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SUMMARY

Spacecraft simulators are widely used to validate spacecraft attitude deter-

mination and control techniques. The Autonomous Spacecraft Testing of Robotic

Operations in Space (ASTROS) facility at the School of Aerospace Engineering at

the Georgia Institute of Technology has been developed to create spacelike environ-

ment for academic research and education. This facility is composed of two stages:

The upper stage has a hemi-spherical air-bearing that allows frictionless rotational

motion of the upper stage, and the lower stage has three linear air-bearing pads

that make it possible to achieve almost friction-free translational motion of the entire

system. Therefore, these two types of air-bearings enable the platform to have five

degrees of freedom in order to test both attitude and position controlling problems.

In this system, the balancing procedure is a crucial issue that will minimize grav-

itational torques acting on the spacecraft simulator. This work introduces an auto-

matic mass balancing method and eliminates the center of gravity offset from the

center of rotation by actuating three sliding masses. First, PID attitude feedback

controller is proposed to balance x and y directions. Second, an Extended Kalman

Filter is introduced to estimate the vertical imbalance since the linear actuators can-

not control the vertical direction by sliding masses. Finally, the proposed controller

and the EKF are tested on the simulation and the ASTROS facility. The quaternions

are measured from a dual-axis inclinometer and the angular velocities are calculated

from derivatives of the quaternions during the experiments.

ix



CHAPTER I

INTRODUCTION

1.1 General Introduction

Experimental facilities for testing spacecraft dynamics are imperative to reduce vari-

ous risks and costs. Since 2000, the Dynamics and Control Systems Laboratory at the

School of Aerospace Engineering at Georgia Tech has established several air-bearing-

based spacecraft platforms. Similar facilities in other laboratories use air-bearing

systems to achieve frictionless sliding over a smooth surface. Historical review of

air-bearing spacecraft simulators is presented in Ref. [19].

The ground-based spacecraft simulator needs to create a frictionless and torque-

free environment. However, there are various disturbance elements acting on the

platform. These elements are categorized into four groups [21]: torques arising from

the platform, air-bearings, environment, and system. The major disturbance torque

is from the gravity due to a shift of the center of mass from the center of rotation

in the spherical air-bearing-based simulators. To minimize this gravitational torque,

the center of mass of the system needs to be aligned with the center of rotation. In

other words, the simulator must be balanced. A manual procedure to minimize the

offset between the center of mass and the center of rotation is presented in Ref. [5].

Fullmer states that the most effective method for manual balancing is to balance

two horizontal axes by first moving balance masses, and raising the vertical mass by

inspecting the pendulum motion of the system until the oscillatory period becomes

effectively long. However, the manual method requires considerable amount of time

and skill and does not guarantee the accurate estimation of the center of mass.

The aim of this study is to propose an automatic mass balancing system in order
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Figure 1: Offset vector along the gravity

to overcome the difficulties of the manual system. Many spacecraft simulators have

been equipped with automatic balancing systems [1,7,10,16,17,24]. Automatic mass

balancing systems with three proof masses for compensation of unbalance were pro-

posed in Refs. [1,10]. External control moment gyros were used to track the angular

momentum and to determine the positions of proof masses [10]. Three electric motors

were proposed to move sliding masses along three axes [1].

A batch estimation technique was introduced in order to calculate the mass mo-

ment of inertia and the center of gravity [8], where a least-squares estimation was

used to determine unknown parameters. Various estimation methods are presented

in Refs. [1, 10, 11, 15, 18, 22]. This study proposes an inertia-free attitude controller,

which does not require a priori knowledge of the mass identification. However, the

proposed control law cannot compensate the offset component along the vertical axis

as shown in Fig. 1. To overcome this challenge, Extended Kalman Filter is used to

estimate the offset along the gravity field and slowly move to the center of mass by

sliding the balance mass with a small velocity in the last direction.

The proposed work aims at designing the controller, validating it through the
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simulation using MATLAB/Simulink, and implementing the system to the ASTROS

facility.

1.2 5-DOF Experimental Platform

For this study, a 5-DOF experimental platform of the ASTROS facility is introduced

to simulate autonomous rendezvous and docking (ARD) and other general proximity

operations [2,23]. The platform includes an upper stage supported on a hemispherical

air bearing and a lower stage consisting of three linear air-bearing pads. Therefore,

two types of air-bearings enable the platform to achieve almost friction-free transla-

tional/rotational motion of the system over a flat epoxy floor. More details about

ASTROS facility and its 5-DOF platform can be found in Refs. [2, 8,23]. Pictures of

the platform and its manual balancing system are shown in Fig. 2.

The upper stage is equipped with 12 cold-gas thrusters for attitude and trans-

lational controls, each thruster providing a maximum of 5N force. A thruster al-

location algorithm was developed to distribute required forces and moments to the

thrusters [2]. The four Variable-Speed Control Moment Gyros (VSCMGs) are ar-

ranged in a conventional pyramid configuration on the platform to provide moments

for fine attitude control. Therefore, the control moments can be allocated to the

thrusters and/or the VSCMGs, while the control force can only be actuated by the

thrusters. The on-board attitude sensors include an inertial measurement unit (IMU),

a two-axis Sun/star sensor, a three-axis magnetometer, a three-axis rate gyro (RG02-

3201 by Humphrey), and a two-axis inclinometer. A VICON motion capture system

has been installed on the experimental arena to provide accurate localization and

attitude information with respect to an inertial frame [23].

All air-bearings are manually operated via external switches, and all sensors, the

thrusters, and the VSCMGs are remotely controlled by the on-board computer, which

3



Figure 2: The 5-DOF experimental platform and the manual balancing system

runs Mathworks’ xPC Target real-time environment. There are three different oper-

ation modes, which allow one to selectively open and close the valves for a 3-DOF

translational/rotational mode with heading change (only lower platform levitated),

full 3-DOF rotational mode (only upper platform levitated), and full 5-DOF trans-

lational/rotational mode (both upper and lower platforms levitated). This provides

great flexibility for the type of experiments one may conduct using the ASTROS.

1.3 Research Objectives

The overall objective of this work is to design a inertia-free adaptive attitude tracking

controller in order to relocate the platform’s center of mass toward the geometrical

center of the spherical air-bearing, and implement the design in the spacecraft simu-

lator. The specific objectives of the thesis are summarized below.

• Study on the system dynamic model and the PID attitude control

– Model the spacecraft simulator kinematics and dynamics

– Design a PID attitude controller for the balancing system

– Estimate attitude and an unknown parameter (distance between the center
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of gravity and the center of rotation) using an extended Kalman filter

• Implementation of the controller through the simulation and the experiment

– Validate the system through the simulation using MATLAB/Simulink model

– Validate the system experimentally on the ASTROS facility

5



CHAPTER II

DERIVATION OF THE EQUATIONS OF MOTION OF

THE PLATFORM

2.1 Nomenclature

ax/y acceleration of point x with respect to the y-frame

αx/y angular acceleration of body x with respect to the y-frame

∗ Center of mass of ∗

CR Center of rotation of the platform

δrM→mj
Displacement of the balance masses

F Bus of the upper stage of the platform (does not include gimbals, wheels

and the proof masses)

gs Gravity vector expressed in S-frame
xIy mass moment of inertia of body y about the point x

ωx/y Angular velocity vector of body x with respect to the y-frame

m∗ Mass of body *

rx→y Translation vector from point x to point y

S Upper stage with gimbals and wheels(does not include the proof masses)

U Upper stage with gimbals, wheels and proof masses

qx/y quaternion vector that represents the pose of X-frame with respect to the Y-frame

2.2 Reference Frames

• Intertial reference frame (I-frame) : reference frame with origin at the fixed

point of the epoxy floor.
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Figure 3: Definition of the M-frame with respect to the proof masses

• Upper stage reference frame (S-frame) : reference frame of the body S (the

upper stage with the gimbals and wheels but without the proof masses) with

origin at the center of rotation.

• Upper stage bus reference frame (F-frame) : reference frame of body F (upper

stage without the gimbals, wheels and proof masses) with origin at the center

of the upper stage bus.

• Proof masses reference frame (M-frame) : reference frame with ĪM aligned with

the position of a proof mass m1, J̄M aligned with m2, K̄M aligned with m3, and

origin at the initial location of the balancing masses as shown in Fig. 3.

• Gimbal i reference frame (Gi frame) : reference frame of body Gi (Gimbal i)

with origin at the center of mass of gimbal i.

• Wheel i reference frame (Wi frame) : reference frame of body Wi with origin at

the center of mass of wheel i.
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Figure 4: Forces acting on the platform

2.3 Equations of motion of the Upper Stage

From classical Newton/Euler dynamics, the translational dynamic equations of mo-

tion of the center of mass of the upper stage are given by

msa u/I
= fg,u + fc (1)

where fg,u is the gravitational force acting on the upper stage and fc is the contact force

acting on the upper stage due to the lower stage as shown in Fig. 4. The acceleration

of the center of mass of the upper stage with respect to the inertial frame can be

rewritten in terms of the acceleration of the center of rotation with respect to the

inertial frame as follows

rO→ u
= rO→CR + rCR→ u

(2)

The inertial frame time derivative of this expression is given by

Id
dtrO→ u

=
Id
dtrO→CR +

Id
dtrCR→ u

(3)

v
u/I

= vCR/I + v
u/S

+ ωS/I × rCR→ u
(4)
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Take an I-frame derivative of this equation.

Id
dtv

u/I
=

Id
dtvCR/I +

Id
dtv

u/S
+

Id
dt (ωS/I × rCR→ u

) (5)

a
u/I

= aCR/I + a
u/S

+αS/I × rCR→ u
+ 2 (ωS/I × v

u/S
) + ωS/I × (ωS/I × rCR→ u

) (6)

Then, the translational equation of motion of the upper stage is rewritten by noting

that rCR→ u
= 1

mu

(
msrCR→ s

+∑3
j=1 mjδrM→mj

)
. This yields

muaCR/I +ms (a
s/S

+αS/I × rCR→ s
+ 2 (ωS/I × v

s/S
) + ωS/I × (ωS/I × rCR→ s

))

+
3∑
j=1

mj (amj/S
+αS/I × δrM→mj

+ 2 (ωS/I × vmj/S
) + ωS/I × (ωS/I × δrM→mj

)) = fg,u + fc

(7)

The rotational dynamic equations of motion of the system composed by the upper

stage bus, the gimbals and wheels of the VSCMGs, and the proof masses are given

by

Id
dt

CRHu/I + rCR→ u
×muaCR/I = rCR→ u

× fg,u + CRτ c (8)

where CRτ c is the contact moment vector on the upper stage due to the lower stage

about point CR. Note that CRτ c is assumed to be zero in the 3-DOF and 5-DOF case.
CRHu/I can be calculated as follows

CRHu/I =CRIuωS/I + fIfωF/S +
4∑
i=1

WiIWi
ωWi/S

+
4∑
i=1

GiIGi
ωGi/S

+
3∑
j=1

mjImj
ωmj/S

+mfrCR→ f
× v

f/S
+

4∑
i=1

mWi
rCR→ Wi

× v
Wi
/S +

4∑
i=1

mGi
rCR→ Gi

× v
Gi
/S

+
3∑
j=1

mjδrM→mj
× vmj/S

(9)

This equation can be simplified by noting that ωF/S = ωmj/S
= 0 and ωWi/S

= ωWi/Gi
+

ωGi/S
and assuming that the centers of mass of the gimbals coincide with the centers

of mass of the wheels and that the centers of mass of the wheels and of the gimbals

do not move with respect to the S-frame which implies mfv f/S
= msv s/S

and CiICi
=

9



CiIGi
+ CiIWi

. This yields

CRHU/I = CRIuωS/I+
4∑
i=1

CiIWi
ωWi/Gi

+
4∑
i=1

CiICi
ωGi/S

+msrCR→ f
×v

s/S
+

3∑
j=1

mjδrM→mj
×vmj/S

(10)

The I-frame time derivative of this equation is given by

Id
dt

CRHU/I =
Sd
dt

CRHU/I + ωS/I × CRHU/I

=
Sd
dt

CRIuωS/I + CRIuαS/I +
Sd
dt

4∑
i=1

CiIWi
ωWi/Gi

+
Sd
dt

4∑
i=1

CiICi
ωGi/S

+msrCR→ f
× a

s/S

+ ωS/I ×
(
CRIuωS/I +

4∑
i=1

CiIWi
ωWi/Gi

+
4∑
i=1

CiICi
ωGi/S

+msrCR→ f
× v

s/S

)

+
3∑
j=1

mjδrM→mj
× amj/S

+ ωS/I × (
3∑
j=1

mjδrM→mj
× vmj/S

)

(11)

Finally, the rotational equation of motion is written as

Sd
dt

CRIuωS/I + CRIuαS/I +
Sd
dt

4∑
i=1

CiIWi
ωWi/Gi

+
Sd
dt

4∑
i=1

CiICi
ωGi/S

+msrCR→ f
× a

s/S

+ ωS/I × (CRIuωS/I +
4∑
i=1

CiIWi
ωWi/Gi

+
4∑
i=1

CiICi
ωGi/S

+msrCR→ f
× v

s/S
)

+
3∑
j=1

mjδrM→mj
× amj/S

+ ωS/I × (
3∑
j=1

mjδrM→mj
× vmj/S

) + rCR→ u
×muaCR/I

= rCR→ u
× fg,u

(12)

2.4 Equations of Motion for the 3-DOF case

In this case, the equations of motion only describe the rotation of the upper stage

since the lower stage is fixed with respect to the inertial frame during auto-balancing

(aCR/I = 0). Moreover, ωWi/Gi = ωGi/S = 0 because VSCMGs are not used for the

balancing system. Therefore, the rotational equations of motion from Eq. (12) can
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be written as
Sd
dt

CRIuωS/I + CRIuαS/I +
3∑
j=1

mjδrM→mj
× amj/S

+ ωS/I ×
(
CRIuωS/I +

3∑
j=1

mjδrM→mj
× vmj/S

)
= rCR→ u

× fg,u
(13)

Note that the mass moment of inertia of the upper stage can be calculated as

CRIu = CRIs −
3∑
j=1

mj [δrM→mj
×] [δrM→mj

×]

where [δrM→mj
×] =


0 −r3 r2

r3 0 −r1

−r2 r1 0

 , δrM→mj
=


r1

r2

r3


The S-frame time derivative of mass moment of inertia of the upper stage can be

written as

SdCRIu
dt =

3∑
j=1

SdCRImj

dt

= 2


m2v22r22 +m3v33r33 0 0

0 m1v11r11 +m3v33r33 0

0 0 m1v11r11 +m2v22r22


where

δrM→m1
=


r11

0

0

 , vm1/S
=


v11

0

0

 , δrM→m2
=


0

r22

0

 , (14)

vm2/S
=


0

v22

0

 , δrM→m3
=


0

0

r33

 , vm3/S
=


0

0

v33


The time derivative of the mass moment of inertia is greatly small, so that this term

is neglected in the system dynamic model of the balancing system. The center of

11



mass of the upper stage is calculated as

rCR→ u
= 1
mu

(
msrCR→ s

+
3∑
j=1

mjδrM→mj

)
(15)

where rCR→ u
is the position vector from the center of rotation to the center of mass

of the upper stage.

2.5 Kinematics

The rotational kinematics using a quaternion is given by

q̇1

q̇2

q̇3

q̇4


= 1

2



0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0





q1

q2

q3

q4


, where ωS/I =


ωx

ωy

ωz

 and qS/I =



q1

q2

q3

q4


(16)

In summary, the dynamics and the kinematics for the balancing system are cal-

culated from Eq. (13) and Eq. (16).
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CHAPTER III

THE PID CONTROLLER AND THE EXTENDED

KALMAN FILTER FOR ESTIMATION

3.1 PID Controller

As mentioned before, the automatic balancing system is crucial to minimizing distur-

bance torques on the simulator. In this section, a PID control technique is used to

compensate for the center of gravity offset. The main idea of the balancing system is

to move three proof masses in order to relocate the center of mass until it coincides

with the geometric center of rotation. In other words, when the spacecraft simulator

is perfectly balanced and the angular momentum is conserved, the distance between

the center of rotation and the center of mass is zero. The rotational equation of

motion can be simplified due to negligibly small velocities and accelerations of the

balancing masses. As shown in Fig. 5, angular acceleration errors (αerr

S/I
) between Eq.

(13) and the simplified dynamic model below are less than 10−10 rad/s2, which can be

ignored. Therefore, the system dynamics from Eq. (13) can be simplified as

CRIuαS/I + ωS/I × CRIuωS/I = rCR→ s
× fg,u + τ (17)

where τ is the control torque generated by sliding the masses as follows

τ =
3∑
j=1

mjδrM→mj
× gS (18)

δrM→mj
is designed from the theoretical torque τ [1] by using Eq. (18). However,

because the matrix gS is always non-invertible, τ can be mapped to δrM→mj
as

δrM→mj
= gS × τ
mj‖gS‖2

(19)

This control torque can compensate for the offset in the directions perpendicular to

13



Figure 5: Angular acceleration error from system dynamics

the gravity field, but not in the direction parallel to the gravity. Therefore, Eq. (19)

can be substituted into Eq. (18) by noting that gS · τ = 0. Then,

−mj

(
gS × gS × τ
mj‖gS‖2

)
= −

(
(gS · τ ) gS − (gS · gS) τ

‖gS‖2

)
= τ (20)

The control input is designed as the translation of the proof masses (δrM→mj
= u).

The system dynamics combined with quaternion kinematics is presented as the entire

balancing model as follows
ω̇S/I

q̇S/I

δrM→mj

 =


CRIu−1(−ωS/I × CRIuωS/I + rS

CR→ s

× fg,u + τ )
1

2
qS/Iω

(q)
S/I

u

 (21)

where ω(q)
S/I

= (0,ωS/I) and the control input u is the position of the proof masses.

The control torque of a PID controller is defined as a function of attitude and

14



angular velocity errors. The control torque equation is written as

τ = −Kqq(v)
err
−KI

∫ τ

0
q(v)
err

(τ)dτ −KωωS/I (22)

where qerr = [qerr1 , qerr2 , qerr3 , qerr4 ] and q(v)
err

= [qerr2 , qerr3 , qerr4 ]. The error quaternion qerr

is calculated by multiplying the desired quaternion qd with the estimated quaternion

q̄ [4] as follows

qerr1

qerr2

qerr3

qerr4


=



qd1 −qd2 −qd3 −qd4

qd2 qd1 −qd4 qd3

qd3 qd4 qd1 −qd2

qd4 −qd3 qd2 qd1





q̄1

q̄2

q̄3

q̄4


(23)

When designing the controller for the balancing system, the reference quaternion is

simply given by qd = [1, 0, 0, 0]. The variables Kq, KI, and Kω are the proportional,

integral, and derivative gains, respectively. The proposed attitude feedback controller

utilizes the quaternion and the angular velocity measured by the sensors. Since the

balancing system is modeled as a second-order system, the control torque includes

the derivative term of the attitude, so that this PID controller will always drive the

error to zero.

When the angular velocity and the error quaternion are equal to zero, Eq. (21)

becomes

ω̇S/I = CRIu−1(r̃S
CR→ u

×mug) = 0 (24)

where

r̃S
CR→ u

×mug = rS
CR→ s

× fg,u + τ (25)

The gravity vector has only z component with respect to the body frame since gS
x
and

gS
y
go to zero. Therefore, Eq. (24) can be written as

I−1
11 I−1

12 I−1
13

I−1
12 I−1

22 I−1
23

I−1
13 I−1

23 I−1
33




r̃ygSz

−r̃xgSz

0

 =


I−1

11 r̃ygSz − I−1
12 r̃xgSz

I−1
12 r̃ygSz − I−1

22 r̃xgSz

0

 = 0 (26)
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which yields r̃x = r̃y = 0. This implies that the platform is balanced in x and y

directions. But we still have the vertical component of the offset. This component

will be estimated using an Extended Kalman filter as presented in the following

section.

3.2 Extended Kalman Filter for Vertical Imbalance

Once the offset perpendicular to gS is balanced by the controller, the extended Kalman

filter(EKF) is used to estimate the vertical offset between the center of rotation and

the center of mass [1]. Probably the most widely used estimator for nonlinear systems

is the EKF which simply linearizes all the nonlinear models so that the traditional

linear Kalman filter equations can be applied. More details about EKF can be shown

in Refs. [1, 9, 20].

The state equation of the EKF can be written as

ẋ (t) = f (x) + ω (t) (27)

where ω (t) represents the process noise, which is assumed to be a Gaussian white-

noise process with mean zero and covariance Q (t) ∈ R4×4. If the balancing masses do

not move during estimation, the system dynamics from Eq. (13) can be expressed as

CRIuαS/I + ωS/I × CRIuωS/I = rCR→ u
× fg,u (28)

The state equation is then given by Eq. (28), yielding

f (x) =

CRIu−1 (−ωS/I × CRIuωS/I + roff × fg,u)

0

 (29)

where x = [ωS/I, r
off

z
] and roff = [0, 0, roff

z
], which only has the vertical component

of the offset between the center of rotation and the center of mass. Here, the unknown

parameter roff
z

is augmented into the state with the corresponding dynamics to be

ṙoff
z

= 0. The initial mean and covariance of the state are assumed to be known as
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x̂ (t0) = x0 and P0.

In the prediction step, the estimate and the covariance matrix of the state are given

by

˙̂x (t) ≈ f (x̂ (t) , t) (30)

P (t) = E {δ(t)δT(t)} ∈ R4×4 (31)

where x̂(t) is the minimum covariance estimate of the state and δ(t) = x(t) − x̂(t)

is the state error. The derivative of the state error can be expressed as a linear

approximation by using a Taylor series expansion as follows

δ̇(t) = F (t)δ(t) + w(t), F (t) = ∂f(x, t)
∂x

∣∣∣∣∣
x̂(t)

(32)

and the covariance matrix of the state satisfies the Riccati equation

Ṗ (t) = F (t)P (t) + P (t)F T(t) +Q(t) (33)

In the measurement step, assume that the the angular velocity is taken at time tk

measured by the inertial measurement unit(IMU). The output equation is given by

z(tk) = Hx(tk) + v(tk), where H =


1 0 0 0

0 1 0 0

0 0 1 0

 (34)

and v(t) represents the measurement noise with covariance R(t) ∈ R3×3. Then the

estimate of x(tk) measured at time tk is given by

x̂+(tk) = x̂−(tk) +K(tk) [z(tk)− ẑ(tk)] , where ẑ(tk) = Hx̂−(tk) and (35)

K(tk) = P −(tk)HT(tk) [H(tk)P −(tk)HT(tk) +R(tk)]−1 (36)

x̂−(tk) and P −(tk) is the predicted values immediately before the measurement and

x̂+(tk) and P +(tk) is the values after the measurement. The state covariance matrix

after the measurement is given by

P +(tk) = (I −K(tk)H)P −(tk)(I −K(tk)H)T +K(tk)R(tk)k(tk)T (37)

17



In summary, a two-step design is presented to balance the platform in this chapter.

The PID control algorithm generates the control torque calculated from Eq. (22) to

minimize the offset in x and y directions. Once the offset perpendicular to the gravity

is balanced, the offset in z direction is estimated using the Extended Kalman filter

and compensated by moving the vertical proof mass according to the estimated value.
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CHAPTER IV

SIMULATION AND EXPERIMENTAL RESULTS

4.1 Simulation Results

In this section, the balancing controller and the EKF described above are tested

on simulations of the platform of the ASTROS facility. These simulations are im-

plemented using MATLAB/Simulink and it is the exact same control software that

will be used in the experiments. The outputs of the Simulink model also drive a

virtual-reality environment that provides a relatively realistic 3D visualization of the

platform’s motion as shown Fig. 6. These simulation results include the PID attitude

controller and the EKF for vertical imbalance described in chapter 3. First, the PID

controller is tested to stabilize the attitude and the angular velocity. Second, the

EKF is tested to estimate the location of the center of mass along z axis.

The angular velocity can be measured by the IMU and the rate-gyros, which are

simulated by adding noise, bias, and drift to the true angular velocity [6]. The mea-

surement noises, bias, and drift produced by IMU are [0.14, 0.14, 0.14]T deg/s (stan-

dard deviation of Additive White Gaussian Noise), [0, 0, 0]T deg/s, and [0, 0, 0]T deg/s2,

respectively based on the experimental data after being filtered by a 4-th order

discrete-time Butterworth filter. The default values for the discrete-time angular

velocity measured by the rate-gyro are [0.05, 0.05, 0.05]T deg/s (standard deviation

of AWGN), [−0.9, 1.1, 0.8]T deg/s, and [1.2e−3, −2.3e−3, 1.0e−3]T deg/s2, respectively.

The qS/I can be measured by the IMU, VICON system, and the dual-axis incli-

nometer. The default standard deviation of AWGN added by the IMU is [0, 0, 0, 0]T ,

and the AWGN standard deviation of the VICON system [7e−5, 7e−5, 7e−5, 7e−5]T ,

based on experimental data. The dual-axis inclinometer is newly installed for the
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Figure 6: The 3D visualization of the platform

balancing system that shows more accurate data from the experiments. Therefore,

the standard deviation of the AWGN added by the inclinometer can be ignored.

The mass moment of inertia matrix, the center of gravity vector and other pa-

rameters used for the simulation are estimated [8] as shown below.

ms = 134 kg, m1 = 2.853 kg, m2 = 1.962 kg, m3 = 1.045 kg

CRIu =


20.2012 −0.0899 −0.0469

−0.0899 12.9943 −0.4187

−0.0469 −0.4187 16.2764

 (kgm2) , rCR→ u
=


−5× 10−6

5× 10−6

−3× 10−4

 (m)
(38)

where ms is the mass of the upper stage and m1, m2, and m3 are the loads of three

linear stages, which are the same weights as what used in the experiments. The initial

states are given by ωS/I(0) = [0, 0, 0]T rad/s, φS/I(0) = 1 deg, and θS/I(0) = 1, where

φS/I is the roll angle and θS/I is the pitch angle. The yaw angle is not considered for
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Figure 7: Euler angles and angular velocity expressed in the body frame

the balancing procedure. The control gains are chosen to be Kω = 5, Kq = 1, and

KI = 1.

4.1.1 PID Controller

An initial simulation was run in order to validate the automatic mass balancing

technique. An offset and other values are simulated with values shown in Eq. (38). An

initial angular velocity is assumed to be zero. The simulation result was demonstrated

in Figs. 7-8. Fig. 7 shows the convergence of Euler angles and the angular velocity of

the upper stage with respect to the inertial frame. Applying the control law given in

Section 3.1, we observe that the attitude and the angular velocity go to zero.

As shown as in Fig. 8, the offsets in x and y directions converge to zero, but the

proposed adaptive controller cannot balance the offset along z direction. The final po-

sitions of the balance masses are δrm1
= 2.3341×10−4 m and δrm2

= −3.3828×10−4 m.
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Figure 8: Balance masses’ position and convergence of the estimated offsets

These simulation results agree with our analysis presented in preceding sections.

4.1.2 EKF for vertical Imbalance Compensation

In this section, the unbalanced vertical offset is estimated using the Extended Kalman

filter as explained in section 3.2. For this simulation, the EKF was fed angular velocity

measurements from the IMU and process and measurement covariance matrices have

been chosen as

Q = E(ωωT) = diag(10−6, 10−6, 10−6, 10−10) [rad2/s4, rad2/s4, rad2/s4,m2] (39)

R = E(vvT) = diag(2.5× 10−6, 2.5× 10−6, 2.5× 10−6) [rad2/s2] (40)

and the initial error covariance matrix P0 is given by

P0 = diag(10−9, 10−9, 10−9, 10−6) [rad2/s2, rad2/s2, rad2/s2,m2] (41)
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Figure 9: Estimated and true angular velocity and the estimation error

To estimate the states, an initial pitch angle is given by 10 deg and the corre-

sponding quaternion is q0 = [0.9962 0 0.0872 0] to start with an non-zero angular

velocity. An offset is simulated with initial value roff(0) = [0 0 0] (m) and the initial

angular velocity ωS/I(0) = [0 0 0] (rad/s).

The estimate of the angular velocity and the estimation error obtained with the

EKF are plotted in Fig. 9. The angular velocity error is less than 10−3 rad/s. Fig. 10

shows the estimated value of the vertical offset and its estimation error. The average

estimate after 200 sec is 4.461×10−5 (m), which converges to the initial value (4.959×

10−5). After roff
z

has been estimated, the balance mass mz can be moved along the z

axis to balance the last direction. Therefore, the offset in all three directions can be

eventually balanced.

4.2 Experimental Results

To test an automatic balancing system, the 5-DOF experimental platform of the

ASTROS facility uses three linear actuators with a dual-axis inclinometer. The chosen

linear stages are from the MSL-25-14 from Newmark Systems Inc [25] as shown in

Fig. 11.

In order to precisely move the balance masses, the three linear stages slide up to

50mm along their axis, respectively. They have ball screws to move 2.54mm for each
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Figure 10: Estimated and true offset and the estimation error

revolution. Each stage comes with a MDrive intelligent stepper motor, which is inte-

grated with a high resolution microstepping driver and a full featured programmable

motion controller. This motor rotates 1.8◦ per step or 200 steps per revolution. The

microstep resolution selection divides the number of steps to yield a finer resolution.

The default value of the microstep resolution is 256, which yields 51200 microsteps per

revolution. The actuators can move at a top speed of 5,000,000microsteps/sec and a

top acceleration of 1.5×109 microsteps/sec2. To program the actuator, an initial (VI)

and a maximum velocity (VM) as well as the required distance are needed to calcu-

late the actual time as shown in Fig. 12. The position resolution is 2048microsteps,

the velocity resolution is 0.5961microsteps/sec, and the acceleration resolution is

90.9microsteps/sec2. Table. 1 shows the specifications of the linear stage combined

with the stepper motor.
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Figure 11: Overview of the three-axis linear actuator and its dimensions

Figure 12: Trapezoidal move profile

Fig. 13 shows the balancing system installed on the upper stage. The system has

1.063 kg mass only on the vertical stage. Therefore, the stage on the bottom has the

weights of the two stages plus the proof mass and the middle stage has the weights

of the vertical stage plus the proof mass as shown in Eq. 38. The system operates in

a party mode in order to control three stages at the same time.

Instead of other sensors [23], a dual axis inclinometer is installed for the balancing

system in order to deliver better accuracy. The inclinometer (Solar-2-30-1) from Level

Developments Ltd. provides 30◦ range and 0.001◦ resolution [26]. The roll and pitch

angles are measured from the inclinometer at 20 Hz. Fig. 14 shows the raw data of the

angles measured by IMU, VICON, and the inclinometer. The misalignment between
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Table 1: Specifications of the linear actuator

Specification Value Specification Value

Travel Length 50mm Motor Type Stepper

Resolution 0.04µm Input Voltage +12-48VDC

Accuracy 0.6µm Communication RS-422/485

Max. Speed 25mm/sec Steps/Rev 51200

Max. Load 4.5 kg/each Velocity Range ±25mm/sec

Stage Weight 0.73 kg Motor Weight 0.29 kg

the sensors is up to 1.2 deg that can cause an error of the control system.

The automatic balancing system is installed on the upper stage of the platform and

both the actuator and the inclinometer communicate to an on-board computer using

the RS-232 protocol. Three stages of the actuator are daisy chained and controlled

independently by assigning a device name to each stage and enabling the party mode.

The on-board computer runs Mathworks’ xPC Target real-time environment to collect

sensor data and implement control algorithms for the actuator. In this environment

a host comuputer with MATLAB/Siumulink creates control models using Simulink

blocks for xPC Target. A Wi-Fi router provides wireless communication between

the target and the host computer. All on-board electronics are powered by two

rechargeable lithium-iron batteries [23]. The schematic of the overall connections to

the computer are shown in Fig. 15.

The PID controller using the quaternion and angular velocity feedback was imple-

mented on the ASTROS facility. In the experiment, the angular velocity and the roll

and pitch angles of the upper stage with respect to the inertial frame were measured

with the inclinometer at 20 Hz. The experiment was carried out on the balancing

model presented in Section. 3.1. The control gains were set as Kω = 5, Kq = 1,
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Figure 13: Balancing system installed on the upper stage

KI = 1 which were tuned from the simulation. At the beginning of the experiment,

an initial angular velocity of ω0 = [0.06, 0, 0] deg/s, an roll angle φ0 = −1.61 deg,

and an pitch angle θ0 = −2.93 deg were applied. Fig. 16 shows the trajectories of

the angles and the angular velocities. After 120 sec, the roll and pitch angles con-

verged to zero while the angular velocity was stabilized. This behavior agreed with

the simulation result as expected, but the platform was not perfectly balanced. It

is attributed to the limitation of accuracy of the inclinometer. As shown in Fig. 17,

the linear stages slided -1.1mm and 1.5mm along x and y axes during the balancing

procedure.

After the balancing experiment, the offset between the center of mass and the

center of rotation was compensated in two directions, which implies the center of

mass became parallel to the gravity.
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Figure 14: Comparison of the roll and pitch angles between the sensors
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Figure 15: Overall Schematic of the balancing system in reference to the connection
to the computer
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Figure 16: Euler angles and angular velocity expressed in the body frame
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Figure 17: Balance masses’ position

31



CHAPTER V

CONCLUSIONS

5.1 Summary

In this thesis, an automatic balancing system has been developed to minimize the

gravitational torque acting on the spacecraft simulator. The proposed balancing

system can eliminate the offset using only sliding masses. However, the control torque

generated by the linear actuators is constrained in the direction perpendicular to the

gravity. To overcome this physical limitation of the linear stages, a two-step design

has been proposed. First, a quaternion based PID controller has been presented.

This dual-axis controller is one of the simplest form for the attitude control which

is applied directly to the quaternion error. The simulation and experimental results

proved the stabilization of the attitude and the angular velocity. Once the offsets

in x and y axes are compensated, the vertical offset is estimated using an Extended

Kalman Filter. The main contribution of this work is that the automatic balancing

system greatly reduce time and labor and accurately minimize the disturbance torque

acting on the platform compared with the manual balancing system.

5.2 Future Work

Apart from the theoretical techniques developed in this research, here are some further

attempts to improve the accuracy of the system and to take into consideration the

reality.

• The attitude measurements of the sensors installed on the platform need to be

aligned with each other for future experiments.

• For the second step of the balancing procedure, the EKF proposed in Section
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3.2 needs to be tested to estimate the vertical offset in the real system.
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