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CHAPTER I

INTRODUCTION

Propulsion systems, such as turboprop engines, are commonly designed to operate at

optimal conditions, which are investigated and set during their design phase. How-

ever, effects such as component aging or the operating environment might change

these optimal operating conditions. As a result, over a long period of time, valuable

resources may be wasted if the propulsion system does not adapt to perform in an

optimal manner.

This thesis focuses on the design and implementation of an adaption mechanism that

allows the engine to perform optimally with regard to a desired cost function when

running at steady state. This adaption mechanism is referred to as Peak-seeking

control and is a real time, model-free, steady state optimization process.

Thanks to its model-free approach, the peak-seeking strategy allows modularity in

the engine’s design. It allows the user to arbitrarily choose any of the engine’s compo-

nents, without having to perform a tedious analysis in order to determine its optimal

operating conditions. Also, since the peak-seeking strategy is operating based on

steady state measurements, the control law used for the engine is left to the user’s

choice. Overall, the Peak-seeking strategy designed in this thesis embraces the notion

of ”Plug and Play”.

Only one control input (the blade pitch angle for a turboprop) is driven by the Peak-

seeking process to progressively minimize a predefined cost function, while the other

system’s inputs insure stability and performance of the close-loop system. Such tech-

nique could also find some applications in other systems such as geared turbofan (with

continuously variable transmissions), where the gear ratio would be the optimizing
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parameter, or wind turbines, where the blade pitch angle could be optimized for bet-

ter efficiency. Figure 1 shows the different systems where the Peak-seeking approach

developed here could have an impact.

Either a Newton or Gradient descent method are used to drive the optimizing pa-

rameter. However, these methods both require the knowledge of the performance

function partial derivatives with respect to the optimizing parameter. These deriva-

tives are not known and have to be estimated based only from noisy measurement of

the performance function. Using a Taylor’s series approximation, a linear model of

the derivatives behavior was built and an Extended Kalman Filter (EKF) was used

to estimate them.

In order to first evaluate the feasibility of the method, an initial study was per-

formed on a DC motor driving a variable pitch propeller. The DC motor system

was simulated, but a hardware platform was built for future implementation of the

Peak-seeking. The method was then applied to a simulated turboprop engine, and

similarly to the DC motor case, showed some very satisfying results.

This thesis is segmented in five parts. Within this introduction, a literature review

is performed. A background part is then presented to explain and derive some of the

control techniques used in this research. The next section deals with the DC motor

and contains the derivation of the analytical framework of the Peak-seeking control

as well as the simulation results and hardware setup of the DC motor system. Next,

is a section on the turboprop engine which in addition of presenting the Peak-seeking

method and results, also contains a thorough examination of the control design of

this nonlinear system. Finally the last part is the conclusion, where we talk about

the future work.
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(a) Turboprop (b) Geared turbofan (c) Wind turbine

Figure 1: Common systems were the presented Peak-seeking method could have an

impact [29]

1.1 Literature review

Peek-seeking control (which is also referred to as extremum seeking or optimalizing

control) was first investigaed by C.S. Draper and Y. T. Li [5, 6].

In the past decades, peak-seeking control has been investigated for various appli-

cations such as formation flight drag reduction [9, 11, 10], bioreactors [12], antilock

braking systems (ABS) [13, 14], aeroengine compressor instabilities [15, 16], combus-

tion instabilities [17, 18, 19], variator in a pushbelt continuous variable transmission

(CVT)[26], and other[27, 28]. Most of the methods previously developed are cumber-

some to apply on real systems however, as they require complicated excitation signals

and highly reliable measurements.

In this thesis, we make use of a technique presented in J. J. Ryan and J. L. Speyer

[7] to design the peak-seeking strategy. This method uses a Kalman filter, and is

easily implementable.

3



CHAPTER II

BACKGROUND

We present and derive in this section some of control and estimation tools that will

later be used in this report.

2.1 Kalman Filter

2.1.1 Linear Kalman Filter

An Extended Kalman Filter (EKF) is necessary for the peak-seeking process. Before

going into more details on the EKF, it is important to understand first how the

original Kalman filter works. The derivation presented here is a detailed version of

the found in [25].

The goal of the filter is to estimate the state x ∈ Rn of a discrete-time controlled

process governed by the linear stochastic equation

xk+1 = Akxk + Bkuk+1 + wk (1)

With measurement equation,

zk = Hkxk + vk (2)

where wk and vk in Eqs. (1) and (2) represent the process and measurement noises

respectively. Both are Gaussian noises and are assumed to be normally distributed

with zero mean. The variables u ∈ Rm and z ∈ Rp represent the inputs and outputs

of the digital system. The matrix A is the state transition matrix, B relates the input

to the state dynamics and H is the measurement matrix.

Both process and measurement noises are uncorrelated with respective probability

distributions

p(wk) ∼ N(0,Qk) (3)
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p(vk) ∼ N(0,Rk) (4)

R is the noise covariance associated with the measurement device and is generally

given by the device’s manufacturer while Q is associated with the uncertainty in the

modeling of the system and most of the time has to be guessed using engineering

intuition.

The estimation process consists of two main steps, an a priori and an a posteriori.

The a priori step consists of trying to propagate the current estimate based only

on the system process noise wk. The a posteriori process then take into account

the measurement made and refines the a priori estimate by taking into account the

measurement noise vk. The a priori and a posteriori errors are defined as

e−k ≡ xk − x̂−k (5)

ek ≡ xk − x̂k (6)

The errors between the true state and its estimates can be thought as an uncer-

tainty with associated covariance matrices

P−k = E[e−k e−k
T

] (7)

Pk = E[ekek
T ] (8)

As mentioned, the measurement noise is not taken into account for the a priori

estimate and the predicted measurement is

zk = Hkx̂
−
k (9)

The difference between the actual and predicted measurement is known as the

measurement innovation δz−k

δz−k = zk − ẑk = zk −Hkx̂
−
k (10)

The a priori estimate of the next state is found using the previous state estimate

x̂−k+1 = Akx̂k + Bkuk+1 (11)
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Furthermore the a priori covariance is propagated by the the following Lyapunov

equation

P−k+1 = AkPkA
T
k + Qk (12)

The goal of the Kalman filter is to improve the a priori state estimate by incorpo-

rating, in an optimal manner, the information retrieved from the noisy measurements.

The updated estimate is a weighted sum of the a priori state and the product of a

gain matrix with the measurement innovation.

x̂k = x̂−k + Kk + δz−k = x̂−k + Kk(zk −Hkx̂
−
k ) (13)

We will now show how to find the optimal Kalman gain K . The a posteriori

error can be expanded as

ek = xk − x̂k

= xk − x̂−k −Kk(zk −Hkx̂
−
k )

= −(I−KkHk)x̂−k −Kkzk + xk

= −(I−KkHk)x̂−k −Kk(Hkxk + vk) + xk

= −x̂−k −KkHkx̂
−
k −KkHkxk −Kkvk + xk

= (xk − x̂−k ) + KkHk(x̂−k − xk)−Kkvk

= (I−KkHk)(xk − x̂−k )−Kkvk (14)

Using the definition of the a priori error from Eq. (5) the a posteriori error is

ek = [I−KkHk]e−k −Kkvk (15)

The a posteriori covariance matrix is therefore

Pk = E[eke
T
k ] = (I−KkHk)P−k (I−KkHk)T + KkRkK

T
k (16)

In order to have the best estimate possible we are looking into minimizing the

variances of the errors between the actual and estimated states. This correspond to
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the diagonal terms of the a posteriori covariance matrix. Therefore the optimal gain

Kalman Gain Kk should minimize the trace of Pk. To get the trace of Pk, Eq. (16)

is expanded as follow

Pk = E[eke
T
k ] = (I−KkHk)P−k (I−KkHk)T + KkRkK

T
k

= (I−KkHk)P−k (I−HT
k KT

k ) + KkRkK
T
k

= (P−k −KkHkP
−)(I−HT

k KT
k ) + KkRkK

T
k

= P−k −KkHkP
−
k −P−k HT

k KT
k + KkHkP

−
k HT

k KT
k + KkRkK

T
k (17)

The trace is

Tr(Pk) = Tr(P−k )− 2Tr(KkHkP
−
k ) + Tr(Kk(HkP

−
k HT

k )KT
k ) + Tr(KkRkK

T
k ) (18)

the optimal gain will have to satisfy

∂Tr(Pk)

∂Kk

= 0 (19)

To compute this derivative we need to use the two following properties

∂Tr(M1M2M
T
1 )

∂M1

= 2M1M2 (20)

∂Tr(M1M2)

∂M1

= MT
2 (21)

This results in the following optimality condition

∂Tr(Pk)

∂Kk

= −2(HkP
−
k )T + 2Kk(Hk)P−k HT

k ) + 2KkRk (22)

Rearranging this equation leads to the optimal Kalman gain

−2(HkP
−
k )T + 2Kk(Hk)P−k HT

k ) + 2KkRk = 0

K−1k (HkP
−
k )T = (HkP

−
k HT

k ) + Rk

K−1k = (HkP
−
k HT

k + Rk)(P−k HT
k )−1

(23)
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Finally taking the inverse

Kk = P−k HT
k (HkP

−
k HT

k + Rk) (24)

Based on this optimal Kalman gain the a posteriori covariance matrix in Eq(.16)

can be simplified to

Pk = (I−KkHk)P−k (25)

Figure (2.1.1) summarizes the way the recursive Kalman filter works.

Figure 2: Linear Kalman Filter [25]

2.1.2 Extended Kalman Filter

The linear Kalman filter, is limited as its name indicates to estimate linear processes.

However most systems are non-linear, and the filter needs to be adapted to correctly

estimate non-linear processes. The Extended Kalman Filter (EKF) solves this issue by

linearizing the nonlinear system around the current estimate and by propagating the

covariance matrix using the previously developed linear Kalman filter. The nonlinear

system is expressed as

xk+1 = f(xk,uk,wk) (26)

with the measurement vector

zk = f(xk,vk) (27)
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The noise parameters are the same as in Eqs. (3) and (4)

p(wk) ∼ N(0,Qk) (28)

p(vk) ∼ N(0,Rk) (29)

The a priori estimate can be derived from the previous a posteriori estimate using

x̂−k+1 = f(x̂,uk+1,0) (30)

The measurement is estimated using

ẑk = h(x̂−k ,0) (31)

The state and the measurement are approximated by the linear equations

xk+1 ≈ x̂−k+1 + Ak(xk − x̂k) + Wkwk (32)

zk ≈ ẑ−k + Hk(xk − x̂−k ) + Vkvk (33)

The terms Ak,Hk,Vk and Wk are the Jacobians of Eqs.(26) and (27) at iteration

k.

Ak =
∂f

∂x

∣∣∣∣
x̂k,uk,0

(34)

Hk =
∂h

∂x

∣∣∣∣
x̂−
k ,0

(35)

Vk =
∂h

∂v

∣∣∣∣
x̂−
k ,0

(36)

Wk =
∂f

∂w

∣∣∣∣
x̂k,uk+1,0

(37)

The Jacobians are generally derived analytically before hand. The prediction

error, equivalent to the a priori estimation error of the Linear Kalman filter is defined

as

ê−xk ≡ xk − x̂−k ≈ Ak−1(xk−1 − x̂k−1) + εk (38)

9



The measurement residual, which is equivalent to the measurement innovation of

the linear Kalman filter, is defined as

ê−zk ≡ zk − ẑ−k ≈ Hk(ê−xk) + ηk (39)

The variables ε and η are the linear approximations of w and v . Using the linear

variance propagation laws, the distributions of these two noise parameters are

p(εk) ∼ N(0,Wk−1Qk−1W
T
k−1) (40)

p(ηk) ∼ N(0,VkRkV
T
k ) (41)

The prediction error estimate, equivalent to the linear Kalman filter state update,

is defined as the difference between the a posteriori and the a priori states.

êk ≡ x̂k − x̂−k (42)

with

p(êk) ∼ N(0, E[η̂kη̂
T
k ]) (43)

Assuming the predicted value of êk, its estimation can be written

p(êk) = Kk(ê−zk) = Kk(zk − ẑ−k ) (44)

The a posteriori state estimate can now be written as

x̂k = x̂−k + Kk(zk − x̂k) (45)

This is the same equation as in the linear Kalman filter case with the difference that

the noise parameters are replaced by their linearized counterparts. The covariance

propagation is

P−k+1 = AkPkA
T
k + WkQkW

T
k (46)

And the gain can be found by

Kk = P−k HT
k (HkP

−
k HT

k + VkRkV
T
k )−1 (47)

A summary of the functioning of the Extended Kalman Filter is represented on

Figure (2.1.2).
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Figure 3: Extended Kalman Filter [25]]

2.2 Linear Quadratic Regulator

2.2.1 Derivation

Linear Quadratic Regulator (LQR) design is an optimal control problem for linear

systems. LQR is widely used in industry as it is easily tunable and have good ro-

bustness properties. Considering a linear system with states x ∈ Rn and inputs

u ∈ Rm

ẋ = Ax + Bu (48)

The cost to minimize is quadratic and is generally formulated as

J =
1

2

∫ T

0

(xTQx + uTRu)dt+
1

2
xT (T )FTx(T ) (49)

Where Q,FT ∈ Rn×n and R ∈ Rm×m . These matrices are the weights put

respectively on the states, final states and control inputs. For simplicity, these weight

matrices are generally chosen to be diagonal. This presents the advantage of making

the control tuning more intuitive. For instance increasing the diagonal terms of R

penalizes the control effort, which generally leads to a longer settling time and reduces

the chances of saturation. On the other hand a large Q compare to R can lead to fast

11



system performance but great changes in control inputs. The control designer needs

to have a good understanding of the system to adequately tune an LQR controller;

hence the need for intuition.

Using Pontryagin maximum principle the Hamiltonian can be formulated as

H = xTQx + uTRu + λT (Ax + Bu) (50)

Where λ ∈ Rn is the costate vector satisfying the differential equation

−λ̇ =

(
∂H

∂λ

)T

= Qx + ATλ λ(T ) = FTx(T ) (51)

The system dynamics can be re-expressed as

ẋ =

(
∂H

∂x

)T

= Ax + Bu x(0) = xo (52)

and the optimal control can be found by taking the partial derivative of the Hamil-

tonian with regards to the control inputs

0 =

(
∂H

∂x

)
= Ru + λTB (53)

The optimal control strategy is therefore

u = −R−1BTλ (54)

The following Hamiltonian matrix can now be formedẋ
λ̇

 =

 A −BR−1BT

−Q −AT


x
λ

 (55)

With initial conditions x(0) = xo and λ(T ) = FTx(T ) it is a two-point boundary

value problem which is hard to solve. However we can make an educated guess that

the costate solution is in the form

λ(t) = P(t)x(t) λ(T ) = FTx(T ) (56)

12



The costate differential equation Eq.(52) can be rewritten

λ̇(t) = Ṗ(t)x(t) + P(t)ẋ(t)

= Ṗ(t)x(t) + P(t)(Ax(t)−BR−1BTP(t))x(t) (57)

Expanding the costate term leads to the differential equation on P(t)

Ṗ(t) = P(t)A + ATP(t)−P(t)BR−1BTP(t) + Q P(T ) = FT (58)

Equation (58) is called the Riccati ODE. It can be solved backward and the optimal

input becomes u(t) = −KLQR(t)x(t) with

KLQR(t) = R−1BP(t) (59)

This finite optimal control problem leads to a Time-varying control gain KLQR(t).

Implementing such Time-varying gain can be cumbersome, the Riccati ODE will

however at some point rich steady-state and the gain will eventually converge and

remain constant. This steady-state gain can be predetermined by extending the Time

horizon and relaxing the terminal constraint of the optimal control problem. The cost

function can then be written as

J =

∫ ∞
0

(xTQx + uTRu)dt (60)

as before the LQR gain can be written as Eq(59) with the difference that P is

constant and satisfies what is called the Algebraic Riccati Equation

0 = PA + ATP−PBR−1BTP + Q (61)

2.2.2 LQR robustness

An optimal LQR controller is given by u = −Kx where K = R−1BTP. Implemen-

tation of the controller therefore requires a complete and accurate knowledge of the

system states x. However x is generally corrupted by measurement noise, and in

13



addition the system matrices A and B may not be an exact representation of the

system. It is important that the controller performs well despite model uncertainty

and noisy measurement.

It can be shown however that the LQR controller has some strong robustness

properties in term of Gain (GM) and Phase margin (PM). These robustness indicators

are used for SISO systems and can be misleading when analysing MIMO systems, but

are still a reassuring fact.

The gain and phase margins can be represented on a Nyquist plot as shown on

Figure (2.2.2). The Gain Margin represents how much the controller signal can be

amplified before driving the system unstable while the Phase margin is an indicator

of how much time delay the system can endure before going unstable.

Figure 4: Representation of GM and PM on a Nyquist diagram [24]

We will now demonstrate some of the robustness properties of the LQR controller

when dealing with SISO systems. These properties can however be extended to MIMO

system with few changes. Let us consider the system
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ẋ = Ax + bu (62)

Where u ∈ R,x,b ∈ Rn and A ∈ Rn×n , with the LQR cost function

J =

∫ ∞
0

(xTQx + u2r)dt (63)

where r > 0 ∈ R,Q ≥ 0 ∈ Rn×n, based on the previous derivation, the optimal

control law is

u = −r−1bTPx (64)

Where P ∈ Rn×n satisfies the ARE

ATP + PA−Pbr−1bTP + Q = 0 (65)

Adding and subtracting jw as well as substituting the control gain K = −r−1bTP

leads to

P(jwI−AT ) + (−jwI−AT )P + KT rK = Q (66)

Multiplying Eq.(66) on the left by bT (−jwI−AT )−1 and by (jwI−A)−1b on the

right yields

bT (−jwI−AT )−1Pb+ bTP(jwI−A)−1b+ bT (−jwI−AT )−1KT rK(jwI−A)−1b =

bT (−jwI−AT )−1Q(jwI−A)−1b (67)

Simplifying gives

r + bT (−jwI−AT )−1Q(jwI−A)−1b = (1− bT (−jwI−AT )−1KT )r(1−K(jwI−A)−1b)

= r|1−K(jwI−A)−1b|2 (68)

It follows that

|1−K(jwI−A)−1b|2 ≥ 1 (69)

We now define the following equation as the Loop-transfer function of the system

L(jw) = −K(jwI−A)−1b (70)

15



Equation (69) can then be rewritten as

|1 + G(jw)| ≥ 1 (71)

Equation (71) implies that the Loop-Transfer function L(jw) never enters the

unitary disk centered at (-1,0) in the complex plane, as represented on Figure (2.2.2)

Figure 5: Robustness properties of LQR controller [24]

It is clear from Figure (2.2.2) that the Loop-Transfer function crosses the negative

real axis only for values less than -2, which correspond to a negative gain margin of

at least -6db. Furthermore L(jw) must leave the unit circle with at least an angle of

-60 deg or 60 deg. A SISO LQR controller therefore offers an infinite positive GM

and a -6 db negative GM. It also ensures a PM of at least 60 degrees. These margins

are guaranteed and are an indication of a robust controller. Both SISO and MIMO

LQR controllers will be used for this thesis.
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CHAPTER III

DC MOTOR

In this section we present the design and implementation of the Peak-seeking strategy

on a DC motor driving a variable pitch propeller. This setup was chosen to first

validate the Peak-seeking procedure before applying it to more complex system such

as a turboprop engine. The DC motor system was simulated, but an experimental

setup was also built for future testing.

3.1 Problem Definition

The following model describes a system comprising an electric motor and a variable

pitch propeller. This is a simplistic representation of the turbofan system (core gas

turbine and fan). The equations of motion for a DC motor and a variable pitch

propeller system are:

d
dt
ωm(t) = 1

Im
[kbi(t)−Bωm(t)−Q(ωm(t), β(t))] ,

d
dt
i(t) = 1

L
[−Ri(t)− kbωm(t) + v(t)] ,

y(t) = T (ωm(t), β(t)),

(72)

where v(t) is the voltage across the armatures and is used to control the motor speed,

i(t) is the current through the motor , ωm(t) is the motor shaft angular speed, Im is

the motor inertia, kb is the induced emf constant, B is the motor damping coefficient,

R is the armature resistance, L is the self-inductance, Q is the propeller torque, T is

the propeller thrust, and β(t) is the propeller pitch angle. Figure 6 is an illustration

of the DC motor and variable pitch propeller system.

By considering the propeller blade as a twisted wing, we used blade element

theory blade element theory to compute the forces acting on it. Figure 7 shows a
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Figure 6: DC Motor with variable pitch propeller schematic

cross section of the blade, with the corresponding forces and important angles. The

forces exerted by the surrounding air on this blade cross section, are the lift and

drag forces, respectively perpendicular and parallel to the velocity of the blade. The

Figure 7: Resolution of forces acting on a propeller section [4]

velocity appears on Figure 7 as a vector with horizontal component rωm = 2πrn and

with vertical component V . The square of the resulting velocity is

V 2 + (rω)2 = V 2 + (2πrn)2 = n2d2
[
J2 + (2πr/d)2

]
, (73)
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where J = (V/nd) denotes the advance ratio, n denotes the round per second and

d denotes the propeller diameter. Let G := J2 + (2πr/d)2. The angle between

the velocity vector and the horizontal axis is γ = arctan(V/rω). If β denotes the

angle between the plane of rotation and blade section chord, the angle of attack is

α = β−γ. In the following it is assumed that, for all blade sections, CL = CLα(α−α0)

and CD = CD0 + kC2
Lα

(α−α0)
2 are functions of the angle α. The lift and drag forces

for the blade element between the radii r and r + dr can be obtained as:

dL = 0.5CLρV
2dS

= 1
2
CLα(α− α0)ρn

2d2Gc(r)dr,

dD = 0.5CDρV
2dS

= 1
2
(CD0 + kC2

Lα
(α− α0)

2)ρn2d2Gc(r)dr,

(74)

where c(r) denotes the chord length of the blade section at the radii r. It will be

useful to decompose the resultant of the lift and drag forces into the components dT

and dU parallel and perpendicular to the propeller axis. These components are given

by

dT = dL cos γ − dD sin γ,

dU = dL sin γ + dD cos γ.
(75)

The overall forces on the propeller are

T = 0.5mρn2d2
∫ d/2

0
G(CL cos γ − CD sin γ)c(r)dr,

U = 0.5mρn2d2
∫ d/2

0
G(CL sin γ + CD cos γ)c(r)dr,

(76)

where m is the number of blades of the propeller that contributes to the propeller

torque Q and to power P , which can be written as

Q = m
∫ d/2

0
rdU

= 0.5mρn2d2
∫ d/2

0
G(CL sin γ + CD cos γ)rc(r)dr,

P = ωQ = 2πnm
∫ d/2

0
rdU

= πnmρn2d2
∫ d/2

0
G(CL sin γ + CD cos γ)rc(r)dr.

(77)
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For the purpose of this experiment, the overall system is assumed to be attached to fix

point which makes the vertical speed of the propeller null. The thrust is then a unique

function of the lift, and the generated torque now only depends on the drag force.

Generating the thrust, torque and power of the propeller using the aforementioned

equations is not trivial, and it would take too much time if these terms had to be

calculated at each iterations, when simulating the overall system. Therefore a static

table was constructed to relate T (t), Q(t) and P (t) to the changes in ωm(t) and β(t).

[T (t), Q(t), P (t)] = PropTable (ωm(t), β(t)) . (78)

This table will be constantly used when simulating the system.

3.2 Peak-Seeking Control

Looking at the system in a simplistic manner, its control inputs are the propeller

pitch angle β and the DC motor voltage V which ultimately controls the propeller

velocity ωm. The DC motor parameters were chosen to fit a standard DC motor used

in industry and the characteristics of the blade were chosen in accordance to the DC

motor performances. In order for the DC motor to track a commanded speed in a

minimum amount of time and power, an LQR controller was designed to minimize

the speed settling time as well as the current drawn. Furthermore, thanks to its

robust characteristics, the LQR controller allows the closed loop DC motor system

to adequately perform speed tracking, despite the effects of the disruptive load force

generated by the propeller blade.

An off-line study was first performed to analyze the power consumption of the

system, and to determine the impact of each of the system parameters on the loca-

tion of the optimal blade pitch angle. Using equation 72 and equation 78 to describe

the system when operating at steady state, the power consumption was calculated

when staying at a constant thrust and varying the blade pitch angle from 0◦ to 15◦.

Figure 8 shows the results of this simulation. It is clear from this Figure that a global
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minimum exists.

Intuition might suggests that the pitch angle allowing a maximum Lift to Drag ra-

tio, would lead to an optimal power consumtion, as at this specific angle, the load

is at its minimum (for a given Thrust). However, following equation 78, we can see

that as the back emf and damping coefficients values increase, the motor speed ωm

has a greater impact on the power drawn. This quick analysis reveals that these

two coefficients are of a major importance, and cannot be disregarded when trying

to determine the optimal pitch angle. Figure 9 shows how these parameters exactly

interfere with the minimum location. The change in color represent the change in

the back emf coefficient. If both of these parameters are null, the minimum will be

located at the maximum lift over drag pitch angle. While if they tend to infinity

the minimum will move towards the propeller stall angle, as at this angle the blade

velocity is at a minimum (for a given thrust). One can also note that the damping

coefficient has the bigger impact on the minimum location than the back emf coeffi-

cient. This information reinforces the idea of using an online Peak-seeking method,

as the damping coefficient is likely to change over the life time of the DC motor.

A simulation of the power consumed for different Thrust commands was also

investigated and is represented on Figure 10. As shown on the figure the set is convex

and allows the existence of a minimum power consumption for every iso-Thrust line. A

thrust controller is required in order for the system to remain at a certain thrust level

while being optimized through the peak-seeking process. The thrust could be modeled

as (C + δ)ω2
n where C is a constant determined from equation 76 and δ represents

a parametric uncertainty. The thrust was controlled using gain-scheduling, with the

motor speed as the scheduling parameter. Three PI controllers were chosen to cover

the all thrust operating region. An extended Kalman filter was also implemented

to have a better estimate of the Thrust measurement. Figure 10 shows the limits

between these regions and also help understanding the Peak-seeking procedure as the
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Figure 8: Model Power consumption over pitch angle for an iso-Thrust command

Figure 9: Change in optimal pitch angle for variations in damping and back emf of
the DC motor

goal is to keep the system on an iso-thrust line represented by the dark dashed-line

while the Peak-seeking algorithm varies the pitch angle β. A representation of the
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Peak-seeking strategy applied to the DC motor system is also shown on Figure 11.

The power needs to be constantly changing in order for the EKF to estimate its

derivatives. A linear sweep around the pitch angle of interest βl was therefore perform,

and some excitations were also added to allow for better observability. Using the

estimates of the power derivatives, the Newton method was carried using

βl = βl−1 − ζ
5̂p

Ĥp

(79)

Where 5̂p and Ĥp are respectively the Gradient and Hessian estimates of the power

consumption at the pitch angle βl−1 . ζ is a fading coefficient based on the standard

deviation of the set of the previously commanded pitch angles.

ζ = η
1

l − n

l∑
i=l−n

(βi − µ)2 (80)

Where η is a tuning parameter, µ is the mean and n is used to determine the

size of the set. As the pitch angle is converging to the its optimal value, the fading

coefficient ζ decreases, since the standard deviation of the previously calculated pitch

angles is decreasing. Therefore once getting closer to the optimal value, only small

changes could occur. This is to compensate for the fact that the Hessian estimate

might be noisy and could randomly drive the system away from its minimum.

3.3 Kalman Filter Design

We will present in this section the Kalman filter used to estimate the derivatives of

the power function. The filter is a modified version of the one used by J. J. Ryan

and J. L. Speyer [7]. The power function could be approximated by a Taylor series

around a nominal pitch angle βk.

p(β) ≈ p(βk)+p′(βk)(β−βk)+
1

2
p′′(βk)(β−βk)2+

1

6
p′′′(βk)(β−βk)3+o((β−βk)) (81)

Where p(βk) is the power function, p′(βk) and p′′(βk) are respectively the first,

second and third derivatives of the power function evaluated at the pitch angle βk,
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Figure 10: Simulation of the power behavior for changes in Thrust, pitch angle and
and rotor speed

Figure 11: Peak-seeking control structure for DC motor and the variable pitch pro-
peller

and o represents the higher order terms. Even though only the first two derivatives are

required for the peak-seeking process, an estimation of the third derivative enhance

the filter performances.
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Evaluating(81) at βk−1 leads to

δpk = δβkp
′
k +

1

2
δβ2

kp
′′
k +

1

6
δβ3

kp
′′′
k (82)

where δpk = pk − pk−1 and δβk = βk − βk−1 . This a discrete time representation

of the power function, the derivatives enter linearly the power equation and could be

considered as the states of the system. The vector to estimate is therefore

x̂k =

[
p̂′k p̂′′k p̂′′′k

]T
, (83)

Several measurements could be taken at each iteration k , taking more than 3

measurements will lead to a set of over determined equation, which will ultimately

improve the estimation’s accuracy. However more measurements also imply a slower

filter convergence. By making the distinction between the pitch angles generated

by the Newton methods βk and the one added by the persistent equation βs, the

measured vector can be written as

∆pk =



p(βk)− p(βk−1)

p(βk)− p(βk−2)
...

p(βk)− p(βk−n)

p(βk)− p(βs−1)
...

p(βk)− p(βs−m)



(84)

The filter will keep track of the previously visited steady-state points and use

them for the next derivative estimation. A certain number of excitation points βs can

also be added to the estimation process to increase observability. In order to increase

the Peak-seeking process speed, these excitation points do not have to be generated
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at each iteration, but could be created once every few new pitch angle command is

issued. Following a Taylor serie approximation and based on the previously written

measurement vector, the measurement matrix is,

Hk =



βk − βk−1 1
2
(βk − βk−1)2 1

6
(βk − βk−1)3

βk − βk−2 1
2
(βk − βk−2)2 1

6
(βk − βk−2)3

...
...

...

βk − βk−n 1
2
(βk − βk−n)2 1

6
(βk − βk−n)3

βk − βs−1 1
2
(βk − βs−1)2 1

6
(βk − βs−1)3

...
...

...

βk − βs−m 1
2
(βk − βs−m)2 1

6
(βk − βs−m)3



(85)

The excitation pitch angles βs are generally generated to be far away from the

current pitch angle of interest and in the same direction as pointed by the Newton

method. As taking measurement ahead of the current point, leads to better deriva-

tives estimate. More excitations points leads to better estimate, but also increase the

Peak-seeking process time. Most of the time only one excitation point is used, for it

still gives a significant improvement in the derivatives estimate and does not impede

much on the Peak-seeking completion time.

The measurement equation for the filter is written as

∆pk = Hkxk + vk (86)

where xk is a 3×1 vector representing the derivative parameters to estimate, and

vk is the Gaussian measurement noise of variance Rk

Considering taking the Taylor series expansion of the derivatives term and evalu-

ating at the next time step with a change of δβk in pitch angle yields to
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p′k+1 = p′k + (βk − βk−1)p′′k + 1
2
(βk − βk−1)2p′′′k

p′′k+1 = p′′k + (βk − βk−1)p′′′k

p′′′k+1 = p′′′k

(87)

The discrete state matrix representing the derivatives dynamics can therefore be

written as

Ak =


1 βk − βk−1 1

2
(βk − βk−1)2

0 1 βk − βk−1

0 0 1

 (88)

The third derivative is modeled as a random walk process. The filter is generally

tuned by only looking at this derivative, as if correctly estimated, the first and second

derivatives will also be. The number of derivatives taken into account in the Taylor

expansion could be increased, but it would in turns require more computation, and

would stop making sense after a certain order.

The discrete time process representing the derivatives behavior is,

xk+1 = Akxk + wk (89)

where wk is the gaussian process noise with variance Qk which can be written as

,

Qk =


ωGr 0 0

0 ωHe 0

0 0 ωThird

 (90)

where ωGr, ωHe, ωThird represent the variances of the expected process noises (on

each derivatives). These parameters were determined by trial and error, with basic a

rule of thumb that ωThird >> ωHe >> ωGr

The a priori error covariance matrix P−k is computed following:

P−k = AkPk−1A
T
k +WkQk−1W

T
k (91)
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Where Wk represents the jacobian matrix of the state transition model with respect

to the process noise wk.

The derivatives estimation was then computed following a regular Extended Kalman

Filter approach.

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)−1

x̂k = x̂k
− +Kk(∆pk −Hkx̂

−
k+1)

Pk = (I −KkHk)P−k

(92)

3.4 Simulation Results

To first demonstrate the filter performance, the pitch angle was sweep from 0◦ to

12◦ while the power measurement was corrupted by a Gaussian noise with a 0.001

standard deviation. A sweep was performed with an increment of βk − βk−1 of 1
30

◦

between two iterations. An excitation point of 0.5 degrees in front of the a pitch

angle of interest was added every 10 iterations. The LQR of the DC motor was set to

iterate at 100 Hz . Figure (12) shows on the upper graph the corrupted measurement

in difference in power, while the lower Graph represent the Hessian estimate. The

EKF is keeping track of 25 measurement per iteration, and the excitations present

in each iteration are not represented on this graph. On the upper graph the red

dots represent the power measurements, the blue line represent the estimate of the

difference, reconstructed from the derivatives estimates, and the pink link is the

true difference value with its process noise. On the lower graph The red line is the

true Hessian, the blue line is the Hessian estimate and the green line is the Hessian

estimate with a low pass filter to minimize abrupt changes. We can see on this graph

the very good estimation performance and the quick filter convergence. The Gradient

estimate was not represented as, the Hessian one is much more subjected to noise, a

good Hessian estimate implies a good Gradient too.

Once the filter correctly tuned, the Peak-seeking process was implemented. Power
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Figure 12: Upper graph: Measurement of noisy δp. Lower graph: Hessian estimate

Measurements were taken at 2 hz while the Kalman filter also iterated at 2 hz. The

measurements were corrupted by white noise with a standard deviation of 0.01, which

is very noisy considering that the power consumed is in the order of 0.15 Watts. The

results of the Peak-seeking algorithm is shown on Figure (13), with the red dash line

representing the actual minimum location and the blue line is the estimation made

by the system. To avoid that the pitch angle creates large disturbances that could

lead to unstability, the pitch angle could only be changed with a maximum of 0.5 ◦.

Figure (14) shows how the power consumption is minimized over time. In this case,

with an initial guess for the optimal angle to be at zero degrees, the optimization

allows the system to reduce its power consumption by 0.07 W, which is considerable

for such small system. If used on a UAV for instance, this could add some operating
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time to the drone.

The filter took approximately 6 seconds to converge to a good derivatives estimate

and once it converged it took less than 15 seconds for the Peak-seeking to reach the

optimal pitch angle, which is a very satisfying time. The Peak-seeking completion

time could even be faster if larger changes in pitch angle are allowed, but with the

risk of introducing too much disturbances. Therefore, depending on the robustness

of the controller used, a trade-off exists between the Peak-seeking completion time

and the stability of the closed-loop system.

Figure 13: Peak-seeking over Time

3.5 Hardware setup

An experimental setup was also designed to demonstrate the feasibility of the Peak-

seeking method on a real system. The hardware was put together and the code was

designed to perform the Peak-seeking on a brushless DC motor driving a variable

pitch propeller. The platform is not fully operational yet, but is presented here as

part of the work that will be performed in the future. A schematic of the hardware

setup is represented on Figure 15, while a picture of the real hardware is represented

on figure 16.
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Figure 14: Power minization over Time

Figure 15: DC motor with variable pitch system schematic

A gear and rack system was used to increase the torque out of the servo motor,

as well as have a finer precision when changing the pitch angle command. A PSOC

5 microcontroller is used to send the measurements from the current sensors to a

computer through RS-232 serial communication. Using LabView the computer is then

running the Kalman Filter and can display both the measurement and estimates in
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Figure 16: DC motor with variable pitch system hardware

real time. LabView allows also to tune the Kalman gains in real time, which facilitates

and expedite the filter tuning process

An ESC with governor mode (already closed-loop on motor speed) was used to control

the hollow shaft brushless DC motor. The PWM command sent to the ESC sets

the reference speed for the motor, and the ESC makes sure it stays at this speed

regardless of the load applied to it. The ESC inner speed controller is taking the back

emf voltage of the motor as a measurement and was tuned by the manufacturer. A

simple PI controller running on the PSOC 5 was added to control the thrust using

the ESC PWM command as a control input. The thrust measurement was performed

32



using a load cell as represented on Figure 15 As shown on Figure 16 the hardware

was built and ran successfully in open loop. Also the LabView VI was tested with

fictitious data and performed adequately. All the code has been written and only the

thrust PI controller remains to be tuned. However, this project encountered some

setbacks and is currently not fully operational for the Peak-seeking process. It will

be nonetheless working in a close future, and could be used in the future as well as

platform with educational purpose.
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CHAPTER IV

TURBOPROP ENGINE

The main goal of this thesis is to apply the peak-seeking control technique to systems

widely used in industry such as Turboprop engines. The online optimization scheme

could reduce the operating cost of the engine by minimizing the fuel consumption

for instance. Furthermore, the ”Plug and Play ” aspect of the peak-seeking control

is even more appealing for Turboprop engines where components may come from

different companies and have not initially been designed to work with each other.

The optimization algorithm would allow to find the optimal performing conditions

without having to go through pain-stacking system analysis or extensive testing. It

could be therefore very useful for small companies working with such engines.

For this research, the Peak-seeking algorithm has been developed for a simulation of

a Turboprop engine located in MIT’s Gas Turbine Laboratory. This engine belongs

to the Air Force Research Laboratory and both Georgia Tech, under the supervision

of Dr. Eric Feron, and Aurora Flight Science, under the supervision of Dr. James

Paduano, have been working on it. The engine has unfortunately not been fully op-

erational during the preparation of this thesis and the peak-seeking algorithm could

only be simulated with the hope it will be tested in a near future.

In this section, we will first go over the Turbofan model and simulation results.

We will then present the control architecture developed for the Turboprop engine

and we will finally talk about the peak-seeking approach designed for this system and

analyze its performance.
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4.1 Turbofan model

In this section we will briefly present and explain the engine model used for this re-

search. The engine simulation was principally investigated by Nathan Fitzgerald in

Aurora Flight Science and most of the engine details can be found in [30].

The turboprop engine was constructed by adding a variable pitch propeller to

a small JetCat SPT5 twin spool turboshaft engine. Some mechanical contraption

was designed to connect the propeller to the engine’s shaft and a schematic of the

system is represented on Figure 17. Despite a more complicated dynamics, the overall

functioning of the turboprop engine is very similar to the DC motor driving a variable

pitch propeller system. Both systems are controlled through two inputs, the blade

angle and DC voltage for the brushed DC motor case and the blade angle and fuel

flow for the turboprop engine. Because of these similarities in the control, the Peak-

seeking procedure for the turboprop engine is almost identical to the DC motor case,

as we will discuss soon.

Figure 17: Schematics of turboprop

Fuel is provided to the core of the engine which consists of a compressors, com-

bustor, and a high speed turbine. The exhaust gases from the core engine power a
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low pressure turbine that transmits power to the variable pitch blade. The core spool

speed and fan spool speed are generally respectively referred as N2 and N1 speeds.

The core spool speed and acceleration Ṅ2 are both of a primordial importance when

it comes to safely run the engine, as if these values are above certain limits, the engine

could be irreversibly damaged. These speed and acceleration constraints need to be

addressed in the control strategy, as later presented in this report.

Because of the lack of information furnished by both the JetCat SPT5 and the

propeller blade furnishers, the turboprop simulation was built upon experimental

data. The dynamics of the engine was determined using a lumped-parameter approach

and several key assumptions had to be made in order to model the engine behavior

as presented in [30].

Some general information regarding the JetCat SPT5 engine is represented on

Fig.18(b) as well as a picture of the Jetcat engine on Fig.18(a). A CAD model of the

turboprop test bed as well as a picture of the actual set-up are also both represented

on Fig.19 and 20.

(a) JetCAT SPT5 engine (b) Performance table

Figure 18: JetCAT engine

Another aspect of this specific engine is its complete distribution in its control

architecture. This is worth mentioning as it allows some modularity and therefore,

combined with the Peak-seek procedure, can lead to a very modular and performant

system that embrace the notion of ”Plug and Play”. The distribution takes place on

both the hardware and software side of the control. Each actuators and sensors have
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Figure 19: CAD model of the Turboprop

Figure 20: Turboprop engine test bed

their own micro-controllers which are all networked on a CAN bus line. By doing

so, adding or taking of a sensor out of the engine is made easy as it only requires

to connect or disconnect the smart sensor from the networked line, while it might

be cumbersome with a centralized approach. A diagram representing the networked

sensor and actuator layout as well as the distributed control law is shown on Fig. 21.

A similar diagram this time more representative of the the control law distribution is
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represented on Fig. 22, this diagram also has the advantage of showing the sensors

location on the different thermodynamics stations.

Figure 21: Turboprop engine distributed hardware layout

Figure 22: Turboprop engine distributed control layout
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The hardware set-up was put together by the author of this thesis, Nathan Fitzger-

ald and Dr. Manuj Dhigra. The micro-controllers used for the smart sensors and

actuators were PSOC 5 because of their versatility and their ability to communicate

on a CAN line. The actuators controllers were chosen to be more performant than

the sensor’s one as the control laws are be computed on it. A picture representing

both actuators and sensors controllers is shown on Fig. 32(a) and 32(b).

(a) smart-actuator controller node (b) smart-sensor controller node

Figure 23: Actuators and sensors nodes

4.2 Control Architecture

The diagrams shown on Figure 21 and 22 represent the control architecture of the

engine without the Peak-seeking process. Originally the turboprop engine is con-

trolled using two inputs, the vane angle and the fuel flow. However, the Peak-seeking

procedure developed in this thesis does not allow feedback control on the input used

for the online-optimization, in this case the fan pitch angle. The turboprop control

law has to be changed from two controllable inputs system to a one controllable input

only, with the fan pitch angle controlled by the Peak-seeking process.

Suppressing the vane angle as part of the feedback control scheme certainly has an

impact of the performance of the engine, notably when trying to track fast changes in

thrust command. However, the Peak-seeking procedure is designed to optimized the

engine when running at a constant thrust level, and should not be employed anyway
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when having fast changes in the thrust command. Taking the case of a commercial

jet-liner, the Peak-seeking algorithm will be most useful when the aircraft is at cruise

speed for instance. The Peak-seeking cannot work when the thrust is undergoing fast

and large changes, which is the case when the aircraft is performing maneuvers at

take-off and landing. A switch mechanism could then be used to switch between a two

control input strategy when having to deal with varying thrust command (landing,

take-off), and a one control input strategy when operating at constant thrust (cruise)

and running the Peak-seeking algorithm. This switching concept between a peak-

seeking and a varying thrust controller is represented on Fig.24.

(a) Two control inputs strategy for varying thrust command

(b) One control input strategy and Peak-seeking for constant thrust
command

Figure 24: Control strategies of the Turboprop engine

The turboprop engine simulation is non-linear and is not easy to control. The

problem is now to design a controller that will ensure thrust tacking for the engine.
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4.2.1 Control design

We will now present the control design of the Turboprop engine. We will focus on

controlling the system with only the fuel flow as represented on Fig.24(b). We do

not worry in this thesis about designing a new control law, as we rather use a simple

method to control the engine. A simple control method used for non-linear system

is gain scheduling. It has the advantages of using linear control techniques and is

therefore relatively easy to design while partially ensuring some robustness and per-

formance properties. Considering the non-linear system representing the Turboprop

dynamics

ẋ(t) = f(x(t),u(t))

y(t) = g(x(t),u(t))
(93)

Where for the Turboprop engine x ∈ R2×1 is the state vector consisting of the core

spool speed xc and the fan speed xf . u ∈ R2×1 is the control input vector consisting

of the fuel flow uc and the blade pitch angle uf . Finally y is the thrust output of the

Turboprop.

Considering Ω ⊂ R4 to be the region representing all possible state and control

vectors during the turboprop operation. A set of properly separated equilibrium

operating points xek and inputs uek , k ∈ I = {1, 2, ....L} can be chosen to represent

the center of L operating subregions Ωk. It is important to chose the subregions Ωk

such that the interior of each region does not intersect, i.e int( Ωk)
⋂
int(Ωj) = ∅,

∀k 6= j and also that
⋃L

k=1 Ωk = Ω. By rewriting x = xek + δx, u = uek + δu and

y = yek+δy, the nonlinear model can be linearized using Taylor’s series approximation
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and expressed in a piece-wise manner as,

˙δx(t) = Akδx(t) + Bkδu(t)

δy(t) = Ckδx(t) + Dkδu(t)

Ak = ∂f
∂x

∣∣
(xek ,uek )

Bk = ∂f
∂u

∣∣
(xek ,uek )

Ck = ∂g
∂x

∣∣
(xek ,uek )

Dk = ∂g
∂u

∣∣
(xek ,uek )


∀(u,x) ∈ Ωk

(94)

The nonlinear model of the Turboprop was developed based on experimental data,

and is completely numerical. The Jacobians of the nonlinear plant could not therefore

be determined analytically and were numerically approximated by perturbing the

model around the equilibrium points (xek ,uek), k ∈ I.

It is important to notice that at each time t, x(t) and u(t) belong to only one

subregion Ωk. The new state vectors δx(t) ∈ R2 now follows a linear dynamic around

its designated subregion Ωk and is piecewise differentiable. The fuel flow control

input δuc can now follow a control law that has been designed using linear control

techniques as we will see now.

4.2.2 Gain-scheduling

Assuming an appropriate model linearization that correctly represents the engine

behavior across its whole operating space Ω, a set of linear controllers Kk, k ∈ I, each

in effect when the system is operating in an associated region Ωk can be used to control

the system. With an adequate switching process, these controllers could stabilize the

nonlinear plant around its whole operating environment. This switching between a

predetermined set of linear-controllers is called Gain-scheduling and is widely used in

industry to control nonlinear systems.

The linearization of the plant remains an approximation and the system still con-

tains some nonlinearities when operating around any equilibrium points (xek ,uek).
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These nonlinearities can be seen as model uncertainty. Furthermore the states and

thrust measurements will most likely be corrupted by noise while the system may

encounters external disturbances. Therefore it is primordial to design robust com-

pensators that will ensure both stability and performances of the Turboprop.

For the Peak-seeking case, since we are only interested in controlling the thrust

of the turboprop and only the fuel flow can be used as a control input, the system is

actually a SISO. In addition of simplifying the control law design, the fact that the

system is SISO also allows us to use SISO robustness characteristics such as gain and

phase margins (GM and PM) to ensure the robustness of the controller. It is always

possible to do so on MIMO system, using µ analysis or the small gain theorem, but

using GM and PM makes makes more physical sense of the robustness of the controller

regarding distrubances and time delays.

A control technique that is generally used for MIMO systems but that ensure very

performing and robust controllers also for SISO systems, is LQR (Linear Quadratic

Regulator) control. Section 2 of this thesis summarize the derivation of an LQR

controller and demonstrates its robustness, notably ensuring an infinite GM and a

PM of at least 60 degrees. A set of LQR controllers were therefore chosen to perform

thrust tracking for the tuboprop engine.

In order to perform tracking of the thrust output we assumed in our case that the

thrust is directly measurable as the Peak-seeking process will first be tested on a

test bench and not in flight where the thrust has to be estimated. If performed in

flight the controller could be changed to an LQG that will both estimate and control

the thrust at the expense of loosing robustness. For the test-bed case, assuming a

measurable thrust and assuming for now that the engine only operates within a region

Ωk described by a linear model as in eq. 94, the system has to be augmented first

with a state xi representing the integral of the tracking error,

ẋi = e = δy − δr (95)
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Where e is the tracking error and δr = r−yek is the thrust reference when the system

is operating in the linear region Ωk. Since only the fuel flow is used as a control

input we can rewritten Eq. 94 and replacing the input matrices by Bc
k = B(:, 1)k

and Dc
k = D(1, 1)k. Also we can notice that Eq 95 can be rewritten more simply

as e = y − r but it is wiser to use it as originally written in order to augment the

dynamics of the system with the tracking error as follow,

δẋ
ẋi

 =

 Ak 0

−Ck 0


︸ ︷︷ ︸

Aaug

δx
xi

+

 Bc
k

−Dc
k


︸ ︷︷ ︸

Baug

δuc +

0

1

 δr (96)

A LQR controller is designed on the augmented system to minimize the following

cost function

J =

∫ T

0

xT
augQxaug + δuTRδudt. (97)

where xaug = [δxTxTi ],∈ R3×1 is the augmented state, Q ∈ R3×3 is the weighting

matrix on the augmented state and have important weights on the error state to allow

for better tracking, and R ∈ R1×1 is the weighting matrix on the input. The LQR

gains are calculated as,

K = R−1BT
augP (98)

Where P ∈ R3×3 solves the algebraic Riccati equation

Q + AT
augP + PAaug −PBaugR

−1BT
augP = 0. (99)

It is important to separate K in two subcontrollers, Ko used as state feedback and

Ki acting on the integral of the tracking error.

K =

Ko

Ki

 (100)

The closed system under static feedback δu = −Kxaug can be written as,
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δẋ
ẋi

 =

 Ak −Bc
kKo −Bc

kKi

−Cc
k + Dc

kK0 Dc
kKi


︸ ︷︷ ︸

Aclosed

δx
xi

+

0

1

 δr (101)

4.2.3 Switching mechanism

Ideally, in order to ameliorate the gain-scheduled control procedure, one could design

a very large number of linear controllers covering the whole operating space. How-

ever, designing a large number of compensators takes time and it was found for the

purpose of this experiment that the operating space could sufficiently be divided in

four regions.

Operating region 1:

xce = 1.0, xfe = 0.9524, uce = 1.0, ufe = 16, ye = 255.868

A1 =

 −5.0 0

3.5 −2.3

 ,B1 =

 1.4 0

0.63 −0.085

 (102)

C1 =

[
354.25 380.25

]
,D1 =

[
−6 15

]
Operating region 2:

xce = 0.726, xfe = 0.5, uce = 0.4685, ufe = 16, ye = 70.5125

A2 =

 −1.9 0.061

0.45 −1.10

 ,B2 =

 1.57 0.0002

0.3 −0.023

 (103)

C2 =

[
42.25 226.20

]
,D2 =

[
−1.75 4.80

]
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Operating region 3:

xce = 0.5327, xfe = 0.3678, uce = 0.3, ufe = 16, ye = 38.155

A3 =

 −0.85 0.032

0.32 −0.64

 ,B3 =

 1.10 0.0002

0.17 −0.011

 (104)

C3 =

[
27.95 167.7

]
,D3 =

[
−1.1 2.6

]
Operating region 4:

xce = 0.295, xfe = 0.161, uce = 0.145, ufe = 16, ye = 7.317

A4 =

 −0.38 −0.0008

0.26 −0.34

 ,B4 =

 0.7 0.0001

0.1 −0.0024

 (105)

C4 =

[
9.425 79.3

]
,D4 =

[
−0.42 0.56

]

Note that each region was linearized around the same pitch angle of 16◦ which

correspond to the position of the blade with no inclination and is the center of the

pitch angle range that goes from 0◦ to 32◦ . A thrust tracking LQR Ki, i ∈ 1, 2, 3, 4

controller was developed for each region Ωi following the previously explained pro-

cedure. The switching between two controllers was chosen to be dictated by the

change in the N2 core spool speed. Let’s denote Θi = {xcei , x
f
ei
, ucei , u

f
ei
, yei} the set of

equilibrium points used for the linearization, the switching goes as follow,

(Kc,Θc) =



(K1,Θ1) if 0.86 < N2

(K2,Θ2) if 0.62 < N2 ≤ 0.86

(K3,Θ3) if 0.42 < N2 ≤ 0.62

(K4,Θ4) if 0 < N2 ≤ 0.42

(106)

Where (Kc,Θc) denote the controller gains and operating points to use to con-

trol the turboprop engine at a certain instant. The Gain scheduling procedure is

summarized by Figure 25.
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Figure 25: Gain scheduling procedure

A first set of simulations were performed to validate the feasibility of the gain-

scheduling approach. The turboprop was controlled to track a thrust reference of 185

N starting from idle condition. As an initial test, no requirements were formulated

on either state or input limitations, and the controller gains were just designed for

stability and performance. The Thrust response of the system is shown on Figure 26.

Figure 26: Gain scheduled control Thrust response

As seen on Figure 26, the controllers performances are satisfying as the system re-

main stable while switching between regions. Furthermore the thrust reaches steady
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state with no overshoot in less than 8 seconds which is a very satisfying time. How-

ever, a satisfying thrust performance is not the only requirement of the closed loop

system. A very important aspect of the controller is to make sure the system operates

safely, meaning it can not exceed certain state limits such as a core spool speed and ac-

celeration limits. If the turboprop operates above these state limits, the whole system

could have a mechanical failure which would have catastrophic consequences when

on flight. In addition to these states limits, the fuel flow is subjected to saturation

which needs to be taken into account in the control law design.

Several important issues can be pointed out from Figure 27. The most important

one is that under this specific control law the system exceeds the core spool speed

limit which is a hard limit. It is also important to notice that because of the switching

between controllers, the fuel flow control input is not differentiable. Furthermore, on

the real system the fuel flow might be subjected to saturations, which were not taken

into account on this first test.

Taking care of the control saturation is not a hard problem, especially since the

system is SISO. An anti-windup controller can be designed in order to avoid input

saturations.

Also, to avoid having this non smooth control input, a much greater number of linear

controllers could be used. By doing so, the transition between two linear controllers

would be much smaller, which will get rid of the discontinuities in the control deriva-

tive. These controllers could be interpolated between the one already created and

therefore would not require a long and tedious design.

However, even neglecting these problems of non-smoothness and input saturation,

designing a controller that would operate within the states limits is a complicated

task and is a very common problem for turbofan engines. Several approaches could

be considered to solve this problem, each varying in level of difficulty.
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(a) Fuel flow control input

(b) core spool speed, N2

(c) core spool acceleration, Ṅ2

Figure 27: Input and states history
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A commonly used technique in industry, sometimes referred as min-max control

strategy, is to design a set of controllers that would each take care of one state limit

and have a switching mechanism that would alternate between each limit controllers

and baseline controller.

For instance a controller could be designed to keep the Ṅ2 acceleration below its limit

while disregarding the system performance or N2 limit. The error between the current

acceleration and Ṅ2 limit would be fed to this controller. A similar controller could

be designed for the N2 speed limit as well while the baseline controller will only care

about the system performance. A switching mechanism will then alternate between

the limit controllers and baseline performance controller to ensure stability of the

turboprop while avoiding the states limits.

This technique was implemented first on the engine simulation by Mehrdad Pakhmer.

The design of these controllers as well as the switching mechanism was a long and te-

dious task and was performed for the two control inputs operation of the turboprop.

Also, even though the system operates safely under this specific control strategy,

the performance remained poor and no stability proofs could be derived under this

switching.

4.2.4 Control approach considered and simulation results

Another and simpler approach was chosen however by the author of this thesis to deal

with this state limits problem. No stability proof however could be derived either,

but the technique showed good performance and was tested to be relatively robust.

Running the turboprop simulation, two important facts were noticed. First, if the

fuel flow does not saturate the N2 limit will most likely be respected and secondly
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the Ṅ2 core spool acceleration was noticed to be closely related to the change in fuel

flow as a jump in the fuel flow command generally induced a peak in the acceleration.

Smoothing out the control command and making sure the control input does exceed

a certain rate of change is therefore a way to avoid large accelerations.

Even though, using a large number of interpolated controllers would smooth out

the control input; the control input rate of change could still be high and induce large

acceleration. It was therefore decided to deliberately saturate the rate of change of the

fuel flow in order to both smooth the control command and avoid large accelerations.

The saturation rate was chosen according to which region the turbofan was operating

in. For instance when close to idle, the saturation rate was allowed to be higher than

when operating between idle and cruise. This was done so, as when the engine is

close to idle the spool acceleration is not affected as much by the fuel flow rate as

when operating at cruise as summarized by,

u̇f =

 satrate1 if u̇f > satrate1 and turboprop operates around idle

satrate2 if u̇f > satrate2 and turboprop operates above idle
(107)

With Typically satrate1 > satrate2 . Figures 28 and 29 represent the thrust response

and input and state history of the system under the gain-scheduled control law with

deliberated saturations on the fuel flow.

The thrust response of the system is still vert satisfying as it reaches settling time

in less than 8 seconds. Also as shown on Figure 29, none of the limits are violated.

This was predictable for the Ṅ2 core spool acceleration but not necessarily for the N2

and fuel flow limits. This is explained by the fact that by saturating the fuel flow rate

of change, the input command is made slower and should not overshoot. Therefore

if the desired steady-state operating condition is within N2 state and fuel flow input

limits, the system should not exceeds both of these limits under this saturated control

law.
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Figure 28: Gain scheduled control Thrust response with input rate saturation

Despite showing good performance, this control technique has nos stability proofs.

However through simulation it was tested to be robust, and work under different

thrust conditions, model inaccuracies and external disturbances. One could argue

that limiting the rate of the control input could destabilize the system if the engine

needs to react quickly to a certain situation, to remain stable. However, the engine

has a large inertia and its dynamics is very slow and this kind of situation where

the engine has to react quickly do not exist. Therefore because of the engine’s slow

dynamics, this limited rate control input technique can be considered safe to be used

on the engine.

4.3 Peak-seeking

We will now present the Peak-seeking method applied to the Turboprop engine. We

will first go over some analysis of the system and consider the different performance

functions to minimize through peak-seeking. We will then see the updated Peak-

seeking method compared to the one used for DC motor and finally go over the

simulation results.
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(a) Fuel flow control input

(b) core spool speed, N2

(c) core spool acceleration, Ṅ2

Figure 29: Input and states history under input rate saturation
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4.3.1 Turboprop analysis

Prior to developing the Peak-seeking method on the Turboprop, it is important to

have a thorough understanding of the system behavior. It is first therefore important

to choose an adequate performance function to minimize as well as to verify the sys-

tem’s convexity regarding this function in order to ensure the existence of a unique

minimum.

The first performance function that comes in mind would be the steady state

fuel consumption of the Turboprop at a certain thrust level. The fuel consumption

can be directly affiliated to the cost of running the engine, and if optimized, could

considerably reduce flight expenses. Another performance function that is in a more

”long-term” objective, would be the engine’s core temperature. Minimizing the tem-

perature at which the engine is running could, over time, increase the operational

lifetime of the engine, as high core temperatures generally leads to structural wear-

ing. This is a non-exhaustive list of performance functions, as many more could be

considered such as the N2 spool speed, the spool torque, etc... each with their own

advantages. For the purpose of assessing the feasibility of the Peak-seeking method,

we will only present the work performed for the core engine temperature and fuel flow

minimization, as these two problems are representative enough.

An off-line analysis of these performance functions was performed using the tur-

boprop numerical simulation. The fuel flow and core temperature minimization prob-

lems are represented on Figures 30 and 31. Several other performances functions that

could be considered to be minimized are also represented on Figure 32. These perfor-

mance functions maps are represented in function of the thrust and propeller pitch

angle, and are always convex when plotted in function of the propeller pitch angle

only. This ensure the existence of a unique pitch angle minimum at any thrust level.

The minimum pitch angle location, regardless of the chosen performance function,
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Figure 30: Fuel flow optimization problem

Figure 31: Core temperature optimization problem

depends also on the the thrust level. A simulation was run to determine the optimal

pitch angle that will give the minimum fuel consumption for each thrust level, and is

represented on Figure 33. Because the numerical simulation of the turboprop engine

takes a long time to run, only few minimum pitch angle points were collected and

had to be interpolated to illustrate the change in the minimum pitch angle location.

As shown on 33 , the optimal pitch angle location can have a difference of almost

1.5◦ between two given thrusts. Therefore it would be wise to re-use the peak-seeking

algorithm when the change in thrust command is important. However, it is also

important to notice that when the performance function is plotted with respect to
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(a) Torque

(b) N2 spool speed

Figure 32: Other possible performance functions to minimize

the propeller pitch angle, the function is generally flat around its minimum and leads

to almost the same performance within 0.5◦ of the minimum. Therefore the optimal

angle found through the Peak-seeking can be considered valid in a small region around

the current Thrust, but has to be recomputed when encountering large changes in

Thrust level.

4.3.2 Study case : Fuel flow optimization

As mentioned before, the fuel flow is probably the most interesting performance func-

tion to minimize as it could considerably reduce the cost of operating the engine. It
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Figure 33: ’Fuel consumption ’Optimal pitch angle for different thrusts

also happens that it is the easiest and fastest performance function to minimize as

the fuel flow is an input to the system and is not corrupted by noise since it is directly

issued by the controller. The Kalman filter part of the Peak-seeking process is not

therefore required and the online-optimization process can be represented by Figure

34.

Figure 34: Fuel flow Peak-seeking

A Gradient descent method was preferred for the turboprop peak-seeking process

as the numerical Hessian is much more sensitive to innacuracies. The Gradient de-

scent method followed the same technique used for the DC motor using a fading term

in the pitch angle update law as previously introduced in Equation 80. Also, because
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the Gradient does not have to be estimated but instead can directly be calculated nu-

merically , the Peak-seeking process is fast and only requires few steady-state points

to converge to a minimum. This Peak-seeking algorithm was tested on the simulation

while keeping the thrust around 185 Newtons. The fuel flow measurement was per-

formed once the system reached steady state, which took approximately 8 seconds in

average. The result of this specific fuel flow Peak-seeking process in represented on

Figure 35.

Figure 35: Blade pitch angle for fuel flow optimization over Time

Based on Figure 35 we can notice that the process converges in less than 50

seconds which is very fast considering the slow engine dynamics. This is partially due

also by the fact that the gradient can be calculated instantaneously the beginning

of the process instead of waiting for the Kalman filter to converge. Also as shown

on the figure, the pitch angle was limited to a maximum change of 1.5◦ to limit the

disruptive behavior of the pitch angle change on the thrust controller. Minimizing

the fuel flow is therefore a relatively easy and fast process, however some performance

functions may have to be measured and will be corrupted by noise. We will now see

the Peak-seeking approach when dealing with such performance functions.
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Figure 36: Fuel flow minimization over Time

4.3.3 Study case : Core Temperature optimization

As previously discussed, optimizing the core temperature would have the advantage

of reducing the risk of structural damages on the long term. As for the fuel flow case,

when operating at a constant thrust level, the core temperature function is always

convex with regards of changes in the pitch angle. Using the turboprop simulation,

the core temperature was determined for different pitch angle at a thrust level of 185

N, and is represented on Figure 37. A simulated noisy temperature , corrupted by

white noise with a standard deviation of 0.5◦C, was added to this plot to represent

the supposed sensor measurement.

The Peak-seeking scheme is now represented on Figure 38. Because of the slow

engine dynamics each steady state measurement takes around 8 seconds, it is therefore

primordial to minimize the number of measurements in order to reach an optimal pitch

angle in a decent time. No persistent excitation was therefore added for the turboprop

peak-seeking as it involves taking more measurements and takes more time. Instead

of adding extra measurements, the update law of the pitch angle was rethought to

drive the pitch angle to a optimum, but also at the same time, increase the gradient
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Figure 37: Actual and measured core temperature change for a constant thrust of
185N

observability and reduce the number of required steady state measurements. This is

done through the ”pitch step mechanism” block represented on Figure 38 and will be

explained now.

Figure 38: Peak-seeking structure for noisy performance function

The Kalman filter was designed as presented in DC motor part of this thesis, with

the exception that equations 84 and 85 do not contain excitation terms. Also even

though only the Gradient is used for the pitch angle update law, the Hessian and third

60



derivative are still used in the estimation process to improve the Gradient estimation

quality. An important fact that was noticed for the DC motor case was that when

taking large pitch angle steps between two measurement, the Gradient estimate would

experience some ”lag” compare to the true Gradient. Meaning that the estimated

gradient behavior would be the same overall, but would follow the actual Gradient few

degrees behind. This was explained by the fact that the derivative is estimated based

on a Taylor’s series model which is valid only in small region around the nominal

pitch angle, and when large pitch angle steps are taken the Taylor approximation

becomes less accurate. A test was performed to demonstrate the fact about the lag

on the Gradient estimate. While staying at constant thrust of 185 N, a sweep of

pitch angle was performed to cover the operating space of the engine. This sweep was

performed with different pitch steps and the Kalman filter estimated the gradient of

the performance function in each case. Only the last 10 measurements were taken

into account for the derivative estimate, and the filtering process started only after

a certain of measurements were collected. These results are represented on Figure

39. Since there is no analytical model of the turboprop, the estimated Gradient

could only be compared to the Gradient with no noise. The small discontinuities

on the numerical gradient, especially when using small pitch angle steps, are due to

discrepancies in the turboprop code and could be disregarded.
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(a) pitch angle sweep of βk − βk−1 = 0.02

(b) pitch angle sweep of βk − βk−1 = 0.06

(c) pitch angle sweep of βk − βk−1 = 0.1

(d) pitch angle sweep of βk − βk−1 = 0.15

Figure 39: Gradient estimation for different pitch angle increments
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We can clearly see on Figure 39 that the gradient estimate ”lag” is proportional

to the size of the pitch angle step taken. Taking a small pitch angle step will give an

estimate close to the real gradient but which is more sensitive to noise, as only a small

region is used to estimate the derivative. On the other hand, when large pitch angle

steps are taken, the region covered is much larger and allows for a better measure of

the function behavior and hence its derivatives. Therefore when large steps are taken

the estimation is more accurate but biased. The ”pitch step mechanism” was designed

to combine the advantages of having both a non biased-estimate when using small

steps and having a more accurate estimation when using large ones, while taking as

few measurements as possible.

The mechanism works in a way that after taking some initial measurements, the

filter first takes large steps to converge to the minimum as fast as possible. As the

Gradient estimate gets closer to zero, the size of the these steps are reduced while

the direction is still dictated by the Gradient descent. The number of measurements

taken into account in the measurement matrix written in Equation 85 is also increasing

at each iteration, to keep track on the history and allow for much better estimate.

However, if the computational power available is limited, the number of measurements

could be limited to a certain value; but the measurements will have to be chosen in

a way to cover the current region of interest in detail and still have few data points

further away, to successfully catch the function’s behavior.

The Peak-seeking process was implemented on the simulation and following Figure

38. The Kalman filter was set to iterate as soon as a steady state measurement was

available, which is approximately at 0.125Hz. For the purpose of this simulation,

no computational limitation were set, and the filter was taking into account all of

the previously made measurements at each iteration. The optimum pitch angle was

initially guessed to be around 10 degrees, and the filter started working after taking

5 initial measurements around the first guess. Figure 40 shows the evolution of the
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gradient estimate through the peak-seeking process, and helps visualizing the pitch

step mechanism previously described. Figure 41 is as before, the evolution of the

pitch angle over time under the peak-seeking update law.

Figure 40: Gradient estimate through the Peak-seeking process

Figure 41: Pitch angle for Turboprop Core Temperature optimization over time

As shown on Figure 41 the process takes around 220 seconds to reach the opti-

mum. Even though that this core temperature optimization takes more than three
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Figure 42: Turboprop Core Temperature optimization over time

times longer than the fuel flow optimization, it is a very satisfying performance con-

sidering the gradient needs to be estimated from noisy data. It took approximately

40 seconds for the system to initially collect the necessary measurements for the first

estimate and approximately 20 other measurements after that to finally converge to

the optimum.

In this specific case, the core temperature optimal pitch angle is really close to the

fuel flow optimal one and is likely to be close for different thrusts level as well, as the

fuel flow and core temperature are closely related. Meaning that a decrease in fuel

flow will most likely induce a decrease in the core temperature. Furthermore, both

the Core temperature and fuel flow functions are really flat around there minimum,

meaning that even if not operating a the minimum, but close to it, the system can

be considered to perform optimally. It is therefore most advantageous for the core

temperature optimization, to actually optimize the fuel flow and follow the Peak-

seeking process presented on Figure 34, as it is faster and requires less computation.

However, the core temperature optimization process was presented in this thesis just

as an example to demonstrate the feasibility of the Peak-seeking process when a noisy
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performance function is used. Not all performance functions will lead to an optimum

pitch angle close to the fuel flow one, and for these functions, the peak-seeking process

as presented on Figure 38 should be used.
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CHAPTER V

CONCLUSION AND FUTURE WORK

A peak-seeking method was developed to optimize propulsion systems in real time.

The method is model-free and has been tested to be fast and reliable. The Peak-

seeking process also allows modularity in the system’s design and embraces the notion

of ”Plug and Play”.

Only the propeller’s blade pitch angle is controlled by the Peak-seeking process. The

blade pitch angle is updated using either a Newton or a Gradient Descent method

to minimize a predefined performance function. Both of these methods require the

knowledge of the function’s derivatives, which in turn requires the use of an extended

Kalman filter.

The Peak-seeking was first analytically derived and simulated for a DC motor driving

a variable pitch propeller. The method was then adapted to work on a turboprop

engine simulation, and showed in both cases satisfactory results. The method was

capable of optimizing the system in a short amount time despite noisy measurements

and without any knowledge of the system.

Future work consists of testing the Peak-seeking on the turboprop engine as well

as combining it with the work of Mehrdad Pakmehr which deals with designing a

decentralized turboprop adaptive controller. Combining these two works would lead

in the future to a fully modular engine.
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