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 Iron-Gallium alloy (Galfenol) is a magnetostrictive smart material (λsat ~400 

ppm) with potential for robust transduction owing to good magneto-mechanical 

coupling and useful mechanical properties. In addition, Galfenol exhibits a highly 

negative Poisson’s ratio (denoted by ν) along the <110> crystallographic directions 

on {100} planes with ν values of as low as -0.7 under tensile loads. Consequently, 

their samples become wider when elongated and narrower when compressed (aka 



   

auxeticity). This is an anisotropic, in-plane and volume conserving phenomenon with 

compensating contractions and expansions in the third (out of plane) direction.  

 

Since there is good magneto-elastic coupling in Galfenol, a negative Poisson’s 

ratio is expected to be observed under application of magnetic fields even under zero 

stress conditions. This work deals with systematically studying the magneto-elastic 

contributions in Galfenol samples between 12 and 33 atomic percent Ga as a non-

synthetic (no artificial linkages, unlike foams) ‘structural auxetic’ material, capable of 

bearing loads. This investigation addresses the profound gap in understanding this 

atypical behavior using empirical data supported by analytical modeling from first 

principles to predict the Poisson’s ratio at magnetic saturation, multi-physics finite 

element simulations to determine the trends in the strains along the <110> {100} 

directions and magnetic domain imaging to explain the mechanical response from a 

magnetic domain perspective.  

 

The outcome of this effort will help comprehend the association between 

anisotropic magnetic and mechanical energies and hence the magnetic contributions 

to the atomic level interactions that are the origins of this magneto-auxetic 

characteristic. Also, it is well established that a number of mechanical properties such 

as shear resistance and toughness depend on the value of Poisson’s ratio. There is a 

slight increase in these mechanical properties with non-zero ν values, but as we enter 

the highly auxetic regime (<-0.5), these values increase by magnitudes. Hence, the 

possibility of  values approaching -1.0 under applied magnetic fields at zero stress is 



   

extremely intriguing, as these properties can be much larger than is possible in 

conventional materials. This has potential for several novel applications where the 

value of Poisson’s ratio can be magnetically tuned to keep it near -1 under applied 

stresses.  
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Chapter 1: Introduction 

The goal of the research presented in this dissertation is to discern the 

magneto-auxetic effect observed in iron-gallium alloys called Galfenol along certain 

crystallographic directions under applied magnetic fields and zero mechanical stress 

conditions. The interaction of magnetic fields with the elasticity of atomic bonds in 

the crystal lattice of Galfenol leads to a negative Poisson’s ratio (aka auxeticity). The 

combination of inherent magneto-elastic coupling and good structural attributes in 

Galfenol along with its magneto-auxetic behavior is very interesting and holds 

immense potential for novel applications. 

   

The introduction chapter attempts to provide the reader with sufficient 

background to help understand and appreciate the contributions of this work. This 

chapter begins with a statement of research objectives and the motivation behind this 

effort. Three major concepts: physics of magnetism, magnetostriction and auxeticity; 

essential to the investigation will be discussed in detail in this chapter.  

 

Section 1.2 will present a detailed discussion of the fundamentals of 

magnetism which is essential to comprehend the magnetic contributions to the 

magneto-elastic phenomena. This will also include a brief introduction to magnetic 

domains and their imaging. The subsequent section deals with the magneto-elastic 

effect and its governing equations. An overview of magnetostrictive materials with 

special attention to Galfenol will follow. Finally, a general background to auxetic 
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materials and their development over the years will be provided. This will include a 

discussion on previous works on auxeticity in Galfenol. 

 

1.1: Objectives and motivation 

Galfenol (Fe100-xGax with ~12 < x < ~33) is a unique smart material with 

extremely useful properties such as high tensile strength [6, 7] and good magneto-

mechanical coupling properties [7, 8]. Consequently, significant research [7-11] has 

been directed towards understanding the origin and developing potential applications 

based on these properties. Apart from these characteristics, it is also one of very few 

structural materials that exhibit a large negative Poisson’s ratio. It is only recently that 

studies towards understanding this auxetic behavior of Galfenol along the <110> 

{100} direction has begun [3, 9, 12-15].  

 

Analysis of the auxetic magneto-elastic response of Galfenol to applied 

magnetic fields at zero mechanical stress, which has not previously been explored, is 

the main focus of the research presented here. A magnetic field is applied along one 

of the <110> {100} crystallographic directions and the longitudinal and transverse 

<110> strains on the same (100) plane are systematically studied for a broad spectrum 

of compositions with special emphasis to quantifying the magneto-auxetic 

phenomenon and comparison of the results obtained from this study with previously 

published auxeticity data from other protocols including tensile testing and resonant 

ultrasound testing methods. A theoretical anisotropy model from first principles that 
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uses elastic, magneto-elastic and mechanical work energies to describe the change in 

magnetization and the corresponding magnetostriction in the material due to applied 

magnetic fields is also derived. The experimental results for Poisson’s ratio at 

magnetic saturation are used to validate the predicted values from this model. The 

trends in the strains observed from the experiments are compared to those obtained 

from finite element multi-physics simulations formulated by modifying the well-

established energy based model called, ‘Armstrong model’ [8, 16]. Images of 

magnetic domain evolution on the surface of single crystal Galfenol {100} samples 

recorded using Magneto-Optic Kerr Effect (MOKE) microscopy under applied 

magnetic fields along the <100> direction are used to understand the micromagnetic 

domain contribution to the magneto-elastic auxetic effect. The results from these 

tasks will be used to understand the atomic level interactions in Galfenol which is the 

origin of the auxetic behavior. 

 

This effort is directed towards aiding scientists and engineers to understand 

and exploit the unique properties of this alloy to develop novel applications. 

 

1.2: Physics of magnetism 

This section begins with a brief history of magnetism and a definition of 

magnetic quantities. This will set the stage for atomic basis for magnetism, followed 

by a discussion of magnetism in solids. Subsequently, a brief overview of magnetic 

domains and their evolution through domain wall motion will be presented as it 
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serves as a meso level bridge between atomic origin of magnetism and macro-scale 

magnetization of bulk materials. 

 

The underlying physics behind magnetism and specific information on 

ferromagnetic materials is essential to understand the behavior of magnetostrictive 

materials like Galfenol, and is discussed in Section 1.3. 

 

1.2.1: History of magnetism 

The knowledge of magnetism dates back to the 6th century when the Greek 

philosopher Thales of Miletus in Magnesia observed that a loadstone (Fe3O4) always 

points along the same direction.  

 

The earth is conceptualized as a huge permanent magnet with its magnetic 

north pole facing nearly towards the geographical South Pole and its magnetic south 

pole facing nearly towards the geographical North Pole. Magnetic theory in materials 

developed over the years with the earth’s poles as a reference. Unlike mechanical 

forces, forces of magnetism are non-contact forces that are manifested in the form of 

dipoles (known as the north and south poles), where like poles repel each other and 

unlike poles attract each other. 
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1.2.2: Fundamental magnetic quantities 

Hans Christian Oersted (1820) observed that a current carrying conductor 

produces a magnetic field and attributed it to the motion of charges that constitute an 

electric current. The “magnetic field strength” (�⃗⃗� ) is defined as the magnetic vector 

quantity at a point in a magnetic field which measures the ability of electric currents 

or magnetized bodies to produce magnetic induction at that point [17]. Magnetic field 

strength is measured in Oersted (cgs) or Ampere per meter (SI), where 1 

A/m=79.57747 Oe. 

 

Equation (1.1) is called the Biot-Savart law and it gives us the elemental field 

strength d�⃗⃗�  at a point at a distance 𝑟  from a conductor of elemental length d𝑙  that 

carries a current . 

 

𝑑�⃗⃗� =
𝜇𝑜

4𝜋
𝑖
𝑑𝑙  × 𝑟  

𝑟2  (1.1) 

 

Ampere derived Eq. (1.2), which is the integral form of this law, where �⃗⃗�  is 

the magnetic field produced by 𝑁 number of current elements with current  in each 

of them in a closed circuit of a fixed length. 

 

𝑁𝑖 = ∮ �⃗⃗� . 𝑑𝑙   (1.2) 

 

i

i
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The field generated at the center of an infinitely long solenoid can be 

calculated using Ampere’s Law. The magnetic field at the center of a solenoid of 

finite length 𝑙 is computed as shown in Eq. (1.3). 

 

𝐻 =
𝑁𝑖

𝑙
 (1.3) 

 

Magnetic force is visualized using imaginary streamlines known as lines of 

magnetic flux ( ). The units of magnetic flux are maxwell (cgs) or weber (SI) where 

1 Wb = 108 Mx. These magnetic field lines have the following properties: 

(1) The lines of flux are continuous, starting from the North Pole and ending in 

the South Pole.  

(2) These lines can never intersect each other and the tangent to a line of force at 

a point gives the direction of the magnetic induction.  

(3) The density of the flux lines determines the strength of the magnetic 

induction. 

 

The “magnetic induction” or “magnetic flux density” is denoted by (�⃗� ) and 

gives a measure of the strength of magnetic flux induced in a material due to the 

application of an external magnetic field. Magnetic induction is measured in gauss 

(cgs) or tesla (SI) where 1 T = 1 Wbm
-2

 = 10
4 

G.  
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The magnetic flux (𝜙) through a material of area 𝐴  can be related to the 

magnetic induction using Equation (1.4). 

 

𝜙 = �⃗�  ×  𝐴  (1.4) 

          

The amount of flux entering and leaving any closed surface is always equal. 

Hence, the lines of induction always form a closed path (also known as Gauss’s Law) 

[17] and can be expressed by Eq. (1.5). Note that the elemental area ( ) is a vector 

whose direction is normal to the surface. 

 

∫ �⃗� . 𝑑𝐴 = 0 (1.5) 

Magnetic induction and magnetic field can be related using the linear 

constitutive Equation (1.6). 

 

�⃗� = 𝜇�⃗⃗�   (1.6) 

 

Here,  is known as the magnetic permeability of the material. The magnetic 

permeability of vacuum ( ) has a constant value of 4 x 10
-7

 Hm
-1

 (SI) or 1 (cgs). 

The SI unit of permeability is Henry per meter and is derived from the concept 

of inductance. Permeability is a material property and is usually a complex function 

of magnetic field, material temperature, thermal history, stress etc. Usually materials 

d A



0 
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are characterized by their relative permeability ( ), which is defined by Equation 

(1.7). 

 

 (1.7) 

 

Magnetization (�⃗⃗� ) of a material indicates the amount of magnetic moment 

(�⃗⃗� ) per unit volume, aligned in the material due to an externally applied field �⃗⃗� . 

Volume magnetization is denoted by 4𝜋�⃗⃗�  in the cgs unit system and is measured in 

Gauss (𝐺). In the SI system magnetization is measured in Am
-1

. Hence the total 

magnetic induction in a material is given in the SI system by Eq. (1.8) and in the cgs 

system by Eq. (1.9). 

 

�⃗� = 𝜇𝑜(�⃗⃗� + �⃗⃗� ) (1.8) 

�⃗� = �⃗⃗� + 4𝜋�⃗⃗�  (1.9) 

  

A property of the magnetic material called magnetic susceptibility (𝜒𝑚) 

relates the magnetization in the material to the applied magnetic field. This linear 

constitutive equation is shown in Eq. (1.10). 

�⃗⃗� = 𝜒𝑚�⃗⃗�   (1.10) 

 

r

0

r
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Using Equations (1.6) to (1.10), a relationship between permeability and 

susceptibility can be derived as shown in Equation (1.11). 

𝜒𝑚 = 𝜇𝑟 − 1 (1.11) 

 

Susceptibility is a measure of the magnetic moments that will be aligned in 

the magnetic material by the externally applied magnetic field. Permeability gives a 

measure of the extent of magnetic flux that will pass through a material when it is 

exposed to a magnetic field. 

 

The �⃗�  (or �⃗⃗� ) vs. �⃗⃗�  curve represents the magnetic behavior of a material. 

These are also known as ‘hysteresis’ plots and were first observed in iron by Warburg 

[18] and named such by Ewing [19] to emphasize on the fact that the �⃗�  or �⃗⃗�  of the 

materials lags behind the �⃗⃗�  in response.  

 

Equations 1.12-1.15 are collectively known as Maxwell’s equations which are 

used to describe an electromagnetic field in classical physics [17]. They summarize 

the relationship between electric and magnetic parameters in ferromagnetic media. 

 

∇⃗⃗ × �⃗⃗� = 𝑗𝑓⃗⃗⃗  +
𝜕�⃗⃗� 

𝜕𝑡
   (Ampere’s Law)  (1.12) 

∇⃗⃗ × �⃗� = −
𝜕�⃗� 

𝜕𝑡
        (Faraday’s Law)  (1.13) 

∇⃗⃗ . �⃗� = 0  (No monopoles)  (1.14) 

∇⃗⃗ . �⃗⃗� = 𝜌𝑓  (Gauss’s Law)  (1.15) 
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 Here, ∇⃗⃗  is the gradient operator, defined as ∇⃗⃗ =
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
�̂� and  𝑗𝑓⃗⃗⃗   is the 

free current density (unit: Am
-2

) or the current per unit are perpendicular to the flow 

due to motion of charges. �⃗⃗�  is the electric displacement (unit: Cm
-2

), �⃗�  is the electric 

field (unit Vm
-1

) and 𝜌𝑓 is the free charge density (unit: Cm
-3

). 

 

1.2.3: Magnetism at the atomic scale 

The magnetic moment of the atom arises due to the angular momentum of the 

electrons. The current that develops when an electron of charge e (=1.603x10
-19

 C) 

rotates around the nucleus in an orbit of radius r at an angular velocity of  as shown 

in Fig. 1.1 is given by .  

 
 
 

 

 

 

 

 

 

Figure 1.1: Electron in an orbit visualized as a current carrying loop. 

 

Equation (1.16) defines the orbital magnetic moment mm generated by this 

electric current.   

 

                                            𝜇𝑚𝑚 = −
1

2
𝑒�̇�𝑟2 (1.16) 



2

e
i
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Since the angular momentum of the moving electron is , the 

magnetic moment can be expressed as shown in Equation (1.17). 

  

 𝜇𝑚𝑚 = −
1

2
(

𝑒

𝑚
𝑃)  (1.17) 

  

The magnetic moment is thus proportional to the angular momentum of the 

electron and is in the opposite direction. 

 

Quantum mechanics teaches that the orbital motion of the electron in a 

coulombic potential is characterized by the three integer quantum numbers (principal, 

azimuthal and spin quantum numbers). The total angular momentum  is the sum 

of the orbital angular momentum and the intrinsic spin angular momentum . 

While the orbital angular momentum is explained by the classical mechanics 

approach, the spin angular momentum is a completely quantum mechanical effect.  

 

The magnetic moment associated with orbital angular momentum is 

 
 

 (1.18 a) 

 

 

 and that with spin angular momentum is 

  (1.18 b). 

 

2P m r

 J

 L  S
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 Here,  is called the Bohr magneton and represents the atomic unit of 

orbital magnetic moment.  

 

Hence, 
 

(1.18c), 

where,  and are the orbital and spin quantum numbers respectively. The allowed 

values for  are integers and are  (up and down spin states). 

 

Pauli’s exclusion principle states that no two electrons can coexist in the same 

quantum state. As a consequence, electrons pair up, i.e. the electrons are stacked such 

that within the same orbit if one electron has spin up (  = +1/2) then the other will 

have spin down ( = -1/2). This leads to the cancellation of the magnetic moments 

resulting in a net zero magnetic moment. Therefore, an atom has a magnetic moment 

only when there are unpaired electrons. 

 

The minimum energy state is observed while the electrons fill up the shells 

which complies with Hund’s rule states that: 

(1)  takes the minimal value that is consistent with Pauli’s exclusion principle.  

(2)  takes the maximum value that is consistent with Pauli’s exclusion 

principle. 

(3) assumes the value of   if the shell is less than half filled and 

otherwise. 

2
B

e

m
 

 ( 1) ( 1)J l l s s   

l s

l s
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As a consequence of Hund’s rule which is described in detail in [4], some of 

the elements with 3d and 4f shell electrons have more than one unpaired electrons 

leading to strong atomic moments. 

 

1.2.4: Magnetism at the macroscale 

The best way to introduce the different types of magnetism is to describe how 

materials respond to magnetic fields. This may be surprising to some, but all matter is 

magnetic; albeit from the perspective of having electron spins about atoms. It's just 

that at the macro scale, some materials are much more magnetic than others. The 

main distinction is that in some materials there is no collective interaction of atomic 

magnetic moments, whereas in other materials there is a very strong interaction 

between atomic moments. This section deals with bulk materials where there is a 

large interaction of atomic moments with applied magnetic fields. 

 

1.2.4.1: Diamagnetism 

Diamagnetism occurs in those materials in which all the electrons are paired 

up (i.e. zero atomic magnetic moments). The susceptibility of these materials is small 

and negative, typically 𝜒𝑑 ≈ −10−5. The induced magnetization is proportional to 

the external magnetic field but is opposite in direction (as suggested by the negative 

sign). These materials tend to oppose the action of the magnetic field in accordance 

with Lenz’s law. 
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1.2.4.2: Paramagnetism 

Paramagnetism appears in elements that have unpaired electrons. Similar to 

diamagnetic materials, the negative magnetic moment is induced even in 

paramagnetic materials with a linear dependence of the magnetization with the 

applied magnetic field. However, the alignment of the atomic moments with the 

magnetic field dominates, resulting in a positive magnetic moment. Paramagnetic 

materials exhibit positive susceptibility of the order of 𝜒𝑑 ≈ 10−5 to .  

 

1.2.4.2: Ferromagnetism 

Ferromagnetism is characterized by a strong magnetic behavior. Susceptibility 

of ferromagnetic materials is much higher than those of paramagnetic materials and 

can be as high as . The origin of such a strong magnetism is not only the 

strong atomic moment from the unpaired electrons but also the spontaneous 

magnetization produced due to the alignment of all atomic moments parallel to each 

other. The behavior of ferromagnetic substances such as Fe which exhibit a 

paramagnetic behavior at higher temperatures (but display a larger magnetization) is 

described by Eq. (1.19). 

 

 when 𝑇 ≫ 𝑇𝑐 (1.19), 

where, 𝑇𝑐 is the Curie temperature, C is the Curie Constant and 𝑇𝑐 < Θ𝑃 = 𝛾𝑇𝑐 .  
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At 0 K, in a saturated ferromagnetic single crystal, all elementary magnetic 

moments are parallel and upon heating the material, the thermal agitation tends to 

misorient the moments and the magnetization decreases and eventually vanishes at 

the Curie Temperature, . At lower temperatures, the response of ferromagnetic 

materials is essentially nonlinear and exhibits a certain extent of hysteresis. 

 

In 1928, Heisenberg [20] proposed a different approach to explain this 

behavior. He defined the quantum mechanical exchange interaction energy between 

atoms of spin and  as , where is the exchange integral that is the 

source of the molecular field. If is positive, then the spins are arranged parallel and 

we have ferromagnetism. Else, the spins align antiparallel to each other resulting in 

antiferromagnetism.  

 

The physical origins of the exchange interaction energy can be understood 

from Pauli’s exclusion principle and Coulomb interaction. Suppose two atoms with 

unpaired electrons are close to each other, then the electrons will share one molecular 

orbital if the spins of the two atoms are antiparallel. This increases the Coulomb 

energy. If this increase in the Coulomb energy is less than the energy minimization 

due to spin cancellation then the electrons maintain antiparallel spin. Such antiparallel 

alignment of spin is called antiferromagnetism. If the electrons maintain parallel spins 

and form separate molecular orbitals, according to Pauli’s exclusion principle, then 

CT
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the opposite happens and the Coulomb energy decreases. Such parallel alignment of 

spin is known as ferromagnetism. 

 

1.2.5:  Magnetic domain theory 

The quantum mechanical exchange interaction energy described in Section 

1.2.3 causes spontaneous magnetization of the ferromagnetic materials which results 

in parallel alignment of the atomic spins. However, the overall magnetization of the 

sample need not be to the extent of complete saturation. An alignment of all the 

dipoles along the same direction would lead to a drastic increase in the magnetostatic 

energy of the system due to the formation of free poles. Hence, a balance has to be 

reached between the exchange and magnetostatic energies such that the overall 

energy in the system is at a minimum. To attain such a state, the material splits into 

domains, within which all the spins are aligned along a particular direction. But the 

spins in the different domains are along different directions.  

 

For explaining these features of a ferromagnet, in 1906 Weiss [21] proposed a 

theory that bridges the atomic origins of magnetism with magnetism in bulk 

materials. This approach assumed that a molecular field exists in the magnetic matter 

which aligns all the elementary moments in a given volume called the ‘Weiss 

Domain’. For an applied field at angle between 0 and 90
o
, the evolution of the Weiss 

domains is as shown in Fig. 1.2.  
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Figure 1.2: Division of a ferromagnet into Weiss domains (a) prior to an applied field 

(b) in the presence of an applied field oriented toward the upper right corner of the 

sample and (c) at magnetic saturation in the presence of an applied field oriented 

toward the upper right corner of the sample (    ). 

 

In general, the magnetization will orient itself along an ‘easy axis’. The 

energy that describes this directional preference in orientation of the magnetization is 

called the magnetic anisotropy energy. Figure 1.2 (a) shows this energy-minimized 

state with four domains. The domains align with magnetic easy axis of this material 

in antiparallel pairs, and with tips to tips and tails to tails so as to minimize the 

internal energy of the region. When a field is applied, the magnetization in the 

direction that is closest to the applied magnetic field grows at the expense of the one 

which is least preferred. In this case, D1 grows and D3 shrinks as shown in Fig. 1.2 

(b). If a stronger field is applied, the direction of magnetization jumps from the easy 

axes directions that minimize energy to the align with easy axis most favorably 

aligned with applied field direction (here, D2 and D4 jump to D1), which then rotates 

to align with D5) and we are left with one single domain at magnetic saturation as 

shown in Fig. 1.2 (c). This process increases the internal energy in the system.  
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According to Weiss theory, when a magnetic field is applied in any direction, 

different processes occur. The magnetization flips the domain of maximum 

misorientation with respect to the applied field (180
o
 domain walls nucleation and 

displacement).  Figure 1.2 (b) shows the growth of D1 at the expense of D3 through 

the displacement of a ‘Bloch wall’ which separated domains D1 and D3 in Fig. 1.2 

(a) upon application of a magnetic field. Additionally, the magnetization in domain 

D4 reverses in direction further minimizing system internal energy in the presence of 

the applied field H.  

 

When the material breaks into domains, the magnetostatic energy reduces 

by 1/  times but the exchange energy increases at the domain boundaries (domain 

walls). This causes the domains to break down further until equilibrium is reached 

between the magnetostatic energy and the domain wall energy, as suggested in Fig. 

1.3 (a,b). Closure domains are formed at the edges in the case of materials with cubic 

magnetocrystalline anisotropy which result in zero magnetostatic energy as shown in 

Fig. 1.3 (c). 

 

 

Figure 1.3: (a) Single domain throughout the sample with a high magnetostatic 

energy. (b) Formation of domains reduces this energy by 1/ times. (c) Closure 

domains result in zero magnetostatic energy [4]. 
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Domain walls are formed due a balance between magnetocrystalline and 

exchange coupling energy. Large magnetocrystalline anisotropy favors the rotation of 

moments over fewer lattices, i.e. thin domain wall boundaries, as intermediate 

orientations result in a large energy penalty. In contrast, large exchange coupling 

favors a more gradual rotation of moments, so that the difference in orientation 

between neighboring spins is minimized. This results in thicker domain walls. The 

moments in the domain wall can rotate/re-orient more easily than the moments within 

a domain, in response to an applied magnetic field. This results in domain boundary 

motion, which is an important mechanism for magnetization. 

 

The first attempts to observe the ferromagnetic domain patterns was by Bitter 

[22] in 1931. He put his sample under a microscope and used a powder-pattern 

method. The observed domain patterns were maze-like patterns as shown in Fig.1.4 

(a), which were misinterpreted as the real domains.  

 

 

Figure 1.4: Bitter patterns in Fe-Si that is (a) mechanically polished, 

(b) electrochemically polished or annealed [4]. 
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In 1934 Kaya [23] showed that the maze patterns were not the real domains 

but were caused by stresses introduced during surface polishing. The true domain 

structure, however, remained elusive. Finally, in 1949 Williams et al. [24] observed 

well defined domain structures on a precisely cut, stress-free Fe-Si crystal as shown 

in Figure 1.4 b. Unlike maze domains the true domains are much larger in size and 

are more geometrical. 

 

In cubic materials such as Fe, Fe-Si, Fe-Al etc. there are two kinds of 

magnetic domain walls – the 180
o
 walls separating two domains of anti-parallel 

magnetization with respect to each other and the 90
o 

walls separating two domains of 

magnetizations that are perpendicular to each other [4]. Fig. 1.5 shows the surface 

domains on Fe-Si, a cubic material obtain using Magneto Optic Kerr Effect (MOKE) 

microscopy. 

 

 

Figure 1.5: Magnetic domains on (100) surface plane Fe97Si3 single crystal alloy 

showing 180
o
 domain walls separating    [100]/[ 00] - type domains and 

 90
o
 domain walls separating [100]/[010] - type domains [25]. 

 

1
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The 180
o
 walls in cubic materials on the surface parallel to any of the 6 faces 

of the cube are always straight [4, 26]. If the walls are curved, to maintain the anti-

parallel orientation of the magnetization, magnetic free poles will tend to appear 

along the walls, which give rise to a demagnetizing field in the opposite direction to 

that of the magnetization in the domains. Thus, the magnetostatic energy of the 

system increases which is not desired. This is depicted in Fig. 1.6. 

 

 

Figure 1.6: (a) A Straight 180◦ domain wall has minimal magnetostatic 

energy (b) A curved 180◦ domain wall costs magnetostatic energy [4]. 

 

However, when the 180
o
 domain wall is observed as shown in Fig. 1.7, it 

might appear curved because in this case, free poles are absent. But the total surface 

area of the domains is increased, hence increasing the total wall energy. Additional 

energy is required to sustain such a curved domain wall which can be attributed to the 

presence of voids, irregular distribution of internal residual stresses and the 

dependence of wall energies on the crystallographic directions. 
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Figure 1.7: Possible curvature of a 180◦ domain wall in a material with uniaxial 

anisotropy [4]. 

 

Further discussions on magnetic domains and their observation using MOKE 

microscopy are provided in Chapter 5. 

 

1.3: Magnetostriction 

All ferromagnetic materials display a change in shape due to a change in 

magnetization. This phenomenon of magneto elastic coupling which arises due to the 

interaction between the magnetic moments of neighboring atoms is called 

magnetostriction. It was first discovered in Nickel samples by James Joule in 1842 

[27]. 

 1.3.1: Magneto-elastic effect 

The Joule effect [28] describes the change in length due to a change in the 

magnetization state of the material. This is also known as linear magnetostriction and 

assumes that the volume of the material remains constant. This phenomenon is 
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described in Fig. 1.8 where the application of an external magnetic field to a 

demagnetized ferromagnetic sample leads to a change in the dimension due to 

flipping of the magnetic moments. Magneto-elastic coupling arises from the shifting 

of the positions of neighboring atoms that make up the magnetic material (with 

partially filled outer orbits and unbalanced electron populations) in response to the 

rotation of their magnetic moments and the rigidly attached anisotropic charge clouds. 

The electron spins of these atoms re-orient from an initial configuration that is 

attributed to a randomized energy minimization state to being aligned with the 

external field so as to minimize the overall energy in the system.  

 

 

Figure 1.8: Magnetization change in Joule Effect [29]. 

 

The Villari effect (1865) [30] is the mechanical stress-induced change in  

magnetization as shown in Fig. 1.9. A material with positive magnetostriction (e.g. 

iron) shows an increase in magnetization with an increase in stress whereas a material 

with negative magnetostriction (e.g. nickel) exhibits an increase in magnetization 

with a decrease in stress. Conventionally, a tensile stress is considered positive 

whereas a compressive stress is considered negative.  
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Figure 1.9: Magnetization change in Villari Effect (a) no stress; (b) tensile stress. 

 

The Wiedemann effect (1858) [31] describes a twist in the material due to a 

helical field produced by passing a current through the material (e.g. wire). The 

Matteucci effect [32] describes the change in magnetization in the helical direction 

when a ferromagnetic material is twisted. 

 

Barrett (1882) [33] observed a change in volume of ferromagnetic materials 

under the influence of magnetic field and termed it as volume magnetostriction. The 

term  forced magnetostriction [34] describes an increase in the magnetostriction that 

can be obtained in a magnetically saturated material by increasing the temperature so 

that further increase in magnetic field reorders the magnetic moments which got 

disordered due to thermal agitation. Such an increase in magnetostriction is extremely 

small and to date has no practical application. 

 

A similar phenomenon of a change in the volume of a ferromagnetic material 

is also observed when the external magnetic field applied is increased beyond 

 

(a)  (b) 
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saturation along the easy axis where the moments move away from the easy axis to 

align with the direction of applied field. This was observed in Terfenol-D by Calkins 

[35].  

 

Conventionally, the Joule and Wiedemann effects are used for actuation 

purposes while the Villari and Matteucci effects are used for sensing purposes. 

 

The origin of these macroscopic effects can be traced down to atomic scales. 

Magnetoelastic coupling arises from strong interaction between electron clouds of 

adjacent atoms and spin-orbit coupling [5]. The orbital motion of the electron which 

is strongly coupled to the crystal lattice structure resists the efforts of the external 

magnetic field to orient the electron spin along the field direction [36]. The flipping 

of the orbits towards the direction of field which leads to a corresponding distortion 

of the crystal lattice manifests as magnetostriction. 

 

Mechanical force acting on a material produces mechanical strain as the 

atomic bonds are stretched or twisted. This causes the displacement of the 

overlapping electron clouds in a bond thus affecting the electromagnetic state of the 

material. The change in the electromagnetic state of the material due to the applied 

force manifests as the inverse effect (i.e. Villari and Matteucci effects). 

 

Magnetocrystalline anisotropy is determined by the magnitude of spin-orbit 

coupling at the atomic level.  A smaller spin-orbit coupling and consequently smaller 
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magnetocrystalline anisotropy enables the orbit to reorient itself to the direction of the 

electron spin at smaller magnetic fields. The atomic lattice distortions associated with 

a given spin-orbit reorientation is attributed to be the origin of magnetostriction. 

Hence, for large magnetostriction, the spin-orbit coupling should produce significant 

lattice distortions. Since it is also desired that large magnetostriction occurs at low 

magnetic fields, small magnetocrystalline anisotropy is preferred. A brief review of 

magnetostrictive materials is provided in Appendix A and an explanation of the 

actuator and sensing behavior is discussed in Appendix B. 

 

1.3.2: Magneto-elastic modeling in magnetostrictive materials 

 Various non-linear models have been developed to account for the magneto-

mechanical response of ferromagnetic materials over different operating conditions 

[37-39]. This work uses the model developed by Armstrong [40, 41] that was able to 

capture the cubic anisotropy and predict three-dimensional actuation in 

magnetostrictive materials. The model presented in this section is the basis for 

analysis used in Chapter 2 where the magneto-auxetic behavior of the 

magnetostrictive alloy Galfenol is examined for different Galfenol compositions. This 

section deals with deriving an expression for magnetostrictive strain for applied fields 

along any direction using energy methods. 
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1.3.2.1: Gibbs free energy in magnetostrictive materials 

The dipole-dipole interaction energy between the atoms shown in Fig. 1.10 

can be modeled in terms of the bond length  between them using Eq. (1.20) [4] 

where [ ] are the magnetization direction cosines and are defined as: 

 ,  and  and [ ] are the direction 

cosines of the bond direction. 

 

 

 

 

 

Figure 1.10: Interaction between neighboring dipoles of magnetic moment µmm and 

separated by a distance r. 

 

  (1.20) 

 

When the crystal is strained by  as shown in Eq. (1.21) the equilibrium bond 

length  changes to . Calculating the change in the interaction energy  

and summing it up for all the nearest neighbor pairs in a unit volume of the lattice, 

one can get the magneto-elastic energy as shown in Eq. (1.22). 
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 (1.21) 

 

  (1.22) 

           

The coefficients  and  are known as magnetoelastic coupling 

coefficients. They depend on the number of nearest neighbor pairs, unstrained bond 

length, the function l(r) and its spatial gradient. The spontaneous magnetostriction or 

equilibrium strain in a domain in the absence of any external stress or magnetic field 

can be obtained by minimizing the sum of magnetoelastic and elastic energy with 

respect to each of the strain components. 

 

To evaluate the expression for magnetostriction, the Gibbs free energy of the 

system is formulated as the Legendre transformation of the internal energy. Assuming 

an isothermal and isentropic process, the Gibbs free energy is reduced to the enthalpy 

of the system. This is expressed as the sum of the magneto-crystalline anisotropy 

energy Eanisotropy, the magnetoelastic energy Emag-elas, the elastic energy Eelas, the 
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magnetic work (Zeeman Energy) Wmag, and the mechanical work Wmech as shown in 

Eq. (1.23). 

 

 𝐻 = 𝐸𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦 + 𝐸𝑚𝑎𝑔−𝑒𝑙𝑎𝑠 + 𝐸𝑒𝑙𝑎𝑠 − 𝑊𝑚𝑎𝑔 − 𝑊𝑚𝑒𝑐ℎ (1.23) 

 

Where, according to definition,  

 𝐸𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦 = 𝐾1(𝛼1
2𝛼2

2 + 𝛼2
2𝛼3

2 + 𝛼3
2𝛼1

2) + 𝐾2(𝛼1
2𝛼2

2𝛼3
2) (1.24) 

 Here,  are the direction cosines of the magnetization. K1 and K2 are the 

cubic anisotropy constants [4].  

 

The anisotropy energy in a cubic crystal determines the easy axes for 

magnetizing the material at each composition and the total energy in the magneto-

elastic system is directly proportional to the anisotropy constants K1 and K2. Fig. 1.11 

is obtained by evaluating the magnetocrystalline anisotropy energy (as shown in Eq. 

(1.24)), along the <100>, <110> and <111> directions for different values K1 and K2.  

i
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Figure 1.11: Easy axes for different values of cubic magnetocrystalline anisotropy 

constants K1 and K2. Based on [3]. 

 

For K1 > 0 and K2> -9 K1, the <100> direction is the easy axis whereas for K1< 

0 and K2> -(9/4) K1, the <110> direction is easy. For all other cases <111> direction 

is the easy axis. Thus, for a given value of K1 and K2, the easy direction can be 

determined and this strongly influences the nature of λ-H and B-H curves along a 

given crystallographic direction. But, the values of the anisotropy constants K1 and K2 

which describe the dependence of energy distribution on crystallographic direction 

have to be established empirically. For Galfenol, which has <100> easy axes , there 

are only a few compositions for which the values of K1 and K2 have been determined 

(discussed further in Section 1.3.4) [42]. 
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 has already been defined in Eq. (1.22). Equation (1.25) shows the 

expression for Eelas, where, is the stiffness matrix of the material. 

  (1.25) 

     

For cubic materials such as Galfenol, can be expressed in terms of the 

elastic constants , and  as shown in Eq. (1.26). 

 

  (1.26) 

 

The expressions for the terms that define the magnetic and mechanical work 

done in the system are as shown in Eqs. (1.27 and 1.28). 

 

   (1.27) 

Here, , MS is the saturation magnetization. 

  (1.28) 

Where, is the externally applied stress. 
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Hence,

 

 

𝐻 = 𝐾1(𝛼1
2𝛼2

2 + 𝛼2
2𝛼3

2 + 𝛼3
2𝛼1

2) + 𝐾2(𝛼1
2𝛼2

2𝛼3
2) + 𝐵1 {휀𝑥𝑥 (𝛼1

2 −
1

3
) +

휀𝑦𝑦 (𝛼2
2 −

1

3
) + 휀𝑧𝑧 (𝛼3

2 −
1

3
)} + 𝐵2{휀𝑥𝑦𝛼1𝛼2 + 휀𝑦𝑧𝛼2𝛼3 + 휀𝑧𝑥𝛼3𝛼1} +

1

2
휀𝑇�̃�휀 + 𝜇0𝑀

𝑇𝐻 + 𝜎𝑇휀  (1.29) 

 

1.3.2.2: Equilibrium strain in magneto-elastic systems 

Early works [43, 44] had assumed zero applied stress to determine the 

equilibrium strain. A different approach of assuming constant 3-D stress has been 

proposed in a more recent study [45] which will be followed here. 

 

The equilibrium states of the system can be calculated by minimizing H with 

respect to its internal variables αi and . It is assumed that 𝐻(𝛼𝑖, 휀) is a continuous 

function of 𝛼𝑖 and 휀 and has continuous second order partial derivatives. 

 

Performing the differential in Eq. (1.30), an expression for equilibrium strain 

can be obtained in Eq. (1.34). 

 

 
𝜕𝐻(𝛼𝑖,𝜀)

𝜕𝜀
= 0 (1.30) 
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  (1.31) 

 

For convenience, let us call  

 

 (1.32) 

 

 

Equation (1.31) can be simplified to the expression in Eq. (1.33). 

 

  (1.33) 

Solving for  yields, 

  (1.34) 

 

Since  is the mechanical strain and is the magnetostriction λ, 

Eq. (1.34) can be rewritten as 

   (1.35) 
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Examining Eqs. (1.33-1.35) further, the equilibrium strain derived for zero 

stress includes only the second part of Eq. (1.35), which is the magnetostrictive strain 

λ [43, 44]. Here, since the stress is non-zero, the equilibrium strain is a superposition 

of  and . 

 

To determine whether  corresponds to a maximum or minimum, the 

second derivative of H is computed as represented by Eq. (1.36). 

 

 
𝜕2𝐻(𝛼𝑖,𝜀)

𝜕𝜀2 = �̃� (1.36) 

Since is a positive quantity, corresponds to a relative minimum of 

𝐻(𝛼𝑖, 휀) and is therefore the equilibrium strain. 

 

1.3.2.3: Magnetostrictive Strain  

The change in dimension under applied magnetic fields can be calculated 

from Eq. (1.33-1.35). This magnetostrictive strain is shown in Eq. (1.37).  

   (1.37) 

 

Substituting for in Eq. (1.37), we get 
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  (1.38) 

 

Equation (1.38) upon simplification yields 

  (1.39) 

 

Therefore, the elongation due to magnetostriction along any direction 

(represented by the direction cosines ) can be evaluated using the expression 
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where,  are the magnetostrictive strains. 

 

Upon substituting the values of  from Eq. (1.39), 

 

  (1.41) 

 

The magnetostriction along [100] direction can be calculated by substituting 

the corresponding values for , and  as well as ,  and . 

When = = 1 and = =  =  = 0,  

 

 𝜆100 = Δ𝑙100 = −
2

3

𝐵1

𝑐11−𝑐12
  (1.42) 

 

Similarly, the magnetostriction along the [111] direction can also be 

calculated. Here, , ,  and , ,  . 

 𝜆111 = Δ𝑙111 = −
1

3

𝐵2

𝑐44
  (1.43) 

    

Using Equations (1.42) and (1.43), the magneto-elastic coupling constants can 

be represented in terms of the magnetostriction constants and elastic constants [44] as 
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  (1.44 a,b) 

  

Hence, upon substituting for  and from Eq. (1.44 a,b) into Eq. (1.39) and 

Eq. (1.41), we get Eq. (1.45) and Eq. (1.46) respectively. 

  (1.45) 

 

  (1.46) 

 

This magnetostriction where the overall volume was conserved (which arises 

from Eq. (1.46), where the higher order terms are ignored)  is 

called Joule’s Magnetostriction. This is shown in Fig. 1.11. However all 

magnetostrictive materials exhibit volume magnetostriction to some extent [46].  
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Figure 1.11: Volume conserving magnetostriction [5] along (a) <100> and (b) <111> 

crystallographic directions. 

 

Joule’s magnetostriction also leads to an additional anisotropy which is called 

magnetostriction induced anisotropy. Hence the overall anisotropy is the sum of 

magneto-crystalline anisotropy and magnetostriction induced anisotropy. As 

expected, if the magnetostriction is constrained (with the constraint at scales less than 

the exchange length), the magnetostriction induced anisotropy becomes zero [45]. 

This has also been empirically verified [47]. 

 

1.3.3: Crystallography 

The magneto-elastic characteristics bear a direct relationship to the changes in 

the crystal lattice. This section will give a brief overview of the crystal structure of 

Fe-Ga and the corresponding Miller Indices which will aid subsequent discussions.  

 

Both the magnetostriction and the auxetic behavior of Galfenol are enhanced 

in the case of single crystal samples. A single crystal material is one in which the 

periodic and repeated atomic pattern extends throughout its entirety without 

(a)  
100 (b)  111
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interruption. The Galfenol samples studied here all possess a body centered cubic 

(BCC) crystal lattice, shown schematically in Fig. 1.12. The lattice is assumed to be 

comprised of iron atoms with randomly distributed gallium atoms taking the place of 

iron atoms.  

 

 

Figure 1.12: Body centered cubic lattice: (a) Hard sphere unit cell representation  

 (b) Reduced-sphere unit cell representation (c) Array of unit cells [48]. 

  

The iron crystal lattice is BCC in structure and as Gallium is added to obtain 

Galfenol of different compositions, various phases are obtained which are shown in 

Fig. 1.13. The significance of the phase distribution which depends on the energy 

required for the Ga atoms to occupy certain points in the crystal lattice will be 

discussed in detail in Section 1.3.4. 

(

a) 

(

b) 

(

c) 
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Figure 1.13: Structure of different phases in Fe–Ga [26]. (a) A2 phase which is 

usually formed at low compositions where the Ga atoms are equally likely to occupy 

any of the 9 locations in the BCC crystal lattice of α-Fe. (b) B2 phase where the Ga 

atom occupies the center of the BCC lattice. (c) L12 phase where Galfenol exists in a 

FCC structure with Ga atoms occupying the corners of the cube and Fe atoms 

occupying the center of the faces. (d) D03 phase where Ga atoms occupy the center of 

alternating unit cells in the BCC crystal. (e) D022 phase where  the Ga atoms occupy 

corners and face center of alternating faces of a FCC structure with Fe atoms 

occupying the remaining locations in the lattice.  

 

Miller Indices which were developed in the year 1839 have been used to 

describe a vector in a particular direction [u v w] or a plane (u v w) of any lattice. Fig. 

1.14 shows a BCC cell with the Miller indices of the various primary directions as 

well as the (001) plane marked. Here, the atom at the bottom far-left corner of the 

cube is assumed to be the origin for the indices. 

  

Random 

(a)                    (b)                    (c) 

 

 

 

(d)                                             (e)                         



 

 

41 

 

 
Figure 1.14: BCC cell with Miller indices with shaded (100) plane. 

 

In the case of Galfenol, maximum magnetostriction is observed along the 

[100] direction when a stress is applied along the same direction [8, 11, 26]. This will 

be discussed in detail in Section 1.3.4. In addition, an auxetic response (i.e. a negative 

Poisson’s ratio) is observed along the <110> direction. This will be discussed in 

Section 1.4. 

 

The corresponding Poisson’s ratios are written as ν (100, 010) and (110, 110), 

where the first subscript represents the load direction and the second identifies the 

direction transverse to the load. We shall leave off the first subscript in the remainder 

of this dissertation for ease of representation. 

 

1.3.4: Iron-Gallium alloys 

In this section, the metallurgical and magnetostrictive properties of Iron-

Gallium alloys (Galfenol) will be discussed with special attention to works pertinent 
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to this research. For a more extensive discussion on Galfenol the dissertations of 

Kellogg, Atulasimha and Datta [8, 11, 15] may be consulted. 

 

When Fe-Ga alloys were developed at the Naval Surface Warfare Center by 

Clark and team around 2001 [7, 49], it was observed that the alloy exhibited a peak 

magnetostriction of  ~ 400 [7] (much larger than Fe-Al ~140 [50]) under 

magnetic fields of as low as about 100 Oe along the <100> easy axes. The Fe-Ga 

alloy system also exhibits high tensile strengths (about 400 MPa [6, 7]), ductile-like 

behavior [15], low saturation [15] and low hysteresis [51]; all useful properties for 

device applications. Additionally, there is limited dependence of magnetomechanical 

properties on temperatures between -20°C and 80°C [15] 

 

Galfenol can also be easily rolled [52, 53], machined [54] and welded [55], 

making it easy to manufacture in different shapes and sizes and unlike Terfenol-D, 

these alloys can also be bent [11, 56]. 

 

The variation of the magnetostrictive constants and  as a function of 

the composition of Gallium (in percentage) is shown in Fig. 1.15.  

 

 

100 111
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Figure 1.15: Magnetostrictive constants (λ100 -top and λ111 -bottom) for single 

crystal samples of Fe–Ga alloys for different at% Gallium [49]. 

 

Magnetostriction (3/2 ) of -Fe increases monotonically from 36  [44] 

to 300  with a gradual addition of nonmagnetic Ga, for concentration up to 17 at% 

Ga. Beyond this, the magnetostriction is thermal history dependent up to 25 at% Ga. 

While quenching the alloy from a high temperature sustains the monotonic increase 

100  
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up to 20 at% Ga, slow-cooling decreases the magnetostriction beyond 17 at% Ga. 

Past 25 at% Ga, the magnetostriction increases again with a second peak at 28 at% 

Ga. The reasons for the peak values of magnetostriction have been extensively 

studied [7, 49, 57]. 

 

Figure 1.16 shows the equilibrium phase diagram of Fe-Ga [58, 59]. At room 

temperature, α-Fe has a body-centered cubic (BCC) or A2 crystal structure. Up to 

12% of Ga, a solid-solution of Fe and Ga is formed, beyond which Fe–Ga alloy forms 

a mixture of two phases, A2 and L12 up to 25 at%. At higher temperatures, phases 

like D03, B2, D019 exist. Galfenol with compositions of as high as ~35% Ga that are 

quenched from high temperatures will retain an α-Fe, a body-centered cubic (BCC) or 

A2 crystal structure. The unit cells of these structures were shown in Fig 1.13. The 

melting point of Galfenol can also be obtained from the equilibrium phase diagram. 
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(c)  

Figure 1.16: (a) Equillibrium phase diagram of Fe-Ga. (b) Metastable phase diagram 

of Fe-Ga. (c) Lattice parameters measured used XRD in Fe-Ga [60]. 
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Note that there are two peaks in magnetostriction that correspond to about 19 

at% Ga and about 28 at% respectively. This may be explained qualitatively using the 

pairing model suggested by Cullen [57]. The Ga atoms are large relative to Fe and 

randomly substitute for Fe atoms by fitting into α-Fe BCC lattice sites forming Ga-

pairs along the edges of the cubic lattice as illustrated by a 2-D schematic in Fig. 1.17 

(a). The Ga pairs may facilitate short term order leading to anisotropic condition, 

resulting in magnetostriction in the <100> direction. As the Ga content increases 

beyond 17 at. % Ga (in furnace cooled and 19 at. % Ga in quenched FeGa alloys), an 

increased formation of D03 and B2 crystallographic structure results as shown in Fig. 

1.17 (b). 
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Figure 1.17: (a) Schematic of Ga-Ga pairs Fe-lattice randomly substituted with Ga 

atoms (disordered A2 phase). 

(b) Crystallographic structure of ordered phases D03 and B2 of FeGa. (Based on 

presentation by Arthur E. Clark at Galfenol Workshop at University of Maryland, 

College Park, 2005) 

 

Modeling of the magnetostriction produced by various structures from first 

principles using quantum mechanics and a density functional approach by Wu et al. 

[61] may help resolve some of the ambiguities encountered in the current qualitative 

theories on magnetostriction in Galfenol. 

 

The magnetic anisotropy in the crystal which determines the preference for a 

particular direction is defined by Eq. 1.24. The magnetic anisotropy as a function of 

Ga concentration was measured by Rafique et al. [42]. As shown in Fig. 1.18 the 
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anisotropy constant K1 decreases to almost zero as the first peak in magnetostriction 

is approached. The anisotropy constant K2 which has a negative value for low Ga 

compositions, increases with Ga content such that is also becomes almost zero near 

the first peak at about 20% Ga content.  

 

 

Figure 1.18: Magnetic anisotropy constants (a) K1 and (b) K2 as a function of Ga at. % 

in Galfenol. 
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K1 is of particular importance in alloys with <100> easy axes like Galfenol, 

owing to the direct correlation between K1 being positive and the <100> axes being 

the easy axes (illustrated in Fig. 1.11). The influence of K1 on the easy axis and 

Poisson’s ratio at each composition <20% Ga will be discussed in detail for Galfenol 

under applied stresses in Chapter 2 and for applied magnetic fields in Chapter 4. 

 

The elastic constants were measured by Wuttig et al. [62] and Clark et al. [49] 

as shown in Fig. 1.19. Based on Equations (1.25 and 1.26), the tetragonal shear 

modulus c′ = (c11 – c12)/2 linearly softens with increasing Ga at%, whereas the 

diagonal shear modulus c44 remains more or less unchanged. Clark et al. [40] also 

show a linear increase in the magnetoelastic constant B1 with the increase in Ga at% 

leading to the first peak. Since the magnetostriction constant λ100 = −B1/3c′, the 

dependence of magnetostriction on Ga at% leading to the first peak is quadratic. It is 

believed that the second peak is purely due to the softening of shear modulus. 

 

 

Figure 1.19: Shear constants c’ and c44 as a function of Ga at. % in Galfenol. 
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1.4: Negative Poisson’s ratio (Auxeticity) 

Virtually all common materials undergo a transverse contraction when 

stretched in one direction and a transverse expansion when compressed.  The 

magnitude of this transverse deformation is governed by a material property called 

Poisson’s ratio (ν). It is defined as the negative ratio of a transverse and longitudinal 

strain in a material which is developed due to a longitudinal extension or 

compression.   

 

According to thermodynamics, the Poisson’s ratio of a stable isotropic, linear 

elastic material cannot be less than -1.0 or greater than 0.5 due to the requirement that 

Young’s modulus, shear modulus and bulk modulus must have positive values. 

Conventional materials have a positive Poisson’s ratio and have been extensively 

studied and documented over the years. A perfectly incompressible material (like 

rubber) deformed elastically at small strains will have ν=0.5 while those that exhibit 

very little lateral strain like corks have ν ~0. Most metals like aluminum, copper, iron 

etc. have a Poisson’s ratio between 0.2 and 0.4.  

 

Although materials with negative Poisson’s ratio are theoretically permissible, 

its occurrence in real materials is limited [63]. This type of material can be found 

naturally occurring in some rocks, minerals and even biological tissues such as the 

skin covering a cow’s teats. People have known about such materials for over 100 

years [64], but have not given them much attention because the magnitude of 

auxeticity was quite small (ν ~ -0.1). 
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One of the largest examples of auxetic structures is the graphite core found in 

some nuclear reactors. These cores were developed in the late 1950s [65] and so pre-

date the bulk of auxetic materials research by some 30 years or so. These structures 

were not designed specifically to have auxetic properties. Instead, they were designed 

to withstand the horizontal shear forces generated during earthquakes, while also 

having low resistance to changes in volume caused by exposure to radiation and 

thermal variations. 

 

Large-scale negative Poisson’s ratio was first realized in 1982 in the form of 

two-dimensional silicone rubber [66]. Interest in this field peaked in 1987 when 

Lakes developed the first auxetic polyurethane foam with a re-entrant structure [63, 

67] which had a Poisson’s ratio value of ~ -0.7. Since then, a wide variety of auxetic 

materials have been fabricated, including polymeric and metallic foams, microporous 

polymers, carbon fiber laminates and honeycomb structures. Typical examples are 

polymer-ploytetrafluorothylene (PTFE), ultra-high molecular weight polyethylene 

(UHMWPE), polypropylene (PP) [68-70]. These materials were named auxetics by 

Evans [71], which, in contrast to conventional materials (like rubber, glass, metals, 

etc.), expand transversely when pulled longitudinally and contract transversely when 

pushed longitudinally. “Auxetics” comes from the Greek word auxetos, meaning 

“that which may be increased”.  

 



 

 

52 

 

Although these synthetic materials such as auxetic polymers have large 

negative values for Poisson’s ratio (as low as -12  [72]), they are structurally weak 

due to inherent porosity [73].  As such, they are not useful in load bearing 

applications [74]. When their structural properties are engineered to improve 

stiffness, the auxetic behavior tends to be reduced [73].  

 

There is considerable fundamental and practical interest in structural auxetic 

materials which apart from having a negative Poisson’s ratio are also capable of 

bearing loads [75]. Such materials have potential for several novel engineering 

applications such as improving fatigue life, sound and vibration damping, limiting 

crack propagation, ultrasonic energy absorption, indentation resistance and fiber 

pullout mitigation in composites etc.  In recent times, the biomedical industry is 

exploring the use of such materials for micro filters and valves in drug delivery 

systems and synclastic (doubly curved) structures for bandages. 

 

Analysis of the elastic constants of anisotropic metallic systems with a cubic 

crystallographic structure have suggested that their Poisson ratio value might attain a 

negative value along some directions [66]. The calculation of  Poisson’s ratio is 

complicated for directions oblique to the crystal axes, because the elastic tensor for 

general orientations involves as many as 21 interrelated components in the cubic 

phase [76]. Galfenol, a magnetostrictive alloy of Iron and Gallium is one such cubic 

material which has been shown to exhibit Poisson’s ratio values as low as -0.7 [12] 

along the <110> {100} crystallographic direction under tensile loads.  
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The hypothesis that will be investigated in this study is the possibility of a 

magneto-auxetic response, i.e. an auxetic response under applied magnetic fields and 

zero stresses, that exploits the inherent magneto-mechanical coupling in the alloy. 

Quantifying the Poisson’s ratio response to magnetic fields rather than to mechanical 

stress at various compositions of Gallium in the alloy will be the primary focus of this 

work along with understanding the associations between the anisotropic magnetic and 

mechanical energies that are the origins of this phenomenon.  

 

A recent work by Tan et al. [77] established an auxetic behavior under 

electrical loads in electric-field-induced ferroelectric phase of an antiferroelectric 

ceramic. This is similar to the hypothesis of this work where a magnetic field will be 

used to induce an auxetic response in Galfenol. It was shown that structural changes 

(de-tilting of oxygen ocatahedra) in the lattice induced in the ferroelectric phase are 

the microscopic origins of this effect in PNZST43/6/2. The current work will attempt 

to provide an atomic level mechanism in Galfenol based on structural changes in the 

lattice on the same lines as Tan et al.  

 

1.4.1: Materials with a negative Poisson’s ratio their classification 

Auxetic materials are interesting both because of their novel behavior and 

because of enhancements in other material properties that are related to Poisson’s 
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ratio. For this reason, they can be considered as both functional materials as well as 

structural materials [75].  

 

The magnitude of auxetic response is determined by the internal structure of 

the material. Based on the architecture of its internal structure, auxetic materials are 

classified as geometric auxetics and molecular auxetics. Their distinction will be 

discussed in detail in Sections 1.4.1 and 1.4.2. Various models have also been 

proposed in an attempt to explain the auxetic phenomenon in the different types of 

auxetic materials [78, 79]. 

 

Another way of classifying auxetic materials is based on whether they are 

artificially manufactured or freely occurring in nature, as synthetic auxetics and 

natural auxetics respectively. Examples of naturally occurring auxetics include 

catskin and load-bearing cancellous (spongy) bone found in human shins [67]. Most 

of the man-made auxetics were developed after Rod Lakes developed an auxetic 

polymeric foam at the University of Iowa [63] by converting an ordinary foam using 

a relatively simple process of heating and squashing. A whole range of synthetic 

auxetic materials have been produced since then, including carbon fiber composites 

[80], honeycomb structures [81] and microporous polymers [68]. Early three-

dimensional auxetic metamaterials with anisotropic Poisson's ratios have also recently 

been presented [82]. 
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Auxetic response itself is categorized into two major groups, volume 

conserving in-plane auxetic materials, where there are compensating contractions or 

expansions in the third out of plane direction to maintain volume conservation, and 

non-volume conserving auxetic materials where the volume of the material is not 

conserved whilst exhibiting an auxetic mechanical response.  

  

Another interesting feature of this response is that it is scale independent! 

Deformation can take place at the macro-, micro- or even molecular level (see 

Fig.1.20).  

 

 

Figure 1.20: Order of strain along the transverse direction owing to auxetic response 

in different auxetic structures (taken from [67]). 

 

  

1.4.1.1: Geometric auxetics 

A large auxetic response with ν < -10 can be achieved in geometric auxetics 

by engineering the internal structure such that hinges that connect the unit cells that 

10-10    10-9      10-8   10-7    10-6    10-5        10-4    10-3        10-2   10-1         1      10  (m) 
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make up the material or twisted-chain like hierarchies embedded in the structure 

(usually macroscopic) cause a large transverse deformation due to concurrent 

stretching when pulled.   

  

Examples of such materials include foams and honeycombs with a tradeoff on 

strength (especially along specific directions). Figure 1.21 shows the internal 

structure of some geometric auxetic materials. 

 

 

Figure 1.21: Examples of geometric auxetic materials: (a) 2D representation of an 

auxetic honeycomb reentrant structure, (b) Auxetic keyed-brick structure of a 

Magnox reactor core and (c) Auxetic chiral (noncentrosymmetic) structure [75].  

 

Geometric auxetic materials are also usually synthetic auxetic materials that 

are manufactured with appropriate internal structures such that a large negative 

Poisson’s ratio can be achieved.  

(

c) 

(

a) 
(a)                                                              (b) 

 

 

(c) 
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1.4.1.2: Molecular auxetics 

Molecular auxetics are those materials which exhibit a negative Poisson’s 

ratio by virtue of their intrinsic atomic/molecular structure and the way in which the 

atoms that make up the material interact with one and other under the influence of an 

external stimulus. The magnitude of the Poisson’s ratio is usually smaller than that of 

geometric auxetics and is of the order of -0.1. Most molecular auxetics are found in 

nature (usually cubic metal systems) but recently, such materials have been 

synthesized in labs [83].  

  

An auxetic response has also been observed in some naturally occurring single 

crystal materials such as arsenic [84] and cadmium [85]. Studies in 1979 revealed the 

existence of a negative Poisson’s ratio in face centered crystals (FCC) [86]. This work 

presented a compilation of experimental values of elastic moduli of FCC metals and 

rare-gas solids and the calculated Poisson ratio values along the <100> and <110> 

crystallographic directions. Analysis in 1990 by Jain and Verma [1] suggested that 

the role of conduction electrons in metals may be vital in determining whether or not 

a particular metal will have negative values of ν along the <110> crystallographic 

directions. Some of these values of both FCC and body centered cubic (BCC) are 

shown in Table 1.1.  

The auxetic response in cubic metal systems (which may be found in certain 

single crystal and highly textured polycrystalline materials) is usually in-plane and 

reflects a high degree of elastic anisotropy. The schematic of Fig 1.22 depicts this 
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response for the [110] loading of a (001) plane. This loading direction and plane was 

shown to have maximum auxeticity for cubic materials by Rovati [87]. 

Figure 1.22: Schematic of in-plane auxetic response to uniaxial tensile loading.  

 

 

In 1998, Ray Baughman and team at AlliedSignal revealed that contrary to 

popular belief, 69% of the cubic elemental metals and some rare-gas solids are 

auxetic when stretched along the <110> crystallographic direction. This work also 

proposed an explanation for the auxetic response based on atomic behavior as shown 

in Fig. 1.23 where the pulling apart of atoms labeled 2 and 4 causes the atoms labeled 

1 and 3 to move closer to each other, thus pushing atoms 5 and 6 outwards. 
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Figure 1.23: Atomic basis for auxetic behavior [78]. 

 

In 1991, Ledbetter found evidence of auxetic behavior in YBa2Cu3O7 and 

suggested that this behavior is expected in some superconducting compounds at the 

molecular level [88]. 

 

 

Table 1.1: Poisson’s ratio of some auxetic materials [1, 2]. 

Material 
Crystal 

structure (110, 110) 

Young’s 

Modulus (110, 

010) (GPa) 

(110, 010) 

Lithium bcc -0.5498 4.9 0.36 

Iron bcc -0.0587 190-210 0.29 

Nickel fcc -0.0676 200 0.31 

Copper fcc -0.1358 110-128 0.34 

Galfenol
1
 bcc ≥ -0.75 131 0.58 

Anisotropic 

materials 
- ≤ -1 - - 

 

                                                 

1
 Values obtained from this work and previous works [13, 20, 23]  
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More recently, in 2005 Ting showed that Poisson's ratio for anisotropic elastic 

materials can have an arbitrarily large positive or negative value under the 

prerequisite of positive definiteness of strain energy density. The large Poisson's ratio 

values in cubic materials is physically realistic because the strains are bounded [2]. 

 

1.4.2: Auxeticity in Galfenol 

Ever since it was discovered that addition of Gallium to Iron could result in a 

tenfold amplification of the magnetostrictive effect of Iron by researchers at the U.S. 

Navy in 1998, several efforts have been made to characterize the properties and 

understand the working of the alloy [3, 8, 11, 14, 15, 42, 49, 53, 61, 89-91].  

 

While characterizing slip planes in this material [92] to understand the 

material and develop applications, Rick Kellogg observed that his 17 at. % Ga 

Galfenol sample exhibited a negative Poisson’s ratio ~ -0.37 along the [110] direction 

on the (100) plane under tensile loads as shown in Fig. 1.24. He documented an 

increase in the auxetic response along the [110] (100) with increases in Gallium 

content in the alloy using published values of elastic constants, noting that values of 

lower than -0.7 occur in 28 at% Ga Galfenol samples [15]. This is opposite to the 

trend observed for Poisson’s ratio along the [100] (100) direction where the positive 

values increase in magnitude with increases in Gallium content in the alloy as shown 

in Fig. 1.25. 

  



 

 

61 

 

Figure 1.24: Strains documented along the longitudinal and transverse <100> and 

<110> on the (100) plane by Kellogg in a 17 at. % Ga Galfenol sample under tensile 

loads showing auxetic response along the <110> direction (from [23]). 

 

Figure 1.25: Variation of Poisson’s ratio along the [100] and [110] on the (100) plane 

with increasing Gallium content in Galfenol (from [23]). 
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Since Kellogg, several researchers have looked at this in-plane auxetic 

behavior in Galfenol using different protocols. Yoo et al. [93] measured the elastic 

modulus of Galfenol at compositions of 18 at. %, 29 at. % and 33 at. % Ga by 

applying a constant external magnetic field in a closed loop and simultaneously 

mechanically loading the samples. The Poisson’s ratio was computed from the strains 

recorded along the [110] (100) directions. The application of a magnetic field reduced 

auxeticity in some but not all of Yoo’s samples, and thus no claims regarding trends 

in response were made [93].   

 

Schurter [3] in her thesis experimentally determined the elastic properties of 

Fe-Ga samples of compositions between 12% Ga and 25% Ga through tensile testing 

of single-crystal dogbone-shaped specimens along the auxetic <110> {100} direction 

The samples of Galfenol were subjected to a tensile load of up to about 150MPa 

using a Hydraulic MTS machine. Schurter also conducted Resonant Ultrasound 

Spectroscopy (RUS) of small parallelepiped samples cut from the dog bone samples 

and confirmed the increase in the auxetic response with increasing Gallium content 

observed and/or predicted by Kellogg. 

 

Zhang et al. [12] developed a model based on the elastic constants derived 

using density functional theory (DFT) to predict the value of Poisson’s ratio at 

mechanical saturation for the three Galfenol samples. Working with Schurter, the 

model predictions were validated in Iron Gallium alloys of compositions 12 at. %, 18 
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at. % and 25 at. % Ga with experimental data gathered under mechanical stresses at 

zero magnetic field.   

 

Figure 1.26 shows a comparison of results from this work with previously 

published data. These include modeling of Poisson’s ratio along the <110> direction 

under applied stresses by McLean [94] in α-Fe, RUS studies by Schurter to determine 

the value of Poisson’s ratio [3], experimental data from tensile testing Kellogg and  

Clark [15, 49] and tensile testing data under applied DC magnetic fields by Yoo [93].  

 

 

Figure 1.26: Poisson’s ratio values of Galfenol along the <110> auxetic direction 

from previously published works.  

 

In 2013, Paes and Mosca [95] showed that the strain induced by 

magnetization rotation contributes significantly in the linear regime of the stress-

strain curve and is partly the reason for auxetic behavior in Galfenol under applied 

tensile loads. They also showed that the elastic response becomes predominant only 

after magnetostrictive saturation has been achieved. 
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All previous works on auxeticity in Galfenol have considered the alloy as yet 

another material that exhibits a negative Poisson’s ratio when mechanically stretched 

along a particular crystallographic direction. But Galfenol is a magnetostrictive 

material with inherent magneto-elastic coupling (discussed in Section 1.3). This 

implies that a magnetization change always accompanies mechanical stresses in the 

material and vice versa. The current work explores the possibility of obtaining an 

auxetic behavior under magnetic fields and zero mechanical stresses. Such a response 

opens up new avenues for potential applications, some of which shall be discussed in 

Appendix C. 

 

1.4: Introduction to the rest of the dissertation  

This section will present an overview of the subsequent chapters in this 

dissertation. Chapter 2 begins with the formulation of an energy based theoretical 

model that can predict the value of Poisson’s ratio at magnetic saturation for the 

different compositions of Galfenol. This model is based on the magneto-mechanical 

model developed by Armstrong [40] to model actuation in Terfenol-D. The 

subsequent sections will deal with the implementation of this formulation into 

COMSOL Multiphysics 3.5 to obtain a 3D electromagnetic finite element simulation 

that is capable of predicting the trends in strain along the <110> {100} directions as a 

magnetic field is applied to the sample at zero mechanical stress.  

 

The goal of Chapter 3 is to experimentally quantify the magnitude of strains 

obtained along the auxetic <110> {100} crystallographic direction in Galfenol under 
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applied magnetic fields and zero stress conditions. The chapter begins with a section 

that discusses the background of the samples used in this study. An explanation on 

the specimen preparation technique and sample analysis will follow. The next section 

elucidates the experimental procedure with special focus on the data acquisition 

technique, repeatability issues and the data reduction method used here.  

 

Discussion of the results obtained from the experiments to determine the 

Poisson’s ratio is presented in Chapter 4. The validity of the predictions made by the 

mathematical model and the multiphysics simulations is also examined. The focus of 

this chapter is to provide a possible mechanism for auxetic response in Galfenol 

samples of different compositions. 

 

The reminder of this dissertation deals with imaging magnetic domains and 

understanding their correlation to the auxetic mechanical response observed when a 

magnetic field is applied along the <110> {100} direction in single crystal Galfenol 

specimens.  The first section in Chapter 5 presents a background to optical domain 

observation techniques with special attention to the MOKE (Magneto-Elastic Kerr 

Effect) microscope. The experimental procedure and the domain images at remanence 

follow this section. Since optical techniques require high standards of surface finish, 

issues with polishing the Galfenol samples is also discussed. Domain images under 

changing magnetic fields are presented in the subsequent section to understand how 

the domains react to external magnetic fields.  
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Finally Chapter 6 presents a summary of the research presented in this 

dissertation, highlighting the contributions of this work and make recommendations 

for future work. 
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Chapter 2: Analytical modeling and simulations 

This chapter builds on the development of a complete non-linear model of the 

material from first principles based on the Armstrong model given in Section 1.3.2. 

This will be followed by application of the model to compute strains along the <110> 

crystallographic directions under applied magnetic fields and zero stress conditions. 

Magnetostriction values at magnetic saturation are used to calculate the Poisson’s 

ratio for a range of Galfenol compositions.  In the last section of the chapter the 

Armstrong model is implemented using COMSOL Multiphysics 3.5 to simulate field 

dependent magnetostriction along the auxetic crystallographic directions for a range 

of Galfenol compositions. For a detailed review of other modeling methods, readers 

can refer to the works of Dapino, Atulasimha and Datta [8, 11, 96] . 

2.1: Analytical computation of Poisson’ s ratio 

This section deals with calculation of Poisson’s ratio along the auxetic <110> 

directions at magnetic saturation. Based on the fundamental relations in 

magnetostriction that were derived in Section 1.3 based on an energy-based 

mathematical approach, Eq. (2.1) is obtained. 

 

  (2.1) 
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Since the auxetic behavior in the response is observed along the <110> 

crystallographic direction, the values of  and  are chosen to 

accommodate this. The ratio of the strains obtained along the [110] and [    ] 

directions from Eq. (2.1) is used to calculate the value of the Poisson’s ratio at each 

compositions based on the values of  and . 

 

Along the longitudinal [110] direction, the values of the direction cosines of 

the applied field and magnetostrictive strains are  and 

 respectively.  

 

Similarly, along the transverse [11̅0] direction, the direction cosines are given 

by and . 

 

The magnetostrictive strains along the longitudinal and transverse <110> 

directions are obtained by substituting these values separately into Eq. (2.1) as shown 

below.  
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The ratio of these strains from Eq. (2.2 a,b) yields the Poisson’s ratio as 

shown in Eq. (2.3). 

 

 (2.3) 

  

The values for the fundamental magnetostrictive constants are picked from 

readily available literature [26, 49, 92]. Some of these values are shown in Fig. 1.15. 

The exact values of λ100 and λ111 for the compositions used in this study are 

interpolated using the data from Fig. 1.15 and are listed in Table 2.1.  

 

Table 2.1: Values of and obtained from interpolation. 

Ga 

content 

(at %) 

3/2λ100 λ100 3/2λ111 λ111 

0 31 20.70 -31.5 -21 

12 180 120 -25 -16. 67 

15.8 365 163.33 -20 -13.33 

17.8 400 226.67 -15 -10 

20.5 225 216.67 20 13.33 

25.3 190 213.33 52 34.67 

 

 

The values of and from Table 2.1 were used in Eq. (2.3) to compute 

the Poisson’s ratio. Figure 2.1 shows the variation of the transverse strain along [11̅0] 

direction (numerator of Eq. (2.30)) and longitudinal strain along [110] direction 

(denominator of Eq. (2.30)) at magnetic saturation for the different Ga content in 

Galfenol.  

100 111

100 111

1 3

4 4

1 3

4 4

 



 

 
 

  
 

 
 

100 111

100 111



 

 

70 

 

 

 

Figure 2.1: Predicted variation of the transverse strain (numerator) and longitudinal 

strain (denominator) along <110>{100} crystallographic direction at magnetic 

saturation for the different Ga content in Galfenol. 

 

The values of Poisson’s ratio obtained from the model (as the negative ratio of 

the numerator and denominator in Fig. 2.1) are listed in Table 2.2 for the different Ga 

compositions.  
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Table 2.2: Values of Poisson’s ratio at magnetic saturation obtained from the energy 

model using and values from Table 2.1. 

Ga Content 

(at %) 

Saturation strain 

along longitudinal 

[110] direction (µε) 

Saturation strain 

along transverse 

[11̅0] direction (µε) 

Poisson’s ratio at 

saturation <110> 

direction 

 

0 -10.58 20.93 1.9787234 

3 -8.33 21.67 2.6 

5 -2.50 22.50 9 

8 7.50 33.33 -4.333333 

10 12.33 34.33 -2.783784 

12 17.50 42.50 -2.428571 

15.8 48.33 73.33 -1.517241 

17.8 66.08 70.58 -1.068096 

20.5 67.00 7.50 -0.111111 

25.3 76.67 -13.33 0.173913 

31 72.50 22.50 -0.310345 

 

 

 These predictions from the analytical solution of the energy model are very 

exciting because for the first time, Galfenol samples are expected to show values of 

Poisson’s ratio as low as -4.3 at magnetic saturation and zero stress at a composition 

of 8 at% Ga. There is an increasing trend in the value of Poisson’s ratio at magnetic 

saturation from the model for increasing Ga content, higher than 8% Ga (beginning of 

partially ordered phases) in the alloy as shown in Fig. 2.2. 

 

100 111
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Figure 2.2: Values of Poisson’s ratio at magnetic saturation predicted by the 

analytical model at different Ga compositions in Galfenol. 

 

The trend in Fig. 2.2 is opposite to what was observed under tensile loads at 

zero magnetic fields along the same auxetic <110> {100} crystallographic directions 

(shown in Fig. 1.25). An initial thought for explaining this trend was to determine if 

the trends in magnetic anisotropy constants correlated to the trend in Fig. 2.2.  

 

Figure 2.3 shows that for compositions at which the magnetic anisotropy 

coefficients have been determined, the Poisson’s ratio obtained from the analytical 

model for applied tensile stresses (from [15]) at zero magnetic fields scales in a 

manner proportional to K1. This is because along the <110> direction, upon 

substituting for the values of the direction cosines α1 α2 and α3 the anisotropy energy 

shown in Eq. (1.24) reduces to   

 𝐸𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦<110> = 𝐾1 (
1

4
)  (2.4). 
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Figure 2.3: Variation of Poisson’s ratio predicted by the model from Kellogg under 

applied stress and zero stress and a scaled value of K1 as a function of the 

composition of Ga in Galfenol. 

 

This suggests that as the anisotropy decreases, there is lattice softening due to 

an increase in magneto-elastic energy which leads to larger strains under applied 

stresses (Refer Eq. (1.23)) which causes a decrease in the value of Poisson’s ratio 

with increasing Ga content in the alloy. The reason for the lattice softening from a 

metallurgical perspective has been attributed to the addition of larger Ga atoms which 

form weaker bonds at high compositions leading to the formation of a metaolloid-like 

(a mixture of metals instead of an alloy) material [12]. 

 

Figure 2.4 shows that the variation of Poisson’s ratio at magnetic saturation 

obtained from the analytical model for applied magnetic fields and zero stresses is 

scaled in a manner proportional to 1/K1 with increasing Ga composition. This is 

opposite to the trend obtained in Fig. 2.3. From Eq. (2.4-2.5) it can be observed that a 

decrease in the anisotropy with increasing Ga content leads to an increase in the 

magnetic energy in the system under applied magnetic fields and zero stresses. This 
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causes an increase in the magnetic interaction between the atoms that constitute the 

lattice which restricts lattice softening with increasing Ga content.  

 

 

Figure 2.4: Variation of Poisson’s ratio at magnetic saturation predicted by the 

analytical model from this study and a scaled value of 1/K1 as a function of the 

composition of Ga in Galfenol. 
   

It is also important to note that this model does not provide any information 

about the trends in the strain as the magnetic field is being applied to the samples, 

rather only information for once they have attained magnetic saturation.  

 

The next section deals with the development of an algorithm which 

incorporates the features of an energy based model as developed by Armstrong [8, 10, 

16, 26, 97-99] with modifications to incorporate the <110> direction and zero 

external stress conditions to predict the trends in the strain as the magnetic field is 

applied in the auxetic directions. These results from the analytical model will be 

benchmarked against the experimental data in Chapter 4.  

-6

-4

-2

0

2

4

0 5 10 15 20

P
o

is
so

n
 r

at
io

 
an

d
 (

1
/K

1
)*

1
0

^5
  

% Ga content 

(1/K1)*e5

Model PR



 

 

75 

 

2.2: Multiphysics implementation 

The energy terms which affect both strain and magnetization in a material 

were introduced in Section 1.3. These terms are: exchange energy, magnetocrystalline 

anisotropy energy, magnetostatic energy, elastic energy, magnetoelastic energy, 

Zeeman energy and mechanical work done. 

 

Since, in this work we are only interested in modeling the magnetization and 

strain response of a bulk material, we can ignore the effect of exchange energy. The 

magnetization vectors within each domain move cooperatively with no expense in 

exchange energy. An expense in exchange energy is encountered only at the domain 

boundaries, which is a small fraction of the total volume. Consequently, the total 

exchange energy at the boundaries is small compared to the sum total of all the other 

energy terms considered over the entire system. Therefore, to predict the macroscopic 

behavior of the sample, without worrying about the precise description of the domain 

structure, the Armstrong model [100], which uses only the magnetocrystalline, 

magnetoelastic and magnetic energies is employed. It is important to note that this 

phenomenological probabilistic approach to modeling the magneto-elastic effect in 

Galfenol is anhysteretic. The formulation of this model is described in detail in this 

section. 

 

Considering a magnetic field (H) applied in a direction defined by the 

direction cosines β1F, β2F and β3F and an applied stress (σ) with direction cosines β1s, 
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β2s and β3s, the energy corresponding to the magnetization oriented in the direction 

given by α1, α2 and α3 is given by: 

 

 𝐸(𝜎,𝐻) = 𝐸𝑚𝑎𝑔𝑛𝑒𝑡𝑜𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑒 + 𝛾𝜎 ∗ 𝐸𝑚𝑎𝑔𝑛𝑒𝑡𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝐸𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐  (2.4) 

 

𝐸(𝜎,𝐻) = 𝐾1(𝛼1
2𝛼2

2 + 𝛼2
2𝛼3

2 + 𝛼3
2𝛼1

2) + 𝐾2(𝛼1
2𝛼2

2𝛼3
2) + 𝜎 ∗ 𝛾𝜎 {−

3

2
𝜆100(𝛼1

2𝛽1𝑠
2 +

𝛼2
2𝛽2𝑠

2 + 𝛼3
2𝛽3𝑠

2 ) − 3𝜆111(𝛼1𝛼2𝛽1𝑠𝛽2𝑠 + 𝛼2𝛼3𝛽2𝑠𝛽3𝑠 + 𝛼3𝛼1𝛽3𝑠𝛽1𝑠)} −

𝜇𝑜𝑀𝑠𝐻(𝛼1𝛽1𝐹 + 𝛼2𝛽2𝐹 + 𝛼3𝛽3𝐹) (2.5) 

 

In this work we use the saturation magnetization (Ms), the magnetostrictive 

constants (λ100 and λ111) and the 4th and 6th order anisotropy constants (K1 and K2 

respectively) to calculate the Zeeman, stress-induced anisotropy and 

magnetocrystalline anisotropy energies per unit volume due to a constant zero stress 

and a magnetic field (H) applied along the [110](100) direction with the assumption 

that we start from a perfectly demagnetized state with an equal probability of 

magnetization along all the easy axes available, which is determined by the 

anisotropy constants. 

 

The following material constants are employed in the model: cubic 

magnetocrystalline anisotropy constants K1 and K2 (Joules/m
3
), cubic 

magnetostriction constants λ100 and λ111 (µstrain), and saturation magnetization Ms 

(Ampere/m). A 6
th

 dimensionless factor Υ𝜎 had to be introduced in Eq. (2.5) to 
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slightly scale the magnetoelastic energy in order to fine-tune the variation in magnetic 

behavior with stresses. Because this simulation operates with the assumption of zero 

applied stresses, the effect of the choice of the values of Υ𝜎 are negligible. The 

direction cosines (β1s, β2s, β3s) and (β1F, β2F, β3F) are respectively determined by the 

direction of the stress or field applied. For example, a stress and magnetic field 

applied along the [110] direction is represented by direction cosines (1/√2, 1/√2, 0). 

 

Thus, given a stress and field, the free-energy for various orientations of the 

magnetic moment (α1, α2 and α3) are evaluated using Eq. (2.5). Numerically the α1, α2 

and α3 are chosen to correspond to the azimuthal angle (φ) varying between 0 and 

180
o
 and polar angle (ψ) varying between 0 and 360

o
 in spherical coordinates in 

intervals of 5
o
 (to get converged solutions in reasonable computation time) such that 

α1= sinψ cosφ , α2= sinψ sinφ and α3= cosψ. It should be noted that Eq. (2.5) is only 

appropriate for a single crystal samples. An appropriate method for adapting this 

energy formulation for polycrystalline materials by incorporating the volume fraction 

of grains with different orientations has been shown by Atulasimha et al. [101].   

 

Figure 2.5 (a) shows the distribution of energy at zero applied stress and zero 

field while Fig. 2.5 (b) illustrates the effect of compressive stress and field, both 

applied along the z-axis, on the energy distribution. Values for model parameters 

were chosen to emphasize certain effects rather than for a particular alloy. 
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Figure 2.5: Visualization of dependence of energy on orientation of magnetic moment 

generated by plotting radius proportional to the energy [normalized] in different 

directions. Energy plot at (a) 0 stress and magnetic field (b) Compressive stress and 

typical field at which domains flip [8]. 

 

The bulk magnetic material is assumed to be composed of a number of non-

interacting magnetization units. The volume fraction of the number of such units 

oriented in a particular direction is chosen such that the overall energy of the system 

is minimized. A normalizing factor is calculated from the definition of a probability 

density function. A more detailed explanation of this probabilistic approach is 

available in Supratik Datta’s dissertation [11]. 

 

A 7
th

 model parameter, Ω (units: J/m
3
) called an empirical scaling factor is 

employed to obtain the desired smoothness in the B-H and λ-H curves. Physically, a 

low Ω produces less smooth distributions and results in steeper gradients and sharper 

corners in B-H and λ-H curves, suggesting fewer imperfections in the crystalline 

structure. Conversely a large Ω leads to smooth characteristics suggestive of greater 
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imperfections in the material. The values of Ω chosen in this study were based on 

their effectiveness in predicting the experimental magnetostriction and magetization 

responses for a given composition of Galfenol along the <100> direction in 

Atulasimha’s work [8]. 

 

Using the formulation in Eq. (2.32) for the total energy, an ensemble average 

of all possible orientations of the magnetization vector is calculated to evaluate 

magnetization and magnetostriction. Equation (2.33) shows the average value of a 

physical quantity (say magnetization along the [100] direction, denoted by M100) 

obtained from this formulation. 

 

𝑀100 =
∑  ∑ 𝑀𝑠 𝛼1|𝑠𝑖𝑛𝜓| 𝜋

𝜓=0 Δ𝜓 Δ𝜑 𝑒
−𝐸(𝜎,𝐻)

Ω2𝜋
𝜑=0

∑  ∑  |𝑠𝑖𝑛𝜓|𝜋
𝜓=0  Δ𝜓 Δ𝜑 𝑒

−𝐸(𝜎,𝐻)
Ω2𝜋

𝜑=0

  (2.33) 

 

The magnetic induction is calculated using Eq. (1.8), 𝐵 = 𝜇𝑜(𝑀 + 𝐻). The 

same formulation can be extended to obtain an expression for the magnetostriction 

along the [100] direction as shown in Eq. (2.34). 

 

 𝜆 =
∑  ∑

3

2
𝜆100(𝛼1

2−
1

3
)|𝑠𝑖𝑛𝜓|𝜋

𝜓=0 Δ𝜓 Δ𝜑 𝑒
−𝐸(𝜎,𝐻)

Ω2𝜋
𝜑=0

∑  ∑ |𝑠𝑖𝑛𝜓|𝜋
𝜓=0  Δ𝜓 Δ𝜑 𝑒

−𝐸(𝜎,𝐻)
Ω2𝜋

𝜑=0

  (2.34) 
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The total strain can be described by Eq. (2.34) where ES is the purely 

mechanical Young’s modulus of the material and is also known as the modulus at 

magnetic saturation. This is the modulus measured when all the magnetic moments 

are oriented either parallel or anti-parallel. 

 

   휀 =
𝜎

𝐸𝑠
+ 𝜆  (2.35) 

 

In this study, we are interested in the strains obtained along the [110] direction 

under zero mechanicalstress. Hence the mechanical component in Eq. (2.35) vanishes 

and we compute only the magnetostriction along the auxetic direction. 

  

Although model parameters such as Ms and λ100, λ111 can be easily obtained 

from magnetomechanical actuator characterization, the parameters K1, K2, and Ω have 

to be obtained empirically in order to get the best fit of the curves obtained 

experimentally. The values of K1 and K2 from Fig. 1.15 for quenched iron-gallium 

alloys [42] are used as a starting estimate for determining these empirical values. A 

detailed study of the effect of the model parameters on the model prediction can be 

found in the work of Atulasimha et al. [101]. The model parameters used for the 

different samples in this chapter are shown in Table 2.3. 
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Table 2.3: Model parameters used in energy-based simulation 

% Ga 

content 

Ms 

(kA/m) 

λ100 

(µε) 

λ111 

(µε) 

K1 

(kJ/m
3
) 

K2 

(kJ/m
3
) 

Ω 

(J/m
3
) 

Es 

(GPa) 

0% 1752 20.7 -21 47 -150 400 90 

12% 1600 120 -17 49 -110 550 76 

15.8% 1456 163 -13 13 -90 600 76 

17.8% 1420 226 -3 16 -80 630 65 

20.5% 1321 216 13 -5 10 707 60 

25.3% 1036 213 35 -15 40 725 55 

31% 982 193 37   733 52 

33% 872 133 40   750 52 

 

2.2.1: Finite element formulation 

Using this formulation, the elastic and magnetic boundary value problems 

were derived as shown in Eq. (2.36) and Eq. (2.37) respectively. The elastic boundary 

value problem (BVP) is formulated and solved using the finite element method: 

 

∫ 𝛿휀̃𝑇�̃�𝑑𝑉 −
 

Ω
∫ 𝛿�̃�𝑇�̃�𝑏𝑑𝑉 −

 

Ω
∫ 𝛿�̃�𝑇�̃�𝑠𝑑𝑆 = 0

 

Ω
 (2.36) 

Here, 휀̃ = {휀11 휀22 휀33 𝛾12 𝛾23 𝛾31}𝑇 and  �̃� = �̃�(휀̃ − �̃�(�̃�, �̃�)). 

 

The magnetic boundary value problem is expressed as: 

 ∫ 𝛿�̃�𝑇�̃�𝑑𝑉 = 0
 

Ω
  (2.37) 

where, �̃� = 𝜇(�̃�, �̃�)�̃� + �̃�𝑟 and  𝜇(�̃�, �̃� ≠ 0) =
𝜇0(�̃�(�̃�,�̃�)+�̃�)

�̃�
 

 

   The elastic and magnetic boundary value problems were solved iteratively, with 

the elastic BVP first solved under an assumption of a zero applied stresses, �̃� = 0̃. 

With the resulting stress distribution, the magnetization, �̃�(�̃�, �̃�), is calculated using 



 

 

82 

 

the energy-based model. The simulations received an input of a local magnetic field 

(𝐻3×1) and stress (𝜎6×1), and produced an output of local magnetic induction (𝐵3×1) 

and magnetostriction (𝜆6×1). The magnetic boundary value problem can then be 

solved to obtain the magnetostriction, �̃�(�̃�, �̃�), which is fed back into the elastic 

boundary value problem. The iterations continue until a convergence criterion is 

achieved, such as Δ𝐵 < 0.5% and Δ휀 < 0.5%.   

 

Using these calculations, a database was created with a range of expected 𝜎𝑥 and 

𝐻𝑥 values. For each combination of every 𝜎𝑥 and 𝐻𝑥, values were calculated for 𝜆𝑥 

and 𝐵𝑥. This database of stress, magnetic field, magnetostriction, and magnetic 

induction values was called during execution of the algorithm in COMSOL 

Multiphysics software using Matlab LiveLink. The results from these simulations will 

be compared with experimental data and discussed in Chapter 4. The Matlab 

code/script used for this is provided in Appendix H. The effect of varying the values 

of anisotropy constants K1 and K2  in the simulations is discussed in Appendix G.  

 

2.2.2 Limitations of energy based model 

For given experimental λ-H and B-H characteristics the model parameters λ100, 

λ110 and Ms are fixed and there is no flexibility in the choice of these parameters. The 

parameter Υ𝜎, used to scale the effect of stress determined by 𝜎 ∗ 𝜆 , does not affect 

this simulation since the applied stress is zero. However, there is greater flexibility in 

the choice of the other three parameters Ω, K1 and K2 which significantly influence 
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the nature of the λ-H and B-H curves as explained in the previous section. Hence, the 

results obtained from the model have a strong dependence on the input values of the 7 

parameters discussed in Section 2.3. This section deals with how these parameters 

affect the accuracy of the model presented. 

 

There are only a few compositions of slow-cooled samples for which the 

values of K1 and K2 have been determined [42]. The values of K1 and K2 used in thus 

study were obtained using linear interpolation. Since the specimens used in the 

experiments were quenched, the values used in the simulations are a source of error. 

At around 20 at. % Ga content in Galfenol, both K1 and K2 are close to zero. There is 

no data available for higher compositions of Ga in Galfenol.  Given that Clark’s data 

in Fig 1.15 [46] indicates the easy axis for Galfenol is along the <100> axes for 

compositions of up to 35 at% Ga, we use only combinations of K1 and K2 values that 

meet the prescribed criteria in the simulations.     

 

The value of the smoothing function Ω which defines the imperfections in the 

material has been empirically verified only for the 15.8% Ga single crystal Galfenol 

sample from Datta’s dissertation [11]. Extrapolation of the data available in this work 

has been used to obtain the values for the remaining compositions. 

 

Similarly, the values of saturation magnetization, Ms are unavailable for some 

compositions and have been estimated by extrapolating the available data. The values 
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of λ100 and λ111 have been obtained by linear interpolation for this study and could be 

a source of error in the simulations.  

  

The magnetic ordering in a magnetic material is strongly affected by its 

thermal history and ambient temperature which determines spontaneous 

magnetization. The model presented in this chapter was directed towards capturing 

the magnetization and strain response of a bulk material and did not incorporate 

exchange energy which accounts for the ordering of magnetization vectors within 

each domain by calculating the interaction between spins in the lattice. A model that 

includes the effects of temperature has been discussed in Atulasimha’s dissertation 

[8].  
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Chapter 3: Experimental methods for characterization of 

magnetically induced auxetic behavior 

This chapter describes the experiments conducted to study the variation of 

Poisson’s ratio with applied magnetic field and zero mechanical stress for samples 

over a wide range of compositions (12 to 33 at% Ga) in Galfenol along the <110> 

{100} crystallographic direction. It begins with a section on the sample preparation 

and analysis. This is followed by a description of the experimental procedure 

including an overview of the equipment, data acquisition technique, factors affecting 

repeatability and finally data reduction.  

 

3.1: Specimen background 

Since the elastic properties of single-crystal Galfenol are dependent on 

composition, crystal orientation and heat treatment as discussed in Chapter 1, an 

overview of the history of the samples used in this study is presented here. 

 

3.1.1: Material manufacture 

The specimens were prepared at the DOE Ames Laboratory as follows. A 

single crystal of Fe100-xGax was grown in an alumina crucible by the modified 

Bridgman technique. The starting ingot for single crystal growth was prepared by arc-

melting appropriate quantities of Fe (99.99% purity) and Ga (99.999% purity) metal 

several times under an Argon atmosphere. The button was then re-melted, and the 
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alloy was drop-cast into a copper chill cast-mold to ensure compositional 

homogeneity throughout the ingot. The alloy was heated in a vacuum of 1.3 x 10-4 Pa 

up to 1075 K to degas the crucible and charge. The chamber was then backfilled to a 

pressure of 275 kPa with high purity argon. The ingot was then further heated to the 

growth temperature and held for 1 hour to allow thorough mixing before withdrawing 

the sample from the heat zone at a rate of 4 mm/h. Following growth, ingots were 

annealed at 1000 ºC for 168 hours and slow cooled. Ingots of compositions 

approaching the first peak of Fig. 1.15, i.e. the 17, 19 and 21 at.% Ga ingots, 

underwent an additional anneal at 800 ºC for 1 hour under flowing Argon and then 

were water quenched. This was done to enhance magnetostriction by retaining a more 

ordered -iron structure at room temperature (see Fig. 1.13).  

 

3.1.2: Specimen preparation 

The single crystal’s orientation was determined within 0.25º using Laue X-ray 

back reflection and then cut into tensile specimens of dimensions as shown in Fig. 3.1 

by electro-discharge machining. A picture of the specimen with the strain gages 

installed is shown in Fig. 3.2. After machining, the orientation of each specimen was 

again checked by Laue X-ray back reflection.  
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Figure 3.1: Schematic of the [110] Fe-Ga dogbone samples used in this study. 

 

 

 
Figure 3.2: Photo of typical Fe-Ga dogbone samples and a sketch depicting 

crystallographic axes and strain gauge placement on a sample. 
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3.1.3: Specimen analysis 

Energy dispersive X-ray spectroscopy (EDS) and wavelength dispersive X-ray 

spectroscopy (WDS) were used to determine the composition of each specimen by 

Schurter [3] in 2007. A sample of known composition of Fe35Ga65 was used with each 

specimen as a calibration standard. Three points were chosen along the surface of 

each sample, and the composition at each point was measured to an accuracy of 0.21 

percent or better. The composition of each sample was given by Ames Laboratory 

when the samples were first manufactured, however, no specific information about 

precision or accuracy was provided. In addition, most of the samples were produced 

prior to the work done by Schurter in 2007, and re-measuring the composition was an 

opportunity to ensure that the gallium had not depleted over time. Since the results 

suggested that most of the sample compositions were close to their specified nominal 

values, the compositions of the samples in this study were not re-measured and have 

been assumed to be the same as presented in [3]. Table 3.1 summarizes the results.  

 

Table 3.1: Composition analysis of the Fe-Ga dogbones [3]. 

Orientation Nominal Ga 

content (at%) 

Measured Ga 

content (at%) 

Change Relative 

change 

[110] 12.5 12.0 ± 0.2 - 0.5 - 4.0% 

[110] 17 17.3 ± 0.3 + 0.3 + 1.8% 

[110] 19 19.1 ± 0.5 + 0.1 + 0.53% 

[110] 21 21.1 ± 0.2 + 0.1 + 0.48% 

[110] 25 25.3 ± 0.3 +0.3 + 1.2% 

[110] 31 - - - 

[110] 33 - - - 
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Two additional samples at 31% Ga and 33% Ga content were purchased from 

Etrema Products, Inc. Their compositions were checked just after production in situ 

and their nominal compositions were prescribed already. These two samples 

underwent no heat treatment and the prescribed composition values were also used in 

the studies by [93]. 

 

The anneal-quench performed to enhance magnetostriction in the 17, 19 and 

21 at% Ga samples was expected to cause some gallium depletion. For this reason, 

the compositions of those three samples were measured using WDS before and after 

heat treatment and the results are presented in Table 3.2.  

 

Table 3.2: Composition analysis of the Fe-Ga samples before and after heat treatment 

at 800° C for one hour [3]. 

Orientation 

 

Original Ga 

content (at %) 

 

Final Ga 

content (at %) 
Change 

Relative 

change 

[110] 17.3 15.8 ± 1.3 -1.5 - 8.7% 

[110] 19.1 17.9 ± 0.5 -1.1 - 5.8% 

[110] 21.1 20.4 ± 0.3 -0.7 - 3.3% 

 

 

3.2: Experimental procedure 

A coordinate system was chosen such that the x- and y-axes correspond to 

[110] and [11̅0] directions in the (100) plane of the samples respectively. An 

electromagnet was used to apply magnetic field up to 400 mT along the length of the 

dogbone specimens. The dogbones were fixed on a stand located between the pole 
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faces of the electromagnet with double sided sticky tape, such that the nominal air 

gap between the sample and the pole faces was less than 20 mm. Two resistive strain 

gage rosettes were attached to either faces of the dogbone to measure strain along x- 

and y-directions (longitudinal and transverse directions). The field was ramped up 

from ∼ 0.1 mT (remanent field) to 400 mT and then down to ∼ 0.1 mT at a rate of ∼ 

±10 mT/s. It is important to note that the experiments were performed at room 

temperature. The change in the magnetic field over one test cycle is shown in Figure 

3.3. 

 

 
Figure 3.3: Change in magnetic field of ∼ ±10 mT/s ramp over one cycle. 

 

3.2.1: Equipment used 

The magnetic field was applied using the Walker Scientific LE USA Inc. HF-

9H Laboratory electromagnet and the field produced was measured using the 

LakeShore 425 Gauss meter. The time-varying field depicted in Fig. 3.3 was achieved 
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with a feedback control algorithm implemented using LabVIEW to adjust the signal 

to the electromagnet based on data from a Gauss meter located between the 

electromagnet pole pieces.  An overview of this experimental setup is shown in Fig. 

3.4. 

 

 
Figure 3.4: Setup for experimental characterization of strains under magnetic fields 

and zero applied stresses. 

 

3.2.2: Data acquisition 

Each specimen had two strain gages attached to it. One strain gage measured 

strain in the longitudinal direction (Vishay MicroMeasurements (EA-06-031DE-350) 

and the other measured the strain in the transverse direction (EA-06-031EC-350). 

Because of the small size of the specimens, there was space only for one strain gage 

on each side. Each strain gage was connected to a strain indicator (Vishay 3800), 

which were connected to the PC-based NI LabVIEW data acquisition system through 
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the National Instruments DAQ board. The magnetic field was measured by a Gauss 

meter (LakeShore 425), which was also connected to the PC-based data acquisition 

system. 

3.2.3: Errors and repeatability issues 

To check for avoidable errors and to compensate for unavoidable errors, the 

results reported in this study were measured numerous times. Each of the [110] 

dogbone specimens was tested with one set of strain gages (over multiple cycles), and 

then retested with a different set of strain gages because they showed some variation 

in the results. Each sample underwent a trial with one set of strain gages over at least 

5 cycles. Each cycle consisted of two ramps in the magnetic field: 0mT to +400mT to 

0mT and 0mT to -400mT to 0mT. The number of trials that each sample was 

subjected to is listed in Table 3.3. More trials were performed if there were 

inconsistencies in the data, until there was good confidence in the data. This was done 

by neglecting erroneous cycles and testing the samples over multiple trials.   

 

Repeatability was an issue as the strain gages reported drift (of up to 10 µε 

over the time span needed for gathering data from 5 load cycles) and in some cases 

inconsistency due to noise arose in the electronics. To improve confidence in the data, 

the experiments were first performed with manual data acquisition and later tested 

again using the NI LabVIEW data acquisition systems. When compared, there was 

less than 10% variation in the results. The strain data at very low fields (<5mT) have 
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not been used in the calculations for steady state, high field Poisson’s ratio. The errors 

in these experiments were of the order of ~ ± 5µε.  

 

Table 3.3: Number of trials for which each specimen exhibited consistent results. 

Composition of Galfenol 

(at % of Ga) 

Number of Trials 

12% 4 

15.8% 4 

17.9% 4 

20.5% 3 

25.3% 3 

31% 2 

33% 2 

 

3.2.4: Data reduction and analysis 

An algorithm was developed in Matlab to analyze the data from each test. The 

raw data consisted of the magnetic field, the longitudinal strain and the transverse 

strain. From this, a field vs. strains plot, a field vs. Poisson’s ratio plot and a lateral 

strain vs. longitudinal strain were created for each sample. Many of the samples 

showed considerable noise in the field-strain plot at low field values (generally the 

first 5% of the data) before the dependence became linear. The Poisson’s ratio was 

calculated as the average of the negative ratio of transverse strain to longitudinal 

strain, using data from the linear portion of the strain-strain curve using a script that 

determines the slope of the curve. 

 

Poisson’s ratio is calculated at every data point by using Eq. (3.1) to plot the 

trend of change in Poisson’s ratio with applied magnetic field. Equation (3.2) 
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computes the Poisson’s ratio once the magnetostrictions along both the longitudinal 

and transverse directions reach steady state (by neglecting the first ‘a’ data points). 

 (3.1) 

 (3.2) 
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Chapter 4: Results and discussion 

Though the magnetostriction along the [110] direction at zero external stress 

has been studied for a few compositions of Galfenol in previously published works 

[8, 46], this is the first work that completely documents magnetostriction along [11̅0] 

and the variation of Poisson’s ratio under varying magnetic fields and zero applied 

stress. This chapter will include the results from Galfenol samples of compositions 

between 12% Ga and 33% Ga. Interesting results from some other samples will also 

be presented. These results will be compared with data from the analytical model and 

the multiphysics simulation and an attempt will be made to present insights into the 

magneto-auxetic behavior from a magnetic dipole and a scaled atomic interactions 

perspective. 

 

Please note that the data set presented in this Chapter for each composition is 

from a trial where the strain values were closest to the average value from all the 

trials. The Poisson’s ratio value presented for each composition is the average of the 

values obtained from all the trials. Graphs showing the raw data of all the trials are 

presented in Appendix D 

 

4.1: Behavior of 15.8 at%. Ga and 17.9 at%. Ga Galfenol  

Results from the 15.8 at%. Ga and 17.9 at%. Ga <110> oriented single crystal 

sample will be discussed in this section. At this composition, the alloy is in the A2 

phase with order D03 precipitates because of the high temperature (~1000
o
C) from 
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which the samples were quenched [60] (Refer Fig. 1.13). Based on Fig. 1.15, it can be 

inferred that <100> are the easy axes for all compositions studied. However for these 

two compositions, values for the magnetic anisotropy constants K1 are much larger 

than for higher compositions, where the magnitude of K1 decreases toward zero. This 

may suggest a greater difference in the ease with which the <100> easy axes can be 

magnetized compared with the ease with which the intermediate <110> axes and the 

hard <111> axes can be magnetized. 

 

4.1.1: Results from the 15.8 at%. Ga <110> oriented specimen 

4.1.1.1 : Experimental data for 15.8% Ga content 

The strain data obtained from the 15.8% Ga <110> {100} oriented single 

crystal Galfenol sample is shown in Fig. 4.1. The blue curve indicates the 

magnetostriction along the longitudinal [110] direction and the red curve indicates the 

magnetostriction along the transverse [ ] direction when the field is applied along 

the longitudinal direction.  

 

 

110
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Figure 4.1: Strains along the longitudinal [110] and transverse [11̅0]  directions for 

the 15.8% Ga single crystal Galfenol with applied field along the [110] direction at 

zero external stress.  

 

The strain values along the transverse and longitudinal <110> directions at 

magnetic saturation and zero stress were found to be about 70µε and about 46µε 

respectively. The sample exhibits an unusual response where the longitudinal strain 

which increases initially with applied field to 11µε experiences a dip between ±5mT 

and ±10 mT of about 3µε before increasing again to reach saturation past ±50mT. 

The transverse strain increases and reaches a maximum value of about 80µε (at the 

same field of ~ ±10mT) and then drops from the maximum by 5-10% until just 

past ±40mT where magnetic saturation is approached.  

 

Fig. 4.2 shows the negative ratio of the transverse and longitudinal <110> 

strains as the magnetic field induced Poisson’s ratio. This data set is quite unique. The 

Poisson ratio varies with the magnitude of applied field in a non-monotonic manner. 
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Additionally, it is the first the author is aware of in which a structural auxetic material 

exhibits a Poisson’s ratio response that is more negative than -1. This is because the 

magnetically induced transverse strain is larger than the longitudinal strain produced 

along the direction of the applied field.  

 

At very low fields, i.e. less than ~ ±5 mT with strain values that are less than 

~1µε, the accuracy of the Poisson ratio values is uncertain due to a low a signal to 

noise ratio because strains of ±1µε are at the resolution of the equipment. Above ~ 

±5mT, the Poisson ratio decreases with increasing field to a minimum value of ~ –10 

at ±10 mT and then gradually increases to –1.5 at magnetic saturation.   

 

 
Figure 4.2: Experimental data on variation of the Poisson’s ratio with applied 

magnetic fields in <110> oriented 15.8% Ga Galfenol at zero applied stress (solid 

line). Poisson ratio value at magnetic saturation predicted using the energy model 

(dashed line) shown for fields ≥±40mT. At magnetic saturation (fields of greater than 

50mT), the value of Poisson ratio obtained from the experiment is -1.50  ± 0.4 and the 

value from energy model is -1.52. 
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4.1.1.2 : Energy model at magnetic saturation for 15.8% Ga content 

The value of Poisson’s ratio at magnetic saturation predicted by the analytical 

model is ~ -1.52. This is discussed in Chapter 2 and the value of the analytical 

solution to the energy model at magnetic saturation is listed in Table 2.2.  This is 

shown with the dashed line in Fig. 4.2, where magnetic saturation of the sample is 

assumed for fields of greater than ~ ±50 mT. The modeled value of -1.52 is in good 

accordance with the average experimentally determined value at magnetic saturation 

of -1.5 ± 0.4. 

 

4.1.1.3: Multiphysics simulations for 15.8% Ga content 

The strain results from the multiphysics simulation using the modified 

‘Armstrong model’ derived in Section 2.5 is shown in Fig.4.3 (a). The experimental 

data is shown in Fig. 4.3 (b).  The Poisson ratio determined from FEM simulation and 

experimental data are shown in Fig.4.4 (a) and (b), respectively  

 

 

Figure 4.3: Strains along the longitudinal [110] (blue) and transverse [11̅0] (red) 

directions for the 15.8% Ga Galfenol sample obtained from (a) multiphysics 

simulation and (b) from experiments. 

(a) (b) 
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Figure 4.4: Poisson’s ratio for the 15.8% Ga Galfenol sample obtained from (a) 

multiphysics simulation and (b) from experiments. 

 

The simulation predicts a strain of 72µε and 49µε along the longitudinal and 

transverse <110> directions at magnetic saturation respectively. These values have an 

error of about 2% with respect to the values predicted by the mathematical model. 

The FEM model captures the non-monotonic increase in longitudinal strain at low 

fields in the experimental data, but fails to capture that unusual trend in the transverse 

strain. The experimental data appears to reach magnetic saturation at a field of ~50-60 

mT, while the FEM simulation appears to just be reaching magnetic saturation at a 

field of ~100 mT.  

 

The Poisson’s ratio obtained from the simulation monotonically decreases to 

reach the steady state value of -1.47. This is lower than the values obtained from the 

experiments (-1.5 ± 0.4) and the mathematical model (-1.52).  

 

(a) (b) 
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The simulation was able to predict the ‘trends’ in the strains with features like 

the drop in the longitudinal strain occurring at the exact applied field but the 

magnitude of the strain is off. This could be an attribute of the thermal history of the 

sample not being considered in the simulations. Other possible sources of errors have 

been discussed in Section 2.3.2. 

 

4.1.2: Results from the 17.9 at%. Ga <110> oriented specimen 

4.1.2.1 : Experimental data for 17.9% Ga content 

The strain data obtained from the 17.9% Ga <110> {100} oriented single 

crystal Galfenol sample is shown in Fig. 4.5. The blue curve indicates the 

magnetostriction along the longitudinal [110] direction and the red curve indicates the 

magnetostriction along the transverse [ ] direction when the field is applied along 

the longitudinal direction.  
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Figure 4.5: Strains along the longitudinal [110] and transverse [11̅0]  directions for 

the 17.9% Ga single crystal Galfenol with applied field along the [110] direction at 

zero external stress.  

 

The strain values along the transverse and longitudinal <110> directions at 

magnetic saturation and zero stress were found to be about 79µε and about 62µε 

respectively. This sample also showed the unusual response exhibited by the 15.8% 

Ga Galfenol sample (discussed in Section 4.1.1). The longitudinal strain which 

increases initially with applied field to ~64µε experiences a dip between ±5mT and 

±10 mT of about 13µε before increasing again to reach saturation past ±60mT. The 

transverse strain increases and reaches a maximum value of about 87µε (at the same 

field of ~ ±10mT) and then drops from the maximum by 5-10% until just past 

±50mT where magnetic saturation is approached. The transverse strain is larger than 

the longitudinal strain along the auxetic <110> direction under applied magnetic 

fields and zero applied mechanical stress in this sample as well. The negative ratio of 
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this transverse and longitudinal <110> strains is the magnetic field induced negative 

Poisson’s ratio as shown in Fig. 4.6.  

 

The strain in the longitudinal direction dips from ~ 64µε at about ± 4mT to 

~ 51µε at ±10mT while the strain in the transverse direction which initially increased 

until ±10mT to reach ~ 87µε decreased in magnitude and attained a value of ~79µε at 

magnetic saturation past ±50mT. The negative ratio of this transverse and 

longitudinal <110> strains is the magnetic field induced negative Poisson’s ratio as 

shown in Fig. 4.6.  

 

 

Figure 4.6: Experimental data on variation of the Poisson’s ratio with applied 

magnetic fields in <110> oriented 17.9% Ga Galfenol at zero applied stress (solid 

line). Poisson ratio value at magnetic saturation predicted using the energy model 

(dashed line) shown for fields ≥±50mT. At magnetic saturation (fields of greater than 

60mT), the value of Poisson ratio obtained from the experiment is -1.27  ± 0.35 and 

the value from energy model is -1.07. 
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At very low fields, i.e. less than ~ ±5 mT with strain values that are less than 

~1µε, the accuracy of the Poisson ratio values is uncertain due to a low a signal to 

noise ratio because strains of ±1µε are at the resolution of the equipment. Above ~ 

±5mT, the Poisson ratio decreases with increasing field to a minimum value of ~ –1.7 

at ±15 mT and then gradually increases to –1.27  ± 0.35 at magnetic saturation.   

 

It can be observed that the magnitude of the strains is larger in the case of the 

17.9% Ga Galfenol sample when compared with the 15.8% Ga sample. This is 

because the 17.9% Ga composition is close to the first magnetostriction peak along 

the <100> direction (Refer Fig. 1.15). 

 

4.1.2.2: Energy model at magnetic saturation at 17.9% Ga content 

The value of Poisson’s ratio at magnetic saturation predicted by the analytical 

model is ~ -1.07. This is discussed in Chapter 2 and the value of the analytical 

solution to the energy model at magnetic saturation is listed in Table 2.2.  This is 

shown with the dashed line shown in Fig. 4.2, where magnetic saturation of the 

sample is assumed for fields of greater than ~ ±60 mT. The modeled value of -1.07 is 

in good accordance with the experimentally determined value at magnetic saturation 

of -1.27 ± 0.35. 

 

4.1.2.3: Multiphysics simulations for 17.9% Ga content 

The result from the multiphysics simulation using the modified ‘Armstrong 

model’ derived in Section 2.5 is shown in Fig.4.7 (a). The experimental data is shown 
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in Fig. 4.7 (b). The Poisson ratio determined from FEM simulation and experimental 

data are shown in Fig.4.8 (a) and (b), respectively. 

 

 

Figure 4.7: Strains along the longitudinal [110] and transverse [11̅0] directions for 

the 17.9 % Ga Galfenol sample obtained from (a) multiphysics simulation and (b) 

from experiments. 

 

 

 
 

Figure 4.8: Poisson’s ratio for the 17.9 % Ga Galfenol sample obtained from (a) 

multiphysics simulation and (b) from experiments. 

 

The simulation predicts a strain of 59µε and 77µε along the longitudinal and 

transverse <110> directions respectively. The experimental values are about 10% 

higher than that from the model and the simulation. The thermal history of the 

(a) (b) 

(a) (b) 
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sample, since it was quenched could be a reason for the higher values of strains. The 

longitudinal strain was about 5% off from the experimental data while the transverse 

strain was off by 6%. The value of Poisson’s ratio at magnetic saturation obtained 

from the simulation was -1.31 which is lower than the values from the mathematical 

model and experiments (-1.07 and -1.29 ± 0.35 respectively). 

 

4.1.2.4: Comparison of strain data from 17.9 at%. Ga Galfenol 

samples with previous data 

Previous strain data under applied magnetic fields along the <110> direction 

and zero applied stresses on an oven cooled, 18% Ga <110> oriented single crystal 

Galfenol had suggested that saturation magnetostriction along the longitudinal <110> 

direction would be about 50µε [8]. This is also the value predicted by the 

mathematical model in Table 2.2.  

 

Data from the current experiments showed a larger value (~ 62µε) for the 

longitudinal strain because this sample was quenched. This increased its inherent 

magnetostriction due to improvements in the ordering of the Ga atoms in the BCC 

lattice [102]. Figure 4.9 (a) shows magnetostriction data from the current work for the 

quenched sample and compares it to longitudinal strain from Atulasimha’s 

dissertation shown in Fig. 4.9 (b) [3].  
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Figure 4.9: Strain along longitudinal <110> direction under applied magnetic fields in 

~18 at. % Ga <110> oriented Galfenol from (a) current experiments on a quenched 

sample and (b) previous experiments by Atulasimha [8] on an oven cooled sample. 

 

4.1.3: Proposed mechanism for the magneto-auxetic behavior in 15.8 at%. Ga 

and 17.9 at %. Ga Galfenol samples 

The trends in the strains obtained under applied magnetic fields and zero 

stress from the 15.8% Ga  <110> oriented Galfenol sample is similar to those from 

the 17.9% Ga <110> Galfenol sample. Both of these samples have a D03 structure 

and both have a non-monotonic increase in longitudinal strains with increasing 

magnetic field. This section presents a possible mechanism to explain the strains 

observed in the partial D03 phase using the 15.8% Ga sample as an example. The 

same mechanism can be used to explain the behavior in the 17.9% Ga sample. 

   

This mechanism is represented by the schematic in Fig. 4.10. The top plot 

shows the variation of the longitudinal and transverse strains with positive magnetic 

fields and the variation of the dimensions of the sample. The cartoons below the plot 

(b) (a) 
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show the proposed evolution of the orientation of the magnetic dipoles present in the 

material. 

 

Initially, at zero magnetic fields, all the magnetic moments (denoted by red 

arrows that indicate their nominal direction; length of arrow indicates relative 

magnitude in the given direction, but lengths are not to scale) are randomly oriented 

such that the overall magnetization of the material is zero as shown in Fig. 4.10 (0). 

When an external magnetic field is applied, the magnetic dipoles rotate to orient 

themselves along the <100> easy axes available on the (100) plane to attain the 

lowest energy state as shown in Fig. 4.10 (a), causing an increase in both the 

transverse and the longitudinal strain up to a field of about 4mT.  

 

As the magnitude of the applied magnetic field increases, a critical field is 

reached where there is enough energy to start orienting the magnetic dipoles along the 

<110> directions. At this point, it is unclear if this rotation of the magnetic moments 

is the reason for a rapid increase in the transverse strain and a small decrease in the 

longitudinal strain. Most of the dipoles are expected to be completely re-oriented at 

around 11mT in the 15.8 at. % Ga Galfenol sample.  
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Figure 4.10: Schematic representation of a possible mechanism for magnetostriction 

along the <110> crystallographic direction for 15.8% Ga Galfenol on the basis of 

change in orientation of magnetic moments with applied magnetic fields. The grey 

boxes illustrate change in dimension of the sample (not to scale) at the end of each 

stage (0-e).  The values next to the boxes indicate the change observed along the 

longitudinal (blue) and transverse (red) directions. Inset: Shows the orientation of the 

dog bone sample and the direction of applied magnetic field. Sketches (0)-(e) from 

left to right below graph depict relative strength of magnetization vectors along 

indicated crystallographic axes at field levels of 0, 2, 8, 30 and 55 mT.  

 

As the applied magnetic field is increased past 11mT, the magnetic energy 

added to the system aligns all the magnetic dipoles with the applied field direction 

and the sample reaches magnetic saturation at about 50mT. This is accompanied by 

an increase in the longitudinal strain and a decrease in the transverse strain.  
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Magnetic domain imaging, discussed in Chapter 5 will be used to improve 

upon the the proposed mechanism to further understand the magneto-auxetic response 

of Galfenol under applied magnetic fields along the <110> crystallographic direction 

from a magnetic domain evolution perspective. 

 

4.1.4: Proposed model of atomic level interactions for magneto-auxetic 

behavior in 15.8 at%. Ga and 17.9 at%. Ga Galfenol samples 

As Ga atoms are added to α-Fe, they start replacing the Fe atoms in the crystal 

lattice randomly at low Ga concentrations as discussed in Chapter 1. At compositions 

higher than 12 at. % Ga, an ordered D03 phase is obtained as shown in Fig. 1.14. 

These Ga atoms are larger than the Fe atoms and there are differences in the strengths 

of Fe-Fe bonds, Fe-Ga bonds and Ga-Ga bonds. These factors have been attributed to 

be the reason for anisotropy in Galfenol [42, 57].  

 

Strains obtained along the auxetic <110> directions under applied tensile 

loads have been attributed to anisotropic stretching of the bonds between the atoms 

that make up the crystal lattice of Galfenol [3, 12, 78]. The auxetic response to stress 

is due to the interaction of the mechanical energy from the applied load and the 

elastic energy in the atomic bonds.  

 

Under applied magnetic fields, the strains in the auxetic direction occur due to 

the anisotropic interaction of electron spins of neighboring atoms in the crystal lattice 
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arising from the applied magnetic energy and the elastic energy in the atomic bonds 

between the atoms. A 2-D schematic depicting the (100) plane and a possible scenario 

for the interaction of the 4 in-plane atoms under applied magnetic fields along the 

auxetic <110> direction is shown in Fig. 4.11. (Note, although this is a 2-D depiction 

that neglects well-known 3-D interactions, as well as the known differences in atomic 

bond strengths of Fe-Fe bonds, Fe-Ga bonds and Ga-Ga bonds, it is presented here for 

illustrative purposes to suggest potential interactions).   

 

 

  

Figure 4.11: Schematic of atomic level strains in a (100) plane of Galfenol. (a) Shows 

the location of the atoms ( brown circles with numbers 1 to 4) on the plane under zero 

magnetic field and zero stress. (b) Shows the new location of atoms (denoted by the 
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yellow circles) relative to their original positions at magnetic saturaion for applied 

field along the [110] directionand zero stress.  

 

Galfenol samples in the A2-D03 phase, (at compositions greater than ~12 at. % 

Ga and lesser than ~20 at. % Ga), have relatively high anisotropy (Fig. 1.18) with 

<100> being the easy directions (relative to Galfenol alloys with higher Ga content). 

Hence, the magnetic energy added to the system by the applied magnetic field finds it 

easier to flow along the <100> directions, moving atoms 2 and 4 from atom 1 due to 

interaction of the electron spins in these atoms that causes the magnetic dipoles to line 

up along the <100> directions. Due to this, atom 3 also moves away from atom 1 

because of the atomic bonds between atom 3 and atoms 2 and 4 are stronger than the 

bond between atoms 1 and 3.  

 

As more magnetic energy is added, atoms 2 and 4 move farther away from 

atom 1 along the <100> directions. Due to this, atom 3 begins to move closer to atom 

1 and equilibrium between the elastic energy due to the bond strengths and the 

applied magnetic energy is attained.  

 

This goes on until the energy from the applied magnetic field overcomes the 

anisotropy energy penalty. Beyond this critical magnetic field, energy begins to flow 

along the <110> crystallographic direction along which the magnetic field is applied. 

This moves atom 3 away from atom 1 as the magnetic dipoles rotate to line up along 

the favorable <110> direction. Atoms 2 and 4 move slightly closer to atom 1 to reach 

equilibrium as the specimen reached magnetic saturation along the <110> applied 
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field direction. Beyond saturation, all the magnetic dipoles have already lined up 

along the applied field and there are no more changes in the lattice due to atomic level 

interactions. 

 

4.2: Behavior of 20.5 at%. Ga and 25.3 at%. Ga Galfenol  

Results from the 20.5 at%. Ga and 25.3 at%. Ga <110> oriented single crystal 

sample will be discussed in this section. At this composition, the alloy is in the D03 

phase (partly a mixture of A2 phase) because of the high temperature (~1000
o
C) from 

which the samples were quenched [60] (Refer Fig. 1.15). Based on Fig. 1.15, it can be 

inferred that <100> are the easy axes for all compositions studied. However, for these 

two compositions, the values of K1 and K2 are very close to zero which reduces a 

strong preference for a particular direction as the easy axis [61]. Hence, although the 

<100> directions are still the easy axes, the ‘harder’ <110> directions are almost as 

easy. 

 

4.2.1: Results from the 20.5 at%. Ga <110> oriented specimen 

4.2.1.1 : Experimental data for 20.5 % Ga content 

The strain data obtained from the 20.5% Ga <110> {100} oriented single 

crystal Galfenol sample is shown in Fig. 4.12. The blue curve indicates the 

magnetostriction along the longitudinal [110] direction and the red curve indicates the 

magnetostriction along the transverse [11̅0] direction when the field is applied along 

the longitudinal direction.  
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Figure 4.12: Strains along the longitudinal [110] and transverse [11̅0]  directions for 

the 20.5% Ga single crystal Galfenol with applied field along the [110] direction at 

zero external stress.  

 

The strain values along the longitudinal and transverse <110> directions at 

magnetic saturation and zero stress were found to be about 57µε and about -8µε 

respectively. The longitudinal strain increased monotonically and reached magnetic 

saturation past ±60mT. Though the transverse strain showed a tendency to increase 

till ~ ±5mT, it quickly turned negative at higher magnetic fields and reached 

magnetic saturation. The value of transverse strain was very small and close to zero 

(same order of magnitude as noise from strain gage as discussed in Chapter 3). There 

were some data sets where the transverse strain at magnetic saturation was very close 

to zero, sometimes crossing over (due to drift in the strain gauges). These data sets 

have been ignored in this study. The negative ratio of this transverse and longitudinal 
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<110> strains is the magnetic field induced negative Poisson’s ratio as shown in Fig. 

4.13.  

At very low fields, i.e. less than ~ ±5 mT with strain values that are less than 

~1µε, the accuracy of the Poisson ratio values is uncertain due to a low a signal to 

noise ratio because strains of ±1µε are at the resolution of the equipment. Above ~ 

±5mT, the Poisson ratio decreases with increasing field to a minimum value of ~ –0.2 

at ±10 mT and then gradually increases to 0.15 ± 0.6 at magnetic saturation.   

 

 

Figure 4.13: Experimental data on variation of the Poisson’s ratio with applied 

magnetic fields in <110> oriented 20.5% Ga Galfenol at zero applied stress (solid 

line). Poisson ratio value at magnetic saturation predicted using the energy model 

(dashed line) shown for fields ≥±50mT. At magnetic saturation (fields of greater than 

60mT), the value of Poisson ratio obtained from the experiment is 0.15 ± 0.6 and the 

value from energy model is -0.11. 
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4.2.1.2 : Energy model at magnetic saturation for 20.5 % Ga content 

The value of Poisson’s ratio at magnetic saturation predicted by the analytical 

model is ~ -0.11. This is discussed in Chapter 2 and the value of the analytical 

solution to the energy model at magnetic saturation is listed in Table 2.2.  This is 

shown with the dashed line shown in Fig. 4.13, where magnetic saturation of the 

sample is assumed for fields of greater than ~ ±60 mT. The modeled saturation value 

of -0.11 is lower than the average experimentally determined value at magnetic 

saturation of 0.15 ± 0.6. 

  

4.2.1.3: Multiphysics simulations for 20.5 % Ga content 

The result from the multiphysics simulation using the modified ‘Armstrong 

model’ derived in Section 2.5 is shown in Fig.4.14 (a). The experimental data is 

shown in Fig. 4.14 (b). The Poisson ratio determined from FEM simulation and 

experimental data are shown in Fig.4.15 (a) and (b), respectively. 

 

  

Figure 4.14: Strains along the longitudinal [110] (blue) and transverse [11̅0] (red) 

directions for the 20.5% Ga Galfenol sample obtained from (a) multiphysics 

simulation and (b) from experiments. 

(a) (b) 
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Figure 4.15: Poisson’s ratio 20.5% Ga Galfenol sample obtained from (a) 

multiphysics simulation and (b) from experiments. 

 

The simulation predicts a strain of 66µε and 7µε along the longitudinal and 

transverse <110> directions respectively. The simulation and the analytical model 

predict a negative Poisson’s ratio of ~ -0.1 and -0.11 respectively. The simulation was 

unable to predict the strain values at magnetic saturation that were obtained from the 

experiments. It is important to note here that as discussed in Section 2.3.2, the 

modified ‘Armstrong model’ uses the values of and  along with those of 

and to predict the expected magnetostriction trend. At about 20% Ga, reaches 

a peak while  crosses over from being a negative number to a positive number as 

shown in Fig.1.15. The values of and
 
are almost zero (Refer Fig. 1.18) at this 

composition. Using values of and
 
that are less than ±10 kJ/m

3
 to lead to 

numerical convergence problems within the simulation code that were not overcome. 

Fig. 4.16 shows the result obtained when such low values were used for and .  

 

100 111 1K

2K 100

111
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Figure 4.16: Variation of longitudinal (blue) and transverse (red) <110> strains 

obtained from the simulations for values of and
 
< ±1 kJ/m

3
. 

 

Since anisotropy determines the preferred direction for energy to flow in the 

lattice, the simulation couldn’t compute the exact strain values at each applied 

magnetic field and gave an output with horizontal lines based on the values of 

and . The values of the parameters used in this simulation are listed in Table 2.3. 

Thus, the simulation was incapable of predicting the trends observed from the 

experiments.  

 

 4.2.2: Results from the 25.3 at%. Ga <110> oriented specimen 

4.2.2.1 : Experimental data for 25.3% Ga content 

The strain data obtained from the 25.3% Ga <110> {100} oriented single 

crystal Galfenol sample is shown in Fig. 4.17. The blue curve indicates the 

magnetostriction along the longitudinal [110] direction and the red curve indicates the 

1K 2K

100

111
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magnetostriction along the transverse [ ] direction when the field is applied along 

the longitudinal direction.  

 

 

Figure 4.17: Strains along the longitudinal [110] (blue) and transverse [11̅0] (red) 

directions for the 25.3% Ga single crystal Galfenol with applied field along the [110] 

direction at zero external stress.  

 

The strain values along the longitudinal and <110> directions at magnetic 

saturation and zero stress were found to be about 68µε and about -35µε respectively. 

The longitudinal strain monotonically increased with applied magnetic field and 

reached magnetic saturation at ± 20mT. The transverse strain decreased with applied 

magnetic field and reach its lowest value at ± 10mT beyond which it increases in 

magnitude by 6µε up to ~15mT and reaches magnetic saturation past ± 20mT. The 

negative ratio of this transverse and longitudinal <110> strains is the magnetic field 

induced negative Poisson’s ratio as shown in Fig. 4.16. This sample showed a definite 

positive Poisson’s ratio. 

110
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At very low fields, i.e. less than ~ ±5 mT with strain values that are less than 

~1µε, the accuracy of the Poisson ratio values is uncertain due to a low a signal to 

noise ratio because strains of ±1µε are at the resolution of the equipment. There is an 

initial increase to 1.6 in the Poisson’s ratio up to ~ ±5mT. Above ±5mT, the Poisson 

ratio decreases monotonically with increasing field to 0.52 ± 0.75 at magnetic 

saturation.   

 

 

Figure 4.18: Experimental data on variation of the Poisson’s ratio with applied 

magnetic fields in <110> oriented 25.3% Ga Galfenol at zero applied stress (solid 

line). Poisson ratio value at magnetic saturation predicted using the energy model 

(dashed line) shown for fields ≥±25mT. At magnetic saturation (fields of greater than 

20mT), the value of Poisson ratio obtained from the experiment is 0.52 ± 0.75 and the 

value from energy model is 0.17. 
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4.2.2.2: Energy model at magnetic saturation for 25.3% Ga content 

The value of Poisson’s ratio at magnetic saturation predicted by the energy 

model is +0.17.  This is discussed in Chapter 2 and the value of the analytical solution 

to the energy model at saturation is listed in Table 2.2.  This value is shown with the 

dashed line in Fig. 4.18, where magnetic saturation of the sample is assumed for 

fields of greater than ~ ±25 mT. The modeled saturation value of +0.17 (discussed in 

Chapter 2 and values listed in Table 2.1) is smaller than the average experimentally 

determined value of +0.52 ± 0.75. 

 

4.2.2.3: Multiphysics simulations for 25.3% Ga content 

The result from the multiphysics simulation using the modified ‘Armstrong 

model’ derived in Section 2.5 is shown in Fig.4.19 (a). The experimental data is 

shown in Fig. 4.19 (b). The Poisson ratio determined from FEM simulation and 

experimental data are shown in Fig.4.20 (a) and (b), respectively.  

 

 

Figure 4.19: Strains along the longitudinal [110] (blue) and transverse (red) [11̅0] 
directions for the 25.3% Ga Galfenol sample obtained from (a) multiphysics 

simulation and (b) from experiments. 

(a) (b) 
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Figure 4.20: Poisson’s ratio for the 25.3% Ga Galfenol sample obtained from (a) 

multiphysics simulation and (b) from experiments. 

 

The simulation predicts a strain of 59µε and 77µε along the longitudinal and 

transverse <110> directions respectively. The simulation was able to predict that 

there was contraction in the transverse direction but the value of transverse strain at 

magnetic saturation was much lower in the experiments than predicted by the 

simulations. The simulation predicts a strain of 76µε and -9µε along the longitudinal 

and transverse <110> directions respectively. The simulations also predict a positive 

value for the Poisson’s ratio but the values for transverse strain are much higher than 

those from the experiments. For this composition, the values of K1 and K2 were 

obtained by extrapolation of the data from Rafique et al [42]. Extrapolation is always 

a risk factor for introduction of errors.  In this case, extrapolation lead to an 

assumption of a negative value for K1.   However, magnetostriction data show this 

composition has <100> easy axes, which based on Eq. 1.24 requires that K1 be 

positive, not negative.   Thus, in spite of the allowing the simulation to produce 

reasonable strain data, extrapolation has introduced a likely source of error. The other 

(a) (b) 
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sources of errors have been discussed in Section 2.3.2. The other sources of errors 

have been discussed in Section 2.3.2. 

 

4.2.3: Proposed mechanism for the magneto-auxetic behavior in 20.5 at%. Ga 

and 25.3 at%. Ga Galfenol samples 

This section presents a possible mechanism to explain the strains observed in 

the 20.5% Ga sample. The same mechanism can be used to explain the reason behind 

the strain response in the 25.3% Ga sample.  

 

In samples of Galfenol between 20% and 25% Ga, the energy required to 

overcome the anisotropy in the crystal is extremely small. Since the anisotropy 

penalty is very small, it is overcome at low applied magnetic fields. As the applied 

magnetic field along the longitudinal <110> direction increases, the magnetic energy 

stretches the crystal causing a positive longitudinal strain. There is contraction in the 

transverse direction to compensate for this. This response is similar to the strain 

behavior along the transverse [010] direction and longitudinal [100] direction for 

applied magnetic fields along the [100] direction in Galfenol. The mechanism for 

such a response has been explained using the same argument presented here in 

previous works [3, 15]. 

 

This mechanism is represented by the schematic in Fig. 4.21. The top plot 

shows the variation of the longitudinal and transverse strains with positive magnetic 
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fields and the variation of the dimensions of the sample. The cartoons below the plot 

show the proposed evolution of the orientation of the magnetic dipoles present in the 

material. 

 

Initially, at zero magnetic fields, all the magnetic moments (denoted by red 

arrows that indicate their nominal direction; length of arrow indicates relative 

magnitude in the given direction, but lengths are not to scale) are randomly oriented 

such that the overall magnetization of the material is zero as shown in Fig. 4.21 (0). 

When an external magnetic field is applied, the magnetic dipoles rotate to orient 

themselves along the <100> easy axes available on the (100) plane, along the 

direction of the applied magnetic field to attain the lowest energy state as shown in 

Fig. 4.21 (a), causing an increase in both the transverse and the longitudinal strain up 

to a field of about 5mT.  

 

Beyond 5mT, the energy from the applied magnetic field orients the magnetic 

dipoles along the <110> directions. As the applied magnetic field is increased, the 

magnetic energy starts aligning the magnetic dipoles with the applied field direction 

leading to an increase in the longitudinal strain. In this regime, there is a decrease in 

the transverse strain to achieve volume conservation and the specimen magnetization 

saturates at an applied field of about 60mT.  
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Figure 4.21: Schematic representation of a possible mechanism for magnetostriction 

along the <110> crystallographic direction for 20.5% Ga Galfenol on the basis of 

change in orientation of magnetic moments with applied magnetic fields. The grey 

boxes illustrate change in dimension of the sample (not to scale) at the end of each 

stage (0-d).  The values next to the boxes indicate the change observed along the 

longitudinal (blue) and transverse (red) directions. Inset: Shows the orientation of the 

dog bone sample and the direction of applied magnetic field. Sketches (0)-(d) from 

left to right below graph depict relative strength of magnetization vectors along 

indicated crystallographic axes at field levels of 0, 5, 20 and 60 mT.  

 

Magnetic domain imaging, discussed in Chapter 5 can be used to improve this 

hypothesis. 
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4.3: Behavior of 31 at%. Ga and 33 at%. Ga Galfenol 

Results from the 31 at%. Ga and 33 at%. Ga <110> oriented single crystal 

sample will be discussed in this section. At this composition, the alloy is in the 

ordered B2 phase due to quenching from temperatures around 1000
o
C [60]. At these 

compositions, the values of K1 and K2 are unavailable in literature and as discussed in 

the previous section, extrapolation of the available data introduces unknown errors. 

For this reason, this section includes only discussion of the experimental data and the 

saturation Poisson ratio values obtained from the energy model.  

 

4.3.1: Results from the 31 at%. Ga <110> oriented specimen 

4.3.1.1 : Experimental data for 31 % Ga content 

The strain data obtained from the 31% Ga <110> {100} oriented single crystal 

Galfenol sample is shown in Fig. 4.22. The blue curve indicates the magnetostriction 

along the longitudinal [110] direction and the red curve indicates the magnetostriction 

along the transverse [ ] direction when the field is applied along the longitudinal 

direction.  

 

110
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Figure 4.22: Strains along the longitudinal [110] and transverse [11̅0]  directions for 

the 31% Ga single crystal Galfenol with applied field along the [110] direction at zero 

external stress.  

 

The strain values along the transverse and longitudinal <110> directions at 

magnetic saturation and zero stress were found to be about 58µε and about 46µε 

respectively. This sample did not exhibit the unusual response of a dip in the 

longitudinal strain which was evident in the 15.8% Ga and 17.9% Ga specimens. 

There is a monotonic increase in both the transverse and the longitudinal strains 

and the sample reached magnetic saturation past ±60mT. 

 

In this data set, the longitudinal strain was larger than the transverse strain 

along the auxetic <110> direction under applied magnetic fields and zero stress. The 

negative ratio of this transverse and longitudinal <110> strains is the magnetic field 

induced negative Poisson’s ratio as shown in Fig. 4.23.  
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Figure 4.23: The variation of the Poisson’s ratio with applied field in 31% Ga 

Galfenol at zero applied stress. At magnetic saturation (fields of greater than 50mT), 

the value of Poisson ratio obtained from the experiment is -0.49 ± 0.2 and the value 

from energy model (dashed line) is -0.31. 

 

At very low fields, i.e. less than ~ ±5mT with strain values that are less than 

~1µε, the accuracy of the Poisson ratio values is uncertain due to a low a signal to 

noise ratio because strains of ±1µε are at the resolution of the equipment. Above ~ 

±5mT, the Poisson ratio decreases with increasing field to –0.49 ± 0.2 at magnetic 

saturation.   

 

The Poisson’s ratio was also computed by calculating the slope of the 

transverse strain vs. longitudinal strain plot as shown in Fig. 4.24. This method of 

computing the Poisson’s ratio could be employed for this composition because there 

was monotonic increase in both longitudinal and transverse strains. 
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Figure 4.24: Poisson’s ratio computed as the slope of the transverse strain vs. 

longitudinal strain plot.  
 

4.3.1.1: Energy model at magnetic saturation for 31% Ga content 

The value of Poisson’s ratio at magnetic saturation predicted by the energy 

model is -0.31.  This is discussed in Chapter 2 and the value of the analytical solution 

to the energy model at saturation is listed in Table 2.2.  This value is shown with the 

dashed line in Fig. 4.23, where magnetic saturation of the sample is assumed for 

fields of greater than ~ ±60 mT. The modeled saturation value of -0.31 is larger than 

(less magneto-auxetic than) the average experimental value at magnetic saturation of 

-0.49 ± 0.2. 

 

4.3.2: Results from the 33 at%. Ga <110> oriented specimen 

4.3.2.1: Experimental data for 33% Ga content 

The strain data obtained from the 33% Ga <110> {100} oriented single crystal 

Galfenol sample is shown in Fig. 4.25. The blue curve indicates the magnetostriction 

along the longitudinal [110] direction and the red curve indicates the magnetostriction 
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along the transverse [ ] direction when the field is applied along the longitudinal 

direction.  

 

 

Figure 4.25: Strains along the longitudinal [110] and transverse [11̅0]  directions for 

the 33% Ga single crystal Galfenol with applied field along the [110] direction at zero 

external stress.  

 

The strain values along the transverse and longitudinal <110> directions at 

magnetic saturation and zero stress were found to be about 62µε and about 23µε 

respectively. There is a monotonic increase in both the transverse and the 

longitudinal strains and the sample reached magnetic saturation past ±40mT. 

 

The longitudinal strain was larger than the transverse strain along the auxetic 

<110> direction under applied magnetic fields and zero stress in this sample as well. 

The negative ratio of this transverse and longitudinal <110> strains is the magnetic 

field induced negative Poisson’s ratio as shown in Fig. 4.26.  

110



 

 

131 

 

 

 

 

Figure 4.26: The variation of the Poisson’s ratio with applied field in 33% Ga 

Galfenol at zero applied stress. At magnetic saturation (fields of greater than 40mT), 

the value of Poisson ratio obtained from the experiment is -0.37 ± 0.15 and the value 

from energy model (dashed line) is -0.23. 

 

At very low fields, i.e. less than ~ ±5mT with strain values that are less than 

~1µε, the accuracy of the Poisson ratio values is uncertain due to a low a signal to 

noise ratio because strains of ±1µε are at the resolution of the equipment. Above ~ 

±5mT, the Poisson ratio decreases with increasing field –0.37 ± 0.15 at magnetic 

saturation.   

The Poisson’s ratio was also computed by calculating the slope of the 

transverse strain vs. longitudinal strain plot as shown in Fig. 4.27. This method of 

computing the Poisson’s ratio could be employed for this composition because there 

was monotonic increase in both longitudinal and transverse strains. 
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Figure 4.27: Poisson’s ratio computed as the slope of the transverse strain vs. 

longitudinal strain plot.  
 

4.3.2.1: Energy model at magnetic saturation for 33% Ga content 

The value of Poisson’s ratio at magnetic saturation predicted by the energy 

model is -0.23.  This is discussed in Chapter 2 and the value of the analytical solution 

to the energy model at saturation is listed in Table 2.2.  This value is shown with the 

dashed line in Fig. 4.26, where magnetic saturation of the sample is assumed for 

fields of greater than ~ ±40 mT. The modeled saturation value of -0.23 is in fair 

accordance with the average experimental value at magnetic saturation of -0.37 ± 

0.15. 
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4.3.3: Proposed mechanism for the magneto-auxetic behavior in 31 at%. Ga 

and 33 at%. Ga Galfenol samples 

This section presents a possible mechanism to explain the strains observed in 

the 31% Ga sample. The same mechanism can be used to explain the reason behind 

the strain response in the 33% Ga sample.  

 

In samples of Galfenol between 31% and 33% Ga, the extent of anisotropy 

crystal is not available in literature. From Fig. 4.22 and Fig. 4.25, it is observed that 

there is monotonic increase in the longitudinal and transverse strains. The mechanism 

for this is represented by the schematic in Fig. 4.28. The top plot shows the variation 

of the longitudinal and transverse strains with positive magnetic fields and the 

variation of the dimensions of the sample. The cartoons below the plot show the 

proposed evolution of the orientation of the magnetic dipoles present in the material. 

 

Initially, at zero magnetic fields, all the magnetic moments (denoted by red 

arrows that indicate their nominal direction; length of arrow indicates relative 

magnitude in the given direction, but lengths are not to scale) are randomly oriented 

such that the overall magnetization of the material is zero as shown in Fig. 4.28 (0). 

When an external magnetic field is applied, most of the magnetic dipoles rotate to 

orient themselves along the <110> axis in the direction of the applied magnetic field 

to attain the lowest energy state as shown in Fig. 4.28 (a), causing a large increase in 

both the transverse and the longitudinal strain up to a field of about 20mT.  

 



 

 

134 

 

Beyond 20mT, the energy from the applied magnetic field orients more 

magnetic dipoles along the <110> directions. As the applied magnetic field is 

increased, the sample reaches magnetic saturation (at ~ 60mT) with a small increase 

in the longitudinal strain. In this regime, the transverse strain remains almost 

unchanged.  

 

 

 

Figure 4.28: Schematic representation of a possible mechanism for magnetostriction 

along the <110> crystallographic direction for 31% Ga Galfenol on the basis of 

change in orientation of magnetic moments with applied magnetic fields. The grey 

boxes illustrate change in dimension of the sample (not to scale) at the end of each 

stage (0-d).  The values next to the boxes indicate the change observed along the 

longitudinal (blue) and transverse (red) directions. Inset: Shows the orientation of the 

dog bone sample and the direction of applied magnetic field. Sketches (0)-(d) from 
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left to right below graph depict relative strength of magnetization vectors along 

indicated crystallographic axes at field levels of 0, 5, 20 and 60 mT.  

 

 Some studies[26, 42] claim that at high compositions of Ga (>25%), the 

<111> directions are the easy axes (since K1<0). Since rotation of dipoles from the 

preferred <111> direction to <110> direction at magnetic saturation would involve 

only a reduction in the thickness, this could be used to explain the unusual transverse 

strain which does not decrease as the sample reached magnetic saturation along 

<110>. Such a response is also consistent with the Baughman’s gas dynamic model 

depicted in Fig. 1.23 which was developed to predict an atomic level mechanism 

under applied tensile stresses. It hypothesized that the atoms on a (100) plane move 

farther apart from each other under a tensile stress is applied long the <110> of a 

BCC crystal. The atoms at the body center of the unit cells above and below the plane 

experiencing the tensile stress move closer to each other to conserve volume. It is 

expected that the atoms in samples at these compositions would show this behavior 

under applied magnetic fields and zero stresses. MOKE imaging can be used to help 

confirm this mechanism and understand the underlying processes behind the 

magneto-auxetic response at such high compositions. 

 

4.4: Behavior of Galfenol at other compositions 

This section will present simulation results from α-Fe and both experimental 

results and analytical and multiphysics simulations from the 12 at. % Ga <110> 
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oriented Galfenol. We did not have access to a single crystal a-Fe sample for 

obtaining experimental results, so our model results are compared to published data. 

 

4.4.1: Results from <110> oriented α-Fe 

4.4.1.1: Published work on magnetic field applied along <110> 

oriented α-Fe  

One of the first modelling works on the effects of application of a magnetic 

field along the <110> direction were undertaken by E.W. Lee[103]. This study 

presented magnetostriction data from the model along the [110] at low magnetic 

fields (up to 3mT) for rectangular samples of varying lengths as shown in Fig 4.29. 

No published data was found that discusses the concurrent transverse strain, and no 

published data on the Poisson ratio response to an applied magnetic field was found. 
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Figure 4.29: (a) λ-H curves for 𝛼-Fe (up to 30 Oe ~3mT). Taken from [103]. 

  

4.4.1.2: Energy model at magnetic saturation for <110> oriented α-Fe 

The value of Poisson’s ratio predicted by the energy model is for magnetic 

saturation along the <110> direction of α-Fe, is +1.98.  This is discussed in Chapter 2 

and the value of the analytical solution to the energy model at saturation is listed in 

Table 2.2.  This value is shown with the dashed line in Fig. 4.31 along with results 

from the FEM simulation discussed in the next section, where magnetic saturation of 

the sample is assumed for fields of greater than ~ ±50 mT.  

 

4.4.1.3: Multi-physics model simulations for <110> oriented α-Fe 

Multiphysics simulations were carried out for 𝛼-Fe using the formulation 

derived in Section 2.5. The concentration of Ga was assumed to be zero and the other 

parameters that were used for the simulations are listed in Table 2.3. Figure 4.30 

shows the results from the simulations.  
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Figure 4.30: Strains along the longitudinal (blue) [110] and transverse (red) [11̅0] 
directions for 𝛼-Fe from the multiphysics simulations. 

 

The values of the strain along the transverse and longitudinal <110> directions 

at magnetic saturation were 20.5µε and -10.3µε respectively. The variation of 

Poisson’s ratio with applied magnetic field predicted by the simulations are presented 

in Fig. 4.22. The value of Poisson’s ratio from the simulations at magnetic saturation 

was 1.99 and agreed with the value obtained from the mathematical model (~1.98). 

The low field longitudinal strain also matches the trend and order of magnitude for 

the <110> strain response measured by Lee, shown in Fig 4.27. Up to 14.5mT, the 

Poisson’s ratio is negative. Past this field, the value of longitudinal strain becomes 

negative and a large jump in the value of Poisson’s ratio. 

 



 

 

139 

 

 

Figure 4.31: Variation of Poisson’s ratio with applied magnetic fields along the 

<110> crystallographic direction at zero stress in 𝛼-Fe obtained from multiphysics 

simulations. At magnetic saturation (fields of greater than 50mT), the value of 

Poisson ratio obtained from the simulations was -1.99 which is in good agreement 

with the -1.98 obtained from the energy model (dashed line). 

 

4.4.2: Results from the 12 at%. Ga <110> oriented specimen 

Results from the 12% Ga <110> oriented single crystal sample will be 

discussed in this section. At this composition, the alloy there is a lot of variation in 

the location that the Ga atoms occupy since it is in the disordered A2 phase [60]. 

From Fig. 2.6, it can be inferred that [100] is the easy axis at this composition. 

 

4.4.2.1 Variation of <110> strains with applied magnetic field 

The magnetostriction data obtained from the 12% Ga <110> oriented single 

crystal Galfenol sample is shown in Fig. 4.32. The blue curve indicates the 

magnetostriction along the longitudinal [110] direction and the red curve indicates the 
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magnetostriction along the transverse [ ] direction when the field is applied along 

the longitudinal direction.  

 

 

Figure 4.32: Magnetostriction along the longitudinal [110] (blue) and transverse 

[11̅0]  (red) directions for the 12% Ga single crystal Galfenol with applied field along 

the [110] direction at zero external stress. 

 

The magnetostriction values along the longitudinal and transverse <110> 

directions at magnetic saturation were found to be about 8µε and about 21µε 

respectively. The magnetostriction along the longitudinal direction increased initially 

up to about 20mT to reach a peak strain value of ~20µε and later decreased as the 

sample attained magnetic saturation at about 80mT. The strain along the transverse 

direction increased monotonically as the sample reached saturation. In some of the 

data sets (Refer Appendix D), the value of longitudinal strain is very close to zero and 

this caused a sharp increase in the value of Poisson’s ratio obtained. The signal to 

noise ratio is very small in the case of the 12% Ga Galfenol sample because of the 

110
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low magnitude of strains obtained under applied magnetic fields (maximum strains in 

either direction were less than 20 µε. The negative ratio of this transverse and 

longitudinal <110> strains is the magnetic field induced negative Poisson’s ratio as 

shown in Fig. 4.33. 

 

 

Figure 4.33: The variation of the Poisson’s ratio with applied field in 12% Ga 

Galfenol at zero applied stress. At magnetic saturation (fields of greater than 70mT), 

the value of Poisson ratio obtained from the experiment is <-5 ± 2 and the value from 

energy model (dashed line) is -2.43. 

 

The Poisson’s ratio value decreases with applied magnetic fields and its value 

reaches values <-5 ± 2 in this data set because of the uncertainties that arise due to the 

values of longitudinal strain being relatively close to zero at magnetic fields >50mT. 

This is much lower than the value predicted by the analytical model shown in Table 

2.1. The accuracy of the Poisson ratio values is uncertain due to a low a signal to 

noise ratio because strains of ±1µε are at the resolution of the equipment and there 



 

 

142 

 

was significant drift in the signals. Above ~ ±5mT, the Poisson ratio decreases with 

increasing field to <-5 ± 2 at magnetic saturation.   

 

4.4.2.2 Energy model at magnetic saturation for 12% Ga content 

The value of Poisson’s ratio at magnetic saturation predicted by the energy 

model is -2.43.  This is discussed in Chapter 2 and the value of the analytical solution 

to the energy model at saturation is listed in Table 2.2.  This value is shown with the 

dashed line in Fig. 4.33, where magnetic saturation of the sample is assumed for 

fields of greater than ~ ±70 mT. The modeled saturation value of -2.43 is not as low 

as the average experimental values at magnetic saturation of ~ -3.9 ± 2. 

 

4.4.2.3 Multi-physics model simulations for 12% Ga content 

The result from the multiphysics simulation using the modified ‘Armstrong 

model’ derived in Section 2.5 is shown in Figure 4.34 (a) and this is compared with 

experimental data between -100mT and +100mT in (b).  
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Figure 4.34: Strains along the longitudinal [110] and transverse [11̅0] directions 

for the 12% Ga Galfenol sample obtained from (a) multiphysics simulation and (b) 

from experiments. 

 

The simulation predicts a strain of 7µε and 26µε along the longitudinal and 

transverse <110> directions respectively. The value of Poisson’s ratio at magnetic 

saturation from the simulation was found to be -3.9 ± 2 which is lower than the values 

from the experiments (-2.5) and the mathematical model (-2.42). This is because of 

the really small values of longitudinal strain. 

 

4.5: Conclusions 

This section presents the conclusions that can be drawn from the results discussed in 

this chapter.  

 

4.5.1 Summary of results 

The values obtained from analytical modeling, multiphysics simulations and 

experiments are summarized in Table 4.1. 

(a) (b) 
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Table 4.1: Results for saturation 110 strain, saturation 11̅0 strains  

% Ga 

Expt 

Long 

(µε) 

Expt 

Lat 

(µε) 

Model 

110 (µε) 

Model 

1-10 

(µε) 

Simu 

110 

(µε) 

Simu 

1-10 

(µε) 

0.00   -10.58 20.93 -10.58 20.93 

3.00   -8.33 21.67 -8.33 21.67 

5.00   -2.50 22.50 -2.50 22.50 

8.00   7.50 32.50 7.50 32.50 

10.00   12.33 34.33 12.33 34.33 

12.00 7.00 21.00 17.50 42.50 17.50 42.50 

15.77 46.00 70.00 48.33 73.33 48.33 73.33 

17.90 62.00 80.00 66.08 70.58 66.08 70.58 

20.50 57.00 -5.00 67.50 7.50 67.50 7.50 

25.30 69.00 -34.00 76.67 -13.33 76.67 -13.33 

31.00 58.00 28.60     

33.00 62.00 23.30    
 

 

 

Table 4.2 Results for Poisson’s ratio values obtained from this study  

% Ga 
Expt 

PR 

Model 

PR 

Model 

PR 

Error 

(%) 

PR 

Simu 

PR 

Simu 

Error 

(%) 

0.00  1.98  1.98  

3.00  2.60  2.60  

5.00  9.00  9.00  

8.00  -4.33  -4.33  

10.00  -2.78  -2.78  

12.00 -3.00 -2.43 19.05 -2.43 19.05 

15.77 -1.52 -1.52 0.30 -1.52 3.44 

17.90 -1.29 -1.07 17.22 -1.07 1.14 

20.50 0.09 -0.11 226.7 -0.11 213.9 

25.30 0.49 0.17 64.71 0.17 50.00 

31.00 -0.49 -0.31 37.06 -0.31 21.33 

33.00 -0.38 
 

 
 

 

 

A comparison of the experimental data with the Poisson ratio values predicted 

by the multiphysics simulations and the energy model is shown in Fig. 4.26.  A best 

fit polynomial curve to the means of the experimental data is included in this graph.  

 

A comparison of the experimental data with the values predicted by the 

multiphysics simulations and the analytical model is shown in Fig. 4.35. 
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Figure 4.35: Variation of Poisson’s ratio at magnetic saturation with Ga content in 

<110> oriented Galfenol  samples obtained from analytical modeling, multiphysics 

simulations and experiments. 
 

 

There is a decrease in the magneto-auxetic response as the Ga content in the 

alloy increases.  This decreasing trend in auxetic effect with Ga content is opposite to 

the trend observed with applied tensile loads along the <110> directions, shown in 

Fig. 1.26. The reason behind this will be explored in the subsequent paragraphs. 

 

4.5.2 Insights and implications of results 

Although no prior studies had examined the Poisson ratio under magnetic 

fields and zero stress, one published study, the work by Yoo et al. [93], presents data 

on the effect of simultaneous application of stress and DC magnetic fields to Galfenol 

samples of three compositions [93].  Kellogg [15] provides a polynomial fit as a 
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function of composition to experimental data for <110> Poisson ratio in Galfenol 

(refer Fig. 1.25). The best fit polynomial to results from the analytical model 

presented in this research, shown in Fig 2.2 is shown with the three data points from 

Yoo et al. for combined field and stress, and the polynomial fit to data under only 

stress from Kellogg et al. in Fig. 4.36. It was observed that the values of Poisson’s 

ratio obtained from tensile testing under applied DC magnetic fields were lower than 

the values without a magnetic field at 18% Ga content in Galfenol. The values of 

Poisson’s ratio presented in this study at magnetic saturation under applied magnetic 

fields and zero stress are lower than the values under tensile loads and DC magnetic 

fields as shown in Fig. 4.36. The values of Poisson ratio obtained by Yoo in samples 

at 29% Ga and 33% Ga were higher than the values predicted by the best fit 

polynomial presented by Kellogg but lower than the values obtained from the current 

work. 
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Figure 4.36: Comparison of Poisson’s ratio values obtained from tensile loads and 

zero magnetic fields, tensile loads with a DC magnetic field and magnetic saturation 

and zero mechanical loads. 

 

Figure 4.36 confirms the theory that the applied magnetic and the mechanical 

energies compete with each other in magneto-elastic systems and affect the magneto-

elastic energy (arising from stretching of atomic bonds) and the magnetocrystalline 

energy (arising from changes in magnetization in each direction) in the material and 

the extent of interaction of these energies along each direction is influenced by the 

anisotropy present in the crystal lattice (defined by K1 and K2) as shown in Eq. (2.4-

2.5).  

 

It is also observed that in Galfenol samples at compositions <20% Ga, the 

value of Poisson’s ratio is < -1. These samples have <100> easy axes due to the 

values of K1 and K2. A possible mechanism for the magneto-auxetic response has also 
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been presented for these samples from both a magnetic moment perspective and an 

atomic interaction perspective. Lattice softening which was attributed to be the reason 

for large negative Poisson’s ratio in Galfenol under applied tensile loads [12] is 

restricted in the case of applied magnetic fields at zero stress because of a decrease in 

the magnetic anisotropy in the crystal lattice as shown in Fig. 4.37.  

 

In samples of Galfenol at these compositions, most of the strain changes occur 

as a ‘burst’ in response to application of low fields. This burst region occurs before 

field is required to overcome the energy penalty associated with the anisotropy in the 

crystal lattice where there is instantaneous rotation of magnetic dipoles from the 

preferred <100> direction to the <110> direction along which magnetic field is 

applied.  

 

In Galfenol samples at compositions greater than 20% Ga and lesser than 35% 

Ga, the value of Poisson’s ratio is greater than -1. Since the values of transverse 

strains along the <110> direction under applied magnetic fields are very close to zero, 

at compositions between 20 and 25 at. % Ga, the values of Poisson’s ratio are quite 

small in magnitude. There is a reduction in the transverse dimension in these samples 

because there is very little anisotropy in the crystal lattice, making the <110> 

direction along which magnetic field is applied just as easy as the <100> axis. This is 

similar to applying a field along the [100] direction where there is a reduction in the 

transverse [010]. The reason for this has already been explained in literature [7, 14, 

26, 57]. 
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At higher compositions (31 and 33% Ga), it can be observed that there is a 

slight increase in the auxetic response. It was also observed that there was no 

reduction in the transverse strain and there was a monotonic increase in both <110> 

strains as the samples reached magnetic saturation. This  behavior is similar to the gas 

dynamics model suggested by Baughman [78] for explaining auxetic response under 

applied stresses along <110> direction in cubic metals. Latice softening with the 

increase in Ga content likely is responsible for occurance of this magnetic response at 

compositions of 31 and 33% Ga but not for compositions of 20 and 25% Ga. 

 

Rearranging the terms in Eq. 2.2 (a and b) which define the longitudinal and 

transverse strains along the <110> directions under applied magnetic fields and zero 

stress at magnetic saturation, we can obtain Eq. (4.1 a, b). 

 

𝜆100 = 2(휀110 + 휀11̅0) 

 𝜆111 =
2

3
(휀110 − 휀11̅0) (4.1 a, b)  

 

Using the experimental values of longitudinal and transverse <110> strains we 

can compute the values of λ100 and λ111 as shown in Table 4.3. 
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Table 4.3: Values of λ100 and λ111 calculated using average experimental values of 

longitudinal and transverse <110> strains. 

% Ga 
Expt 

휀110 

Expt 

휀11̅0 
λ100 λ111 

0.00 -10 21 22 -20.67 

12.00 7 21 56 -9.33 

15.77 46 70 232 -16.00 

17.90 62 80 284 -12.00 

20.50 57 -5 104 41.33 

25.30 69 -34 70 68.67 

31.00 58 28.6 173 19.60 

33.00 62 23.3 171 25.80 

 

Figure 4.37 (a) shows the variation of λ100 and λ111 computed using Eq. (4.1 a, 

b) as a function of Ga content in the alloy and compares it with data available in 

literature (refer Fig. 1.15). 
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Figure 4.37: Shows the variation of (a) experimental λ110, (b) λ100 and (c) λ111 as a 

function of Ga content in the alloy computed using average experimental values of 

longitudinal and transverse <110> strains under applied magnetic fields and zero 

stress and comparison with data available in literature [49]. 
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 This is one of the first studies to provide data points for λ111 in quenched 

Galfenol samples and this plot provides insights into the values of λ100 and λ111 at high 

compositions of Galfenol, past the second magnetostriction peak. 

 

An overview of previously published data measuring Poisson’s ratio along the 

<110> crystallographic direction in Galfenol was presented in Fig. 1.23 and results 

from the current work was presented in Fig. 4.35 which provide insights on the 

operation of the alloy under applied mechanical stresses and magnetic fields 

respectively. 

 

4.6 Mechanical ramifications 

The values of Poisson’s ratio from applied magnetic fields at zero stress 

presented in this study are much lower than the values obtained from applied stresses 

at zero magnetic fields. Another important thing to note is that the values of strains 

obtained in this study are quite small. But the possibility of obtaining a magneto-

auxetic response opens up avenues for novel applications such as coronary stents, 

corrective actuators (especially in optics), micro pumps etc. 

 

Several mechanical properties such as shear resistance and indentation 

resistance are expected to improve as Poisson’s ratio values approach -1. Equation 4.2 

shows the variation of Poisson’s ratio along the <110> direction as a function of the 

elastic stiffness constants in the cubic Fe-Ga crystal. 
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𝜈(110,11̅0) =
(𝐶11−𝐶12)(𝐶11+2𝐶12)−2𝐶11𝐶44

(𝐶11−𝐶12)(𝐶11+2𝐶12)+2𝐶11𝐶44
 Eq. (4.2) 

 

Based on the Eq. (1.2), the Zener ratio (Z) defined as shown in Eq. (4.3). It is 

a measure of the anisotropy of the elastic moduli against diagonal and tetragonal 

distortions represented by c44 and c′ = (c11 – c12)/2 respectively in cubic structures. 

 

 𝑍 =
𝐶44

𝐶′
=

2𝐶44

𝐶11−𝐶12
 Eq. (4.3) 

 

The bulk modulus (B) is defined as B= (c11 + 2c12)/2. Equation (4.2) can be 

rewritten in terms of the Zener ratio and the bulk modulus as shown in Eq. (4.4) based 

on [12]. 

 𝜈(110,11̅0) =
1−𝑍

𝐶11
3𝐵

1+𝑍
𝐶11
3𝐵

  Eq.(4.4) 

 

Hence, the anisotropic shear resistance is a function of the anisotropic 

Poisson’s ratio as shown in Eq. (4.5). 

 

 𝑍 ∝
1−𝜗110

1+𝜗110
  Eq. (4.5) 

 

Similarly, the anisotropic indentation resistance or hardness (H) is 

proportional to the Poisson’s ratio as shown in Eq. (4.6) [70]. 
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 𝐻 ∝ [
1

(1−𝜗2)
]
𝛾

  Eq. (4.6) 

 

Figure 4.38 shows the variation of mechanical properties as a function of 

Poisson’s ratio. 

 

 

Figure 4.38: Change in magnitude of mechanical properties such as anisotropic shear 

resistance (green) and anisotropic indentation resistance (red) as a function of 

Poisson’s ratio. .  Blue shading is used to draw attention to the region of high impact 

on mechanical properties. 

 

 

The possibility of obtaining large mechanical properties by application of 

magnetic fields and zero stresses enables magnetically tuning (non-contact!) of the 

mechanical properties of Galfenol which could prove very useful for applications 

such as additives to magneto rheological fluids to aid with shock absorption. 
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4.6.1 Indentation testing 

To confirm an increase in the mechanical properties of materials as the 

Poisson’s ratio reaches a value close to -1, Vicker’s hardness testing was performed 

on the 17.8% Ga Galfenol sample which has a Poisson ratio ~-1.3 at magnetic 

saturation using the Hysitron Triboindenter shown in Fig. 4.39. The value of hardness 

and Young’s modulus was collected with a nano indenter that could perform precise 

nano indents as well as high-resolution surface imaging. The value of penetration 

hardness was determined from the load-penetration depth curve obtained from this 

instrument and the effective Young’s modulus was calculated from the slope of the 

unloading curve. The experiment was performed with and without the presence of a 

permanent magnet of strength 0.3T to compare the values obtained. It is expected that 

this strength of the magnet is sufficient to magnetically saturate the 1.3mm x 2.0 mm 

x 2.7mm Galfenol sample which was cut from the dogbones used in the experiments 

in Chapter 3. The sample is shown in Fig. 4.40. 

 



 

 

156 

 

 

Figure 4.39: Experimental setup of the nano-indenter experiment. Inset: Sample 

mounted on epoxy offset (without permanent magnet). 

 

 

Figure 4.40: Photo of a dogbone with the rectangular indentation sample cut using 

wire electrical discharge machining. 

 

The sample was offset from the magnetic stage using an epoxy mount stuck 

using m-bond to the stage.  The capacitive transducer in the nano-indenter instrument 

had force and displacement measurement sensitivity of 30nN and 0.2nm respectively. 
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The in-situ scanning probe microscope (SPM) can perform high resolution surface 

imaging with a repulsive force of 2nN and has a displacement noise floor of <0.02nm. 

The surface imaging was achieved immediately after the indentations had been 

formed. In this study, the load applied by the nano indenter was very high, ~1000µN. 

The loading profile of the tests was a triangle as shown in Fig. 4.41 with a 10s load 

time and a 10s unload time. The typical testing rate was 100µN/s and the nano 

indentation tests were repeated at least 3 times under these conditions. 

 

 

Figure 4.41: Load curve of the nano-indenter probe. 

 

The indenter used was a triangular pyramid-shaped diamond with an edge 

angle of 𝜃=115
o
 (Berkovich indenter). In such cases where the elastic constant of the 

sample is decided with non-axisymmetric indenters, the contact stiffness is ontained 

from the slope of the unloading curve. An effective Young’s modulus (E*) is 

presumed by the expression shown in Eq. (4.7).  
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 𝑆 = 𝐶𝐴𝐸
∗𝐴𝑟

1
2⁄  Eq. (4.7)

 Where 
1

𝐸∗ =
1−𝜐𝐼

2

𝐸𝐼
+

1−𝜐𝑆
2

𝐸𝑆
. 

Here, CA=2/𝜋
1

2⁄ , Ar is the projected real contact area between the indenter and 

the surface, EI and 𝜐I and ES and 𝜐S are the Young’s modulus and Poisson’s ratio for 

the indenter and sample respectively. The computation of these parameters is 

performed by the instrument using the indent information.  

 

Figures 4.42 and 4.43 show a typical data set of the load-penetration depth 

curves obtained from the nano indenter without a permanent magnet and with a 0.3T 

permanent magnet in contact with the <110> oriented sample of Galfenol 

respectively.  

 

 

Figure 4.42: Typical load-penetration depth curve obtained from the nano-indenter in 

the 17.8% Ga <110> oriented Galfenol sample without a permanent magnet. 
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Figure 4.43: Typical load-penetration depth curve obtained from the nano-indenter in 

the 17.8% Ga <110> oriented Galfenol sample under a 0.3T permanent magnet. 

 

The value of Vicker’s hardness of iron available in literature is 608MPa [104]. 

Since Ga is softer than iron, the value of hardness in Galfenol is expected to be lower 

than that of Iron. The Vicker’s hardness of Galfenol obtained from the nano-indenter 

without a permanent magnet was between 400MPa and 700MPa. The average value 

was ~550±150MPa. The effective Young’s modulus was around 60±25GPa. Under 

the presence of the 0.3T bias magnet, the hardness value was between 0.95GPa and 

4.2GPa. The average value was ~2.5±0.5GPa, about five times larger than the value 

obtained without magnetic field. The effective Young’s modulus values were twice 

the values obtained without a magnetic field at aroung 120±40GPa.  

 

The nano-indenter experiments confirmed an increase in the hardness value of 

the 17.8% Ga <110> oriented Galfenol sample under an applied magnetic field of 
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0.3T, where the sample is magnetically saturated and has a Poisson ratio value of -

1.3. 
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Chapter 5:  Magnetic domain imaging  

This chapter deals with imaging magnetic domains using Kerr microscopy. 

Evolution of magnetic domains under applied magnetic fields along the <110> 

crystallographic direction will be used to understand the magneto-auxetic effect in 

Galfenol from a magnetic domain perspective. For more imformation about MOKE 

imaging along other crystallograohic directions, please refer Appendix E. 

  

5.1: Background of MOKE 

John Kerr in the year 1877 devised a magneto-optical domain imaging method 

which was named after him [25, 105]. The rotation in the polarization of an incident 

plane-polarized light beam is defined by introducing an anti-symmetric tensor to the 

dielectric law ( ) that connects the electrical vector of the light wave with the 

induced displacement vector by Eq. (5.1). 

 

  (5.1) 

 

is the induced displacement vector, is the electric field vector of the 

illuminating light,  is the dielectric constant and  is a complex material parameter 

which is proportional to the saturation magnetization and describes the strength of the 

Kerr effect. A simple representation of this is presented in Fig. 5.1. 

 

D E
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D E

 Q



 

 

162 

 

 

Figure 5.1: Illustration of the elementary magneto-optical interaction 

for the longitudinal Kerr effect. The sample with in-plane magnetization is 

illuminated using light that is polarized parallel to the plane of incidence [25]. 

 

 The gyroelectric nature of the Kerr effect is represented by the cross product 

in Eq. (5.1) and its symmetry can be derived by the concept of Lorentz force ( ) 

on the electrons which are set into vibration by the incident light. This force results in 

the Lorentz movement which is mutually perpendicular to the magnetization and 

the electric field which when projected on the plane normal to the direction of 

propagation of light yields , the magneto-optic light amplitude (also called Kerr 

amplitude). 

 

This Kerr amplitude is polarized perpendicular to the regular reflected light 

amplitude, which is in the same plane as that of the incident light beam. Upon 

interference between and (the effective light amplitudes after they pass through 

the analyzer), the polarization angle of the reflected light is rotated by the small angle 

defined by Eq. (5.2). 
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  (5.2) 

 

For domains with opposite magnetization, the sign of this angle changes since 

the Lorentz force acts in the opposite direction. For contrast, the light reflected from 

one domain type is almost blocked by the analyzer which converts the rotation of 

polarization into a change in the intensity. 

 

Based on the various geometries that result in being sensitive to different 

directions of magnetizations, there are different configurations of Kerr microscopes. 

An appropriate direction of the incident light is chosen to obtain a Lorentz 

displacement which can be measured as a Kerr rotation at the analyzer which is 

proportional to the magnetization component parallel to the reflected beam of light. 

This indicates that domains that are magnetized parallel to the sample surface require 

oblique incidence. 

 

When the polarizer is set either parallel or orthogonal to the plane of incidence 

and , the configuration is called longitudinal Kerr effect and in such cases, the 

Kerr angle is proportional to  and hence disappears for perpendicular 

incidence. Longitudinal Kerr effect with oblique incidence is used to image the 

domains [25] as shown in Fig. 5.2 (a). At perpendicular incidence, maximum rotation 

is exhibited by domains that are magnetized perpendicular to the sample surface. This 

configuration is called polar Kerr effect and . The in-plane magnetic domains do 

1

K KN  

0v 

K sin( )v

0v 
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not cause any Kerr amplitude. A schematic of polar Kerr effect is shown in Fig. 5.2 

(b). In transverse Kerr effect, the in-plane magnetization is perpendicular to the plane 

of incidence as shown in Fig. 5.2 (c).  If the polarization of the incident light is at 45
o
 

to the plane of incidence, then the component perpendicular to the plane of incidence 

is not affected but the parallel component is modulated in its amplitude upon 

reflection. By superposition, this results in the rotation of the polarization leading to 

the in-plane magnetization sensitivity. 

 

 
 

Figure 5.2: (a) Longitudinal MOKE geometry, (b) Polar MOKE geometry and 

 (c) Transverse MOKE geometry. 

 

5.1.1: Wide-field Kerr microscopy setup 

This is by far the most versatile domain visualization technique due to innate 

advantages like real-time imaging and high contrast as explained in Fig. 5.3. Figure 

5.4 shows the wide-field Kerr microscope assembled by Evico Magnetics GmbH. 
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Optical illumination is used and the microscope has a field of view from several mm 

down to a few m upon using objective lenses from 5  to 100 . 

 

 
Figure 5.3: Comparison of the various observation techniques. Taken from [25]. 
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Figure 5.4: Magneto-Optic Kerr microscopy setup. 

 

Magnetic coils capable of applying in-plane magnetic fields of up to 1T on the 

sample and a digital CCD camera are also incorporated in to the microscope setup.  

 

The image obtained from such a setup contains both magnetic and 

topographic information. Since Kerr effect is weak, the topographic image dominates 

an unprocessed image. The magnetic contrast can be enhanced by removing the 

topographic information from the image. To do so, a domain free image containing 

only the topographic information is subtracted from the unprocessed image. This is 

shown in Fig. 5.5. The background image is obtained either at saturation of the 

sample or by applying an alternating field on the sample and taking an average over a 

considerable period. 
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Figure 5.5: Enhancing the contrast by subtracting the background. From [26]. 

 

5.1.2: Expected domain patterns in Fe-Ga 

The equilibrium magnetic domains are formed to reduce the overall 

magnetostatic energy as explained in Chapter 2. Details of the domain patterns also 

depend on the sample shape (thin film or bulk), stress state and surface orientation in 

the case of bulk samples. If easy anisotropy directions are available on the surface of 

the sample, simple domains are expected to be formed. Patterns are expected to 

become increasingly complex as more and more surface misorientations begin to 

form [25]. 

 

In terms of magnetic microstructure, Fe-Ga alloys belong to the class of iron-

like materials with a cubic crystallographic structure and a magnetocrystalline 

anisotropy which favors a <100> crystallographic direction. Hence, one expects 

domains similar to those that we see in iron samples which are of flux-closing 

character with regular 180
o
 and 90

o
 domain walls [25, 26, 106] as shown in Fig. 1.5. 
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The surface parallel easy <100> family of directions is expected to be preferred with 

the existence of closure domains. 

 

Based on MFM domain images obtained, Bai et al. [107] suggested that the 

domain size in bulk Fe100-xGax single crystals decreased with increasing 

concentrations of Ga. Typical domain widths for x = 20 were reported to be less than 

0.4 m with domain lengths less than 2 m.  It was hypothesized that the increasing 

nonuniformity of the domains is due to the D03-like precipitates in the A2 matrix. 

This observation was cited in support of theoretical predictions regarding 

magnetostriction enhancement in Fe–Ga alloys. 

 

Chikazumi et al. [4] showed that it was possible to image real domains only 

with stringent surface finish requirements in the case of Fe-Si and suggested that the 

maze like patterns are only due to the stresses induced by mechanical polishing. This 

would hold good for any mechanically soft bulk specimens. It is important for the 

surface to be well polished and free of scratches and stress that might influence the 

domain structure. 

 

Subsequently , Mudivarthi et al. [26, 89] determined that the complex maze 

like patterns observed by Bai et al. [108] are results of induced surface stresses and 

are not indicative of domain configurations in bulk samples.  
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5.1.3: Previous work on magnetic domain imaging to understand strain 

response in <100> oriented Galfenol samples 

Mudivarthi [26] studied the magnetic domain evolution in Galfenol samples 

for applied magnetic fields and stresses along the <100> direction to explain the 

strain response obtained. Figure 5.6 shows one such example of magnetic domain 

imaging under applied magnetic fields along the <100> direction and measuring the 

longitudinal and transverse <100> strain simultaneously in a <100> oriented 

quenched 19% Ga Galfenol sample. 

 

 

Figure 5.6: Magnetic domain imaging and measurement of strain in a 19% Ga <100> 

oriented Galfenol sample under applied magnetic field along the <100> direction. 

Taken from [26]. 

 

The current work will use this method to understand the strain response along 

the <110> auxetic directions in the 15.8% Ga Galfenol sample and explain the 

anomalous strain behavior observed. 
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5.2: Sample preparation for magnetic domain imaging  

The sample preparation required to optically image the magnetic domains in 

Galfenol will be elaborated in this section. MOKE imaging requires pristine surface 

conditions for the sake of good contrast. Since Galfenol is mechanically soft, 

mechanical polishing can be used to obtain good surface conditions for MOKE 

imaging. 

 

5.2.1: Polishing issues 

Conventional mechanical polishing was used to improve the surface 

conditions of the samples. Increasingly finer polishing media were used starting with 

400grit SiC sheets, down to 1200grit size. Later, alumina suspension was used on the 

samples up to 0.3 m. 

 

Mechanical polishing is known to induce a thick, glass-like or amorphous 

layer with large stress known as Beilby layer due to friction [109] . The stress induced 

anisotropy on this damaged surface overwhelms the stray-field energy resulting in 

fine out of plane magnetized maze domains which are not representative of the ‘true’ 

domains hidden underneath [4]. Hence, Silica gel was used on the samples to bring it 

down to 0.06 m. This was used to rid the amorphous layer formed from the previous 

stages of mechanical polishing and to ease out any surface stresses that might have 

been induced. Fig. 5.7 schematically describes the various stages of mechanical 

polishing. This aspect is dealt with in detail by Mudivarthi et al. [26, 89]. But they 
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had to employ etching in NiTal for about 4 minutes. The current uses the polishing 

protocol used by Raghunath and Flatau [110, 111]  which eliminates the necessity to 

etch by employing longer stages of Si gel polishing. 

 

 

Figure 5.7: (a) Shows the highly stressed layer with fine irregular surface scratches 

during mechanical polishing using 1200grit. (b) Shows the reduction in the thickness 

of the highly stressed layer when polished using 1 m Alumina powder solution. (c) 

Shows further reduction in thickness and smoothening out of irregularities when 

polished using 0.3 m Alumina powder solution. (d) Finally when polished using 

0.06 m Silica Gel, the stressed layer disappears and the true surface layer becomes 

visible enabling imaging of ‘true’ domains [112]. 

  

Figure 5.8 shows the domain structure evolution of a 17% Ga slow cooled 

Galfenol sample with silica gel polishing. It took almost one and a half hours to get 

rid of the surface layer and to ease out the stresses that were introduced on the surface 

due to polishing, thereby obtaining the surface finish required for obtaining the 

domain images at remanence under the MOKE microscope. 
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Figure 5.8: Domain structure of 17% Ga slow cooled sample of Galfenol as a 

function of silica gel polishing time (a) t = 0, (b) t = 20 min, (c) t = 50 min, (d) 75 min 

(taken from [26]). 

 

 

For studying the auxetic response in Galfenol, the 15.8% Ga <110> oriented 

Galfenol sample discussed in Chapter 3 is polished using this protocol. A bi-

directional strain gage rosette was installed on the back side of the sample. A photo of 

the sample is presented in Fig. 5.9. 
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Figure 5.9: Photo of polished 15.8% Ga <110> oriented Galfenol sample (yellow 

border) and a bi-directional strain gage rosette installed on the back side (green 

border). 

 

5.3: Experimental setup for Kerr microscopy  

Once the samples were polished until desired surface quality was obtained, 

they were mounted on a stage between the pole pieces of the magnetic coil shown in 

Fig. 5.10 by means of double sided tape. The magnetic field was applied along the 

<110> by orienting the stage between the pole pieces (shown in the inset of Fig. 

5.10).   
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Figure 5.10: Auxeticity experiments done using the strain boxes. Inset: Specimen 

mounted on the stage under the MOKE microscope. 
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A coordinate system was chosen such that the x- and y-axes of the dog bone 

geometry correspond to <110> family of directions in the (100) plane of the sample 

as shown in Fig. 5.9. An electromagnet with a closed loop control system to maintain 

its magnetic field was used to apply magnetic field up to 100 mT along the x-axis of 

the samples. 

 

A resistive T-rosette strain gauge manufactured by Vishay Micro 

Measurements (EA-06-030TU-120) was attached to the un polished face of the dog 

bone gauge region to measure strain along x- and y-directions (longitudinal and 

transverse <110> directions). This strain gage was connected to a strain indicator 

(Vishay 3800), which was hooked up to a PC-based NI LabVIEW data acquisition 

system through a National Instruments DAQ board. The magnetic field was ramped 

up from ∼ 0.1 mT (remnant field) to 100 mT and then down to ∼0.1 mT at a rate of ∼ 

±10 mT/s. This field was measured using a LakeShore 425 Gauss meter. The 

LabVIEW program acted as a feedback loop and the field was controlled by using the 

computer. Simultaneously, the samples were observed under the MOKE microscope. 

A video was recorded as the magnetic field was applied and images were captured at 

critical magnetic fields where anomalous strain was observed.  

 

To check for repeatability, the strain gage was changed for the second round 

of tests. Several locations on the polished surface were imaged using the MOKE 

microscope and the strains were recorded. A Matlab script was used to analyze the 

strain data from each test. 
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5.4: Results and discussions of magnetic domain evolution 

This section will present the results from the magnetic domain imaging and 

also present a discussion on the results to explain the magneto-auxetic behavior 

exhibited in the 15.8% Ga Galfenol sample with special emphasis to understand the 

anomalous low field strain response exhibited. 

   

Figure 5.11 shows the variation of strain in the in-plane longitudinal and 

transverse [110] directions for applied magnetic fields in 15.8 % Ga Galfenol sample. 

The sample exhibits an unusual response where the longitudinal strain 

initiallyincreases with applied field but then decreases over a small range of 

increasing applied field and then resumes an increase with increasing applied field. 

 

 

Figure 5.11: Variation of strain along the longitudinal and transverse <110> 

directions under applied magnetic fields in a <110> oriented 15.8% Ga sample. The 

red dashed lines define the magnetic field values at which the magnetic domain 

images were recorded using the MOKE microscope. 
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The strain has been split up into 4 distinct regimes that are denoted by purple, 

green, blue and yellow in Fig. 5.11. These regions are the regions that were the focus 

of interest in the discussion of Fig. 4.10. These regions are used to explain the 

correlation between measure strain and the magnetic domain images. In the first 

regime, both the longitudinal and the transverse <110> strains increase by about 11µε 

up to about 4mT. As the applied magnetic field increases in magnitude, the transverse 

strain increases in magnitude by about 65µε and there is a small decrease in the 

transverse strain of about 3µε. This occurs between 4mT and 10mT, in the green 

region of Fig. 5.11.  

 

Past 10mT, in the blue region of Fig. 5.11, there is a decrease in the transverse 

strain of about 7µε and an increase in the longitudinal strain of about 38µε and the 

sample reaches magnetic saturation at about 50mT. Past this field, in the yellow 

region of Fig. 5.11, the strains are saturated. The mechanism behind these strains 

have already been discussed in Chapter 4 (Section 4.1.3 and 4.1.4, regarding Figure 

4.7 and 4.8) from an atomic and magnetic dipole perspective. Magnetic domain 

images were recorded at magnetic field magnitudes indicated by the red dashed lines 

in Fig. 5.11. 

 

The magnetic domain evolution corresponding to the strains in Fig. 5.11 is 

shown in Fig. 5.12. These images were obtained after subtracting ‘domain-free’ 

reference images taken in an alternating magnetic field to enhance contrast. 
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Figure 5.12: Evolution of magnetic domains in the 15.8% Ga Galfenol auxetic 

dogbone sample for applied magnetic fields along x- axis and zero stress. Images (a)-

(f) are domains under fields of 0, 2, 4, 10, 30 and 60 mT respectively.  Red arrows 

indicate the orientation of the magnetic domains.  

  

There exists a superposition of a uniaxial anisotropy on to the cubic 

anisotropy at zero magnetic field in the sample as suggested by the orientation of the 

domains along the <100> easy axes present in the (100) plane. For small applied 

fields (up to ~2mT), there is reversible bulging of the pinned domain walls to increase 

the favorably oriented domains. The strain curves in the longitudinal and transverse 

directions increase in this region (between 0-(a) in Fig. 5.11). 

 

At larger fields ( up to ~4mT, the purple region of Fig. 5.11, and Fig. 5.12, (a-

c)), the domain walls overcome the pinning and wall motion is observed, in which the 

domains oriented along the <100> direction aligned with the applied field grow.  This 
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causes the small initial increase in both the longitudinal and the transverse <110> 

directions.  

Then, as shown in the green region of Fig. 5.11  and in the transition between 

Fig 5.12 (c) and (d), for an applied field of ~4mT to ~10 mT the applied field causes 

the domains to become oriented along the [110] direction by instantaneous wall 

rotation. In this phase, a decrease in the longitudinal dimension and steep increase in 

the transverse dimension is observed in the sample. This occurs as a burst in strain as 

the domains rotate 90 degree from <100> to <110> orientations. 

 

For further increases in the magnitude of the applied field, the blue and yellow 

regions of Fig. 5.11, the favorable <110> domain (oriented along the direction of 

applied field) grows by domain wall motion (Fig. 5.12 (d)-(e) until magnetic 

saturation is attained (Fig. 5.12 (f)). It is interesting to note that the Poisson ratio 

associated with the dimensional changes in just the yellow region of Fig. 5.11 has a 

positive value; i.e. it has a decrease in the dimension along the y- axis but an increase 

in the dimension along the x-axis. These changes in the longitudinal and transverse 

strains by domain wall motion in the yellow region of Fig. 5.11 are much smaller than 

the changes from domain rotation in the green region of Fig. 5.11, and this results in 

the sample having  a negative value for the Poisson ratio at magnetic saturation. 

 

Using the information from the MOKE images, the mechanism presented in 

Chapter 4, Fig. 4.10 (Section 4.1.3) to explain the strains observed can be revised as 

shown in Fig. 5.13.  It is likely that in the middle of the burst region, so between (a) 
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and (b) of Fig. 5.13, for a field on ~6-8mT, the cartoon from Fig. 4.10 (c) depicts the 

transition from domain wall motion to domain wall rotation. This revised 

understanding of the domain mechanisms also applies to Fig. 4.21 in Section 4.2.3 

and Fig. 4.28 in Section 4.3.3 of the previous chapter.    

 

 

Figure 5.13: Revised magnetic dipole mechanism to explain strains observed in 

magneto-auxeticity in the 15.8%Ga <110> oriented single crystal Galfenol sample. 

 

The MOKE images confirm magnetic dipole rotation to the <100> direction 

under low applied fields, prior to aligning with the applied field direction. The 

magnetic field at which the magnetic domain rotation that causes magneto-auxeticity 

occurs depends on the magnitude of the anisotropy present in the specimen. Larger 

the anisotropy, the more difficult it would be to rotate the domains away from the 

easy <100> axes and higher would be the magnetic field at which rotation takes 

place. 

 

The evolution of magnetic domains and domain refinement in the closure 

domains in the 15.8% Ga Galfenol sample is discussed in Appendix F. 
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Chapter 6:  Summary, conclusions and future work 

The concluding chapter of this dissertation will focus on summarizing the 

results and contributions of this research. A section on recommendations for future 

work will also be presented. 

 

6.1: Summary of research 

Auxetic behavior has traditionally been defined as the negative Poisson ratio 

observed in materials under applied mechanical loads [63, 67]. Prior works on auxetic 

materials have addressed the origins of this negative Poisson’s ratio observed under 

applied mechanical stresses with the intention of developing applications that exploit 

this trait [9, 68-71, 75, 78, 80, 81, 83, 86, 113].  

 

Since this phenomenon was discovered in Galfenol by Kellogg [15] along the 

<110> crystallographic direction while characterizing slip planes, researchers have 

confirmed the auxetic behavior in Galfenol under applied mechanical loads [12, 93]. 

The magnitude of the negative Poisson’s ratio at various compositions of Ga has been 

recorded using protocols such as tensile testing and resonant ultrasound spectroscopy 

[3, 15]. Modelling using density functional theory has also been employed to derive 

its dependence on the materials stiffness properties [12, 15]. The modelling 

concluded that the Poisson’s ratio values can be as low as -0.75 under applied tensile 

loads.  
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The magnetostrictive effect in Galfenol has already been widely studied and 

well established [7, 49, 57, 102]. As a consequence of inherent magneto-elastic 

coupling, there is a mechanical response to any changes induced to its magnetic state. 

The primary objective of this research was to explore the possibility of obtaining an 

auxetic response to the application of magnetic fields along the auxetic <110> 

directions and to discern the origin of this behavior. A good understanding of this 

phenomenon is important to enhance and/or exploit its features to build applications. 

Galfenol is also very attractive owing to its mechanical properties and load bearing 

capabilities which is absent in most synthetic auxetic materials. 

 

Following the introduction in Chapter 1, an energy based analytical model of 

the magneto-mechanical response along the <110> was derived to compute the strains 

at magnetic saturation in Chapter 2 using the fundamental relations in magneto-elastic 

systems. This formulation could predict the values of Poisson ratio at magnetic 

saturation at different compositions of Ga in the alloy. This is followed by a 

multiphysics simulation to model the strains anticipated in both the longitudinal and 

transverse <110> directions as the magnitude of the magnetic field along the auxetic 

<110> direction increases from zero to saturation field at different Ga contents in the 

alloy. Finally, an overview of a finite element implementation of the modelling which 

could be used to predict the behavior of any geometry and dimensions, which can 

also be coupled with other parameters such as passive members to forecast the 

behavior of devices, is also presented.  
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Chapter 3 deals with the empirical procedure used to record the strain 

response to applied magnetic fields along the <110> crystallographic directions. The 

background of the Galfenol specimens used in this study is presented followed by a 

description of the equipment used in the experiments. The process for data reductions 

and issues relating to repeatability are also discussed. 

 

Results from the analytical modelling, multiphysics simulations and the 

experiments are reported and a comparison is drawn between them in Chapter 4. A 

discussion of these results along with the description of a possible mechanism to 

explain the strains observed along the longitudinal and transverse <110> directions 

are presented at the different compositions of Galfenol. There is good correlation 

between the values obtained for the Poisson’s ratio from analytical modeling, 

multiphysics simulations and experiments.  

  

A decrease in the auxetic behavior under applied magnetic fields and zero 

stress is observed with an increase in the Ga content in the alloy. This decrease in 

auxeticity is predicted by both of the models presented in Chapter 2. This arises both 

as a result of a decrease in the magnetic anisotropy and increase in the magnetic 

energy in the magneto-elastic system which restricts lattice softening at high 

compositions due to increased magnetic interaction between the atoms constituting 

the lattice. The effect of this on the Poisson ratio is shown in Fig 2.3. This is opposite 

to the trends observed under applied loads at zero magnetic fields where there is an 

increase in the auxetic response with increasing Ga content in the alloy. For the stress 
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only, zero magnetic field case, the reduction in anisotropy and decrease in bond 

strengths (due to a metalloid- like structure) at high Ga content is shown in Fig. 2.4. 

 

Figure 4.8 shows the variation of λ100 and λ111 with the composition of 

Galfenol computed using the experimental results obtained from this study. This 

could be used to understand the actual behavior of the alloy with increasing Ga 

content. 

 

The strains obtained under applied magnetic fields in Galfenol are due to the 

interaction of the magnetic energy with the electron spins of the atoms that make up 

its lattice. The applied magnetic energy competes with the strength of the bonds 

between the atoms as the lattice is stretched by the applied magnetic fields due to 

interplay of the electron spins of the neighboring atoms. This causes an increase in 

the elastic energy due to stretching of the bonds and also an increase magnetic energy 

in the material because of the change in its magnetization. 

 

The effect of the magnetic energy added to the magneto-elastic system is 

dependent on the anisotropy in the crystal. This determines the path of least resistance 

for energy to influence the atoms in the lattice. In the presence of an easy axis, the 

applied energy along any direction causes the magnetic moments to orient along this 

direction first. As more energy is added to the system, a critical point is reached, 

where the energy penalty for the energy to flow along the direction of application is 

paid. The extent of anisotropy in Galfenol at each composition determines this critical 
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magnetic field. Once equilibrium is attained between the atoms, any additional 

magnetic energy added to the system flows along the applied direction up to magnetic 

saturation.   

 

In Galfenol samples up to 20% Ga, the value of Poisson’s ratio at magnetic 

saturation is less than (more negative than) -1 since the transverse strain is larger than 

the longitudinal strain. This is explained as resulting from the presence of strong 

magnetic anisotropy that favors  <100> easy axes in the (100) plane even when a 

magnetic field is applied along the <110> direction. As the magnetic dipoles rotate 

from the easy <100> axes to the applied <110> axes, there is a steep increase in the 

transverse strain accompanied by a small decrease in the longitudinal strain. As the 

applied magnetic field increase, these dipoles rotate to orient along the favorable 

<110> direction and attain saturation which causes a small drop in the transverse 

strain and a large increase in the longitudinal strain. 

 

Past 20% Ga, the value of Poisson’s ratio at magnetic saturation is larger than 

-1. In samples of compositions between 20% and 25% Ga, the anisotropy in the 

crystal is extremely small. Consequently, the anisotropy penalty is quite small and 

most of the applied energy interacts with the atoms in the lattice along the <110> 

direction causing an increase in the longitudinal strain. This is accompanied by very 

small strains in the transverse direction which are very close to zero (positive or 

negative).  
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At 31% and 33% Ga, the experimental data did not show rotation of the 

dipoles from a preferred <100> direction to the <110> applied magnetic field 

direction. Instead there is a monotonic increase in both the longitudinal and transverse 

strain as the magnetic field is increase from zero to magnetic saturation. This is 

consistent with the Baughman gas dynamics model of auxetic behavior in cubic 

metals. 

 

The results from the multiphysics simulations were able to predict the trends 

in the strains and the value of strains at magnetic saturation to within 7% for 

composition of less than 20 at% Ga. But for compositions greater than 20 at % Ga, 

the error was about 60% owing to the small values of anisotropy constants in the 

20.5% Ga and 25.3% Ga samples. The FEM simulations were not accurate in 

determining the strain values at which rotation of dipoles occurred in the 15.8% Ga 

and 17.9% Ga Galfenol samples. This could be due to the dependence of the 

performance of Galfenol on its thermal history. The parameters that are used as inputs 

to the simulations which greatly influence the results obtained are also dependent on 

the thermal history. Since these input values were chosen by interpolating and 

extrapolating the limited data points available in literature, their thermal histories 

didn’t match those of the samples used in this study. This is believed to be the 

primary source of errors in the simulations. If λ100 and λ111 and K1 and K2 at each 

composition are measured instead of using values from literature, the errors from the 

multiphysics simulations are expected to drop significantly. 
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Chapter 5 focused on understanding the auxetic response in Galfenol from a 

magnetic domain perspective. A correlation between the magnetic domain images 

and the strain values recorded confirmed the mechanism presented in Chapter 4. The 

magnetic domains that were oriented along the easy <100> directions grew initially 

by domain wall motion once there was enough magnetic field to overcome the 

pinning of the domains. At a critical magnetic field, the 180
o
 domain walls rotated to 

orient along the <110> direction. Additional magnetic field lead to the growth of 

favorable <110> magnetic domains as the sample attained magnetic saturation. 

  

Thus, this study presented a systematic approach to understanding the 

magnetically induced negative Poisson’s ratio in Galfenol from an atomic level 

perspective, meso scale micro magnetic domain perspective and macro scale 

magneto-elastic perspective at different Ga compositions. 

 

6.2: Contributions of this research 

 First research to observe and characterize the magnetically induced auxetic 

effect in Galfenol under zero applied mechanical stress.  

 This work systematically quantifies the negative Poisson’s ratio in a broad 

spectrum of Galfenol samples between 12 and 31 at. % Ga content.  

 Data from samples >20% Ga can be used to yield more information about the 

second magnetostriction peak in Galfenol including properties such as 

anisotropy state in the alloy at high compositions.  
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 Formulation of an energy based analytical model that could predict the values 

of Poisson’s ratio in Galfenol of different compositions along the <110> 

crystallographic direction at magnetic saturation by using values of λ100 and 

λ111 only. 

 Development of non-linear multi-physics (magneto-elastic coupled) 

simulations that could predict the strains along the auxetic <110> directions 

under applied magnetic fields. 

 The trends in Poisson’s ratio at magnetic saturation with Ga content in 

Galfenol obtained from this work can be used to explain the Poisson’s ratio 

values observed by Yoo [93] under tensile testing under DC magnetic fields. 

 Presents an understanding of the origin of auxetic strain response under 

applied magnetic fields from an atomic perspective describing the influence of 

magnetic fields on the interaction of the electron spins of neighboring atoms 

in the crystal lattice which causes strains.  

 Results from this study confirmed that the applied magnetic and the 

mechanical energies compete with each other in magneto-elastic systems and 

affect the strain energy (arising from stretching of atomic bonds) and the 

magnetocrystalline energy (arising from changes in magnetization) in the 

material.  

 This work also elicits the influence of anisotropy in the crystal lattice in 

determining the extent of interaction between the magneto-crystalline, 

magneto-elastic, magnetic energies along each direction in the crystal lattice 
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and its effect on the Poisson’s ratio at the different compositions of Galfenol 

both experimentally and using simulations. 

 A mechanism for the correlating strains obtained from the experiments under 

applied magnetic fields to the rotation of magnetic dipoles in the material is 

also presented. 

 This is also the first work to investigate the auxetic response in Galfenol from 

a magnetic domain perspective. A correlation between the evolution of the 

surface magnetic domains is used to explain the anomalous non-monotonic 

increase in strain with an increasing magnetic field in 12, 15 and 17 at% Ga 

Galfenol. 

 A new polishing protocol for preparing specimens for Kerr microscopy which 

eliminated the need for etching was also developed.  

 

6.3: Recommendations and future Work 

While this work attempted to address most questions related to characterizing, 

understanding and modelling the auxetic behavior in Galfenol under applied magnetic 

fields and zero stresses, some issues merit further works to improve the explanations 

presented here. Future research will also lead to a more complete picture of the 

phenomenon of auxeticity in Galfenol and hence improve our understanding of the 

alloy, provide better predictive capabilities and lead to the development of 

applications that exploit this behavior.  
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The atomic level changes in dimensions which can be used to confirm the 

atomic level mechanism presented for understanding the origin of auxetic behavior in 

Galfenol can be confirmed using Lorentz TEM. A cartoon depicting this experiment 

where an electron beam is used to image the distance between the atoms in the lattice 

with and without a magnetic field is shown in Fig. 6.1. The atomic lattice shown in 

Fig. 6.1 is an exaggerated 2-D projection of the reduced sphere representation of the 

BCC crystal lattice image before and after the application of a magnetic field. 

 

 

Figure 6.1: An overview of the Lorentz TEM experiment to measure changes in the 

dimensions of the lattice. 

 

The model presented in Section 4.4 predicts a large improvement in 

Galfenol’s shear strength and hardness as the Poisson’s ratio value approaches -1.  

This can be verified by shear testing samples of Galfenol with and without a 

magnetic field. Additional indentation tests on the Galfneol sample along the <110> 
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direction, such as those presented in Section 4.6, will provide more information about 

increases in the material hardness. 

 

Density functional theory (DFT) is a computational quantum mechanical 

modelling method used in physics, chemistry and materials science to investigate the 

electronic structure (principally the ground state) of many-body systems, in particular 

atoms, molecules, and the condensed phases. Modelling Galfenol under applied 

magnetic fields and zero mechanical stresses can be employed to model the auxetic 

behavior to further understand inter atomic interactions that are attributed to be the 

origin of the auxetic behavior in Galfenol.  

 

Since the wide field Kerr microscopy technique allows real time visualization 

of the magnetic domains, studies can be conducted to investigate the magnetic 

domains under dynamic fields. The results from such a study could be used to 

develop a dynamic magnetoelastic model. 

 

Imaging the evolution of magnetic domains in Galfenol samples beyond 25 

at% Ga content under applied magnetic fields along the <110> auxetic direction will 

help understand the auxetic response observed in the 31% Ga and 33% Ga Galfenol 

samples from this study. Also, Kerr images along the <100> directions in these high 

composition samples of Galfenol could yield more information about the second peak 

in the magnetostriction. 
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Previous works on Galfenol have shown that magnetostriction in Galfenol 

with compositions greater than 20 at. % Ga deviate from the quadratic enhancement 

observed at lower compositions [26]. More data with good confidence intervals will 

be needed to verify if this is true. These measured values will improve the results 

from the multiphysics simulations discussed in this work which uses them as input.  

 

As a first step towards the development of applications that use auxeticity in 

Galfenol, studying the effects of load bearing structural auxetic inclusions in 

composites can be undertaken. <110> oriented Galfenol additives to magneto 

rheological fluids can also be studied to investigate potential for performance 

enhancement. 

Finally, the development of magnetically tunable auxetic structures has 

immense potential for novel applications. 
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Appendices 

Appendix A: Magnetostrictive materials 

Early magnetostrictive materials were mostly ferromagnetic materials like Fe, 

Ni, Co etc. Their magnetostriction was low (of the order of 10 ) and hence not 

many applications could be developed. But all this changed with the development of 

rare earth-Iron alloy systems that had giant magnetostrictive properties.    

 

One of these breakthrough materials was Terfenol-D which is an alloy of Tb, 

Dy and Fe that has room temperature magnetostriction close to 2000  [114]. This 

property was conducive for the development of various applications such as active 

noise and vibration cancellation, servo machining, sonar etc. [115]. Table A.1 gives 

the magnetostrictive constants ( , ) for various cubic single crystal materials 

measured at room temperature which define the magnitude of mechanical change that 

can be obtained from the application of magnetic fields. However, Terfenol-D suffers 

from low tensile strength (about 30MPa) and brittleness which restricted the 

applications to only those that involved axial compressive forces. 

 

The discovery of large magnetostriction in Iron Gallium alloys [7, 49] has 

spurred a new wave of research initiatives into magnetostrictive materials. These Fe-

Ga alloys are collectively known as Galfenol.  
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Table A.1 Magnetostrictive constants for various single crystal materials based on [4, 

5] 

Material (x10
-6

) (x10
-6

) 

Fe 24 -23 

Co -248 57 

Ni -66 -29 

Ni65Fe35 20 15 

Ni65Co35 40 -35 

Fe55Co45 130 35 

Tb 
1
 8700 20 

Dy 
1
 9400 5500 

TbFe2 
2
 - 4000 

TbFe2 - 3690 

DyFe2 
1
 -70 - 

DyFe2 - 1890 

Tb0.27Dy0.73Fe2 - 2300 

Fe97Si3 25 -7 

Fe80Al20 95 5 

Fe83Ga17 208 0 

 

 

 

 

 

 

 

 

 

                                                 

2
 Values measured at temperatures close to absolute zero (-273

o
C). 
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Appendix B: Actuation and sensing 

The actuation and sensing behavior of magnetostrictives can be explained 

using the Joule and Wiedemann effects and the Villari and Matteucci effects 

respectively as explained in Section 1.3.1.  The mode of operation of magnetostrictive 

materials is depicted in Fig. B.1 and B.2 for actuation and sensing respectively.  

 

Under no applied magnetic field and no applied stress, a magnetostrictive 

material is comprised of randomly oriented magnetic moments. If a magnetic field is 

applied along the longitudinal axis of a magnetostrictive rod, the moments will rotate 

such that their longitudinal axes are aligned with the magnetic field. If a compressive 

stress is applied along the longitudinal axis of the rod, the moments will orient 

themselves so they are perpendicular to the applied stress. The strain resulting from 

the total length change as the moments rotate from all perpendicular to all parallel is 

defined as the saturation magnetostriction. This is the phenomenon responsible for 

Galfenol’s actuation behavior, and it is shown schematically in Fig. B.1. 
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Figure B.1: Galfenol’s actuation behavior [8]. The shaded block represents the load 

and the applied field H increases from (a) to (c). 

 

This process can be reversed to produce a sensing effect. A saturating field 

initially causes all the moments to align parallel to the rod axis. Increasing the applied 

compressive stress will cause the moments to rotate such that they are perpendicular 

to the rod axis. This causes a change in magnetization of the sample, which can be 

measured. This phenomenon is shown schematically in Fig. B.2. 

 

 

Figure B.2: Schematic of Galfenol’s sensing behavior [8]. The applied stress  

increases from (a) to (c) at a constant bias field H. 
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Appendix C: Applications of auxetic materials 

Galfenol is an interesting alloy that has shown great potential for numerous 

applications. The combination of large negative Poisson’s ratio, high strength (~530 

MPa yield strength and ~160 MPa [110] Young’s modulus [15]) and magneto-

mechanical coupling makes Fe-Ga a very promising material for novel devices. These 

special features are very useful in applications such as strain amplifiers, packing 

materials, energy absorption components, and soundproofing materials [3, 9]. 

However, successfully exploiting the in-plane auxetic properties will require using 

the proper crystallographic orientation of single crystals and highly textured 

polycrystalline alloys.  

 

The Poisson's ratio of a material influences the transmission and reflection of 

stress waves, the decay of stress with distance according to Saint Venant's principle 

and the distribution of stress around holes and cracks. It has been demonstrated that 

foams with a negative Poisson’s ratio were more difficult to indent than non-auxetic 

foam materials at low loads (from 10–100 N). In addition, an auxetic foam was less 

plastic with the most rapid viscoelastic creep recovery of any residual deformation 

[70]. In an auxetic material, there is effective inflow of material to the site of an 

impact because of lateral contraction, thereby making the location dense. Such 

materials have potential for use in indentation resistant armor. A schematic of this is 

shown in Fig. C.1. 
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Figure C.1: Comparison of resistance to indentation in a conventional material and an 

auxetic material.  

 

The lateral deformation of negative Poisson's ratio materials may be of use in 

new kinds of fasteners like press-fit fastening device suggested by Kellogg [15]. If an 

auxetic fastener is compressed, its width will get narrower, allowing insertion into a 

holder. When the compressive load is removed, the fastener will widen and thus be 

stuck in place. Any applied tensile load would cause the fastener to widen even more, 

making it a nearly perfect fixture. Figure C.2 shows an exaggerated schematic of how 

this might work where FC is a compressive force and FT is a tensile force. 
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Figure C.2: Press-fit fastening device utilizing auxetic behavior [15]. 

 

Auxetic inclusions in composites have been shown to have improved fracture 

and indentation resistance. It has also shown promise for mitigation of fiber pull-out 

[113]. A cartoon depicting the working of composites made using auxetic fibers is 

shown in Fig. C.3. High strength, low weight ropes, chords and fishnets have also 

been made using such fibers. 

 

 

Figure C.3: Composite made form auxetic fibers [116]. 
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‘Synclastic’ (doubly curved) behavior of auxetic fabrics has been used for 

medical bandages. But Galfenol which has good load bearing properties can be used 

as a high strength, low weight structural material in sandwich panels for aircrafts and 

automobiles [67] as shown in Figure C.4.  

 

 

Figure C.4: Doubly curved auxetic sandwich panels [116]. 

 

 The following section discusses potential applications of Galfenol as 

an in-plane auxetic material especially under applied magnetic fields at zero stresses. 

 

C.1: Solid state pump 

An auxetic tube made from a <110> {100} Fe-Ga sheet as shown in in Fig. 

C.5 which experiences an increase in the diameter under tensile loads due to 

auxeticity can be used to build a solid state pump that operates by acting like a 

diaphragm-like enclosure that can produce volume and pressure changes under 

applied magnetic fields. 
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Figure C.5: Auxetic tube formed from bending a thin textured Galfenol sheet. (a) A 

<110> {100} oriented sheet. (b) Rolling this sheet over. (c) Auxetic tube formed by 

joining the edges of the sheet and possibly even welding them together. (d) A finished 

tube under tensile load which causes an increase in its circumference [15]. 

 

Directional fluid flow would be generated provided that the ends of the tube 

are sealed with one-way check valves as shown in Fig. C.6. To actuate the pump, the 

auxetic magnetostrictive tube through which the fluid flows is surrounded by a 

solenoid that could be used to magnetically impose a tensile load on the tube. Under a 

magnetic field, the tube’s length and diameter increase to provide a volume increase 

for generating the pump’s intake stroke. Removing the applied magnetic field would 

allow the tube to contract elastically against the enclosed fluid to produce the output 

pressure stroke. This type of pump has the potential to produce high-pressure outputs 

and may prove to be extremely robust since there are no moving parts aside from the 

check valves.  
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Figure C.6: Cross section of a solid state pump using an auxetic magnetostrictive 

tube. 

 

 It may also be possible to bond the in-plane auxetic sheet to 

piezoelectric material to form a composite with improved coupling coefficients and 

enhanced sensing capability. Additionally, if a ferromagnetic inplane auxetic material 

is used (such as the Fe-Ga alloys), force and pressure changes could be sensed 

magnetically through changes in the materials’ state of magnetization. 

 

C.2: Magnetically activated micro-filters/ Sieve  

An auxetic sheet of Galfenol with holes is shown in Fig. C.7. An applied field 

will cause the diameter of these holes to change. This can be used as a magnetically 

actuated filter or sieve. The size of the holes can be controlled by the applied 

magnetic field along the auxetic direction. 
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Magnetically actuated filters have extensive applications in the bio-medical 

industry to separate particulate matter of different sizes. 

 

Figure C.7: Schematic of magnetically activated sieve. 
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Appendix D: Raw data from experiments 

This section will present the raw data from all the cycles of data from the 

trials which were used in the data shown in Chapter 4. 

 

D.1: Raw data from 12% Ga Galfenol 

The strain data obtained from the 12% Ga <110> {100} oriented single crystal 

Galfenol sample is shown in Fig. D.1. The blue curve indicates the magnetostriction 

along the longitudinal [110] direction and the red curve indicates the magnetostriction 

along the transverse [ ] direction when the field is applied along the longitudinal 

direction.  

 

 

Figure D.1: Strains along the longitudinal [110] and transverse [11̅0]  directions for 

the 12% Ga single crystal Galfenol with applied field along the [110] direction at zero 

external stress.  
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D.2: Raw data from 15.8% Ga Galfenol 

The strain data obtained from the 15.8% Ga <110> {100} oriented single 

crystal Galfenol sample is shown in Fig. D.2. The blue curve indicates the 

magnetostriction along the longitudinal [110] direction and the red curve indicates the 

magnetostriction along the transverse [ ] direction when the field is applied along 

the longitudinal direction.  

 

 

Figure D.2: Strains along the longitudinal [110] and transverse [11̅0]  directions for 

the 15.8% Ga single crystal Galfenol with applied field along the [110] direction at 

zero external stress.  

 

D.3: Raw data from 17.9% Ga Galfenol 

The strain data obtained from the 17.9% Ga <110> {100} oriented single 

crystal Galfenol sample is shown in Fig. D.3. The blue curve indicates the 

magnetostriction along the longitudinal [110] direction and the red curve indicates the 

110
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magnetostriction along the transverse [ ] direction when the field is applied along 

the longitudinal direction.  

 

 

Figure D.3: Strains along the longitudinal [110] and transverse [11̅0]  directions for 

the 17.9% Ga single crystal Galfenol with applied field along the [110] direction at 

zero external stress.  

 

D.4: Raw data from 20.5% Ga Galfenol 

The strain data obtained from the 20.5% Ga <110> {100} oriented single 

crystal Galfenol sample is shown in Fig. D.4. The blue curve indicates the 

magnetostriction along the longitudinal [110] direction and the red curve indicates the 

magnetostriction along the transverse [ ] direction when the field is applied along 

the longitudinal direction.  
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110
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Figure D.4: Strains along the longitudinal [110] and transverse [11̅0]  directions for 

the 20.5% Ga single crystal Galfenol with applied field along the [110] direction at 

zero external stress.  

 

D.5: Raw data from 25.3% Ga Galfenol 

The strain data obtained from the 25.3% Ga <110> {100} oriented single 

crystal Galfenol sample is shown in Fig. D.5. The blue curve indicates the 

magnetostriction along the longitudinal [110] direction and the red curve indicates the 

magnetostriction along the transverse [ ] direction when the field is applied along 

the longitudinal direction.  
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Figure D.5: Strains along the longitudinal [110] and transverse [11̅0]  directions for 

the 25.3% Ga single crystal Galfenol with applied field along the [110] direction at 

zero external stress.  

 

D.6: Raw data from 31% Ga Galfenol 

The strain data obtained from the 31% Ga <110> {100} oriented single crystal 

Galfenol sample is shown in Fig. D.6. The blue curve indicates the magnetostriction 

along the longitudinal [110] direction and the red curve indicates the magnetostriction 

along the transverse [ ] direction when the field is applied along the longitudinal 

direction.  
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Figure D.6: Strains along the longitudinal [110] and transverse [11̅0]  directions for 

the 31% Ga single crystal Galfenol with applied field along the [110] direction at zero 

external stress.  

 

D.7: Raw data from 33% Ga Galfenol 

The strain data obtained from the 33% Ga <110> {100} oriented single crystal 

Galfenol sample is shown in Fig. D.7. The blue curve indicates the magnetostriction 

along the longitudinal [110] direction and the red curve indicates the magnetostriction 

along the transverse [ ] direction when the field is applied along the longitudinal 

direction.  
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Figure D.7: Strains along the longitudinal [110] and transverse [11̅0]  directions for 

the 33% Ga single crystal Galfenol with applied field along the [110] direction at zero 

external stress.  
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Appendix E: Evolution of magnetic domains under changing magnetic fields 

along <100> directions 

Longitudinal mode of the Kerr microscope which was discussed in Chapter 5 

was employed to get the images of the Galfenol samples under changing magnetic 

fields in the <100> oriented 20% Ga slow cooled and quenched samples. The 

evolution of the magnetic domains under applied magnetic field along the <100> 

direction will be presented as a baseline case.  

 

 

Figure E.1: Galfenol single crystal samples 20 at. % Ga composition that were oven 

cooled and quenched used in kerr microscopy. 

 

Figure E.2 shows the evolution of the domain structure in the 20% Ga Slow-

cooled Galfenol sample when the field is applied along [100] direction of the sample 

(along  of the global axes). 

 

x̂
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Figure E.2: Evolution of the domain structure in the 20% Ga Slow-cooled Galfenol 

sample when the field is applied along [100] direction of the sample. (a) at 0 mT (b) 

at 5 mT (c) at 10 mT (d) at 15 mT (e) at 24 mT (f) at 30mT. 
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The domains grew by wall motion and eventually saturated at about 30 mT. 

All the domains at remanence were along the [100] direction only indicating 

superposition of some uniaxial anisotropy on to the cubic anisotropy. 

 

When the field was applied along the [010] direction (along of the global 

axes), this uniaxial anisotropy is overcome beyond a certain field (in this case about 

20 mT). This leads to nucleation of the domains till 35 mT after which the domains 

grow by wall motion to eventually saturate completely at about 65mT. This is 

illustrated in Fig. E.3. 

 

 

ŷ



 

 

214 

 

 

Figure E.3: Evolution of the domain structure in the 20% Ga Slow-cooled Galfenol 

sample when the field is applied along [010] direction of the sample. (a) at 0 mT (b) 

at 20 mT (c) at 30 mT (d) at 40 mT (e) at 50 mT (f) at 65mT. 

 

The uniaxial anisotropy is exhibited through out the sample as expected by 

[26] in the remanent states estimation for this sample. The formation of 90
o
 domain 
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walls indicates that these domains are just surface domains which do not permeate 

through the thickness of the specimen due to high energy costs. 

  

A similar set of MOKE images were obtained for the 20% Ga Quenched 

Galfenol sample as shown in Fig.E.4 and Fig E.5. 

 

 

Figure E.4: Evolution of the domain structure in the 20% Ga Quenched Galfenol 

sample when the field is applied along [100] direction of the sample. (a) at 0 mT (b) 

at 8 mT (c) at 18 mT (d) at 38 mT (e) at 41 mT (f) at 46mT. 
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Figure E.5: Evolution of the domain structure in the 20% Ga Quenched Galfenol 

sample when the field is applied along [010] direction of the sample. (a) at 0 mT (b) 

at 22 mT (c) at 47 mT (d) at 61 mT (e) at 84 mT (f) at 100 mT. 

  

The Quenched samples of Galfenol saturate at a much later than the quenched 

samples.  The presence of 180
o
 domain walls at remenance confirms the presence of a 

uniaxial anisotropy for this composition.  
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Appendix F: More results from MOKE on auxetic 15.8% Ga Galfenol 

This section discusses the domain patterns obtained from the 15.8% Ga 

Galfenol dogbone sample shown in Fig. 5.9, at a location away from the center of the 

sample.  

F.1: Domain refinement in magnetic domains  

This section discusses the domain refinement and closure domains discussed 

in Chapter1 obtained from the 15.8% Ga Galfenol dogbone sample. The results from 

Kerr microscopy are shown in Fig. F.1. 

 

 

Figure F.1: Evolution of branched domains in 15.8% Ga Galfenol auxetic dogbone 

sample for applied magnetic fields along x- axis and zero stress at a location away 

from the center. 

 

 Domain refinement to reduce internal stray fields according to echelon 

pattern in cubic crystals that causes staircase-like edge structures were also observed 
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in the MOKE images at a location away from the centre of the sample. This four-

phase branching reduces the volume of the closure domains as shown in Fig. F.1 (a). 

The four different grey scales indicate four different domain phases, each of them 

magnetized along one of the four <100> easy directions within the (001) plane at 

remanence. It shows in-plane magnetization with 90
o
 and 180

o
 domain walls as 

expected in cubic alloys such as Galfenol. A fir tree pattern due to a slightly 

misoriented surface possibly arising from mechanical polishing is also observed. 

 

The evolution of the magnetic domains in this region is presented in Fig F.1. 

When a magnetic field is applied along the x-axis, the B and G2 shades representing 

the unfavorable domains decrease in size as shown in Fig. F.1 (b). But at around 

4mT, the B and G2 shades reappear and grow in size until about 8mT as illustrated in 

Fig. F.1 (c) and (d). It is in this field range where there is a decrease in dimension 

along the x-axis. As the applied magnetic field is increased  past  9mT,  the magnetic 

domains represented by W and G1 grow in size as shown in Fig. F.1 (e), (f), (g) and 

(h). The 90
o
 domains walls along <100> easy directions disappear and the 180

o
 

domain wall between W and G1 along the <110> direction in which the magnetic 

field is applied remains. The sample then reaches the state shown in Fig. F.1 (i) where 

domains saturate along the <100> direction nominal to the applied field in the <110> 

direction. Beyond this field, there are no more changes in the strain experienced in 

both x and y directions for any increase in the applied magnetic field. 
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Appendix G: Effect of anisotropy on simulations 

The importance of the input parameters to the results obtained from the 

simulations was discussed in Chapter 2 and 4. This section shows the effect of the 

values of anisotropy constants K1 and K2 on the results obtained from the simulations 

from Galfenol at 15.8% Ga content. Figure G.1 shows results from choices of K1 and 

K2 that show: (a) a case with <100> easy axis, (b) a case with <110> easy axis, (c) a 

case with <111> easy axis and (d) actual simulation (strongest preference for <100> 

direction). 

 

 

Figure G.1: Simulation results from 15.8% Ga Galfenol showing longitudinal and 

transverse <110> strains for (a) a case with <100> easy axis (shown using dashes 

lines), (b) a case with <110> easy axis (shows using dotted lines), (c) a case with 

<111> easy axis (shown using lines with circles and dashes) and (d) actual simulation 

with strongest preference for <100> direction (shown using a solid line). Here, Blue 

indicates longitudinal strain and red indicates transverse strain.  

 

This result can be used understand the easy axes from experimental data at 

each composition of Galfenol from the trends in the <110> strains observed. 
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Appendix H: Multiphysics simulation codes 

armstrong_optimized_16.m 

function [B MEStrain]  = armstrong_optimized_16(Hin, Sigmain) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 
%   Input for the function: 
%   Hin and Sigmain must be full 3-D vector/tensor in the form 
%   Hin = [Hx Hy Hz]'; 
%   Sigmain = [Sxx Syy Szz Sxy Syz Sxz]'; 
%    
%   Output from the function: 
%   B and magnetostriction in full 3-D form 
%   B = [Bx By Bz]'; 
%   MEStrain = [lxx lyy lzz lxy lyz lxz]'; 
% 
%   Edited on Nov 10th 2008. 
%   Changes made: 
%   Made changes to Etot2.m that makes it now use stress induced 

anisotropy 
%   rather than elastic, magnetoelastic, and mechanical work 

energies. The 
%   stress is resolved into principal stresses & principal 

directions and 
%   the net stress induced anisotropy due to all the principal 

stresses is 
%   calculated. 
%   
%   Edited on Nov 12th 2008 
%   Changes made: 
%   No more "for loops" to increment theta and phi. Rather, meshgrid 

is 
%   used which makes the whole program about 70-75 times faster! 
% 
%   Edited on Nov 14th 2008 
%   Changes made: 
%   exp(-Etot/omega)*dalpha is now calculated in one step as one 

variable, 
%   expEtot_dalpha, instead of calculating it in all the steps. The 

program 
%   now runs more than 155 times faster! 
%  
%   Time taken for the program to run: 
%   Before (10 averages): 0.7921132, 0.7931920, 0.7927836, 0.7947328 
%   After (10 averages): 0.0050931, 0.0051732, 0.0051899, 0.0050632 

--> 155 
%   times faster! 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 

  

  
%% Global Variables 
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global mu_0 K1 K2 Msat MagElas_FCT B1OVERdeltac12c11 negB2OVERc44 

c11 c12 c44 B1 B2 

  
%% Constants 
% Fundamental 
mu_0 = 4*pi*1e-7; % permeability of free space 

  
%Elastic 
c11 = 213e9; 
c12 = 174e9; 
c44 = 120e9; 

  
% Magnetostrictive(MAGNETOELASTIC) 
lambda_100 = 2/3*(365e-6); % strain (-2/3*B1/(c11-c12)) 
lambda_111 = -2/3*(22e-6); % strain (-1/3*B2/(c44)) (-22) 
MagElas_FCT = 0.875; % from experimental data 
B1 = -3/2*lambda_100*(c11-c12); 
B2 = -3*lambda_111*c44; 
B1OVERdeltac12c11=B1/(c12-c11); 
negB2OVERc44=-B2/c44; 

  

  
% Magnetocrystalline 
K1 =-4e4  %13e3;%actual <100>-50e3%<111>50e3%strong 100 %-50e3%<111> 

50e3%strong 100 %  % J/m^3 This is actually K1+dK1 or experimentally 

measured K1 
K2 =100e3  %-90e3;%actual <100>10e3%<111>-5e3%strong 100  10e3%<111> 

-5e3%strong 100  %-90e3;actual <100>% J/m^3 

  
% Saturation magnetization 
Msat= 1456e3; % in A/m; number from (B - mu_0*H) from experimental 

data 

  
%% VARIABLES 

  
omega = 600; % smoothing function to match with experimental BH plot 

  
%% Angle step size  
del_theta = 5; % azimuthal resolution in deg 
del_phi = 5; % circular resolution in deg 

  

  
%% main calculation   

  
% Calculation of principal stresses and their directions 
% Sigma_tensor = [Sigmain(1) Sigmain(4) Sigmain(6); 
%                 Sigmain(4) Sigmain(2) Sigmain(5); 
%                 Sigmain(6) Sigmain(5) Sigmain(3)]; 

             
            Sigma_tensor = zeros(3,3); 
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[pSdirec, pS] = eig(Sigma_tensor); % pS - principal stresses, 

pSdirec - principal stress directions 

  
% Meshgrid of theta and phi 
[theta, phi] = meshgrid((0:del_theta:180)*pi/180, 

(0:del_phi:359)*pi/180); 

  
% Calculate ALPHA's (direction cosines) from theta and phi 
ALPHA1 = sin(theta).*cos(phi); 
ALPHA2 = sin(theta).*sin(phi); 
ALPHA3 = cos(theta); 

  
% Calculation of energy. It now (Nov. 10th 2008) uses stress induced 

anisotropy 
Etot = Etot2(ALPHA1,ALPHA2,ALPHA3,Hin,pS,pSdirec); 

  
% Calculation of lambda 
% lambdaxx = B1/(c12-c11)*(ALPHA1.^2-1/3); 
% lambdayy = B1/(c12-c11)*(ALPHA2.^2-1/3); 
% lambdazz = B1/(c12-c11)*(ALPHA3.^2-1/3); 
lambdaxx = B1OVERdeltac12c11*(ALPHA1.^2-1/3); 
lambdayy = B1OVERdeltac12c11*(ALPHA2.^2-1/3); 
lambdazz = B1OVERdeltac12c11*(ALPHA3.^2-1/3); 
% lambdaxy = -B2/c44*ALPHA1.*ALPHA2; 
% lambdayz = -B2/c44*ALPHA2.*ALPHA3; 
% lambdaxz = -B2/c44*ALPHA3.*ALPHA1; 
lambdaxy = negB2OVERc44*ALPHA1.*ALPHA2; 
lambdayz = negB2OVERc44*ALPHA2.*ALPHA3; 
lambdaxz = negB2OVERc44*ALPHA3.*ALPHA1; 
% Calculation of Magnetization probability 
expEtot_dalpha = (del_theta.*del_phi.*abs(sin(theta))).*exp(-

Etot/omega); 
dMxProb = (Msat*ALPHA1).*expEtot_dalpha; 
dMyProb = (Msat*ALPHA2).*expEtot_dalpha; 
dMzProb = (Msat*ALPHA3).*expEtot_dalpha; 
% Calculation of Lambda probability 
dLambdaxxProb = (lambdaxx).*expEtot_dalpha; 
dLambdayyProb = (lambdayy).*expEtot_dalpha; 
dLambdazzProb = (lambdazz).*expEtot_dalpha; 
dLambdaxyProb = (lambdaxy).*expEtot_dalpha; 
dLambdayzProb = (lambdayz).*expEtot_dalpha; 
dLambdaxzProb = (lambdaxz).*expEtot_dalpha; 
dProb = expEtot_dalpha; 

  
% Calculation of Magnetization 
M = [sum(sum(dMxProb))/sum(sum(dProb)); 
     sum(sum(dMyProb))/sum(sum(dProb)); 
     sum(sum(dMzProb))/sum(sum(dProb))]; 
% Calculation of Magnetostriction 
MEStrain = [sum(sum(dLambdaxxProb))/sum(sum(dProb)); 
            sum(sum(dLambdayyProb))/sum(sum(dProb)); 
            sum(sum(dLambdazzProb))/sum(sum(dProb)); 
            sum(sum(dLambdaxyProb))/sum(sum(dProb)); 
            sum(sum(dLambdayzProb))/sum(sum(dProb)); 
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            sum(sum(dLambdaxzProb))/sum(sum(dProb))]; 
% mu_0 
% M 
% Hin 
B = mu_0*(M + Hin); %induction in Tesla   
%-------------------------------------------------------------------   

  

armstrongDatabaseCreatorActuator110.m 

% clc; close all; clear all; 
tic 
%load mu_lamda_gafe16v2.mat 
clear B Lamda mew 
mu_0=4e-7*pi; 
% [HbiasRows HbiasColumns]=size(Hbias); 
% [Sigma1Rows Sigma1Columns]=size(Sigma1); 

  
% HbiasMin=-max(Hbias); 
% Sigma1Min=-2*max(Sigma1); 
% HbiasNew=HbiasMin:2*max(Hbias)/(HbiasColumns-1):max(Hbias); 
% Sigma1New=Sigma1Min:max(Sigma1)/(Sigma1Columns-1):2*max(Sigma1); 
% Hbias=HbiasNew; 
% max(Sigma1) 
% Sigma1=Sigma1New; 
% max(Sigma1New) 

  
Hbias=-60e3*4:.1e3*4:60e3*4; 
Sigma1=0; 
% Sigma1=[0 -34e6 -66e6]; 

  
[HbiasRows HbiasColumns]=size(Hbias); 
[Sigma1Rows Sigma1Columns]=size(Sigma1); 

  
[HbiasRows HbiasColumns]=size(Hbias); 
[Sigma1Rows Sigma1Columns]=size(Sigma1); 
strainDir1_110=1/sqrt(2); 
strainDir2_110=1/sqrt(2); 
strainDir3_110=0; 
strainDir1_11b0=1/sqrt(2); 
strainDir2_11b0=-1/sqrt(2); 
strainDir3_11b0=0; 

  
for i=1:HbiasColumns; 
    H=[Hbias(i)*1/sqrt(2) Hbias(i)*1/sqrt(2) 0]'; 
    for j=1:Sigma1Columns; 
        sx=[0 0 0 0 0 0]'; 
        [Bvec Lamdavec]=armstrong_optimized_16(H,sx); 
        B(i,j)=Bvec(1); 
        Lamda100(i,j)=Lamdavec(1);  
        Lamda010(i,j)=Lamdavec(2); 
        Lamda001(i,j)=Lamdavec(3); 
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        Lamdaxy(i,j)=Lamdavec(4); 
        blue=Lamdavec(4)*strainDir1_110*strainDir2_110; 
        red=Lamdavec(4)*strainDir1_11b0*strainDir2_11b0; 
        display=[blue red]; 
        Lamda110(i,j)=... 
            Lamdavec(1)*strainDir1_110^2+... 
            Lamdavec(2)*strainDir2_110^2+... 
            Lamdavec(3)*strainDir3_110^2+... 
            Lamdavec(4)*strainDir1_110*strainDir2_110+... 
            Lamdavec(5)*strainDir2_110*strainDir3_110+... 
            Lamdavec(6)*strainDir3_110*strainDir1_110; 
        Lamda11b0(i,j)=... 
            Lamdavec(1)*strainDir1_11b0^2+... 
            Lamdavec(2)*strainDir2_11b0^2+... 
            Lamdavec(3)*strainDir3_11b0^2+... 
            Lamdavec(4)*strainDir1_11b0*strainDir2_11b0+... 
            Lamdavec(5)*strainDir2_11b0*strainDir3_11b0+... 
            Lamdavec(6)*strainDir3_11b0*strainDir1_11b0; 

         
        mu(i,j)=B(i,j)/mu_0/Hbias(i); %mu_relative 
    end 
    i; 
end 

  
% for j=1:Sigma1Columns 
%     LamdaAdjusted(:,j)=Lamda(:,j)-min(Lamda(:,j)); 
% end 

  
%One Lambda Line=Lamda(:,constj) 
% figure(1) 
% plot(Hbias*0.012566371,B) %1 A/m = 0.012566371 Oe 
% grid on 
% xlabel('Magnetic Field (Oe)') 
% ylabel('Magnetic Induction (T)') 
figure(1) 
hold on 
plot(Hbias*0.012566371/10,Lamda110*10^6,'b --o','LineWidth',2) 
plot(Hbias*0.012566371/10,Lamda11b0*10^6,'r --o','LineWidth',2) 
% plot(Hbias,Lamda010,'g') 
% plot(Hbias,Lamda110,'b') 
axis([-200 200 -10 80]) 
% axis([-100 100 -50 150]) 
% axis([-100 100 -0.00005 .00015]) 
xlabel('Magnetic Field (mT)','FontSize', 18) 
ylabel('Strain (ppm)','FontSize', 18) 
title('Multiphysics Simulation at 15.8% Ga','FontSize', 20) 
legend('Longitudinal strain','Transverse strain') 
set(gca,'FontSize',14) 
grid on 
hold off 

  
PR=-Lamda11b0./Lamda110; 

  
figure(2) 
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% hold on 
plot(Hbias*0.012566371/10,PR,'k','LineWidth',2) 
% plot(Hbias*0.012566371,Lamda11b0,'r') 
% plot(Hbias,Lamda010,'g') 
% plot(Hbias,Lamda110,'b') 
xlabel('Magnetic Field (mT)','FontSize', 18) 
ylabel('Strain (ppm)','FontSize', 18) 
grid on  
title('Multiphysics Simulation at 16% Ga','FontSize', 20) 
axis([-100 100 -15 5]) 
set(gca,'FontSize',14) 
% figure(2) 
% plot(Hbias*0.012566371,Lamda110,'g') 
% figure(3) 
% plot(Hbias*0.012566371,sqrt(Lamda100.^2+Lamda010.^2),'b') 
% figure(4) 
% plot(Hbias*0.012566371,Lamda110,'k') 
% figure(3) 
% plot(Hbias*0.012566371,mu)  
% grid on 
% xlabel('Magnetic Field (Oe)') 
% ylabel('Relative Permeability') 
% figure(4) 
% plot(Sigma1,B) 

  
toc 
%-------------------------------------------------------------------   

  

Eanisotropy.m 

function Ean = Eanisotropy(APLHA1,APLHA2,APLHA3) 
global K1 K2 

  
Ean = 

K1*((APLHA1.^2).*(APLHA2.^2)+(APLHA2.^2).*(APLHA3.^2)+(APLHA3.^2).*(

APLHA1.^2)) + K2*((APLHA1.^2).*(APLHA2.^2).*(APLHA3.^2)); 
%-------------------------------------------------------------------   

  

Eaniso.m 

function Esan = Esaniso(ALPHA1,ALPHA2,ALPHA3,pS,pSdirec) 
global B1OVERdeltac12c11 negB2OVERc44 MagElas_FCT c11 c12 c44 B1 B2 

  
% first principal stress 
direc1 = pSdirec(:,1); 
BETA1S = direc1(1)/sqrt(sum(direc1.^2)); 
BETA2S = direc1(2)/sqrt(sum(direc1.^2)); 
BETA3S = direc1(3)/sqrt(sum(direc1.^2)); 
Sigma = pS(1,1); 
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E11 = -

B1OVERdeltac12c11*Sigma*((ALPHA1.^2)*(BETA1S^2)+(ALPHA2.^2)*(BETA2S^

2)+(ALPHA3.^2)*(BETA3S^2)-1/3); 
E21 = -negB2OVERc44*Sigma*(ALPHA1.*ALPHA2*BETA1S*BETA2S + 

ALPHA2.*ALPHA3*BETA2S*BETA3S + ALPHA3.*ALPHA1*BETA3S*BETA1S); 

  
% second principal stress 
direc1 = pSdirec(:,2); 
Sigma = pS(2,2); 
BETA1S = direc1(1)/sqrt(sum(direc1.^2)); 
BETA2S = direc1(2)/sqrt(sum(direc1.^2)); 
BETA3S = direc1(3)/sqrt(sum(direc1.^2)); 
E12 = -

B1OVERdeltac12c11*Sigma*((ALPHA1.^2)*(BETA1S^2)+(ALPHA2.^2)*(BETA2S^

2)+(ALPHA3.^2)*(BETA3S^2)-1/3); 
E22 = -negB2OVERc44*Sigma*(ALPHA1.*ALPHA2*BETA1S*BETA2S + 

ALPHA2.*ALPHA3*BETA2S*BETA3S + ALPHA3.*ALPHA1*BETA3S*BETA1S); 

  
% third principal stress 
direc1 = pSdirec(:,3); 
Sigma = pS(3,3); 
BETA1S = direc1(1)/sqrt(sum(direc1.^2)); 
BETA2S = direc1(2)/sqrt(sum(direc1.^2)); 
BETA3S = direc1(3)/sqrt(sum(direc1.^2)); 
E13 = -

B1OVERdeltac12c11*Sigma*((ALPHA1.^2)*(BETA1S^2)+(ALPHA2.^2)*(BETA2S^

2)+(ALPHA3.^2)*(BETA3S^2)-1/3); 
E23 = -negB2OVERc44*Sigma*(ALPHA1.*ALPHA2*BETA1S*BETA2S + 

ALPHA2.*ALPHA3*BETA2S*BETA3S + ALPHA3.*ALPHA1*BETA3S*BETA1S); 

  
% % first principal stress 
% direc1 = pSdirec(:,1); 
% BETA1S = direc1(1)/sqrt(sum(direc1.^2)); 
% BETA2S = direc1(2)/sqrt(sum(direc1.^2)); 
% BETA3S = direc1(3)/sqrt(sum(direc1.^2)); 
% Sigma = pS(1,1); 
% E11 = B1/(c11-

c12)*Sigma*((ALPHA1.^2)*(BETA1S^2)+(ALPHA2.^2)*(BETA2S^2)+(ALPHA3.^2

)*(BETA3S^2)-1/3); 
% E21 = B2/c44*Sigma*(ALPHA1.*ALPHA2*BETA1S*BETA2S + 

ALPHA2.*ALPHA3*BETA2S*BETA3S + ALPHA3.*ALPHA1*BETA3S*BETA1S); 
%  
% % second principal stress 
% direc1 = pSdirec(:,2); 
% Sigma = pS(2,2); 
% BETA1S = direc1(1)/sqrt(sum(direc1.^2)); 
% BETA2S = direc1(2)/sqrt(sum(direc1.^2)); 
% BETA3S = direc1(3)/sqrt(sum(direc1.^2)); 
% E12 = B1/(c11-

c12)*Sigma*((ALPHA1.^2)*(BETA1S^2)+(ALPHA2.^2)*(BETA2S^2)+(ALPHA3.^2

)*(BETA3S^2)-1/3); 
% E22 = B2/c44*Sigma*(ALPHA1.*ALPHA2*BETA1S*BETA2S + 

ALPHA2.*ALPHA3*BETA2S*BETA3S + ALPHA3.*ALPHA1*BETA3S*BETA1S); 
%  
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% % third principal stress 
% direc1 = pSdirec(:,3); 
% Sigma = pS(3,3); 
% BETA1S = direc1(1)/sqrt(sum(direc1.^2)); 
% BETA2S = direc1(2)/sqrt(sum(direc1.^2)); 
% BETA3S = direc1(3)/sqrt(sum(direc1.^2)); 
% E13 = B1/(c11-

c12)*Sigma*((ALPHA1.^2)*(BETA1S^2)+(ALPHA2.^2)*(BETA2S^2)+(ALPHA3.^2

)*(BETA3S^2)-1/3); 
% E23 = B2/c44*Sigma*(ALPHA1.*ALPHA2*BETA1S*BETA2S + 

ALPHA2.*ALPHA3*BETA2S*BETA3S + ALPHA3.*ALPHA1*BETA3S*BETA1S); 

  
Esan = MagElas_FCT*(E11+E21+E12+E22+E13+E23); 
%-------------------------------------------------------------------   

  

Etot2.m 

function Etot = Etot2(ALPHA1,ALPHA2,ALPHA3,H,pS,pSdirec) 

  
Etot = Eanisotropy(ALPHA1,ALPHA2,ALPHA3) + 

Esaniso(ALPHA1,ALPHA2,ALPHA3,pS,pSdirec) + 

Wmagnetic(ALPHA1,ALPHA2,ALPHA3,H); 
%-------------------------------------------------------------------   

  

Wmagnetic.m 

function Wmg = Wmagnetic(ALPHA1,ALPHA2,ALPHA3,H) 
global mu_0 Msat 

  
Wmg = -mu_0*Msat*(ALPHA1*H(1)+ALPHA2*H(2)+ALPHA3*H(3)); 
%-------------------------------------------------------------------   
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