified in Table 18 to study the static congestion 

behaviors of network nodes. The following conclusions were obtained.  

If a network node does not serve as an intermediate information transmission 

node for any node pair, it will never experience congestion as long as its packet output 

rate does not exceed its information processing capacity. Node congestion occurs when 

its total internal information size increases to the level close to its queue capacity with 

little fluctuations. The 𝜆 value when a node starts to experience congestion is the critical 

𝜆 value of this node, which will be denoted as 𝜆𝑖
𝐶. 

A network can have three congestion stages, namely, LTS, MCS, and HCS based 

on the average total internal information size within the entire network [89]. It has been 

shown that the three congestion stages of a network can also be characterized by the 

average information size within a network node 𝐼�̅� , or in other words, the congestion 

behaviors of network nodes. Denote the lower critical 𝜆 value of a network as 𝜆𝐺
𝐶𝐿, and 

𝜆𝐺
𝐶𝐿 = min (𝜆𝑖

𝐶) . Denote the upper critical 𝜆  value of a network as 𝜆𝐺
𝐶𝑈 , and 𝜆𝐺

𝐶𝑈 =

max(𝜆𝑖
𝐶). The first tier nodes have 𝜆𝑖

𝐶 values equal or close to 𝜆𝐺
𝐶𝐿. The third tier nodes 
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have 𝜆𝑖
𝐶 values equal or close to 𝜆𝐺

𝐶𝑈. The rest nodes whose  𝐼�̅� values are not constantly 0 

belong to the second tier. The onsite of the congestion of the first dire nodes marks the 

change of network congestion state from LTS to MCS. The onsite of the congestion of 

the third tier nodes marks the change of network congestion state from MCS to HCS.  

Different network topologies and different information exchange matrices have 

different effects on the congestion behaviors of network nodes. However, regardless the 

network topology type and the information exchange matrix used, it is always the case 

that, the higher the information processing capacity a node has, the higher its 𝜆𝑖
𝐶 value 

will be.  

Congestion results in information loss. In order to prevent congestion, each 

network node should be equipped with enough information processing capacity. On the 

other hand, early congestion will happen if any network node does not have enough 

information storage space (queue capacity) to prevent early congestion. Early congestion 

prevents the information processing capacity of a node to be fully used and results in 

non-economic designs and hence should be prevented. However, when the queue 

capacity of a network node is higher than a certain value, further increasing its value will 

not yield any additional congestion benefits. 

Next, based on those conclusions, two design guidelines were proposed for the 

information processing capacity of each network node. One is each network node should 

be equipped with at least the minimum information processing capacity, which is also the 

critical information processing capacity (Γ𝑘
𝐶) to avoid information congestion. The other 

ones is to minimum the network polarization value of Γ𝑖
𝐶  about min(Γ𝑖

𝐶)  to ensure 

economic architecture design. 

If there is no network impairments, the static critical information processing 

capacity of each network node can be obtained by Equation 51. 
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If network impairments are considered, then the dynamic critical information 

processing capacity of each network node can be obtained by Equation 53. 

“Practical” means the probability of node pair 𝑖, 𝑗  to stay connected with  𝑚𝑖,𝑗 

number of link failures during the operation period of a CIN is significant. This 

probability is denoted as 𝑝(𝑚𝑖,𝑗), and its significant value is denotd as 𝑝0(𝑚𝑖,𝑗). Under 

the information transmission scenario prescribed in Table 18, for a given 𝑝0(𝑚𝑖,𝑗) value, 

𝑝(𝑚𝑖,𝑗) can be estimated through Equation 60. 

Comparing Equation 51 and Equation 53, to decrease the value of (Γ𝑘
𝐶)𝑑 can be 

achieved by decreasing the corresponding (Γ𝑘
𝐶)𝑠 value.  

Equation 51 establishes the relationship between the required information 

processing capacity of a network node and the network topology, the routing strategy 

(𝑝(𝑘|𝑖, 𝑗)) as well as the collaboration structure (𝑝(𝑗|𝑖)) of a CIN. Equation 53 and 

Equation 60 further establishes the relationship between the required information 

processing capacity of a network node and the capability-based connectivity robustness 

of the CIN, the reliability of network links.  

Finally, the effect of variable collaboration structure were discussed. The method 

used to incorporate the effects of having more than one information exchange matrix 

during a CIN operation on the required information processing capacity of a network 

node should be chosen based on the problem at hand and the design emphases of the 

CIN. 
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CHAPTER VIII 

CONCLUSIONS AND CONTRIBUTIONS 

8.1 Resolution of Research Questions and Hypotheses 

Technology advancements have greatly extended the application scope of 

Collaborative Information Networks (CINs). Due to the unique application fields of CINs 

and the nature of this construction, the connectivity of the inter-connection structure 

under impairments is a profound but challenging requirement for a CIN. Most of the 

existing topological connectivity robustness measures were proposed from a pure 

structural perspective with little or no consideration of the capability of a network. They 

can describe the ability of a network to resist network fragmentation under impairments. 

However, the current evaluation practice provides no direct mapping between the 

measured connectivity robustness and the capability robustness of a network. By seeing 

this gap, the research objective of this thesis is to develop a method to measure the 

capability-based connectivity robustness of a CIN against link failures by using existing 

topological connectivity robustness measures. 

The research objective immediately leads to two research questions. 

Research Question 1: How to incorporate capability into the conventional network 

modeling process? 

Research Question 2: Which existing topological connectivity robustness measure should 

be chosen? 

In search for the answer to the first research question, a capability-based network 

modeling process was developed. The process was motivated by the following 

observation. In order to output capability, one or more major information flows of a CIN 



143 
 
 

 

should be maintained. The major information flows can be collapsed into the connection 

between several critical node pairs. To measure the capability-based connectivity 

robustness of a CIN is to measure the (structural) connectivity robustness of critical node 

pairs. 

Now with a capability-based network model, the problem of measuring the 

capability-based connectivity robustness of a CIN is successfully transformed into the 

problem of measuring the structural connectivity robustness between critical node pairs. 

The next task is to find the answer to the second research question, which is to select a 

topological measure for the structural connectivity robustness against link failures 

between an arbitrary node pair. 

Pairwise effective resistance 𝐸𝑅𝑖,𝑗  was identified as a candidate measure. By 

testing Hypothesis 1, it was concluded that, 𝐸𝑅𝑖,𝑗  can be used to compare the 

connectivity robustness of two arbitrary node pairs in terms of the average fraction of link 

failures until disconnection happens (
�̅�𝑖,𝑗
𝑋

𝑀
). In order to compare the connectivity 

robustness of two arbitrary node pairs in terms of the average number of link failures 

until disconnection happens ( �̅�𝑖,𝑗
𝑋 ), Equation 16 was proposed to provide a close 

estimation for  �̅�𝑖,𝑗
𝑋  given the 𝐸𝑅𝑖,𝑗 value of a node pair. This estimation method is fast 

and scalable. The estimation error stabilizes as network node number increases. With this, 

the second research question was also answered. 

The existence of redundant links does not affect the average number of link 

failures that a node pair can sustain before disconnection. This is because redundant links 

do not contribute to the connection between node pair 𝑖, 𝑗. However, under random link 

attacks, redundant links can server as “camouflage” and attract attacks away from 

structural links. This decreases the probability of structural links to be hit during random 
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attacks and as a result protects the network structure. The effect can be quantified using 

either Equation 19 or Equation 20. The validity of Equation 19 or Equation 20 was 

confirmed via simulation.  

Centrality analyses for network entities existing were also performed in terms of 

their importance to the capability-based connectivity robustness of a network. Network 

node centrality can be calculated via Equation 32 and network link centrality can be 

calculated via Equation 37. By testing Hypothesis 2 and Hypothesis 3, the validity of the 

two proposed measures is confirmed. Both measures are based on the Moore-Penrose 

Pseudoinverse of a network Laplacian (𝐿+). Since 𝐿+ is also used to calculate 𝐸𝑅𝑖,𝑗, the 

proposed centrality evaluation methods do not require any extra heavy computation other 

than several basic operations. As a result, the proposed measures can be used to help 

quickly allocate limited resources to protect network against impairments.   

A framework for the fast evaluation of the capability-based connectivity 

robustness of a CIN was constructed and was demonstrated on the example CIN followed 

by an alternative topology design generation process. 

In addition, two capability-based connectivity robustness strengthen strategies 

were proposed and discussed. The first strategy is to increase the static robustness via 

adding network links. Equation 39 was proposed to help decide the optimal link addition 

process that results in the most robustness increase benefit. The second strategy is to 

prepare substitution nodes for some important network nodes. It was demonstrated that 

the capability-based connectivity robustness evaluation process proposed in Chapter 3 

together with a simple network topology modification procedure could be used to 

quantify the effectiveness of a dynamic link failure coping mechanism. By testing 

Hypothesis 4, the validity of Equation 39 is confirmed. 
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Finally, the effects of the capability-based connectivity robustness of a network 

on the required information processing capacity of each network node was also explored. 

In this thesis, information congestion was treated as a system level design requirement on 

each network node. To avoid information congestion, a network node needs to be 

incorporated with enough information transmission capabilities. This thesis focuses on 

studying the required information processing capacity under a given information 

transmission scenario. 

The analyses were conducted using a discrete-time simulation model on 

information transmission and processing within a network. Equation 51 establishes the 

relationship between the required information processing capacity of a network node to 

the network topology, the routing strategy (𝑝(𝑘|𝑖, 𝑗)), and the collaboration structure 

(𝑝(𝑗|𝑖)) of a CIN. Equation 53 and Equation 60 further establishes the relationship 

between the required information processing capacity of a network node to the capability-

based connectivity of the CIN and the reliability of network links. 

The hypotheses proposed along the discussion process are summarized below. 

The test results suggest rejecting Hypothesis 1 and accepting Hypothesis 2, 3, 4. 

𝐻1𝑎: 
𝑁

𝐸𝑅𝑖,𝑗
 has higher correlation with �̅�𝑖.𝑗

𝑋  then 
1

𝐸𝑅𝑖,𝑗
. 

𝐻0
1𝑎: 

𝑁

𝐸𝑅𝑖,𝑗
 does not have higher correlation with �̅�𝑖.𝑗

𝑋  then 
1

𝐸𝑅𝑖,𝑗
. 

𝐻1𝑏: 
𝑁

𝐸𝑅𝑖,𝑗
 has high correlation with 

�̅�𝑖.𝑗
𝑋

𝑀
 then 

1

𝐸𝑅𝑖,𝑗
  

𝐻0
1𝑏: 

𝑁

𝐸𝑅𝑖,𝑗
 does not have higher correlation with 

�̅�𝑖.𝑗
𝑋

𝑀
 then 

1

𝐸𝑅𝑖,𝑗
. 

𝐻2: −Δ𝑈𝑖,𝑘,𝑗 is highly correlated with 𝛥�̅�𝑖,𝑗
𝑋 (𝑘). 

𝐻0
2: −Δ𝑈𝑖,𝑘,𝑗 is not highly correlated with 𝛥�̅�𝑖,𝑗

𝑋 (𝑘). 

𝐻3: −
𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
 is highly correlated with 𝛥�̅�𝑖,𝑗

𝑋 (𝑘, 𝑙). 
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𝐻0
3: −

𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
is not highly correlated with 𝛥�̅�𝑖,𝑗

𝑋 (𝑘, 𝑙). 

𝐻4: 𝛺𝑘,𝑙
𝑖,𝑗

 can indicate the benefits of adding a non-existing link into a network on �̅�𝑖,𝑗
𝑋 . 

𝐻0
4: 𝛺𝑘,𝑙

𝑖,𝑗
 cannot indicate the benefits of adding a non-existing link into a network on 

�̅�𝑖,𝑗
𝑋 . 

8.2 Contributions 

Contribution 1 

This thesis demonstrated the flexible use of network modeling. Network 

topological analyses are usually deployed to study the structure of a network. By 

modifying the network model of an infrastructure, network topological analysis can be 

used to analyze the effects besides network structure such as the capability-based 

connectivity robustness and the resilience strategy of a CIN. 

Contribution 2 

For the first time, it was pointed out that 𝐸𝑅𝑖,𝑗  or 
𝐸𝑅𝑖,𝑗

𝑁
 can only be used to 

compare the connectivity robustness of different node pairs from the same network or the 

same node pair of networks within the same network family. The connection between 

𝐸𝑅𝑖,𝑗  and the connectivity robustness under link impairments is actually established 

though the average faction of link failures until a node pair disconnected (
�̅�𝑖,𝑗
𝑋

𝑀
).  

Contribution 3 

In this thesis, �̅�𝑖,𝑗
𝑋  is used as a direct measure of the capability-based connectivity 

robustness of a CIN. A quick and scalable method was proposed that can provide close 
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estimation for the average number of link failure until a node pair disconnected (�̅�𝑖,𝑗
𝑋 ). 

The error of this estimation stabilizes as network node number increases. 

Contribution 4 

The fourth contribution of this thesis is that it provides quick and scalable ways to 

quantify the centrality of existing network nodes and links as well as the centrality of 

non-existing links in terms of �̅�𝑖,𝑗
𝑋 , which can help effectively allocate limited resources 

to protect network against impairments or to add additional links to strengthen robustness 

Contribution 5 

The fifth contribution of this thesis is to consider congestion robustness and 

connectivity robustness under the same content. This thesis demonstrated that congestion 

robustness could be treated as a system level design requirement on each network node 

that could be derived from the inter-connection structure and the connectivity situation of 

a CIN.  

Contribution 6 

The final contribution of this thesis is a network topology design and selection 

process based on the proposed capability-based connectivity robustness measure, which 

can also be used as a sub-design process of a more comprehensive, complex design 

process. 

8.3 Recommendations for Future Studies 

The Moore-Penrose pseudoinverse of a symmetric Laplacian (𝐿) is the key for 

most of the analyses in this thesis. Symmetric 𝐿 and their applications have been deeply 

studied [53-57]. While asymmetric 𝐿 arise in connection with directed graphs are less 
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explored. To obtain the Moore-Penrose pseudoinverse, an asymmetric 𝐿  needs to be 

normalized. Depending on the research contents and analysis focuses, different 

normalization techniques have been proposed. Although asymmetric 𝐿 are now attracting 

more and more attentions [52, 57-61], it is still a working concept without conscience 

upon normalization techniques as well as the physical meanings behind them. Most 

importantly, unlike a symmtric 𝐿 that is strictly related to the connectivity properties of 

the corresponding undirected network topology, a normalized asymmetric 𝐿usually does 

not reflect the connectivity of the corresponding directed network topology well. To 

extend the results obtained from this thesis to directed networks, a normalization 

technique is needed so that the 𝐸𝑅𝑖,𝑗  calculated based on the normalized 𝐿  is closely 

related to the average percentage of link failures until a node pair disconnected within a 

directed network. 

In addition, symmetric 𝐿  can be used for weighted network. However, the 

proposed connectivity robustness measure and the subsequent analyses can only handle 

unweighted networks since all network link failures are treated the same. Network link 

weights can be used to model some connection properties between network entities, such 

as interoperability. Future researches can focus on extend the results of this thesis to 

weighted network to account for the effects of network connection properties. 

Another area that can be explored further is how to design a congestion robust 

routing strategy under network impairments. As discussed earlier, the congestion 

robustness of network nodes can be affected by the information transmission capabilities 

of network nodes, the routing strategy and the network topology. A dynamic routing 

strategy that responds to network impairments can reduce the required information 

capabilities of network nodes. 
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The next area that can be studied further is to understand the difference between 

the network topologies obtained from step-wise “optimization” (greedy algorithm) as 

shown in this thesis and the ones obtained from solving optimization directly (global, or 

true optimization). In addition, the results obtained from step-wise network topology 

“optimizations” are initial point dependent. How sensitive the results are to different 

initial points and how to pick a good initial point that can lead to network topology 

designs that is close to the global optimal is an area that worths further exploration. 
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APPENDIX I  

ADDITIONAL GRAPHS AND TABLES 

 

Table 21. Information Exchange Matrix 1 Used in Chapter 7 

 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0.21 0.25 0 0 0.25 0.29 0 0 

2 0.4 0 0 0 0 0.26 0 0 0.34 0 

3 0 0.22 0 0 0.15 0.13 0.11 0.17 0.11 0.11 

4 0.22 0 0.2 0 0.16 0 0.14 0 0.12 0.16 

5 0.11 0.14 0.11 0 0 0 0.14 0.18 0.16 0.16 

6 0 0 0.29 0.33 0 0 0.38 0 0 0 

7 0 0 0.2 0.17 0 0.28 0 0 0.2 0.15 

8 0.19 0.34 0 0 0.22 0 0 0 0.25 0 

9 0.21 0.14 0.12 0.17 0.14 0.1 0 0.12 0 0 

10 0.31 0.29 0 0 0.23 0 0 0 0.17 0 
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Table 22. Information Exchange Matrix 2 Used in Chapter 7 

 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0.27 0 0.24 0 0.18 0.31 

2 0.18 0 0.25 0.23 0.16 0 0 0 0 0.18 

3 0 0 0 0 0 0.38 0 0.33 0.29 0 

4 0.15 0.25 0.2 0 0.15 0.25 0 0 0 0 

5 0 0 0.57 0 0 0 0 0 0.43 0 

6 0.28 0.36 0.36 0 0 0 0 0 0 0 

7 0 0.21 0 0.33 0 0 0 0.25 0 0.21 

8 0.12 0.22 0 0.1 0 0.17 0.17 0 0.12 0.1 

9 0.2 0 0 0.17 0 0 0.17 0.2 0 0.26 

10 0.47 0 0.53 0 0 0 0 0 0 0 
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APPENDIX II 

MODELING AND SIMULATION 

 

A. Step-Min Network Family Generation (Matlab) 

 This program is used to generate networks within a Step-Min Network Family as 

well as calculating the 𝐸𝑅1,𝑁 value of each network. The only input for this code is the 

Step-Min ntwork family index (the number of nodes). For the detailed logic of this code, 

please refer to Algorithm 1. 

  

clear; 

clc; 

result = cell([1,1]); 

% mkdir('ER'); 

% colorSpace = jet(40); 

% figure 

for nodeSize = 11:29 % CHANGE HERE: NODE NUMBER 

    adjMatrix = zeros(nodeSize, nodeSize); 

    for i = 1: nodeSize-1 

        adjMatrix(i,i+1) = 1; 

        adjMatrix(i+1,i) = 1; 

    end 

    linkSpace = (nodeSize-1)*nodeSize / 2 - (nodeSize-1); 

    stepMin = zeros(linkSpace + 1,1); 

    stepMin(1,1) = nodeSize - 1; 

    if linkSpace > 0 

        stepMinPair = zeros(2,1); 

        ER_Temp = 0; 

        mkdir(num2str(nodeSize)); 

        for i = 1:linkSpace 

            for u = 1:nodeSize-1 

                for v = u+1:nodeSize 

                    if adjMatrix(u,v) == 0 

                        adjMatrix(u,v) = 1; 
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                        adjMatrix(v,u) = 1; 

                        ER_Temp = ER_Cal(nodeSize, adjMatrix, 1, nodeSize); 

                        if stepMin(1+i, 1) == 0 

                            stepMin(1+i, 1) = ER_Temp; 

                            stepMinPair = [u;v]; 

                        else 

                            if ER_Temp > stepMin(1+i, 1) 

                                stepMin(1+i, 1) = ER_Temp; 

                                stepMinPair = [u;v]; 

                            end 

                        end 

                        adjMatrix(u,v) = 0; 

                        adjMatrix(v,u) = 0; 

                    end 

                end 

            end 

            adjMatrix(stepMinPair(1,1),stepMinPair(2,1)) = 1; 

            adjMatrix(stepMinPair(2,1),stepMinPair(1,1)) = 1; 

            dlmwrite(strcat(num2str(nodeSize), '\', num2str(nodeSize), '_', num2str(i+1), 

'.txt'), adjMatrix); 

        end          

    end 

     

%     dlmwrite(strcat('ER\', num2str(nodeSize), '.txt'), stepMin); 

%  

%     result{nodeSize-1,1} = stepMin; 

% %     semilogy(result{nodeSize-1,1}.^(-1), ['--','o'], 'color',colorSpace(nodeSize-1,:)) 

%     hold on 

end 

% axis([0 40 0.01 1]) 

% hold off 

 

B. Rand and SF Network Generation Code (C++) 

This program is used to generate the topologies for Rand and SF networks used in 

the experimetns in this thesis. This code repqures input the number of network nodes and 

the total number of network links. The inputs are the network node number 𝑁 , the 
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network link number 𝐸 for the network to be gerenated, and the network number of the 

fully connected network used if the network to be generated is a SF network. 

      #include <iostream> 

#include <stdlib.h> 

#include <stdio.h> 

#include <time.h> 

#include <fstream> 

#include <random> 

#include <iostream> 

#include <string> 

#include <sstream> 

using namespace std; 

 

namespace patch 

{ 

    template < typename T > std::string to_string( const T& n ) 

    { 

        std::ostringstream stm ; 

        stm << n ; 

        return stm.str() ; 

    } 

} 

 

 

static const int numberOfV = 10; 

 

static const int numberOfE = 40; 

 

//Generate the seed for random number generation functions 

mt19937 gen(time(NULL)); 

 

//Uniform integer random number generator 

int uniIntRand(int n) { 

    uniform_int_distribution<int> distribution(1, n); 

    return distribution(gen); 

} 
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//Uniform real number generator 

double uniRealRand() { 

    uniform_real_distribution<double> distribution(0.0,1.0); 

    return distribution(gen); 

} 

 

//Output the generated adjacent matrix to screen to check results validity 

void outputToText( string networkName, int AMatrix[][numberOfV], int 

Node_num){ 

    ofstream myfile; 

    const string fileName = "Network Topology/" + networkName + ".txt"; 

    myfile.open (fileName); 

    for (int i=0; i < Node_num; i++){ 

        for (int j=0; j < Node_num; j++){ 

            if (j==49) { 

              myfile<< AMatrix[i][j]; 

            } 

            else{ 

                myfile<< AMatrix[i][j]<< ","; 

            } 

        } 

    myfile<<"\n"; 

    } 

    myfile.close(); 

} 

 

 

//Random Network 

void generate_Node(int * Node,int range){ 

    Node[0]=uniIntRand(range)-1; 

    Node[1]=uniIntRand(range)-1; 

} 

 

void Rand_Topology(int Node_num,int Link_num){ 

    //generate the desired matrix 

   int array[numberOfV][numberOfV]={}; 

   int Node[2]={}; 
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   //generate the random topology of the matrix 

   for (int i=0;i<Link_num;i++){ 

 

       while (1){ 

            generate_Node(Node,Node_num); 

            int N1 = Node[0]; 

            int N2 = Node[1]; 

        if (array[N1][N2]==0&&array[N2][N1]==0&& N1!=N2){ 

              array[N1][N2]=1; 

              array[N2][N1]=1; 

              break; 

        } 

        else 

            {continue;} 

        } 

    } 

 

    string fileName = "Rand_" + patch::to_string(numberOfV) + "_" + 

patch::to_string(numberOfE); 

    outputToText(fileName, array, Node_num); 

} 

 

 

//Scale Free Network 

int PickNode(int D[numberOfV], int N, int DTotal){ 

    int i; 

    double Prob_Pick = uniRealRand(); 

    double Degree_Pick= Prob_Pick * double(DTotal); 

    double Add_Degree = 0.0; 

 

    for (i = 0; i < N; ++i) { 

        Add_Degree = Add_Degree + double(D[i]); 

        if (Degree_Pick <= Add_Degree) { 

            return i; 

            break; 

        } 

    } 

} 
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void Scalefree_Topology(int Node_num, int existing_node_num){ 

    int D_Total = 0;  //sum of the node degrees over the entire network 

    int D_Matrix[numberOfV] = {}; 

    int array[numberOfV][numberOfV]={}; 

 

//Generate a fully connected network with desired number of nodes 

    for (int i = 0; i < existing_node_num; ++i) { 

        D_Matrix[i] = existing_node_num - 1; 

        for (int j = 0; j < existing_node_num; ++j) { 

            if (i!=j){ 

            array[i][j]=1; 

            D_Total += 1; 

            } 

        } 

    } 

 

//Preferential node selection 

    for (int i = existing_node_num ; i < Node_num; ++i) { 

        int Picked_Node1; 

        int Picked_Node2; 

 

        while(1){ 

            Picked_Node1 = PickNode(D_Matrix, i, D_Total); 

            if (Picked_Node1!=i)break; 

            else continue; 

        } 

 

        while(1){ 

            Picked_Node2=PickNode(D_Matrix,i,D_Total); 

            if (Picked_Node2==Picked_Node1||Picked_Node2==i) 

                continue; 

            else break; 

        } 

 

        D_Matrix[Picked_Node1]++; 

        D_Matrix[Picked_Node2]++; 

        D_Matrix[i] = 2; 
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        D_Total += 4; 

        array[i][Picked_Node1]=1; 

        array[i][Picked_Node2]=1; 

        array[Picked_Node1][i]=1; 

        array[Picked_Node2][i]=1; 

    } 

    string fileName = "SF_" + patch::to_string(numberOfV) + "_" + 

patch::to_string(numberOfE); 

    outputToText(fileName, array, Node_num); 

 

} 

 

 

int main (){ 

    Rand_Topology(numberOfV,numberOfE/2); 

    Scalefree_Topology(numberOfV,5); 

    return 0; 

} 

 

 

C. The Link Failure Simulation Model Code (C++) 

This program is used to simulate the link failure process. The redundant link filter 

is not included. That part is a small process conducted in Matlab. If a filtered network is 

fed into this simulation model, then the output is the number of structural link failures 

until the target node pair disconnected. If an unfiltered network is fed into this simulation 

model, then the output is the number of total link failures until the target node pair 

disconnected. The inputs for this code are the network topology, the number of network 

nodes, and the target node pair index. 

#include <iostream> 

#include <fstream> 

#include <sstream> 

#include <string> 

#include <iomanip> 

#include <stdlib.h> 

#include <algorithm> 
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#include <cmath> 

 

#define INFINITY 999999 

 

using namespace std; 

 

static const int number = 10; 

 

namespace patch 

{ 
    template < typename T > std::string to_string( const T& n ) 

    { 
        std::ostringstream stm ; 

        stm << n ; 

        return stm.str() ; 

    } 

} 
 

class Dij{ 

    public: 

        static const int numOfV = number; 

        int predecessor[numOfV], distance[numOfV]; 

        int adjMatrix[numOfV][numOfV]; 

        void readTopology(string); 

        int tree[numOfV][numOfV]; 

        bool mark[numOfV]; 

        int source; 

        int dest; 

        void initialize(); 

        void calculateDistance(int,int,int); 

        int getClosestUnmarkedNode(); 

        void printPath(int, ofstream&); 

}; 
 

 

//Read network topology 

void Dij::readTopology(string  fileName){ 

 

    ifstream file(fileName); 

 

    int col_read = number; 

    int row_read = number; 

 

    for(int row = 0; row < row_read; ++row) 
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    { 
        string line; 

        getline(file, line); 

 

        stringstream iss(line); 

        for (int col = 0; col <col_read; ++col) 

        { 
            string val; 

            getline(iss, val, ','); 

            int connectivity; 

            connectivity = atoi(val.c_str()); 

            adjMatrix[row][col] =  connectivity; 

        } 

    } 

}; 
 

 

void Dij::initialize(){ 

    for(int i = 0; i < numOfV; i++){ 

        mark[i] = false; 

        predecessor[i] = -1; 

        distance[i] = INFINITY; 

    } 
    distance[source] = 0; 

}; 
 

 

int Dij::getClosestUnmarkedNode(){ 

    int minDistance = INFINITY; 

    int closestUnmarkedNode; 

    for(int i = 0; i < numOfV; i++){ 

        if((!mark[i]) && (minDistance >= distance[i])){ 

            minDistance = distance[i]; 

            closestUnmarkedNode = i; 

        } 

    } 
    return closestUnmarkedNode; 

}; 
 

 

void Dij::calculateDistance(int exclude_1, int exclude_2, int endNode){ 

    initialize(); 

    int closestUnmarkedNode; 

    int count = 0; 
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    mark[exclude_1] = true; 

    mark[exclude_2] = true; 

 

    while(count < numOfV){ 

        closestUnmarkedNode = getClosestUnmarkedNode(); 

        mark[closestUnmarkedNode] = true; 

        for(int i = 0; i < numOfV; i++){ 

            if((!mark[i]) && (adjMatrix[closestUnmarkedNode][i] > 0)){ 

 

                if(distance[i] > distance[closestUnmarkedNode] + 

adjMatrix[closestUnmarkedNode][i]){ 

                    distance[i] = distance[closestUnmarkedNode] + 

adjMatrix[closestUnmarkedNode][i]; 

                    predecessor[i] = closestUnmarkedNode; 

                } 
 

            } 

        } 
        count++; 

    } 

}; 
 

void Dij::printPath(int node, ofstream & myfile){ 

    if(node == source) 

        myfile<<node<<","; 

    else if(predecessor[node] == -1) 

        myfile<<"No path from “<<source<<”to "<<node; 

    else { 
        printPath(predecessor[node], myfile); 

        myfile<<node<<","; 

    } 

} 
 

 

mt19937 gen(time(NULL)); 

//Uniform integer random number generator 

int uniIntRand(int n) { 

    uniform_int_distribution<int> distribution(1, n); 

    return distribution(gen); 

} 
 

 

void generate_Node(int * Node,int range){ 
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    Node[0]=uniIntRand(range)-1; 

    if(range == 1){ 

        Node[1] = Node[0]; 

    }else{ 
        while(1){ 

            Node[1]=uniIntRand(range)-1; 

            if(Node[1] != Node[0]){ 

                break; 

            } 

        } 

    } 
 

} 
 

int mainSimulation_1_pair(string topoFileName, int node_i_1, int node_j_1, int 

numberOfE){ 

    int impairment = 0; 

 

 

    Dij G; 

    G.readTopology(topoFileName); 

 

    vector<string> nodePairPool_Rem; 

 

    for(int i = 0; i < number; i++){ 

        for(int j = 0; j < number; j++){ 

            if(G.adjMatrix[i][j]> 0){ 

                nodePairPool_Rem.push_back(patch::to_string(i) + "_" + 

patch::to_string(j) ); 

            } 

        } 

    } 
 

    int link_imp_s = 0; 

    int link_imp_t = 0; 

 

    int distij_1 = 0; 

 

    G.source = node_i_1; 

 

    while(impairment < numberOfE){ 

        int Node_Rem[2] = {}; 

        generate_Node(Node_Rem, (numberOfE - impairment)); 
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        link_imp_s = atoi(nodePairPool_Rem[Node_Rem[0]].substr(0, 

nodePairPool_Rem[Node_Rem[0]].find("_",0)).c_str()); 

        link_imp_t = 

atoi(nodePairPool_Rem[Node_Rem[0]].substr(nodePairPool_Rem[Node_Rem[0]].fin

d("_",0) + 1).c_str()); 

        nodePairPool_Rem.erase(remove(nodePairPool_Rem.begin(), 

nodePairPool_Rem.end(), patch::to_string(link_imp_s) + "_" + 

patch::to_string(link_imp_t)), nodePairPool_Rem.end()); 

        nodePairPool_Rem.erase(remove(nodePairPool_Rem.begin(), 

nodePairPool_Rem.end(), patch::to_string(link_imp_t) + "_" + 

patch::to_string(link_imp_s)), nodePairPool_Rem.end()); 

        G.adjMatrix[link_imp_s][link_imp_t] = 0; 

        G.adjMatrix[link_imp_t][link_imp_s] = 0; 

        impairment = impairment + 2; 

 

 

        G.calculateDistance(-1, -1, -1); 

        distij_1 = G.distance[node_j_1]; 

        if(distij_1 >= INFINITY){ 

            break; 

        } 

    } 
 

    nodePairPool_Rem.clear(); 

    return impairment; 

 } 
 

int mainSimulation_1_pair_Pure_Redundancy(float pure_redundancy_ratio, string 

topoFileName, int node_i_1, int node_j_1, int numberOfE){ 

    int pure_redundancy = floor(numberOfE * pure_redundancy_ratio); 

    pure_redundancy = 0; 

    int impairment = 0; 

    int real_impairment = 0; 

 

    Dij G; 

    G.readTopology(topoFileName); 

 

    vector<string> nodePairPool_Rem; 

 

    for(int i = 0; i < number; i++){ 

        for(int j = 0; j < number; j++){ 

            if(G.adjMatrix[i][j]> 0){ 

                nodePairPool_Rem.push_back(patch::to_string(i) + "_" + 

patch::to_string(j) ); 
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            } 

        } 

    } 
 

 

    int link_imp_s = 0; 

    int link_imp_t = 0; 

 

    int distij_1 = 0; 

 

    G.source = node_i_1; 

 

    while(impairment < (numberOfE + pure_redundancy)){ 

        int Node_Rem[2] = {}; 

        generate_Node(Node_Rem, (numberOfE + pure_redundancy - impairment)); 

 

        if(Node_Rem[0] < (numberOfE - real_impairment)){ 

            link_imp_s = atoi(nodePairPool_Rem[Node_Rem[0]].substr(0, 

nodePairPool_Rem[Node_Rem[0]].find("_",0)).c_str()); 

            link_imp_t = 

atoi(nodePairPool_Rem[Node_Rem[0]].substr(nodePairPool_Rem[Node_Rem[0]].fin

d("_",0) + 1).c_str()); 

            nodePairPool_Rem.erase(remove(nodePairPool_Rem.begin(), 

nodePairPool_Rem.end(), patch::to_string(link_imp_s) + "_" + 

patch::to_string(link_imp_t)), nodePairPool_Rem.end()); 

            nodePairPool_Rem.erase(remove(nodePairPool_Rem.begin(), 

nodePairPool_Rem.end(), patch::to_string(link_imp_t) + "_" + 

patch::to_string(link_imp_s)), nodePairPool_Rem.end()); 

            G.adjMatrix[link_imp_s][link_imp_t] = 0; 

            G.adjMatrix[link_imp_t][link_imp_s] = 0; 

            impairment = impairment + 2; 

            real_impairment =real_impairment + 2; 

        }else{ 
            impairment = impairment + 2; 

        } 
 

 

        G.calculateDistance(-1, -1, -1); 

        distij_1 = G.distance[node_j_1]; 

 

        if(distij_1 >= INFINITY){ 

            break; 

        } 

    } 
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    nodePairPool_Rem.clear(); 

    return impairment; 

 } 
 

int main(){ 

    float pure_redundancy_ratio = 0; 

    int simu_num = 10000; 

    int node_i_1 = 0; 

    int node_j_1 = 3; 

 

    int bridgeNum = 0; 

 

    for(int linkSpace = 1; linkSpace <= 1; linkSpace++){ 

        Dij G; 

 

        string topoFileName = "try.txt"; 

        G.readTopology(topoFileName); 

        int numberOfE = 0; 

 

 

        for(int i = 0; i < number; i++){ 

            for(int j = 0; j < number; j++){ 

 

                if(G.adjMatrix[i][j]> 0){ 

 

                    numberOfE = numberOfE + 1; 

                 } 

            } 

        } 
 

        G = {}; 

 

 

        for(int i = 1; i <= 1; i++){ 

 

 

            ofstream myfile1; 

 

            cout<<i<<"_"<<node_i_1<<"_"<<node_j_1<<"\n"; 

 

            string resultFileName1 = "Result_6_modi.csv"; 

            myfile1.open(resultFileName1, ios_base::app); 
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            for(int rep = 0; rep < simu_num; rep++){ 

 

                

myfile1<<mainSimulation_1_pair_Pure_Redundancy(pure_redundancy_ratio, 

topoFileName, node_i_1, node_j_1, numberOfE)<<"\n"; 

 

            } 
 

            myfile1.close(); 

 

        } 
 

    } 
 

return 0; 

} 
 

 

D. The Code Used to Obtain the Optimized 𝜽 Value 

This program is used to solve the optimization problem speicified in Secion 2.2.3. 

clc; 

clear; 

mdisij_full = [2.3372 

4.5195 

7.6476 

11.7464 

16.8265 

22.8509 

29.8991 

37.9593 

46.9035 

56.9614 

67.9692 

80.0329 

93.0555 

107.146 

122.0693 

138.1219 

155.0319 

173.1482 

192.0141 
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212.2045 

233.1596 

255.0404 

277.9741 

301.9826 

327.0849 

352.9298 

380.126 

407.9661 

]; 

 

x = 0.9; 

xs = zeros(28,1); 

for nodeNum = 3:30 

    ER1N = zeros(nodeNum*(nodeNum-1)/2 - nodeNum + 2,1); 

    ER1N(1,1) =  nodeNum-1; 

    for linkSpace = 2: (nodeNum*(nodeNum-1)/2 - (nodeNum-1) + 1) 

        adjMatrix = zeros(nodeNum, nodeNum); 

        adjMatrix = 

dlmread(strcat(num2str(nodeNum),'\',num2str(nodeNum),'_',num2str(linkSpace),'.txt'

)); 

        ER1N(linkSpace,1) =  ER_Cal(nodeNum, adjMatrix, 1, nodeNum);     

    end 

     

     

    ERR = 10^10; 

    e_mdis = zeros(nodeNum*(nodeNum-1)/2 - nodeNum + 2,1); 

    mdis = zeros(nodeNum*(nodeNum-1)/2 - nodeNum + 2,1); 

    mdis(1,1) = 1; 

    mdis(2:nodeNum*(nodeNum-1)/2 - nodeNum + 2,1) = 

dlmread(strcat('Results\Result_',num2str(nodeNum),'_Mean.txt')); 

    e_mdis(1,1) = 1; 

    t = 0.1; 

    while 1 

        ERR_old = ERR;      

%         for linkSpace = 2: (nodeNum*(nodeNum-1)/2 - (nodeNum-1) + 1) 

%             e_mdis(linkSpace,1) = e_mdisij(nodeNum, linkSpace + nodeNum - 2, 

ER1N(linkSpace,1), x, mdisij_full(nodeNum-2,1)); 

%         end 

%          

        ERR = sum(abs((mdis-log10((linkSpace + nodeNum - 2)./ER1N.^x)).^2)); 
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        if abs(ERR-ERR_old) < 10^(-4) 

            x 

            break; 

        end    

         

        if ERR >= ERR_old 

            x = x - t; 

            t = t/10; 

        end 

        x = x + t; 

    end 

    xs(nodeNum-2,1) = x;                        

         

end 

  

 

E. The Code Used to Calculated 𝑬𝑹𝒊,𝒋 (Matlab) 

This customized Matlab function calculates the effective resistance between a 

givne node pair (𝑬𝑹𝒊,𝒋). The inputs of this function are network node number, network 

topology, and the target node pair. 

function ERij = ER_Cal(nodeSize, adjMatrix, node_i, node_j)  

L = zeros(nodeSize, nodeSize); 

 

for j = 1 : nodeSize  

    for k = 1:nodeSize 

        if j == k 

            L(j,k) = sum(adjMatrix(j,:)); 

        else 
            if adjMatrix(j,k) > 0 

                L(j,k) = -adjMatrix(j,k); 

            end 

        end 

    end 

end 
 

QQ = pinv(L); 
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ERij = QQ(node_i, node_i) - 2*QQ(node_i, node_j) + QQ(node_j, node_j); 
 

 

F. The Code Used to Calculate the Centrality of Existing Network Nodes (Matlab) 

This customerized matlab function calculates the centrality of all the nodes within 

a network in terms of the capability-based connectivity robustness between the target 

node pair. The inputs of this function are network node number, network topology, and 

the target node pair. 

function C = NodeImp(nodeSize, adjMatrix, node_i, node_j)  

 

C_temp = zeros(nodeSize, 1); 

L = zeros(nodeSize, nodeSize); 

 

for j = 1 : nodeSize  

    for k = 1:nodeSize 

        if j == k 

            L(j,k) = sum(adjMatrix(j,:)); 

        else 

            if adjMatrix(j,k) > 0 

                L(j,k) = -adjMatrix(j,k); 

            end 

        end 

    end 

end 

 

QQ = pinv(L); 

 

for i = 1:nodeSize 

    C_temp(i,1) = (2*QQ(i,i)-QQ(node_i,i)-QQ(i,node_i)-QQ(node_j,i)-QQ(i, 

node_j)+QQ(node_i, node_j)+QQ(node_j, node_i))/2; 

end 

C = C_temp; 

End 

 
 

 

G. The Code Used to Calculate the Centrality of Existing Network Links (Matlab) 
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This customerized matlab function calculates the centrality of all the existing 

links within a network in terms of the capability-based connectivity robustness between 

the target node pair. The inputs of this function are network node number, network 

topology, and the target node pair. 

function C = linkIMP_2(nodeSize, adjMatrix, node_i, node_j) 

    C_temp_1 = zeros(nodeSize, nodeSize); 

    C_temp_2 = zeros(nodeSize, nodeSize); 

    C_temp_3 = zeros(nodeSize, nodeSize); 

    C_temp_4 = zeros(nodeSize, nodeSize); 

    C_temp = zeros(nodeSize, nodeSize); 

    L = zeros(nodeSize, nodeSize); 

 

    for j = 1 : nodeSize  

        for k = 1:nodeSize 

            if j == k 

                L(j,k) = sum(adjMatrix(j,:)); 

            else 

                if adjMatrix(j,k) > 0 

                    L(j,k) = -adjMatrix(j,k); 

                end 

            end 

        end 

    end 

 

    QQ = pinv(L); 

 

 

    for i = 1:nodeSize 

        for j = 1:nodeSize 

            C_temp_3(i,j) = (2*QQ(i,i)-QQ(node_i,i)-QQ(i,node_i)-QQ(node_j,i)-QQ(i, 

node_j)+QQ(node_i, node_j)+QQ(node_j, node_i))/2; 

            C_temp_4(i,j) = (2*QQ(j,j)-QQ(node_i,j)-QQ(j,node_i)-QQ(node_j,j)-QQ(j, 

node_j)+QQ(node_i, node_j)+QQ(node_j, node_i))/2; 

            C_temp_1(i,j) = (2*QQ(node_i,node_i)-QQ(node_i,i)-QQ(i,node_i)-

QQ(node_i,j)-QQ(j, node_i)+QQ(i,j)+QQ(j,i))/2; 

            C_temp_2(i,j) = (2*QQ(node_j,node_j)-QQ(node_j,i)-QQ(i,node_j)-

QQ(node_j,j)-QQ(j, node_j)+QQ(i,j)+QQ(j,i))/2; 
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            C_temp(i,j) = (C_temp_3(i,j) + C_temp_4(i,j))/(QQ(i,i) + QQ(j,j)); %This is 

the right one 

 

        end 

    end 

 

    C = C_temp; 

End 

 

 
 

H. The Code Used to Calculate the Centrality of Non-existing Network Links 

(Matlab) 

This program is used to calucate the centrality of all the non-existing links within 

a network in terms of the capability-based connectivity robustness between the target 

node pair. The inputs of this function are network node number, network topology, and 

the target node pair.  

clc; 

clear; 

nodeNum = 50; 

adjMatrix = importdata('Network Topology\SF_50_100.txt', ',' , 0); 

C_Node = zeros(50,40); 

nodePairs = importdata('50_SF_Node Pair.txt', ',' , 0); 

 

newER = zeros(nodeNum*(nodeNum-1)/2-100,5*40); 

 

for k = 1:40 

    C_Link = linkIMP_2(nodeNum, adjMatrix, nodePairs(k,1)+1, nodePairs(k,2)+1); 

    count = 1; 

    for i = 1:nodeNum-1 

        for j = (i+1):nodeNum 

            if adjMatrix(i,j) == 0 

                C_Link_2 = linkIMP_2(nodeNum, adjMatrix, i, j); 

                adjMatrix_new = adjMatrix; 

                adjMatrix_new(i,j) = 1; 

                adjMatrix_new(j,i) = 1; 

                newER(count,1+(k-1)*5) = i; 

                newER(count,2+(k-1)*5) = j; 
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                newER(count,3+(k-1)*5) = ER_Cal(nodeNum, adjMatrix_new, 

nodePairs(k,1)+1, nodePairs(k,2)+1); 

                newER(count,4+(k-1)*5) = C_Link(i,j) + C_Link_2(nodePairs(k,1)+1, 

nodePairs(k,2)+1); 

                newER(count,5+(k-1)*5) = abs(C_Node(i,1)-C_Node(j,1)); 

                count = count + 1; 

            end 

        end 

    end 

end 
 

 

I. The Code Used to Generate a Resource Exchange Matrix (Matlab) 

This program is used to generate a modified random resource exchange matrix. 

The only input of this program is number of network nodes.  

clc; 

clear; 

nodeNum = 8; 

resMatrixIndex = 3; 

 

ResourceExMatrix = randi(10,nodeNum, nodeNum)*10; 

for i = 1:nodeNum 

    for j = 1:nodeNum 

        if ResourceExMatrix(i,j)<=50 || i==j  

            ResourceExMatrix(i,j) = 0; 

        end 

    end 

end 

 

for i = 1:nodeNum 

    rowSum(i) = sum(ResourceExMatrix(i,:)); 

end 

 

for i = 1:nodeNum 

    ResourceExMatrix_NormalizedSimu(i,:) = floor(ResourceExMatrix(i,:) / 

rowSum(i)*100)/100; 

    addOnLocation = find(ResourceExMatrix(i,:)==max(ResourceExMatrix(i,:))); 

    addOnLocation = addOnLocation(1,1); 
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    ResourceExMatrix_NormalizedSimu(i,  addOnLocation) = 

ResourceExMatrix_NormalizedSimu(i, addOnLocation) + 1 - 

sum(ResourceExMatrix_NormalizedSimu(i, :)); 

 

end 

 

ResourceExMatrix_Normalized = ResourceExMatrix_NormalizedSimu; 

 

for i = 1:nodeNum 

    currentValue = 0; 

    for j = 1:nodeNum 

        if ResourceExMatrix_NormalizedSimu(i,j) > 0 

            currentValue = currentValue + ResourceExMatrix_NormalizedSimu(i,j); 

            ResourceExMatrix_NormalizedSimu(i,j) = currentValue; 

        end 

    end 

end 

 

dlmwrite(strcat('ResExMatrix_No Fluc\10_40_0.05_0.95\ResourceMatrix_', 

num2str(nodeNum),'_', num2str(resMatrixIndex),'.txt'), 

ResourceExMatrix_Normalized);  

dlmwrite(strcat('ResExMatrix_No Fluc\10_40_0.05_0.95\ResourceMatrixSimu_', 

num2str(nodeNum),'_', num2str(resMatrixIndex),'.txt'), 

ResourceExMatrix_NormalizedSimu);  
 

 

 

J. The Code Used to Calculate the Augmented Betweenness Centrality of Network 

Nodes (Matlab) 

This program is used to calculate the augmented betweenness centrality of all the 

network nodes within a network. The inputs for this program is the network node 

number, the network link number, the network topology and the resource exchange 

matrix used for information transmission. 

clc; 

clear; 

nodeNum = 7; 

linkNum = 6; 

netType = 'Rand'; 
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matrixIndex = 1; 

 

fileName_dij = strcat('Shortest_Distance\Dij_ExampleProblemAdj.txt');  

fileName_res = strcat('ResExMatrix_No 

Fluc\10_40_0.05_0.95\ExampleProblemRE.txt');  

dijDist = csvread(fileName_dij); 

resExMatrix = csvread(fileName_res); 

 

maxLength = size(dijDist); 

maxLength = maxLength(1,2); 

 

coutPass = zeros(nodeNum,1); 

coutPass_weighted = zeros(nodeNum,1); 

numTotalPath = nodeNum*(nodeNum); 

resExWeight = zeros(numTotalPath, 1); 

 

k = 0; 

for i = 1: nodeNum 

    for j = 1: nodeNum 

        k = k + 1; 

        resExWeight(k,1) = resExMatrix(i,j); 

    end 

end 
 

for i = 1: numTotalPath 

    j = 2; 

    while(j < maxLength) 

        if dijDist(i,j+1)~= 0 

            coutPass(dijDist(i,j),1) = coutPass(dijDist(i,j),1) + 1; 

            coutPass_weighted(dijDist(i,j),1) = coutPass_weighted(dijDist(i,j),1) + 

resExWeight(i,1); 

        end 
    j = j+1; 

    end 

end 
 

strBet = coutPass; 

strBet_Nor = coutPass / numTotalPath;  

 

funcBet = coutPass_weighted; 
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K. The Code Used to Generated the Shortest Path between Two Nodes within a 

Network Using Dij Algorithm (C++) 

This program is based on Dij algorithm to generate the shortest path between any 

node pair within a network. The inputs for this program are the network topology and the 

number of network nodes. 

#include <iostream> 

#include <fstream> 

#include <sstream> 

#include <string> 

#include <iomanip> 

#include <stdlib.h> 

 

#define INFINITY 999 

 

using namespace std; 

 

 

static const int number = 10; 

 

class Dij{ 

    public: 

        static const int numOfV = number; 

        int predecessor[numOfV], distance[numOfV]; 

        int adjMatrix[number][number]; 

        void trys(string); 

        int tree[numOfV][numOfV]; 

        bool mark[numOfV]; 

        int source; 

        int dest; 

        void initialize(); 

        void calculateDistance(); 

        void output(); 

        void printPath(int, ofstream &); 

        int getClosestUnmarkedNode(); 

}; 
 

void Dij::trys(string  fileName){ 

    ifstream file(fileName); 

 

    int col_read = number; 
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    int row_read = number; 

 

    for(int row = 0; row < row_read; ++row) 

    { 
        string line; 

        getline(file, line); 

 

        stringstream iss(line); 

        for (int col = 0; col <col_read; ++col) 

        { 
            string val; 

          getline(iss, val, ','); 

 

            int number; 

            number=atoi(val.c_str()); 

            adjMatrix[row][col] = number; 

        } 

    } 

} 
 

void Dij::initialize(){ 

    for(int i = 0; i < numOfV; i++){ 

        mark[i] = false; 

        predecessor[i] = -1; 

        distance[i] = INFINITY; 

    } 
    distance[source] = 0; 

} 
 

 

int Dij::getClosestUnmarkedNode(){ 

    int minDistance = INFINITY; 

    int closestUnmarkedNode; 

    for(int i = 0; i < numOfV; i++){ 

        if((!mark[i]) && (minDistance >= distance[i])){ 

            minDistance = distance[i]; 

            closestUnmarkedNode = i; 

        } 

    } 
    return closestUnmarkedNode; 

} 
 

void Dij::calculateDistance(){ 

    initialize(); 
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    int minDistance = INFINITY; 

    int closestUnmarkedNode; 

    int count = 0; 

    while(count < numOfV){ 

        closestUnmarkedNode = getClosestUnmarkedNode(); 

        mark[closestUnmarkedNode] = true; 

        for(int i = 0; i < numOfV; i++){ 

            if((!mark[i]) && (adjMatrix[closestUnmarkedNode][i] > 0)){ 

                if(distance[i] > distance[closestUnmarkedNode] + 

adjMatrix[closestUnmarkedNode][i]){ 

                   distance[i] = distance[closestUnmarkedNode] + 

adjMatrix[closestUnmarkedNode][i]; 

                   predecessor[i] = closestUnmarkedNode; 

                } 

            } 

        } 
        count++; 

    } 

} 
 

void Dij::printPath(int node, ofstream &myfile){ 

    if(node == source){ 

        if(node == dest){ 

            myfile<<node+1; 

        }else{ 
            myfile<<node+1<<","; 

        } 

    } 
    else if(predecessor[node] == -1) 

        myfile<<"No path from <<source<<to "<<node<<endl; 

    else { 
        printPath(predecessor[node], myfile); 

        if(node == dest){ 

            myfile<<node+1; 

        }else{ 
            myfile<<node+1<<","; 

        } 

    } 

} 
 

void Dij::output(){ 

    if(dest == source) 

        cout<<source<<".."<<source; 

    else 
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        //printPath(dest); 

 

    cout<<"->"<<distance[dest]<<endl; 

} 
 

 

int main(){ 

 

    for (int networkIndex = 1; networkIndex <= 1; networkIndex++){ 

        string networkNames[4] = {"StarLike_50_97", "SF_10_40", "Rand_10_40", 

"Ring_50_100"}; 

        string networkName = networkNames[networkIndex]; 

        ofstream myfile; 

        myfile.open("ShortestDistance/Dij_" + networkName + ".txt"); 

        int totalDistance = 0; 

 

        Dij G; 

        G.trys("Network Topology/" + networkName + ".txt"); 

 

        for(int i = 0; i < number; i++){ 

                G.source = i; 

                G.calculateDistance(); 

                for(int j = 0; j < number; j++){ 

                    G.dest = j; 

                    totalDistance = totalDistance + G.distance[G.dest]; 

                    //myfile<<i<<","<<j<<","<<G.distance[G.dest]<<"\n"; 

                    G.printPath(G.dest, myfile); 

                    myfile<<"\n"; 

                } 

        } 
        float avgDistance = float(totalDistance) * 2.0 / float(number* (number-1)); 

        myfile<<avgDistance<<"\n"; 

        myfile.close(); 

    } 
    return 0; 

} 
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L. The Information Transmission Simulation Model Code4 (C++) 

This is a C++ project used to simulate the information transmission process 

within a network based on the information transmission scenario specified in Table 18. 

The inputs for this program are the network topology, the resource exchange used, the 

ouput packet rate and the information storage capacity of each node. 

a. Main1.CPP 

    #include "nodeevent.hpp" 

 

    #include <iostream> 

    #include <vector> 

    #include <stdio.h> 

    #include <stdlib.h> 

    #include <iostream> 

    #include <fstream> 

    #include <sstream> 

    #include <string> 

 

    float** resourceEx(string  fileName){ 

        ifstream file(fileName); //Change resource exchange file name YD 

 

        int col_read = NUMBER; 

        int row_read = NUMBER; 

 

        float** resExMatrix = new float *[NUMBER]; 

 

        for(int row = 0; row < row_read; ++row) 

        { 
            string line; 

            getline(file, line); 

            resExMatrix[row] = new float [NUMBER]; 

            stringstream iss(line); 

            for (int col = 0; col <col_read; ++col) 

            { 
                string val; 

                getline(iss, val, ','); 

                float probValue; 

                probValue=atof(val.c_str()); 

                resExMatrix[row][col] = probValue; 

                                                           
4 Part of this mode was constructed under the help of Chengwe Li. 
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            } 

        } 
        return resExMatrix; 

    } 
 

 

    int main() 

    { 
 

        float** resExMatrix = resourceEx("ResExMatrix_No 

Fluc/10_40_0.05_0.95/ExampleProblemRE_Simu.txt"); 

 

        Dij G[4]; 

        Init_Graph(&G[0]); 

        //Create the Node_queue 

        for(int i = 1; i<20; i++){ 

            Node_queue node_queue; 

         //run the simulation 

            simulation(node_queue,G[networkIndex], 0.05*i, resExMatrix, brandWidth); 

       /* 

       queue<int> a; 

       for (int i=0;i<50;i++){ 

        for (int j=0;j<50;j++){ 

          std::cout<<"Path for "<<i<<"and"<<j<<std::endl; 

        a=Shortest_Path(i,j,G[2]); 

        Print_Path(a); 

        Clear_Path(&G[2].shortestPath); 

       } 

 

     }*/ 

 

            node_queue = {}; 

 

        } 
 

 

       return 0; 

    } 

 

b. nodeevent.cpp 

#include "nodeevent.hpp" 
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#define Queue_Capacity 5 

 

using namespace std; 

 

 

 

//!!!!!!!!!!!!!dimension should be changed into a variable 

//generate the random NUMBER between 0~1 

int rand(int a,int Range){ 

    srand(a); 

    int A=rand()%Range; 

    return A; 

}; 

 

void send_to_Next(Node_Info_Passing&info, Node_queue&node_queue,int i,int 

simu){ 

    info.position = info.Path.front(); 

 

    if(info.position != info.Destination){ 

        if ((node_queue.Queue_Size[info.position] + info.info_size) <= 

Queue_Capacity){ 

            info.Path.pop(); 

            info.Simul_step = simu + 1; 

            node_queue.addToQueue(info); 

            node_queue.Queue_Size[info.position] += info.info_size; 

            node_queue.success_pass_counter += 1; 

        }else{ 

            node_queue.aborted_counter += 1; 

        } 

    }else{ 

        Printtofile_node(info, simu + 1); 

        node_queue.success_deliver_counter += 1; 

    } 

    //decrease the total info-size of the current Queue_size 

    node_queue.Queue_Size[i] -= info.info_size; 

}; 

 

 

void prepare_node_to_send(Node_queue&node_queue, float Bandwidth, int 

Num_node, int simu){ 

    float Band_width = Bandwidth; 
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    while(Band_width>0){ 

        if 

(node_queue.Info_Queue[Num_node].size()&&node_queue.Info_Queue[Num_n

ode].front().Simul_step <= simu){ 

            if(node_queue.Info_Queue[Num_node].front().info_size <= 

Band_width){ 

                send_to_Next(node_queue.Info_Queue[Num_node].front(), 

node_queue, Num_node, simu); 

                Band_width -= node_queue.Info_Queue[Num_node].front().info_size; 

                node_queue.Info_Queue[Num_node].pop(); 

            }else{ 

                break; 

            } 

 

        }else{ 

            break; 

        } 

 

    } 

}; 

 

 

//wrapper function for the Send_Node function 

void Send_Node(Node_queue & node_queue,float Bandwidth,int simu){ 

    for(int i=0; i<NUMBER; i++){ 

    //message sending protocol, limited to the bandwidth of the node 

        prepare_node_to_send(node_queue, Bandwidth, i, simu); 

    } 

}; 

 

 

mt19937 gen(time(NULL)); 

int uniIntRand(int n) { 

    uniform_int_distribution<int> distribution(1, n); 

    return distribution(gen)-1; 

}; 

 

void Generate_node(Node_queue& node_queue, bool a, int n, double 

info_size_max, int simu, Dij &G, float infoSize, float ** resExMatrix){ 

    for (int i=0;i<n;i++){ 
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        Node_Info_Passing info; 

        info.Origin = i; 

        info.Simul_step = simu; 

        info.Initial_Sim_Step = simu; 

        info.position = i; 

        info.info_size = infoSize; //Normal Distribution YD 

 

        int dest; 

 

        int diMethod = 2; //Change distribution method YD 

 

 

//        ofstream SDPair; 

//        SDPair.open ("Output/SDSPair.txt",ios::app); 

 

 

        if(diMethod == 1){ 

            while(1){ 

                dest = uniIntRand(NUMBER); 

                if(dest != info.Origin){ 

                    break; 

                } 

            } 

        }else if(diMethod == 2){ 

            float destProb = uniIntRand(100); 

            destProb = destProb / 100; 

            for(int dest_i = 0; dest_i < NUMBER; dest_i++){ 

                if(destProb < resExMatrix[info.Origin][dest_i]){ 

                    dest = dest_i; 

                    //SDPair<<destProb<<","<<resExMatrix[info.Origin][dest_i]<< 

","<<info.Origin<<","<<dest<<"\n"; 

                    break; 

                } 

            } 

        } 

 

        info.Destination = dest; 

 

        Compute_path(info, G); 

 

        node_queue.addToQueue(info); 
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        node_queue.Queue_Size[info.position] += info.info_size; 

    } 

}; 

 

 

void Compute_path( Node_Info_Passing&info, Dij &G){ 

    info.Path = Shortest_Path(info.Origin, info.Destination, G); 

    Clear_Path(&G.shortestPath); 

    Print_Path(info.Path); //Origin is not included. 

}; 

 

 

//wrapper function to get the simulation running 

void simulation(Node_queue&node_queue,Dij &G, float infoSize, float ** 

resExMatrix, float brandWidth){ 

    float Bandwidth = brandWidth; 

    float info_size_max = 2.0; 

    for (int i=1; i < 301; i++){ //Change Number of Iteration 

        Generate_node(node_queue, 0, NUMBER, info_size_max, i, G, infoSize, 

resExMatrix); 

        Send_Node(node_queue, Bandwidth, i); 

        Printtofile(node_queue); 

    } 

}; 

 

 

void Printtofile(Node_queue&node_queue){ 

    ofstream queue_size_file; 

    queue_size_file.open ("Output/" + to_string(networkIndex) + "_Queue_Size_" 

+ to_string(resMatrixIndex) + "_" + brandWidthName + ".txt",ios::app); 

 

    //node_queue.Queue_Size.size() = NUMBER for now 

    for(int i=0; i<node_queue.Queue_Size.size(); i++){ 

        queue_size_file << node_queue.Queue_Size[i]<<","; 

    } 

 

    queue_size_file<<"\n"; 

    queue_size_file.close(); 

 

    //success_send_counter print out 
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    ofstream counter; 

    counter.open ("Output/" + to_string(networkIndex) + "_Counter_Pa_De_Ab_" 

+ to_string(resMatrixIndex) + "_" + brandWidthName+ ".txt",ios::app); 

    counter << node_queue.success_pass_counter + 

node_queue.success_deliver_counter<<","<<node_queue.success_deliver_counte

r<<","<<node_queue.aborted_counter<<"\n"; 

    counter.close(); 

}; 

 

void Printtofile_node(Node_Info_Passing&info, int time_step){ 

    //Node passing 

    ofstream info_delivery_time; 

    info_delivery_time.open ("Output/" + to_string(networkIndex) + 

"_Info_Deliver_Time_" + to_string(resMatrixIndex) + "_" + brandWidthName+ 

".txt",ios::app); 

    info_delivery_time <<time_step<<","<<time_step - info.Initial_Sim_Step; 

    info_delivery_time<<"\n"; 

    info_delivery_time.close(); 

}; 

 

// const string fileName = "Network Topology/" + networkName + ".txt"; 

// string networkNames[4] = {"StarLike_50_97", "SF_50_100", 

"Random_50_100", "Ring_50_100"}; 

// string networkName = networkNames[networkIndex]; 

 

 

c. Path.cpp 

#include "Path.h" 

 

#define INFINITY 999 

 

using namespace std; 

 

 

 

void Dij::trys(string  fileName){ 

    ifstream file(fileName); 

 

    int col_read = NUMBER; 

    int row_read = NUMBER; 
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    for(int row = 0; row < row_read; ++row) 

    { 
        string line; 

        getline(file, line); 

 

        stringstream iss(line); 

        for (int col = 0; col <col_read; ++col) 

        { 
            string val; 

          getline(iss, val, ','); 

 

            int conn; 

            conn=atoi(val.c_str()); 

            adjMatrix[row][col] = conn; 

        } 

    } 

} 
 

void Dij::initialize(){ 

    for(int i = 0; i < numOfV; i++){ 

        mark[i] = false; 

        predecessor[i] = -1; 

        distance[i] = INFINITY; 

    } 

    distance[source] = 0; 

} 

 

 

int Dij::getClosestUnmarkedNode(){ 

    int minDistance = INFINITY; 

    int closestUnmarkedNode; 

    for(int i = 0; i < numOfV; i++){ 

        if((!mark[i]) && (minDistance >= distance[i])){ 

            minDistance = distance[i]; 

            closestUnmarkedNode = i; 

        } 

    } 

    return closestUnmarkedNode; 

} 

 

void Dij::calculateDistance(){ 

    initialize(); 

    int minDistance = INFINITY; 

    int closestUnmarkedNode; 
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    int count = 0; 

    while(count < numOfV){ 

        closestUnmarkedNode = getClosestUnmarkedNode(); 

        mark[closestUnmarkedNode] = true; 

        for(int i = 0; i < numOfV; i++){ 

            if((!mark[i]) && (adjMatrix[closestUnmarkedNode][i] > 0)){ 

                if(distance[i] > distance[closestUnmarkedNode] + 

adjMatrix[closestUnmarkedNode][i]){ 

                   distance[i] = distance[closestUnmarkedNode] + 

adjMatrix[closestUnmarkedNode][i]; 

                   predecessor[i] = closestUnmarkedNode; 

                } 

            } 

        } 

        count++; 

    } 

} 

 

void Dij::printPath(int node){ 

    if(node == source){ 

        //cout<<node<<".."; 

    } 

    else if(predecessor[node] == -1){ 

        //cout<<"No path from “<<source<<”to "<<node<<endl; 

    } 

    else { 

        printPath(predecessor[node]); 

        //cout<<node<<".."; 

        shortestPath.push(node); 

      //  cout<<shortestPath.back()<<".."; 

    } 

} 

 

void Dij::output(){ 

    if(dest == source){ 

        //cout<<source<<".."<<source; 

    } 

    else 

        printPath(dest); 

 

    //cout<<"->"<<distance[dest]<<endl; 

} 

 

void Init_Graph(Dij*G){ 
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    for (int networkIndex = 0; networkIndex < 3; networkIndex++){ 

            string networkNames[4] = {"ExampleProblemAdj", "SF_10_40", 

"Rand_10_40", "Ring_10_40"}; //Change network name. YD 

            string networkName = networkNames[networkIndex]; 

            ofstream myfile; 

            //myfile.open("ShortestDistance/Dij_" + networkName + ".txt"); 

            G[networkIndex].trys("Network Topology/" + networkName + ".txt"); 

        } 

} 

 

 

queue<int> Shortest_Path(int source, int dest, Dij &G){ 

 

    G.source = source; 

    G.dest = dest; 

    G.calculateDistance(); 

    G.output(); 

 

    return G.shortestPath; 

}; 

 

void Print_Path(queue<int> a){ 

    while (!a.empty()){ 

    //std::cout << ' ' << a.front(); 

    a.pop(); 

    } 

 

    //std::cout << '\n'; 

}; 

 

void Clear_Path(queue<int> *a){ 

    while (!a->empty()){ 

    a->pop(); 

    } 

}; 

 
 

d. Queue.cpp 

#include "Queue.hpp" 

int Node_queue::success_pass_counter=0; 

int Node_queue::success_deliver_counter=0; 

int Node_queue::aborted_counter=0; 
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std::vector<unsigned> 

Node_queue::Queue_Conjested(static_cast<size_t>(NUMBER)); 

 

Node_queue::Node_queue():Info_Queue(static_cast<size_t>(NUMBER)), 

                        Queue_Size(static_cast<size_t>(NUMBER)){}; 

 

 

 void Node_queue::addToQueue(const Node_Info_Passing& node){ 

 

 Info_Queue[node.position].push(node); 

 

 }; 

 

  unsigned Node_queue::queueSize(const Node_Info_Passing& node ) const{ 

    return Info_Queue[node.position].size(); 

  }; 

 

 

  const Node_Info_Passing& Node_queue::viewFrontNodeInfo(const 

Node_Info_Passing& node) const 

  { 

     return Info_Queue[node.position].front(); 

  }; 

 

  Node_Info_Passing Node_queue::getFrontNode(const Node_Info_Passing& 

node) 

  { 

       Node_Info_Passing front_node(Info_Queue[node.position].front()); 

       Info_Queue[node.position].pop(); 

       return front_node; 

  }; 

 

 

 void Node_queue::increaseGroupSize(const Node_Info_Passing& node){ 

     Queue_Size[node.position]+=1; 

 }; 

 

 void Node_queue::decreaseGroupSize(const Node_Info_Passing& node) 

 { 

    Queue_Size[node.position]-=1; 

  }; 
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unsigned Node_queue::groupSize(const Node_Info_Passing& node) const 

{ 

 return Queue_Size[node.position]; 

}; 

 

void Node_queue::Set_Conjested(const Node_Info_Passing& node) 

{ 

   Queue_Conjested[node.position]=false; 

}; 

 

void Node_queue::Clear_Conjested_state(const Node_Info_Passing&node) 

{ 

  Queue_Conjested[node.position]=true; 

}; 

 

bool Node_queue::isConjested(const Node_Info_Passing& node) 

{ 

    return Queue_Conjested[node.position]; 

}; 
 

 

e. nodeevet.hpp 

#ifndef _NODEEVENT_HPP_ 

#define _NODEEVENT_HPP_ 

 

#include "Path.h" 

 

#include <cstdio> 

#include <iostream> 

#include <queue> 

#include <time.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <cmath> 

#include <fstream> 

#include <random> 

 

 

int rand(int a,int Range); 
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void send_to_Next(Node_Info_Passing&node,Node_queue&node_queue,int i,int 

simu); 

void prepare_node_to_send(Node_queue&node_queue,float Bandwidth,int 

Num_node,int simu); 

void Send_Node(Node_queue & node_queue,float Bandwidth,int simu); 

void Generate_node(Node_queue& node_queue,bool a,int n,double 

info_size_max,int simu,Dij&G, float infoSize, float ** resExMatrix); 

void Compute_path( Node_Info_Passing&node,Dij &G); 

void simulation(Node_queue&node_queue,Dij &G, float infoSize, float ** 

resExMatrix, float brandWidth); 

void Printtofile(Node_queue&node_queue); 

void Printtofile_node(Node_Info_Passing&node,int time_step); 

int uniIntRand(int n) ; 

#endif 

 

 

f. path.hpp 

 

#ifndef DISTANCE_H_INCLUDED 

#define DISTANCE_H_INCLUDED 

 

#include "Queue.hpp" 

 

#include <iostream> 

#include <fstream> 

#include <sstream> 

#include <string> 

#include <iomanip> 

#include <stdlib.h> 

#include <vector> 

#include <queue> 

 

using namespace std; 

 

 

class Dij{ 

    public: 

        queue <int> shortestPath; 

        static const int numOfV = NUMBER; 

        int predecessor[numOfV], distance[numOfV]; 
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        int adjMatrix[NUMBER][NUMBER]; 

        void trys(string); 

        int tree[numOfV][numOfV]; 

        bool mark[numOfV]; 

        int source; 

        int dest; 

        void initialize(); 

        void calculateDistance(); 

        void output(); 

        void printPath(int); 

        int getClosestUnmarkedNode(); 

 

}; 

void Init_Graph(Dij*G); 

queue<int> Shortest_Path(int, int , Dij&); 

void Print_Path(queue<int> a); 

void Clear_Path(queue<int> *a); 

 

 

#endif // DISTANCE_H_INCLUDED 
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g. Queue.hpp 

#ifndef QUEUE_HPP_ 

#define QUEUE_HPP_ 

 

#include <queue> 

#include <vector> 

#include <iostream> 

#include <string> 

 

#include <sstream> 

 

namespace patch 

{ 

    template < typename T > std::string to_string( const T& n ) 

    { 

        std::ostringstream stm ; 

        stm << n ; 

        return stm.str() ; 

    } 

} 

 

using namespace std; 

using namespace patch; 

 

static const int NUMBER = 7; 

static const int resMatrixIndex = 3; 

static const int networkIndex = 0; 

static const float brandWidth = 1; 

static const string brandWidthName = "1"; 

 

struct Node_Info_Passing{ 

  int Origin; 

  int Destination; 

  int position; 

  std::queue<int> Path; 

  float info_size; 

  int Simul_step; 

  int Initial_Sim_Step; 

}; 
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class Node_queue { 

public: 

  enum queue_static {Normal,Conjested,Empty}; 

 

  Node_queue(); 

 

  static int success_pass_counter; 

  static int success_deliver_counter; 

  static int aborted_counter; 

 

public: 

  void addToQueue(const Node_Info_Passing&); 

 

  unsigned queueSize(const Node_Info_Passing&) const; 

 

  const Node_Info_Passing& viewFrontNodeInfo(const Node_Info_Passing&) 

const; 

 

  Node_Info_Passing getFrontNode(const Node_Info_Passing&); 

 

  void increaseGroupSize(const Node_Info_Passing&); 

 

  void decreaseGroupSize(const Node_Info_Passing&); 

 

  unsigned groupSize(const Node_Info_Passing&) const; 

 

 

public: 

  static void Set_Conjested(const Node_Info_Passing&); 

 

  static void Clear_Conjested_state(const Node_Info_Passing&); 

 

  static bool isConjested(const Node_Info_Passing&); 

 

//private: 

  std::vector<std::queue<Node_Info_Passing> > Info_Queue; 

  std::vector<float> Queue_Size; 

 

//private: 

  static std::vector<unsigned> Queue_Conjested; 
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}; // class QueueState 

 

#endif // QUEUE_HPP_ 
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M. The “Link Minus” Network Topology Optimization Code (Matlab) 

This program is used to generate the optimized network topoglogy for a given 

network node number based on the process discussed in Section 6.3. The inputs for this 

program are the number of netwowrk nodes and the set of constrained network links that 

cannot be removed during the “Link Minus” process. 

clc; 

clear; 

nodeNum = 8; 

adjMatrix = importdata('adj_design.csv', ',' , 0); 

count = 1; 

results = []; 

 

adjMatrixCopy = adjMatrix; 

results(count,1) = 0; 

results(count,2) = 0; 

results(count,3) = 0; 

results(count,4) = ER_Cal(8,adjMatrix,1,8); 

 

for inter = 1:8 

%     h = view(biograph(sparse(adjMatrix))); 

    temp = adjMatrix.*linkIMP_2(8, adjMatrixCopy, 1, 8); 

    tempCopy = temp; 

    tempCopy(:,8) = 0; 

    tempCopy(8,:) = 0; 

     

    S = 2; 
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    while (S>=2)  

        [value, index] = max(reshape(tempCopy, numel(tempCopy), 1)); 

        [i,j] = ind2sub(size(tempCopy), index); 

        adjCopy = adjMatrix; 

        adjCopy(i,j) = 0; 

        adjCopy(j,i) = 0; 

        [S, C] = graphconncomp(sparse(adjCopy(1:7,1:7))); 

        if(S>=2)     

            tempCopy(i,j) = 0; 

            tempCopy(j,1) = 0; 

        end 

 

        if(sum(sum(tempCopy))==0) 

            break; 

        end 

    end 

 

    if(sum(sum(tempCopy))>0)     

        count = count + 1;         

        results(count,1) = i; 

        results(count,2) = j; 

        results(count,3) = temp(i,j); 

        adjMatrix(i,j) = 0; 

        adjMatrix(j,i) = 0; 

        results(count,4) = ER_Cal(8,adjMatrix,1,8); 

    end 

end 



198 
 
 

 

view(biograph(adjMatrix))  
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