
A FRAMEWORK FOR THE FAST EVALUATION OF THE

CAPABILITY-BASED CONNECTIVITY ROBUSTNESS OF A

COLLABORATIVE INFORMATION NETWORK

A Thesis

Presented to

The Academic Faculty

by

Yuqian Dong

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

School of Aerospace Engineering

Georgia Institute of Technology

August 2016

Copyright © 2016 by Yuqian Dong

A FRAMEWORK FOR THE FAST EVALUATION OF THE

CAPABILITY-BASED CONNECTIVITY ROBUSTNESS OF A

COLLABORATIVE INFORMATION NETWORK

Approved by:

Professor Dimitri Mavris, Advisor

School of Aerospace Engineering

Georgia Institute of Technology

 Professor Daniel Schrage

School of Aerospace Engineering

Georgia Institute of Technology

Professor Eric Feron

School of Aerospace Engineering

Georgia Institute of Technology

 Dr. Yen-Tai Wan

United Parcel Service

Dr. Kelly Griendling

School of Aerospace Engineering

Georgia Institute of Technology

 Date Approved: June 29th 2016

To Mom, Dad, and Xiaofan.

iv

ACKNOWLEDGEMENTS

First I want to thank my parents for their unconditionally love and support during

my growth. They gave me the courage to be a dreamer. They also taught me to work hard

to make dreams come true. Now, they are about to retire. I hope that, by that time, I will

be able to support them and to help them realize their dreams in their new life journey.

Next, I want to express my highest gratitude to my advisor Dr. Mavris for having

me as his student. Once I asked Dr. Mavris what his vision on Ph.D. education is. He told

me that Ph.D. is not only about knowledge; it is also a process of self-discovering and

learning to think independently. During my years in graduate school, I slowly learnt that,

answers are important but what more important is to ask the right questions. Just like

writing a Ph.D. thesis, to find the right topic has the most profound effects. This is not an

easy process. For a long time, I had hoped that someone could tell me a good question so

that I could finish my thesis earlier, which of course did not work. However, after all, I

really appreciate the whole process. It gives me the methodology to face any new fields

and challenges; it also enables me to see with my own eyes and think with my own brain.

In addition, I want to thank Kelly Griendling, who has been a great mentor during

my time at ASDL. I cannot remember how many times that I walked into her office with

confusion and frustration and walked out with confidence and new ideas. The discussions

with her were always very insightful and productive. She could always provide me with

helpful advices and cheering encouragements.

In the past few years, I have met many inspiring people, and some of them have

become my lifetime friends. The most important one among them is my husband,

Xiaofan Fei. He listens to me. He cares about me. He supports me. He is the anchor of

strength for me. Because of him, I am becoming a more confident person. Because of him,

I am becoming a better myself.

Ph.D. is only a period of life, but it shapes the rest of my life.

v

TABLE OF CONTENTS
DEDICATION ... iii

ACKNOWLEDGEMENT ... iv

LIST OF TABLES ... viii

LIST OF FIGURES ...x

NOMENCLATURE .. xiii

SUMMARY .. xvi

CHAPTER I MOTIVATION AND INTRODUCTION..1

1.1 Capability-Based Connectivity Robustness Measure ..4

1.2 Network Model ..6

1.3 Congestion Consideration ..8

1.4 Research Objective and Research Questions ...10

1.5 The Example Problem..11

CHAPTER II CAPABILITY-BASED NETWORK MODELING13

CHAPTER III MEASURING CAPABILITY-BASED CONNECTIVITY

ROBUSTNESS ..19

3.1 Review of Existing Connectivity Robustness Measures19

3.1.1 Classical Robustness Measures... 20

3.1.2 Spectral Robustness Measures .. 22

3.2 Pairwise Effective Resistance ..26

3.3 Estimating 𝑚𝑖,𝑗
𝑋 from 𝐸𝑅𝑖,𝑗 ..38

3.4 Redundant Links ..48

3.5 Chapter Summary ..54

CHAPTER IV CENTRALITY ANALYSES ..56

vi

4.1 Node Centrality ..59

4.2 Link Centrality ...65

4.3 Chapter Summary ..69

CHAPTER V A CAPABILITY-BASED CONNECTIVITY ROBUSTNESS

EVALUATION FRAMEWORK...70

5.1 The Practicality of the Proposed Framework ...74

5.2 An Alternative Design Generation Process ...75

5.3 Chapter Summary ..82

CHAPTER VI HOW TO STRENGTHEN CAPABILITY-BASED CONNECTIVITY

ROBUSTNESS ..83

6.1 How to Add a Link ..83

6.2 How to Prepare a Substitution ...89

6.3 Chapter Summary ..97

CHAPTER VII CONGESTION CONSIDERATION ...99

7.1 Understanding Congestion Behaviors..101

7.2 Critical Information Processing Capacity ..114

7.2.1 Static Critical Information Processing Capacity 115

7.2.2 Dynamic Critical Information Processing Capacity 126

7.3 A Final Note ...136

7.4 Chapter Summary ..138

CHAPTER VIII CONCLUSIONS AND CONTRIBUTIONS..142

8.1 Resolution of Research Questions and Hypotheses ...142

8.2 Contributions..146

vii

8.3 Recommendations for Future Studies ..147

APPENDIX I ..150

APPENDIX II ..152

REFERENCES ..199

VITA ..205

viii

LIST OF TABLES

Table 1. Summary of Network Connectivity Robustness Measures 25

Table 2. 𝜃 Value of Different 𝑁 ... 40

Table 3. Estimation Accuracy Summary of Equation 12 for 𝑁 = 50 41

Table 4. (�̅�𝑖,𝑗
𝑋)

𝐹𝑈𝐿𝐿
from 𝑁 = 3 to 𝑁 = 30 .. 43

Table 5. Estimation Accuracy of Equation 15 for 𝑁 = 50 ... 45

Table 6. Estimation Errors of Step-Min Network Families .. 47

Table 7. Estimation Errors of Classical Networks .. 48

Table 8. Average Percentage Error 𝜀 of Classical Networks .. 54

Table 9. GAM Model Summary for Node Pairs within Classical Networks (Node

Centrality) .. 64

Table 10. GAM Model Summary for Node Pairs within Classical Networks (Link

Centrality) .. 68

Table 11. Summary of the Accuracy of �̃̅�𝐶,𝐹
𝑋 ... 70

Table 12. Summary of Node Centrality 𝐶𝑘
𝑉 and Impacts of Node Removal 𝛥�̅�𝐶,𝐹

𝑋 (𝑘) ... 71

Table 13. Summary of Link Centrality 𝐶𝑘,𝑙
𝐸 and Impacts of Link Removal 𝛥�̅�𝐶,𝐹

𝑋 [(𝑘, 𝑙)] 71

Table 14. Results of the “Link Minus” Procedure .. 78

Table 15. Performance of 𝛺𝑘,𝑙
𝑖,𝑗

for Different Node Pairs (Rand) 87

Table 16. Performance of 𝛺𝑘,𝑙
𝑖,𝑗

for Different Node Pairs (SF) ... 88

Table 17. Performance of the Proposed Resilience Evaluation Method on Classical

Networks .. 96

Table 18. Information Transmission Scenario ... 100

ix

Table 19. Summary of 𝐵𝐶𝑘, 𝑎𝐵𝐶𝑘, 𝐼𝐶𝑘
𝑉, 𝜆𝐶𝑘, 𝐼�̅�(𝜆𝐶𝑘) Values 119

Table 20. �̃̅�𝑖,𝑗
𝑋 and (�̃̅�𝑖,𝑗

𝑋)
𝐹𝑈𝐿𝐿

of SF_10_20 .. 130

Table 21. Information Exchange Matrix 1 Used in Chapter 7 .. 150

Table 22. Information Exchange Matrix 2 Used in Chapter 7 .. 151

x

LIST OF FIGURES

Figure 1. Network Topology of an Undirected Network 𝐺 = (𝑉, 𝐸) 7

Figure 2. Adjacency Matrices for Directed and Undirected Networks 8

Figure 3. Disaster Management Application of Networked SUAVs 11

Figure 4. Conventional Network Model of the CIN in the Example Problem 14

Figure 5. Network Modification to Reflect OR Operation on the Example CIN 15

Figure 6. Network Modification to Reflect AND Operation on the Example CIN 16

Figure 7. Variation of the Example CIN ... 16

Figure 8. Network Modification to Reflect OR and AND Operations on the Example CIN

Variation ... 17

Figure 9. Effective Resistance between Two Points a and b in Simple Graphs [67] 24

Figure 10. The Construction Process of Step-Min Network Family with 4 Nodes 27

Figure 11. 𝐸𝑅1,𝑁 History along Link Addition (Step-Min) .. 29

Figure 12. Example of a Pure Redundant Link (Link 3,5) ... 31

Figure 13. 𝐻1𝑎 Test Results: Step-Min Network Families Sorted by 𝑁, then by �̅�1,𝑁
𝑋 34

Figure 14. 𝐻1𝑎 Test Results: Step-Min Network Families Sorted by �̅�1,𝑁
𝑋 35

Figure 15. 𝐻1𝑏 Test Results: Step-Min Network Families Sorted by 𝑁, then by
�̅�1,𝑁
𝑋

𝑀
 36

Figure 16. 𝐻1b Test Results: Step-Min Network Families Sorted by
�̅�1,𝑁
𝑋

𝑀
 36

Figure 17. 𝐻1𝑎 Test Results: Classical Networks Sorted by �̅�𝑖,𝑗
𝑋 37

Figure 18. 𝐻1𝑏 Test Results: Classical Networks Sorted by
�̅�𝑖,𝑗
𝑋

𝑀
 38

Figure 19. The Behavior of 𝜃 over Different 𝑁 Values .. 40

xi

Figure 20. Example of the Linearized Data for the Step-Min Network Family with 10

Nodes ... 42

Figure 21. Behavior of (�̅�𝑖,𝑗
𝑋)

𝐹𝑈𝐿𝐿
 from 𝑁 = 3 to 𝑁 = 16 .. 44

Figure 22. Estimation Results vs. Simulation Results for Step-Min Network Families... 47

Figure 23. Estimation Results vs. Simulation Results for Node Pairs within Classical

Networks .. 48

Figure 24. Partition of 𝐸 ... 49

Figure 25. Co-plot of 𝜙𝑠𝑖𝑚𝑢 and 𝜙𝑡ℎ𝑒𝑜 for Step-Min Network Faimly of 𝑁 = 30 52

Figure 26. Distribution of 𝜀 for Step-Min Network Faimly of 𝑁 = 30 53

Figure 27. Plot of the Example GAM Model between Δ�̅�𝑖,𝑗
𝑋 (𝑘) and −

Δ𝑈𝑖,𝑘,𝑗

4𝑀
 64

Figure 28. Plot of the Example GAM Model between Δ�̅�𝑖,𝑗
𝑋 (𝑘, 𝑙) and −

𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
 68

Figure 29. A Framework for the Fast Evaluation of the Capability-Based Connectivity

Robustness of a CIN .. 73

Figure 30. The Starting Topology of the Sub-Problem 2 for the Example CIN 78

Figure 31. Co-plot of �̃̅�𝐶,𝐹
𝑋 and

�̃̅�𝐶,𝐹
𝑋

𝑀
 vs. 𝑀 .. 81

Figure 32. The Optimized Network Topologies of the Example CIN 81

Figure 33. Example of Assigning a Deputy Commander in a CIN 92

Figure 34. Modified Network Topology by Shorting Node 𝐶 and Node 𝐶′ (Without Extra

Link) ... 92

Figure 35. Example of Assigning a Deputy Commander in a CIN 93

Figure 36. Modified Network Topology by Shorting Node 𝐶 and Node 𝐶′ (With Extra

Link) ... 94

xii

Figure 37. Summary of the Proposed Evaluation Methods .. 98

Figure 38. Plots of 𝐼�̅� versus 𝜆 for SF_10_20 ... 108

Figure 39. Plots of 𝐼�̅� versus 𝜆 for Rand_10_20 ... 109

Figure 40. Co-plot of 𝐷𝐿̅̅ ̅̅ 𝐺 , 𝐷𝑆̅̅ ̅̅ 𝐺versus 𝜆 for SF_10_20 ... 111

Figure 41. Co-plot of 𝐷𝐿̅̅ ̅̅ 𝐺 , 𝐷𝑆̅̅ ̅̅ 𝐺 versus 𝜆 for Rand_10_20 .. 112

Figure 42. Plots of 𝐼�̅� versus 𝜆 for SF_10_20 under Different Υ Values 114

Figure 43. Plot of (𝑎𝐵𝐶̅̅ ̅̅ ̅̅
𝑘
𝑉)𝑚3,6 vs. 𝑚3,6 for SF_10_20 ... 125

Figure 44. PDF and CDF of an Exponential Distribution (Scale = 8) 128

Figure 45. The Maximum Entropy Distribution of 𝑝3,6
𝑋 .. 131

Figure 46. PDF and CDF of 𝑝3,6
𝑋 Constructed by Equation 59 and Simulation Results . 132

Figure 47. Example Plot of 𝑝(𝑚3,6) with 𝑇 = 10 (Hours) and Θ = 8 (Hours) 133

Figure 48. Overlay of Figure 43 and Figure 47 .. 134

xiii

NOMENCLATURE

CIN Collaborative Information Network

UAV Unmanned Air Vehicles

SUAV Small Unmanned Air Vehicles

SoSE System of Systems Engineering

SoS System of Systems

𝐺 Network

𝐸 Set of All the Links of a Network

𝑀 Number of Links within a Network, 𝑀 = |𝐸|

𝑉 Set of All the Nodes of a Network

𝑁 Number of Nodes within a Network, 𝑁 = |𝑉|

𝐶𝑃 Capability

𝐶𝑁 Connectivity

𝐶𝑃0 Initial Capability (Built-in Capability)

𝑅𝐶𝑁𝐶𝑃 Capability-Based Connectivity Robustness

𝐴 Adjacency Matrix

𝐷 Degree Matrix

xiv

𝐿 Laplacian

𝜆𝑖 The 𝑖 th Eigenvalue of a Laplacian

𝜉 Number of Spanning Trees in a Network.

𝐸𝑅 Effective Resistance

𝐸𝑅𝑖,𝑗 Effective Resistance of a Node Pair

𝐸𝑅𝐺 Effective Resistance of a Network

𝐿+ Moore-Penrose Pseudoinverse of Laplacian

𝑛𝐸𝑅𝑖,𝑗 Normalized Effective Resistance between Node Pair 𝑖, 𝑗

𝑚𝑖,𝑗
𝑋 Number of Link Failures until Node Pair 𝑖, 𝑗 Disconnected

�̅�𝑖,𝑗
𝑋 Average Number of Link Failures before Node Pair 𝑖, 𝑗 Disconnected

�̃̅�𝑖,𝑗
𝑋

Estimated Average Number of Link Failures before Node Pair 𝑖, 𝑗
Disconnected

𝜃 Smoothing Factor for 𝐸𝑅𝑖,𝑗

�̃� Estimated Smoothing Factor for 𝐸𝑅𝑖,𝑗

𝜑
Ratio of the Number of Structural Links to the Number of Redundant

Links

𝜙 Augmented Effects of Redundant Links

𝐶𝑘
𝑣 Centrality of Network Node 𝑘

𝐶𝑘,𝑙
𝑒 Centrality of Network Link 𝑘, 𝑙

𝐻𝑖,𝑗
Expected Number of Steps for a Random Walk Starting from Node 𝑖 to Hit

Node 𝑗 for the First Time

xv

𝑈𝑖.𝑗
Commute Time (Distance) for a Round Trip Random Walk Between Node

𝑖 and Node 𝑗

𝜆 Information Packet Output Rate

Γ Information Packet Processing Rate

Υ Queue Capacity

𝐼𝑖(𝑡) Internal Information Size of a Network Node at Time Stamp 𝑡

𝐷𝐿𝐺(𝑡) Total Information Packets Delivery Rate of the Entire Network at Stamp 𝑡

𝐷𝑆𝐺(𝑡) Total Information Packets Discard Rate of the Entire Network at Stamp 𝑡

𝜏𝐺(𝑡)
Time for a Packet Information to be Delivered within a Network Averaged

from Time Stamp 0 to Time Stamp 𝑡

𝛺𝑘,𝑙
𝑖,𝑗

Impact of Link 𝑘, 𝑙 on the Capability-Based Connectivity Robustness

Whose Target Node Pair is 𝑖, 𝑗

𝐵𝐶𝑘
𝑉 Betweenness Centrality of Node 𝑘

𝑎𝐵𝐶𝑘
𝑉 Centrality of Node 𝑘

𝐼𝐶𝑘
𝑉 Information Congestion Centrality of Node 𝑘

𝑝(𝑚𝑖,𝑗)
Probability of Node Pair 𝑖, 𝑗 to Stay Connected with 𝑚𝑖,𝑗 Number of Link

Failures

𝑝1(𝑚𝑖,𝑗) Probability of Exact 𝑚𝑖,𝑗 Number of Link Failures

𝑝2(𝑚𝑖,𝑗)
Probability of Node Pair 𝑖, 𝑗 to Stay Connected after 𝑚𝑖,𝑗 Number of Link

Failures

xvi

SUMMARY

Technology advancements have greatly extended the application scope of

Collaborative Information Networks (CINs). Due to the unique application fields of CINs

and the nature of this construction, the connectivity of the inter-connection structure

under impairments is a profound but challenging requirement for a CIN. Most of the

existing topological connectivity robustness measures were proposed from a pure

structural perspective with little or no consideration of the capability of a network. They

can describe the ability of a network to resist network fragmentation under impairments.

However, the current evaluation practice provides no direct mapping between the

measured connectivity robustness and the capability robustness of a network. By seeing

this gap, the research objective of this thesis is to develop a method to measure the

capability-based connectivity robustness of a CIN against link failures by using existing

topological connectivity robustness measures.

A network model was chosen to represent the architecture of a CIN. The key to

measure capability-based connectivity robustness is to link the capability of a CIN to its

architecture structure. This can be done through network modeling. Network topological

analysis is usually deployed to study the structure of a network. This thesis demonstrated

the flexible use of network modeling. By modifying the network model of an

infrastructure, network topological analysis can be used beyond pure structural analysis.

It was observed that, in order to output capability, one or more major information

flows of a CIN should be maintained. The major information flows can be collapsed into

the connection between several critical node pairs. To measure the capability-based

connectivity robustness of a CIN is to measure the (structural) connectivity robustness of

critical node pairs. The connectivity robustness of a node pair (𝑖, 𝑗) can be directly

quantified by the average number of link failures until its disconnection happens (�̅�𝑖,𝑗
𝑋),

which can be estimated using the effective resistance between that node pair (𝐸𝑅𝑖,𝑗). This

xvii

estimation method is fast and scalable. The estimation error stabilizes as network node

number increases.

Centrality analyses for both existing and non-existing network entities were also

performed in terms of their importance to the capability-based connectivity robustness of

a network. The centrality of a network entity can be evaluated using the Moore-Penrose

Pseudoinverse of a network Laplacian (𝐿+). Since 𝐿+ is also used to calculate 𝐸𝑅𝑖,𝑗, the

proposed centrality evaluation methods do not require any extra heavy computation other

than several basic operations. As a result, the proposed methods can be used to help

quickly allocate limited resources to protect network against impairments or to add

additional links to strengthen connectivity.

In addition, a framework for the fast evaluation of the capability-based

connectivity robustness of a CIN was constructed and was demonstrated on the example

CIN followed by an alternative topology design generation process.

Assigning substitution nodes can also help strength connectivity. In this thesis, it

was demonstrated how the proposed capability-based connectivity robustness measure

can be used to evaluate the effects of having substitution nodes, which is a dynamic

failure copying mechanism.

Finally, the effects of the capability-based connectivity robustness of a network

on the required information processing capacity of each network node was also explored.

1

CHAPTER I

MOTIVATION AND INTRODUCTION

Humans are currently in the Information Age, which is also known as the

Computer Age, Digital Age, or New Media Age. It is a period in human history

characterized by the shift from traditional industry to an economy based on information

computerization. The onset of the Information Age is associated with the Digital

Revolution, just as the Industrial Revolution marked the onset of the Industrial Age. The

entire human society is going towards the idea that, individuals will be able to transfer

information freely, and to have instant access to knowledge that would have been

difficult or impossible to be found previously. As we are marching towards that goal, our

ways of doing things have been remarkably changed.

Information is useable data, inferences from data, or data descriptions [1]. The

ability of gathering, translating and making sense of information has become one

important factor that determines the success of an individual or an organization in the

current knowledge-based society. Information exchange is critical to the performance of

many networked systems, such as internet, air and ground transportation networks,

business firms, military systems, and emergency respond systems [2], just to name a few.

In order to increase the overall information level as to enhance performance or to

complete tasks that are impossible to be achieved by individual participants alone,

individual entities always work in collaboration 1 and form collaborative information

networks. A collaborative information network (CIN) is a network within which

component systems generate information and share it with others in the network via

1 Collaboration means to work together in group(s) to achieve a common task or goal and irrespective of

geographical separation. 3. Durugbo, C., et al., Modelling collaboration using complex networks.

Information Sciences, 2011. 181(15): p. 3143-3161..

http://en.wikipedia.org/wiki/Digital_Revolution
http://en.wikipedia.org/wiki/Digital_Revolution
http://en.wikipedia.org/wiki/Industrial_Revolution

2

information links to enhance the overall situation awareness and to increase performance

and efficiency [4].

Rapid technological advances on electronic, sensor and communication

technologies have greatly extended the scope of CIN operations with enhanced flexibility.

One example is the use of networked small Unmanned Air Vehicles (SUAVs). SUAVs

encompass the Micro, Mini and Close Range categories of Unmanned Air Vehicles

(UAVs). According to [5], this classification means SUAVs have maximum takeoff

weight less than or equal to 150 kg, maximum range of 30 km, and maximum altitude of

5 km mean sea level. Single-UAV systems have been in use for military missions since

the beginning of UAV flight, due to their abilities to effectively operate in dirty, dull or

dangerous missions [6]. Comparing to the use of Single-UAV systems, using a group of

networked SUAVs has many advantages because of their better scalability [7], higher

flexibility [8], greater accessibility [9], smaller radar cross-section [10] and relatively

lower operation expenses[11]. The aforementioned technology advances have also

enabled the ability to design and manufacture agile SUAVs at lower cost. As a result, the

range of both military and civilian applications of networked SUAVs are getting wider,

such as military target search and destroy operations [12], persistent surveillance [13-16],

target tracking [17], wildfire control [18, 19], environment and weather monitoring [20-

23], disaster management [24], and law enforcement [25].

For a CIN, especially when its operation scale is large, often than never, it is very

hard to obtain well-documented performance data. The absence of performance data

coupled with the increasing size and complexity of its interacting systems presents a large

degree of uncertainty around a CIN operation [13]. This is especially pragmatic when the

3

CIN operation environment is at high stake. Hence, it is important to design a CIN with

enough robustness to maintain its capability2 under adverse changes during operation.

As mentioned earlier, effective communication is crucial for the cooperation and

collaboration between entities within a CIN. Therefore, the capability robustness of a

CIN highly depends on whether its architecture can provide robust networked

communication. To achieve this, the most profound but challenging requirement is to

maintain connectivity under network impairments [2, 30-32]. Network impairments refer

to any kind of attack, multiple or cascading failures that can occur upon a network [33].

That is to say, connectivity loss under network impartments is a major cause for the

capability loss of a CIN during operation.

Using networked SUAVs as an example. Unlike larger UAVs, SUAVs are in a

unique regime where their capabilities to carry onboard connectivity loss mitigating

technologies are limited yet their potential to be damaged is high [5] for the following

reasons.

1. SUAV Platform Constraints

2. Adverse Environment Conditions

3. High Operation Mobility

The payload and space limitations of an SUAV are much higher than a traditional

UAV. Those tighter constraints pose an important issue for the performance of SUAVs

due to relative lower onboard power, sensing, communication and computation

capabilities. Lower onboard power and communication capabilities can result in less

reliable wireless communication channels and shorter communication ranges [34]. The

operation environments of networked SUAVs are usually adverse, such as natural

2 A capability is the ability to achieve a desired effect under specified standards and conditions through

combinations of ways and means to perform a set of tasks. 26. Government. Systems Engineering Guide for

Systems of Systems. 2008.

4

disaster scenes and impediment terrain structures. Under such circumstances, it can be

hard or even impossible to maintain the communication links between SUAVs. Due to

the high motilities of SUAVs, collision avoidance between SUAVs and SUAVs, SUAVs

and obstacles becomes an important issue. Undoubtedly, lower sensing and

communication capabilities increase the probability of collision [35]. In addition, as

written in [36], latency is one of the most important design issues for all types of

networks. Limited communication and onboard computation capabilities of SUAVs can

not only increase the potential of vehicle loss [5, 37] but also diminish the overall

delivered capability, especially when information timeliness is valued high [38].

Hence, to design a CIN that can maintain connectivity under network impairments

during operation is essential for its capability robustness. In other words, that is to design

a connectivity robust CIN to maintain desired overall capability.

1.1 Capability-Based Connectivity Robustness Measure

Connectivity robustness is not a new topic. It is defined as the ability of a network

to remain connected when its component systems experience impairments [2]. As

mentioned earlier, the connectivity robustness of a CIN should be directly linked to its

capability robustness. In order to design and evaluate the connectivity robustness of a

CIN, and understand how it supports the capability robustness, we need to be able to

measure it first.

In recent years, a large amount of researches has been conducted on measuring

the connectivity robustness of a network. According to [39], the most suitable

connectivity robustness measure should be chosen based on the problem under

investigation and the size of the network under analysis.

5

In general, connectivity robustness can be evaluated via direct simulation or

topological measures. The problem of simulation results is that they lack transparency

and the method itself is not scalable well to large networks. Whereas topological

measures are more intuitive and have better scalability. In addition, they are more

suitable when timely analysis result is critical.

An initial review of existing topological connectivity measures shows that almost

all of the measures were proposed from a pure structural perspective with little or no

consideration of the capability of a network. They can describe the ability of a network to

resist network fragmentation under impairments. However, the current evaluation

practice provides no direct mapping between the measured connectivity robustness and

the capability robustness of a network.

Instead, a new type of connectivity robustness called capability-based

connectivity robustness was proposed. It is defined as the ability of a network to maintain

connectivity among component systems in a way that retains network capability under

impairments. Mathematically, the capability-based connectivity robustness of a network

can be expressed as following.

 𝑅𝐶𝑁𝐶𝑃 ∝ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐼𝑚𝑝𝑎𝑖𝑟𝑚𝑒𝑛𝑡𝑠 𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒|𝐶𝑃

where,

𝑅𝐶𝑁𝐶𝑃 represents capability-based connectivity robustness;

𝐶𝑃 represents capability.

1

Equation 1 in essence says that, the capability-based connectivity robustness of a

network should be proportional to the amount of network impairments a CIN can sustain

while still outputs capability.

Many studies have shown that, a network can have different robustness behaviors

depending on the type of impairments [2, 40-44]. The most basic way is to categorize

6

impairments by hit point type, which is either an individual entity or a communication

link. Network impairments can also be grouped into either random or targeted. Random

impairments are usually failures. In this thesis, focus will be given to link (random)

failures for the following reasons.

1. Failures exist among all CIN operations, while attacks can only happen in certain

operations.

2. An entity failure is equivalent to a set information transmission line failures.

3. For a CIN, communication link outrage happens more frequently than entity lose

[5, 36].

1.2 Network Model

A model is a useful approximation of the object under modeling to aid the

understanding and/or predicting of its behavior [45]. Since in this thesis topological

measures are selected for evaluating the capability-based connectivity robustness of a

network, it is nature to abstract or represent a CIN through a network model.

Network models have been widely used to represent and study the inter-

connection structures of complex networks. They have simple constructions, elegant

mathematical representation and unique capabilities to support various analyses that can

yield fruitful results. Network models are based on graphs. The associated theory is

network theory. Network theory origins in graph theory and is an area of applied

mathematics. Network theory concerns itself with the study of graphs as a representation

of either symmetric relations or, more generally, asymmetric relations between discrete

objects. Sometimes, the term “network theory” is used interchangeable with “graph

theory”. For the purpose of analysis, network models are grouped into two categories:

real network models and synthetic network models. Real network models are abstractions

7

of real world networks. They are used to analyze or investigate existing networked

architectures. Synthetic network models are usually used to generate networks or groups

of networks with similar characteristics according to customized rules to study the

general trends of certain network properties.

A network model is denoted as 𝐺 = (𝑉, 𝐸). 𝑉is the set of nodes (vertices) and 𝐸

is the set of links (edges). Network nodes (vertex) represent the entities in CIN network,

and network links (edges) represent the communication links between network entities.

Network topology is the graph that indicates the arrangement of the nodes and links of a

network model.

If the starting and ending vertices of a link are the same, then that link forms a

loop. A network without loops is a simple network. A network with no nodes and no

links is an empty network. A network with only one node and no link is a trivial graph. In

this thesis, are network models studied are simple and nontrivial. The most common way

to categorize a network model is based on whether its links are directed (directed network)

or not (undirected network). If the links of a directed network are all bidirectional, then

such a directed network can be simply modeled as an undirected network. Figure 1 is a

simple example of an undirected network.

Figure 1. Network Topology of an Undirected Network 𝑮 = (𝑽, 𝑬)

8

A more elegant way to represent a network topology than graph is to use an

adjacency matrix. Although an adjacency matrix is less intuitive and graphic than graph,

it is more suitable to represent large-scale network topologies and enables mathematical

operation on network topologies. Figure 2 provides two adjacency matrix examples. One

is an undirected network topology, and the other one is a directed network topology.

Figure 2. Adjacency Matrices for Directed and Undirected Networks

1.3 Congestion Consideration

As discussed earlier, connectivity loss results from network impairments (only

link failures are considered in this thesis). By making that statement, there is a

presumption, which is, all the component entities (network nodes) have enough

information processing capabilities so that none of them will experience congestion

during the CIN operation. Congestion is a result of information overload. When the total

information input rate of a network node is higher than its information processing rate,

information will accumulate at this node and eventually, this node will be overloaded and

starts to experience congestion.

9

Network congestion can result in information lose, delay and impair network

connectivity. Network connectivity loss will result in communication route loss or

changes that may lead to information overload on one or more nodes. This means

network congestion and network connectivity loss are inter-related. As mentioned above,

researches on network connectivity always presume that no congestion will happen.

While researches on network congestion always presume that no network topology

change. By doing so, the two problems: connectivity and congestion are isolated, which

can significantly simplify the analysis process. However, in reality those two problems

should be considered simultaneously when design a CIN. Hence, in this thesis, both of

the two problems are considered. In order to simplify the analysis process, congestion is

viewed as a node (individual entity) level design requirement that can be derived from

network topology (inter-connection structure) and its connectivity situation. First, assume

all the network nodes have enough information processing capabilities to ensure no

congestion will happen at any point of the CIN operation, even under network

impairments. Next, re-examine that assumption by performing congestion analysis to

derive node level design requirement, which in specific is the information processing

capabilities of each network node.

Real world design practices are never conducted without a consideration on cost.

For a CIN, by deploying more participant entities with high information processing

capabilities, more communication channels (such as all entities can communicate to each

other, a P2P structure3) with high reliability, the network can have very high capability-

based connectivity robustness, but at a very high acquisition cost. On the other hand,

even with the same number of participant entities, or communication channels, different

3 For most operations, the current communication technologies and computation abilities are not able to

support large scale, long distance P2P architecture. 36. Bekmezci, I., O.K. Sahingoz, and Ş. Temel,

Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 2013. 11(3): p. 1254-1270.

10

inter-connection structures can incur different costs due to different individual level

design requirements, such as the information processing capabilities discussed earlier.

The goal of this thesis is to provide a capability-based connectivity robustness measure

for a CIN. The measure should be able to provide design insights on how the connectivity

robustness of a CIN affects its capability robustness. In order to yield practical design

insights or design guidelines, when the measure is used to analyze or design CINs, cost

must be considered as well.

1.4 Research Objective and Research Questions

The rapid technological advances on electronic, sensor and communication

technologies have greatly extended the scope of CIN operations with enhanced flexibility.

However, there are many challenges to be addressed. Due to the unique application fields

of CINs and the nature of this construction, its connectivity robustness against

impairments is a profound but challenging requirement on a CIN design. Most of the

existing topological connectivity robustness measures were proposed from a pure

structural perspective with little or no consideration of the capability of a network. They

can describe the ability of a network to resist network fragmentation under impairments.

However, the current evaluation practice provides no direct mapping between the

measured connectivity robustness and the capability robustness of a network. By seeing

this gap, the research objective of this thesis is to develop a method to measure the

capability-based connectivity robustness of a CIN against link failures by using existing

topological connectivity robustness measures.

A network model is used to represent the inter-connection structure of a CIN.

Since the objective is to use existing topological connectivity robustness measures, we

need to transform the problem of measuring capability-based connectivity robustness into

11

the problem of measuring conventional (structural) connectivity robustness. With this, the

following two research questions were developed.

Research Question 1: How to incorporate capability into the conventional network

modeling process?

Research Question 2: Which existing topological connectivity robustness measure should

be chosen?

1.5 The Example Problem

In this thesis, a disaster management application of networked SUAVs is used as

the example problem. The example problem is illustrated in Figure 3. The SUAVs in this

scenario forms a CIN. The main advantage of using networked SUAVs is to collect

reliable data from a wide field of dangerous disaster scenes in an affordable way.

Figure 3. Disaster Management Application of Networked SUAVs

In this scenario, a city was struck by a severe earthquake. After the earthquake, a

group of networked SUAVs equipped with sensors and cameras are to be dispatched for

post-disaster inspection. Each SUAV is responsible for a field of the city and sends

regular updates of its responsible field back to the command center. Using the collective

information, the command center makes decision on where to send search and rescue

12

teams, and ends position update information back to the SUAVs. An SUAV also sends its

position information to its nearby SUAVs to avoid collision and to keep each other within

the communication rage. During the mission, an SUAV can send information back to the

command center directly or relaying through other SUAVs. If no path exists between an

SUAV and the command center, an SUAV cannot establish a new path itself either by

relaying through other SUAVs or by directly connecting to the command center.

Therefore, an SUAV cannot send useful information back to the command center

if there is no communication path established between the SUAV and the command

center or if the SUAV moves too far away from its responsible field. Moreover, there are

obstacles, hazardous weather conditions, such as strong wind, and heavy clouds, which

can impair the wireless communication links of the CIN.

 Since the major objective of this operation is to collect and stream-back

sufficiently good quality data to the command center, those aforementioned connectivity

loss issues can affect the outputted capability of this CIN so that it may not successfully

complete this operation.

In order to make sure the CIN maintain connectivity to support its capability

output during operation, it is asked to measure the capability-based connectivity

robustness of the CIN. This CIN operation is a rapid response deployment to a natural

disaster, so a timely result is critical.

13

CHAPTER II

CAPABILITY-BASED NETWORK MODELING

In Section 1.2, a brief introduction on the conventional network modeling process

has been given. To construct a conventional network model for the CIN in the example

problem, model the component SUAVs and their responsible fields as network nodes.

Model the information transmission lines as network links. Use solid lines to represent

the information transmission between the SUAVs and the command center. Use dashed

lines to represent the information transmission between the SUAVs and their responsible

fields. To simply the problem under examination, in this thesis, assume all the

information transmission lines are bidirectional. This means a CIN can be simply

modeled as an undirected network. For the information transmission lines between the

SUAVs and the command center, it is not hard to conceive the bidirectional information

transmission situation. For the information transmission between the SUAVs and their

responsible fields, it is to assume the sensor equipped to the SUAVs are active sensors.

Furthermore, ignore the characteristics of the information transmission lines, which is to

assume all the network links are unweighted.

The conventional network model of the example CIN is shown in Figure 4. 𝐶

represents the command center; 𝑢1 to 𝑢6 represent the SUAVs; and 𝑓1 to 𝑓6 represent the

inspection fields of the SUAVs.

14

Figure 4. Conventional Network Model of the CIN in the Example Problem

By definition, the capability of a CIN is completely dependent on information

sharing. In the representation of a CIN via a network model, the capability of a CIN

manifests itself as a set of key information flows with logical relationships [45-47].

Hence, any CIN capability can then be represented as a series of logical operations on the

key information flows. To incorporate the CIN capability into a conventional network

model is to reflect the logical operations on the key information flows through network

modeling.

There are two types of logical operations, one is OR and the other one is AND.

OR operation is performed on the set of flows that have OR relationship, which means, as

long as one of the key information flows is maintained, the capability of a CIN can be

sustained. Use the example CIN as an example, the key information flows are the ones

between the command center (node 𝐶) and the inspection fields (𝑓1 to 𝑓6). Assume the

relationship between those key information flows are OR. To reflect the OR relationship,

collapse the key information flows into the connection between a node pair, which is

denoted as the critical node pair. For the example CIN, this network modification is

shown in Figure 5. In this example, to reflect the OR operation, it is to combine all the

nodes that represent the inspection fields into one single node. The critical node pair

resulted from this modification is node pair 𝐶, 𝐹. With this modification, to measure the

capability-based connectivity robustness of a CIN is to measure the structural

15

connectivity robustness of the connection between the critical node pair, which in this

example is the connection between the command center and the combined inspection

field. Mathematically, it means 𝑅𝐶𝑁𝐶𝑃 = 𝑅𝐶𝑁𝐶,𝐹 , where 𝑅𝐶𝑁𝐶,𝐹 represents the

connectivity robustness between the critical node pair 𝐶, 𝐹.

Figure 5. Network Modification to Reflect OR Operation on the Example CIN

AND operation is performed on a set of key information flows that have AND

relationship, which means, all the key information flows have to be connected in order to

sustain the capability of a CIN. In this case, all the key information flows are critical. To

reflect the AND operation through network modeling, evaluate the structural connectivity

robustness of each critical / AND flow separately. For the example CIN, the key

information flows are still the ones between the command center (node 𝐶) and the

inspection fields (𝑓1 to 𝑓6). However, this time assume all the key information flows have

AND relationship and hence all the key information flows are critical as shown in Figure

6. The capability-based connectivity robustness of a CIN in this case, is the minimum

structural connectivity robustness among all the critical node pairs (each critical flow

forms a critical node pair), which in this example is the minimum structural connectivity

robustness among the connection between the command center and the inspection fields.

Mathematically, it means 𝑅𝐶𝑁𝐶𝑃 = min (𝑅𝐶𝑁𝐶,𝑓𝑖), where 𝑖 = 1, 2, … , 6.

16

Figure 6. Network Modification to Reflect AND Operation on the Example CIN

What if both OR and AND relationships exist among the key information flows of

a CIN? For example, modify the CIN in the example problem as shown in Figure 7 on the

left and the conventional network model for this modified CIN is shown on the right.

Figure 7. Variation of the Example CIN

The key information flows are still the ones between the command center and the

inspection fields. However, this time, there are two OR flow groups. Within each OR

group, the key information flows have OR relationship, and the two OR groups have

AND relationship. In the situation when both OR and AND relationships exist, first

perform OR operation within each OR group. Each OR group results in a critical node

pair. Evaluate the structural connectivity robustness of each critical node pair. Next,

17

perform AND operation among the critical node pairs, which is to take the minimum

structural connectivity robustness among all the critical node pairs. For the variation of

the example CIN, first, collapse the key information flows within each OR group into the

connection between a critical node pair as shown in Figure 8 and 𝑅𝐶𝑁𝐶𝑃 =

min (𝑅𝐶𝑁𝐶,𝐹1 , 𝑅𝐶𝑁𝐶,𝐹2).

Figure 8. Network Modification to Reflect OR and AND Operations on the Example CIN Variation

The previous discussion can be summarized into a capability-based network

modeling process.

1. Construct a conventional network model of a CIN.

2. Identify the key information flows and their logical relationships.

3. Apply logical operations on the key information flows and simplify the network

model into the connection between critical node pairs.

4. Calculate the structural connectivity robustness of each critical node pair.

5. Take the minimum structural connectivity robustness among all the critical node

pairs as the capability-based connectivity robustness of the CIN. The critical node

pair with the smallest structural connectivity robustness is referred to as the

capability critical node pair of the CIN.

18

 𝑅𝐶𝑁𝐶𝑃 = min(𝑅𝐶𝑁𝑖,𝑗) = 𝑅𝐶𝑁𝑖∗,𝑗∗

where, 𝑖, 𝑗 denotes general critical node pairs and 𝑖∗, 𝑗∗ denotes the

capability critical node pair of a CIN.

2

Now with a capability-based network model, the problem of measuring the

capability-based connectivity robustness of a CIN is successfully transformed into the

problem of measuring the structural connectivity robustness between critical node pairs.

With this, the first research question has been successfully answered. The next task is to

find the answer to the second research question, which is to select a topological measure

for the structural connectivity robustness between an arbitrary node pair against link

failures.

19

CHAPTER III

MEASURING CAPABILITY-BASED CONNECTIVITY

ROBUSTNESS

From now on, connectivity robustness will be used to refer to the structural

connectivity robustness between a node pair against link failures. For the capability-based

connectivity robustness of a CIN, it will always be specified.

In order to facilitate the selection of existing topological connectivity robustness

measures, a set of requirements were developed. First a candidate measure should be

quantitative to facilitate comparison. Next, since the problem has been transformed into

measuring the connectivity robustness of critical node pairs, a candidate measure should

be applicable to a node pair. In addition, with the pre-defined research scope, a candidate

measure should be able to capture the connectivity change between a node pair under link

failures. Finally, such a measure should also account for the effects of alternative (backup)

paths between a node pair. It has been shown that the number of alternative paths or

back-up paths and the extent to which they overlap are directly linked to the concept of

connectivity robustness [48, 49].

3.1 Review of Existing Connectivity Robustness Measures

The following is a brief review of the current available topological connectivity

robustness measures. There are two types of topological connectivity robustness

measures according to [48]: classical and spectral.

20

3.1.1 Classical Robustness Measures

The classical measures refer to those directly related to the topology of a network.

The following discussion covers four representative groups of classical connectivity

robustness measures.

Connectivity Related Measures

The original connectivity measure is a binary measure, which is essentially just a

graph connectivity indicator. It can only distinguish if a graph is a connected whole

(value: 1) or has several disconnected components (value: 0). It cannot provide any

detailed information on network structure other than being as an indicator. Apart from the

classical connectivity measure, node/ link connectivity is defined as the minimal number

of nodes/ links to be removed to disconnect a given network [48]. This measure was

applied to study the connectivity robustness of a military architecture by Dekker in [50].

The major drawback of the node/link connectivity is that it cannot explicitly reflect any

information on alternative or backup paths.

Distance Based Measures

The measures in this group are quite plenty, and the following is just a brief

introduction of selected some.

Geodesic distance is the shortest path length from one node to another node in a

network. There may be and often are more than one geodesic path between two nodes

[51]. Average geodesic distance, which is usually considered as the characteristic path

length of a network, is the averaged geodesic distance among all the node pairs of a

network. It characterizes the average ability of two nodes in a graph to communicate with

each other [40]. Diameter is the longest geodesic distance among all the nodes pairs of a

network. This is used to measure the eccentricity of a given network topology and is

21

applied to detect abnormal change of a network [48]. Because the characteristic path

length is more sensible to changes of network topology, it is used more often than

diameter as a network connectivity robustness measure. When a network is disconnected,

the values of those two measures will both be infinite. To deal with that issue, Latora and

Marchiori proposed to use the reciprocal of the geodesic distance to calculate the

characteristic reciprocal path length, which was introduced as network global efficiency

in [42]. However, none of those measures considers alternative paths between node pairs

[48].

Clustering Coefficient

A cluster in a graph refers to a group of nodes having relatively denser relations

with each other than with the rest of the nodes in the graph. The clustering degree of a

network is measured by clustering coefficient, which is a number ranging between 0 and

1. Although clustering coefficient was originally designed to study social networks, it is

highly correlated with the notion of network robustness, since the number of alternative

paths grows with the number of network triangles [48]. The problem of clustering

coefficient is that, it cannot evaluate the connectivity situation between two specific

nodes. It only considers the averaged connection density of the whole network, or the

averaged neighborhood connection density of a single node.

Component Size Based Measures

A component is the maximal connected subgraph of a network. The largest

component of a network is the one contains the largest number of nodes. Giant

components refer to the ones whose component sizes (number of nodes) are larger than

the giant component threshold. Examples of connectivity robustness measures related to

this concept are the largest component size, the average component size, the fraction of

22

giant components. The measures in this group also surfer from the same problem as

clustering coefficient.

3.1.2 Spectral Robustness Measures

Different from classical connectivity robustness measures, spectral connectivity

robustness measures are not directly derived from network topologies. They are obtained

based on spectrum graph theory, which more specifically is the Laplacian of a network.

The Laplacian matrices of networks have great theoretical and practical importance [52].

For a network 𝐺 = (𝑉, 𝐸), denote its adjacency matrix as 𝐴 and its degree matrix as 𝐷.

The degree matrix, 𝐷 of a network is a diagonal matrix of network node out-degrees.

𝐷𝑖,𝑗 =

{

∑𝑎𝑖,𝑘

𝑁

𝑘=1

 𝑖𝑓 𝑖 = 𝑗

0 𝑖𝑓 𝑖 ≠ 𝑗

where,

𝑁 = |𝑉| is the number of nodes of a network.

3

Then the Laplacian 𝐿 of network 𝐺 can be obtained by taking difference between

𝐷 and 𝐴.

 𝐿 = 𝐷 − 𝐴 4

Symmetric Laplacians associated to undirected graphs and their applications on

analyzing network robustness have been deeply studied [53-57]. While asymmetric

Laplacians that are associated with directed graphs are less explored. In order to

symmetrize asymmetric Laplacians so that to apply those operations developed for

symmetric Laplacians (e.g. Moore-Penrose pseudoinverse, Eigenvalue analysis), some

normalization techniques on the asymmetric Laplacians are usually used. Depending on

the research contents and analysis focuses, different normalization techniques have been

23

proposed. Although asymmetric Laplacians are now attracting more and more attentions

[52, 57-61], it is still a working concept without conscience upon normalization

techniques as well as the physical meanings behind them.

As discussed earlier, in this thesis, CINs are abstracted as undirected, unweighted

networks. Therefore, in the following section, the focus will be given to spectral

connectivity measures developed for undirected networks.

Singe Eigenvalue Based Connectivity Measure

A symmetric Laplacian is positive semidefinite and its rows sum up to 0.

Therefore, its eigenvalues are real, non-negative and the smallest eigenvalue is 0. Denote

the Eigenvalues of a symmetric Laplacian as 𝜆𝑖 for 𝑖 = 1, … , 𝑁 and 𝑖 is ordered in the

following fashion 0 = λ1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑁. Then 𝜆𝑁 and 𝜆2 can be used to indicate the

connectivity robustness of an undirected network. In general, networks associated with

larger eigenvalues have more node and link disjoint paths between node pairs. And the

largest eigenvalue, 𝜆𝑁 can provide bounds on network connectivity robustness with

respect to both link and node removals [27, 62]. The second smallest eigenvalue 𝜆2 ,

which is also referred to as algebraic connectivity, is a more accurate measure to unfold

the connectivity robustness of complex networks [63-65]. The larger the 𝜆2value, the

harder it is to break a network into islands or individual components. The problem of

using λ2 and λ𝑁 as candidate connectivity robustness measures is that they can only be

applied to a network as a whole but not a single node pair.

Average Eigenvalue Based Connectivity Measure

According to [48, 66], the number of spanning trees in a network (a spanning tree

is a subgraph containing 𝑁-1 edges and no cycles) can be used as an indicator of network

robustness. The number of spanning trees surfers from the same problem as λ2 and λ𝑁.

24

𝜉 =
1

𝑁
∏𝜆𝑖

𝑁

𝑖=2

 5

Moore-Penrose Inverse Based Connectivity Robustness Measure

The measure to be highlighted in this section is called effective resistance (𝐸𝑅).

Different from the spectral measures discussed previously, which are only applicable for

a network as a whole, 𝐸𝑅 can be used to measure connectivity robustness for both a

single node pair and the entire network. In addition, by nature, effective resistance can

capture the effects of alternative paths on network connectivity robustness against link

failures. Use 𝐸𝑅𝑖,𝑗 to denote pairwise effective resistance and 𝐸𝑅𝐺 to denote the effective

resistance of a network. For both 𝐸𝑅𝑖,𝑗 and 𝐸𝑅𝐺 , smaller values are desired.

The notion of pair wise effective resistance was originally developed to represent

the resistance of the total system when a voltage source is connected between a node pair.

That notion can be applied to calculate the connectivity robustness between a node pair

within a network by seeing the network as an electrical circuit, where a link corresponds

to a resistor of resistance 𝑟 [67, 68]. 𝑟 can be calculated as a function of link weights and

the function form depends on the network type and the physical meaning of link weights.

After defining the resistance of each link, the effective resistance between a node pair can

be calculated using Kirchhoff's circuit Laws as illustrated in Figure 9.

Figure 9. Effective Resistance between Two Points a and b in Simple Graphs [67]

For small and simple networks, it is viable to calculate 𝐸𝑅𝑖,𝑗 using Kirchhoff's

circuit Laws. However, using Kirchhoff's circuit Laws to solve for pairwise effective

25

resistance has serious scalability issues and can be very cumbersome when the size of a

network grows larger with more complex structures. A more elegant way to calculate

𝐸𝑅𝑖,𝑗 without scalability issues is to use the Moore-Penrose pseudoinverse. Use 𝐿+ to

denote the Moore-Penrose pseudoinverse of a symmetric Laplacian. Then 𝐸𝑅𝑖,𝑗 can be

calculated through the following equation:

 𝐸𝑅𝑖,𝑗 = 𝐿𝑖,𝑖
+ − 2𝐿𝑖,𝑗

+ + 𝐿𝑗,𝑗
+ 6

𝐸𝑅𝐺 can be obtained by summing the pairwise effective resistances over all node

pairs of a network 𝐺.

 𝐸𝑅𝐺 = ∑ 𝐸𝑅𝑖,𝑗
1≤𝑖<𝑗≤𝑁

 7

According to [68], the 𝐸𝑅𝐺 can also be calculated through aggregating Laplacian

Eigenvalues as shown below.

𝐸𝑅𝐺 = 𝑁∑
1

𝜆𝑖

𝑁

𝑖=1

 8

Table 1 is a summary of the findings based on the above discussion.

Table 1. Summary of Network Connectivity Robustness Measures

26

3.2 Pairwise Effective Resistance

It seems that only effective resistance (𝐸𝑅), in specific 𝐸𝑅𝑖,𝑗 , satisfies all the

requirements. In the literatures, 𝐸𝑅𝑖,𝑗 is always used to compare the connectivity

robustness of node pairs connected via the same number of nodes; when used to compare

two arbitrary node pairs, a normalization against the network node number 𝑁 is

suggested [54-56]. This leads to the first hypothesis of this thesis. Since there are two

embodiment forms for the connectivity robustness under investigation (structural

connectivity robustness against link failures between a node pair), �̅�𝑖,𝑗
𝑋 and

�̅�𝑖,𝑗
𝑋

𝑀
,

Hypothesis 1 has two forms. (�̅�𝑖,𝑗
𝑋 is the average number of link failures until the node

pair of interest 𝑖, 𝑗 disconnects;
�̅�𝑖,𝑗
𝑋

𝑀
 is the average fraction of link failures until the node

pair of interest 𝑖, 𝑗 disconnects.) The reason for using the inverse form is that smaller

values of effective resistance should correspond to larger numbers / fractions of link

failures required until disconnection happens.

𝐻1𝑎:
𝑁

𝐸𝑅𝑖,𝑗
 has higher correlation with �̅�𝑖.𝑗

𝑋 then
1

𝐸𝑅𝑖,𝑗
.

𝐻0
1𝑎:

𝑁

𝐸𝑅𝑖,𝑗
 does not have higher correlation with �̅�𝑖.𝑗

𝑋 then
1

𝐸𝑅𝑖,𝑗
.

𝐻1𝑏:
𝑁

𝐸𝑅𝑖,𝑗
 has high correlation with

�̅�𝑖.𝑗
𝑋

𝑀
 then

1

𝐸𝑅𝑖,𝑗

𝐻0
1𝑏:

𝑁

𝐸𝑅𝑖,𝑗
 does not have higher correlation with

�̅�𝑖.𝑗
𝑋

𝑀
 then

1

𝐸𝑅𝑖,𝑗
.

In order to test 𝐻1𝑎, 𝐻1𝑏 the following experiment plan was developed. First an

undirected synthetic network model, Step-Min network model was proposed to help

systematically examine the relationship between connectivity robustness and 𝐸𝑅𝑖,𝑗.

As known, for a network with node number 𝑁, the maximum effective resistance

value between a node pair is 𝑁 − 1. This corresponds to a line network with 𝑁 nodes,

27

where the two end nodes form the node pair of interest. A line network with 𝑁 nodes is

the least robust connection structure between a node pair that 𝑁 nodes can form. The

minimum effective resistance value between a node pair is
2

𝑁
. This corresponds to a fully

connected network with 𝑁 nodes and any node pair within the fully connected network

can be the node pair of interest. A fully connected network is the most robust connection

structure between a node pair with 𝑁 nodes. Given a node number 𝑁, denote the node

pair of interest as 1,𝑁. A Step-Min network family with 𝑁 nodes is constructed in a way

to thoroughly and systematically explore the range of possible 𝐸𝑅1,𝑁 values between

[
2

𝑁
, (𝑁 − 1)] without having to resort to a full factorial.

To construct a Step-Min network family, first, decide the number of network

nodes 𝑁. Then, connect the 𝑁 nodes as a line. Index the nodes in the following fashion.

Denote one end of the line as 1, and then increase the node index along the line until

reaching the last node, whose index should be 𝑁. Now the network should have 𝑁 nodes

connected by (𝑁 − 1) links as a line. This line network will be referred to as the base

network for network family 𝑁 and the index of the base network of each network family

will always be 1. In addition, node pair 1,𝑁 will always be the node pair of interest. Next,

starting with the base network, each step add one link to the network that minimizes the

decrease of 𝐸𝑅1,𝑁 (According to [56], for a given node pair within a network, adding a

link to the network will not increase the effective resistance between that node pair.).

Repeat this process until a fully connected network is obtained. This process is illustrated

in Figure 10.

Figure 10. The Construction Process of Step-Min Network Family with 4 Nodes

28

Algorithm 1 is the pseudo code of this Step-Min network model. A Matlab

program was written accordingly to generate Step-Min network families and calculate the

𝐸𝑅1,𝑁 value of each network. Figure 11 is the 𝐸𝑅1,𝑁 value history along link addition.

__

Algorithm 1. Step-Min Network Model

1. INPUT: 𝑉 𝑁 // Network node number (network family index)

2. 𝐺1 An undirected line network with 𝑁 nodes. Index the two ends of this network

as 1 and 𝑁 separately.

3. |𝐸∗| = 𝑁 − 1; 𝐺∗ = 𝐺1; Δ𝐸𝑅𝑒
∗ INFINITY; 𝐸∗ 𝐸𝐺∗; 𝑠𝑡𝑒𝑝 1

4. WHILE |𝐸∗| ≠
𝑁(𝑁−1)

2
 DO

5. FOR 𝑎 1 to (𝑁 − 1) DO

6. FOR 𝑏 𝑎 to 𝑁 DO

7. IF 𝑎, 𝑏 ∉ 𝐸∗ THEN

8. IF (Δ𝐸𝑅𝑎,𝑏 < Δ𝐸𝑅𝑒
∗) THEN

9. Δ𝐸𝑅𝑒
∗ Δ𝐸𝑅𝑎,𝑏; 𝐸∗ 𝑎, 𝑏

10. END IF

11. END IF

12. END FOR

13. END FOR

14. |𝐸∗||𝐸∗| + 1; 𝐺∗ 𝐺∗ ∪ 𝑒∗; Δ𝐸𝑅𝑒
∗
NFINITY; 𝐸∗𝐸𝐺∗; 𝑠𝑡𝑒𝑝𝑠𝑡𝑒𝑝 + 1

// This is to connect Node Pair 𝑎, 𝑏 through an undirected link.

15. RETURN 𝐺𝑠𝑡𝑒𝑝 𝐺
∗

16. END WHILE

29

Figure 11. 𝑬𝑹𝟏,𝑵 History along Link Addition (Step-Min)

As can be seen in Figure 11, the networks with the same node number comprise a

network family. Moreover, the 𝐸𝑅1,𝑁 trend lines of different Step-Min network families

have very similar behaviors.

Well established classical networks were also used to test 𝐻1𝑎, 𝐻1𝑏 . To generate

networks, two famous synthetic network models were used. One is the Barabasi-Albert

(BA) scale free (SF) network model proposed in [69], and the other one is the Erdos-

Renyi (ER) random (Rand) network model proposed in [70]. In the following discussions,

for each of the two network models, two undirected networks were generated, one with

30 nodes and 60 links and the other one with 50 nodes and 100 links.

BA SF network model begins with an initially connected network of 𝑁0 nodes

and this network is called the base network. New nodes are added to the network one at a

time. Each new node is connected to 0 ≤ 𝑛 ≤ 𝑁0 existing nodes with a probability that is

proportional to the number of links that the existing nodes already have. Denote the

probability for each existing node to be chosen at each step as 𝑝𝑖. 𝑝𝑖 can be calculated

30

through the following equation. Continuously adding nodes until the desired network

node number 𝑁 is achieved.

𝑝𝑖 =

∑ 𝑎𝑖,𝑘
𝑁
𝑘=1

Σ𝑖=1
𝑁 ∑ 𝑎𝑖,𝑘

𝑁
𝑘=1

9

ER Rand network model begins with 𝑁 network nodes. The probability for a node

pair to be connected (𝑝) is the same and independent from each other. Using this

probability, randomly select 𝑀 unique node pairs to add links, where 𝑀 is the designated

network link number.

Next, a discrete-time link failure simulation model was constructed to obtain �̅�𝑖,𝑗
𝑋

and
�̅�𝑖,𝑗
𝑋

𝑀
. Given a network, choose a node pair of interest, and denote this node pair as 𝑖, 𝑗.

First, apply a filter on a network to filter out all the redundant links for the

connection between node pair 𝑖, 𝑗. A redundant link does not contribute to the connection

between node pair 𝑖, 𝑗. In the example shown in Figure 12, the node pair of interest is 1,4

and link 3,5 is a redundant link for the connection between node pair 1,4. The reason to

add this filter is that we want to study the relationship between �̅�𝑖,𝑗
𝑋 /

�̅�𝑖,𝑗
𝑋

𝑀
 and 𝐸𝑅𝑖,𝑗. The

existence of redundant links will not affect the value of 𝐸𝑅𝑖,𝑗, however, they will inflate

the value of �̅�𝑖,𝑗
𝑋 obtained from simulation. If this filter is not applied, the simulation

result will be inflated and will not correspond to 𝐸𝑅𝑖,𝑗.

31

Figure 12. Example of a Pure Redundant Link (Link 3,5)

In the following discussion, the term “link failures” actually refers to structural

link failures. “Redundant link failures” and “total link failures” are used to distinguish

redundant and the overall link failures (both structural and redundant link failures) apart

from structural link failures.

This filter can be turned off. When it is off, the simulation result obtained is the

number of total link failures until node pair 𝑖, 𝑗 disconnects. To implement the filter,

temporarily disconnect network nodes one at a time to see if 𝐸𝑅𝑖,𝑗 increases. To

temporarily disconnect a node 𝑛 is to temporarily set all the entries in the 𝑛𝑡ℎ row and the

𝑛𝑡ℎ column of the network adjacency matrix to 0. Now the network nodes are separated

into two groups: one whose removal results in 𝐸𝑅𝑖,𝑗 increase (Group 1), and one whose

removal does not affect 𝐸𝑅𝑖,𝑗 (Group 2). The links with one or two end nodes within

Group 2 are marked as redundant links and will be filtered out when the redundant link

filter is on. Algorithm 2 is the pseudo code of this filter.

__

Algorithm 2. Network Redundant Link Filter

1. INPUT: 𝐺 = (𝑉, 𝐸); Node Pair of Interest: 𝑖, 𝑗

2. 𝐴∗𝐴; 𝐸𝑅𝑖,𝑗
∗
𝐸𝑅𝑖,𝑗; 𝐸𝑟∅; 𝐸𝑏∅; 𝑉1∅;𝑉2∅

3. Redundant_Flag1 // Decide if Filter is On (1) or Off (0)

32

4. //Classify network nodes

5. FOR 𝑎 1 to 𝑁\{𝑖, 𝑗} DO

6. FOR 𝑏 1 to 𝑁 DO

7. 𝐴𝑎,𝑏0; 𝐴𝑏,𝑎0

8. END FOR

9. IF 𝐸𝑅𝑖,𝑗 > 𝐸𝑅𝑖,𝑗
∗ THEN

10. 𝑉1𝑉1 ∪ 𝑎

11. ELSE

12. 𝑉2𝑉2 ∪ 𝑎

13. END IF

14. 𝐴𝐴∗

15. END FOR

16. //Redundant link filter

17. IF Redundant_Flag == 1 THEN

18. 𝐸𝑟: A Collection of Network Links with One or Two End Nodes within 𝑉2

19. END IF

20. RETURN 𝐺(𝑉1, 𝐸 \𝐸𝑟)

After going through the filter (if the filter is turned off, then nothing will be done

to the network), at each (time) step, a link is randomly chosen among the remaining links

and is removed from the network. For an undirected network, if 𝑎, 𝑏 𝜖 𝐸 is chosen, then

both the values of 𝐴𝑎,𝑏 and 𝐴𝑏,𝑎 in the adjacency matrix will be set to zero. For a directed

network, if 𝑎, 𝑏 𝜖 𝐸 is chosen, then only the value of 𝐴𝑎,𝑏 in the adjacency matrix will be

set to zero. After each step, a new network topology can be obtained. Check the

connectivity between node 𝑖 and node 𝑗. One easiest way to check their connectivity is to

33

calculate the shortest distance between node 𝑖 and node 𝑗. Since none of the network

under investigation in this thesis has negative weights, Dijkstra’s Algorithm was used to

calculate the shortest distance for easy implementation and efficiency consideration.

Continuously removing links one at a time until node 𝑖 and node 𝑗 are

disconnected. Document the number of link failures until 𝑖 and 𝑗 are disconnected (𝑚𝑖,𝑗
𝑋).

Repeat the entire process for several times (10000 is used in this thesis) and obtain the

average number of link failures until disconnection �̅�𝑖,𝑗
𝑋 and the average fraction of link

failures until disconnection
�̅�𝑖,𝑗
𝑋

𝑀
. The following is the pseudo code for this simulation

model and a C++
 program was written accordingly to realize the model and carry out the

simulations.

__

Algorithm 3. Link Failure Simulation Model

1. INPUT: 𝐺 = (𝑉, 𝐸); Node Pair of Interest: 𝑖, 𝑗; Total Iteration: 𝐼

2. 𝑒∗ ∅; 𝑚𝑖,𝑗
𝑋 {0}; 𝑐𝑜𝑢𝑛𝑡 0; 𝜎𝑖,𝑗0

3. Execute Algorithm 2 to obtain a filtered network

4. FOR 𝑖𝑛𝑑𝑒𝑥 = 1 to 𝐼 DO

5. WHILE 𝜎𝑖,𝑗 < 𝐼𝑁𝐹𝐼𝑁𝐼𝑇𝑌 DO

6. 𝑒∗ 𝑅𝑎𝑛𝑑𝑜𝑚(𝐸); 𝐸 𝐸\𝑒∗; 𝑐𝑜𝑢𝑛𝑡 𝑐𝑜𝑢𝑛𝑡 + 1

7. END WHILE

8. 𝑚𝑖,𝑗
𝑋 [𝑖𝑛𝑑𝑒𝑥] = 𝑐𝑜𝑢𝑛𝑡

9. END FOR

10. RETURN 𝑚𝑖,𝑗
𝑋

34

Simulations were conducted on the previous generated Step-Min networks within

each network family (𝑁 = 4,…10) with 10000 iterations per network. The results are

summarized in Figure 13, Figure 14, Figure 15 and Figure 16.

In Figure 13, each data point is from the analysis of one network, where for each

network, the two end nodes, 1,𝑁 form the node pair of interest. The blue data is �̅�1,𝑁
𝑋

obtained from simulation, and it is being compared to calculated values of
𝑁

𝐸𝑅1,𝑁
 (green)

and
1

𝐸𝑅1,𝑁
 (red). In Figure 13, the data is sorted along the X-axis, first by number of nodes,

and then by �̅�1,𝑁
𝑋 . Both

1

𝐸𝑅1,𝑁
 and

𝑁

𝐸𝑅1,𝑁
 trend well with �̅�1,𝑁

𝑋 within each Step-Min

network family, suggesting that either could be used to measure connectivity robustness

(in terms of �̅�1,𝑁
𝑋) of node pairs connected via the same number of nodes.

However if the data is only sorted by �̅�1,𝑁
𝑋 as shown in Figure 14, then the

relationship is not nearly as clear.

Figure 13. 𝑯𝟏𝒂 Test Results: Step-Min Network Families Sorted by 𝑵, then by �̅�𝟏,𝑵
𝑿

0

1

2

3

4

5

6

0

10

20

30

40

50

60

70

4 5 6 7 8 9 10

1
/E

R
_
1
,N

A
v
er

ag
e(

m
_
X

_
1
,N

)

N

/E
R

_
1
,N

N

Average(m_X_1,N) N/ER_1,N 1/ER_1,N

35

Figure 14. 𝑯𝟏𝒂 Test Results: Step-Min Network Families Sorted by �̅�𝟏,𝑵
𝑿

In Figure 15, again each data point is from the analysis of one network, where for

each network, the two end nodes, 1,𝑁 for the node pair of interest. The blue data now

is
�̅�1,𝑁
𝑋

𝑀
 obtained from simulation, and it is being compared to calculated values of

𝑁

𝐸𝑅1,𝑁

(green) and
1

𝐸𝑅1,𝑁
 (red). The data is sorted along the X-axis, first by the number of nodes,

and then by
�̅�1,𝑁
𝑋

𝑀
. Both

1

𝐸𝑅1,𝑁
 and

𝑁

𝐸𝑅1,𝑁
 trend well with

�̅�1,𝑁
𝑋

𝑀
, suggesting that either could be

used to measure connectivity robustness (in terms of
�̅�1,𝑁
𝑋

𝑀
) of node pairs connected via

the same number of nodes. However if the data is only sorted by
�̅�1,𝑁
𝑋

𝑀
 as shown in Figure

16, it seems only
1

𝐸𝑅1,𝑁
 can capture the trend of

�̅�1,𝑁
𝑋

𝑀
.

0

1

2

3

4

5

6

0

10

20

30

40

50

60

70

1
/E

R
_
1
,N

A
v

er
ag

e(
m

_
X

_
1

,N
)

 N

/E
R

_
1

,N

Average(m_X_1,N) N/ER_1,N 1/ER_1,N

36

Figure 15. 𝑯𝟏𝒃 Test Results: Step-Min Network Families Sorted by 𝑵, then by
�̅�𝟏,𝑵
𝑿

𝑴

Figure 16. 𝑯𝟏𝐛 Test Results: Step-Min Network Families Sorted by
�̅�𝟏,𝑵
𝑿

𝑴

0

1

2

3

4

5

6

0

0.2

0.4

0.6

0.8

1

4 5 6 7 8 9 10

1
/E

R
_
1
,N

A
v
er

ag
e(

m
_
X

_
1
,N

)/
M

N

/E
R

_
1
,N

N

Average(m_X_1,N)/M N/ER_1,N 1/ER_1,N

0

1

2

3

4

5

6

0

0.2

0.4

0.6

0.8

1

1
/E

R
_
1
,N

A
v
er

ag
e(

m
_
X

_
1

,N
)/

M

 N

/E
R

_
1
,N

Average(m_X_1,N)/M N/ER_1,N 1/ER_1,N

37

Comparing the above observation results, it seems only 1/𝐸𝑅𝑖,𝑗 (for Step-Min

network families, 𝑖, 𝑗 = 1,𝑁) can be used to measure the connectivity robustness of two

arbitrary node pairs in terms of
�̅�1,𝑁
𝑋

𝑀
.

Similar observations and conclusions can be made for the four classical networks

as shown in Figure 17 and Figure 18. Since the classical networks do not come with pre-

defined node pairs of interest, 20 node pairs were selected randomly for each network.

In Figure 17 and Figure 18, each data point is from the analysis of one node pair.

In Figure 17, �̅�𝑖,𝑗
𝑋 is being compared to

𝑁

𝐸𝑅𝑖,𝑗
 and

1

𝐸𝑅𝑖,𝑗
 and the data is only sorted by �̅�𝑖,𝑗

𝑋 .

In Figure 18,
�̅�𝑖,𝑗
𝑋

𝑀
 is being compared to

𝑁

𝐸𝑅𝑖,𝑗
 and

1

𝐸𝑅𝑖,𝑗
 and the data is only sorted by

�̅�𝑖,𝑗
𝑋

𝑀
.

Again, it seems that only
1

𝐸𝑅𝑖,𝑗
 can be used to compare the connectivity robustness of two

arbitrary node pairs in terms of
�̅�𝑖,𝑗
𝑋

𝑀
.

Figure 17. 𝑯𝟏𝒂 Test Results: Classical Networks Sorted by �̅�𝒊,𝒋
𝑿

0

0.5

1

1.5

2

2.5

3

0

25

50

75

100

1
/E

R
_
1
,N

N

/(
1
5
*
E

R
_
1
,N

)

A
v
er

ag
e(

m
_
X

_
i,

j)

N

/E
R

_
i,

j

Average(m_X_i,j) N/ER_i,j 1/ER_i,j

38

Figure 18. 𝑯𝟏𝒃 Test Results: Classical Networks Sorted by
�̅�𝒊,𝒋
𝑿

𝑴

The above observations suggest rejecting 𝐻0
1a and failing to reject 𝐻0

1𝑏. Hence it

can be concluded that when to compare the connectivity robustness of two arbitrary node

pairs in terms of
�̅�𝑖,𝑗
𝑋

𝑀
,

1

𝐸𝑅𝑖,𝑗
 should be used.

3.3 Estimating �̅�𝒊,𝒋
𝑿 from 𝑬𝑹𝒊𝒋

As discussed earlier, connectivity robustness can be measured either in terms of

the average fraction of link failures (
�̅�𝑖,𝑗
𝑋

𝑀
) or in terms of the average number of link

failures (�̅�𝑖,𝑗
𝑋). Comparing to

�̅�𝑖,𝑗
𝑋

𝑀
, �̅�𝑖,𝑗

𝑋 is a more straight forward characterization of

connectivity robustness. To be able to compare the connectivity robustness of two

arbitrary node pairs in terms of �̅�𝑖,𝑗
𝑋 , a way to estimated �̅�𝑖,𝑗

𝑋 from 𝐸𝑅𝑖,𝑗 is needed.

The first step in estimating �̅�𝑖,𝑗
𝑋 involved going back to the results of the Step-Min

network families, to find the transformation that would best linearize the relationship

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

1
/E

R
_
1
,N

N

/(
2
5
*
E

R
_
1
,N

)

A
v

er
ag

e(
m

_
X

_
1

,N
)/

M

Average(m_X_i,j)/M N/ER_i,j 1/ER_i,j

39

between
1

𝐸𝑅1,𝑁
 and

�̅�1,𝑁
𝑋

𝑀
 for a given number of nodes. The transformation is summarized

below in Equation 10 and Equation 11.

{

 (

1

𝐸𝑅𝑖,𝑗
)

′

= 𝑙𝑜𝑔 (
1

𝐸𝑅𝑖,𝑗
) 𝑖𝑓 𝐸𝑅𝑖𝑗 > 1

(
1

𝐸𝑅𝑖,𝑗
)

′

= 𝑙𝑜𝑔 (
1

𝐸𝑅𝑖,𝑗
1/𝜃

) 𝑖𝑓 𝐸𝑅𝑖𝑗 ≤ 1

where,

𝜃 is a function of network node number.

10

(
�̅�𝑖,𝑗
𝑋

𝑀
)

′

= 𝑙𝑜𝑔 (
�̅�𝑖,𝑗
𝑋

𝑀
) 11

To find the equation for 𝜃, the following optimization problem was formulated.

The reason for choosing the following formulation will be discussed later.

𝑀𝑖𝑛: 𝑍 =∑(�̃̅�𝑖,𝑗
𝑋)

𝑁𝑛
− (�̅�𝑖,𝑗

𝑋)
𝑁𝑛

𝑛

𝑛 ∈ {Networks within Step −Min Network Family 𝑁}

where,

(�̃̅�𝑖,𝑗
𝑋)

𝑥
= 𝑀𝑥 ∗ 10[

((
1

𝐸𝑅𝑖,𝑗
)
′

𝑥

−(
1

𝐸𝑅𝑖,𝑗
)
𝐿𝐼𝑁𝐸

′

)

(
�̅�𝑖,𝑗
𝑋

𝑀
)

𝐹𝑈𝐿𝐿

′

− (
�̅�𝑖,𝑗
𝑋

𝑀
)

𝐿𝐼𝑁𝐸

′

(
1

𝐸𝑅𝑖,𝑗
)
′

𝐹𝑈𝐿𝐿

− (
1

𝐸𝑅𝑖,𝑗
)
𝐿𝐼𝑁𝐸

′ + (
�̅�𝑖,𝑗
𝑋

𝑀
)

𝐿𝐼𝑁𝐸

′

]

{

 (

1

𝐸𝑅𝑖,𝑗
)

′

= 𝑙𝑜𝑔 (
1

𝐸𝑅𝑖,𝑗
) 𝑖𝑓 𝐸𝑅𝑖,𝑗 > 1

(
1

𝐸𝑅𝑖,𝑗
)

′

= 𝑙𝑜𝑔 (
1

𝐸𝑅𝑖,𝑗
1/𝜃
) 𝑖𝑓 𝐸𝑅𝑖,𝑗 ≤ 1

(
�̅�𝑖,𝑗
𝑋

𝑀
)

′

= 𝑙𝑜𝑔 (
�̅�𝑖,𝑗
𝑋

𝑀
)

40

This optimization problem was solved through Bisection Search method and the

results were rounded to the second decimal place, which gives the following table from

𝑁 = 3 to 𝑁 = 30.

Table 2. 𝜽 Value of Different 𝑵

N 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝜽 1.00 1.72 2.34 2.86 3.27 3.68 3.73 3.84 3.95 3.99 4.10 4.13 4.24 4.25

N 17 18 19 20 21 22 23 24 25 26 27 28 29 30

𝜽 4.29 4.40 4.41 4.45 4.49 4.54 4.56 4.67 4.69 4.70 4.81 4.82 4.83 4.88

According to Table 2, it seems that as 𝑁 getting bigger, the value of 𝜃 becomes

more stabilized as shown in Figure 19.

Figure 19. The Behavior of 𝜽 over Different 𝑵 Values

The optimization to obtain 𝜃 relays on knowing all the networks within a Step-

Min network family of node number 𝑁. As 𝑁 grows bigger, it becomes more time

consuming to construct the entire Step-Min network family. As already known, different

Step-Min network families share similar characteristics since they are generated by the

0

1

2

3

4

5

6

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

𝜽

N

41

same synthetic network mode. Observing the trend of 𝜃 as 𝑁 increases, it seems that the

value of 𝑒𝜃 is a linear function of 𝑁. Through the 28 data pairs shown in Table 2, the

following fitting equation can be obtained.

 𝑒�̃� = 4.588 ∗ 𝑁 − 4.699 12

lm(formula = exp_theta ~ N)

Residuals:

 Min 1Q Median 3Q Max

-8.0687 -2.6945 -0.2667 3.5992 7.6413

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.6986 1.9437 -2.417 0.023 *

N 4.5880 0.1058 43.363 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.522 on 26 degrees of freedom

Multiple R-squared: 0.9864, Adjusted R-squared: 0.9858

F-statistic: 1880 on 1 and 26 DF, p-value: < 2.2e-16

According to the fitting summary, it seems that Equation 12 fits the data very well.

To further check the validity of this model (Equation 12) for extrapolation, the prediction

(estimation) result of this model for 𝑁 = 50 is compared with its actual optimization

result as shown in Table 3. Since the error is only 1.81%, Equation 12 is used in this

thesis for obtaining a close estimation of the 𝜃 value of a fully connected network with

𝑁 ≥ 30 nodes.

Table 3. Estimation Accuracy Summary of Equation 12 for 𝑵 = 𝟓𝟎

�̃� 𝜽 Error in %

5.41 5.51 1.81%

Figure 10 is an example plot for the linearized data of the Step-Min network

family with 𝑁 = 10 using the proposed linearization method. In Figure 10, each data

42

point is the result of a network, where for each network, the two end nodes, 1,𝑁 form the

node pair of interest.

Figure 20. Example of the Linearized Data for the Step-Min Network Family with 10 Nodes

Next, the bounds on
1

𝐸𝑅𝑖,𝑗
 and

�̅�𝑖,𝑗
𝑋

𝑀
 can be directly calculated given a network with

𝑁 nodes and 𝑀 links through the following equation. It is important that these bounds

can be calculated without any simulation, as the goal is to have a topological-based

method that does not involve any costly simulation.

 1

𝐸𝑅𝑖,𝑗
∈ [

1

𝑁 − 1
,
𝑁

2
]

where,

1

𝑁−1
 corresponds to a line network with 𝑖, 𝑗 as two ending nodes;

𝑁

2
 corresponds to a fully connected network.

13

-1.2

-0.9

-0.6

-0.3

0

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

T
ra

n
sf

o
rm

ed
 A

v
er

ag
e(

m
_
X

_
1
,N

)

Transformed (1/ER_1,N)

43

 �̅�𝑖,𝑗
𝑋

𝑀
∈ [

1

𝑀
,
(�̅�𝑖,𝑗

𝑋)
𝐹𝑈𝐿𝐿

𝑀
]

where,

1

𝑀
 corresponds to a line network with 𝑖, 𝑗 as two ending nodes;

(�̅�𝑖,𝑗
𝑋)

𝐹𝑈𝐿𝐿

𝑀
 corresponds to a fully connected network and (�̅�𝑖,𝑗

𝑋)
𝐹𝑈𝐿𝐿

 is a

function of network node number.

14

The value of (�̅�𝑖,𝑗
𝑋)

𝐹𝑈𝐿𝐿
 can be obtained by feeding a fully connected network

into the aforementioned link failure simulation mode. The simulation results obtained are

summarized in Table 4 for 𝑁 = 3 to N=30.

Table 4. (�̅�𝒊,𝒋
𝑿)

𝑭𝑼𝑳𝑳
from 𝑵 = 𝟑 to 𝑵 = 𝟑𝟎

𝑵 3 4 5 6 7 8 9

(�̅�𝒊,𝒋
𝑿)

𝑭𝑼𝑳𝑳
 2.34 4.52 7.65 11.75 16.83 22.85 29.90

𝑵 10 11 12 13 14 15 16

(�̅�𝒊,𝒋
𝑿)

𝑭𝑼𝑳𝑳
 37.96 46.90 56.96 67.97 80.03 93.06 107.15

𝑵 17 18 19 20 21 22 23

(�̅�𝒊,𝒋
𝑿)

𝑭𝑼𝑳𝑳
 122.07 138.12 155.03 173.15 192.01 212.20 233.16

𝑵 24 25 26 27 28 29 30

(�̅�𝒊,𝒋
𝑿)

𝑭𝑼𝑳𝑳
 255.04 277.97 301.98 327.08 352.93 380.13 407.97

Although theoretically using simulation, it is possible to obtain the

(�̅�𝑖,𝑗
𝑋)

𝐹𝑈𝐿𝐿
value a fully connected network (undirected) with any node number 𝑁. the

running time for such simulation exponentially increases as 𝑁 becomes larger. It would

44

be very beneficial if a close estimation for (�̅�𝑖,𝑗
𝑋)

𝐹𝑈𝐿𝐿
 can be obtained from a simple

equation.

The set of all fully connected networks can be viewed as a series of networks

generated by a single synthetic network model. The model is, given the node number 𝑁,

connecting each node with all the other nodes within the network except itself. As

mentioned earlier, the networks generated by the same synthetic network model have

similar characteristics. Therefore, all the fully connected networks should have similar

characteristics. Plot the data summarized in Table 4 in Figure 21. The Y-axis of Figure 21

is for the (�̅�𝑖,𝑗
𝑋)

𝐹𝑈𝐿𝐿
 value and the X-axis of Figure 21 is for network node number.

Figure 21 indicates that the values of (�̅�𝑖,𝑗
𝑋)

𝐹𝑈𝐿𝐿
 is a polynomial function of 𝑁.

Figure 21. Behavior of (�̅�𝒊,𝒋
𝑿)

𝑭𝑼𝑳𝑳
 from 𝑵 = 𝟑 to 𝑵 = 𝟏𝟔

Fitting a second order linear regression model using those data, the following

fitting equation was obtained using R.

 (�̅�𝑖,𝑗
𝑋)

𝐹𝑈𝐿𝐿
= 0.4979395 ∗ 𝑁2 − 1.415395 ∗ 𝑁 + 2.2533249 15

0

20

40

60

80

100

120

3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
v
er

ag
e(

m
_
X

_
i,

j)
_
F

U
L

L

N

45

The fitting summary is shown below, based on which we can conclude the model

fits the data very well. To further check the goodness-of-fit for 𝑁 values that are greater

than 30, 𝑁 = 50 is fed into Equation 15 to obtain the value of (�̅�𝑖,𝑗
𝑋)

𝐹𝑈𝐿𝐿
of a fully

connected network with 50 nodes. The result is compared to the actual value of

(�̅�𝑖,𝑗
𝑋)

𝐹𝑈𝐿𝐿
obtained from simulation and summarized in Table 5. Since the error is only

0.16%, Equation 15 is used in this thesis for obtaining a close estimation of the

(�̅�𝑖,𝑗
𝑋)

𝐹𝑈𝐿𝐿
value of a fully connected network with 𝑁 > 30 nodes.

Residuals:

lm(formula = mdis ~ N_2 + N)

Residuals:

 Min 1Q Median 3Q Max

-0.151395 -0.043599 0.006139 0.051579 0.152053

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.2533249 0.0586286 38.43 <2e-16 ***

N_2 0.4979395 0.0002386 2087.29 <2e-16 ***

N -1.4153950 0.0080582 -175.65 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.07353 on 25 degrees of freedom

Multiple R-squared: 0.97, Adjusted R-squared: 0.99

F-statistic: 4.028e+07 on 2 and 25 DF, p-value: < 2.2e-16

F-statistic: 4.813e+06 on 2 and 27 DF, p-value: < 2.2e-16

Table 5. Estimation Accuracy of Equation 15 for 𝑵 = 𝟓𝟎

(�̃̅�𝟏,𝑵
𝑿)

𝑭𝑼𝑳𝑳
 (�̅�𝟏.𝑵

𝑿)
𝑭𝑼𝑳𝑳

 Error %

1176.33 1178.25 0.16%

With the data linearized and two bonding points available, linear interpolation can

be used to estimate
�̅�𝑖,𝑗
𝑋

𝑀
 using the 𝐸𝑅𝑖,𝑗 value of a node pair. Multiplying the estimated

46

�̅�𝑖,𝑗
𝑋

𝑀
 value by the number of links (𝑀), an estimation for �̅�𝑖,𝑗

𝑋 can be obtained. The

estimation equation is shown below.

(�̃̅�𝑖,𝑗
𝑋)

𝑥
= 𝑀𝑥 ∗ 10[

((
1

𝐸𝑅𝑖,𝑗
)
′

𝑥

−(
1

𝐸𝑅𝑖,𝑗
)
𝐿𝐼𝑁𝐸

′

)

(
�̅�𝑖,𝑗
𝑋

𝑀
)

𝐹𝑈𝐿𝐿

′

− (
�̅�𝑖,𝑗
𝑋

𝑀
)

𝐿𝐼𝑁𝐸

′

(
1

𝐸𝑅𝑖,𝑗
)
′

𝐹𝑈𝐿𝐿

− (
1

𝐸𝑅𝑖,𝑗
)
𝐿𝐼𝑁𝐸

′ + (
�̅�𝑖,𝑗
𝑋

𝑀
)

𝐿𝐼𝑁𝐸

′

]

{

 (

1

𝐸𝑅𝑖,𝑗
)

′

= 𝑙𝑜𝑔 (
1

𝐸𝑅𝑖,𝑗
) 𝑖𝑓 𝐸𝑅𝑖𝑗 > 1

(
1

𝐸𝑅𝑖,𝑗
)

′

= 𝑙𝑜𝑔 (
1

𝐸𝑅𝑖,𝑗
1/𝜃
) 𝑖𝑓 𝐸𝑅𝑖𝑗 ≤ 1

(
�̅�𝑖,𝑗
𝑋

𝑀
)

′

= 𝑙𝑜𝑔 (
�̅�𝑖,𝑗
𝑋

𝑀
)

16

With Equation 16, the physical meaning of this optimization function is to find

out the 𝜃 value that minimize the total squared error of �̃̅�𝑖,𝑗
𝑋 summed over all networks

within a Step-Min network family of 𝑁 nodes.

The estimation results for �̅�1,𝑁
𝑋 via Equation 16 for Step-Min network families

from 𝑁 = 4 to 𝑁 = 10 are shown in Figure 22. The estimation errors for Step-Min

network families from 𝑁 = 4 to 𝑁 = 10 and 𝑁 = 30, 50 are summarized in Table 6.

47

Figure 22. Estimation Results vs. Simulation Results for Step-Min Network Families

Table 6. Estimation Errors of Step-Min Network Families

𝑵 4 5 6 7 8 9 10 30 50

Average

Error
1.5% 2.3% 3.0% 3.8% 4.1% 4.8% 5.2% 7.9% 9.2%

As can be observed from Figure 22 and Table 6, the proposed method can provide

very good estimation for the �̅�1,𝑁
𝑋 value of the node pair of interest within each Step-Min

network.

The estimation results for node pairs within the classical networks are

summarized in Figure 23 and Table 7. Again, the proposed method can provide close

estimation for the �̅�1,𝑁
𝑋 values of the node pairs within each classical network.

0

10

20

30

40

4 5 6 7 8 9 10

N

Simulated Estimated

48

Figure 23. Estimation Results vs. Simulation Results for Node Pairs within Classical Networks

Table 7. Estimation Errors of Classical Networks

Network Rand_30_60 Rand_50_100 SF_30_60 SF_50_100

Average

Error
7.4% 4.4% 5.9% 3.4%

3.4 Redundant Links

Unlike structural links, the effects of redundant links on the number of link

failures before node pair 𝑖, 𝑗 disconnected against link failures are null or zero since

redundant links do not contribute to the connection between node pair 𝑖, 𝑗 and hence their

existence or removal does not affect the value of 𝐸𝑅𝑖,𝑗. That is to say, redundant links do

not affect the structural connectivity robustness between node pair 𝑖, 𝑗 against link

failures. However, this does not mean the existence of redundant links is useless. Under

random link attacks, redundant links can server as “camouflage” and attract attacks away

from structural links. This decreases the probability of structural links to be hit during

0

10

20

30

40

50

60

70
Simulated Estimated

49

random attacks and as a result protects the network structure. Is it possible to quantify the

effects of redundant links under random link attacks?

Group the links within a network 𝐺 into two sets as shown below in Figure 24.

The links in Set 1 are structural links (𝐸1), and the links in Set 2 are redundant links (𝐸2).

Assume there are in total 𝑀 links with 𝑀1 in Set 1 and 𝑀2 in Set 2.

Figure 24. Partition of 𝑬

Next assuming remove (𝑚𝑖,𝑗
𝑋)

𝐸1
 links from Set 1 will result in the disconnection

between node pair 𝑖, 𝑗. Apparently (𝑚𝑖,𝑗
𝑋)

𝐸1
is a random variable based on the previous

discussion. For a given network and a given node pair 𝑖, 𝑗, the sample space of (𝑚𝑖,𝑗
𝑋)

𝐸1
 is

countable and limited. Assuming in total there are 𝛾 unique values within the sample

space of (𝑚𝑖,𝑗
𝑋)

𝐸1
. Rearrange its elements in the following fashion: (𝑚𝑖,𝑗

𝑋)
𝐸1

1
< (𝑚𝑖,𝑗

𝑋)
𝐸1

2
<

⋯(𝑚𝑖,𝑗
𝑋)

𝐸1

𝛾
. Use (𝑚𝑖,𝑗

𝑋)
𝐸

to denote the total number of link failures from Set 1 and Set 2

that will result in the disconnection between node pair 𝑖, 𝑗 . (𝑚𝑖,𝑗
𝑋)

𝐸
is also a random

variable and its mean value, (�̅�𝑖,𝑗
𝑋)

𝐸
 or the ratio between (�̅�𝑖,𝑗

𝑋)
𝐸

 and (�̅�𝑖,𝑗
𝑋)

𝐸1
is what we

want to estimate here. Mathematically, we have

50

(�̅�𝑖,𝑗

𝑋)
𝐸
= 𝐸 [(𝑚𝑖,𝑗

𝑋)
𝐸
] = 𝐸 [𝐸 [(𝑚𝑖,𝑗

𝑋)
𝐸
|(𝑚𝑖,𝑗

𝑋)
𝐸1

𝑙
]]

where 𝑙 = 1,2, … , 𝛾

17

Using indicator variables, we have

𝐸 [(𝑚𝑖,𝑗
𝑋)

𝐸
|(𝑚𝑖,𝑗

𝑋)
𝐸1

𝑙
] = (𝑚𝑖,𝑗

𝑋)
𝐸1

𝑙
+
𝑀2 ∗ (𝑚𝑖,𝑗

𝑋)
𝐸1

𝑙

𝑀1 + 1

where 𝑙 = 1,2, … , 𝛾

18

Then the following equation can be obtained for (�̅�𝑖,𝑗
𝑋)

𝐸

 (�̅�𝑖,𝑗
𝑋)

𝐸
= 𝐸 [(𝑚𝑖,𝑗

𝑋)
𝐸
]

=∑[(𝑚𝑖,𝑗
𝑋)

𝐸1

𝑙
+
𝑀2(𝑚𝑖,𝑗

𝑋)
𝐸1

𝑙

𝑀1 + 1
] ∗ 𝑝𝐸1

𝑙

𝛾

𝑙=1

=∑[(𝑚𝑖,𝑗
𝑋)

𝐸1

𝑙
∗ 𝑝𝐸1

𝑙]

𝛾

𝑙=1

+∑[
𝑀2(𝑚𝑖,𝑗

𝑋)
𝐸1

𝑙

𝑀1 + 1
∗ 𝑝𝐸1

𝑙]

𝛾

𝑙=1

= (�̅�𝑖,𝑗
𝑋)

𝐸1
+
𝑀2(�̅�𝑖,𝑗

𝑋)
𝐸1

𝑀1 + 1
=
𝑀 + 1

𝑀1 + 1
(�̅�𝑖,𝑗

𝑋)
𝐸1

19

Assuming the ratio between 𝑀1 and 𝑀2 is 𝜑 (𝜑 =
𝑀2

𝑀1
), then based on Equation 19,

the ratio between (�̅�𝑖,𝑗
𝑋)

𝐸
 and (�̅�𝑖,𝑗

𝑋)
𝐸1

is

𝜙 =

𝑀 + 1

𝑀1 + 1
=

𝜑𝑀1
𝑀1 + 1

+ 1
20

In order to check the validity of the expression (Equation 19 or Equation 20), the

following was added to the link failure simulation model. At the beginning of a

simulation, a redundancy ratio 𝜑 is decided. If a filtered network with 𝑀1 structural links

is fed into the simulation, then 𝑀2 = ⌊𝜑𝑀1⌋ dummy links will be added to the original

link pool, which forms an augmented link pool. During the simulation, a link is randomly

51

chosen at a step from the augmented link pool until the key node pair 𝑖, 𝑗 disconnected. If

the expression is right, then the 𝜙 value obtained from Equation 20 should correspond to

the values obtained from simulation.

First, simulations were conducted on networks within the Step-Min network

family with 𝑁 = 30. For networks within this network family, the key node pair is

always 1,30. The following 𝜑 values: 1, 0.8, 0.6, 0.4, 0.2, were used. The simulation

results are presented Figure 25. The numbers at the lower right corner is the

corresponding 𝜑 value of each plot. Y-axes are for plotting quantities, and X-axes are

networks indices. The networks are ordered in increasing order of link number. Since

network index does not matter, they are removed from the plots in Figure 25. The blue

lines are the 𝜙 values obtained from simulation (𝜙𝑠𝑖𝑚𝑢) and the red lines are the 𝜙 values

calculated through Equation 20 (𝜙𝑡ℎ𝑒𝑜). As can be seen from Figure 25, the lines of

𝜙𝑠𝑖𝑚𝑢 follow the trend of 𝜙𝑡ℎ𝑒𝑜 very well especially for networks whose link numbers

are large. In order to quantitatively show how well 𝜙𝑡ℎ𝑒𝑜 corresponds to 𝜙𝑠𝑖𝑚𝑢 , the

percentage difference between 𝜙𝑠𝑖𝑚𝑢 and 𝜙𝑡ℎ𝑒𝑜 were taken using the following equation.

The distributions of 𝜀 are shown in Figure 26.

𝜀 =

𝜙𝑡ℎ𝑒𝑜 − 𝜙𝑠𝑖𝑚𝑢
𝜙𝑠𝑖𝑚𝑢

 21

52

Figure 25. Co-plot of 𝝓𝒔𝒊𝒎𝒖 and 𝝓𝒕𝒉𝒆𝒐 for Step-Min Network Faimly of 𝑵 = 𝟑𝟎

Ordered by Link Number

53

Figure 26. Distribution of 𝜺 for Step-Min Network Faimly of 𝑵 = 𝟑𝟎

As can be seen from Figure 26, given a 𝜑 value, the percentage error 𝜀 for

networks within the Step-Min network family of 𝑁 = 30 almost symmetrically

distributed around 0 with the maximum absolute percentage error smaller or equal to 4%.

Most of the data points are around 0 and as the absolute percentage error getting higher,

the density becomes smaller. Those observations indicate that, Equation 20 and hence

Equation 19 are valid. They can provide direct quantification of the effects of redundant

links on the number of link breakdowns until the node pair of interest disconnects under

random link attacks.

54

In order to confirm this conclusion, the above redundant link added link failure

simulation was re-conducted on 80 node pairs that randomly selected from the two SF

networks and the two Rand networks. For a given 𝜑 value, for each node pair, its

percentage error 𝜀 can be obtained, with which, the average percentage error 𝜀 of each

network can also be obtained (average over the 20 node pairs of each network). The

results are summarized in Table 8. Since the average errors are low for all the four

classical networks, it is confirmed that Equation 20 and hence Equation 19 are valid.

Table 8. Average Percentage Error 𝜺 of Classical Networks

Network Type 0.2 0.4 0.6 0.8 1.0

Rand_30_60 0.8% 0.9% 0.9% 0.9% 0.8%

Rand_50_100 0.7% 0.8% 0.8% 0.7% 0.8%

SF_30_60 1.0% 1.1% 1.1% 1.1% 1.0%

SF_50_100 3.3% 3.3% 3.4% 3.4% 3.4%

3.5 Chapter Summary

In Chapter 1, capability-based connectivity robustness (𝑅𝐶𝑁𝐶𝑃) was defined as

the ability of a network to maintain inter-connection among individual entities to support

network capability output under network impairments. The general mathematical

expression of 𝑅𝐶𝑁𝐶𝑃 was given in Equation 1.

To reflect the relationship described in Equation 1, a capability-based network

modeling process was developed as the answer to the first research question. With a

capability-based network model, the problem of measuring the capability-based

connectivity robustness of a network can be successfully transformed into the problem of

measuring the connectivity robustness of critical node pairs.

55

In search for the answer to the second research question, a set of requirements on

candidate connectivity robustness measures were proposed to help the measure selection

process.

1. Quantitative

2. Be applicable to a node pair

3. Be able to capture the connectivity change between a node pair under link failures

4. Accounts for alternative paths between a node pair

Pairwise effective resistance 𝐸𝑅𝑖,𝑗 was identified as a candidate measure. By

testing Hypothesis 1, it was concluded that, 𝐸𝑅𝑖,𝑗 can be used to compare the

connectivity robusntess of two arbitrary node pairs in terms of the average fraction of link

failures until disconnection happens (
�̅�𝑖,𝑗
𝑋

𝑀
). In order to compare the connectivity

robustness of two arbitrary node pairs in terms of the average number of link failures

until disconnection happens (�̅�𝑖,𝑗
𝑋), Equation 16 was proposed to provide a close

estimation for �̅�𝑖,𝑗
𝑋 given the 𝐸𝑅𝑖,𝑗 value of a node pair.

Finally, the effects of redundant links were discussed. The existence of redundant

links does not affect the average number of link failures that a node pair can sustain

before disconnection. This is because redundant links do not contribute to the connection

between node pair 𝑖, 𝑗. However, under random link attacks, redundant links can serve as

“camouflage” and attract attacks away from structural links. This decreases the

probability of structural links to be hit during random attacks and as a result protects the

network structure. The effect can be quantified using either Equation 19 or Equation 20.

The validity of Equation 19 or Equation 20 was confirmed via simulation.

.

56

CHAPTER IV

CENTRALITY ANALYSES

In graph theory and network analysis, the centrality of a node or a link (network

entity) is a quantitative value representing the importance of a network entity to a

network property of interest [73]. The concept of centrality was first developed in social

network analysis and now have many other applications, such as to help identify the

super-spreaders of disease, the most critical infrastructures in the Internet, the bottlenecks

in transportation network. In general, the centrality of a network entity is characterized by

its position and/or the connectedness of network entities within networks, and depending

on the research content, the centrality of the same network entity can be evaluated

differently. In this chapter, the centrality of a network entity is measured by the extent to

which it affects the capability-based connectivity robustness (𝑅𝐶𝑁𝐶𝑃) of a given network.

In the following discussion, 𝐶𝑘
𝑉 will be used to denote the centrality of node 𝑘 ∈ 𝑉(𝐺)

and 𝐶𝑘,𝑙
𝐸 will be used to denote the centrality of link 𝑘, 𝑙 ∈ 𝐸(𝐺). The contents of this

chapter are arranged as following. First, the general equation for the centrality of a

network entity in terms of 𝑅𝐶𝑁𝐶𝑃 will be given followed by a review of existing

centrality measures. Next, the centrality measure for network nodes and network links

proposed will be discussed followed by some analysis results.

One argument that can be derived from the definition of the centrality of a

network entity is the that, the higher the centrality, the higher the impact of the removal

of this network entity on the corresponding network quantity of interest [74, 75]. Based

on this, the general mathematical expression of the centrality of a network entity in terms

of 𝑅𝐶𝑁𝐶𝑃 can be written as below.

57

 𝐶𝑘
𝑉 = Δ𝑅𝐶𝑁𝐶𝑃(𝑘) 22

 𝐶𝑘,𝑙
𝐸 = Δ𝑅𝐶𝑁𝐶𝑃[(𝑘, 𝑙)] 23

Based on the discussion in Chapter 2 and Chapter 3, Equation 22 (for network

nodes) or Equation 23 (for network links) can be rewritten as following, where node pair

𝑖∗, 𝑗∗ is the capability critical node pair of the network under study.

 𝐶𝑘
𝑉 = 𝛥�̅�𝑖∗,𝑗∗

𝑋 (𝑘) 24

 𝐶𝑘
𝑉 = 𝛥�̅�𝑖∗,𝑗∗

𝑋 (𝑘, 𝑙) 25

In general, there are two ways to calculate the centrality of a network entity. The

first way is to measure it through Equation 24 (for network nodes) or Equation 25 (for

network links) directly. This way of quantifying the centrality of a network entity is often

referred to as sensitivity analysis or dynamic centrality in the literatures. It is sometimes

normalized to the percentage form. The second way is to measure the centrality of a

network entity through an indicator directly obtained through network topological

analysis and often can reveal more information on the role of a network entity. In this

thesis, the second method is used to calculate the centrality of a network entity.

In the literatures, several different centrality measures have been proposed to

characterize the role of a network entity in different ways for different analysis purposes

[72]. The simplest one is by degree. It is usually referred to as node degree centrality

since this measure can only be applied to network nodes. Node degree is a local measure

since it is only measured by the number the immediate neighbors of a node and not by,

for example, the two-hop and three-hop neighbors of that node. Because of that, it is also

referred to as first order/one-hop connectedness index. By increasing the number of hops,

second order degree centrality, third order degree centrality and so on can be defined,

which however, are used less often comparing to the first order one. Regardless of its

order, degree centrality measure usually cannot help determine the overall position or the

58

connectedness of nodes within a network except for networks that display the so called

rich-club connectivity [40, 72, 76, 77].

Another type of centrality is called geodesic closeness [78, 79]. Although the

concept can be extended for network links, geodesic closeness is usually defined for

network nodes. It is calculated through taking (the reciprocal of) the average geodesic

distance from a selected node to all the other nodes in a network. Since information

transmission between network nodes is not always through the geodesic path between

them, other types of node distance are used to accommodate different information

transmission rules and alternative information transmission paths. For example,

information centrality proposed in [80], random-walk centrality proposed in [81] and

effective resistance based centrality proposed in [72] are based on some all paths between

node pairs within a network by using the random-walk path length instead of the geodesic

distance between node pairs.

Another class of centrality is called betweenness and is defined based on how a

pair of nodes are connected to each other. Betweenness can be defined for both network

nodes and network links. In general, it is the number of node pair paths that pass through

a node or a link and sometimes is normalized by the total number of node pair paths [82].

The path between a node pair is determined by routing rules, which can be either

deterministic or stochastic. The two most commonly used betweenness centrality

measures are geodesic path betweenness centrality (deterministic) and random walk

betweenness centrality (stochastic). If link weights are considered, they can be modeled

as network flows and use flow based centrality measure [82] or simply the weighted

version of certain betweenness centrality measures. Betweenness centrality measures

have been widely applied to different research fields due to their capability of reflecting

the role played by a network entity in the communication between node pairs [72].

59

Some other types of centrality measures, which are used less often than the

aforementioned ones, were proposed in association with certain network measures. In

general, the choice of centrality measure should reflect the role of a network entity in

affecting the network quantity under study and correspond to the way that quantity is

measured. Therefore, in this thesis, the centrality measure used should correspond to the

capability-based connectivity robustness measuring process developed in Chapter 3,

which in specific is Equation 24 or Equation 25. In other words, the centrality measure

should be able to capture the change of �̅�𝑖,𝑗
𝑋 (connectivity robustness) of a given node

pair when a network entity is removed.

In [72], the author proposed a way to measure the centrality of a network entity

based on effective resistance in affecting the connectivity robustness of the entire

network. In [72], a quantity was proposed in the process of developing the centrality of a

network node in affecting the connectivity robustness of a network as a whole. It was

only used as an intermediate quantity in [72] and nothing was mentioned that it actually

captures the centrality of a node in affecting the connectivity robustness between a node

pair. In the following discussions, first, it will be shown that this quantity can reflect the

node centrality in affecting �̅�𝑖,𝑗
𝑋 . Then, from there, a new quantity was developed for

measuring the centrality of a network link followed by some additional analyses and

discussions.

4.1 Node Centrality

Before going into the equation for calculating the node centrality in affecting �̅�𝑖,𝑗
𝑋 ,

first, the concept of random walk will be introduced. Random walk has been briefly

mentioned in the previous discussion. As defined in [83], a random walk is a finite

Markov Chain that is time-reversible and hence is a discrete stochastic process. The walk

60

starts at a given node 𝑖 , which is usually called the source, and selects one of its

neighbors to visit according to a designated probability distribution (usually node degree)

as the time step increases by 1. The process repeats until reaching the destination node 𝑗.

There are three concepts developed from the concept of a random walk that are closely

related to the node centrality measure to be discussed here. One is the hitting time of a

random walk from node 𝑖 to node 𝑗, which will be denoted as 𝐻𝑖,𝑗. 𝐻𝑖,𝑗 is the expected

number of steps for a random walk starting from node 𝑖 to hit node 𝑗 for the first time.

The second one is the commute time (distance) of a round trip random walk between

node 𝑖 and node 𝑗 (𝑈𝑖,𝑗). The relationship between 𝐻𝑖,𝑗 and 𝑈𝑖,𝑗 is shown in Equation 26.

 𝑈𝑖,𝑗 = 𝐻𝑖,𝑗 + 𝐻𝑗,𝑖 = 𝑈𝑗,𝑖 26

The connection between the effective resistance and the random walk between a

node pair lies in the following equation,

 𝑈𝑖,𝑗 = 2𝑀(𝐿𝑖,𝑖
+ − 2𝐿𝑖,𝑗

+ + 𝐿𝑗,𝑗
+) = 2𝑀𝐸𝑅𝑖,𝑗 27

where 𝑀 is the number of links of a network.

The last term is random detour, which is defined as the random walk from node 𝑖

to node 𝑗 that is forced to bypass a node 𝑘. 𝐻𝑖,𝑘,𝑗 will be used to denote the expected

number of steps for a random detour from node 𝑖 to node 𝑗 via node 𝑘. This is the core

concept that leads to the measure of node centrality that will be discussed here [72]. For a

given node pair 𝑖, 𝑗, the difference between 𝐻𝑖,𝑘,𝑗 and 𝐻𝑖,𝑗 can be calculated. Denote that

difference as Δ𝐻𝑖,𝑘,𝑗. Δ𝐻𝑖,𝑘,𝑗 is the expected extra number of steps of a random walk from

node 𝑖 to node 𝑗 if it is forced to bypass node 𝑘 . Using the definition of Δ𝐻𝑖,𝑘,𝑗 , the

following equation can be obtained.

 Δ𝐻𝑖,𝑘,𝑗 = 𝐻𝑖,𝑘 + 𝐻𝑘,𝑗 − 𝐻𝑖,𝑗 28

61

In general 𝐻𝑖,𝑗 ≠ 𝐻𝑗,𝑖 . Hence, in general Δ𝐻𝑖,𝑘,𝑗 ≠ Δ𝐻𝑗,𝑘,𝑖 , which means, the

network has directed properties. However, as discussed earlier, the networks to be

investigated in this thesis are all undirected networks, which require undirected network

properties. To achieve this, instead of using Δ𝐻𝑖,𝑘,𝑗 or Δ𝐻𝑗,𝑘,𝑖, Δ𝑈𝑖,𝑘,𝑗 will be used. Δ𝑈𝑖,𝑘,𝑗

is defined as the expected extra number of steps of a round trip random walk between

node 𝑖 and node 𝑗 if it is forced to bypass node 𝑘 . Δ𝑈𝑖,𝑘,𝑗 can be calculated using

Equation 29.

 Δ𝑈𝑖,𝑘,𝑗 = Δ𝐻𝑖,𝑘,𝑗 + Δ𝐻𝑗,𝑘,𝑖 = Δ𝑈𝑗,𝑘,𝑖 29

Inserting Equation 27 into Equation 29 yields

 Δ𝑈𝑖,𝑘,𝑗 = Δ𝑈𝑗,𝑘,𝑖 = 2𝑀(𝐸𝑅𝑖,𝑘 + 𝐸𝑅𝑘,𝑗 − 𝐸𝑅𝑖,𝑗) 30

 Δ𝑈𝑖,𝑘,𝑗 = Δ𝑈𝑗,𝑘,𝑖 = 4𝑀(𝐿𝑘,𝑘
+ + 𝐿𝑖,𝑗

+ − 𝐿𝑖,𝑘
+ − 𝐿𝑗,𝑘

+) 31

From the definition of random walk and random detour, it can be seen that, Δ𝑈𝑖,𝑘,𝑗

is a nonnegative number. Intuitively, for the same network, the more peripheral node 𝑘 is

to the connection between node 𝑖 and node 𝑗, the greater the value of Δ𝑈𝑖,𝑘,𝑗 will be. And

hence, the less important node 𝑘 is to the connectivity robustness between node 𝑖 and

node 𝑗 . Therefore, it is reasonable to hypothesize that −Δ𝑈𝑖,𝑘,𝑗 can be used as the

centrality measure of a network node corresponding to �̅�𝑖,𝑗
𝑋 as mathematically expressed

below.

𝐶𝑘
𝑉 = −

Δ𝑈𝑖,𝑘,𝑗

4𝑀

32

Since for a given network topology, the number of network links are constant

when doing the centrality analysis of network entities, Δ𝑈𝑖,𝑘,𝑗 is divided by 4𝑀 to

simplify the calculation process.

62

According to the definition of node centrality, the more important of a node is to

the connectivity robustness between a given node pair 𝑖, 𝑗 , the higher the impact its

removal will have on �̅�𝑖,𝑗
𝑋 , and hence the greater the value of Δ�̅�𝑖,𝑗

𝑋 will be.

𝐻2: −Δ𝑈𝑖,𝑘,𝑗 is highly correlated with 𝛥�̅�𝑖,𝑗
𝑋 (𝑘).

𝐻0
2: −Δ𝑈𝑖,𝑘,𝑗 is not highly correlated with 𝛥�̅�𝑖,𝑗

𝑋 (𝑘).

In order to test Hypothesis 2, the following experiment was developed using the

two SF networks and the two Rand networks discussed earlier in Chapter 3. For each

network, randomly select 20 different node pairs. In total, there are 80 node pairs for four

networks. First, for each node pair 𝑖, 𝑗, feed the original network 𝐺 into the link failure

simulation model stated in Algorithm 3 (with 10000 runs) to obtain the expected number

of link failures before that node pair disconnects (�̅�𝑖,𝑗
𝑋). Next, at each step, remove a

network node 𝑘 from the original network and this will result in a new network 𝐺′ =

𝐺\{𝑘}. Feed this newly obtained network 𝐺′ into the link failure simulation mode (with

10000 runs) to obtain the expected number of link failures before node pair 𝑖, 𝑗

disconnects (�̅�𝑖,𝑗
𝑋 ′). Repeat this process for each node pair until all the nodes except node

𝑖 and node 𝑗 within the original network have been removed once. So for a network with

𝑁 network nodes, for each randomly selected node pair, the process should be repeated

for (𝑁 − 2) times in total.

For each network, we can obtain a series of data pairs [𝛥�̅�𝑖,𝑗
𝑋 (𝑘), −Δ𝑈𝑖,𝑘,𝑗], where

𝛥�̅�𝑖,𝑗
𝑋 (𝑘) = 𝑎𝑏𝑠(�̅�𝑖,𝑗

𝑋 ′
− �̅�𝑖,𝑗

𝑋) = �̅�𝑖,𝑗
𝑋 − �̅�𝑖,𝑗

𝑋 ′
. To test 𝐻0

2 , calculate the nonlinear

correlation between 𝛥�̅�𝑖,𝑗
𝑋 (𝑘) and −Δ𝑈𝑖,𝑘,𝑗 by fitting 𝛥�̅�𝑖,𝑗

𝑋 (𝑘) as a semi-parametrically

estimated function, for example, a generalized additive model (GAM) of −Δ𝑈𝑖,𝑘,𝑗. This is

to fit the following model as shown in Equation 33.

 𝐸(𝛥�̅�𝑖,𝑗
𝑋 (𝑘)|−Δ𝑈𝑖,𝑘,𝑗) = 𝛼 + 𝑓(−Δ𝑈𝑖,𝑘,𝑗) + 𝜖𝑘 33

63

This can be done by using the GAM() function in R. The fitting summary of a

node pair within the Rand_30_60 network is shown below. A plot of the fitting model is

also given to characterize the nature of the relationship between 𝛥�̅�𝑖,𝑗
𝑋 (𝑘) and −Δ𝑈𝑖,𝑘,𝑗 as

shown in Figure 27.

Family: gaussian

Link function: identity

Formula:

Delta_m_dis_ij ~ s(Detour_k)

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.77788 0.06419 43.28 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Detour_k) 3.503 4.337 172.2 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.965 Deviance explained = 97%

GCV = 0.13746 Scale est. = 0.11535 n = 28

64

Figure 27. Plot of the Example GAM Model between 𝚫�̅�𝒊,𝒋
𝑿 (𝒌) and −

𝚫𝑼𝒊,𝒌,𝒋

𝟒𝑴

For each node pair, fit the GAM between 𝛥�̅�𝑖,𝑗
𝑋 (𝑘) and −Δ𝑈𝑖,𝑘,𝑗 and document

the adjusted 𝑅2 value. Calculated the averaged adjusted 𝑅2 value of a network based on

the 20 randomly node pairs. The results are summarized in Table 9.

Table 9. GAM Model Summary for Node Pairs within Classical Networks (Node Centrality)

Network Rand_30_60 Rand_50_100 SF_30_60 SF_50_100

Average

Adjusted 𝑹𝟐
0.94 0.83 0.93 0.95

Since the average adjusted 𝑅2 values of all the classical networks are high, 𝐻0
2 is

rejected. Hence, −Δ𝑈𝑖,𝑘,𝑗 could be used as a measure for the centrality of a network node

in terms of the connectivity robustness between a given node pair.

65

4.2 Link Centrality

In the previous section, it has been successfully shown that, the more peripheral a

node is to the connection between a node pair, or in other words the greater the value of

Δ𝑈𝑖,𝑘,𝑗, the less importance of node 𝑘 to the connectivity robustness between node pair

𝑖, 𝑗 . Intuitively, for a link 𝑘, 𝑙 , the higher the values of Δ𝑈𝑖,𝑘,𝑗 and Δ𝑈𝑖,𝑙,𝑗 , the more

peripheral the position of link 𝑘, 𝑙 is to the connection between node pair 𝑖, 𝑗. Therefore

the less important link 𝑘, 𝑙 is to the connectivity robustness between node pair 𝑖, 𝑗. This

suggests the following relationship.

 𝐶𝑘,𝑙
𝐸 ∝ −(𝛥𝑈𝑖,𝑘,𝑗 + 𝛥𝑈𝑖,𝑙,𝑗) 34

Next, the following network property is used. For a network, the number of link

failures that any link can sustain until all the node pairs within a network disconnect is 1.

This means for the connection between all the node pairs of a network, the structural

contributions of all the links are the same. For simplicity, a constant, 𝑊, is used to

quantify the structural contribution of a link to the connection between all the node pairs

of a network. According to the definition of link centrality, the following equation can be

written.

∑∑𝑓(𝐶𝑘,𝑙
𝐸)

𝑁

𝑗=1

𝑁

𝑖=1

= 𝑊

where,

𝑊 is a constant;

𝑓() is a function with undefined properties.

35

In [72], the author proved the following relationship as written in Equation 36.

 1

𝑁2
∑∑𝛥𝑈𝑖,𝑘,𝑗

𝑁

𝑗=1

𝑁

𝑖=1

= Δ𝑈𝑘 = 4𝑀𝑙𝑘,𝑘
+ 36

66

So if 𝐶𝑘,𝑙
𝐸 is in the following form, Equation 35 is satisfied.

𝐶𝑘,𝑙
𝐸 = −

𝛥𝑈𝑖,𝑘,𝑗 + 𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘 + Δ𝑈𝑙
 37

This leads to the third hypothesis of this thesis.

𝐻3: −
𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
 is highly correlated with 𝛥�̅�𝑖,𝑗

𝑋 (𝑘, 𝑙).

𝐻0
3: −

𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
is not highly correlated with 𝛥�̅�𝑖,𝑗

𝑋 (𝑘, 𝑙).

The experiment to test Hypothesis 3 is similar to the one used for testing

Hypothesis 2. The detailed process of the experiment is as following. For each of the four

networks (two SF networks and two Rand networks), randomly select 20 node pairs.

First, for each node pair 𝑖, 𝑗, feed the original network 𝐺 into the link failure simulation

model stated in Algorithm 3 (with 10000 runs) to obtain the expected number of link

failures before that node pair disconnects (�̅�𝑖,𝑗
𝑋). Next, at each step, remove a network

link 𝑘, 𝑙 from the original network and this will result in a new network 𝐺′ = 𝐺\{(𝑘, 𝑙)}.

Feed this newly obtained network 𝐺′ into the link failure simulation mode (with 10000

runs) to obtain the expected number of link failures before node pair 𝑖. 𝑗 disconnects

(�̅�𝑖,𝑗
𝑋 ′). Repeat this process for each node pair until all the links within the original

network have been removed once. So for a network with 𝑀 network links, for each node

pair, the process should be repeated for 𝑀 times in total.

For each network, we can obtain a series of data pairs [𝛥�̅�𝑖,𝑗
𝑋 (𝑘, 𝑙), −

𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
].

To test 𝐻0
3, calculate the nonlinear correlation between 𝛥�̅�𝑖,𝑗

𝑋 (𝑘, 𝑙) and −
𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
 by

fitting 𝛥�̅�𝑖,𝑗
𝑋 (𝑘, 𝑙) as a semi-parametrically estimated function, for example, a generalized

additive model (GAM) of −
𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
. This is to fit the following model as shown in

Equation 38.

67

𝐸 (𝛥�̅�𝑖,𝑗

𝑋 (𝑘, 𝑙)|−
𝛥𝑈𝑖,𝑘,𝑗 + 𝛥𝑈𝑖,𝑙,𝑗
Δ𝑈𝑘 + Δ𝑈𝑙

)

= 𝛼 + 𝑓 (−
𝛥𝑈𝑖,𝑘,𝑗 + 𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘 + Δ𝑈𝑙
) + 𝜖𝑘,𝑙

38

This can be done by using the GAM() function in R. The fitting summary of a

node pair within the Rand_30_60 network is shown below. A plot of the fitting model is

also given to characterize the nature of the relationship between 𝛥�̅�𝑖,𝑗
𝑋 (𝑘, 𝑙) and

−
𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
 as shown in Figure 28.

Family: gaussian

Link function: identity

Formula:

Delta_m_dis_ij ~ s(Detour_k_l)

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -31.65853 0.03861 -820 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Detour_k_l) 8.827 8.99 1416 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.995 Deviance explained = 99.6%

GCV = 0.10696 Scale est. = 0.089444 n = 60

68

Figure 28. Plot of the Example GAM Model between 𝚫�̅�𝒊,𝒋
𝑿 (𝒌, 𝒍) and −

𝜟𝑼𝒊,𝒌,𝒋+𝜟𝑼𝒊,𝒍,𝒋

𝚫𝑼𝒌+𝚫𝑼𝒍

For each node pair, fit the GAM between 𝛥�̅�𝑖,𝑗
𝑋 (𝑘, 𝑙) and −

𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
 and

document the adjusted 𝑅2 value. Calculated the averaged adjusted 𝑅2 value of a network

based on the 20 randomly node pairs. The results are summarized in Table 10.

Table 10. GAM Model Summary for Node Pairs within Classical Networks (Link Centrality)

Network Rand_30_60 Rand_50_100 SF_30_60 SF_50_100

Average

Adjusted 𝑹𝟐
0.99 0.99 0.99 0.99

Since the average adjusted 𝑅2 values of all the classical networks are high, 𝐻0
3 is

rejected. Hence, −
𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
 could be used as a measure for the centrality of a network

link in terms of the connectivity robustness between a given node pair.

69

4.3 Chapter Summary

In this Chapter, the centrality of network entities were discussed. The discussion

started by giving general definition of the centrality. Depending on the research content,

there are different types of centralities. The one considered here is the centrality of a

network entity in terms of its impacts on the capability-based robustness of a network, the

mathematical representations of which are provided in Equation 24 or Equation 25.

Depending on the research content, there are different types of centrality measures.

In general, the choice of centrality measure should reflect the role of network entities in

affecting the network quantity under study and correspond to the way that quantity is

measured. Therefore, in this thesis, a candidate centrality measure should correspond to

the capability-based connectivity robustness measuring process developed in Chapter 3.

Based on the discussion in Chapter 3, a candidate centrality measure should be able to

measure importance of a network entity to the connectivity robustness of a give node

pair.

The proposed node centrality and link centrality measures are based on the

concept of random detour as given in Equation 32 and Equation 37. By testing

Hypothesis 2 and Hypothesis 3, the validity of the two proposed measures were

confirmed.

70

CHAPTER V

A CAPABILITY-BASED CONNECTIVITY ROBUSTNESS

EVALUATION FRAMEWORK

To summarize the discussions from Chapter 2 to Chapter 4 leads to a framework

for the fast evaluation of the capability-based connectivity robustness of a CIN. The

process is summarized in Figure 29. The application of this framework is demonstrated

on the example described in Section 1.5.

The first step of the framework is to construct a capability-based network mode.

This has already been done along the discussion in Chapter 2. Assume all the key

information flows have OR relationship, then the capability-based network model of the

example problem is the one illustrated in Figure 5 and the capability critical node pair is

node pair 𝐶, 𝐹.

The second step is to measure the connectivity robustness of node pair 𝐶, 𝐹 ,

which is the capability critical node pair of the example CIN. First, calculate the effective

resistance between that node pair and that gives 𝐸𝑅𝐶,𝐹=1.16. Next, plug 𝑁 = 8,𝑀 =

12, 𝐸𝑅𝐶,𝐹 = 1.61 into Equation 16, and we can obtain (�̃̅�𝐶,𝐹
𝑋) = 5.16 . To check the

accuracy of this estimation, the network topology of the CIN in this example problem

was fed into the link failure simulation model. The simulation result (�̅�𝐶,𝐹
𝑋) and the

accuracy of the above estimation are presented below in Table 11.

Table 11. Summary of the Accuracy of �̃̅�𝑪,𝑭
𝑿

�̅�𝑪,𝑭
𝐗 5.14

�̃̅�𝑪,𝑭
𝑿 5.16

% Diff 0.4%

71

As can be seen in Table 11, the difference between �̃̅�𝐶,𝐹
𝑋 and �̅�𝐶,𝐹

X is only 0.4%

and is negligible. Hence, �̃̅�𝐶,𝐹
𝑋 is a close estimation for �̅�𝐶,𝐹

𝑋 .

The third step is to evaluate the centrality of network entities in terms of their

importance to the capability-based connectivity robustness of a CIN. The centrality of

network nodes calculated via Equation 32 is summarized in Table 12. The centrality of

network inter-connection links calculated via Equation 37 is summarized in Table 13.

Table 12. Summary of Node Centrality 𝑪𝒌
𝑽 and Impacts of Node Removal 𝜟�̅�𝑪,𝑭

𝑿 (𝒌)

Node

Index
𝑪𝒌
𝑽 𝚫�̅�𝑪,𝑭

𝑿 (𝒌)

𝑢1 0 5.14

𝑢2 -0.23 4.14

𝑢3 -0.26 3.22

𝑢4 -0.55 0.78

𝑢5 -0.55 0.78

𝑢6 -0.55 0.79

Table 13. Summary of Link Centrality 𝑪𝒌,𝒍
𝑬 and Impacts of Link Removal 𝜟�̅�𝑪,𝑭

𝑿 [(𝒌, 𝒍)]

𝒌 𝒍 𝑪𝒌,𝒍
𝑬 𝜟�̅�𝑪,𝑭

𝑿 [(𝒌, 𝒍)]

𝐵 𝑢1 0 5.14

𝑢1 𝑢2 -0.34 4.14

𝑢2 𝑢3 -0.96 3.22

𝑢3 𝑢4 -1.19 0.80

𝑢3 𝑢5 -1.19 0.81

𝑢3 𝑢6 -1.19 0.82

72

As can be seen in Table 12 and Table 13, the proposed measures (Equation 32 and

Equation 37) successfully captured the importance of network links/nodes to the

connectivity robustness between node pair 𝐶, 𝐹.

According to Table 12, SUAV 1 is of the most importance. The failure SUAV 1

will result in immediate disconnection between node pair 𝐶, 𝐹, and hence the failure of

the entire operation. The reason for SUAV 1 to be the most important node is its

bottleneck role to the connection between node pair 𝐶, 𝐹. The second important node is

SUAV 2, which is also due to its bottleneck position. However unlike SUAV 1, whose

failure will completely disconnect the connection between node pair 𝐶, 𝐹, node pair 𝐶, 𝐹

is still connected if only SUAV 2 fails. The next important node is SUAV 3, which relays

SUAV 4, SUAV 5 and SUAV 6 to the command center. SUAV 4, SUAV 5 and SUAV 6

are of the same importance due to their structural similarity. They are also of the least

importance. This is because the impact of the failure of any of them is isolated and will

not impact the other pathways that connecting node pair 𝐶, 𝐹. According to Table 13, the

inter-connection link between the command center and SUAV 1 is the most important

link in terms the connectivity robustness between node pair 𝐶, 𝐹 . This is due to its

bottleneck role. The second important inter-connection link is the one between SUAV 1

and SUAV 2; while the third important link is the one between SUAV 2 and SUAV 3.

Based on the above centrality analysis results, to strengthen the capability-based

connectivity robustness of the network in the example problem, additional failure

protection mechanisms can be applied to network nodes, such as SUAV 1, SUAV 2 or to

individual inter-connection links, such as the one between the command center and

SUAV 1.

73

Figure 29. A Framework for the Fast Evaluation of the Capability-Based Connectivity Robustness of

a CIN

74

5.1 The Practicality of the Proposed Framework

In the previous section, it has been demonstrated how the framework can help

evaluate a given CIN. In this section, the discussion focuses on the practicality of the

proposed connectivity robustness measure.

The key element of the proposed framework is to find the Moore-Penrose

pseudoinverse of a network topology Laplacian, which is denoted as 𝐿+. As written in

[96], the Moore-Penrose pseudo inverse and the sub-matrix inverses of the Laplacian can

reveal significant topological characteristic of a graph and have been applied to fields as

diverse as probability and mathematical chemistry, collaborative recommendation

systems and social networks, epidemiology and infrastructure planning. Alas, despite

such versatility, the pseudo inverse and the sub-matrix inverses of the Laplacian suffer a

practical handicap. Using the standard matrix factorization and inversion based methods

(e.g. Cholesky factorization and inversion) on a serial processor to compute 𝐿+ has

an 𝑂(𝑁3) computational time, where 𝑁 is the number of network nodes. This means

using the conventional methods, it is very expensive to compute 𝐿+. This clearly impedes

the practical utilities of the proposed connectivity robustness measure and the subsequent

analyses as network size grows. This is especially problematic during the CIN design and

optimization process that regular 𝐿+ re-computations are required. In response to this,

researchers have proposed several novel approaches to increase the efficiency of

computing 𝐿+ . With a parallel architecture equipped with many processors, the time

complexity of using the standard factorization and inversion methods to calculate 𝐿+

could be reduced to 𝑂(𝑁) or even 𝑂(𝑙𝑜𝑔𝑁) [97, 98]. If parallel computing is not

available, using a divide-and-conquer based approach as proposed in [96] , the cost of

computing 𝐿+ of an undirected graph is at a cost of 𝑂(𝑁2). With those, the time

complexity of the proposed method is no longer a problem.

75

5.2 An Alternative Design Generation Process

In the following discussion, how the proposed measure can help design a CIN in

terms of capability-based connectivity will be shown. The discussion starts by

formulating the problem. The design problem will be decomposed into four sub-problems.

Unconstrained situation will be considered first and then design constraints will be added

gradually.

The base sub-problem is to design a CIN with enough capability-based

connectivity robustness to complete an operation without specify the number of entities

(nodes) and links. Of course, the more nodes and the more links used, the more

connectivity robust the CIN is. However, real world design practices are never conducted

without a consideration on cost. For a CIN, by deploying more participant entities with

high information transmission capabilities, more communication channels (such as all

entities can communicate to each other, a P2P structure) with high reliability, the network

can have very high capability-based connectivity robustness, but also a very high

acquisition cost. Hence, usually, a CIN design will specify the maximum number of

entities that can be used for a specific operation. This formulates Sub-Problem 1. On the

other hand, network links are also established at a cost. In order to be able to

communicate within the network, a network node needs to be equipped with enough

information transmission capabilities, such as bandwidth, information processing

capacity, range, and power to enable the communication. The higher and the more

comprehensive the information transmission capabilities, the higher the acquisition cost.

Sometimes some of the required information transmission capabilities are not practical

due to design constraints, such as the space, take-off weight constraints of SUAVs. Hence,

link constraints are required. Unlike the node constraint, which is the number of network

76

nodes that can be deployed, link constraints are more complex. In this thesis, the

following link constraint: the feasibility of establishing a link, will be considered. With

this constraint, Sub-problem 2 is formulated.

This is to consider the feasibility of establishing a link considering the physical

distance, interoperability between network entities. As defined in [99], interoperability is

the ability of two or more systems or components to exchange resources in the form of

data, information, materiel, and services, and to use the resources that have been

exchanged to enable them to operate effectively together.

Finally, in Sub-problem 3, the network topology selection criteria are set and the

best network topology design or designs are selected accordingly using the framework

discussed earlier in this Chapter. Guided by the above problem decomposition, the

following CIN design process was proposed.

The design activity corresponding to Sub-problem 0 or the base design problem is

to specify the operation to be performed by a CIN. This is usually done by mission

statement. For the example problem, the operation is to have a group of networked

SUAVs operate over some fields and send regular updates to the command center

regarding to the fields they monitor.

The design activity corresponding to Sub-problem 1 is to specify the number of

network nodes and their general roles including the physical location of each network

node. For the example problem, there are six monitoring fields. The original CIN design

(Figure 3) uses six SUAV. Hence, there are in total eight network nodes within the

corresponding network model with one node representing the command center (node 𝐶),

six nodes representing those SUAVs and one node for the information source (node 𝐹).

77

The design activity corresponding to Sub-problem 2 starts by firstly constructing

a fully connected network using all the network nodes. Then, decide the sets of infeasible

network links and remove those links from the fully connected network.

Next, remove network links one at a step using the following rules. At each step,

calculate the centrality of the existing network links in terms of �̅�𝑖∗,𝑗∗
𝑋 using the method

proposed in Chapter 4 (Equation 37). Name the links whose removal will not result in

any non-information source node disconnected from the command center as candidate

links. Select the candidate link with the smallest link centrality. If there are more one

candidate link with the smallest link centrality, then randomly select one. Remove the

selected link from the network topology. Repeat the selection and removal process until

no link left in the candidate link pool. The design process will stop here. Document the

network topology obtained at each step, and calculate the average number of link failures

until the capability critical node pair disconnects for each network topology. Need to note

here, the capability critical node pair may vary along the design generation process.

Name the network topologies obtained as the candidate network topologies.

For the example problem, the design activities corresponding to Sub-problem 2

starts with a fully connected undirected network with eight nodes as shown in Figure 30.

Assume the physical impossible links are link 𝐵, 𝑢4 , link 𝐵, 𝑢5 , and link 𝐵, 𝑢6 . Next,

using the above “link minus” approach, the link failure history for the example problem

is shown in

Table 14. During the “link minus” process, all links selected are both feasible and

viable.

78

Figure 30. The Starting Topology of the Sub-Problem 2 for the Example CIN

Table 14. Results of the “Link Minus” Procedure

Step 𝑴 𝒌 𝒍 𝑬𝑹𝑪,𝑭 �̃̅�𝑪,𝑭
𝑿

�̃̅�𝑪,𝑭
𝑿

𝑴

0 24 ----- 0.52 16.84 70.2%

1 23 𝑢5 𝑢4 0.52 16.14 70.2%

2 22 𝑢6 𝑢4 0.52 15.44 70.2%

3 21 𝑢6 𝑢5 0.52 14.74 70.2%

4 20 𝑢4 𝑢2 0.53 14.02 70.1%

5 19 𝑢5 𝑢2 0.53 13.29 70.0%

6 18 𝑢6 𝑢2 0.54 12.56 69.8%

7 17 𝑢6 𝑢3 0.55 11.83 69.6%

8 16 𝑢4 𝑢3 0.56 11.10 69.4%

9 15 𝑢5 𝑢3 0.57 10.35 69.0%

79

10 14 𝑢3 𝑢2 0.57 9.66 69.0%

11 13 𝑢2 𝑢1 0.57 8.95 68.9%

12 12 𝑢3 𝑢1 0.58 8.24 68.7%

Original Design 12 ------ 1.61 5.16 43.0%

In Table 14, the first column is the step number. Step 0 corresponds to the base

network topology obtained by removing all the physical impossible links. The second

column is the number of network links within the network topology of each step. The

third and the fourth columns contain the two ending nodes of the link removed at each

step. The fifth column contains the effective resistance value between the critical node

pair at each step. (Along the design generation process, node pair 𝐶, 𝐹 is always the

capability critical node pair of the CIN). The last second column contains the estimated

average number of link failures that will result in the disconnection between the

capability critical node pair of each step. Finally, the last column is the estimated average

fraction of link failures that will result in the disconnection between the capability critical

node pair of each step. The average fraction of link failures until the capability critical

node pair disconnects can be viewed as the structural efficiency of a CIN.

From this table, the first observation can be made is, the capability-based

connectivity robustness and the structure efficiency of all the candidate designs are higher

than the original design. Next, plot the average number of disconnection link failures and

the average fraction of disconnection link failures vs. the link number of each step as

shown in Figure 31. All the candidate designs have similar structure efficiency.

80

Comparing the 𝐸𝑅𝐶,𝐹 column and the average fraction of disconnection link

failures, the values in both columns are very stable. As the average fraction decreases, the

𝐸𝑅𝐶,𝐹value increases.

The design activity corresponds to the Sub-problem 3 is to specify the desired

capability-based connectivity robustness (to link failures). Using the measure proposed in

Chapter 3, it is to specific the minimum average number of link failures that can be

tolerated during the CIN operation. Name that as the critical average number of link

failures (�̅�𝑖∗,𝑗∗
𝑋)

𝐶
, where 𝑖∗, 𝑗∗ is the capability critical node pair of the CIN. For the

example problem, in order to maintain operation at the minimum level, node 𝐶 and node

𝐹 have to remain connected. The value of (�̅�𝐶,𝐹
𝑋)

𝐶
is decided to be five. In addition, from

economic design perspective, the network topology with the smallest link number is

selected (Step 12) and is shown in Figure 32. Comparing the optimized design and the

original design, we can see the structural benefits are achieved by eliminating extra

relaying hubs.

81

Figure 31. Co-plot of �̃̅�𝑪,𝑭
𝑿 and

�̃̅�𝑪,𝑭
𝑿

𝑴
 vs. 𝑴

Figure 32. The Optimized Network Topologies of the Example CIN

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

0

3

6

9

12

15

18

24 23 22 21 20 19 18 17 16 15 14 13 12

M

Estimated Average(m_X_1,8) Estimated Percentage of (m_X_1,8)

82

5.3 Chapter Summary

The focus of this chapter is on the practical use of the proposed capability-based

connectivity robustness measure and the subsequent analyses. First, a framework for the

fast evaluation of the capability-based connectivity robustness of a CIN was proposed by

summarizing the discussions provided in Chapter 2 to Chapter 4. The framework was

demonstrated on the example discussed in Section 1.5. Next, the practicality of the

proposed capability-based connectivity measure was discussed by stating its

computational complexity. The key of the proposed measure and any subsequent analyses

is to find the Moore-Penrose pseudoinverse of the Laplacian of a network topology,

which is denoted as 𝐿+. With a parallel architecture equipped with many processors, the

time complexity of using the standard factorization and inversion methods to calculate 𝐿+

could be reduced to 𝑂(𝑁) or even 𝑂(𝑙𝑜𝑔𝑁). This greatly enhanced the practical use of

the proposed measure and the subsequent analyses. Finally, an alternative design

generation procedure was proposed. It is very easy for the proposed procedure to

incorporate design constraints. The design process is repeatable and generates a pool of

design candidates. It enables rapid trade-offs between capability-based connectivity

robustness and other considerations, such as link number and information transmission

range. Although the process demonstrated in Section 5.2 focuses on the capability-based

connectivity robustness of a CIN, it is flexible to be used as a sub-design process of a

more comprehensive, complex design process.

83

CHAPTER VI

HOW TO STRENGTHEN CAPABILITY-BASED

CONNECTIVITY ROBUSTNESS

This chapter demonstrates how the measuring process for the capability-based

connectivity robustness developed in Chapter 3 and the corresponding centrality

measures discussed in Chapter 4 can be used to help develop some strategies to

strengthen the capability-based connectivity robustness of a CIN. This is just to

strengthen the connectivity robustness between the capability critical node pair of the

CIN, or more specifically, to increase the value of �̅�𝑖∗,𝑗∗
𝑋 . Two different strategies are

considered. The first one is to add a new link into the existing network. This is to increase

the static connectivity robustness between the capability critical node pair. The second

strategy is to prepare a substitution for a network node, which is usually of great

importance to the connectivity robustness between the capability critical node pair.

6.1 How to Add a Link

In this section, the strategy of adding a link will be discussed. The goal is to find a

way to quickly determine the location to add a new link that increases the �̅�𝑖,𝑗
𝑋 value of a

given node pair most. Such a position will be referred to as the optimal position and

denoted as 𝑒+.

The most straightforward way to find 𝑒+ is to quantify the effects of adding a link

on �̅�𝑖,𝑗
𝑋 , and then to conduct an exhaustive search to identify the link whose addition

results in the most �̅�𝑖,𝑗
𝑋 increase. For a given network topology, adding a link does not

change the network node number. Use 𝐸𝑅𝑖,𝑗
𝑒 to denote the new effective resistance value

84

between node pair 𝑖, 𝑗 after link 𝑒 is added to the original network. According to the

discussion in Chapter 3, to compare the effects of adding a network link 𝑒 on �̅�𝑖,𝑗
𝑋 is to

compare the value of
1

𝐸𝑅𝑖,𝑗
𝑒 . In other words, to find the link whose addition results in the

most �̅�𝑖,𝑗
𝑋 increase is to find the one with the lowest 𝐸𝑅𝑖,𝑗

𝑒 value.

Hence, the complexity of comparing the effects of adding a link on the �̅�𝑖,𝑗
𝑋 is on

the same order of calculating 𝐸𝑅𝑖,𝑗. As discussed earlier, using conventional calculation

method on a serial processor, the complexity order of calculating 𝐸𝑅𝑖,𝑗 is 𝑂(𝑁3) [55].

The network topologies of most CINs are sparse. This means the number of non-existing

network links of a CIN network topology is on the same order of 𝑂(𝑁2). As a result, the

total complexity order of finding 𝑒+ through an exhaust search could be 𝑂(𝑁5). Clearly,

there is a need for methods that determine 𝑒+ in a computationally scalable fashion with

high accuracy.

In [55], the authors proposed four different methods for finding 𝑒+ in terms of the

connectivity robustness of a whole network. The one based on 𝐿+ has the best

performance for all the networks tested. Motivated by that, in this section, a method

based on 𝐿+ for finding 𝑒+ in terms of �̅�𝑖,𝑗
𝑋 was developed. Among all the possible link

positions, the proposed method chooses the one with the highest Ω𝑒 value. Assume the

two ending nodes of a link 𝑒 are 𝑘 and 𝑙 , Ω𝑒 or Ω𝑘,𝑙 can be calculated through the

following equation.

𝛺𝑘,𝑙
𝑖,𝑗
 = −

𝛥𝑈𝑖,𝑘,𝑗 + 𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘 + Δ𝑈𝑙
−
𝛥𝑈𝑘,𝑖,𝑙 + 𝛥𝑈𝑘,𝑗,𝑙

Δ𝑈𝑖 + Δ𝑈𝑗
 39

The superscript 𝑖, 𝑗 is added to indicate that the node pair of interest is 𝑖, 𝑗 .

Equation 39 contains two parts. Referring back to the discussion in Chapter 3, the first

part of 𝛺𝑘,𝑙
𝑖,𝑗
 can be viewed as the centrality of the originally non-existing link 𝑘, 𝑙 .

85

According to Hypothesis 3, the higher the centrality of an existing link as calculated by

Equation 3738, the higher the impact of its removal on the value of �̅�𝑖,𝑗
𝑋 . Hypothesis 3

has passed its test. However, this does not necessary mean failing to reject the following

statement: The higher the centrality of a non-existing link as calculated by Equation 37

38is, the higher the impact of its addition to �̅�𝑖,𝑗
𝑋 . In order to address this, the second part

of Equation 39 was added. The second part measures the importance of the connectivity

robustness between node 𝑖 and node 𝑗 to the connectivity robustness between node 𝑘 and

node 𝑙. The argument is that, if the non-existing link 𝑘, 𝑙 is truly very important to the

connectivity between node 𝑖 and node 𝑗, either the value of
𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
 or

𝛥𝑈𝑘,𝑖,𝑙+𝛥𝑈𝑘,𝑗,𝑙

Δ𝑈𝑖+Δ𝑈𝑗

should be relatively small. This forms the fourth hypothesis of this thesis.

𝐻4: 𝛺𝑘,𝑙
𝑖,𝑗

 can indicate the benefits of adding a non-existing link into a network on �̅�𝑖,𝑗
𝑋 .

𝐻0
4: 𝛺𝑘,𝑙

𝑖,𝑗
 cannot indicate the benefits of adding a non-existing link into a network on

�̅�𝑖,𝑗
𝑋 .

Hypothesis 4 was tested using the following experiment, which is a modified

version of the one used in [55]. For a given key node pair 𝑖, 𝑗, the 𝐸𝑅𝑖,𝑗
𝑒 values of all the

possible link additions are calculated. Next, calculate the 𝛺𝑒
𝑖,𝑗

 values of all the possible

link additions. Order the 𝐸𝑅𝑖𝑗
𝑒 value in ascending order, and denote this as (𝐸𝑅𝑖,𝑗

𝑒)
∗
. Now

for a key node pair, the following data series can be obtained: [𝛺𝑒
𝑖,𝑗
, 𝐸𝑅𝑖,𝑗

𝑒 , (𝐸𝑅𝑖,𝑗
𝑒)

∗
]. List

the three columns together in the following fashion. For each non-existing network link,

we can have a 𝛺𝑒
𝑖,𝑗

 value and a 𝐸𝑅𝑖,𝑗
𝑒 value. Sort the data pairs in the two columns in

descending order of 𝛺𝑒
𝑖,𝑗

. Finally, attach the (𝐸𝑅𝑖,𝑗
𝑒)

∗
 column to the sorted data table.

Refer to this newly obtained data table the performance table of node pair 𝑖, 𝑗. After the

86

three columns are properly listed, the absolute relative difference between 𝐸𝑅𝑖,𝑗
𝑒 and

(𝐸𝑅𝑖,𝑗
𝑒)

∗
is calculated for each link (each row). Denote the difference as 𝐸𝑟𝑟𝑒

𝑖,𝑗
.

𝐸𝑟𝑟𝑒

𝑖,𝑗
=
| 𝐸𝑅𝑖,𝑗

𝑒 − (𝐸𝑅𝑖,𝑗
𝑒)

∗
|

(𝐸𝑅𝑖,𝑗
𝑒)

∗
4

0

The experiments was carried out on the two SF networks and the two Rand

networks developed in Chapter 3. For each network, 20 node pairs were randomly

selected. The experiment results are summarized in Table 15 and Table 16. Table 15

contains the results of the two SF networks and Table 16 contains the results for the two

Rand networks. In both tables, “first 1” is the 𝐸𝑟𝑟𝑒
𝑖,𝑗

 value of the first row (link) in the

performance table for node pair 𝑖, 𝑗. It represents the accuracy of 𝛺𝑘,𝑙
𝑖,𝑗
 identifying 𝑒+ for a

given node pair. “First 2” is the average 𝐸𝑟𝑟𝑒
𝑖,𝑗

 value of the first two rows (links) in the

performance table for key node pair 𝑖, 𝑗. It represents the accuracy of 𝛺𝑘,𝑙
𝑖,𝑗

 identifying the

optimal link 𝑒+, and the second optimal link. “Overall” is the averaged 𝐸𝑟𝑟𝑒
𝑖,𝑗

 value over

all the rows in the performance table for node pair 𝑖, 𝑗. It represents the overall accuracy

of using 𝛺𝑘,𝑙
𝑖,𝑗

 to compare the impact of the addition of non-existing network links.

From Table 15 and Table 16, it can be observed that, the “first 1” 𝐸𝑟𝑟𝑒
𝑖,𝑗

 values of

almost all the node pairs are 0, which means 𝛺𝑘,𝑙
𝑖,𝑗

 can successfully identify the optimal

non-existing link. In addition, the “first 2” 𝐸𝑟𝑟𝑒
𝑖,𝑗

 values and the “overall” 𝐸𝑟𝑟𝑒
𝑖,𝑗

 values

of all the node pairs are so small that 𝐻0
4 is rejected. The fact that, for most of the node

pairs, the “first 2” 𝐸𝑟𝑟𝑒
𝑖,𝑗

values are bigger than the corresponding “overall” 𝐸𝑟𝑟𝑒
𝑖,𝑗

 values

suggests the performance of 𝛺𝑘,𝑙
𝑖,𝑗

 fluctuates and eventually stabilizes when identifying the

benefits of adding a non-existing link as the link’s �̅�𝑖,𝑗
𝑋 benefit decreases.

87

Table 15. Performance of 𝜴𝒌,𝒍
𝒊,𝒋

 for Different Node Pairs (Rand)

NODE PAIR

INDEX

Rand_30_60 Rand_50_100

First 1 First 2 Overall First 1 First 2 Overall

1 0.00% 1.17% 0.66% 0.00% 1.10% 0.51%

2 0.00% 0.00% 0.58% 0.00% 3.84% 0.72%

3 0.00% 1.39% 0.64% 0.00% 2.40% 0.59%

4 0.00% 0.43% 0.73% 0.00% 1.73% 0.46%

5 0.00% 1.63% 0.53% 0.00% 5.16% 0.52%

6 0.00% 1.33% 0.65% 0.00% 1.66% 0.55%

7 0.00% 0.05% 0.52% 0.00% 4.66% 0.72%

8 0.00% 0.99% 0.49% 0.00% 3.76% 0.62%

9 0.00% 3.15% 0.74% 0.00% 1.25% 0.32%

10 0.00% 3.73% 0.86% 0.00% 0.82% 0.33%

11 0.00% 3.31% 0.68% 0.00% 0.55% 0.34%

12 0.00% 0.41% 0.53% 0.00% 1.03% 0.36%

13 1.94% 3.08% 0.41% 0.00% 2.63% 0.62%

14 0.00% 0.00% 0.81% 0.00% 1.03% 0.36%

15 0.00% 0.89% 0.35% 0.00% 1.44% 0.44%

16 0.00% 0.32% 0.62% 0.00% 3.55% 0.74%

17 0.00% 0.00% 0.72% 0.00% 3.40% 0.51%

18 0.00% 0.00% 0.97% 0.00% 4.85% 0.64%

19 0.00% 2.65% 0.57% 0.00% 4.53% 0.34%

20 0.00% 1.66% 0.58% 0.00% 0.08% 0.19%

AVERAGE 0.10% 1.31% 0.63% 0.00% 2.47% 0.49%

STD 0.42% 1.22% 0.15% 0.00% 1.57% 0.15%

88

Table 16. Performance of 𝜴𝒌,𝒍
𝒊,𝒋

 for Different Node Pairs (SF)

NODE PAIR

INDEX

SF_30_60 SF_50_100

First 1 First 2 Overall First 1 First 2 Overall

1 0.00% 0.00% 0.44% 0.00% 0.85% 0.79%

2 0.00% 0.93% 0.55% 0.00% 0.24% 0.68%

3 0.00% 2.26% 0.67% 0.00% 4.62% 0.64%

4 0.00% 0.36% 0.37% 0.00% 3.03% 0.60%

5 0.00% 0.11% 0.53% 0.00% 0.00% 0.42%

6 0.00% 1.60% 0.48% 0.00% 0.58% 0.59%

7 0.00% 1.20% 0.38% 0.00% 0.78% 0.71%

8 0.00% 5.55% 0.61% 0.00% 2.81% 0.75%

9 0.00% 4.01% 0.53% 0.00% 0.00% 1.10%

10 0.00% 3.70% 0.68% 0.00% 2.63% 0.90%

11 0.00% 5.90% 0.55% 0.00% 0.34% 0.69%

12 0.00% 4.05% 0.62% 0.00% 0.00% 0.79%

13 0.00% 4.05% 0.62% 0.00% 0.00% 0.88%

14 0.00% 2.28% 0.48% 0.00% 0.00% 0.93%

15 0.00% 1.14% 0.38% 0.00% 0.00% 0.84%

16 0.00% 2.04% 0.60% 0.00% 1.05% 0.73%

17 0.00% 1.45% 0.44% 0.00% 0.80% 0.95%

18 0.00% 6.12% 0.68% 0.00% 3.44% 0.88%

19 0.00% 5.73% 0.33% 0.00% 2.50% 0.97%

20 0.00% 2.11% 0.45% 0.00% 0.09% 0.65%

AVERAGE 0.00% 2.73% 0.52% 0.00% 1.19% 0.77%

STD 0.00% 1.96% 0.11% 0.00% 1.39% 0.16%

89

6.2 How to Prepare a Substitution

Resilience has the same fundamental motivation and ultimate goal as robustness.

They both originated as system level design concepts. Unlike robustness that has a

concrete definition, resilience is a “work in progress” concept which, at present, could

have a number of different meanings [84]. [85] provides a good review of existing

definitions on resilience, and summaries that, robustness is the ability to resist or

counteract adverse events, while resilience is the ability to adapt to or recover from those

adverse events, while stability is acquired in a new state.

In Chapter 3, the capability-based connectivity robustness of a CIN is measured

through analyzing the inter-connection structure of a CIN (network topology). In the

following discussion, it will be shown that concept of capability-based connectivity

robustness can be generalized and the proposed measuring process can be used to

indicate the effectiveness of a prescribed link failure coping mechanism (resilience). The

robustness obtained through the inter-connection structure of a CIN will be referred to as

static robustness and the robustness achieved though some dynamic coping mechanism

will be referred to as dynamic robustness.

Some researchers argue that robustness is a passive design character against

adverse events, and resilience is an active design character against adverse events. Hence,

resilience should be pursued instead of robustness. However, robustness and resilience

are not two competing concepts. They both have their own merits. For an individual

system, robustness in general is much easier to achieve comparing to resilience, which

usually requires “self-healing” ability. Although it can be easier for a CIN to achieve

resilience since the “self-healing” ability can be achieved by the interaction between

different agents, there are many real issues to be addressed for practical resilience. Use

networked SUAVs as an example. One proposed way to achieve resilience is through

90

network re-wiring or re-configuration. This may sound easy on paper. But in reality, to

achieve that, an SUAV needs to be equipped with a very powerful sensor system for

service discovery, a high computation capability for information processing and

information transmission routing calculation, a strong information processing capacity to

cope with information surge caused by information transmission routing change and

SUAV-SUAV coordination, a high battery capacity and so on. It also requires enough

space and take-off weight to carry all these supporting equipments [5, 36]. Even though

instead of using distributed decision making, centralized decision making can lift the

computation burden on each individual SUAV, strong if not stronger information

processing capabilities are still required to send the control information to each individual

SUAV in a timely manner. Moreover, most of the hardware technologies that can provide

those aforementioned supports with high reliability are still open research questions [36].

As a result, built-in static robustness could be a more practical solution that delivers

similar effects.

In summary, robustness and resilience are not two competing concepts. It is hard

to say which one is better. To have how much robustness and how much resilience built

in is design dependent. In general, robustness is easier to achieve and “act” immediately

with no delay; while resilience can be harder and more costly to achieve and usually

incurs a delay in action upon impairments, but it has the potential to be more effective

and cost-efficient considering the entire acquisition life cycle of a CIN.

In this section, the strategy of preparing substitutions for some nodes will be

discussed. The core concept is to build in substitution mechanism in a network for one or

more important nodes. So that when such nodes malfunction or are unreachable, their

substitution nodes can take on their responsibility and sustain the CIN operation.

Different from the strategy of adding a link, this strategy does not change the topology of

91

a CIN. This strategy does not strength the connectivity robustness between the capability

critical node pair of a CIN through increasing its static robustness. This strategy responds

to network impairments dynamically through substitution nodes and strengthens the

connectivity robustness between the capability critical node pair by building in dynamic

robustness or in other words, resilience.

The key of using this concept lies in finding the right substitution for a given node.

This requires a method to quantify the effects of this strategy. The following discussion

starts with an example of this strategy: assigning a deputy leader and shows that the

proposed capability-based connectivity robustness evaluation process discussed in

Chapter 3 can also be used to quantify the effectiveness of this link failure coping

mechanism,

Assuming in a CIN, collected information is merged up to a commander for

decision-making and then decision information is transferred down to each entity within

the network. The key to sustain the CIN operation is to keep the commander informed

during the operation and make sure its decisions can be executed at the operation field.

Because of the importance of the commander’s role to the entire operation, a deputy

commander role is assigned to another node within the network. In case something

happens to the commander that it is disconnected from the network or malfunction, the

deputy commander will take on the commander role and sustain the operation (if the

deputy commander node functions well). This example is illustrated in Figure 33.

In Figure 33, 𝐶 node represents the commander node and 𝐶′ node is the node that

assigned as the deputy commander. 𝐼 represents information field. The solid lines

represent the information transmission between network nodes. While the dashed lines

represent information transmission between field and network nodes. The dashed lines

can comprise more network nodes and the interconnection between them. However, for

92

the purpose of illustrating this strategy, they are not shown in details. With the existence

of a deputy commander, the operation can be sustained as long as there is a connection

between node 𝐼 and node 𝐶 or node 𝐼 and node 𝐶′.

Figure 33. Example of Assigning a Deputy Commander in a CIN

(No Common Incident Nodes; Commander and Deputy Commander Not Connected)

Next, the capability-based connectivity robustness evaluation process proposed in

Chapter 3 is used to evaluate the effectiveness of this strategy. Before the evaluation,

some modification on a network topology is required to reflect this dynamic failure

copying mechanism. As mentioned earlier, this strategy, in essence says, the CIN

operation can be sustained as long as a connection exists between node 𝐼 to either node 𝐶

or node 𝐶′ , this is to shorting node 𝐶 and node 𝐶′. In electrical engineering, shorting

means to have the resistance between two nodes infinitely small. With this, the network

can be modified by collapsing node 𝐶 and node 𝐶′ together as illustrated in Figure 34.

Figure 34. Modified Network Topology by Shorting Node 𝑪 and Node 𝑪′

(No Common Incident Nodes; Commander and Deputy Commander Not Connected)

93

If there is no common node that is incident to the two collapsed nodes and the two

collapsed nodes are not connected, then to quantify the effectiveness of this strategy is to

measure the capability-based connectivity robustness of the modified network topology.

For this example, it is to measure �̅�𝐶(𝐶′),𝐼
𝑋 on the modified network, which will be

denoted as (�̅�𝐶(𝐶′),𝐼
𝑋)

𝐺′
, and to compare it with (�̅�𝐶,𝐼

𝑋)
𝐺

.

However, if there is any common node that is incident to the two collapsed nodes

or the commander node and the deputy commander node are connected, then the

effectiveness measured by the above process, which is to compare (�̅�𝐶(𝐶′),𝐼
𝑋)

𝐺′
 to

(�̅�𝐶,𝐼
𝑋)

𝐺
, will not yield the right result. An example of this scenario is shown in Figure 35.

Figure 35. Example of Assigning a Deputy Commander in a CIN

(Common Incident Nodes; Commander and Deputy Commander Connected)

As shown in Figure 35, node 1 is connected to both node 𝐶 and node 𝐶′ and node

𝐶 and node 𝐶′ are connected to each other. When node 𝐶 and node 𝐶′ are collapsed

together, there are actually two links connecting node 𝐶(𝐶′) and node 1, which cannot be

reflected by Figure 34. It seems that this issue can be solved by simply adding another

link between node 𝐶(𝐶′) and node 1 in Figure 34, which results in a non-simple graph

(more than two links between a node pair) or a weighted network. However, the proposed

evaluation process can only handle simple, unweighted networks. In order to use the

94

results obtained from Chapter 3, Figure 35 needs to be simplified into a simple,

unweighted network.

This can be achieved by first calculating (�̅�𝐶(𝐶′),𝐼
𝑋)

𝐺′
without considering those

extra links. Treat any extra link as a redundant link and inflate (�̅�𝐶(𝐶′),𝐼
𝑋)

𝐺′
using the

method discussed in Section 3.4. This method is depicted in Figure 36. If there is 𝑀 links

in the original network topology, and the network resulted from this modification has 𝑀′

non-redundant links, then (�̅�𝐶(𝐶′),𝐼
𝑋)

𝐺′
 should be inflated by

𝑀+1

𝑀′+1
.

Figure 36. Modified Network Topology by Shorting Node 𝑪 and Node 𝑪′

(Common Incident Nodes; Commander and Deputy Commander Connected)

In order to test the performance of the proposed evaluation method, the following

experiment was carried out on the two SF and the two Rand networks. For each network,

20 node pairs were randomly selected.

Denote the two end nodes of a node pair as 𝑖 and 𝑗. For each node pair, randomly

select a node within the network that is different from 𝑖 and 𝑗. Name this node 𝑘. Node 𝑘

is used as the substitution of node 𝑗. Keep a copy of the original network topology and

denote it as 𝐺. Then modify the original network topology using the network topology

modification method illustrated in Figure 36. This is to collapse node 𝑗 and node 𝑘, and

consider all the extra links resulted from this modification as pure redundant links. The

network topology obtained from this modification will be denoted as 𝐺′. Feed the two

95

network topologies, 𝐺 and 𝐺′into the link failure simulation model developed in Chapter

3 with 10000 runs (the pure redundant links need to be removed first before feeding into

the simulation model). For network 𝐺, stop each simulation run when both node pair 𝑖, 𝑗

and node pair 𝑖, 𝑘 are disconnected. Take the average number of link failures of the

10000 runs and denote it as (�̅�𝑖,𝑗(𝑘)
𝑋)

𝐺
. For network 𝐺′, stop the simulation when node

pair 𝑖, 𝑗(𝑘) is disconnected. Denote the average number of link failures as (�̅�𝑖,𝑗(𝑘)
𝑋)

𝐺′
. As

mentioned earlier, (�̅�𝑖,𝑗(𝑘)
𝑋)

𝐺′
needs to be adjusted to account for the effects of extra links

resulted from node collapsing. The adjusted average number of link failures will be

denoted as (�̅�𝑖,𝑗(𝑘)
𝑋)

𝐺′

′
. Compare the value (�̅�𝑖,𝑗(𝑘)

𝑋)
𝐺′

′
 to the value of (�̅�𝑖,𝑗(𝑘)

𝑋)
𝐺

and

calculate their percentage differences (errors) using to the following equation, which will

be denoted as 𝐸𝑟𝑟
𝐺′
𝑖,𝑗(𝑘)

.

𝐸𝑟𝑟
𝐺′
𝑖,𝑗(𝑘)

=
|(�̅�𝑖,𝑗(𝑘)

𝑋)
′

𝐺′
− (�̅�𝑖,𝑗(𝑘)

𝑋)
𝐺
|

(�̅�𝑖,𝑗(𝑘)
𝑋)

𝐺

41

For each node pair, the above process was repeated until all the network nodes

within a network that are different from node 𝑖 and node 𝑗 have been selected once. For

each network node pair, calculate the average percentage error over all the network nodes

that are different from node 𝑖 and node 𝑗. The experiment results are summarized in Table

17. The estimation errors of the proposed evaluation method of all the node pairs are

negligible regardless of network types. Hence, it can be concluded that, the proposed

evaluation method can provide a close estimation for the effects of designating a

substitution node within a network. In addition, based on the previous discussion, the

effects can be directly estimated (measured) without using simulation.

96

Table 17. Performance of the Proposed Resilience Evaluation Method on Classical Networks

NODE PAIR

INDEX
Rand_30_60 Rand_50_100 SF_30_60 SF_50_100

1 1.08% 2.32% 1.54% 1.32%

2 0.84% 2.75% 1.56% 2.19%

3 0.86% 2.16% 2.29% 1.76%

4 1.17% 0.98% 2.71% 2.10%

5 2.12% 2.06% 2.22% 2.72%

6 0.86% 1.71% 1.60% 1.19%

7 1.45% 1.21% 1.32% 1.62%

8 1.49% 1.28% 2.87% 2.24%

9 1.16% 1.21% 1.47% 2.83%

10 1.73% 1.10% 2.70% 1.43%

11 1.53% 0.83% 2.90% 2.15%

12 0.76% 1.19% 3.29% 2.10%

13 2.39% 1.08% 3.21% 1.97%

14 1.13% 1.03% 3.79% 1.89%

15 1.62% 0.78% 2.13% 2.44%

16 1.43% 1.20% 1.39% 1.11%

17 1.20% 0.89% 1.27% 2.31%

18 1.48% 1.21% 2.28% 2.33%

19 1.19% 0.89% 2.16% 2.25%

20 1.56% 1.19% 3.94% 2.41%

AVERAGE 1.35% 1.35% 2.33% 2.02%

STD 0.41% 0.54% 0.80% 0.47%

97

6.3 Chapter Summary

In this chapter, two different strategies were proposed to strengthen the capability-

based connectivity robustness of a CIN. Based on the discussion in Chapter 3, the goal

can be translated to strengthen the connectivity robustness between a given node pair.

The first strategy is to add a new link to an original network, which is to increase

the static connectivity robustness. The second strategy is to designate substitution nodes

for one or more important nodes within a network, which is to increase the dynamic

connectivity robustness.

The first strategy was discussed in Section 6.1. The key of the first strategy is

have a method to quickly determine the optimal position to add an additional link within

a network in terms of increasing �̅�𝑖,𝑗
𝑋 . 𝛺𝑘,𝑙

𝑖,𝑗
 was proposed as an indicator for the impact of

an originally non-existing link on �̅�𝑖,𝑗
𝑋 . 𝛺𝑘,𝑙

𝑖,𝑗
 can be calculated through Equation 39.

The bigger the 𝛺𝑘,𝑙
𝑖,𝑗

 value is, the more impact the originally non-existing link has

on �̅�𝑖,𝑗
𝑋 . Equation 39 was validated by rejecting 𝐻0

4.

The second strategy was discussed in Section 6.2. The key of using this strategy

lies in finding the right substitution for a given node. This requires a method to quantify

the effectiveness of this strategy. It was demonstrated that the capability-based

connectivity robustness evaluation process proposed in Chapter 3 together with a simple

network topology modification procedure could be used to quantify the effectiveness of a

dynamic link failure coping mechanism as illustrated in Figure 37.

98

Figure 37. Summary of the Proposed Evaluation Methods

99

CHAPTER VII

CONGESTION CONSIDERATION

As discussed in Section 1.3, information congestion can also result in connectivity

loss. The discussion in Chapter 3 is based on the assumption that congestion will not

happen. In other words, the assumption says that each network node is always congestion

robust. In the literatures, congestion robustness of a network node is defined as the ability

of a network node to sustain information overload. It is also defined as the tendency of a

network node to experience congestion. In order to avoid congestion, each network node

should be equipped with enough information processing capacity.

For a CIN comprised by a given number of links and nodes, there is an upper

boundary on the capability-based connectivity robustness of the CIN against link failures

assuming that all the entities have enough information processing capacity. To further

increase the capability-based connectivity robustness, one can add links or nodes to the

architecture. It may seem that to add a network link between existing network nodes is

much cheaper than adding another network node. However, only adding links between

existing network nodes may be neither economically viable nor technically feasible due

to the extra information processing capacity required on relevant nodes.

Network node congestion robustness depends on the information exchange

dynamics within a network, which includes [2, 86, 87]:

1. Information processing behaviors

a. Information output rate (constrained by bandwidth)

b. Queue type, queue capacity, queue discipline, and service rate (information

processing capacity)

100

2. Information distribution behaviors

a. The probability of information exchange to exist between a node pair

b. The probability of the information exchange path between a given node pair

to include a particular node

In [86, 88, 89], Z. P. Hu etc. investigated the effects of network structures, packet

information generation rate, routing plans, queue types and disciplines on the information

exchange dynamics and congestion robustness of a given network through simulation. In

Section 7.1, focus will be given to individual nodes to understand how information

exchange dynamics affect the congestion behaviors of individual nodes.

Changes to any element within the above list may affect the congestion robustness

of a network node. A thorough study of the relationship between information

transmission dynamics and congestion robustness itself can be the content of a thesis. For

the analysis purpose of this thesis, only the following scenario was considered.

Table 18. Information Transmission Scenario

Packet Output Rate Uniform 𝝀

Routing Strategy Shortest Path

Queue Type
Single Server, Limited Capacity

(Discard)

Queue Service Rate

(Information Processing Capacity)
Uniform Γ

Queue Capacity Uniform Υ

Queue Principle FIFO

Exchange Matrix Modified Uniform

For simplicity, assume all the network nodes have the same packet output rate,

which is denoted as 𝜆. Shortest path routing strategy is used. The shortest path routing

strategy is a global routing strategy, which means when a packet information is generated,

its transmission route will be associated with it. Next, assume each node is a single server,

101

First-In-First-Out (FIFO) queue with uniform information processing capacity (service

rate) Γ. Moreover, assume each node has limited queue capacity Υ and all the network

nodes have the same queue capacity. If a packet of information transmitted to an

intermediate node that does not have enough capacity to store that packet, that packet of

information will be discarded. Last, a node chooses its destination node according to a

probability matrix, which is the information exchange matrix in Table 18. Details of this

matrix will be given in the following discussion.

7.1 Understanding Congestion Behaviors

A discrete-time model is usually used to study the traffic dynamics within a

complex network [86, 88-90] assuming time is slotted (discretized). Hence, a discrete-

time simulation model on information transmission and processing within a network was

developed based on the scenario described in Table 18. During each time slot (stamp),

each network node generates a packet at rate 𝜆 and picks the destination node for this

newly generated information packet according to the exchange matrix specified in Table

18. During each time slot (stamp), each node also processes and transfers information out

to one of its neighbor according to the shortest path routing plan. When a packet reaches

an intermediate node, it can be processed immediately (no queue and enough remaining

information processing capacity), stored (enough queue space but not enough remaining

information processing capacity), or discarded (not enough queue space and not enough

remaining information processing capacity). When a packet reaches its destination, it is

either absorbed by the destination node (the destination node can be viewed as the

information sink for that information packet) or discarded if the queue of the destination

node is full. Besides the settings given in Table 18, the model is also based on the

following assumptions.

102

1. Undividable Information

An information packet can only be sent or accepted as a whole at once during

each time stamp.

2. No information addition or loss during transmission unless being absorbed or

discarded.

After an information packet is generated, unless it is absorbed or discarded, its

packet size will keep constant.

3. Ignore the time required for information processing.

4. The information transmission time between any adjacent nodes is the same.

Ignore the actual distance between two connected nodes within a network.

5. All information needs to be proceed before sent out by a network node.

This is to simplify the information transmission and processing model by not

distinguishing information by its generation source. In addition, all the

information outputted by a node needs to be proceed and takes the information

processing capacity of that node.

6. A node cannot choose itself as information destination.

A discrete-time information transmission and processing simulation model

captures the reality well. In reliability, one of the most popular wireless information

transmission and processing method is packet switching and processing. Packet switching

is a digital network communication method that groups all transmitted data into suitably

sized blocks, called packets, which are transferred via a medium that might be shared by

multiple simultaneous communication sessions. Packet processing refers to the wide

variety of algorithms that are applied to a packet data or information as it moves through

the various network elements of a communication network. The reason that packet

switching and processing receives widely acceptance is that it can increase network

103

efficiency, robustness and enables technological convergence of many applications

operating on the same network. [91]

The detailed simulation process was carried out on two different network

topologies: SF_10_20 and Rand_10_20. The two network topologies were generated

separately using the BA SF model and the ER Rand model. Sample from a uniform

distribution matrix to obtain an information exchange matrix. Each cell of this uniform

distribution matrix is a uniform distribution between 0 and 1. The size of the matrix is the

same as the adjacency matrix of the network. A raw information exchange matrix

generated by this will have cell entries that are too small to be meaningful, which will

hinder the investigation of node congestion behaviors (too distributed information traffic

results in no prominent congestion behaviors). In order to correct this, set the values of

those cells with probability less than or equal to 0.5 to 0. Re-normalize the matrix to

make sure each row adds up to 1 and the newly obtained matrix will be used as the

information exchange matrix. This process was carried out twice and two different

information exchange matrices were obtained. The values of the two matrices are

provided in Appendix I.

For each information exchange probability matrix, choose three different valued

for the information processing capacity of each node Γ: 1, 1.5, and 2. For each Γ value,

change the packet out rate 𝜆 from 0.05 to 0.95 with 0.05 increment (19 different 𝜆 values

in total). Further, there are two different queue capacity settings Υ: 5, 10. For each input

combination (network topology 𝐺 , information exchange matrix 𝑃(𝑗|𝑖) , information

processing capacity Γ, packet output rate 𝜆, and queue capacity Γ), the simulation was

carried out with 300 time stamps. The simulation results will be discussed below. To

facilitate the discussion, the following quantities will be used based on [89]:

1. Internal Information Size: 𝐼𝑖(𝑡)

104

Internal information size of a network node at time stamp t.

2. Total Delivery Rate: 𝐷𝐿𝐺(𝑡)

The total information packets delivery rate of the entire network at stamp 𝑡.

3. Total Packet Discard Rate: 𝐷𝑆𝐺(𝑡)

The total information packets discard rate of the entire network at stamp 𝑡.

4. Total Deliver Time 𝜏𝐺(𝑡):

The time for a packet information to be delivered within a network averaged from

time stamp 0 to time stamp 𝑡.

Figure 38 and Figure 39 are two figures for the time averaged internal information

size of each network node (𝐼�̅� =
∑ 𝐼𝑖(𝑡)
300
𝑡=1

300
) versus 𝜆. Figure 38 is for SF_10_40 network

and Figure 39 is for Rand_10_40 network. The network nodes that are not plotted in

Figure 38 and Figure 39 have 𝐼�̅� values constantly 0. Such nodes do not serve as inter-

transmission nodes for information exchange between any node pair.

Therefore, the first conclusion can be drawn is that if a network node does not

serve as an inter-transmission node for information exchange between any node pair as

prescribed in the information exchange probability matrix, it will never experience

congestion as long as its packet output rate does not exceed its information processing

capacity.

As 𝜆 increases, eventually a network nodes will experience congestion. This can

be seen in both Figure 38 and Figure 39. In all the plots, initially the 𝐼�̅� value of each

network node is close to zero and then gradually increases as 𝜆 increases. Some nodes

will experience a surge of its 𝐼�̅� value as 𝜆 continuously increases and passes a certain

value. Then their 𝐼�̅� values will peak to its queue capacity level or a level close to its

queue capacity with little fluctuations. As 𝜆 continuously increases, eventually the 𝐼�̅�

values of all the network nodes (except those whose 𝐼�̅� value is constantly 0) reach the

105

queue capacity level or a level close to the queue capacity little fluctuations. Based on

this observation, a quantitative congestion definition for nodes with limited queue

capacity can be given: node congestion occurs when its total internal information size

increases to the level close to its queue capacity with little fluctuations. Name the 𝜆 value

when a node starts to experience congestion as the critical 𝜆 value of this node, which

will be denoted as 𝜆𝑖
𝐶.

In [89], three traffic stages were proposed to characterize the congestion

behaviors of a network based on the total internal information size of the entire network.

The concepts of the three states are adapted in the following discussion. Instead of using

the average total internal information size of the entire network, the average internal

information size of each network node (𝐼�̅�) will be used.

1. Light Traffic State (LTS)

In this state, 𝐼�̅� remains almost unchanged or gradually increases as 𝜆 increases.

2. Moderate Congestion State (MCS)

As 𝜆 increases, after 𝜆 ≥ 𝜆𝐺
𝐶𝐿, the 𝐼�̅� value of one or more nodes starts to increase

dramatically and reaches the level close to queue capacity Υ .

𝜆𝐺
𝐶𝐿 is the lower critical 𝜆 value of network 𝐺. It is the 𝜆 value when the first node

congestion happens, and 𝜆𝐺
𝐶𝐿 = min(𝜆𝑖

𝐶) , 𝑖 ∈ 𝑉.

3. Heavy Congestion State (HCS)

If 𝜆 continuously increases, after 𝜆 ≥ 𝜆𝐺
𝐶𝑈, the 𝐼�̅� values of all network nodes are

close to queue capacity Υ.

𝜆𝐺
𝐶𝑈 is the upper critical 𝜆 value of network 𝐺. It is the 𝜆 value when the last node

congestion happens, and 𝜆𝐺
𝐶𝑈 = max(𝜆𝑖

𝐶) , 𝑖 ∈ 𝑉.

106

Those three congestion stages can be observed in both Figure 38 and Figure 39.

Regardless of the network topology type and the information exchange matrix used, the

higher the information processing capacity is, the higher the values of 𝜆𝐶𝑖 are for all

network nodes. Therefore, the higher the values of 𝜆𝐺
𝐶𝐿 and 𝜆𝐺

𝐶𝑈. With everything else the

same, different network topologies affect the node congestion behaviors differently. This

can be seen by the difference between the set of nodes whose 𝐼�̅� values are greater than 0

and their 𝜆𝑖
𝐶 values. Similar observation can be made for the effects of different

information exchange probability matrices. By increasing the information processing

capacity of a network node, its congestion can be delayed to occur at a greater 𝜆 value,

which in other words is to increase its 𝜆𝑖
𝐶 value. If the values of min(𝜆𝑖

𝐶) and max(𝜆𝑖
𝐶)

are affected and increased, the onsite of MCS and HCS stages of the entire network can

also be delayed.

It can be seen in both Figure 38 and Figure 39 that, it is possible that more than

one nodes whose 𝜆𝑖
𝐶 values are equal to min(𝜆𝑖

𝐶). However, those nodes can have

different 𝐼�̅�(𝜆𝑖
𝐶) values. 𝐼�̅�(𝜆𝑖

𝐶) is the 𝐼�̅� value of a network node when 𝜆 reaches 𝜆𝑖
𝐶. Under

the simulation scenario prescribed by Table 18, the node that has the highest 𝐼�̅� value is

the most prone to congestion. The reason that several nodes can have the same 𝜆𝑖
𝐶 values

that equal to min(𝜆𝑖
𝐶) while different 𝐼�̅�(𝜆𝑖

𝐶) values is the nature of the simulation model.

As discussed earlier, the model is for packet switching information transmission and

processing method and is a discrete-time simulation model. In addition, the increment of

𝜆 is 0.05. Those discreteness results in less discretion of 𝜆𝑖
𝐶 values. Because of this,

instead studying the exact 𝜆𝑖
𝐶 value of each network node, group the 𝜆𝑖

𝐶 values of network

nodes into different tier. The nodes that experience congestion first as 𝜆 increases have

their 𝜆𝑖
𝐶 values equal or close to 𝜆𝐺

𝐶𝐿. They start to experience congestion with a sudden

107

jump in their 𝐼�̅� values. Group such nodes into the first tier. The onsite of the congestion

of the first tire nodes marks the change of network congestion state from LTS to MCS.

For the nodes that enter congestion state latest as 𝜆 increases, their 𝜆𝑖
𝐶 values are equal or

close to 𝜆𝐺
𝐶𝑈 . Those nodes also enter congestion states with a surge in their 𝐼�̅� values.

Group such nodes into the third tier. The onsite of the congestion of the third tier nodes

marks the change of network congestion state from MCS to HCS. In between the onsites

of MCS and HCS, there is a congestion development period as 𝜆 increaes. During the

development period, the nodes that do not belong to either the first tier or the third tier

start to experience 𝐼�̅� increase (e.g. node 8 and node 10 in Figure 39) as 𝜆 increases before

experiencing congestion. Those nodes will be grouped into the second tier. Different

from the nodes from the first tier and the third tier, the congestion of the second tier

nodes is gradually developed.

108

Figure 38. Plots of �̅�𝒊 versus 𝝀 for SF_10_20

109

Figure 39. Plots of �̅�𝒊 versus 𝝀 for Rand_10_20

110

Next, the time averaged total information delivery rate (𝐷𝐿̅̅ ̅̅ 𝐺) and the time

averaged information discard rate (𝐷𝑆̅̅ ̅̅ 𝐺) versus 𝜆 were plotted as shown in Figure 40 and

Figure 41. The gray lines in those plots represent the summation of the 𝐷𝐿̅̅ ̅̅ 𝐺 and 𝐷𝑆̅̅ ̅̅ 𝐺 ,

which represents the average amount of information packets generated per time stamp

within the network. Since there are 10 nodes within each network, and at each time stamp

each network node generates 1 packet information, theoretically the average amount of

information packets generated per time stamp should be 10. As can be seen in those plots,

the gray lines always stay on the level of 10, which proves the validation of this

simulation. Next, look at the red lines, which are for 𝐷𝐿̅̅ ̅̅ 𝐺. In all the plots, for all the

simulation scenarios, the trend lines for 𝐷𝐿̅̅ ̅̅ 𝐺 have several stages, which correspond to the

LTS, MCS and HCS stages (when Γ = 2, there is no HCS stage) discussed previously. At

LTS stage, 𝐷𝐿̅̅ ̅̅ 𝐺 stays at 10, which is the total amount of information packets generated

per time stamp. This means there is no information loss at LTS stage. At MCS stage, the

value of 𝐷𝐿̅̅ ̅̅ 𝐺 decreases to an intermediate level between 0 and 10 as congestion starts to

develop within network nodes and further decreases to the lowest level at HCS stage. At

each network congestion stage, the value of 𝐷𝐿̅̅ ̅̅ 𝐺 stays relatively constant. Since the

addition of 𝐷𝐿̅̅ ̅̅ 𝐺 and 𝐷𝑆̅̅ ̅̅ 𝐺 stays constant, same observations can be made for the trend

lines of 𝐷𝑆̅̅ ̅̅ 𝐺 (blue lines) except the value change direction as 𝜆 increases.

The above discussion reveals one of the adverse impacts of congestion, which is

information loss. As can be seen from Figure 40 and Figure 41, information loss starts

(𝐷𝑆̅̅ ̅̅ 𝐺 greater than 0) as soon as the network enters MCS congestion stage.

111

Figure 40. Co-plot of 𝑫𝑳̅̅ ̅̅ 𝑮, 𝑫𝑺̅̅ ̅̅ 𝑮versus 𝝀 for SF_10_20

112

Figure 41. Co-plot of 𝑫𝑳̅̅ ̅̅ 𝑮, 𝑫𝑺̅̅ ̅̅ 𝑮 versus 𝝀 for Rand_10_20

113

Figure 42 is a comparison between the 𝐼�̅� value of each network node under the

first information exchange matrix, with Γ = 1 and Υ = 5 and 10 separately. From Figure

42, one immediate observation can be made is that, increasing the queue capacity from 5

to 10 does not affect the 𝜆𝑖
𝐶 value of any network node. Moreover, the plots within Figure

42 contain the same set of network nodes and the shapes and trends of the lines within

each plot are very similar to each other. This suggests very similar information exchange

dynamics and congestion behaviors between Υ =5 scenario and Υ = 10 scenario. From

those observations, we can conclude that, when the node queue capacity is higher than a

certain value, further increasing its value will not yield any additional congestion benefits.

According to the plots, apparently node congestion can happen at LTS when its queue

capacity is low enough. Name such kind of node congestion as early congestion. Early

congestion prevents the information processing capacity of a node to be fully used and

results in non-economic designs. Hence, each network node should be equipped with

enough information storage space (queue capacity) to prevent early congestion.

114

Figure 42. Plots of �̅�𝒊 versus 𝝀 for SF_10_20 under Different 𝚼 Values

7.2 Critical Information Processing Capacity

In Section 7.1, it has been shown that, the information processing capacity Γ of network

nodes can affect their congestion behaviors. In addition, the effects vary under different CINs

(network topologies) and different information exchange matrices. In this section, focus will be

given to deriving the required information processing capacity of each network node.

There are two guidelines based on the conclusions made in the previous section.

115

1. Each network node should be equipped with enough information processing capacity

Γ𝑖 so that no node will experience congestion during operation. Denote the critical

Γ𝑖 value as Γ𝑖
𝐶. Γ𝑖

𝐶 is the minimum information processing capacity node 𝑖 required to

avoid congestion.

2. Γ𝑖
𝐶 of all the network nodes should be set in they way that minimum the network

polarization value of Γ𝑖
𝐶 about min(Γ𝑖

𝐶), which will be denoted as 𝜋Γ𝐶.

For a network quantity, its polarization can be defined as following:

𝜋∗ =

|∗𝑚𝑎𝑥/𝑚𝑖𝑛 −<∗>|

<∗>

where,

<∗> means the average of quantity *.

42

The first guideline is to ensure that no network node will experience congestion

due to inadequate information processing capacity. The second guideline aims for

economic CIN designs. The above two guidelines are rather qualitative. Based on these

two design requirements, in the following discussion, a quantitative design requirement

on Γ𝑖
𝐶 will be given. It is desired to know the required information processing capacity of

each network node that can be derived from the inter-connection structure and the

connectivity situation of a CIN.

7.2.1 Static Critical Information Processing Capacity

 In order to achieve that, a link between Γ𝑖
𝐶 , network topology and node

congestion robustness is needed. The relationship between a network topology and node

congestion robustness is usually quantified by betweenness (centrality). The betweenness

of a node is the number of paths between all the other node pairs that pass through that

node [73]. The paths are decided by the information routing strategy and the network

116

topology deployed. Since the shortest distance routing strategy is used in this thesis

(Table 18), the shortest path (𝜎) betweenness will be used. Node betweenness centrality

can be viewed as normalized node betweenness. Equation 43 is the equation for

calculating node betweenness centrality. Betweenness (centrality) can also be defined for

network links. In this thesis, only node betweenness centrality will be discussed. For

simplicity, in the following discussions, when referring to betweenness centrality, it

means node betweenness centrality.

𝐵𝐶𝑘
𝑉 =∑∑

𝜎𝑖𝑗(𝑘)

𝜎𝑖,𝑗

𝑁

𝑗=1
𝑗≠𝑖
𝑗≠𝑘

𝑁

𝑖=1
𝑖≠𝑘

 43

 From the discussion in Section 7.1, information exchange matrix can also affect

the congestion behavior of a node. Betweenness (centrality) only considers the routing

strategy and the topology of a network. It does not incorporate any information on the

information exchange matrix used. Instead, the following augmented betweenness

centrality will be used to incorporate the effects different information exchange matrices.

𝑎𝐵𝐶𝑘
𝑉 =∑∑𝑝(𝑗|𝑖)𝑝(𝑘|𝑖, 𝑗)

𝑁

𝑗=1
𝑗≠𝑖
𝑗≠𝑘

𝑁

𝑖=1
𝑖≠𝑘

where,

𝑝(𝑗|𝑖) is the probability of node 𝑖 choosing node 𝑗 as its information

destination;

𝑝(𝑘|𝑖, 𝑗) is the probability for node 𝑘 to be on the information

transmission path from node 𝑖 to node 𝑗.

44

Equation 44 is motivated by the probabilistic interpretation of betweenness

centrality and the (traffic-aware) node utilization proposed in [92]. There are two

117

differences between the augmented betweenness centrality proposed here and the

betweenness utilization proposed in [92]. First, the augmented betweenness centrality

utilizes conditional probability to quantify the information distribution behaviors within a

network. Second, the augmented betweenness centrality separates the effect of the

information exchange matrix (𝑝(𝑗|𝑖)) from the effect of the network topology and the

routing strategy (𝑝(𝑘|𝑖, 𝑗)) of a CIN. The information exchange matrix of a CIN reflects

the collaboration relationship (structure) between individual entities. To separate the

effects allows the effects of different information exchange matrices on network

congestion behaviors to be explored.

 According to Equation 44, 𝑎𝐵𝐶𝑘
𝑉 represents the probability for node 𝑘 to relay

information within a network. Incorporating 𝑎𝐵𝐶𝑘
𝑉 with the information transmission rate

between node pairs and dividing it by the information processing capacity of node 𝑘

yields a ratio that represents the average information accumulation rate within node 𝑘.

Name this ratio as information congestion centrality denoted as 𝐼𝐶𝑘
𝑉. The following is the

mathematical representation of 𝐼𝐶𝑘
𝑉 .

𝐼𝐶𝑘
𝑉 =

∑ ∑ 𝑝(𝑗|𝑖)𝑝(𝑘|𝑖, 𝑗)𝑁
𝑗=1
𝑗≠𝑖
𝑗≠𝑘

𝑁
𝑖=1
𝑖≠𝑘

𝜆𝑖,𝑗 + 𝜆𝑘

Γk

where,

𝑝(𝑗|𝑖) is the probability of node 𝑖 choosing node 𝑗 as its information

destination;

𝑝(𝑘|𝑖, 𝑗) is the probability for node 𝑘 to be on the information

transmission path from node 𝑖 to node 𝑗;

𝜆𝑖,𝑗 is the information output rate from node 𝑖 to node 𝑗;

Γk is the information processing capacity of node 𝑘.

45

118

Under uniform information output rate and processing rate scenario, Equation 45

becomes:

𝐼𝐶𝑘

𝑉 =
𝜆

Γ
(𝑎𝐵𝐶𝑘

𝑉 + 1) 46

If it can be shown that 𝐼𝐶𝑘
𝑉 is an indicator for node congestion robustness, it can

be used to derive Γ𝑖
𝐶 . For each simulation case plotted in Figure 38 and Figure 39, the

values of 𝐵𝐶𝑘
𝑉 , 𝑎𝐵𝐶𝑘

𝑉, 𝐼𝐶𝑘
𝑉 and 𝜆𝑘

𝐶, 𝐼�̅�(𝜆𝑘
𝐶) are summarized together in Table 19 sorted by

the value of 𝐼𝐶𝑘
𝑉.

119

Table 19. Summary of 𝑩𝑪𝒌, 𝒂𝑩𝑪𝒌, 𝑰𝑪𝒌
𝑽, 𝝀𝑪𝒌 , �̅�𝒌(𝝀𝑪𝒌) Values

(For Simulation Scenarios Plotted in Figure 38 and Figure 39)

a. SF_10_20

𝒌 𝑩𝑪𝒌
𝑽 𝒂𝑩𝑪𝒌

𝑽
𝑷𝟏, 𝚪 = 𝟏, 𝚼 = 𝟓 𝑷𝟏, 𝚪 = 𝟏. 𝟓, 𝚼 = 𝟓 𝑷𝟏, 𝚪 = 𝟐, 𝚼 = 𝟓

𝑰𝑪𝒌
𝑽 𝝀𝒌

𝑪 �̅�𝒌(𝝀𝒌
𝑪) 𝑰𝑪𝒌

𝑽 𝝀𝒌
𝑪 �̅�𝒌(𝝀𝒌

𝑪) 𝑰𝑪𝒌
𝑽 𝝀𝒌

𝑪 �̅�𝒌(𝝀𝒌
𝑪)

2 0.22 2.28 0.82 0.25 0.65 0.77 0.35 0.98 0.82 0.50 1.21

5 0.18 2.28 0.82 0.25 0.51 0.77 0.35 0.67 0.82 0.50 1.30

4 0.12 1.28 0.68 0.30 0.44 0.76 0.50 0.91 0.74 0.65 1.01

6 0.02 0.30 0.65 0.50 0.01 0.65 0.75 0.34 -- -- --

1 0.02 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0

𝒌 𝑩𝑪𝒌
𝑽 𝒂𝑩𝑪𝒌

𝑽
𝑷𝟐, 𝚪 = 𝟏, 𝚼 = 𝟓 𝑷𝟐, 𝚪 = 𝟏. 𝟓, 𝚼 = 𝟓 𝑷𝟐, 𝚪 = 𝟐, 𝚼 = 𝟓

𝑰𝑪𝒌
𝑽 𝝀𝒌

𝑪 �̅�𝒌(𝝀𝒌
𝑪) 𝑰𝑪𝒌

𝑽 𝝀𝒌
𝑪 �̅�𝒌(𝝀𝒌

𝑪) 𝑰𝑪𝒌
𝑽 𝝀𝒌

𝑪 �̅�𝒌(𝝀𝒌
𝑪)

5 0.18 2.43 0.86 0.25 0.77 0.80 0.35 0.94 0.86 0.50 1.51

2 0.22 2.33 0.83 0.25 0.66 0.78 0.35 0.89 0.83 0.50 1.37

4 0.12 1.46 0.74 0.30 0.58 0.82 0.50 0.81 0.80 0.65 1.16

6 0.02 0.43 0.72 0.50 0.04 0.72 0.75 0.41 -- -- --

1 0.02 0.10 0.55 0.50 0 0.55 0.75 0.11 -- -- --

3 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0

120

b. Rand_10_20

𝒌 𝑩𝑪𝒌
𝑽 𝒂𝑩𝑪𝒌

𝑽
𝑷𝟏, 𝚪 = 𝟏, 𝚼 = 𝟓 𝑷𝟏, 𝚪 = 𝟏. 𝟓, 𝚼 = 𝟓 𝑷𝟏, 𝚪 = 𝟐, 𝚼 = 𝟓

𝑰𝑪𝒌
𝑽 𝝀𝒌

𝑪 �̅�𝒌(𝝀𝒊
𝑪) 𝑰𝑪𝒌

𝒗 𝝀𝒌
𝑪 �̅�𝒌(𝝀𝒊

𝑪) 𝑰𝑪𝒌
𝑽 𝝀𝒌

𝑪 �̅�𝒌(𝝀𝒌
𝑪)

5 0.16 1.71 0.81 0.30 0.76 0.90 0.50 1.13 0.88 0.65 1.50

2 0.12 1.49 0.75 0.30 0.56 0.83 0.50 0.83 0.81 0.65 1.16

4 0.04 1.08 0.62 0.30 0.29 0.69 0.50 0.38 0.68 0.65 0.84

6 0.12 0.93 0.97 0.50 1.16 0.97 0.75 1.49 -- -- --

1 0.06 0.91 0.96 0.50 1.26 0.96 0.75 1.53 -- -- --

3 0.04 0.47 0.74 0.50 0.17 0.74 0.75 0.49 -- -- --

7 0 0 0 0 0 0 0 0 0 0 0

8 0.06 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0

𝒌 𝑩𝑪𝒌
𝑽 𝒂𝑩𝑪𝒌

𝑽
𝑷𝟐, 𝚪 = 𝟏, 𝚼 = 𝟓 𝑷𝟐, 𝚪 = 𝟏. 𝟓, 𝚼 = 𝟓 𝑷𝟐, 𝚪 = 𝟐, 𝚼 = 𝟓

𝑰𝑪𝒌
𝑽 𝝀𝒌

𝑪 �̅�𝒌(𝝀𝒊
𝑪) 𝑰𝑪𝒌

𝒗 𝝀𝒌
𝑪 �̅�𝒌(𝝀𝒊

𝑪) 𝑰𝑪𝒌
𝑽 𝝀𝒌

𝑪 �̅�𝒌(𝝀𝒊
𝑪)

5 0.12 1.75 0.83 0.30 0.97 0.92 0.50 1.64 0.89 0.65 1.66

2 0.16 1.58 0.77 0.30 0.56 0.86 0.50 0.91 0.84 0.65 1.22

4 0.12 1.11 0.63 0.30 0.33 0.70 0.50 0.55 -- -- --

6 0.06 0.99 1.00 0.50 0.3 1.00 0.75 1.69 -- -- --

1 0.04 0.74 0.87 0.50 0.53 0.87 0.75 1.12 -- -- --

3 0.04 0.32 0.66 0.50 0.06 0.66 0.75 0.42 -- -- --

7 0.06 0.27 0.64 0.50 0.03 0.64 0.75 0.29 -- -- --

8 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0

121

The following observations can be made from Table 19. First, 𝐵𝐶𝑘
𝑉 cannot

capture the information transmission criticalness of node 𝑘 relaying information within a

network. However, under uniform packet output and processing rates, 𝑎𝐵𝐶𝑘
𝑉 can.

This conclusion is made by the following observations. Firs, compare the values

of 𝐵𝐶𝑘
𝑉and 𝑎𝐵𝐶𝑘

𝑉 to the values of 𝜆𝑘
𝐶 and 𝐼�̅�(𝜆𝑘

𝐶). As can be seen in the four sub-tables,

under uniform packet output and processing rates, it is always the case that the network

nodes with bigger 𝑎𝐵𝐶𝑘
𝑉 values have smaller 𝜆𝑘

𝐶 values regardless of the simulation

setting. In addition, for the network nodes with the same 𝜆𝑘
𝐶 value, the ones with higher

𝑎𝐵𝐶𝑘
𝑉 values also have the higher 𝐼�̅�(𝜆𝑘

𝐶) values. While the same observation cannot be

made for 𝑎𝐵𝐶𝑘
𝑉 . Second, if a node does not serve as intermediate node for any

information transmission, its information processing capacity will only be used for

processing the packet generated by itself. As long as the packet output rate of such a node

does not exceed its information processing rate, it will not experience congestion and its

𝐼�̅�(𝜆𝑘
𝐶) value should always be zero. Since in all the simulation settings, the packet

output rate is smaller than the information processing rete of a node, the 𝐼�̅�(𝜆𝑘
𝐶) values of

the non-relaying nodes should be zero. As can be observed from the four sub-tables, the

 𝑎𝐵𝐶𝑘
𝑉 values of the nodes whose 𝐼�̅�(𝜆𝑘

𝐶) values are zero are also zero. While the same

observations cannot be made for 𝐵𝐶𝑘
𝑉 . Therefore, comparing to 𝐵𝐶𝑘

𝑉 , 𝑎𝐵𝐶𝑘
𝑉 is a better

quatity that captures the criticalness of a node relaying information within a network.

If keep everything else the same but assume information can be sent and

processed in a more continuous manner, then a bigger 𝜆𝑘
𝐶 value can be observed for each

network node under the same simulation setting. It is because for packet switching and

processing, if a packet information exceeds the size of the remaining information

122

processing capacity of a network node, the packet cannot be processed and have to wait

in queue until there is enough available information processing capacity.

According to the physical meaning of Equation 46 and the definition of node

congestion, under continuous situation information transmission and processing situation,

a network will enter into MCS from LTS when the 𝐼𝐶𝑘
𝑉 value of any network node

exceeds one. Hence in order to avoid the onsite of MCS within a network, 𝐼𝐶𝑘
𝑉 should not

exceed one during the entire CIN operation period. With this, the following relationship

can be developed to avoid the onsite of MCS within a network.

𝐼𝐶𝑘

𝑉 =
max (𝜆)

Γ
(𝑎𝐵𝐶𝑘

𝑉 + 1) ≤
𝜆𝑘
𝐶

Γ
(𝑎𝐵𝐶𝑘

𝑉 + 1) = 1 ∀𝑘 ∈ 𝑉

where,

max (𝜆) is the maximum information output rate during a CIN operation.

47

Rewrite Equation 47 as shown in Equation 48. Clearly, Γ𝑘
𝐶 = max(𝜆) (𝑎𝐵𝐶𝑘

𝑉 +

1).

 Γ ≥ Γ𝑘
𝐶 = max(𝜆) (𝑎𝐵𝐶𝑘

𝑣 + 1) 48

Equation 48 seems fine except that it does not consider the discreteness of packet

switching and processing method. For packet switching and processing method, with

everything else the same, using packet switching and processing method would result in

lower 𝜆𝑘
𝐶 values for network nodes comparing to using continuous packet switching and

processing method. That means for packet switching and processing method, a network

would enter into MCS from LTS when the 𝐼𝐶𝑘
𝑣 value of any network node exceed a

value smaller than one. This can be confirmed by observing the first row of each sub-

table within Table 19. Therefore, for packet switching and processing method, Equation

47 and Equation 48 should be modified as following.

𝐼𝐶𝑘

𝑉 =
max (𝜆)

Γ
(𝑎𝐵𝐶𝑘

𝑉 + 1) ≤
𝜆𝑖
𝐶

Γ
(𝑎𝐵𝐶𝑘

𝑉 + 1) < 1 ∀𝑘 ∈ 𝑉

49

123

 Γ𝑘
𝐶 > max(𝜆) (𝑎𝐵𝐶𝑘

𝑣 + 1)

or

Γ𝑘
𝐶 = [max(𝜆) (𝑎𝐵𝐶𝑘

𝑉 + 1) + 𝜀𝑘]

50

51

For uniform Γ situation, the critical Γ value can be decided as

 Γ𝐶
𝐺 = max (Γ𝑘

𝐶) 52

If information can be sent and processed in a continuous manner, then setting Γ𝑘

to Γ𝑘
𝐶 will meet the two design guidelines proposed at the beginning of this section

simultaneously. For packet switching and processing, the task now becomes to select the

𝜀𝑘 value for each network node so that to meet the two design guidelines at the same

time. The exact value 𝜀𝑘 depends on the packet output rate and is a more complex issue

that will not be addressed in the content of this thesis.

max(𝜆) (𝑎𝐵𝐶𝑘
𝑉 + 1) can be viewed as the minimum required information

processing capacity of each network node for avoiding congestion regardless of the

information transmission and processing method used. For packet switching and

processing, it is easy to see from Equation 50 and Equation 51. However, why it is also

the case if continuous information switching and processing?

That is because regardless of the method used, the above discussion assumes no

network impairments. In other words, the network topology used to calculate 𝑎𝐵𝐶𝑘
𝑉 does

not change. When a network is impaired, the information traffic within that network will

experience redistribution. If network nodes are impaired or link impairments that result in

network disconnectness, then the network will also experience decease in the total

information generation rate. Information redistribution can induce congestion in an

originally not congested node if more information has to be relayed through that node. It

124

can also alleviate the information transmission burden placed on network nodes due to

decrease in total information generation rate.

Those are two competing effects on node congestion situations within a network.

Normally under light network impairments situation, the effect of information

redistribution dominates. As impairment scale increases, the effect of the decrease in total

information generation rate starts to be more dominant. To show this, the SF_10_20

network was fed into the link failure simulation model with 1000 runs. Within each run,

randomly select and remove a network link one at a time until node 3 and node 6

disconnected. After each link failure, calculate and document the 𝑎𝐵𝐶𝑘
𝑉value of each

network node. The first information exchange matrix as shown in Table 21 will be used.

For run number 𝑟, denote the 𝑎𝐵𝐶𝑘
𝑉 value of node 𝑘 corresponding to the number

of link failures that does not result in discussion between node 3 and node 6 as

(𝑎𝐵𝐶𝑘
𝑉)𝑟
𝑚3,6 . Taking the average of (𝑎𝐵𝐶𝑘

𝑉)𝑟
𝑚3,6 over the 1000 runs yields (𝑎𝐵𝐶̅̅ ̅̅ ̅̅

𝑘
𝑉)𝑚3,6

(𝑚3,6 represents the number of impaired links that does not result in discussion between

node 3 and node 6.). In Figure 43, the (𝑎𝐵𝐶̅̅ ̅̅ ̅̅
𝑘
𝑉)𝑚3,6 values of all the 10 network nodes are

plotted together against the values of 𝑚3,6.

According to Equation 46, under uniform packet output and processing rate,

𝑎𝐵𝐶𝑘
𝑉 can be used to compare the congestion robustness of network nodes. If 𝜆 and Γ

stay constant along network impairment process, then 𝑎𝐵𝐶𝑘
𝑉 can also be used to compare

the congestion robustness of network nodes along network impairment process.

As can be seen in Figure 43, except node 4 and node 5, the (𝑎𝐵𝐶̅̅ ̅̅ ̅̅
𝑘
𝑉)𝑚3,6 values of

all the other nodes firstly increase and then decrease as 𝑚3,6 increases. (𝑎𝐵𝐶̅̅ ̅̅ ̅̅
4
𝑉)𝑚3,6

slightly decreases when 𝑚3,6 is very small and then increases back to its original level

before decreases to zero. (𝑎𝐵𝐶̅̅ ̅̅ ̅̅
5
𝑉)𝑚3,6 first decreases at a very small rate and then

decreases to zero at a much bigger rate when the (𝑎𝐵𝐶̅̅ ̅̅ ̅̅
𝑘
𝑉)𝑚3,6 values of the other nodes

125

start to decrease. This observation supports the previous discussion on the two competing

effects of network impairments on node congestion situations.

Figure 43. Plot of (𝒂𝑩𝑪̅̅ ̅̅ ̅̅
𝒌
𝑽)
𝒎𝟑,𝟔

 vs. 𝒎𝟑,𝟔 for SF_10_20

126

So even for continuous information transmission and processing, if each network

node within a network is equipped with Γ𝐶
𝐺 = max(𝜆) (𝑎𝐵𝐶𝑘

𝑉 + 1) information

processing capacity, no network node will experience information congestion if the

network is not impaired. However, under network impairments, it is very possible that

one or more network nodes will experience congestion due to the effect of information

traffic redistribution. Therefore, max(𝜆) (𝑎𝐵𝐶𝑘
𝑉 + 1) is the minimum required

information processing capacity of each network node for avoiding congestion regardless

of the information transmission and processing method used.

7.2.2 Dynamic Critical Information Processing Capacity

Continue the discussion under the previous link failure experiment. To decide

how much more information processing capacity node 𝑘 needs to avoid congestion under

network impairments, the value of max(𝑎𝐵𝐶𝑘
𝑉) is needed. And Equation 51 becomes

 Γ𝑘
𝐶 = max(𝜆) [max(𝑎𝐵𝐶𝑘

𝑉) + 1] + 𝜀𝑘 53

However, in reality, it may not necessary to obtain the max(𝑎𝐵𝐶𝑘
𝑉) value over the

entire 𝑚𝑖,𝑗 value field. What needed is the max(𝑎𝐵𝐶𝑘
𝑉) value over a practical 𝑚𝑖,𝑗 value

field in terms of CIN operation. “Practical” means the probability of node pair 𝑖, 𝑗 to stay

connected with 𝑚𝑖,𝑗 number of link failures during the operation period of a CIN is

significant. Denote such a probability as 𝑝(𝑚𝑖,𝑗) and its significant level as 𝑝0(𝑚𝑖,𝑗).

Hence the practical field of 𝑚𝑖,𝑗 is from 0 to some value determined by 𝑝0, and denote

the 𝑚𝑖,𝑗 value corresponds to 𝑝0 as (𝑚𝑖,𝑗)𝑝0 . 𝑝(𝑚𝑖,𝑗) can be obtained by taking the

product of the probability of exact 𝑚𝑖,𝑗 number of link failures during operation,

𝑝1(𝑚𝑖,𝑗), and the probability of node pair 𝑖, 𝑗 to stay connected after 𝑚𝑖,𝑗 number of link

failures, 𝑝2(𝑚𝑖,𝑗).

127

 𝑝(𝑚𝑖,𝑗) = 𝑝1(𝑚𝑖,𝑗)𝑝2(𝑚𝑖,𝑗) 54

To decide the practical 𝑚𝑖,𝑗 value field is to find out all the 𝑚𝑖,𝑗 values that

satisfy:

 𝑝(𝑚𝑖,𝑗) ≥ 𝑝0 55

The probability of a link to fail during operation is determined by its reliability.

Assume the reliability distributions of all the network links are iid and follow an

exponential distribution with scale parameter Θ equals MTTF. Figure 44 is the PDF and

CDF of an exponential distribution with scale parameter Θ = 8 (hours). The PDF is the

probability of the “life time length” of a link under the previous assumption. The CDF

represents the probability of a link failure after operating length 𝑡.

128

Figure 44. PDF and CDF of an Exponential Distribution (Scale = 8)

129

Assume an operation has length T, then the number of exact 𝑚𝑖,𝑗 link failures

during operation is a passion distribution with rate
𝑇

Θ
.

 𝑝1(𝑚𝑖,𝑗) = 𝑝
𝑃𝑜𝑠𝑠𝑖𝑜𝑛(

T
Θ
)
(𝑚𝑖,𝑗) 56

Review the definition of 𝑚𝑖,𝑗, which is the number of link fails that will not result

in node pair 𝑖, 𝑗 disconnection. Hence, the probability node pair 𝑖, 𝑗 to stay connected after

𝑚𝑖,𝑗 number of link failures can be expressed as following.

 𝑝2(𝑚𝑖,𝑗) = 1 − 𝑃𝑖,𝑗
𝑋 (𝑚𝑖,𝑗

𝑋 ≤ 𝑚𝑖,𝑗) 57

In Equation 57, 𝑃𝑖,𝑗
𝑋 (𝑚𝑖,𝑗

𝑋 ≤ 𝑚𝑖,𝑗) represents the probability of node pair 𝑖, 𝑗 to

disconnect after 𝑚𝑖,𝑗 link failures. It is the CDF of the probability of node pair 𝑖, 𝑗 to

disconnect at exact 𝑚𝑖,𝑗 link failures. Equation 57 in essence says, the probability of node

pair 𝑖, 𝑗 to stay connected after 𝑚𝑖,𝑗 link failures is equal to 1 minus the probability of

node pair 𝑖, 𝑗 to disconnect after 𝑚𝑖,𝑗 link failures.

In order to obtain 𝑝2, the key is to find 𝑝𝑖,𝑗
𝑋 (PMF) or 𝑃𝑖,𝑗

𝑋 (CDF). Unlike 𝑝1, it is

usually hard to obtain the exact distribution for either 𝑝𝑖,𝑗
𝑋 or 𝑃𝑖,𝑗

𝑋 given an arbitrary

network topology. Here, a method based on the principle of maximum entropy to

estimate the distribution of 𝑝𝑖,𝑗
𝑋 is proposed. This method also uses the 𝐸𝑅𝑖,𝑗 based �̅�𝑖,𝑗

𝑋

estimation method proposed in Chapter 3.

Given a network 𝐺 with 𝑁 nodes, using the method proposed in Chapter 3, we

can easily obtain close estimations for (�̅�𝑖,𝑗
𝑋)

𝐹𝑈𝐿𝐿
 and �̅�𝑖,𝑗

𝑋 . Now there are three pieces of

information handy for estimating 𝑝𝑖,𝑗
𝑋 : its central or typical value (�̃̅�𝑖,𝑗

𝑋), its sample space

([0, (�̃̅�𝑖,𝑗
𝑋)

𝐹𝑈𝐿𝐿
]) and it is a discrete probability distribution (rounding of (�̃̅�𝑖,𝑗

𝑋)
𝐹𝑈𝐿𝐿

]) is

necessary if its value is not integer).

130

Next, the principle of maximum entropy will be used to construct the PMF of 𝑝𝑖,𝑗
𝑋 .

The principle of maximum entropy states that when one searches for a probability

distribution that satisfies some constrains (evidence or information) known, the correct

one to choose is the one that maximizes the uncertainty or entropy subject to these

constrains [93-95]. The maximum entropy distribution that satisfies the three pieces of

information known is Poisson distribution. Hence, the PMF equation of 𝑝𝑖,𝑗
𝑋 is shown

below.

𝑝𝑖,𝑗
𝑋 = 𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆)(𝑚𝑖,𝑗

𝑋) =
𝑆𝑚𝑖,𝑗

𝑋

𝑒−S

𝑚𝑖,𝑗
𝑋 !

where,

𝑆 = �̃̅�𝑖,𝑗
𝑋

𝑚𝑖,𝑗
𝑋 ∈ [0,1,2, … , (�̃̅�𝑖,𝑗

𝑋)
𝐹𝑈𝐿𝐿

]

58

For the SF_10_20 network and node pair 3,6, the values for �̃̅�𝑖,𝑗
𝑋 and (�̃̅�𝑖,𝑗

𝑋)
𝐹𝑈𝐿𝐿

is

shown in Table 20. The corresponding maximum entropy distribution is shown in Figure

45.

Table 20. �̃̅�𝒊,𝒋
𝑿 and (�̃̅�𝒊,𝒋

𝑿)
𝑭𝑼𝑳𝑳

of SF_10_20

�̃̅�𝟑,𝟔
𝑿 (�̃̅�𝟑,𝟔

𝑿)
𝑭𝑼𝑳𝑳

12.3 38

131

Figure 45. The Maximum Entropy Distribution of 𝒑𝟑,𝟔
𝑿

On the other hand, as can be seen in Figure 45, the probability for both tails of the

distribution are very small (< 2%). Those 𝑚𝑖,𝑗
𝑋 numbers are very unlikely to happen in

real networks. Therefore, the following modifications were proposed for the PMF shown

in Equation 58. That is to set the probability to zero if it is smaller than 2% and re-

normalize the values to sum up to one.

𝑝𝑖,𝑗
𝑋 =

𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆)
0.02 (𝑚𝑖,𝑗

𝑋)

∑ 𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆)
0.02 (𝑚𝑖,𝑗

𝑋)
(�̃̅�𝑖,𝑗

𝑋)
𝐹𝑈𝐿𝐿

0

where,

𝑆 = �̃̅�𝑖,𝑗
𝑋

𝑚𝑖,𝑗
𝑋 ∈ [0,1,2, … , (�̃̅�𝑖,𝑗

𝑋)
𝐹𝑈𝐿𝐿

]

𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆)
0.02 (𝑚𝑖,𝑗

𝑋) = {
0 if 𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆)(𝑚𝑖,𝑗

𝑋) < 0.02

𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆)(𝑚𝑖,𝑗
𝑋) otherwise

59

In Figure 46, the blue lines are the PMF and CDF of 𝑝3,6
𝑋 constructed using

Equation 59 and the red lines are the PMF and CDF of 𝑝3,6
𝑋 constructed using the

132

simulation results. As can be seen in Figure 46, the blue lines resembles the shape of the

red lines very well, which means that Equation 59 can provide a good estimation for 𝑝𝑖,𝑗
𝑋 .

Figure 46. PDF and CDF of 𝒑𝟑,𝟔
𝑿 Constructed by Equation 59 and Simulation Results

With Equation 56, Equation 57 and Equation 59, Equation 54 can be rewritten as

below. Figure 47 is an example plot for 𝑝(𝑚3,6) with 𝑇 = 10 (hours) and Θ =8 (hours).

 𝑝(𝑚𝑖,𝑗) = 𝑝𝑃𝑜𝑠𝑠𝑖𝑜𝑛(T
Θ
)
(𝑚𝑖,𝑗)[1 − 𝑃𝑖,𝑗

𝑋 (𝑚𝑖,𝑗
𝑋 ≤ 𝑚𝑖,𝑗)]

where,

𝑝𝑖,𝑗
𝑋 =

𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆)
0.02 (𝑚𝑖,𝑗

𝑋)

∑ 𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆)
0.02 (𝑚𝑖,𝑗

𝑋)
(�̃̅�𝑖,𝑗

𝑋)
𝐹𝑈𝐿𝐿

0

60

133

𝑆 = �̃̅�𝑖,𝑗
𝑋

𝑚𝑖,𝑗
𝑋 ∈ [0,1,2, … , (�̃̅�𝑖,𝑗

𝑋)
𝐹𝑈𝐿𝐿

]

𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆)
0.02 (𝑚𝑖,𝑗

𝑋) = {
0 if 𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆)(𝑚𝑖,𝑗

𝑋) < 0.02

𝑝𝑝𝑖𝑠𝑠𝑜𝑛(𝑆)(𝑚𝑖,𝑗
𝑋) otherwise

Θ is the MTTF of a link

𝑇 is the length of a CIN operation

Figure 47. Example Plot of 𝒑(𝒎𝟑,𝟔) with 𝑻 = 𝟏𝟎 (Hours) and 𝚯 = 8 (Hours)

Go back to the discussion at the beginning of this section. The reason that the

distribution of 𝑝(𝑚𝑖,𝑗) is needed is to obtain a practical 𝑚𝑖,𝑗 value field, [0, (𝑚𝑖,𝑗)𝑝0], for

deciding the value ofmax(𝑎𝐵𝐶𝑘
𝑉). According to Equation 53, the higher the value of

max(𝑎𝐵𝐶𝑘
𝑉) the more information processing capacity is needed for a network node.

Hence, it is desired to have a small max(𝑎𝐵𝐶𝑘
𝑉) value. To restrict the value of

max(𝑎𝐵𝐶𝑘
𝑉) can be achieved by controlling the value of (𝑚𝑖,𝑗)𝑝0. In order to show the

134

effects of (𝑚𝑖,𝑗)𝑝0 on max(𝑎𝐵𝐶𝑘
𝑉), overlay Figure 43 and Figure 47 together as shown

below.

Figure 48. Overlay of Figure 43 and Figure 47

As can be seen in Figure 48, the value of max(𝑎𝐵𝐶𝑘
𝑉) will decrease (most likely)

or at least stay at the same level as the value of (𝑚3,6)𝑝0 decreases. It is not hard to see

that this observation is true for any node pair within any network topology.

Based on Equation 60, under the information transmission scenario prescribed in

Table 18, for a given 𝑝0(𝑚𝑖,𝑗) value, CIN operation length 𝑇, CIN topology, to decrease

the value of (𝑚𝑖,𝑗)𝑝0 can be achieved through increasing the value of Θ, which is to

increase the MTTF (reliability) of a link.

According to Equation 60, to increase the value of Θ will affect 𝑝(𝑚𝑖,𝑗) by

increasing the probability of 𝑝1(𝑚𝑖,𝑗) for smaller 𝑚𝑖,𝑗 values. Therefore, to increase the

MTTF of network links through increasing the reliability of network links (system design)

will decrease the value of (𝑚𝑖,𝑗)𝑝0 , and hence decrease the critical information

processing capacity of each network node (Γ𝑘
𝐶).

135

From now on, the congestion behaviors without any network impairment will be

called as static congestion behaviors and those under network impairments will be named

as dynamic congestion behaviors. Moreover, refer to the Γ𝑘
𝐶 value calculated without

considering network impairments (Equation 51) as static Γ𝑘
𝐶, or (Γ𝑘

𝐶)𝑠 and refer to the Γ𝑘
𝐶

value calculated considering network impairments (Equation 53) as dynamic Γ𝑘
𝐶 , of

(Γ𝑘
𝐶)𝑑. From the previous discussion, it can be seen that, the value of (Γ𝑘

𝐶)𝑑 depends on

the value of (Γ𝑘
𝐶)𝑠, and the (Γ𝑘

𝐶)𝑠 value can be viewed as the lower bond of the (Γ𝑘
𝐶)𝑑

value.

As mentioned earlier in Chapter 1, a CIN network is usually constructed by

SUAVs. The payload and space limitations are much higher than traditional UAVs. This

poses a much tighter constraint on the communication and computation capabilities an

SUAV can be equipped. It is possible that the required information processing capacity,

(Γ𝑘
𝐶)𝑑, cannot not be met by the current available technologies or can only be met at a

very high acquisition cost on supporting technologies. Under such circumstance, based

on the discussion in Section 7.2, the required information processing capacity, (Γ𝑘
𝐶)𝑑, can

be decreased.

First, for a CIN, to decrease the value of (Γ𝑘
𝐶)𝑑 can be achieved by decreasing the

corresponding (Γ𝑘
𝐶)𝑠 value. The discussion in Section 7.2.1 says that to decrease the

value of (Γ𝑘
𝐶)𝑠 can be done by carefully selecting the network topology, the routing

strategy (𝑝(𝑘|𝑖, 𝑗)), and the collaboration structure (𝑝(𝑗|𝑖)) of the CIN. Based on the

discussion in Section 7.2.2, with the network topology selected, for a given CIN

operation length, the value of (Γ𝑘
𝐶)𝑑 can be further decreased by increasing the reliability

of network links.

Most existing studies related to network congestion are mainly on static

congestion behaviors. Till now, this thesis has provided some experiment results and

136

discussions on dynamic congestion behaviors and a quantitative design requirement on

the critical information processing capacity of network nodes (Equation 51 and Equation

53). Since the research objective of this thesis is on measuring the capability-based

connectivity robustness of a CIN, the discussion on network dynamic congestion

behaviors will not be extended further. This topic will be deemed as future work that will

be discussed in more details in Chapter 8.

7.3 A Final Note

During a CIN operation, it is very possible that the collaboration structure

between network nodes changes during the operation period. This will result in more than

one information exchange matrix among network entities. Along the previous discussion,

it is assumed that the information exchange matrix is fixed. In order to include the effects

of different information exchange matrix on Γ𝑘
𝐶 , the following approach can be used.

Assume the set of information exchange matrices and the duration of each matrix to be

used during a CIN operation is known. Then the following two equations can be

obtained.

 Γ𝑘
𝐶 = max[(Γ𝑘

𝐶)𝑡]

where,

(Γ𝑘
𝐶)𝑡 is the critical information processing capacity of node 𝑘

calculated using the 𝑡𝑡ℎ information exchange matrix.

61

 Γ𝑘
𝐶 =∑𝑇𝑡(Γ𝑘

𝐶)𝑡
𝑡=1

where,

(Γ𝑘
𝐶)𝑡 is the critical information processing capacity of node 𝑘

62

137

calculated using the 𝑡𝑡ℎ information exchange matrix;

𝑇𝑡 is the duration of a CIN operation segment when the 𝑡𝑡ℎ information

exchange matrix.is used.

Equation 61 considers the effects of different information exchange matrices by

taking the maximum value of the critical information processing capacity of node 𝑘

during the entire CIN operation period. While Equation 62 considers the effects of

different information exchange matrices by taking the time averaged critical information

processing capacity of node 𝑘 during the entire CIN operation period.

Equation 61 and Equation 62 are two examples meant to show how to incorporate

the effect of having more than one information exchange matrix during a CIN operation.

The method should be chosen based on the problem at hand and the design emphases.

On the other hand, both Equation 51 and Equation 53 were derived based on

Equation 45 assuming uniform information packet output rate. If remove this assumption,

similar equations can be derived by using the original form of Equation 45, which is

Equation 46.

Γ𝑘
𝐶 = max

(

∑∑𝑝(𝑗|𝑖)𝑝(𝑘|𝑖𝑗)

𝑁

𝑗=1
𝑗≠𝑖
𝑗≠𝑘

𝑁

𝑖=1
𝑖≠𝑘

𝜆𝑖𝑗

)

+ 𝜆𝑘 + 𝜀𝑘

where,

𝑝(𝑗|𝑖) is the probability of node 𝑖 choosing node 𝑗 as its information

destination;

𝑝(𝑘|𝑖, 𝑗) is the probability for node 𝑘 to be on the information

transmission path from node 𝑖 to node 𝑗;

𝜆𝑖𝑗 is the information output rate from node 𝑖 to node 𝑗;

63

138

𝜀𝑘 is the extra information transmission capability required for using

packet switching and processing method.

Again, if Equation 63 is evaluated using the original network topology without

considering network impairments, then the result is the minimum information processing

capacity required to be equipped for a network node in order to avoid congestion. In

order to decide how much more information processing capacity a node needs to avoid

congestion under network impairments, Equation 63 should be evaluated over the set of

practical network topologies under network impairments.

7.4 Chapter Summary

Information congestion will result in both connectivity and information loss

during CIN operation. It may also result in hardware impairments due to information

surge. Hence, congestion should be avoided. The discussion in the previous chapters are

based on the assumption that no congestion will happen within a network. In other words,

the assumption says that, each network node is congestion robust. Congestion robustness

of a network node is defined as the ability of a network node to sustain information

overload or its tendency to experience congestion. In the literatures, congestion

robustness and connectivity robustness are usually studied in different contexts because

they are two coupling issues. In this chapter they were studied within the same context. In

order to simplify the problem, congestion robustness was treated as a system level design

requirements on each network node. The discussions from Chapter 3 to Chapter 6

focused on connectivity robustness assuming that no network node will experience

information congestion under any circumstance. In this chapter, focus was given to that

assumption.

139

Many things that can affect the congestion robustness of a network node and

hence there are many system level design requirements for network nodes to be

congestion robust during a CIN operation. Since the focus of this thesis is to study the

capability-based connectivity robustness of a network, only the required information

processing capacity of each network node was investigated. In addition, the discussion

was constrained to the information transmission scenario specified in Table 18.

The congestion behaviors without any network impairment are referred to as

static congestion behaviors and those under network impairments are referred to as

dynamic congestion behaviors.

First, a discrete time simulation model for information transmission was

constructed under the scenario specified in Table 18 to study the static congestion

behaviors of network nodes. The following conclusions were obtained.

If a network node does not serve as an intermediate information transmission

node for any node pair, it will never experience congestion as long as its packet output

rate does not exceed its information processing capacity. Node congestion occurs when

its total internal information size increases to the level close to its queue capacity with

little fluctuations. The 𝜆 value when a node starts to experience congestion is the critical

𝜆 value of this node, which will be denoted as 𝜆𝑖
𝐶.

A network can have three congestion stages, namely, LTS, MCS, and HCS based

on the average total internal information size within the entire network [89]. It has been

shown that the three congestion stages of a network can also be characterized by the

average information size within a network node 𝐼�̅� , or in other words, the congestion

behaviors of network nodes. Denote the lower critical 𝜆 value of a network as 𝜆𝐺
𝐶𝐿, and

𝜆𝐺
𝐶𝐿 = min (𝜆𝑖

𝐶) . Denote the upper critical 𝜆 value of a network as 𝜆𝐺
𝐶𝑈 , and 𝜆𝐺

𝐶𝑈 =

max(𝜆𝑖
𝐶). The first tier nodes have 𝜆𝑖

𝐶 values equal or close to 𝜆𝐺
𝐶𝐿. The third tier nodes

140

have 𝜆𝑖
𝐶 values equal or close to 𝜆𝐺

𝐶𝑈. The rest nodes whose 𝐼�̅� values are not constantly 0

belong to the second tier. The onsite of the congestion of the first dire nodes marks the

change of network congestion state from LTS to MCS. The onsite of the congestion of

the third tier nodes marks the change of network congestion state from MCS to HCS.

Different network topologies and different information exchange matrices have

different effects on the congestion behaviors of network nodes. However, regardless the

network topology type and the information exchange matrix used, it is always the case

that, the higher the information processing capacity a node has, the higher its 𝜆𝑖
𝐶 value

will be.

Congestion results in information loss. In order to prevent congestion, each

network node should be equipped with enough information processing capacity. On the

other hand, early congestion will happen if any network node does not have enough

information storage space (queue capacity) to prevent early congestion. Early congestion

prevents the information processing capacity of a node to be fully used and results in

non-economic designs and hence should be prevented. However, when the queue

capacity of a network node is higher than a certain value, further increasing its value will

not yield any additional congestion benefits.

Next, based on those conclusions, two design guidelines were proposed for the

information processing capacity of each network node. One is each network node should

be equipped with at least the minimum information processing capacity, which is also the

critical information processing capacity (Γ𝑘
𝐶) to avoid information congestion. The other

ones is to minimum the network polarization value of Γ𝑖
𝐶 about min(Γ𝑖

𝐶) to ensure

economic architecture design.

If there is no network impairments, the static critical information processing

capacity of each network node can be obtained by Equation 51.

141

If network impairments are considered, then the dynamic critical information

processing capacity of each network node can be obtained by Equation 53.

“Practical” means the probability of node pair 𝑖, 𝑗 to stay connected with 𝑚𝑖,𝑗

number of link failures during the operation period of a CIN is significant. This

probability is denoted as 𝑝(𝑚𝑖,𝑗), and its significant value is denotd as 𝑝0(𝑚𝑖,𝑗). Under

the information transmission scenario prescribed in Table 18, for a given 𝑝0(𝑚𝑖,𝑗) value,

𝑝(𝑚𝑖,𝑗) can be estimated through Equation 60.

Comparing Equation 51 and Equation 53, to decrease the value of (Γ𝑘
𝐶)𝑑 can be

achieved by decreasing the corresponding (Γ𝑘
𝐶)𝑠 value.

Equation 51 establishes the relationship between the required information

processing capacity of a network node and the network topology, the routing strategy

(𝑝(𝑘|𝑖, 𝑗)) as well as the collaboration structure (𝑝(𝑗|𝑖)) of a CIN. Equation 53 and

Equation 60 further establishes the relationship between the required information

processing capacity of a network node and the capability-based connectivity robustness

of the CIN, the reliability of network links.

Finally, the effect of variable collaboration structure were discussed. The method

used to incorporate the effects of having more than one information exchange matrix

during a CIN operation on the required information processing capacity of a network

node should be chosen based on the problem at hand and the design emphases of the

CIN.

142

CHAPTER VIII

CONCLUSIONS AND CONTRIBUTIONS

8.1 Resolution of Research Questions and Hypotheses

Technology advancements have greatly extended the application scope of

Collaborative Information Networks (CINs). Due to the unique application fields of CINs

and the nature of this construction, the connectivity of the inter-connection structure

under impairments is a profound but challenging requirement for a CIN. Most of the

existing topological connectivity robustness measures were proposed from a pure

structural perspective with little or no consideration of the capability of a network. They

can describe the ability of a network to resist network fragmentation under impairments.

However, the current evaluation practice provides no direct mapping between the

measured connectivity robustness and the capability robustness of a network. By seeing

this gap, the research objective of this thesis is to develop a method to measure the

capability-based connectivity robustness of a CIN against link failures by using existing

topological connectivity robustness measures.

The research objective immediately leads to two research questions.

Research Question 1: How to incorporate capability into the conventional network

modeling process?

Research Question 2: Which existing topological connectivity robustness measure should

be chosen?

In search for the answer to the first research question, a capability-based network

modeling process was developed. The process was motivated by the following

observation. In order to output capability, one or more major information flows of a CIN

143

should be maintained. The major information flows can be collapsed into the connection

between several critical node pairs. To measure the capability-based connectivity

robustness of a CIN is to measure the (structural) connectivity robustness of critical node

pairs.

Now with a capability-based network model, the problem of measuring the

capability-based connectivity robustness of a CIN is successfully transformed into the

problem of measuring the structural connectivity robustness between critical node pairs.

The next task is to find the answer to the second research question, which is to select a

topological measure for the structural connectivity robustness against link failures

between an arbitrary node pair.

Pairwise effective resistance 𝐸𝑅𝑖,𝑗 was identified as a candidate measure. By

testing Hypothesis 1, it was concluded that, 𝐸𝑅𝑖,𝑗 can be used to compare the

connectivity robustness of two arbitrary node pairs in terms of the average fraction of link

failures until disconnection happens (
�̅�𝑖,𝑗
𝑋

𝑀
). In order to compare the connectivity

robustness of two arbitrary node pairs in terms of the average number of link failures

until disconnection happens (�̅�𝑖,𝑗
𝑋), Equation 16 was proposed to provide a close

estimation for �̅�𝑖,𝑗
𝑋 given the 𝐸𝑅𝑖,𝑗 value of a node pair. This estimation method is fast

and scalable. The estimation error stabilizes as network node number increases. With this,

the second research question was also answered.

The existence of redundant links does not affect the average number of link

failures that a node pair can sustain before disconnection. This is because redundant links

do not contribute to the connection between node pair 𝑖, 𝑗. However, under random link

attacks, redundant links can server as “camouflage” and attract attacks away from

structural links. This decreases the probability of structural links to be hit during random

144

attacks and as a result protects the network structure. The effect can be quantified using

either Equation 19 or Equation 20. The validity of Equation 19 or Equation 20 was

confirmed via simulation.

Centrality analyses for network entities existing were also performed in terms of

their importance to the capability-based connectivity robustness of a network. Network

node centrality can be calculated via Equation 32 and network link centrality can be

calculated via Equation 37. By testing Hypothesis 2 and Hypothesis 3, the validity of the

two proposed measures is confirmed. Both measures are based on the Moore-Penrose

Pseudoinverse of a network Laplacian (𝐿+). Since 𝐿+ is also used to calculate 𝐸𝑅𝑖,𝑗, the

proposed centrality evaluation methods do not require any extra heavy computation other

than several basic operations. As a result, the proposed measures can be used to help

quickly allocate limited resources to protect network against impairments.

A framework for the fast evaluation of the capability-based connectivity

robustness of a CIN was constructed and was demonstrated on the example CIN followed

by an alternative topology design generation process.

In addition, two capability-based connectivity robustness strengthen strategies

were proposed and discussed. The first strategy is to increase the static robustness via

adding network links. Equation 39 was proposed to help decide the optimal link addition

process that results in the most robustness increase benefit. The second strategy is to

prepare substitution nodes for some important network nodes. It was demonstrated that

the capability-based connectivity robustness evaluation process proposed in Chapter 3

together with a simple network topology modification procedure could be used to

quantify the effectiveness of a dynamic link failure coping mechanism. By testing

Hypothesis 4, the validity of Equation 39 is confirmed.

145

Finally, the effects of the capability-based connectivity robustness of a network

on the required information processing capacity of each network node was also explored.

In this thesis, information congestion was treated as a system level design requirement on

each network node. To avoid information congestion, a network node needs to be

incorporated with enough information transmission capabilities. This thesis focuses on

studying the required information processing capacity under a given information

transmission scenario.

The analyses were conducted using a discrete-time simulation model on

information transmission and processing within a network. Equation 51 establishes the

relationship between the required information processing capacity of a network node to

the network topology, the routing strategy (𝑝(𝑘|𝑖, 𝑗)), and the collaboration structure

(𝑝(𝑗|𝑖)) of a CIN. Equation 53 and Equation 60 further establishes the relationship

between the required information processing capacity of a network node to the capability-

based connectivity of the CIN and the reliability of network links.

The hypotheses proposed along the discussion process are summarized below.

The test results suggest rejecting Hypothesis 1 and accepting Hypothesis 2, 3, 4.

𝐻1𝑎:
𝑁

𝐸𝑅𝑖,𝑗
 has higher correlation with �̅�𝑖.𝑗

𝑋 then
1

𝐸𝑅𝑖,𝑗
.

𝐻0
1𝑎:

𝑁

𝐸𝑅𝑖,𝑗
 does not have higher correlation with �̅�𝑖.𝑗

𝑋 then
1

𝐸𝑅𝑖,𝑗
.

𝐻1𝑏:
𝑁

𝐸𝑅𝑖,𝑗
 has high correlation with

�̅�𝑖.𝑗
𝑋

𝑀
 then

1

𝐸𝑅𝑖,𝑗

𝐻0
1𝑏:

𝑁

𝐸𝑅𝑖,𝑗
 does not have higher correlation with

�̅�𝑖.𝑗
𝑋

𝑀
 then

1

𝐸𝑅𝑖,𝑗
.

𝐻2: −Δ𝑈𝑖,𝑘,𝑗 is highly correlated with 𝛥�̅�𝑖,𝑗
𝑋 (𝑘).

𝐻0
2: −Δ𝑈𝑖,𝑘,𝑗 is not highly correlated with 𝛥�̅�𝑖,𝑗

𝑋 (𝑘).

𝐻3: −
𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
 is highly correlated with 𝛥�̅�𝑖,𝑗

𝑋 (𝑘, 𝑙).

146

𝐻0
3: −

𝛥𝑈𝑖,𝑘,𝑗+𝛥𝑈𝑖,𝑙,𝑗

Δ𝑈𝑘+Δ𝑈𝑙
is not highly correlated with 𝛥�̅�𝑖,𝑗

𝑋 (𝑘, 𝑙).

𝐻4: 𝛺𝑘,𝑙
𝑖,𝑗

 can indicate the benefits of adding a non-existing link into a network on �̅�𝑖,𝑗
𝑋 .

𝐻0
4: 𝛺𝑘,𝑙

𝑖,𝑗
 cannot indicate the benefits of adding a non-existing link into a network on

�̅�𝑖,𝑗
𝑋 .

8.2 Contributions

Contribution 1

This thesis demonstrated the flexible use of network modeling. Network

topological analyses are usually deployed to study the structure of a network. By

modifying the network model of an infrastructure, network topological analysis can be

used to analyze the effects besides network structure such as the capability-based

connectivity robustness and the resilience strategy of a CIN.

Contribution 2

For the first time, it was pointed out that 𝐸𝑅𝑖,𝑗 or
𝐸𝑅𝑖,𝑗

𝑁
 can only be used to

compare the connectivity robustness of different node pairs from the same network or the

same node pair of networks within the same network family. The connection between

𝐸𝑅𝑖,𝑗 and the connectivity robustness under link impairments is actually established

though the average faction of link failures until a node pair disconnected (
�̅�𝑖,𝑗
𝑋

𝑀
).

Contribution 3

In this thesis, �̅�𝑖,𝑗
𝑋 is used as a direct measure of the capability-based connectivity

robustness of a CIN. A quick and scalable method was proposed that can provide close

147

estimation for the average number of link failure until a node pair disconnected (�̅�𝑖,𝑗
𝑋).

The error of this estimation stabilizes as network node number increases.

Contribution 4

The fourth contribution of this thesis is that it provides quick and scalable ways to

quantify the centrality of existing network nodes and links as well as the centrality of

non-existing links in terms of �̅�𝑖,𝑗
𝑋 , which can help effectively allocate limited resources

to protect network against impairments or to add additional links to strengthen robustness

Contribution 5

The fifth contribution of this thesis is to consider congestion robustness and

connectivity robustness under the same content. This thesis demonstrated that congestion

robustness could be treated as a system level design requirement on each network node

that could be derived from the inter-connection structure and the connectivity situation of

a CIN.

Contribution 6

The final contribution of this thesis is a network topology design and selection

process based on the proposed capability-based connectivity robustness measure, which

can also be used as a sub-design process of a more comprehensive, complex design

process.

8.3 Recommendations for Future Studies

The Moore-Penrose pseudoinverse of a symmetric Laplacian (𝐿) is the key for

most of the analyses in this thesis. Symmetric 𝐿 and their applications have been deeply

studied [53-57]. While asymmetric 𝐿 arise in connection with directed graphs are less

148

explored. To obtain the Moore-Penrose pseudoinverse, an asymmetric 𝐿 needs to be

normalized. Depending on the research contents and analysis focuses, different

normalization techniques have been proposed. Although asymmetric 𝐿 are now attracting

more and more attentions [52, 57-61], it is still a working concept without conscience

upon normalization techniques as well as the physical meanings behind them. Most

importantly, unlike a symmtric 𝐿 that is strictly related to the connectivity properties of

the corresponding undirected network topology, a normalized asymmetric 𝐿usually does

not reflect the connectivity of the corresponding directed network topology well. To

extend the results obtained from this thesis to directed networks, a normalization

technique is needed so that the 𝐸𝑅𝑖,𝑗 calculated based on the normalized 𝐿 is closely

related to the average percentage of link failures until a node pair disconnected within a

directed network.

In addition, symmetric 𝐿 can be used for weighted network. However, the

proposed connectivity robustness measure and the subsequent analyses can only handle

unweighted networks since all network link failures are treated the same. Network link

weights can be used to model some connection properties between network entities, such

as interoperability. Future researches can focus on extend the results of this thesis to

weighted network to account for the effects of network connection properties.

Another area that can be explored further is how to design a congestion robust

routing strategy under network impairments. As discussed earlier, the congestion

robustness of network nodes can be affected by the information transmission capabilities

of network nodes, the routing strategy and the network topology. A dynamic routing

strategy that responds to network impairments can reduce the required information

capabilities of network nodes.

149

The next area that can be studied further is to understand the difference between

the network topologies obtained from step-wise “optimization” (greedy algorithm) as

shown in this thesis and the ones obtained from solving optimization directly (global, or

true optimization). In addition, the results obtained from step-wise network topology

“optimizations” are initial point dependent. How sensitive the results are to different

initial points and how to pick a good initial point that can lead to network topology

designs that is close to the global optimal is an area that worths further exploration.

150

APPENDIX I

ADDITIONAL GRAPHS AND TABLES

Table 21. Information Exchange Matrix 1 Used in Chapter 7

1 2 3 4 5 6 7 8 9 10

1 0 0 0.21 0.25 0 0 0.25 0.29 0 0

2 0.4 0 0 0 0 0.26 0 0 0.34 0

3 0 0.22 0 0 0.15 0.13 0.11 0.17 0.11 0.11

4 0.22 0 0.2 0 0.16 0 0.14 0 0.12 0.16

5 0.11 0.14 0.11 0 0 0 0.14 0.18 0.16 0.16

6 0 0 0.29 0.33 0 0 0.38 0 0 0

7 0 0 0.2 0.17 0 0.28 0 0 0.2 0.15

8 0.19 0.34 0 0 0.22 0 0 0 0.25 0

9 0.21 0.14 0.12 0.17 0.14 0.1 0 0.12 0 0

10 0.31 0.29 0 0 0.23 0 0 0 0.17 0

151

Table 22. Information Exchange Matrix 2 Used in Chapter 7

1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0.27 0 0.24 0 0.18 0.31

2 0.18 0 0.25 0.23 0.16 0 0 0 0 0.18

3 0 0 0 0 0 0.38 0 0.33 0.29 0

4 0.15 0.25 0.2 0 0.15 0.25 0 0 0 0

5 0 0 0.57 0 0 0 0 0 0.43 0

6 0.28 0.36 0.36 0 0 0 0 0 0 0

7 0 0.21 0 0.33 0 0 0 0.25 0 0.21

8 0.12 0.22 0 0.1 0 0.17 0.17 0 0.12 0.1

9 0.2 0 0 0.17 0 0 0.17 0.2 0 0.26

10 0.47 0 0.53 0 0 0 0 0 0 0

152

APPENDIX II

MODELING AND SIMULATION

A. Step-Min Network Family Generation (Matlab)

 This program is used to generate networks within a Step-Min Network Family as

well as calculating the 𝐸𝑅1,𝑁 value of each network. The only input for this code is the

Step-Min ntwork family index (the number of nodes). For the detailed logic of this code,

please refer to Algorithm 1.

clear;

clc;

result = cell([1,1]);

% mkdir('ER');

% colorSpace = jet(40);

% figure

for nodeSize = 11:29 % CHANGE HERE: NODE NUMBER

 adjMatrix = zeros(nodeSize, nodeSize);

 for i = 1: nodeSize-1

 adjMatrix(i,i+1) = 1;

 adjMatrix(i+1,i) = 1;

 end

 linkSpace = (nodeSize-1)*nodeSize / 2 - (nodeSize-1);

 stepMin = zeros(linkSpace + 1,1);

 stepMin(1,1) = nodeSize - 1;

 if linkSpace > 0

 stepMinPair = zeros(2,1);

 ER_Temp = 0;

 mkdir(num2str(nodeSize));

 for i = 1:linkSpace

 for u = 1:nodeSize-1

 for v = u+1:nodeSize

 if adjMatrix(u,v) == 0

 adjMatrix(u,v) = 1;

153

 adjMatrix(v,u) = 1;

 ER_Temp = ER_Cal(nodeSize, adjMatrix, 1, nodeSize);

 if stepMin(1+i, 1) == 0

 stepMin(1+i, 1) = ER_Temp;

 stepMinPair = [u;v];

 else

 if ER_Temp > stepMin(1+i, 1)

 stepMin(1+i, 1) = ER_Temp;

 stepMinPair = [u;v];

 end

 end

 adjMatrix(u,v) = 0;

 adjMatrix(v,u) = 0;

 end

 end

 end

 adjMatrix(stepMinPair(1,1),stepMinPair(2,1)) = 1;

 adjMatrix(stepMinPair(2,1),stepMinPair(1,1)) = 1;

 dlmwrite(strcat(num2str(nodeSize), '\', num2str(nodeSize), '_', num2str(i+1),

'.txt'), adjMatrix);

 end

 end

% dlmwrite(strcat('ER\', num2str(nodeSize), '.txt'), stepMin);

%

% result{nodeSize-1,1} = stepMin;

% % semilogy(result{nodeSize-1,1}.^(-1), ['--','o'], 'color',colorSpace(nodeSize-1,:))

% hold on

end

% axis([0 40 0.01 1])

% hold off

B. Rand and SF Network Generation Code (C++)

This program is used to generate the topologies for Rand and SF networks used in

the experimetns in this thesis. This code repqures input the number of network nodes and

the total number of network links. The inputs are the network node number 𝑁 , the

154

network link number 𝐸 for the network to be gerenated, and the network number of the

fully connected network used if the network to be generated is a SF network.

 #include <iostream>

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

#include <fstream>

#include <random>

#include <iostream>

#include <string>

#include <sstream>

using namespace std;

namespace patch

{

 template < typename T > std::string to_string(const T& n)

 {

 std::ostringstream stm ;

 stm << n ;

 return stm.str() ;

 }

}

static const int numberOfV = 10;

static const int numberOfE = 40;

//Generate the seed for random number generation functions

mt19937 gen(time(NULL));

//Uniform integer random number generator

int uniIntRand(int n) {

 uniform_int_distribution<int> distribution(1, n);

 return distribution(gen);

}

155

//Uniform real number generator

double uniRealRand() {

 uniform_real_distribution<double> distribution(0.0,1.0);

 return distribution(gen);

}

//Output the generated adjacent matrix to screen to check results validity

void outputToText(string networkName, int AMatrix[][numberOfV], int

Node_num){

 ofstream myfile;

 const string fileName = "Network Topology/" + networkName + ".txt";

 myfile.open (fileName);

 for (int i=0; i < Node_num; i++){

 for (int j=0; j < Node_num; j++){

 if (j==49) {

 myfile<< AMatrix[i][j];

 }

 else{

 myfile<< AMatrix[i][j]<< ",";

 }

 }

 myfile<<"\n";

 }

 myfile.close();

}

//Random Network

void generate_Node(int * Node,int range){

 Node[0]=uniIntRand(range)-1;

 Node[1]=uniIntRand(range)-1;

}

void Rand_Topology(int Node_num,int Link_num){

 //generate the desired matrix

 int array[numberOfV][numberOfV]={};

 int Node[2]={};

156

 //generate the random topology of the matrix

 for (int i=0;i<Link_num;i++){

 while (1){

 generate_Node(Node,Node_num);

 int N1 = Node[0];

 int N2 = Node[1];

 if (array[N1][N2]==0&&array[N2][N1]==0&& N1!=N2){

 array[N1][N2]=1;

 array[N2][N1]=1;

 break;

 }

 else

 {continue;}

 }

 }

 string fileName = "Rand_" + patch::to_string(numberOfV) + "_" +

patch::to_string(numberOfE);

 outputToText(fileName, array, Node_num);

}

//Scale Free Network

int PickNode(int D[numberOfV], int N, int DTotal){

 int i;

 double Prob_Pick = uniRealRand();

 double Degree_Pick= Prob_Pick * double(DTotal);

 double Add_Degree = 0.0;

 for (i = 0; i < N; ++i) {

 Add_Degree = Add_Degree + double(D[i]);

 if (Degree_Pick <= Add_Degree) {

 return i;

 break;

 }

 }

}

157

void Scalefree_Topology(int Node_num, int existing_node_num){

 int D_Total = 0; //sum of the node degrees over the entire network

 int D_Matrix[numberOfV] = {};

 int array[numberOfV][numberOfV]={};

//Generate a fully connected network with desired number of nodes

 for (int i = 0; i < existing_node_num; ++i) {

 D_Matrix[i] = existing_node_num - 1;

 for (int j = 0; j < existing_node_num; ++j) {

 if (i!=j){

 array[i][j]=1;

 D_Total += 1;

 }

 }

 }

//Preferential node selection

 for (int i = existing_node_num ; i < Node_num; ++i) {

 int Picked_Node1;

 int Picked_Node2;

 while(1){

 Picked_Node1 = PickNode(D_Matrix, i, D_Total);

 if (Picked_Node1!=i)break;

 else continue;

 }

 while(1){

 Picked_Node2=PickNode(D_Matrix,i,D_Total);

 if (Picked_Node2==Picked_Node1||Picked_Node2==i)

 continue;

 else break;

 }

 D_Matrix[Picked_Node1]++;

 D_Matrix[Picked_Node2]++;

 D_Matrix[i] = 2;

158

 D_Total += 4;

 array[i][Picked_Node1]=1;

 array[i][Picked_Node2]=1;

 array[Picked_Node1][i]=1;

 array[Picked_Node2][i]=1;

 }

 string fileName = "SF_" + patch::to_string(numberOfV) + "_" +

patch::to_string(numberOfE);

 outputToText(fileName, array, Node_num);

}

int main (){

 Rand_Topology(numberOfV,numberOfE/2);

 Scalefree_Topology(numberOfV,5);

 return 0;

}

C. The Link Failure Simulation Model Code (C++)

This program is used to simulate the link failure process. The redundant link filter

is not included. That part is a small process conducted in Matlab. If a filtered network is

fed into this simulation model, then the output is the number of structural link failures

until the target node pair disconnected. If an unfiltered network is fed into this simulation

model, then the output is the number of total link failures until the target node pair

disconnected. The inputs for this code are the network topology, the number of network

nodes, and the target node pair index.

#include <iostream>

#include <fstream>

#include <sstream>

#include <string>

#include <iomanip>

#include <stdlib.h>

#include <algorithm>

159

#include <cmath>

#define INFINITY 999999

using namespace std;

static const int number = 10;

namespace patch

{
 template < typename T > std::string to_string(const T& n)

 {
 std::ostringstream stm ;

 stm << n ;

 return stm.str() ;

 }

}

class Dij{

 public:

 static const int numOfV = number;

 int predecessor[numOfV], distance[numOfV];

 int adjMatrix[numOfV][numOfV];

 void readTopology(string);

 int tree[numOfV][numOfV];

 bool mark[numOfV];

 int source;

 int dest;

 void initialize();

 void calculateDistance(int,int,int);

 int getClosestUnmarkedNode();

 void printPath(int, ofstream&);

};

//Read network topology

void Dij::readTopology(string fileName){

 ifstream file(fileName);

 int col_read = number;

 int row_read = number;

 for(int row = 0; row < row_read; ++row)

160

 {
 string line;

 getline(file, line);

 stringstream iss(line);

 for (int col = 0; col <col_read; ++col)

 {
 string val;

 getline(iss, val, ',');

 int connectivity;

 connectivity = atoi(val.c_str());

 adjMatrix[row][col] = connectivity;

 }

 }

};

void Dij::initialize(){

 for(int i = 0; i < numOfV; i++){

 mark[i] = false;

 predecessor[i] = -1;

 distance[i] = INFINITY;

 }
 distance[source] = 0;

};

int Dij::getClosestUnmarkedNode(){

 int minDistance = INFINITY;

 int closestUnmarkedNode;

 for(int i = 0; i < numOfV; i++){

 if((!mark[i]) && (minDistance >= distance[i])){

 minDistance = distance[i];

 closestUnmarkedNode = i;

 }

 }
 return closestUnmarkedNode;

};

void Dij::calculateDistance(int exclude_1, int exclude_2, int endNode){

 initialize();

 int closestUnmarkedNode;

 int count = 0;

161

 mark[exclude_1] = true;

 mark[exclude_2] = true;

 while(count < numOfV){

 closestUnmarkedNode = getClosestUnmarkedNode();

 mark[closestUnmarkedNode] = true;

 for(int i = 0; i < numOfV; i++){

 if((!mark[i]) && (adjMatrix[closestUnmarkedNode][i] > 0)){

 if(distance[i] > distance[closestUnmarkedNode] +

adjMatrix[closestUnmarkedNode][i]){

 distance[i] = distance[closestUnmarkedNode] +

adjMatrix[closestUnmarkedNode][i];

 predecessor[i] = closestUnmarkedNode;

 }

 }

 }
 count++;

 }

};

void Dij::printPath(int node, ofstream & myfile){

 if(node == source)

 myfile<<node<<",";

 else if(predecessor[node] == -1)

 myfile<<"No path from “<<source<<”to "<<node;

 else {
 printPath(predecessor[node], myfile);

 myfile<<node<<",";

 }

}

mt19937 gen(time(NULL));

//Uniform integer random number generator

int uniIntRand(int n) {

 uniform_int_distribution<int> distribution(1, n);

 return distribution(gen);

}

void generate_Node(int * Node,int range){

162

 Node[0]=uniIntRand(range)-1;

 if(range == 1){

 Node[1] = Node[0];

 }else{
 while(1){

 Node[1]=uniIntRand(range)-1;

 if(Node[1] != Node[0]){

 break;

 }

 }

 }

}

int mainSimulation_1_pair(string topoFileName, int node_i_1, int node_j_1, int

numberOfE){

 int impairment = 0;

 Dij G;

 G.readTopology(topoFileName);

 vector<string> nodePairPool_Rem;

 for(int i = 0; i < number; i++){

 for(int j = 0; j < number; j++){

 if(G.adjMatrix[i][j]> 0){

 nodePairPool_Rem.push_back(patch::to_string(i) + "_" +

patch::to_string(j));

 }

 }

 }

 int link_imp_s = 0;

 int link_imp_t = 0;

 int distij_1 = 0;

 G.source = node_i_1;

 while(impairment < numberOfE){

 int Node_Rem[2] = {};

 generate_Node(Node_Rem, (numberOfE - impairment));

163

 link_imp_s = atoi(nodePairPool_Rem[Node_Rem[0]].substr(0,

nodePairPool_Rem[Node_Rem[0]].find("_",0)).c_str());

 link_imp_t =

atoi(nodePairPool_Rem[Node_Rem[0]].substr(nodePairPool_Rem[Node_Rem[0]].fin

d("_",0) + 1).c_str());

 nodePairPool_Rem.erase(remove(nodePairPool_Rem.begin(),

nodePairPool_Rem.end(), patch::to_string(link_imp_s) + "_" +

patch::to_string(link_imp_t)), nodePairPool_Rem.end());

 nodePairPool_Rem.erase(remove(nodePairPool_Rem.begin(),

nodePairPool_Rem.end(), patch::to_string(link_imp_t) + "_" +

patch::to_string(link_imp_s)), nodePairPool_Rem.end());

 G.adjMatrix[link_imp_s][link_imp_t] = 0;

 G.adjMatrix[link_imp_t][link_imp_s] = 0;

 impairment = impairment + 2;

 G.calculateDistance(-1, -1, -1);

 distij_1 = G.distance[node_j_1];

 if(distij_1 >= INFINITY){

 break;

 }

 }

 nodePairPool_Rem.clear();

 return impairment;

 }

int mainSimulation_1_pair_Pure_Redundancy(float pure_redundancy_ratio, string

topoFileName, int node_i_1, int node_j_1, int numberOfE){

 int pure_redundancy = floor(numberOfE * pure_redundancy_ratio);

 pure_redundancy = 0;

 int impairment = 0;

 int real_impairment = 0;

 Dij G;

 G.readTopology(topoFileName);

 vector<string> nodePairPool_Rem;

 for(int i = 0; i < number; i++){

 for(int j = 0; j < number; j++){

 if(G.adjMatrix[i][j]> 0){

 nodePairPool_Rem.push_back(patch::to_string(i) + "_" +

patch::to_string(j));

164

 }

 }

 }

 int link_imp_s = 0;

 int link_imp_t = 0;

 int distij_1 = 0;

 G.source = node_i_1;

 while(impairment < (numberOfE + pure_redundancy)){

 int Node_Rem[2] = {};

 generate_Node(Node_Rem, (numberOfE + pure_redundancy - impairment));

 if(Node_Rem[0] < (numberOfE - real_impairment)){

 link_imp_s = atoi(nodePairPool_Rem[Node_Rem[0]].substr(0,

nodePairPool_Rem[Node_Rem[0]].find("_",0)).c_str());

 link_imp_t =

atoi(nodePairPool_Rem[Node_Rem[0]].substr(nodePairPool_Rem[Node_Rem[0]].fin

d("_",0) + 1).c_str());

 nodePairPool_Rem.erase(remove(nodePairPool_Rem.begin(),

nodePairPool_Rem.end(), patch::to_string(link_imp_s) + "_" +

patch::to_string(link_imp_t)), nodePairPool_Rem.end());

 nodePairPool_Rem.erase(remove(nodePairPool_Rem.begin(),

nodePairPool_Rem.end(), patch::to_string(link_imp_t) + "_" +

patch::to_string(link_imp_s)), nodePairPool_Rem.end());

 G.adjMatrix[link_imp_s][link_imp_t] = 0;

 G.adjMatrix[link_imp_t][link_imp_s] = 0;

 impairment = impairment + 2;

 real_impairment =real_impairment + 2;

 }else{
 impairment = impairment + 2;

 }

 G.calculateDistance(-1, -1, -1);

 distij_1 = G.distance[node_j_1];

 if(distij_1 >= INFINITY){

 break;

 }

 }

165

 nodePairPool_Rem.clear();

 return impairment;

 }

int main(){

 float pure_redundancy_ratio = 0;

 int simu_num = 10000;

 int node_i_1 = 0;

 int node_j_1 = 3;

 int bridgeNum = 0;

 for(int linkSpace = 1; linkSpace <= 1; linkSpace++){

 Dij G;

 string topoFileName = "try.txt";

 G.readTopology(topoFileName);

 int numberOfE = 0;

 for(int i = 0; i < number; i++){

 for(int j = 0; j < number; j++){

 if(G.adjMatrix[i][j]> 0){

 numberOfE = numberOfE + 1;

 }

 }

 }

 G = {};

 for(int i = 1; i <= 1; i++){

 ofstream myfile1;

 cout<<i<<"_"<<node_i_1<<"_"<<node_j_1<<"\n";

 string resultFileName1 = "Result_6_modi.csv";

 myfile1.open(resultFileName1, ios_base::app);

166

 for(int rep = 0; rep < simu_num; rep++){

myfile1<<mainSimulation_1_pair_Pure_Redundancy(pure_redundancy_ratio,

topoFileName, node_i_1, node_j_1, numberOfE)<<"\n";

 }

 myfile1.close();

 }

 }

return 0;

}

D. The Code Used to Obtain the Optimized 𝜽 Value

This program is used to solve the optimization problem speicified in Secion 2.2.3.

clc;

clear;

mdisij_full = [2.3372

4.5195

7.6476

11.7464

16.8265

22.8509

29.8991

37.9593

46.9035

56.9614

67.9692

80.0329

93.0555

107.146

122.0693

138.1219

155.0319

173.1482

192.0141

167

212.2045

233.1596

255.0404

277.9741

301.9826

327.0849

352.9298

380.126

407.9661

];

x = 0.9;

xs = zeros(28,1);

for nodeNum = 3:30

 ER1N = zeros(nodeNum*(nodeNum-1)/2 - nodeNum + 2,1);

 ER1N(1,1) = nodeNum-1;

 for linkSpace = 2: (nodeNum*(nodeNum-1)/2 - (nodeNum-1) + 1)

 adjMatrix = zeros(nodeNum, nodeNum);

 adjMatrix =

dlmread(strcat(num2str(nodeNum),'\',num2str(nodeNum),'_',num2str(linkSpace),'.txt'

));

 ER1N(linkSpace,1) = ER_Cal(nodeNum, adjMatrix, 1, nodeNum);

 end

 ERR = 10^10;

 e_mdis = zeros(nodeNum*(nodeNum-1)/2 - nodeNum + 2,1);

 mdis = zeros(nodeNum*(nodeNum-1)/2 - nodeNum + 2,1);

 mdis(1,1) = 1;

 mdis(2:nodeNum*(nodeNum-1)/2 - nodeNum + 2,1) =

dlmread(strcat('Results\Result_',num2str(nodeNum),'_Mean.txt'));

 e_mdis(1,1) = 1;

 t = 0.1;

 while 1

 ERR_old = ERR;

% for linkSpace = 2: (nodeNum*(nodeNum-1)/2 - (nodeNum-1) + 1)

% e_mdis(linkSpace,1) = e_mdisij(nodeNum, linkSpace + nodeNum - 2,

ER1N(linkSpace,1), x, mdisij_full(nodeNum-2,1));

% end

%

 ERR = sum(abs((mdis-log10((linkSpace + nodeNum - 2)./ER1N.^x)).^2));

168

 if abs(ERR-ERR_old) < 10^(-4)

 x

 break;

 end

 if ERR >= ERR_old

 x = x - t;

 t = t/10;

 end

 x = x + t;

 end

 xs(nodeNum-2,1) = x;

end

E. The Code Used to Calculated 𝑬𝑹𝒊,𝒋 (Matlab)

This customized Matlab function calculates the effective resistance between a

givne node pair (𝑬𝑹𝒊,𝒋). The inputs of this function are network node number, network

topology, and the target node pair.

function ERij = ER_Cal(nodeSize, adjMatrix, node_i, node_j)

L = zeros(nodeSize, nodeSize);

for j = 1 : nodeSize

 for k = 1:nodeSize

 if j == k

 L(j,k) = sum(adjMatrix(j,:));

 else
 if adjMatrix(j,k) > 0

 L(j,k) = -adjMatrix(j,k);

 end

 end

 end

end

QQ = pinv(L);

169

ERij = QQ(node_i, node_i) - 2*QQ(node_i, node_j) + QQ(node_j, node_j);

F. The Code Used to Calculate the Centrality of Existing Network Nodes (Matlab)

This customerized matlab function calculates the centrality of all the nodes within

a network in terms of the capability-based connectivity robustness between the target

node pair. The inputs of this function are network node number, network topology, and

the target node pair.

function C = NodeImp(nodeSize, adjMatrix, node_i, node_j)

C_temp = zeros(nodeSize, 1);

L = zeros(nodeSize, nodeSize);

for j = 1 : nodeSize

 for k = 1:nodeSize

 if j == k

 L(j,k) = sum(adjMatrix(j,:));

 else

 if adjMatrix(j,k) > 0

 L(j,k) = -adjMatrix(j,k);

 end

 end

 end

end

QQ = pinv(L);

for i = 1:nodeSize

 C_temp(i,1) = (2*QQ(i,i)-QQ(node_i,i)-QQ(i,node_i)-QQ(node_j,i)-QQ(i,

node_j)+QQ(node_i, node_j)+QQ(node_j, node_i))/2;

end

C = C_temp;

End

G. The Code Used to Calculate the Centrality of Existing Network Links (Matlab)

170

This customerized matlab function calculates the centrality of all the existing

links within a network in terms of the capability-based connectivity robustness between

the target node pair. The inputs of this function are network node number, network

topology, and the target node pair.

function C = linkIMP_2(nodeSize, adjMatrix, node_i, node_j)

 C_temp_1 = zeros(nodeSize, nodeSize);

 C_temp_2 = zeros(nodeSize, nodeSize);

 C_temp_3 = zeros(nodeSize, nodeSize);

 C_temp_4 = zeros(nodeSize, nodeSize);

 C_temp = zeros(nodeSize, nodeSize);

 L = zeros(nodeSize, nodeSize);

 for j = 1 : nodeSize

 for k = 1:nodeSize

 if j == k

 L(j,k) = sum(adjMatrix(j,:));

 else

 if adjMatrix(j,k) > 0

 L(j,k) = -adjMatrix(j,k);

 end

 end

 end

 end

 QQ = pinv(L);

 for i = 1:nodeSize

 for j = 1:nodeSize

 C_temp_3(i,j) = (2*QQ(i,i)-QQ(node_i,i)-QQ(i,node_i)-QQ(node_j,i)-QQ(i,

node_j)+QQ(node_i, node_j)+QQ(node_j, node_i))/2;

 C_temp_4(i,j) = (2*QQ(j,j)-QQ(node_i,j)-QQ(j,node_i)-QQ(node_j,j)-QQ(j,

node_j)+QQ(node_i, node_j)+QQ(node_j, node_i))/2;

 C_temp_1(i,j) = (2*QQ(node_i,node_i)-QQ(node_i,i)-QQ(i,node_i)-

QQ(node_i,j)-QQ(j, node_i)+QQ(i,j)+QQ(j,i))/2;

 C_temp_2(i,j) = (2*QQ(node_j,node_j)-QQ(node_j,i)-QQ(i,node_j)-

QQ(node_j,j)-QQ(j, node_j)+QQ(i,j)+QQ(j,i))/2;

171

 C_temp(i,j) = (C_temp_3(i,j) + C_temp_4(i,j))/(QQ(i,i) + QQ(j,j)); %This is

the right one

 end

 end

 C = C_temp;

End

H. The Code Used to Calculate the Centrality of Non-existing Network Links

(Matlab)

This program is used to calucate the centrality of all the non-existing links within

a network in terms of the capability-based connectivity robustness between the target

node pair. The inputs of this function are network node number, network topology, and

the target node pair.

clc;

clear;

nodeNum = 50;

adjMatrix = importdata('Network Topology\SF_50_100.txt', ',' , 0);

C_Node = zeros(50,40);

nodePairs = importdata('50_SF_Node Pair.txt', ',' , 0);

newER = zeros(nodeNum*(nodeNum-1)/2-100,5*40);

for k = 1:40

 C_Link = linkIMP_2(nodeNum, adjMatrix, nodePairs(k,1)+1, nodePairs(k,2)+1);

 count = 1;

 for i = 1:nodeNum-1

 for j = (i+1):nodeNum

 if adjMatrix(i,j) == 0

 C_Link_2 = linkIMP_2(nodeNum, adjMatrix, i, j);

 adjMatrix_new = adjMatrix;

 adjMatrix_new(i,j) = 1;

 adjMatrix_new(j,i) = 1;

 newER(count,1+(k-1)*5) = i;

 newER(count,2+(k-1)*5) = j;

172

 newER(count,3+(k-1)*5) = ER_Cal(nodeNum, adjMatrix_new,

nodePairs(k,1)+1, nodePairs(k,2)+1);

 newER(count,4+(k-1)*5) = C_Link(i,j) + C_Link_2(nodePairs(k,1)+1,

nodePairs(k,2)+1);

 newER(count,5+(k-1)*5) = abs(C_Node(i,1)-C_Node(j,1));

 count = count + 1;

 end

 end

 end

end

I. The Code Used to Generate a Resource Exchange Matrix (Matlab)

This program is used to generate a modified random resource exchange matrix.

The only input of this program is number of network nodes.

clc;

clear;

nodeNum = 8;

resMatrixIndex = 3;

ResourceExMatrix = randi(10,nodeNum, nodeNum)*10;

for i = 1:nodeNum

 for j = 1:nodeNum

 if ResourceExMatrix(i,j)<=50 || i==j

 ResourceExMatrix(i,j) = 0;

 end

 end

end

for i = 1:nodeNum

 rowSum(i) = sum(ResourceExMatrix(i,:));

end

for i = 1:nodeNum

 ResourceExMatrix_NormalizedSimu(i,:) = floor(ResourceExMatrix(i,:) /

rowSum(i)*100)/100;

 addOnLocation = find(ResourceExMatrix(i,:)==max(ResourceExMatrix(i,:)));

 addOnLocation = addOnLocation(1,1);

173

 ResourceExMatrix_NormalizedSimu(i, addOnLocation) =

ResourceExMatrix_NormalizedSimu(i, addOnLocation) + 1 -

sum(ResourceExMatrix_NormalizedSimu(i, :));

end

ResourceExMatrix_Normalized = ResourceExMatrix_NormalizedSimu;

for i = 1:nodeNum

 currentValue = 0;

 for j = 1:nodeNum

 if ResourceExMatrix_NormalizedSimu(i,j) > 0

 currentValue = currentValue + ResourceExMatrix_NormalizedSimu(i,j);

 ResourceExMatrix_NormalizedSimu(i,j) = currentValue;

 end

 end

end

dlmwrite(strcat('ResExMatrix_No Fluc\10_40_0.05_0.95\ResourceMatrix_',

num2str(nodeNum),'_', num2str(resMatrixIndex),'.txt'),

ResourceExMatrix_Normalized);

dlmwrite(strcat('ResExMatrix_No Fluc\10_40_0.05_0.95\ResourceMatrixSimu_',

num2str(nodeNum),'_', num2str(resMatrixIndex),'.txt'),

ResourceExMatrix_NormalizedSimu);

J. The Code Used to Calculate the Augmented Betweenness Centrality of Network

Nodes (Matlab)

This program is used to calculate the augmented betweenness centrality of all the

network nodes within a network. The inputs for this program is the network node

number, the network link number, the network topology and the resource exchange

matrix used for information transmission.

clc;

clear;

nodeNum = 7;

linkNum = 6;

netType = 'Rand';

174

matrixIndex = 1;

fileName_dij = strcat('Shortest_Distance\Dij_ExampleProblemAdj.txt');

fileName_res = strcat('ResExMatrix_No

Fluc\10_40_0.05_0.95\ExampleProblemRE.txt');

dijDist = csvread(fileName_dij);

resExMatrix = csvread(fileName_res);

maxLength = size(dijDist);

maxLength = maxLength(1,2);

coutPass = zeros(nodeNum,1);

coutPass_weighted = zeros(nodeNum,1);

numTotalPath = nodeNum*(nodeNum);

resExWeight = zeros(numTotalPath, 1);

k = 0;

for i = 1: nodeNum

 for j = 1: nodeNum

 k = k + 1;

 resExWeight(k,1) = resExMatrix(i,j);

 end

end

for i = 1: numTotalPath

 j = 2;

 while(j < maxLength)

 if dijDist(i,j+1)~= 0

 coutPass(dijDist(i,j),1) = coutPass(dijDist(i,j),1) + 1;

 coutPass_weighted(dijDist(i,j),1) = coutPass_weighted(dijDist(i,j),1) +

resExWeight(i,1);

 end
 j = j+1;

 end

end

strBet = coutPass;

strBet_Nor = coutPass / numTotalPath;

funcBet = coutPass_weighted;

175

K. The Code Used to Generated the Shortest Path between Two Nodes within a

Network Using Dij Algorithm (C++)

This program is based on Dij algorithm to generate the shortest path between any

node pair within a network. The inputs for this program are the network topology and the

number of network nodes.

#include <iostream>

#include <fstream>

#include <sstream>

#include <string>

#include <iomanip>

#include <stdlib.h>

#define INFINITY 999

using namespace std;

static const int number = 10;

class Dij{

 public:

 static const int numOfV = number;

 int predecessor[numOfV], distance[numOfV];

 int adjMatrix[number][number];

 void trys(string);

 int tree[numOfV][numOfV];

 bool mark[numOfV];

 int source;

 int dest;

 void initialize();

 void calculateDistance();

 void output();

 void printPath(int, ofstream &);

 int getClosestUnmarkedNode();

};

void Dij::trys(string fileName){

 ifstream file(fileName);

 int col_read = number;

176

 int row_read = number;

 for(int row = 0; row < row_read; ++row)

 {
 string line;

 getline(file, line);

 stringstream iss(line);

 for (int col = 0; col <col_read; ++col)

 {
 string val;

 getline(iss, val, ',');

 int number;

 number=atoi(val.c_str());

 adjMatrix[row][col] = number;

 }

 }

}

void Dij::initialize(){

 for(int i = 0; i < numOfV; i++){

 mark[i] = false;

 predecessor[i] = -1;

 distance[i] = INFINITY;

 }
 distance[source] = 0;

}

int Dij::getClosestUnmarkedNode(){

 int minDistance = INFINITY;

 int closestUnmarkedNode;

 for(int i = 0; i < numOfV; i++){

 if((!mark[i]) && (minDistance >= distance[i])){

 minDistance = distance[i];

 closestUnmarkedNode = i;

 }

 }
 return closestUnmarkedNode;

}

void Dij::calculateDistance(){

 initialize();

177

 int minDistance = INFINITY;

 int closestUnmarkedNode;

 int count = 0;

 while(count < numOfV){

 closestUnmarkedNode = getClosestUnmarkedNode();

 mark[closestUnmarkedNode] = true;

 for(int i = 0; i < numOfV; i++){

 if((!mark[i]) && (adjMatrix[closestUnmarkedNode][i] > 0)){

 if(distance[i] > distance[closestUnmarkedNode] +

adjMatrix[closestUnmarkedNode][i]){

 distance[i] = distance[closestUnmarkedNode] +

adjMatrix[closestUnmarkedNode][i];

 predecessor[i] = closestUnmarkedNode;

 }

 }

 }
 count++;

 }

}

void Dij::printPath(int node, ofstream &myfile){

 if(node == source){

 if(node == dest){

 myfile<<node+1;

 }else{
 myfile<<node+1<<",";

 }

 }
 else if(predecessor[node] == -1)

 myfile<<"No path from <<source<<to "<<node<<endl;

 else {
 printPath(predecessor[node], myfile);

 if(node == dest){

 myfile<<node+1;

 }else{
 myfile<<node+1<<",";

 }

 }

}

void Dij::output(){

 if(dest == source)

 cout<<source<<".."<<source;

 else

178

 //printPath(dest);

 cout<<"->"<<distance[dest]<<endl;

}

int main(){

 for (int networkIndex = 1; networkIndex <= 1; networkIndex++){

 string networkNames[4] = {"StarLike_50_97", "SF_10_40", "Rand_10_40",

"Ring_50_100"};

 string networkName = networkNames[networkIndex];

 ofstream myfile;

 myfile.open("ShortestDistance/Dij_" + networkName + ".txt");

 int totalDistance = 0;

 Dij G;

 G.trys("Network Topology/" + networkName + ".txt");

 for(int i = 0; i < number; i++){

 G.source = i;

 G.calculateDistance();

 for(int j = 0; j < number; j++){

 G.dest = j;

 totalDistance = totalDistance + G.distance[G.dest];

 //myfile<<i<<","<<j<<","<<G.distance[G.dest]<<"\n";

 G.printPath(G.dest, myfile);

 myfile<<"\n";

 }

 }
 float avgDistance = float(totalDistance) * 2.0 / float(number* (number-1));

 myfile<<avgDistance<<"\n";

 myfile.close();

 }
 return 0;

}

179

L. The Information Transmission Simulation Model Code4 (C++)

This is a C++ project used to simulate the information transmission process

within a network based on the information transmission scenario specified in Table 18.

The inputs for this program are the network topology, the resource exchange used, the

ouput packet rate and the information storage capacity of each node.

a. Main1.CPP

 #include "nodeevent.hpp"

 #include <iostream>

 #include <vector>

 #include <stdio.h>

 #include <stdlib.h>

 #include <iostream>

 #include <fstream>

 #include <sstream>

 #include <string>

 float** resourceEx(string fileName){

 ifstream file(fileName); //Change resource exchange file name YD

 int col_read = NUMBER;

 int row_read = NUMBER;

 float** resExMatrix = new float *[NUMBER];

 for(int row = 0; row < row_read; ++row)

 {
 string line;

 getline(file, line);

 resExMatrix[row] = new float [NUMBER];

 stringstream iss(line);

 for (int col = 0; col <col_read; ++col)

 {
 string val;

 getline(iss, val, ',');

 float probValue;

 probValue=atof(val.c_str());

 resExMatrix[row][col] = probValue;

4 Part of this mode was constructed under the help of Chengwe Li.

180

 }

 }
 return resExMatrix;

 }

 int main()

 {

 float** resExMatrix = resourceEx("ResExMatrix_No

Fluc/10_40_0.05_0.95/ExampleProblemRE_Simu.txt");

 Dij G[4];

 Init_Graph(&G[0]);

 //Create the Node_queue

 for(int i = 1; i<20; i++){

 Node_queue node_queue;

 //run the simulation

 simulation(node_queue,G[networkIndex], 0.05*i, resExMatrix, brandWidth);

 /*

 queue<int> a;

 for (int i=0;i<50;i++){

 for (int j=0;j<50;j++){

 std::cout<<"Path for "<<i<<"and"<<j<<std::endl;

 a=Shortest_Path(i,j,G[2]);

 Print_Path(a);

 Clear_Path(&G[2].shortestPath);

 }

 }*/

 node_queue = {};

 }

 return 0;

 }

b. nodeevent.cpp

#include "nodeevent.hpp"

181

#define Queue_Capacity 5

using namespace std;

//!!!!!!!!!!!!!dimension should be changed into a variable

//generate the random NUMBER between 0~1

int rand(int a,int Range){

 srand(a);

 int A=rand()%Range;

 return A;

};

void send_to_Next(Node_Info_Passing&info, Node_queue&node_queue,int i,int

simu){

 info.position = info.Path.front();

 if(info.position != info.Destination){

 if ((node_queue.Queue_Size[info.position] + info.info_size) <=

Queue_Capacity){

 info.Path.pop();

 info.Simul_step = simu + 1;

 node_queue.addToQueue(info);

 node_queue.Queue_Size[info.position] += info.info_size;

 node_queue.success_pass_counter += 1;

 }else{

 node_queue.aborted_counter += 1;

 }

 }else{

 Printtofile_node(info, simu + 1);

 node_queue.success_deliver_counter += 1;

 }

 //decrease the total info-size of the current Queue_size

 node_queue.Queue_Size[i] -= info.info_size;

};

void prepare_node_to_send(Node_queue&node_queue, float Bandwidth, int

Num_node, int simu){

 float Band_width = Bandwidth;

182

 while(Band_width>0){

 if

(node_queue.Info_Queue[Num_node].size()&&node_queue.Info_Queue[Num_n

ode].front().Simul_step <= simu){

 if(node_queue.Info_Queue[Num_node].front().info_size <=

Band_width){

 send_to_Next(node_queue.Info_Queue[Num_node].front(),

node_queue, Num_node, simu);

 Band_width -= node_queue.Info_Queue[Num_node].front().info_size;

 node_queue.Info_Queue[Num_node].pop();

 }else{

 break;

 }

 }else{

 break;

 }

 }

};

//wrapper function for the Send_Node function

void Send_Node(Node_queue & node_queue,float Bandwidth,int simu){

 for(int i=0; i<NUMBER; i++){

 //message sending protocol, limited to the bandwidth of the node

 prepare_node_to_send(node_queue, Bandwidth, i, simu);

 }

};

mt19937 gen(time(NULL));

int uniIntRand(int n) {

 uniform_int_distribution<int> distribution(1, n);

 return distribution(gen)-1;

};

void Generate_node(Node_queue& node_queue, bool a, int n, double

info_size_max, int simu, Dij &G, float infoSize, float ** resExMatrix){

 for (int i=0;i<n;i++){

183

 Node_Info_Passing info;

 info.Origin = i;

 info.Simul_step = simu;

 info.Initial_Sim_Step = simu;

 info.position = i;

 info.info_size = infoSize; //Normal Distribution YD

 int dest;

 int diMethod = 2; //Change distribution method YD

// ofstream SDPair;

// SDPair.open ("Output/SDSPair.txt",ios::app);

 if(diMethod == 1){

 while(1){

 dest = uniIntRand(NUMBER);

 if(dest != info.Origin){

 break;

 }

 }

 }else if(diMethod == 2){

 float destProb = uniIntRand(100);

 destProb = destProb / 100;

 for(int dest_i = 0; dest_i < NUMBER; dest_i++){

 if(destProb < resExMatrix[info.Origin][dest_i]){

 dest = dest_i;

 //SDPair<<destProb<<","<<resExMatrix[info.Origin][dest_i]<<

","<<info.Origin<<","<<dest<<"\n";

 break;

 }

 }

 }

 info.Destination = dest;

 Compute_path(info, G);

 node_queue.addToQueue(info);

184

 node_queue.Queue_Size[info.position] += info.info_size;

 }

};

void Compute_path(Node_Info_Passing&info, Dij &G){

 info.Path = Shortest_Path(info.Origin, info.Destination, G);

 Clear_Path(&G.shortestPath);

 Print_Path(info.Path); //Origin is not included.

};

//wrapper function to get the simulation running

void simulation(Node_queue&node_queue,Dij &G, float infoSize, float **

resExMatrix, float brandWidth){

 float Bandwidth = brandWidth;

 float info_size_max = 2.0;

 for (int i=1; i < 301; i++){ //Change Number of Iteration

 Generate_node(node_queue, 0, NUMBER, info_size_max, i, G, infoSize,

resExMatrix);

 Send_Node(node_queue, Bandwidth, i);

 Printtofile(node_queue);

 }

};

void Printtofile(Node_queue&node_queue){

 ofstream queue_size_file;

 queue_size_file.open ("Output/" + to_string(networkIndex) + "_Queue_Size_"

+ to_string(resMatrixIndex) + "_" + brandWidthName + ".txt",ios::app);

 //node_queue.Queue_Size.size() = NUMBER for now

 for(int i=0; i<node_queue.Queue_Size.size(); i++){

 queue_size_file << node_queue.Queue_Size[i]<<",";

 }

 queue_size_file<<"\n";

 queue_size_file.close();

 //success_send_counter print out

185

 ofstream counter;

 counter.open ("Output/" + to_string(networkIndex) + "_Counter_Pa_De_Ab_"

+ to_string(resMatrixIndex) + "_" + brandWidthName+ ".txt",ios::app);

 counter << node_queue.success_pass_counter +

node_queue.success_deliver_counter<<","<<node_queue.success_deliver_counte

r<<","<<node_queue.aborted_counter<<"\n";

 counter.close();

};

void Printtofile_node(Node_Info_Passing&info, int time_step){

 //Node passing

 ofstream info_delivery_time;

 info_delivery_time.open ("Output/" + to_string(networkIndex) +

"_Info_Deliver_Time_" + to_string(resMatrixIndex) + "_" + brandWidthName+

".txt",ios::app);

 info_delivery_time <<time_step<<","<<time_step - info.Initial_Sim_Step;

 info_delivery_time<<"\n";

 info_delivery_time.close();

};

// const string fileName = "Network Topology/" + networkName + ".txt";

// string networkNames[4] = {"StarLike_50_97", "SF_50_100",

"Random_50_100", "Ring_50_100"};

// string networkName = networkNames[networkIndex];

c. Path.cpp

#include "Path.h"

#define INFINITY 999

using namespace std;

void Dij::trys(string fileName){

 ifstream file(fileName);

 int col_read = NUMBER;

 int row_read = NUMBER;

186

 for(int row = 0; row < row_read; ++row)

 {
 string line;

 getline(file, line);

 stringstream iss(line);

 for (int col = 0; col <col_read; ++col)

 {
 string val;

 getline(iss, val, ',');

 int conn;

 conn=atoi(val.c_str());

 adjMatrix[row][col] = conn;

 }

 }

}

void Dij::initialize(){

 for(int i = 0; i < numOfV; i++){

 mark[i] = false;

 predecessor[i] = -1;

 distance[i] = INFINITY;

 }

 distance[source] = 0;

}

int Dij::getClosestUnmarkedNode(){

 int minDistance = INFINITY;

 int closestUnmarkedNode;

 for(int i = 0; i < numOfV; i++){

 if((!mark[i]) && (minDistance >= distance[i])){

 minDistance = distance[i];

 closestUnmarkedNode = i;

 }

 }

 return closestUnmarkedNode;

}

void Dij::calculateDistance(){

 initialize();

 int minDistance = INFINITY;

 int closestUnmarkedNode;

187

 int count = 0;

 while(count < numOfV){

 closestUnmarkedNode = getClosestUnmarkedNode();

 mark[closestUnmarkedNode] = true;

 for(int i = 0; i < numOfV; i++){

 if((!mark[i]) && (adjMatrix[closestUnmarkedNode][i] > 0)){

 if(distance[i] > distance[closestUnmarkedNode] +

adjMatrix[closestUnmarkedNode][i]){

 distance[i] = distance[closestUnmarkedNode] +

adjMatrix[closestUnmarkedNode][i];

 predecessor[i] = closestUnmarkedNode;

 }

 }

 }

 count++;

 }

}

void Dij::printPath(int node){

 if(node == source){

 //cout<<node<<"..";

 }

 else if(predecessor[node] == -1){

 //cout<<"No path from “<<source<<”to "<<node<<endl;

 }

 else {

 printPath(predecessor[node]);

 //cout<<node<<"..";

 shortestPath.push(node);

 // cout<<shortestPath.back()<<"..";

 }

}

void Dij::output(){

 if(dest == source){

 //cout<<source<<".."<<source;

 }

 else

 printPath(dest);

 //cout<<"->"<<distance[dest]<<endl;

}

void Init_Graph(Dij*G){

188

 for (int networkIndex = 0; networkIndex < 3; networkIndex++){

 string networkNames[4] = {"ExampleProblemAdj", "SF_10_40",

"Rand_10_40", "Ring_10_40"}; //Change network name. YD

 string networkName = networkNames[networkIndex];

 ofstream myfile;

 //myfile.open("ShortestDistance/Dij_" + networkName + ".txt");

 G[networkIndex].trys("Network Topology/" + networkName + ".txt");

 }

}

queue<int> Shortest_Path(int source, int dest, Dij &G){

 G.source = source;

 G.dest = dest;

 G.calculateDistance();

 G.output();

 return G.shortestPath;

};

void Print_Path(queue<int> a){

 while (!a.empty()){

 //std::cout << ' ' << a.front();

 a.pop();

 }

 //std::cout << '\n';

};

void Clear_Path(queue<int> *a){

 while (!a->empty()){

 a->pop();

 }

};

d. Queue.cpp

#include "Queue.hpp"

int Node_queue::success_pass_counter=0;

int Node_queue::success_deliver_counter=0;

int Node_queue::aborted_counter=0;

189

std::vector<unsigned>

Node_queue::Queue_Conjested(static_cast<size_t>(NUMBER));

Node_queue::Node_queue():Info_Queue(static_cast<size_t>(NUMBER)),

 Queue_Size(static_cast<size_t>(NUMBER)){};

 void Node_queue::addToQueue(const Node_Info_Passing& node){

 Info_Queue[node.position].push(node);

 };

 unsigned Node_queue::queueSize(const Node_Info_Passing& node) const{

 return Info_Queue[node.position].size();

 };

 const Node_Info_Passing& Node_queue::viewFrontNodeInfo(const

Node_Info_Passing& node) const

 {

 return Info_Queue[node.position].front();

 };

 Node_Info_Passing Node_queue::getFrontNode(const Node_Info_Passing&

node)

 {

 Node_Info_Passing front_node(Info_Queue[node.position].front());

 Info_Queue[node.position].pop();

 return front_node;

 };

 void Node_queue::increaseGroupSize(const Node_Info_Passing& node){

 Queue_Size[node.position]+=1;

 };

 void Node_queue::decreaseGroupSize(const Node_Info_Passing& node)

 {

 Queue_Size[node.position]-=1;

 };

190

unsigned Node_queue::groupSize(const Node_Info_Passing& node) const

{

 return Queue_Size[node.position];

};

void Node_queue::Set_Conjested(const Node_Info_Passing& node)

{

 Queue_Conjested[node.position]=false;

};

void Node_queue::Clear_Conjested_state(const Node_Info_Passing&node)

{

 Queue_Conjested[node.position]=true;

};

bool Node_queue::isConjested(const Node_Info_Passing& node)

{

 return Queue_Conjested[node.position];

};

e. nodeevet.hpp

#ifndef _NODEEVENT_HPP_

#define _NODEEVENT_HPP_

#include "Path.h"

#include <cstdio>

#include <iostream>

#include <queue>

#include <time.h>

#include <stdio.h>

#include <stdlib.h>

#include <cmath>

#include <fstream>

#include <random>

int rand(int a,int Range);

191

void send_to_Next(Node_Info_Passing&node,Node_queue&node_queue,int i,int

simu);

void prepare_node_to_send(Node_queue&node_queue,float Bandwidth,int

Num_node,int simu);

void Send_Node(Node_queue & node_queue,float Bandwidth,int simu);

void Generate_node(Node_queue& node_queue,bool a,int n,double

info_size_max,int simu,Dij&G, float infoSize, float ** resExMatrix);

void Compute_path(Node_Info_Passing&node,Dij &G);

void simulation(Node_queue&node_queue,Dij &G, float infoSize, float **

resExMatrix, float brandWidth);

void Printtofile(Node_queue&node_queue);

void Printtofile_node(Node_Info_Passing&node,int time_step);

int uniIntRand(int n) ;

#endif

f. path.hpp

#ifndef DISTANCE_H_INCLUDED

#define DISTANCE_H_INCLUDED

#include "Queue.hpp"

#include <iostream>

#include <fstream>

#include <sstream>

#include <string>

#include <iomanip>

#include <stdlib.h>

#include <vector>

#include <queue>

using namespace std;

class Dij{

 public:

 queue <int> shortestPath;

 static const int numOfV = NUMBER;

 int predecessor[numOfV], distance[numOfV];

192

 int adjMatrix[NUMBER][NUMBER];

 void trys(string);

 int tree[numOfV][numOfV];

 bool mark[numOfV];

 int source;

 int dest;

 void initialize();

 void calculateDistance();

 void output();

 void printPath(int);

 int getClosestUnmarkedNode();

};

void Init_Graph(Dij*G);

queue<int> Shortest_Path(int, int , Dij&);

void Print_Path(queue<int> a);

void Clear_Path(queue<int> *a);

#endif // DISTANCE_H_INCLUDED

193

g. Queue.hpp

#ifndef QUEUE_HPP_

#define QUEUE_HPP_

#include <queue>

#include <vector>

#include <iostream>

#include <string>

#include <sstream>

namespace patch

{

 template < typename T > std::string to_string(const T& n)

 {

 std::ostringstream stm ;

 stm << n ;

 return stm.str() ;

 }

}

using namespace std;

using namespace patch;

static const int NUMBER = 7;

static const int resMatrixIndex = 3;

static const int networkIndex = 0;

static const float brandWidth = 1;

static const string brandWidthName = "1";

struct Node_Info_Passing{

 int Origin;

 int Destination;

 int position;

 std::queue<int> Path;

 float info_size;

 int Simul_step;

 int Initial_Sim_Step;

};

194

class Node_queue {

public:

 enum queue_static {Normal,Conjested,Empty};

 Node_queue();

 static int success_pass_counter;

 static int success_deliver_counter;

 static int aborted_counter;

public:

 void addToQueue(const Node_Info_Passing&);

 unsigned queueSize(const Node_Info_Passing&) const;

 const Node_Info_Passing& viewFrontNodeInfo(const Node_Info_Passing&)

const;

 Node_Info_Passing getFrontNode(const Node_Info_Passing&);

 void increaseGroupSize(const Node_Info_Passing&);

 void decreaseGroupSize(const Node_Info_Passing&);

 unsigned groupSize(const Node_Info_Passing&) const;

public:

 static void Set_Conjested(const Node_Info_Passing&);

 static void Clear_Conjested_state(const Node_Info_Passing&);

 static bool isConjested(const Node_Info_Passing&);

//private:

 std::vector<std::queue<Node_Info_Passing> > Info_Queue;

 std::vector<float> Queue_Size;

//private:

 static std::vector<unsigned> Queue_Conjested;

195

}; // class QueueState

#endif // QUEUE_HPP_

196

M. The “Link Minus” Network Topology Optimization Code (Matlab)

This program is used to generate the optimized network topoglogy for a given

network node number based on the process discussed in Section 6.3. The inputs for this

program are the number of netwowrk nodes and the set of constrained network links that

cannot be removed during the “Link Minus” process.

clc;

clear;

nodeNum = 8;

adjMatrix = importdata('adj_design.csv', ',' , 0);

count = 1;

results = [];

adjMatrixCopy = adjMatrix;

results(count,1) = 0;

results(count,2) = 0;

results(count,3) = 0;

results(count,4) = ER_Cal(8,adjMatrix,1,8);

for inter = 1:8

% h = view(biograph(sparse(adjMatrix)));

 temp = adjMatrix.*linkIMP_2(8, adjMatrixCopy, 1, 8);

 tempCopy = temp;

 tempCopy(:,8) = 0;

 tempCopy(8,:) = 0;

 S = 2;

197

 while (S>=2)

 [value, index] = max(reshape(tempCopy, numel(tempCopy), 1));

 [i,j] = ind2sub(size(tempCopy), index);

 adjCopy = adjMatrix;

 adjCopy(i,j) = 0;

 adjCopy(j,i) = 0;

 [S, C] = graphconncomp(sparse(adjCopy(1:7,1:7)));

 if(S>=2)

 tempCopy(i,j) = 0;

 tempCopy(j,1) = 0;

 end

 if(sum(sum(tempCopy))==0)

 break;

 end

 end

 if(sum(sum(tempCopy))>0)

 count = count + 1;

 results(count,1) = i;

 results(count,2) = j;

 results(count,3) = temp(i,j);

 adjMatrix(i,j) = 0;

 adjMatrix(j,i) = 0;

 results(count,4) = ER_Cal(8,adjMatrix,1,8);

 end

end

198

view(biograph(adjMatrix))

199

REFERENCES

1. Bellinger, G., D. Castro, and A. Mills, Data, information, knowledge, and wisdom. URL:
http://www. systems-thinking. org/dikw/dikw. htm, 2004: p. 47.

2. Dodds, P.S., D.J. Watts, and C.F. Sabel, Information exchange and the robustness of
organizational networks. Proceedings of the National Academy of Sciences, 2003.
100(21): p. 12516-12521.

3. Durugbo, C., et al., Modelling collaboration using complex networks. Information
Sciences, 2011. 181(15): p. 3143-3161.

4. White, A., A Collaboration Network for Unmanned Aerial Vehicle Operation, Research
and Education. 2005, DTIC Document.

5. Frew, E.W. and T.X. Brown, Networking issues for small unmanned aircraft systems.
Journal of Intelligent and Robotic Systems, 2009. 54(1-3): p. 21-37.

6. Derya, A., G. Kelly, and N.M. Dimitri, UAVs for Law Enforcement: A Case Study for
Connectivity and Fuel Management, in 14th AIAA Aviation Technology, Integration, and
Operations Conference. 2014, American Institute of Aeronautics and Astronautics.

7. Engh, C., M.A. Goodrich, and B.S. Morse, UAV Video Coverage Quality Maps and
Prioritized Indexing for Wilderness Search and Rescue. 2010.

8. Yanmaz, E., et al. A discrete stochastic process for coverage analysis of autonomous UAV
networks. in GLOBECOM Workshops (GC Wkshps), 2010 IEEE. 2010. IEEE.

9. Frew, E.W., et al., Networked communication, command, and control of an unmanned
aircraft system. Journal of Aerospace Computing, Information, and Communication,
2008. 5(4): p. 84-107.

10. Long, T., A. Bati, and D. Hilliard. Radar Cross Section measurements of small Unmanned
Air Vehicle Systems in non-cooperative field environments. in Antennas and Propagation,
2009. EuCAP 2009. 3rd European Conference on. 2009.

11. Chao, H., Y. Cao, and Y. Chen. Autopilots for small fixed-wing unmanned air vehicles: A
survey. in Mechatronics and Automation, 2007. ICMA 2007. International Conference on.
2007. IEEE.

12. George, J., S. P. B, and J.B. Sousa, Search Strategies for Multiple UAV Search and Destroy
Missions. Journal of Intelligent & Robotic Systems, 2011. 61(1-4): p. 355-367.

13. Sun, Z., et al., BorderSense: Border patrol through advanced wireless sensor networks.
Ad Hoc Networks, 2011. 9(3): p. 468-477.

14. Nigam, N. and I. Kroo. Control and design of multiple unmanned air vehicles for a
persistent surveillance task. 2008.

15. Beard, R.W., et al., Decentralized Cooperative Aerial Surveillance Using Fixed-Wing
Miniature UAVs. Proceedings of the IEEE, 2006. 94(7): p. 1306-1324.

16. Valenti, M., D. Dale, and J. How. Mission health management for 24/7 persistent
surveillance operations. 2007.

17. Casbeer, D.W., A.L. Swindlehurst, and R. Beard, Connectivity in a UAV multi-static radar
network. 2006.

18. Barrado, C., et al., Wildfire monitoring using a mixed air-ground mobile network.
Pervasive Computing, IEEE, 2010. 9(4): p. 24-32.

19. Zajkowski, T., S. Dunagan, and J. Eilers. Small UAS communications mission. 2006.

http://www/

200

20. Cho, A., et al., Wind estimation and airspeed calibration using a UAV with a single-
antenna GPS receiver and pitot tube. Aerospace and Electronic Systems, IEEE
Transactions on, 2011. 47(1): p. 109-117.

21. White, B.A., et al., Contaminant Cloud Boundary Monitoring Using Network of UAV
Sensors. Sensors Journal, IEEE, 2008. 8(10): p. 1681-1692.

22. Corrigan, C.E., et al., Capturing vertical profiles of aerosols and black carbon over the
Indian Ocean using autonomous unmanned aerial vehicles. Atmos. Chem. Phys. Discuss.,
2007. 7(4): p. 11429-11463.

23. Curry, J., et al., Applications of Aerosondes in the Arctic. Bulletin of the American
Meteorological Society, 2004. 85(12): p. 1855-1861.

24. Maza, I., et al., Experimental results in multi-UAV coordination for disaster management
and civil security applications. Journal of intelligent & robotic systems, 2011. 61(1-4): p.
563-585.

25. Sofge, E. Houston Cops Test Drone Now in Iraq, Operator Says. 2008; Available from:
http://www.popularmechanics.com/flight/drones/a2324/4234272/.

26. Government. Systems Engineering Guide for Systems of Systems. 2008.
27. Chakrabarti, D., et al., Epidemic thresholds in real networks. ACM Transactions on

Information and System Security (TISSEC), 2008. 10(4): p. 1.
28. Gorod, A., B.J. Sauser, and J.T. Boardman, System-of-Systems Engineering Management:

A Review of Modern History and a Path Forward. IEEE Systems Journal, 2008. 2(4): p.
484-499.

29. DoD, U., DoDAF Architecture Framework Version 2.02. Website, August, 2010.
30. Garstka, J., Implementation of Network Centric Warfare. Transformation Trends, 2004.

28.
31. Noda, I. and M. Hatayama. Common Frameworks of Networking and Information-

Sharing for Advanced Rescue Systems. in Robotics and Biomimetics, 2004. ROBIO 2004.
IEEE International Conference on. 2004. IEEE.

32. Portmann, M. and A.A. Pirzada, Wireless mesh networks for public safety and crisis
management applications. Internet Computing, IEEE, 2008. 12(1): p. 18-25.

33. Manzano, M., E. Calle, and D. Harle. Quantitative and qualitative network robustness
analysis under different multiple failure scenarios. in Ultra Modern Telecommunications
and Control Systems and Workshops (ICUMT), 2011 3rd International Congress on. 2011.
IEEE.

34. Purohit, A., F. Mokaya, and P. Zhang. Collaborative indoor sensing with the sensorfly
aerial sensor network. in Proceedings of the 11th international conference on
Information Processing in Sensor Networks. 2012. ACM.

35. Yanmaz, E., R. Kuschnig, and C. Bettstetter. Channel measurements over 802.11 a-based
UAV-to-ground links. in GLOBECOM Workshops (GC Wkshps), 2011 IEEE. 2011. IEEE.

36. Bekmezci, I., O.K. Sahingoz, and Ş. Temel, Flying ad-hoc networks (FANETs): A survey. Ad
Hoc Networks, 2013. 11(3): p. 1254-1270.

37. Baillieul, J. and P.J. Antsaklis, Control and communication challenges in networked real-
time systems. Proceedings of the IEEE, 2007. 95(1): p. 9-28.

38. Li, J., et al., Packet Delay in UAV Wireless Networks Under Non-saturated Traffic and
Channel Fading Conditions. Wireless Personal Communications, 2013. 72(2): p. 1105-
1123.

http://www.popularmechanics.com/flight/drones/a2324/4234272/

201

39. Criado, R., et al., (ψ, p, q)-vulnerabilities: A unified approach to network robustness.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 2009. 19(1): p. 013133.

40. Albert, R., H. Jeong, and A.-L. Barabasi, Error and attack tolerance of complex networks.
Nature, 2000. 406(6794): p. 378-382.

41. Crucitti, P., et al., Efficiency of scale-free networks: error and attack tolerance. Physica A:
Statistical Mechanics and its Applications, 2003. 320: p. 622-642.

42. Latora, V. and M. Marchiori, Efficient behavior of small-world networks. Physical review
letters, 2001. 87(19): p. 198701.

43. Dunne, J.A., R.J. Williams, and N.D. Martinez, Network structure and biodiversity loss in
food webs: robustness increases with connectance. Ecology letters, 2002. 5(4): p. 558-
567.

44. Dekker, A.H. Simulating network robustness: two perspectives on reality. in Proceedings
of SimTecT 2004 Simulation Conference. 2004.

45. Balestrini Robinson, S., A modeling process to understand complex system architectures.
2009.

46. Aksaray, D., K. Griendling, and D. Mavris. UAVs for Law Enforcement: A Case Study for
Connectivity and Fuel Management. in 14th AIAA Aviation Technology, Integration, and
Operations Conference. 2014.

47. Perry, W., et al., Measurements of Effectiveness for the Information-Age Navy: The
Effects of Network-Centric Operations on Combat Outcomes. 2002, DTIC Document.

48. Ellens, W. and R.E. Kooij, Graph measures and network robustness. arXiv preprint
arXiv:1311.5064, 2013.

49. Abraham, I., et al., Alternative routes in road networks. Journal of Experimental
Algorithmics (JEA), 2013. 18: p. 1.3.

50. Dekker, A.H. and B.D. Colbert. Network robustness and graph topology. in Proceedings
of the 27th Australasian conference on Computer science-Volume 26. 2004. Australian
Computer Society, Inc.

51. Newman, M.E., The structure and function of complex networks. SIAM review, 2003.
45(2): p. 167-256.

52. Bozzo, E., The Moore–Penrose inverse of the normalized graph Laplacian. Linear Algebra
and its Applications, 2013. 439(10): p. 3038-3043.

53. Spielman, D.A. Algorithms, graph theory, and linear equations in Laplacian matrices.
54. Abbas, W. and M.B. Egerstedt, Robust graph topologies for networked systems. 2012.
55. Wang, X., et al., Improving robustness of complex networks via the effective graph

resistance. The European Physical Journal B, 2014. 87(9): p. 1-12.
56. Ellens, W., et al., Effective graph resistance. Linear algebra and its applications, 2011.

435(10): p. 2491-2506.
57. Young, G.F., L. Scardovi, and N.E. Leonard, A New Notion of Effective Resistance for

Directed Graphs-Part I: Definition and Properties. arXiv preprint arXiv:1310.5163, 2013.
58. Li, Y. and Z.-L. Zhang, Digraph laplacian and the degree of asymmetry. Internet

Mathematics, 2012. 8(4): p. 381-401.
59. Chung, F. and W. Zhao, PageRank and Random Walks on Graphs, in Fete of

Combinatorics and Computer Science, G.H. Katona, et al., Editors. 2010, Springer Berlin
Heidelberg. p. 43-62.

202

60. Boley, D., G. Ranjan, and Z.-L. Zhang, Commute times for a directed graph using an
asymmetric Laplacian. Linear Algebra and its Applications, 2011. 435(2): p. 224-242.

61. Young, G.F., L. Scardovi, and N.E. Leonard, A New Notion of Effective Resistance for
Directed Graphs-Part II: Computing Resistances. arXiv preprint arXiv:1310.5168, 2013.

62. Mahadevan, P., et al., The Internet AS-level topology: three data sources and one
definitive metric. ACM SIGCOMM Computer Communication Review, 2006. 36(1): p. 17-
26.

63. Jamakovic, A. and P. Van Mieghem, On the robustness of complex networks by using the
algebraic connectivity, in NETWORKING 2008 Ad Hoc and Sensor Networks, Wireless
Networks, Next Generation Internet. 2008, Springer. p. 183-194.

64. Fiedler, M., Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 1973.
23(2): p. 298-305.

65. Jamakovic, A. and S. Uhlig. Influence of the network structure on robustness. in
Networks, 2007. ICON 2007. 15th IEEE International Conference on. 2007. IEEE.

66. Baras, J.S. and P. Hovareshti. Efficient and robust communication topologies for
distributed decision making in networked systems. in Decision and Control, 2009 held
jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of
the 48th IEEE Conference on. 2009. IEEE.

67. Ellens, W., Effective resistance. 2011.
68. Klein, D.J. and M. Randić, Resistance distance. Journal of Mathematical Chemistry, 1993.

12(1): p. 81-95.
69. Barabási, A.-L. and R. Albert, Emergence of scaling in random networks. science, 1999.

286(5439): p. 509-512.
70. ERDdS, P. and A. WI, On random graphs I.
71. Fouss, F., et al., Random-walk computation of similarities between nodes of a graph with

application to collaborative recommendation. Knowledge and data engineering, ieee
transactions on, 2007. 19(3): p. 355-369.

72. Ranjan, G., Understanding (Inter-) dependencies and vulnerabilities in static and dynamic
networks. 2013, University of Minnesota.

73. Newman, M., Networks: an introduction. 2010: Oxford University Press.
74. Criado, R., et al., Understanding complex networks through the study of their critical

nodes: efficiency, vulnerability and dynamical importance. New Trends and Tools in
Complex Networks, 2007: p. 23.

75. Boccaletti, S., et al., Complex networks: Structure and dynamics. Physics reports, 2006.
424(4): p. 175-308.

76. Farkas, I.J., et al., Spectra of “real-world” graphs: Beyond the semicircle law. Physical
Review E, 2001. 64(2): p. 026704.

77. Faloutsos, M., P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet
topology. in ACM SIGCOMM computer communication review. 1999. ACM.

78. Freeman, L.C., A set of measures of centrality based on betweenness. Sociometry, 1977:
p. 35-41.

79. Freeman, L.C., Centrality in social networks conceptual clarification. Social networks,
1979. 1(3): p. 215-239.

80. Stephenson, K. and M. Zelen, Rethinking centrality: Methods and examples. Social
Networks, 1989. 11(1): p. 1-37.

203

81. Noh, J.D. and H. Rieger, Random walks on complex networks. Physical review letters,
2004. 92(11): p. 118701.

82. Freeman, L.C., S.P. Borgatti, and D.R. White, Centrality in valued graphs: A measure of
betweenness based on network flow. Social networks, 1991. 13(2): p. 141-154.

83. Lovász, L., Random walks on graphs: A survey.
84. Wang, C.-h. and L. Pham. Resilience and robustness. in Australasian Structural

Engineering Conference 2012: The past, present and future of Structural Engineering.
2012. Engineers Australia.

85. Okoh, P. and S. Haugen, Improving the robustness and resilience properties of
maintenance. Process Safety and Environmental Protection, 2015. 94: p. 212-226.

86. Hu, Z., K. Thulasiraman, and P.K. Verma, Complex Networks: Traffic Dynamics, Network
Performance, and Network Structure. American Journal of Operations Research, 2013. 3:
p. 187.

87. Tizghadam, A. and A. Leon-Garcia. On congestion in mission critical networks. in
INFOCOM Workshops 2008, IEEE. 2008. IEEE.

88. Hu, Z. and P.K. Verma. Impact of network structure on latency in complex networks. in
Sarnoff Symposium (SARNOFF), 2012 35th IEEE. 2012. IEEE.

89. Hu, Z., P.K. Verma, and K. Thulasiraman. Interplay Between Traffic Dynamics and
Network Structure. in ICONS 2013, The Eighth International Conference on Systems.
2013.

90. De Martino, D., et al., Congestion phenomena on complex networks. arXiv preprint
arXiv:0808.0584, 2008.

91. Packet Switching. [Website] 2016 01/10/2016 [cited 2016 01/26/2016]; Available from:
https://en.wikipedia.org/wiki/Packet_switching.

92. Tizghadam, A. and A. Leon-Garcia. On traffic-aware betweenness and network criticality.
in INFOCOM IEEE Conference on Computer Communications Workshops, 2010. 2010.
IEEE.

93. Conrad, K., Probability distributions and maximum entropy. retrieved November, 2013.
14: p. 2013.

94. Jaynes, E.T., Prior probabilities. Systems Science and Cybernetics, IEEE Transactions on,
1968. 4(3): p. 227-241.

95. Good, I.J., Maximum entropy for hypothesis formulation, especially for multidimensional
contingency tables. The Annals of Mathematical Statistics, 1963: p. 911-934.

96. Ranjan, G., Z.-L. Zhang, and D. Boley, Incremental computation of pseudo-inverse of
laplacian, in Combinatorial Optimization and Applications. 2014, Springer. p. 729-749.

97. Courrieu, P., Solving time of least square systems in Sigma-Pi unit networks. arXiv
preprint arXiv:0804.4808, 2008.

98. Courrieu, P., Fast computation of Moore-Penrose inverse matrices. arXiv preprint
arXiv:0804.4809, 2008.

99. Wyatt, E.J., K. Griendling, and D.N. Mavris. Addressing interoperability in military
systems-of-systems architectures. in Systems Conference (SysCon), 2012 IEEE
International. 2012. IEEE.

100. Tran, H.T., J.C. Domercant, and D. Mavris, Trade-offs Between Command and Control
Architectures and Force Capabilities Using Battlespace Awareness. 2014, DTIC
Document.

204

205

VITA

Yuqian Dong grew up in Shenyang, China and later wend to Beijing, China for

her undergraduate studies. She obtained her Bachelor of Engineering from Beijing

University of Aeronautics and Astronautics in 2010. Later that year she began her

graduate school in the school of Aerospace Engineering at Georgia Institute of

Technology. She started her study as a Graduate Research Assistant in the Aerospace

Systems Design Laboratory under the advisement of Dr. Dimitri Mavris. In 2011, she

joined the ARCHITECT research team, which major focus was conducting fundamental

researches for the Office of Naval Research. Her responsibility in the team is to help

understand and address the issues related to the uncertainties and robustness of System of

Systems Architectures. The researches she conducted led to this thesis, which is to be

parlayed into at least one journal paper.

During the process of pursuing her Ph.D., Yuqian finished her Masters of Science

in Aerospace Engineering in 2013 and in Operations Research in 2015. Currently she

works at UPS at a senior analyst.

