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SUMMARY 
 

 

This thesis describes the dynamics, both spatio-temporal and heat release, of 

harmonically excited non-premixed flames. Analytical, numerical, and, experimental 

analyses were performed, along with combined analyses methods, to study excitation and 

evolution of wrinkles on the flame front. Comparisons to established premixed flame 

dynamics are made throughout. Modern gas turbines, along with other various advanced 

combustion systems, face major challenges from the onset of combustion instabilities. In 

order to avoid this problem, or to utilize it advantageously, an in-depth understanding of 

the flame front dynamics is required. This thesis is devoted to elucidating the governing 

features of these complex combustion dynamic problems, and figuring out how to utilize 

this knowledge to improve existing or design better combustion systems. 

The space-time dynamics of the non-premixed flame sheet in the fast chemistry 

limit is described by the stoichiometric mixture fraction surface, extracted from the 

solution of the Z -equation. This procedure has some analogies to premixed flames, 

where the premixed flame sheet location is extracted from the G=0 surface of the solution 

of the G-equation. A key difference between the premixed and non-premixed flame 

dynamics, however, is the fact that the non-premixed flame sheet dynamics are a function 

of the disturbance field everywhere, and not just at the reaction sheet, as in the premixed 

flame problem. Although appearing subtle, this point is what makes the non-premixed 

flame dynamics problem unique and significantly more complicated, requiring a 

completely new solution approach. Although mixture fraction field solutions are 
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obtainable, extensive mathematical techniques are used in order to obtain explicit space-

time and heat release solutions for the flame dynamics. 

The heat release dynamics are also complicated due to the significant mixture 

fraction field gradients encountered in non-premixed flame problems, which are often 

strong functions of spatial location. The local heat release distribution has been shown to 

have a strong axial dependence, and the flame surface area no longer remains the sole 

dominant heat release parameter, as the reactant mass burning rate takes an important 

form. The spatially integrated heat release, ( )Q tɺ , is of particular interest for combustion 

instability or noise related issues for acoustically compact flames, and thus this surface 

integral over the reaction sheet will be examined extensively, often times through the use 

of a flame transfer function. This useful measure provides an input-output relationship 

between the forcing characteristics and the resulting heat release dynamics. 

Starting simply, a two-dimensional model problem was investigated in the Pe�∞ 

limit, exposed to spatially uniform forcing. An explicit expression for the space-time 

dynamics of the flame sheet was obtained, which shows the importance of velocity 

fluctuations normal to the mean flame surface and the role of axial convection in 

propagating flame wrinkles downstream, leading to nodes and anti-nodes in the flame 

response, similar to premixed flames. In addition, an explicit heat release transfer 

function was obtained along with equations for the contributions due to area and mass 

burning rate fluctuations. Differing completely from premixed flames, non-premixed 

flames heat release dynamics are dominated by mass burning rate fluctuations. Their gain 

sensitivities both tend towards unity at low St values, but the non-premixed flame 

response is larger than premixed flames for St~O(1). 
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Inclusion of axial diffusion in the non-premixed governing equation, i.e. finite Pe 

values, was shown to correlate to enabling burning velocity stretch sensitivity in the 

premixed case, introducing additional flame front physics, such as wrinkle dissipation 

and dispersion. These effects act to smooth the wrinkle magnitude and phase, abolishing 

previously spatio-temporal nodes. The heat release response of non-premixed flames was 

analytically shown to roll off much slower with frequency, O(St-1/2) compared to O(St-1) 

for premixed flames, implying increased sensitivity to flow perturbations than premixed 

flames at high Strouhal numbers. The asymptotic tendencies of the non-premixed flame, 

however, are largely controlled by the near burner exit region with high transverse 

gradients and, thus, are expected to be quite sensitive to burner exit details and finite 

chemistry effects. 

Desiring consistency, other qualitatively new features resulting from the inclusion 

of axial diffusion to the problem were investigated. In particular, back diffusion alters the 

steady state and fluctuating mixture fraction profiles entering the domain, i.e. the inlet 

profiles. Although for analytical tractability we previously prescribed the inflow 

boundary condition, the proper treatment of this feature renders the problem analytically 

intractable and so it must be solved computationally. It also causes the leading edge 

position of the flame front to oscillate, even for infinitely fast chemistry. In addition, it 

introduces a three-zone structure into the asymptotic character of the unsteady heat 

release, so that the flame transfer function is O(1) for St<<1, O(1/St-1/2) for intermediate 

Strouhal numbers, and O(1/St) for very high Strouhal numbers. Differentiating between 

inflow boundary and dynamical effects on the flame dynamics is essential to 

understanding non-premixed flame dynamics. 
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Realizing the limitations of two-dimensional analyses, a three-dimensional 

geometry was investigated exposed to various three-dimensional forcing configurations, 

including axial, transverse, and convecting helical disturbances. The results show the 

significance of phase interference processes, due to wrinkle convection in the axial and 

azimuthal direction, in controlling the space-time wrinkle characteristics. Significantly, 

these results show that these different induced fluctuations exhibit very different 

sensitivities to helical mode number, swirl strength, and dimensionless forcing frequency. 

The helical mode with the dominant contribution to local flame wrinkling is generally 

different from the mode with dominant contribution to spatially integrated heat release 

fluctuations. In fact, only the axisymmetric, m=0, mode leads to heat release fluctuations 

in both premixed and non-premixed axisymmetric flames. 

Efforts have been made to obtain an equation for the wrinkle dynamics directly, 

as is done for the premixed problem, rather than having to solve for the mixture fraction 

field first. As this desired partial differential equation for the fluctuating flame front is an 

equation for a specific iso-surface with variables evaluated at this surface, the result is not 

straightforward. However, an equation was obtained for the limiting case of Pe>>1, 

which produces consistent results with previous results obtained using established 

methods. 

Lastly, experimental efforts were performed in order to assess the validity of 

previously utilized assumptions, accuracy of purely analytical models, and to investigate 

real life diffusion flame behavior. High speed PIV data was taken on a coflowing 

methane-air diffusion flame, equipped with speakers for harmonic forcing, over a variety 

of flow velocities, forcing frequencies, and forcing amplitudes. These measured velocity 
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fields were used as inputs to a Z -equation solver, and the resulting space-time dynamics 

of iso- Z  surfaces were extracted from the Z  field solutions. Both experimental and 

numerical results show that flame wrinkles propagate axially at the mean flow velocity, a 

result consistent with previous analytical findings. These wrinkles start with near zero 

magnitude at the fuel tube lip and grow with downstream distance, until peaking at some 

axial location. Further downstream, the wrinkle magnitude modulates, indicative of 

interference effects which have been previously predicted in analytical studies. The 

largest discrepancies between calculations and results are observed near the burner lip, 

and it is shown that these are due to errors in predicted spreading angle of the unforced 

non-premixed flame at the attachment point.  These errors in spreading angle, in turn, are 

likely due to errors in computed inflow mixture fraction profiles at the burner exit, 

illustrating the importance of predicting the time averaged mixture ratio for predicting the 

flame wrinkle dynamics. 

Body force effects, i.e. gravity and buoyancy, neglected in the models, were 

observed to significantly influence the steady state flame shape, a key input to our 

dynamical results, since velocity fluctuations normal to the mean flame are important. 

Modified analytical models were also developed to account for this accompanying flow 

acceleration effect. 

Some of the key results of this thesis involve comparing the space-time and heat 

release dynamics predicted by these various analysis methods. These comparisons will 

demonstrate the accuracy of the various models and the validity of the assumptions 

utilized. They will also shed light onto prioritizing what to improve in future works.  

 



 

1 

CHAPTER 1 

Introduction 

 

1.1 Motivation 

Flames, fire, and combustion have been observed and contemplated from earliest 

times. Rigorous evidence of controlled fire generation and use was found at Neanderthal 

camp sites, dating to between 71 and 91 thousand years ago [1]. Less concrete evidence 

can push this date back to ~300,000 years ago when hominins started using fire to alter 

tools. Possible hearths have also been found corresponding to this date, although little 

information exists on whether they were controlling natural fire or producing it of their 

own accord. Preliminarily, there is speculation (and circumstantial evidence) of fire use 

as early as 800,000 years ago. “Burnt material” found in clusters could perhaps indicate 

fires, although none of the actual fires have been found. Further, the frequency of these 

clusters is low and so exploitation of natural fire could be a cause. 

The various explanations for fire and combustion has also greatly changed over 

time. The Greeks interpreted combustion in terms of philosophical doctrines, one of 

which was that a certain “inflammable principle” was contained in all combustible bodies 

and this principle escaped when the body was burned to react with air [2]. The existence 

of fire was also thought to be the result of Prometheus’ brave act of stealing fire from 

Zeus, for all of mankind. The inadequacy of these various theories became apparent only 

in the late 18th century, when it proved unable to explain a host of new facts about 
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combustion that were being observed for the first time as the result of increasing accuracy 

in laboratory experiments. 

One fact that is well established is the importance of combustion as part of our 

cultural evolution. Taking advantage of two of its defining features, it allowed us to 

extend daylight hours artificially, keep warm, and efficiently process a wider range of 

foods. It also enabled the modification of various objects and materials into more useful 

forms. Today, combustion’s highly exothermic nature is harnessed for many different 

purposes, in devices with a wide range of complexities. Gas ovens, heating devices, 

steam engines, internal combustion engines, transportation devices, explosives, and fossil 

fuel power plants are just a few different ways that combustion reactions are used in our 

modern world.  

As we grow as a civilization, so does our desire and need for harnessable power 

and energy. Burning of fossil fuels has long existed as one such method, and although the 

world is currently undergoing a Green Movement towards renewable energy sources for 

various specific applications, combustion remains and will continue to remain the 

dominant method for providing useful energy.  

However, “with great power comes great responsibility”… and regulations, costs, 

emission taxes, and restrictions, because albeit all the benefits and uses of combustion, 

some of the negative side effects of burning fossil fuels has become a concern, primarily 

the production of harmful pollutants such as unburned hydrocarbons (UHC), nitrogen 

oxides (NyOx), sulfur oxides (SOx), carbon monoxide (CO), etc. Causing major climate 

change concerns, potential risks to both air and water quality, as well as health concerns 

to living creatures, the quantity of these byproducts emitted need to be minimized. In 
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addition to these socio-environmental reasons, federal regulations have been imposed by 

the US Environmental Protection Agency, as shown by Figure 1.1, which are constantly 

tightening. Although making system design and engineering more complicated, these 

methods have succeeded in evolving towards cleaner technologies, as shown by Figure 

1.2. 

                    
Figure 1.1. US Environmental Protection Agency’s National Ambient Air Quality Standards 

as established by the Clean Air Act [3].  
 

      
Figure 1.2. National CO and NO2 Air Quality Trends from 1980-2013 [3]. 
 

While post device treatment is one option, it is generally preferred to avoid the 

formation of these pollutants in the combustion system rather than implementing post 

combustion system cleanup, in order to avoid the additional capital and maintenance 

costs of cleanup equipment [4]. The emission of sulfur oxides can be effectively 
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minimized by removing sulfur from the fuel in the preprocessing stage, a commonly 

established technique. However, carbon monoxide and nitrogen oxides, both of whose 

elemental components originate from the primary reactants, i.e. hydrocarbon fuel and air, 

cannot be completely removed in the burning process, but rather their production and 

ultimate emission levels must be minimized by controlling the combustion process. 

As this process involves a plethora of chemical kinetic interactions, with a 

multitude of species, it could encompass a thesis dissertation on its own. However, the 

CO and NOx reaction mechanisms are of focus for combustor designers, and it is 

understood that over most of the operating range for combustors these evolve with 

opposing trends. For example, over the premixed burning process, CO decreases by 

conversion into CO2, while NO2 increases being mainly produced from NO, processes 

which both occur more rapidly at higher temperatures. One decreases with residence time 

and temperature while the other increases; thus a balance must be found that satisfies 

ALL of the emission regulations. In addition, performance metrics must be factored in, 

such as power and thermal efficiency, which increase with inlet pressure and temperature, 

durability, stability, and operability limits [5]. 

Accordingly, new combustion systems and thermodynamic cycles have been 

proposed to meet this cocktail of emission regulations and performance desires. Catalytic 

combustion, for example, reduces pollutant formation, with the tradeoff of high costs, 

low durability, and safety concerns. Rich-burn quick-mix lean-burn (RQL) combustion 

reduces NOx and expands fuel diversity, yet suffers from soot formation and durability 

problems. Dry low NOx (DLN) lean-premixed combustion has the advantages of massive 

NOx reduction and control, but suffers with flashback, lean blow out, and combustion 



 5

instabilities. Significant efforts have been put into resolving these operability issues in 

premixed systems, since their NOx reduction potentials are so large, however, the issue of 

combustion instabilities, being part of the broader topic of combustion dynamics, remains 

at large and is the key motivator for this thesis work. 

Thus in summary, combustor design must allow an optimal residence time for CO 

oxidation while minimizing the formation of NOx during the CO burnout process, all the 

while obtaining high levels of power and thermal efficiency, with reasonable durability 

and operability limits, whilst avoiding combustion instabilities… seems easy enough. 

 

1.2 Combustion Instabilities 

As someone who has gone camping probably knows, or perhaps a s’mores 

connoisseur, when gathered around the hearth there is a distinctive sound made by the 

fire. This fact is also elaborated upon by writers who often times describe fires as 

“roaring”. Flames can be thought of as volumetric sources, and the fundamental 

mechanism for this sound generation is the unsteady gas expansion as the mixture reacts. 

In fact a whole discipline called thermoacoustic instabilities encompasses the study of 

acoustic oscillations excited by thermal sources. Focusing specifically on combustion-

driven oscillations, denoted “singing flames” by early scientists, studies found that 

spontaneous acoustic oscillations of considerable amplitude could be generated when a 

flame was confined inside a larger-diameter tube [4]. For unconfined flames, this is 

manifested as broadband noise emitted by turbulent flames, while for confined flames, 

these oscillations generally manifest themselves as discrete tones at the natural acoustic 

modes of the system. 
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Combustion instabilities, characterized by large-amplitude oscillations of one or 

more natural acoustic modes of a combustor, are spontaneously excited by a feedback 

loop between an oscillatory combustion, i.e. heat release, process and one more of these 

natural acoustic modes, as depicted in Figure 1.3. They have been encountered during the 

development and operation of various propulsion devices, power generation equipment, 

heating systems, and industrial furnaces and are problematic because of the large 

amplitude pressure and velocity oscillations they produce. Having the potential to be on 

the order of thousands of psi swings in fractions of seconds, these oscillations can result 

in thrust oscillations, severe vibrations that interfere with control-system operation, 

enhanced heat transfer and thermal stresses to combustor walls, oscillatory mechanical 

loads that result in component fatigue, and flame blowoff or flashback [6]. All of these 

issues may result in premature component or system wear leading to costly shutdown or 

even catastrophic failure. Thus, in order to develop efficient, safe, and eco-friendly 

combustion systems, the understanding of combustion instabilities is a key step. 

          
Figure 1.3. Schematic depicting the combustion instability feedback loop (left) and an image 

of gas turbine blade damage due to combustion instabilities (right). 
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1.2.1 Issue Realization 

Early detection of combustion instabilities dates all the way back to 1777, and 

relied on sensory observation [7]. It was found that confining gas flames in a larger-

diameter tube could yield spontaneous acoustic oscillations of considerable amplitude, 

denoted “singing flames”. Unknowingly only studying half of the feedback loop (the 

same half that is focused upon in this thesis), in 1858 the sensitivity of flames to music 

was noted, denoted “dancing flames”, as musical party guests observed the flame 

exhibiting “pulsations exactly synchronous with the audible beats”, so significant at times 

that “a deaf man might have seen the harmony” [8]. 

With the development of high-intensity combustion systems, combustion 

oscillations moved beyond academic curiosity and party tricks. Detrimental, combustion-

driven oscillations have been observed in boilers, blast furnaces, and a variety of other oil, 

coal, and gas-fired heating units causing serious safety and performance concerns [9]. 

Landfill gas flares have been historically susceptible to these, while burning off excess 

gas. Instabilities have also been a major challenge for aircraft and rocket propulsion 

system development, causing numerous delays, destroyed hardware, and wasted money.  

The iconic F-1 engine, responsible for powering the Saturn rockets and placing 

men on the moon, experienced tremendous instability problems during its development. 

Instabilities with amplitudes up to 100% of the mean combustor pressure (2000+ psi) 

with frequencies in the 200-500 Hz range were experienced, and due to the lack of proper 

understanding of the instability dynamics at the time, engineers had to rely on expensive 

repeated trial and error experiments (3000+ full scale tests) to mitigate the issue and 

make the rocket functional [6]. The solution involved welding a series of baffles to the 
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injector face in order to prevent the excitation of transverse acoustic oscillations. Pogo 

oscillations are another potentially dangerous type of self-excited combustion oscillation 

occurring in liquid fuel rockets, responsible for delaying several rocket launching 

missions over the past few decades [10]. In addition, many solid rockets have 

experienced instability issues during their development and life, such as the Space Shuttle 

solid-propellant rocket boosters, Standard Missile (SAM), Sidewinder (AIM), Harm 

(ASM), Trident (SLBM), Hellfire (ASM) and Minuteman (ICBM) just to name a few 

[11]. 

For example, in rocket engines, it is known that longitudinal oscillations cause 

severe damage to the combustion chamber. Figure 1.4 shows the time trace of unsteady 

pressure inside a solid rocket motor, where two pulses are utilized to excite instabilities. 

The first small pulse excites the tangential oscillation, which is small compared to the 

mean pressure. However, the second larger pulse excites longitudinal oscillations, leading 

to significant fluctuations in the pressure, along with an increase mean pressure. This 

depicts an example of a subcritical instability, where the system is stable with respect to 

small-amplitude disturbances but is unstable when subjected to larger disturbances. This 

illustrates the high sensitivity of rocket systems to small external disturbances, such as 

fuel composition, something passing through the nozzle, or sudden changes in burning 

conditions. 
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Figure 1.4. Example of solid rocket motor experience from Blomshield [12].  
 

Gas turbines and advanced high-speed propulsion devices are not exempt from 

having to deal with the issue of combustion instabilities, and rather the modern design 

and operation of these technologies places themselves directly in harm’s way. In the 

context of gas turbines, burning at lean operating conditions is attractive from the 

standpoint of reduced NOx formation, whereas in propulsion devices, such as ramjet 

engines, burning under near-stoichiometric conditions is desirable as this leads to 

enhanced heat release and therefore high performance. However, both of these desired 

results push towards operating conditions where the onset of combustion instabilities is 

prevalent. 

Combustion instabilities will continue to be a challenge as long as heat release is a 

dominant energy source for our advancing world. Early attempts at mitigating and 

avoiding these instabilities involved costly “trial and error” methods or tests. A 

rudimentary diagnostic technique consisted of detonating small explosive charges outside 

the combustion chamber while the engine was firing, allowing engineers to observe 

chamber response to sudden condition fluctuations. However, in order to prevent 

detrimental safety or performance concerns, or to eliminate the chance for catastrophic or 



 10

mission failure, more robust diagnostic, issue identification, and, prediction techniques 

are required. These will aid in the understanding of combustion dynamics, allowing better 

energy extraction from chemical reactions in clean, safe, and efficient way. 

 

1.2.2 Understanding the Combustion Instability 

As a starting point for understanding combustion instabilities, we can look no 

further than a park playground. A playground swing is a perfect example of a resonant 

system, with its own (rider independent) resonant, or natural, frequency given by: 

 
1

2

g
f

Lπ
=  (1.1) 

assuming small displacement amplitudes. Certain forcing patterns, pulsing in sync with 

the swings back and forth cycle, can be applied to the swing to make it resonate, 

increasing its amplitude with each cycle. It only takes a very small force, but it has to be 

well-timed to get an enjoyable ride. Luckily, this particular system is naturally limited, 

Eq.(1.1) losing validity at large swing amplitudes, saving the rider from spinning over the 

top or flying off the swing.  

This same principle applies to combustion systems. Each combustion chamber 

contains various natural acoustic modes, which are geometry dependent, and the forcing 

pattern comes from the flame’s fluctuating heat release, i.e. acting as an unsteady source 

of volume or sound. Lord Rayleigh was the first one to take note of this effect, stating the 

conditions under which a periodic heat addition process adds energy to acoustic 

oscillations, yielding self-excited oscillations, in his book, The Theory of Sound [13]: 
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“If heat be periodically communicated to, and abstracted from, a mass of air 

vibrating (for example) in a cylinder bounded by a piston, the effect produced will 

depend upon the phase of the vibration at which the transfer of heat takes place. If heat 

be given to the air at the moment of greatest condensation, or be taken from it at the 

moment of greatest rarefaction, the vibration is encouraged. On the other hand, if heat be 

given at the moment of greatest rarefaction, or abstracted at the moment of greatest 

condensation, the vibration is discouraged.” 

 

This criterion, named the Rayleigh criterion, states that a periodic heat-transfer 

process, such as combustion, locally adds (removes) energy to (from) the acoustic 

disturbances if unsteady heat release and unsteady pressure are in (out of) phase, 

represented as 0 < |θpq| < 90 ( 0 < |θpq| < 90 ). However, simply transferring energy from 

the combustion process to the acoustic field, does not necessarily imply that the 

combustor is unstable. Acoustic oscillations are spontaneously excited in a combustor 

only when the rate of energy supplied by the periodic combustion process to the acoustic 

field is larger than the rate at which acoustic energy is dissipated within the combustor 

and/or transmitted through its boundaries [6]. This idea can be formulated mathematically 

as [9]: 

 ( , ) ( , )d  d ( , )d  di
iV T V T

p x t q x t t V L x t t V′ ′ > ∑∫∫ ∫ ∫  (1.2) 

where p’(x,t) and q’(x,t) are the combustor pressure and heat-addition oscillations 

respectively, and Li(x,t) are the various acoustic energy loss processes. The left hand side 

of this expression shows Rayleigh’s integral, which is positive (negative) if the 

combustion process adds (removes) energy from the acoustic oscillations locally. The 
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sign of this integral depends on the phase difference between the heat-release and 

pressure oscillations and is positive (negative) when this phase difference is smaller 

(larger) than 90 deg. 

Figure 1.5 depicts the generic feedback loop responsible for combustion 

instabilities schematically. It consists of a series of sequential events, wherein 

fluctuations in the velocity and/or thermodynamic-state variables induce a fluctuation in 

the heat-release rate; the heat release fluctuation then excites acoustic oscillations; and 

the acoustic oscillations generate the velocity and thermodynamic state variable 

fluctuations, thus closing the feedback loop. As will be discussed later, this thesis focuses 

on the flames response to velocity fluctuations, identified with a red arrow in Figure 1.5. 

 

Figure 1.5. Schematic depicting the generic feedback loop responsible for combustion 
instabilities. 
 

Depending on the relative magnitudes of the energy added and removed from the 

acoustic oscillations, the amplitude of oscillations may decrease, remain constant, or 

grow during each cycle of this loop, the latter of which are denoted as combustion 

instabilities [6]. Some mechanisms, participating in the tug of war for stability, capable of 

adding and removing energy from an unstable mode are shown in Table 1.1. The 
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particular driving mechanism of interest in this study is, once again, denoted in red. If 

only a small amount of available energy (sometimes less than one percent) is diverted to 

an acoustic mode, combustion instability can be generated. 

 

Table 1.1. Mechanisms capable of driving/damping combustion instabilities 

Driving mechanisms Damping Processes 
Fuel feed line-acoustic coupling Viscous and heat-transfer damping 
Equivalence-ratio oscillations Convection and/or radiation 
Uneven atomization, vaporization, mixing Transfer of energy between acoustic modes 
Oscillatory flame-area variation  
Vortex shedding  

 

Thus, on the surface, it seems that combustion instabilities are easy to identify and 

understand, requiring only knowledge of the pressure and unsteady heat release, along 

with a plug-and-chug evaluation technique for Eq.(1.2). This however, is not the case, 

and would make for a rather boring thesis. Although the above discussions pinpoint the 

basic components that induce the dynamic instability, the problem of understanding and 

modeling, is a precise quantification of both the dynamics of these individual components 

and of all of the coupling mechanisms between them to produce the stability behavior.  

Complex intra-modal coupling processes occur at boundaries, in regions of flow 

inhomogeneity, and through nonlinearities, altering the individual oscillatory parameters. 

In addition, several unsteady flame-flow interactions, acting over a large range of scales, 

contribute to the overall combustor dynamics, such as acoustics, fluid dynamics, transport 

processes, chemical kinetics, flame kinematics, heat transfer, feedline dynamics of the 

reactants, and atomization or vaporization dynamics. Adding to the complexity, these 

components then couple with each other in variety of different ways. Two such coupling 

schematics are illustrated in Figure 1.6. 
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Figure 1.6. Schematic depicting the physical mechanisms through which velocity (left) and 
acoustic pressure fluctuations (right) lead to heat release oscillations. Note the velocity mechanism is 
referred to within the acoustic schematic [4]. 
 

1.2.3 A Daunting Task 

An accurate and detailed modeling of such a complex system with all of its 

couplings is an extremely challenging task. Dynamic models that quantify all of the 

interactions and predict all system properties have to include an extremely large range of 

time and length scales. Therefore, these various coupling mechanisms and pathways, 

depicted in Figure 1.6, are dissected and scrutinized one by one. For example, as it is the 

focus of this thesis, the key physical process behind the mechanism by which flow 

perturbations lead to heat release oscillations is the distortion of the flame surface by the 

oscillatory flow, leading to oscillations in burning area [14, 15]. These distortions in 

flame surface then lead to additional secondary effects through unsteady burning rate and 

stretch. This is the reason this study encompasses both space-time and (then) heat release 

dynamics. 

Thus, to make this work empirically relevant, various basic instability 

characteristics must be predicted and understood, such as the frequency of the oscillations, 
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the conditions under which the oscillations occur, and their final limit-cycle amplitude.  

This implicitly requires a sound understanding of the processes responsible for driving 

and damping along with oscillation signal properties, such as spatio-temporally varying 

magnitude and phase. The introduction of instability active control, which is a current 

topic of interest for many, adds the additional requirement for the study of actuator 

dynamics, and its interactions with all of the above. 

The saving feature in such a daunting task is the strong spatial coherence that 

accompanies several of the thermoacoustic instabilities, so that approximations such as 

acoustically compact or infinite chemistry flames can be utilized to bring order to the 

chaos. Additionally, definitions and analysis tools have been discovered to aid 

understanding of these interactions, such as flame transfer functions. Dowling developed 

a theory for nonlinear oscillations [16], exploiting the fact that the main nonlinearity is in 

the heat release rate, which essentially saturates, and the amplitudes of the pressure 

fluctuations are sufficiently small that the acoustic waves remain linear. Thus, gas 

dynamic processes essentially remain in the linear regime, even under limit cycle 

operation [17]. For a linear process, a transfer function is a useful tool to understand 

instabilities as it provides the input-output relationship between a forcing parameter and 

heat release oscillations, as a function of forcing frequency. Since this function answers 

the majority of the practically relevant requirements mentioned before, identifying the 

heat release transfer function due to flow oscillations becomes the major objectives for 

understanding combustion instabilities.  



 16

1.3 Non-premixed Combustion 

Used throughout our world are two fundamental types of flames, as shown by 

Figure 1.7: non-premixed (diffusion) and premixed. Although these two flames may 

appear similar at times in appearance and effect, they are fundamentally different 

processes, with different physics, governing equations, and flame dynamics. In non-

premixed flames, being the focus of this thesis, it is the rate of molecular diffusion, rather 

than chemical kinetics, which greatly controls the flame position and burning rate. The 

pure fuel migrates towards the combustion zone, as it does for premixed flames, however 

due to the lack of oxygen the fuel is pyrolized and broken down into smaller molecules 

and radicals. This process is the cause of soot formation which gives the distinctive bright 

yellow color to the majority of these flames. As the products of pyrolysis approach the 

combustion zone they encounter increasing levels of oxygen until the optimal, i.e. 

stoichiometric, ratio of fuel-to-air is obtained to perform the stoichiometric oxidation 

reactions. 

 

Figure 1.7. Spectrum of flames of the combustion of methane (CH4), from pure non-
premixed/diffusion flames on the left to pure premixed flames on the right [18]. 
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1.3.1 Burning with Relevance 

With the recent restrictions on emissions, there has been a migration in 

combustion technologies towards premixed combustion. Having the ability to operate in 

the lean or rich regimes, the flame temperatures can be reduced, and thus the NOx 

emissions minimized. However, this does not mean that non-premixed combustion 

systems are completely obsolete. Having the advantages of substantial stability and fuel 

flexibility, there is a place for these systems in current and future technologies. The 

allowance for fuel diversification is extremely appealing, and is in fact the cornerstone of 

some industries and various technology development teams. For example, many test fuels, 

such as ethanol-gasoline, jet-algae, and biofuel blends, are studied first in non-premixed 

combustion systems. In addition, they are largely more unexplored than premixed 

combustion systems, and throw in the additional complications of unburned 

hydrocarbons and particulate matter to the chemical kinetics, and thus make for an 

exceptional thesis topic. 

Some examples of diffusion flame based combustion systems, ranging from 

simple to complex, are candle flames, wood fires/stoves, coal burners, residential gas 

applications, radiant burners for heating, pulverized coal combustion, industrial furnaces, 

and solid/liquid propellant rocket engines. In addition, diffusion flames are a key 

component of liquid-fueled, partially premixed, and diesel combustion systems, as well 

as being effectively utilized as pilot systems to stabilize premixed systems where 

industrial operators routinely note the profound influence of non-premixed pilot fuel on 

combustor oscillation limits. 
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Although, the majority of gas turbines currently manufactured are lean-premix 

staged combustion turbines, “conventional” gas turbine systems have historically 

operated with diffusion flame combustion, where the fuel/air interaction and combustion 

take place simultaneously in the primary combustion zone. This, however, generates 

regions of near-stoichiometric fuel/air mixtures where the temperatures, and thus NOx 

emissions, are higher. Figure 1.8 shows simplified versions of these two gas turbine 

systems. 

       

Figure 1.8. Simplified depictions of conventional (non-premixed) combustion and dry low 
NOx (lean-premixed) combustion gas turbine systems [19]. 
 

Combustion systems that put system stability, design simplicity, or fuel flexibility 

as main priorities will continue to utilize non-premixed combustion technologies. Also 

since lean-premixed gas-turbines only became available within the past two decades, any 

still operational turbines manufactured prior to this will still operate in this non-premixed 

regime. In addition, designs and ideas for next-generation gas turbines are continuing to 

utilize various degrees of non-premixed combustion. A number of new combustion 

systems have been recently introduced, some available in the market and others under 
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development, such as staged air combustion, have the advantages of operating in full 

diffusion mode or in partially premixed mode, hydrogen diffusion flame array injectors, 

and reduced NOx diffusion flame combustors [20]. 

1.3.2 Past and Existing Studies 

This thesis describes and analyzes the dynamics, both space-time and heat release, 

of non-premixed flames responding to uniform bulk fluctuations in flow velocity. A great 

deal of literature on the linear and nonlinear response of premixed flames to flow 

disturbances and the combustion instability characteristics of lean, premixed combustors 

has been generated over the last decade [4, 21-27]. Additionally, substantial work has 

been done to obtain the flame transfer function characteristics of premixed flames. This 

includes experimental investigations of various nozzle and combustor configurations [25, 

28-31], numerical simulations with detailed binary diffusion and turbulence [32-34], and 

modeling efforts using the G-equation for fuel-air ratio, velocity, and pressure 

fluctuations [25, 27, 29, 31, 35-39]. As a result of this work, the controlling physics in 

laminar flames appears to be understood and capabilities have been developed to predict 

the space-time dynamics of the flame position and heat release [21, 40]. Furthermore, 

while some fundamental questions remain in highly turbulent flames, exciting progress 

has been made in obtaining similar predictive capabilities in turbulent flows as well [41]. 

In contrast, the behavior of non-premixed flames responding to flow disturbances, 

both in terms of the space-time reaction sheet dynamics, as well as the temporally 

varying heat release, both local and spatially integrated, is much less well understood.  

A number of studies have delved into the natural dynamics of non-premixed 

flames. In the buoyancy dominated regime where the Froude number, 2
0 / (g )fFr U R=  , is 
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not too high, these flames are globally unstable and exhibit narrowband oscillations due 

to the periodic generation and traveling of vortical structures vertically along the flame. 

These are manifested as flame flicker at a low frequency (~12Hz) that is remarkably 

insensitive to flow rate, burner size, and gas composition [42, 43]. The amplitude of 

spatial flickering is, however, a function of these parameters. Recent studies have shown 

that this global instability disappears at small Froude numbers, or when the flame 

becomes momentum dominated at large Froude numbers [44]. Additional studies have 

investigated instability (oscillatory) onset and mitigation characteristics, with dependence 

upon Damköhler and Lewis numbers [45-47]. 

External excitation of non-premixed flames, such as by acoustic forcing, has also 

been studied extensively, often with the motivation of enhancing mixing and/or 

decreasing pollutant emissions. When subjected to external excitation, lower Froude 

number, nominally unstable flames exhibit a variety of response features that depend 

upon the frequency and magnitude of the excitation. For example, Chen et al. studied the 

response of a non-premixed flame exposed to acoustic excitation [48], showing 

oscillations in both the fuel jet flow and flame sheet position, both of which were 

dependent upon the forcing frequency and amplitude. They and others [49-51] also 

showed nonlinear behavior, such as the presence of sum and difference frequencies of the 

buoyant instability and external forcing frequencies, subharmonics and harmonics of the 

excitation frequency, and frequency locking – i.e., the disappearance of oscillations 

associated with the natural buoyant instability at sufficient excitation amplitudes. For 

example, Williams et al. [52] explored this lock-in behavior, showing that forcing the fuel 

stream at a frequency close to the natural buoyant instability frequency was accompanied 
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by the presence of large vortices on the air side of the flame, coupling the overall flame 

response to the forcing frequency. They also observed that a related lock-in phenomenon 

could happen at the first subharmonic of the forcing frequency, when the forcing 

frequency was close to twice the natural instability frequency. 

As a result of the strong effect of forcing on the ambient/co-flowing air and its 

entrainment with the fuel jet, a number of studies have also noted significant influences 

on soot and NOx production from the flame [53-57] – sensitivities which are much 

stronger in non-premixed flames than in premixed flames. For example, Saito et al. [53] 

showed that soot can be suppressed in acoustically excited non-premixed flames, with 

reductions of up to 50% in a laminar flame, and 90% for a turbulent flame. 

Additional studies have looked into the dynamics of laminar, momentum 

dominated flames, focusing more on the flame’s space-time dynamics due to velocity and 

equivalence ratio perturbations. The interaction between the acoustic field and the flame 

produces a spatially varying, oscillatory velocity component that is normal to the flame, 

causing wrinkling, as well as oscillatory reaction and heat release rates [56, 58]. Dworkin 

et al. [58] showed how large amplitude modulation can lead to pinch-off of the top 

portion of the flame into a pocket. Such pinching off only occurs below a certain 

frequency of excitation and above a critical amplitude for that frequency. In addition, 

they showed that the magnitude of the flame wrinkling diminished and was smoothed 

with downstream distance. Tyagi et al. [59] also investigated velocity forcing numerically, 

presenting results for the flame’s heat release transfer function, a quantity which indicates 

the input-output relation between forcing and unsteady heat release. Significantly, they 

observed the effects of Peclet number, Pe, forcing amplitude, ε, and fuel-port half width, 
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Rf, on the heat release transfer function response amplitude and phase. For significant 

forcing amplitudes, the magnitude of the response function decreased and its phase 

(magnitude) increases with Pe. In addition, the magnitude of the response function 

decreased monotonically as the excitation frequency was increased, and the onset of the 

frequency rolloff was observed to scale as 1/Pe. 

A number of analytical studies have also considered the response of non-

premixed flames. A significant theoretical literature on the unforced problem exists and, 

indeed, the Burke-Schumann flame is a classic problem [55, 60, 61]. Several treatments 

of the forced, unsteady problem have been reported, in particular those of Sujith [62-64], 

Chakravarthy [59, 64], Juniper et al. [65], and Magina et al. [66, 67]. These studies have 

analyzed this problem within the infinite reaction rate, Z -equation formulation for the 

mixture fraction. Solutions were developed for the flame position and heat release for 

several problems, including the flame response to axial velocity and mixture fraction 

oscillations, some examples of which are shown in Figure 1.9.  

     
Figure 1.9. Early hand-plotted computed steady flame locations [61] (left) and modern 

computed forced flame locations over a forcing cycle [59] (right).  
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Although various mixture fraction field solutions exist, all the results regarding 

steady and instantaneous flame position are implicit. This is due to the complex form of 

the field solutions, generally involving infinite summations or error functions. Thus, work 

is still needed to develop analytical explicit solutions for the for the fluctuating flame 

dynamics.  

1.4 Overview of Present Work 

The objective of this research is to understand the spatio-temporal and heat 

release characteristics of harmonically forced non-premixed flames. This includes the 

mechanisms by which flame surface wrinkles are excited, transported, and smoothed, as 

well as their influence upon local and global heat release. Throughout the entirety of this 

work, comparisons will be made to premixed flame systems with similar configurations. 

The remainder of this thesis is arranged as follows.   

Chapter 2 starts with discussing the governing features and properties of field and 

surface equations. The mixture fraction governing equation, i.e. Z -equation, is 

introduced and its features are compared with those of the premixed G-equation. The 

additional complexity of the non-premixed problem is discussed along with the 

complications of iso-surface dynamics. The various analytical and numerical solution 

methods are also mentioned. Additionally, an approach similar in methodology to the 

way premixed flame dynamics are studied, is investigated, wherein a governing partial 

differential equation for the flame wrinkles is obtained, and the explicit dynamical 

equations obtained directly. 
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Chapter 3 through Chapter 5 present the majority of the new analytical and 

numerical findings of this work, presented in order of increasing complexity. Chapter 3 

elucidates isothermal diffusion flame dynamics, discussing the spatio-temporal and heat 

release dynamics of harmonically forced non-premixed flames. Various geometries are 

investigated, such as slot and cylindrical systems, exposed to various forcing 

configurations. The limiting case of Pe�∞ is then isolated to build intuition and ease of 

understanding. Chapter 4 builds upon this by investigating the effects of axial diffusion, 

anisotropic diffusion, and, multi-dimensional forcing effects. Accompanying numerical 

investigations are performed on an alternate extended inlet geometry to identify and 

capture specific dynamical features. Additionally, the Pe>>1 limit is then explored so 

that various wrinkle dynamic behaviors are easily identified. Chapter 5 introduces various 

asymptotic analyses on the heat release to investigate the rich low and high St asymptotic 

trends. 

Chapter 6 then rounds out the study, transforming this thesis from a spear to a 

trident, by investigating non-isothermal diffusion flame dynamics via experimental and 

accompanying computational efforts. Details regarding the developed forced non-

premixed flame experimental setup are provided, along with the results of various 

diagnostics methods. Improved analytical models were developed to incorporate more of 

the “real” effects observed from the experimental results, in addition to enhanced 

computational models, utilizing experimental results as model inputs to predict flame 

dynamics. Comparisons between experimental results and the various models developed 

was done throughout.  
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1.5 The BIG Picture 

So with the threatening emission restrictions and shifting public opinions, it could 

seem that the end of combustion driven power systems is near, and these thesis results 

irrelevant. However, this is not the case, as internal combustion engines are not going 

away anytime soon. In fact, a recent report from former U.S. Secretary of Transportation, 

Norman Mineta, stated that “the quickest and most cost-effective way to achieve our 

energy usage goals is through faster adoption of fuel-efficient downsized gasoline and 

diesel engines” [68]. Volkswagen’s CEO, Martin Winterkorn, Fords vice president of 

powertrain engineering, Joe Bakaj, and various other powertrain companies seem to 

agree [69]. 

So what justifies these claims, regarding combustion power systems continued 

and unabated dominance as the powertrain of choice for the future, over existing 

alternative systems, such as battery/electric powertrains? The answer lies within the 

thermodynamic properties of the various fuel sources. Carbon-based liquid fuels have 

superior energy densities, both gravimetric and volumetric, as well as storage and 

transportation advantages over most alternative fuels, including batteries. Additionally, 

they are easily accessible and cost effective.  

Figure 1.10 shows the energy densities of various fuels used throughout our 

modern world. Those located closer to the top-right corner have higher energy densities. 

Notice how, diesel and gasoline fuels have roughly 100 times the gravimetric and 

volumetric energy density as a lithium-ion battery. The batteries of the Tesla Roadster, 

for example, weigh 450 kg and have the same amount of energy capacity as less than 1.5 

gallons (4.5 kg) of diesel fuel [68]. This additional weight and size to vehicle powertrains 



 26

makes them less efficient and convenient. Moreover, batteries are very expensive, costing 

around $5,500, $9,000, and $40,000 per unit for the Nissan Leaf, Chevy Volt, and Tesla 

batteries respectively, and have strict regulations on disposal. 

 

Figure 1.10. Plot of the energy densities, both gravimetric and volumetric, for various 
common fuels [70]. 

 

Additional advantages of combustion power systems is that liquid hydrocarbon 

fuels, such as diesel and gasoline, are easily transported, widely available (as the 

infrastructure is already existing) and can be re-fueled quickly (minutes versus charging 

which takes hours), advantages which do not apply to their battery-electric counterparts. 

These points, plus the combination of performance, low cost and fuel flexibility of 

internal combustion engines make it likely that they will continue to dominate the vehicle 

fleet for “at least the next several decades”. Gas turbines will also continue to be an 

important combustion-based energy conversion device for many decades to come, for 

aircraft propulsion, ground-based power generation, and mechanical-drive applications.  

Thus, combustion based power systems are here to stay for the foreseeable future, 

and non-premixed combustion is a key component of this functional process. Although 
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the task is well-defined, it is very complicated. To make clean, diverse, sustainable 

energy systems, avoiding combustion instabilities. These instabilities are dependent upon 

many factors, such as fuel type, combustor geometry, equivalence ratio, operating 

conditions, etc., which are constantly changing from design to design. Coupled with the 

fact that tightening emissions regulations are pushing towards operating under conditions 

where instabilities are prominent, make the need for understanding the dynamics and 

characteristics of combustion instabilities as important as ever. 
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CHAPTER 2 

Evolution of Fields and Iso-surfaces 

 

This chapter provides the building blocks and background of our modeling approaches by 

discussing the evolution of field equations and iso-surfaces. Decoupling the complex 

internal chemical kinetics from the flame dynamics, the flame front is often times 

assumed to be an infinitely thin surface within the flow field. Conserved scalars are 

extremely useful when investigating non-premixed combustion and flame dynamics 

problems analytically, as they can help eliminate chemical source terms from the 

governing equations, making them mathematically tractable. Naturally obtained as 

temporally varying field equations, implicit solutions are straightforward, however, 

converting these into meaningful explicit equations for the evolution of a specific iso-

contour, corresponding to the flame sheet, is a more complex challenge. This chapter 

discusses the dynamics and evolution of fields and iso-surfaces, from both a general 

mathematical standpoint, and specifically for combustion related systems. It concludes by 

introducing some key tools, techniques, and, variables, which will be used to study 

spatio/temporal flame response throughout the remainder of this thesis, along with some 

points to aid interpretation of the results to follow. 

2.1 Mixture Fraction Field Formulation 

To layman and experts alike, combustion is an intimidating topic to research and 

understand. It is a multicomponent reacting mixture problem, consisting of a blend of 

complex flow features, detailed chemical kinetics, expansive length scales, and 
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instabilities, making it challenging to understand physically, and even more so 

mathematically. Thus, in order to make this task analytically tractable, simplified 

governing equations expressing the conservation of mass, species, momentum, and 

energy must be obtained.  

For non-premixed combustion problems it is convenient to begin with the species 

conservation equation, given by: 

                                            ( )i
i i iv

t

ρ ρ ω∂ + ∇ ⋅ =
∂

�
ɺ                    (2.1) 

where i indicates the various species involved, iωɺ  is the chemical production rate, iρ  is 

the partial density, and iv
�

 is the species velocity. This species velocity can be 

decomposed into contributions due to convection, v
�

, and diffusion, iV
�

. Utilizing this 

along with the species mass fraction, /i iY ρ ρ= , results in a revised form of the species 

conservation equation: 
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where the material derivative has been used for simplicity. Derivations for the diffusion 

velocity exist, however they are implicit in nature and extremely complex, revealing the 

dependence of mass diffusion upon concentration gradients, pressure gradients, body 

forces, and temperature gradients [71, 72].  

Among these four processes, concentration diffusion dominates in most situations 

of physical interest. Thus neglecting the other contributions and assuming equal binary 

diffusion coefficients, Fick’s law of mass diffusion, lni iV Y= − ∇
�

W , can be obtained and 

utilized to cast the species conservation equation into its final simplified form: 
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The primary remaining difficulty in the solution of chemically reacting flows is 

the presence of the reaction term, which not only is nonlinear but also couples the energy 

and species equations [73]. In addition, this term is spatially variant, existing only at the 

flame sheet, whose spatio-temporal location is also an unknown. However, under certain 

conditions these quantities can be stoichiometrically combined such that the resulting 

term is no longer affected by chemical reactions in the flow, eliminating the compication 

of spatial sources and sinks. Such a combined quantity is called a conserved scalar or 

coupling function, and as the name reveals, this scalar property is conserved throughout 

the flowfield, existing on both sides the flame and having a constant integral.  

Some examples of these variables are elemental mass fraction, total enthalpy 

(assuming negligible radiation, viscous dissipation, and body forces) and mixture fraction, 

which will be utilized here. For the work presented in this thesis, the utility of the 

conserved scalar is that it can be used to generate a sourceless species conservation 

equation, containing no reaction rate terms, enabling analytical tractability. Although this 

work focuses on the species equation, if a unity Lewis number is assumed, then the 

energy equation can be cast into a similar form, making the analytical solution techniques 

developed equally applicable.  

To utilize this concept, consider an elementary system consisting of a pure fuel 

source and a pure oxidizer source, which react to form a single product. Recall that 

Eqn.(2.3) can be written for each of these simplified species. Adding this form of the fuel 

conservation equation, to the normalized product conservation equation results in: 
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where oxϕ  is the stoichiometric mass ratio of oxidizer to fuel. This choice of 

normalization can be understood by considering mass conservation for this combustion 

system, where fuel and oxidizer react at stoichiometric proportions to produce products, 

i.e. ( )Pr / 1F oxω ω ϕ− = +ɺ ɺ . The negative sign indicates that fuel and oxidizer are being 

consumed and products are being produced, but more importantly, the chemical 

production terms in Eqn.(2.4) cancel out and this equation becomes sourceless! 

The new grouping of species mass fractions that falls out is thus a conserved 

scalar, and can be denoted as the mixture fraction, defined explicitly as: 

  Pr

( 1)F
ox

Y
Y

ϕ
= +

+
Z                                              (2.5) 

Physically representing the amount of material having its origin in the fuel stream, this 

variable takes values of zero and unity in the pure oxidizer and fuel streams, respectively. 

Shown below is the general form of the species conservation equation, which utilizes the 

mixture fraction variable: 

          ( ) 0
D

Dt
ρ ρ− ∇ ⋅ ∇ =Z ZW              (2.6) 

Lastly, to be able to solve this problem, requires that the density be related to the 

mixture fraction. Rather than assuming constant properties, the less restrictive assumption 

of constant ρW  can be utilized, although it actually varies as T1/2 [70]. Using this, along 

with mass conservation results in the density canceling, and thus the final modified form 

of the mixture fraction equation is obtained, and will be referred to throughout this work 

as the Z -equation:                
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2.2 Comparison with Premixed Level-set G-equation 

The space-time dynamics of a non-premixed flame system, with equal species 

diffusivities, have been shown to be described by the mixture fraction field using the Z -

equation. The G-equation is an analogous expression for premixed flames in the reaction 

sheet limit [21, 71, 74], given by: 

 | |L

G
u G S G

t

∂ + ⋅∇ = ∇
∂

�
 (2.8) 

where SL is the burning velocity and the normal direction to the flame front is 

/ | |n G G= ∇ ∇�
. Products and reactants are assigned positive and negative G values, 

respectively. First formulated by Williams, the G-equation is used extensively for various 

premixed combustion problems such as theoretical flame transfer functions [27], 

theoretical turbulent consumption rate [75], and many computational fluid dynamics [23, 

76, 77].   

Both of these flame front kinematic equations relate the motion of the flame front 

with various flow/flame parameters implicitly, meaning the flamelet is treated as a gas 

dynamic discontinuity in three dimensional space described by a specific iso-surface 

within the field. This locus of points defining the flame sheet is given by the parametric 

equations ( ), stx t =�
Z Z  and ( ), 0G x t =�

 for non-premixed and premixed flames, 

respectively, and are general enough that they can handle flames with complex, multi-

connected surfaces. Simple schematics of the two fields are shown in Figure 2.1. 
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Figure 2.1. Schematic of the premixed G-field (left) and non-premixed Z -field (right) with 
denoted iso-contours representing the flame sheet. 

 
It is helpful to compare the dynamics and governing features of the Z -equation, 

given by Eq.(2.7) for non-premixed flames, with the G-equation, given by Eq.(2.8) for 

premixed flames. The two expressions have the same convection operator on the left-

hand side which illustrates the importance of flow perturbations in the direction normal to 

the flame sheet in pushing the flame sheet around. However, the right-hand sides of these 

two expressions are different. The premixed flame expression has the normal flame 

propagation operator, LS G∇ , while the non-premixed flame expression has a diffusion 

operator, ( )∇ ⋅ ∇ZW . This difference is significant and reflects, among other things, the 

fact that non-premixed flames do not propagate. Moreover, the premixed flame dynamics 

equation is nonlinear, while the non-premixed flame dynamics equation is linear 

(assuming that Un and W  are not functions of Z ). 

Another significant, yet subtle difference is that the G-equation is physically 

meaningful and valid only at the flame itself where ( ), 0G x t =�
 (i.e., although it can be 

solved away from the flame, the resulting G values have no physical significance [77]). 

Fuel 

Z > stZ    

Oxidizer 

Z < stZ    

Flame surface 

Z = stZ    
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In contrast, the Z -equation describes the physical values of the mixture fraction field 

everywhere. Thus the entire mixture fraction field must be solved in the non-premixed 

problem and the ( ), stx t =ɶ ɶ�
Z Z  surface extracted from the resulting solution field (which 

generally cannot be expressed explicitly). Consequently, developing explicit solutions for 

the non-premixed flame problem is substantially more difficult than for the premixed 

problem. This observation has important consequences for both solution approaches of 

these problems, as well as the ( ), stx t =
�

Z Z  flame sheet dynamics that are discussed in 

the next section. 

2.3 The Evolution of Surfaces 

Gaining both theoretical and experimental knowledge about the behavior of iso-

value surfaces in multicomposition fluid problems is an important issue [78]. This is 

especially the case when an attempt is made to understand and characterize turbulent 

combustion, where, for both non-premixed and premixed turbulent flames the factors 

controlling reactive species or temperature iso-concentration surfaces need to be clearly 

understood. Importantly, the behavior of these surfaces is strongly connected to the 

properties of transport phenomena at all scales of the fluid motion, information which is 

essential to understanding the dynamics of combustion instabilities.  

Several phenomena can be described, both physically and mathematically, in 

terms of surfaces within a laminar or turbulent fluid. Mixing layers, premixed flames, and, 

non-premixed flames fit into this class under material surfaces, propagating surfaces, and 

constant property surfaces, respectively [79]. Flamelet models constitute one of the most 

common approaches for computationally/theoretically analyzing and experimentally 
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investigating laminar, and especially turbulent, flames and combustion systems [80]. 

Based on the flame sheet assumption, which requires chemical reactions to occur with 

short length scales relative to the flow (turbulence), the flame is confined to relatively 

thin layers within the flow field and the reaction zone is considered a burning surface. For 

the turbulent case, this burning surface is simply corrugated and translated by the 

turbulence, with no change to the internal flame structure.  

This thin flamelet assumption is utilized for both premixed and non-premixed 

flames, with the distinction being the segregated quantity or parameter. For premixed 

systems this surface separates unburnt reactants from burnt products, while for non-

premixed systems this surface separates fuel species from oxidizer species. In this case, 

the reaction sheet can be referred to as a stoichiometric surface, where the reactants meet 

in chemically/atomically ideal proportions for combustion. Being the topic of this thesis, 

this section discusses some basic features of the dynamics of surfaces in the fast 

chemistry, thin reaction sheet limit.  

Some existing studies devoted to iso-surface dynamics and the derivation of 

parametric transport (evolution) equations, characterizing their physical properties, have 

been based on simple geometrical considerations [81], while others have utilized coherent 

flame models [82], and probability density function (pdf) or surface density function (sdf) 

formulations [78]. The pdf concept provides a one point statistical description of a 

variable, such as the temperature or concentration level of a chemical species, and has 

been shown to be an efficient tool for studying highly non-linear problems involving 

reactive flows. This approach has great potential due to its enabling the inclusion of 

detailed chemistry in a closed form. As will be discussed in depth, the pdf and sdf are 
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transported in scalar space by the same mechanism, depending upon the mean 

(conditional and surface, respectively) of the quantity representing the imbalance 

between diffusion and the reaction that characterized the internal structure of the reactive 

layers [78]. This surface-specific imbalance term, however, is dependent upon the 

physics, i.e. mathematical type, of that surface. 

The preceding sections discussed the formulation of fields through which the iso-

surfaces were to be tracked for both premixed and non-premixed flames. They utilized 

different conservation equations to derive their respective governing field equations, yet 

the end task was the same; tracking the evolution of an iso-surface in space and time 

within a domain. Thus, here we discuss some generalizations of these surface dynamics. 

The local geometry of surfaces is described by the spatiotemporal surface element 

properties, consisting of position, surface normal direction, principal curvatures, and 

fractional area increase [79]. Exact evolution equations for these properties can reveal the 

effects of various physical processes, such as straining and surface propagation. This is 

convenient, since the two key elements of surfaces, with regards to flame dynamics, are a 

representative speed, with respect to the flow, and a position that characterizes the flame 

wrinkling. These surface elements retain their identity during the flame development, 

being strained in their own plane by the fluid motion, a process that not only extends their 

surface area, but also establishes the rate at which a flame element consumes the 

reactants. Thus, the flame density and mass fractions of reactants are described by non-

linear diffusion equations, where for the reactant equations each contain a consumption 

or production term proportional to the local flame density [82]. Additional parameters of 

interest, such as heat release, can be obtained through these surface dynamics as both 
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local and global parameters. As will be discussed in the following sections, spatially 

integrated heat release is an important quantity for acoustically compact flames, and as 

such the nonlinear scalar field equation governing the propagation of an unsteadily 

convected interface can be used to derive a convenient expression for the average volume 

flux through such an interface in a homogeneous flow field [83]. 

As mentioned, mixing layers, premixed flames, and, non-premixed flames can be 

investigated as material surfaces (involving the mixing of two bodies of fluid that initially 

contain uniform but different concentrations of a contaminant), propagating surfaces 

(involving a surface-normal passive Huygens propagation mechanism) and constant 

property surfaces, respectively. Physically interestingly and mathematically conveniently, 

all three types of surfaces can be uniformly regarded as propagating surfaces, where the 

front propagation speed, w, or as constant-property surfaces, where the dynamical 

surface, Ψ, is defined for each in Table 2.1 [79]. The left column shows the original 

surface type, while the other columns show the necessary w or /D DtΨ  required to be 

cast as a propagating or constant property surface, respectively. 

Table 2.1. Uniform casting of material, propagating, and constant property surfaces. 

 Treated as a Propagating 
Surface with… 

Treated as a Constant 
Property Surface with… 

Material Surface 0w=  
0

D

Dt

Ψ =  

Propagating Surface  D
w

Dt

Ψ = − ∇Ψ  

Constant-Property 
Surface /

D
w

Dt

Ψ= − ∇Ψ  
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The specified rate of propagation can be constant, as for a material surface where 

the surface point is also a material point, i.e. fluid particle, or can vary over the surface, 

as for a propagating surface. Many parameters, such as principal curvatures, principal 

directions, and, stretch factor are intrinsic properties of the surface, depending on the 

initial surface element position, yet independent of the parameterization [79]. 

Significantly, for a material surface, or propagating surface with constant w, the surface 

element equations are closed with respect to surface properties, and thus each surface 

element evolves independently; while a constant property surface evolves in time, being 

completely determined by the current property field at any instant, independent of the 

surfaces past history! This phenomena has been observed and derived in the study of 

combustion instabilities of premixed flames (and non-premixed flames), described as the 

flame response exhibiting limited “memory” [4]. Additionally, this has important 

implications for the solution methods, since rather than considering evolution equations 

for a constant-property surface, an alternative approach is to deduce the surface 

properties from the property field and its evolution [79].  

Considered here are surfaces that are initially “regular”, defined as having finite 

curvature everywhere with no-self intersections, critical points, or cusps [84], yet whether 

they remain regular is an important question regarding the behavior of the unique surface. 

A material surface remains regular, while a propagating surface can develop singularities, 

i.e. values of infinite local curvature, and self-intersections [79]. Once again for 

corrugated premixed flames, it is well known and understood how flame front 

propagation can lead to destruction of flame area, via kinematic restoration, producing 

trailing edge cusps [4]. As will be seen later, forcing complicates (yet still follows) this 
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behavior, producing multi-connected, i.e. segregated, material surfaces and constant-

property surfaces; a feature known as flame clipping for non-premixed flames, which 

occurs under certain critical conditions. 

Defining our normalized general scalar field as Ψ, a surface can be defined 

implicitly, through an equation of the form Ψ(Χ,t)= Ψdes, or explicitly, as Χ( x
�

,t), where 

the evolution of each respective entire surface is given by / t∂Ψ ∂  or / t∂Χ ∂ . 

Additionally, the evolution equation for the position of a surface is given by: 

 ( )( , )
( , ), ( , ) ( , )

d x t
v X x t t w x t N x t

dt

Χ = +
�

� � � �
      (2.9) 

where v
�

 is the medium velocity and N is the surface normal given by: 

        ( , )N x t
∇Ψ=
∇Ψ

�
      (2.10) 

From this, other various properties of the surface elements can be obtained, including the 

principal curvatures, principal directions, and the stretch factor [79].  

Refining our discussion to combustion applications, an important quantity of 

interest is the local imbalance between reactive and diffusive effects, denoted ( , )x tΨΩ �
. 

This parameter characterizes the inner structure of the reactive layers, and explains how 

diffusion at small scales, as well as mixing, are strongly related to the movement of the 

iso-surfaces. A transport equation for a diffusive and reactive scalar field (with 

convection) may be written as: 

  
( , )

( , )
D x t

x t
Dt Ψ

Ψ = Ω
�

�
      (2.11) 

Within a laminar premixed flame, the local imbalance between reactive and diffusive 

effects is responsible for the appearance of a self-induced propagation phenomenon; thus 
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iso-surfaces feature a self-propagation mechanism [78]. In the general situation of a 

reactive diffusive scalar, a relative progression velocity, ( , )S x tψ
�

, can be defined along 

the surface, and related to the fluid velocity and absolute velocity, resulting in:  

     ( , ) ( , ) ( , )x t S x t x tψΨΩ = ∇Ψ� � �
     (2.12) 

Combined with Eq.(2.11), this equation takes the same appearance as the G-equation, 

given by Eq.(2.8). For non-premixed flames, ( , )x tΨΩ �
 is fundamentally different, since 

casting this constant-property surface as a propagating surface, w takes a different form, 

as seen by Table 2.1. The curvature, N∇ ⋅ , can be expressed in terms of the scalar field, 

by using Eq.(2.10), and after manipulating the diffusive-reactive term, it may be 

organized as a function of curvature as:  

 [ ]1
( , ) ( , )x t x tρ ω

ρΨ ΨΩ = ∇ ⋅ ∇Ψ +� �
ɺW      (2.13) 

where ωΨɺ  is the surface reaction rate term. Combined with Eq.(2.11), this equation takes 

the same appearance as Z -equation, given by Eq.(2.7). Thus, the modeling of internal 

flame diffusion has to be achieved in a slightly different way for each modeling 

procedure, i.e. surface, based on the concept of a propagating front and the unique 

definition for the propagation speed, w.  

In addition to the local properties discussed, the evolution equations for global 

properties of level surfaces can also be expressed [85]. This is of particular interest for 

combustion systems, as total heat release and surface area are significant dynamical 

parameters of interest. The nature of the resulting equation to be established will be 

kinematic, expressing the time rate of change of global variables in terms of the 
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progression velocity and geometric parameters of the level surface. A global variable can 

be defined as: 

      ( , ) ( , ) ( )t f x t dA xΨ Ψ
ϒ Ψ ≡ ∫

� �
�      (2.14) 

where ( , )f x t
�

 denotes a scalar of Ψ, and is a smooth function of location and time. The 

contributions to the time rate of change of the global variable are; a convective transport 

term in scalar space and two source terms determined by the evolution of f and ∇Ψ , as 

can be seen with differentiation with respect to time [85]. 

Limiting our discussion to kinematic relations and assuming the scalar ( , )f x t
�

 

appearing in the global variable is governed by: 

  ( )i f
i i i

f f f
v W f

t x x x
ρ ρ ρ
   ∂ ∂ ∂ ∂+ = +   ∂ ∂ ∂ ∂   

ɺW      (2.15) 

then the dynamic equation for the global variable can be expressed as [85]: 

  

1
( )

( , )
( )

1 1
( )

ji
f i j

i i i i

i
i i i

vf v
W f f n n

x x x xt
dA x

t
W n f

x x x

ρ
ρ

ρ
ρ

Ψ
Ψ

Ψ

 ∂   ∂ ∂ ∂+ + − +    ∂ ∂ ∂ ∂   ∂ϒ Ψ  =  ∂   ∂ ∂Ψ ∂ + Γ +   ∇Ψ ∂ ∂ ∂    

∫

ɺ

ɺ
�

W

   (2.16) 

Various relevant parameters can be considered by this equation, such as global heat 

release and flame surface area, utilizing unique scalars, ( , )f x t
�

, for each.  

2.3.1 Surface Area Special Case 

Special cases of this equation can be derived for useful quantities, such as surface 

area, ΨT , which changes as a result of the deformation caused by the motion of the fluid 

and the dynamic change of the scalar field defining the iso-surface [85]. The dynamic 

equation for this variable can be obtained by setting ( ) 1f x =� , and is given as: 
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          ( )
1 1

ji
i j

i i

i

i i i

vv
n n

x x
dA x

t n
W

x x x
ρ

ρ

Ψ
Ψ

Ψ

∂ ∂ − + ∂ ∂∂  =  
 ∂  ∂ ∂Ψ ∂ + Γ +   ∇Ψ ∂ ∂ ∂    

∫
ɺ

�
T

   (2.17) 

where Γ  is an effective iso-surface diffusion term. Specifically, the surface area changes 

because of the rate of strain acting in the tangential plane, and the change of the scalar 

variable defining the level surface, however, both phenomena may increase or decrease 

the surface area; expansion or compression in the tangential plane will increase or 

decrease the surface area, respectively [85]. The dynamics of the scalar variable defining 

the iso-surface appear in Eq.(2.17) as molecular diffusion and source terms. Both may be 

positive or negative and hence, increase or decrease the surface area as time evolves.  

As it was shown to be an important controlling feature for the iso-surface 

evolution equations, the molecular diffusion term can be analyzed in more detail if the 

variation of density is disregarded and the diffusivity is assumed constant. It follows then 

that [85]: 

        
21 j i ji i k

i i j k i j

n n nn n n

x x x x x x

∂∂ ∂ ∂ ∂ Ψ∆Ψ = +
∇Ψ ∂ ∂ ∂ ∂ ∇Ψ ∂ ∂

    (2.18) 

The first term on the right is purely geometrical, depending only on the mean 

curvature, while the second term depends on the variation of the defining scalar normal to 

the iso-surface. Importantly, the effect of molecular diffusion on the surface area is not 

monotonic, as can be seen by utilizing mean curvature, κ , and recasting this equation as:  

   
2

2
2

1 2
4i

i

n

x n

κκ∂ ∂ Ψ∆Ψ = −
∇Ψ ∂ ∇Ψ ∂

     (2.19) 
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The first term on the right in this equation always monotonically alters the surface area 

(mean curvature being nonzero), but the second term may decrease or increase it 

depending on the signs of the normal derivative and the mean curvature. 

2.3.2 Flame Surface Dynamics 

In the fast chemistry limit, the reaction sheet collapses to a surface, a general 

condition for both flame types. Specific to non-premixed flames, this surface is defined 

by the equation ( ) ( )1 1, st Oxx t ϕ= = +
�

Z Z , being dependent upon the specific 

combination of fuel and oxidizer of the system, several of which are listed in Table 2.2. 

We define the instantaneous position of this reaction sheet by ( ),y x tξ= , which is shown 

in Figure 2.2 for representative two-dimensional premixed and non-premixed systems. 

 

Table 2.2. Stoichiometric mixture fraction values for various hydrocarbon fuels in air. 

Stoichiometric mixture fractions 

4, / 0.055st CH Air =Z  

3 8, / 0.060st C H Air =Z  

8 18, / 0.063st C H Air =Z  

  

 

 

 

 

   

Figure 2.2. Schematic of bluff-body stabilized premixed flame (left) and jet non-premixed 
flame (right) with its corresponding coordinates and flame front dynamical parameter, ξ(x,t). 
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Again, if the goal is to only consider the dynamics of the infinitely thin flame 

surface, then the space-time dynamics of the rest of the scalar field is of lesser interest. 

The premixed problem can resolve this issue by utilizing a useful transformation, 

( ) ( ), ,G x t y x tξ= −�
, which alters the G-equation into a differential equation in terms of 

the flame position, ξ.  Although the equation for the flame position becomes less general 

than the G-equation, requiring “single-valued” flames, it enables us to track the flame 

location explicitly  - note that in the G-equation, the flame position is an implicit function 

of G [24-27, 86]. Additionally, note that this substitution arbitrarily assigns values to the 

G field away from the flame itself, namely that G varies linearly with coordinate x away 

from the flame. Since the G field is completely arbitrary away from the flame, this is 

allowable. However, we cannot make an analogous substitution for the non-premixed 

system, such as ( ) ( ),, st y x tx t ξ= −
�

Z Z- , as this assigns values to the Z  field away from 

( ), stx t =
�

Z Z . As mentioned earlier, unlike the G-equation which is valid only at the 

flame front, the Z -equation describes the entire spatial distribution of the mixture 

fraction field. The implication of this fact is that the entire mixture fraction field must be 

solved and the ( ), stx t =
�

Z Z  surface extracted from the resulting solution field (which 

generally cannot be written as an explicit expression).   

This discussion reflects important underlying physics of the two flames. Consider 

a premixed and non-premixed flame embedded in a velocity field given by ( ), , ,u x y z t
�

, 

where the velocity field at the flame sheet is given by ( ), ( , , ), , uu x x z t z t uξ =� �
. The 

premixed flame dynamics are only a function of  uu
�

; this implies that for a given uu
�

, its 
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space-time dynamics are the same for a variety of different velocity fields ( ), , ,u x y z t
�

. In 

contrast, the space-time dynamics of the non-premixed reaction sheet are a function of 

the entire velocity field, ( ), , ,u x y z t
�

, not just its value at the reaction sheet. 

2.4 Dynamics Analysis Overview 

Being dependent upon the specific system geometry, flow conditions, and 

boundary conditions, the dynamics of the flame sheet can be extremely complex; even 

more so with the addition of forcing mechanisms, key to combustion instabilities. Thus, 

prior to diving blindly into various analytical, computational, and experimental solutions, 

it is helpful to introduce some of the various analysis techniques, procedures, and key 

variables fundamental to the understanding of non-premixed flame dynamics. 

Additionally, unique methods to interpret these results are presented, which clarifies the 

information being provided, and enhances its utility. 

2.4.1 Linearization and Key Variables 

The position of the flame front, denoted as ξ, is assumed to be a single-valued 

function of one less spatial dimensions than the geometry of interest, and time, t. 

Necessary in order to enable analytical tractability of the problem, this assumption only 

loses credibility for highly wrinkled flames, resulting from strong forcing or turbulence, 

or for extremely complex geometries, flow, or boundary conditions. Thus to ensure this 

condition remains valid and analytical progress possible, we focus on simple laminar co-

flowing non-premixed flames, exposed to small amplitude disturbances. 

As such, linearized solutions to the Z -equation are derived, valid in the limit of 

small perturbations. This can be done by expanding each variable as: 
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                 ( )( ) ( ) ( ) ( ) ( )0 1
, ,x t x x t= +� � �

         (2.20) 

Since the governing equation, Eq.(2.7), is linear, this procedure is not necessary in order 

to obtain analytic solutions for the mixture fraction fields, and in fact, this assumption 

was not made in the work by Balasubramanian and Sujith [62]. However, this expansion 

is useful in analyzing controlling features of the flame dynamics at the forcing frequency 

and, very significantly, it enables an explicit analytic expression for the space-time 

dynamics of the flame position, ( )1 ,x tξ , and spatially integrated heat release, ( )Q tɺ , 

which is otherwise not possible. 

As a note, often for the analytical solutions presented, a spatially and temporally 

invariant diffusion coefficient is utilized for simplicity, although the spatially dependent 

case is presented and discussed in a later chapter. 

Linearizing and neglecting higher order terms, the mixture fraction field in the 

absence of forcing can be obtained from Eq.(2.7) as: 

                                                               2
0 0 0 0u ⋅∇ = ∇� Z ZW                        (2.21) 

Similarly, the dynamical equation for the fluctuating component of the mixture fraction 

field is given by: 

                                           2 21
0 1 1 0 0 1 1 0u u

t

∂ + ⋅∇ + ⋅∇ = ∇ + ∇
∂

� �Z Z Z Z ZW W                     (2.22) 

It can be observed that these two dynamical equations show an interaction 

between convective and diffusive processes. This important balance reveals the natural 

way to non-dimensionalize these dynamical equations: 

                     
f

x
x

PeR
=ɶ                                  

f

y
y

R
=ɶ                       (2.23) 
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where the Peclet number, Pe, is a key parameter given by: 

                

,0
,

i
i j

j

u L
Pe =

W
                 (2.24) 

and where “i” and “j” indicate the direction of steady convection and diffusion of interest, 

respectively, and L is a physical length scale of interest. As our primary system of interest 

is an axially coflowing non-premixed flame system with fuel port radius Rf and isotropic 

invariant diffusion ( 1 0=W ), unless specified otherwise 0=W W  and:  

                

,0x fu R
Pe=

W
                 (2.25) 

This Peclet number physically corresponds to the relative time scales for convective and 

diffusive processes to transport mass over a distance Rf : 

                                                     
2

,0

,0

/

/
diffusion f x f

convection f x

R u R

R u

τ
τ

= =
W

W
                  (2.26) 

As such, the Pe >>1 limit physically corresponds to the limit where convective processes 

are much faster than diffusive ones. This is an important limit that will be discussed in 

depth in the upcoming chapters, yet for now it is sufficient to note that the solutions to 

Eqns.(2.21) and (2.22) in the Pe�∞ limit are equivalent to the solutions excluding axial 

diffusion effects. 

 Another important parameter used for describing oscillating flow mechanisms is 

the Strouhal number, St, given by: 

         ,
,0

f L
x

f L
St

u
=        (2.27) 

where similar definitions can be made based on forcing frequency form, such as linear or 

angular, and alternate length scales of interest, such as Rf and Lf. This number physically 
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corresponds to the relative size of the disturbance wavelength compared to the physical 

length scale of interest: 

                                                              
,0 ,0/x x

L L fL

L u f uλ

= =                   (2.28) 

and unless otherwise specified, ,0/f xSt fR u= . 

2.4.2 Space-time Dynamics 

As was stated previously, it is the dynamics of the reaction sheet, rather than the 

entire scalar field, which we are interested in. For non-premixed flames, this sheet is 

defined by the locus of points where ( ), stx t =
�

Z Z . Alternatively, the instantaneous 

position of this reaction sheet can be explicitly defined by the variable ξ , which 

successfully reduces the number of spatial dependent variables required. While Figure 

2.2 showed this value schematically, Figure 2.3 shows ξ  for two representative premixed 

and non-premixed experimental systems. 

 

                         

Figure 2.3. Experimental images of forced bluff-body stabilized premixed flame (left) and jet 
non-premixed flame (right) with its corresponding coordinates and flame front dynamical 
parameter, ξ(x,t). 

Additionally, due to the physical meaning of the Z -equation, explicit expressions 

for the flame position are not generally possible. However, this is where the assumption 

( , )x tξ
( , )x tξ
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of small disturbances becomes essential for analytical progress. Expanding the implicit 

equation for the fluctuating flame, ( ), stx t =
�

Z Z , in terms of Z and ξ , results in: 

                                        0 1 2, , stflame flame t flame t
+ + =Z Z Z Z                 (2.29) 

where these quantities are field variables evaluated at the specific flame location, general 

for a three dimensional system of arbitrary scalar orientation. As the utility of ξ  is that it 

reduces the order of the problem, in order to demonstrate its functionality we must focus 

on a specific case, i.e. system and scalar orientation; chosen to be the two-dimensional 

problem of ( , )x tξ  as shown in Figure 2.3, although the case of ( , )y tξ  and similar three-

dimensional orientations can be derived in a similar fashion.  

As such, expanding the implicit equation for the fluctuating flame in terms of 

Z and ( , )x tξ , results in: 

                 0 0 1 2 1 0

1 2 2 0 1 2

( , ( ) ( , ) ( , )) ( , ( )

( , ) ( , ), ) ( , ( ) ( , ) ( , ), ) st

x y x x t x t x y x

x t x t t x y x x t x t t

ξ ξ ξ ξ
ξ ξ ξ ξ ξ

= + + + = +
+ + + = + + =
Z Z

Z Z
   (2.30) 

where these quantities are field variables evaluated at the specific flame location, as a 

function of x. Furthermore, a Taylor-series expansion yields: 

          

0 0 1 0 0 1 0

2
2 0 0 1 0 0

3
1 1 0 2 0

( , ( )) ( ) ( , ( )) ( , ( ), )

1( ) ( , ( )) ( ) ( , ( ))2
( ) ( , ( ), ) ( , ( ), ) ( ) st

x y x x x y x x y x t

x x y x x x y x

x x y x t x y x t O

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ε

= + ∇ = + = +

+ ∇ = + ∆ = +

+ ∇ = + = + =

Z Z Z

Z Z

Z Z Z

     (2.31) 

 
where ε is the small amplitude parameter and ∇Z  is mathematically equal to / n∂ ∂Z . 

 Notice how grouping the leading order terms results in the following implicit 

equation for the steady flame position: 

               0 0( , ( )) stx y xξ= =Z Z       (2.32) 
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while the first order terms lead to the following explicit expression for fluctuating flame 

position: 

                                          1 0
1

0 0

( , ( ), )
( , )

( , ( ))

x y x t
x t

x y x

ξξ
ξ

== −
∇ =
Z

Z
      (2.33) 

Similarly, although not considered further in this work, second order terms are: 

  
2

1 0 0 1 1 0 2 0

2
0 0
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Thus, even though the steady state, 0ξ , and instantaneous, ξ , flame positions 

remain imprisoned in implicit equations, the dynamics of the flame fluctuations/wrinkles, 

1ξ , are explicitly available! Importantly, 1ξ  can be measured radially or normally to the 

mean flame surface in the direction of the oxidizer, indicated by a subscript. Generally 

throughout this work, the normal displacement, i.e. 1,nξ  , is utilized for quantifying flame 

motion due to the substantial change in the angle of the reaction sheet with axial location 

(in contrast, if flame motion is measured as radial displacement, its value is infinite at the 

flame tip). Once again, however, an explicit governing equation for 1ξ  cannot be 

obtained by plugging this expression into Eq.(2.22), since expressions as such are not 

valid: 

                                              0

0

1 , ( ),1

, ( ),

x y x t

x y x tx x
ξ

ξ

=

=

∂∂ ≠
∂ ∂

ZZ
       (2.35) 

Figure 2.4 shows a representative two-dimensional forced mixture fraction field, 

with representative steady and instantaneous stZ  contours denoted by red and black lines, 

respectively. Additionally, the steady flame location is depicted, along with the normally 

and radially defined fluctuating wrinkle parameters.  
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Figure 2.4. Representative two-dimensional non-premixed flame mixture fraction field (left) 
with steady state (red) and instantaneous (black) flame contours denoted. A close-up view of a “flame 
wrinkle” (right) shows the steady, ξ0(x), and fluctuating wrinkle location denoted radially, ξ1,y(x,t), 
and normally to the mean flame, ξ1,n(x,t). 

 

The steady flame location is a function of spatial location, while the instantaneous 

location is a function of both spatial location and time. Figure 2.5 shows this 

instantaneous flame location for several discrete temporal values over a forcing cycle. 

Additionally, the entire flame brush swept out by the dynamic instantaneous flame over a 

temporally resolved forcing cycle is also shown. 

   

Figure 2.5. Steady (red) and instantaneous (black) flame locations over a forcing cycle for a 
few discrete times (left) and the entire flame brush (right. 

 

An alternative way to visualize these results, focusing on the wrinkle dynamics, is 

through the magnitude and phase of 1ξ , which can be obtained mathematically via 

Eq.(2.33). As an alternate method of interpretation, the wrinkle magnitude can be 

0ξ
0ξ

1,nξ
1,yξ

 y
 / 

R
f 
  

 y
 / 

R
f 
  

x  / PeRf x  / PeRf 

x  / PeRf x  / PeRf 

 y
 / 

R
f 
  

 y
 / 

R
f 
  



 52

obtained by extracting the maximum wrinkle height of the flame brush at each axial 

location. These results, corresponding to the same conditions shown in Figure 2.4 and 

Figure 2.5, are shown in Figure 2.6. Information regarding the flame wrinkle amplitude 

and convection speeds as a function of downstream distance can be gathered from these 

plots, and thus they will be utilized throughout the remainder of this thesis. 

   

Figure 2.6. Flame wrinkle magnitude (left) and phase (right) plots for a representative two-
dimensional non-premixed flame. 

 

2.4.3 Heat Release Analysis 

Having introduced the local space-time wrinkling characteristics of the flame, 

next the heat release dynamics are discussed, in particular the spatially integrated heat 

release, ( )Q tɺ , due to its applicability for combustion instability or noise related issues for 

acoustically compact flames.  

As was discussed in Chapter 1, oscillations in heat release generate acoustic 

waves via unsteady gas expansion, which are manifested as broadband noise and discrete 

tones, for unconfined and confined flames, respectively [4]. If the combustion region of 

interest is much smaller than an acoustic wavelength, then disturbances originating from 

different points in the flame arrive at the measurement location with negligible phase 

shift. This describes a “compact flame” in which the distribution of the heat release is 
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unimportant; rather the quantity of relevance is the total, spatially integrated value [4]. 

This spatially integrated quantity is given by the following surface integral over the 

reaction sheet: 

                                                 ( ) F R

flame

Q t m dA′′= ∫ɺ ɺ h           (2.36) 

This expression can also be related back to Eq.(2.16) where a special (untractable) form 

of ( , )f x t
�

 is utilized, such that the term inside the “{ } ” can be represented by F Rm′′ɺ h , 

where ''Fmɺ  is the reactant mass burning rate per unit area, and Rh  is the heat release per 

unit mass of reactant consumed. 

For premixed flames, the mass burning rate can be written in terms of the burning 

velocity as '' u u
F cm sρ=ɺ , where uρ is the density and ucs  is the laminar consumption speed 

of the unburned reactant, yielding: 

          

Premixed flame:

                                   

( ) u u
c R

flame

Q t s dAρ= ∫ɺ h
                                            

  (2.37) 

For non-premixed flames, the reactant mass burning rate can be written in terms of the 

fuel mass fraction as: 

             '' '' '' (1 )Ox Fuel Fuel
F Ox Fuel Ox

Y Y Y
m m m

n n n
ρ ρ ϕ ρ∂ ∂ ∂= + = − = − +

∂ ∂ ∂
ɺ ɺ ɺ W W W

       
(2.38) 

where n represents the direction normal to the flame surface into the oxidizer. By also 

relating the fuel mass fraction and the mixture fraction gradients as: 

 ( )1oxFuel

ox

Y

n n

ϕ
ϕ

+∂ ∂=
∂ ∂

Z
                                        

(2.39) 
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and assuming fixed composition fuel and oxidizer, so that the heat of reaction and 

mixture density remain constant, the corresponding spatially integrated heat release can 

be written as:  

         

Non-premixed flame:             
2(1 )

( ) Ox
R

Oxflame

Q t dA
n

ϕ ρ
ϕ

− + ∂=
∂∫ɺ ZhW

          

(2.40) 

This quantity is defined for a non-premixed flame under specific conditions, both 

steady and fluctuating. As the study of combustion instabilities inherently deals with 

oscillatory disturbances, a more encompassing, and relevant, parameter is known as the 

transfer function, defined as follows for the case of velocity oscillations resulting in heat 

release oscillations: 

                                               ( ) ( )1 0

1 0

ˆ /
ˆ /

Q Q

u u

ω
ω =

ɺ ɺ

� �Y         (2.41) 

Alternate definitions can be utilized for the other various heat release coupling 

mechanisms, such as pressure or equivalence ration oscillations, where this parameter 

physically represents an input-output relation between the disturbance fluctuations and 

the resulting heat release fluctuations. Mathematically, these transfer function are 

complex numbers, whose magnitude and phase indicate the relative magnitude ratios and 

phase differences between the heat release and disturbance quantity. Additionally, this 

parameter is a function of disturbance forcing frequency, rather than time, making it 

extremely useful when considering the response of flames to discrete tones, as is often 

experienced with combustion instabilities. Premixed or non-premixed transfer functions 

will be denoted as PY  and NY , respectively.  
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It is useful to decompose the results in Eq.(2.41) into contributions from mass 

burning rate and flame area fluctuations; i.e., mbr wa+Y P Y Y . This can be done by 

linearizing and expanding Eq.(2.36) as: 

                     ,0 0 ,1 0 ,0 1( ) R F F F

flame flame flame

Q t m dA m dA m dA
 

′′ ′′ ′′= + + 
  
∫ ∫ ∫ɺ ɺ ɺ ɺh     (2.42) 

 

This first term represents the steady state spatially integrated heat release. The 

second term defines the mass burning rate term. For non-premixed flames, this 

contributes to heat release oscillations due to the fluctuations in spatial gradients of the 

mixture fraction. For premixed flames, the mass burning rate fluctuations are linked to 

the stretch sensitivity of the burning velocity, which fluctuates because of the oscillatory 

curvature of the wrinkled front [87]. The last term is a weighted area term, named such 

due to the weighting of the flame surface area fluctuations by the time averaged burning 

rate, which unlike premixed flames, is spatially non-uniform for general non-premixed 

flames (to be discussed in Chapter 3). The un-weighted area term (important for constant 

burning velocity premixed flames) is given for a spatially constant time averaged burning 

rate by: 

               ,0 1( )a R F

flame

Q t m dA′′= ∫ɺ ɺh         (2.43) 

where these fluctuating, instantaneous, and steady area terms, i.e. integral terms of dA1 

and dA0 along the flame, can in turn be related back to ΨT  from Eq.(2.17). 

There are significant variations in time-averaged heat release rate along the non-

premixed flame (e.g., no heat release at the tip in the absence of axial diffusion). Thus, 

0Qɺ             ( )mbrQ tɺ            ( )waQ tɺ  
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the weighting of flame area is a very significant effect influencing how area fluctuations 

lead to heat release. Moreover, as will be discussed in the next Chapter, the 

characteristics of the weighted and un-weighted area transfer functions are quite different 

for non-premixed flames, while they are identical for premixed flames with spatially 

uniform burning velocities. For example, in the low Strouhal number limit, the non-

premixed flame weighted and un-weighted area transfer functions differ in phase by 180 

degrees and have appreciably different magnitudes. 

2.5 Explicit Flame Front Governing Equations 

As was discussed in Section 2.3, the physical differences with the governing field 

equations, for premixed and non-premixed flame systems, results in vastly different 

solution approaches to understanding the dynamics of these flames analytically.  

A useful transformation of the G-equation is done by expressing Eq.(2.8) in terms 

of the flame position, ξ. Although the resulting equation for the flame position becomes 

less general, it enables an explicit representation of the flame locations, whereas this 

quantity must be implicitly obtained with the G-equation. With these explicit expressions, 

dynamical quantities, such as flame surface area fluctuations and flame curvature, can be 

obtained and investigated. As mentioned, a common method of variable transformation, 

in two-dimensions, from the G-equation to the flame position equation is done by 

substituting ( ) ( ), , ,G x y t y x tξ= −  (see Figure 2.2). This results in a new differential 

equation for the premixed flame position: 

 
2

1x y Lu u S
t x x

ξ ξ ξ∂ ∂ ∂ + − = +  ∂ ∂ ∂ 
 (2.44) 
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Unfortunately, a similar change of variables cannot be done for the general non-

premixed flame system, for reasons previously discussed. However, in order to build 

familiarity with the Z -equation and to have a reference equation for later, we can 

consider the simplified case of a flat flame in a uniform flow field, for the geometry 

considered in Figure 2.2. 

This can be done by first taking the series expansion of Z at the flame, i.e. y =ξ , 

formulated as: 

        ( )( , , , ) ( , , )st st stx y t y x t HOTsα ξ= + − +Z Z Z Z  (2.45) 

where α is a function of x, t, and stZ , defined at the flame as: 

         
0, , , stx y t

y ξ

α
=

∂=
∂ Z

Z
 (2.46) 

By plugging Eq.(2.45) into Eq.(2.7), neglecting higher order terms, results in: 
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or by regrouping terms: 
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 Noting that for a nominally flat flame , ,x xx tα α α α>> , a simplified flame position 

equation, similar to Eq.(2.44) can be obtained as: 
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2

2x yu u
t x x

ξ ξ ξ∂ ∂ ∂+ − =
∂ ∂ ∂

W  (2.49) 

Thus, Eq.(2.49) is a simplified flame position equation, similar to Eq.(2.44). 

Notice how the left-hand sides of these equations both show the standard convective 

operator. Therefore, in the absence of right-hand side terms, any disturbance on the flame 

front is simply convected in the flow direction. For the premixed equation, the nonlinear 

term on the right-hand side in Eq.(2.44) originates from the physical nature of normal 

flame front propagation. Geometrically, this property is similar to waves which propagate 

from every point source. This nonlinear operator can cause discontinuities in the slope of 

flame fronts, which is very hard to track by conventional asymptotic analysis [88]. For 

the non-premixed case this right-hand side term is a linear diffusion controlled term 

responsible for front smoothing.  

To gain some insight into the properties of this equation, we investigate the 

evolution equation for the flame slope, /h xξ= ∂ ∂ , which can be obtained by 

differentiation with respect to x: 

           
2

2

yx
x

uh u h h
u

t x x x x x

ξ ∂∂ ∂ ∂ ∂ ∂+ + − =
∂ ∂ ∂ ∂ ∂ ∂

W  (2.50) 

For simplicity, consider a case with only spatially uniform axial flow: 

2

0 2

h h h
U

t x x

∂ ∂ ∂+ =
∂ ∂ ∂

W         (2.51) 

At t=0, we impose a step increase in flow velocity. The long term t>>0 behavior is 

straightforward, however the transient is not. This problem can be analyzed by 

considering a traveling diffusion wave, and utilizing a transformation of variables 

( , ) ( , )h x t x ut tµ= −  to simplify this problem to:  
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2

2t x

µ µ∂ ∂=
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W         (2.52) 

whose resulting solution is: 
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44
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tt
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π
 −=  
 W

       (2.53) 

 Eq.(2.53) gives the non-premixed flame slope as a function of space and time, for 

this discontinuous velocity change. Similar solutions can be obtained for the case of a 

premixed flame, utilizing Eq.(2.44), for similar attachment and flow conditions, resulting 

in [4]: 

                       ( ) 0
h h

c h
t x

∂ ∂− =
∂ ∂

        (2.54) 

where c(h) is the component of the disturbance propagation velocity in the x-direction. It 

was shown by Whitham [89-91], and more specifically for combustion systems by 

Lieuwen [4], that when this previously stationary flame was abruptly modified with a 

step change in flow velocity, that this equation could develop discontinuities in the flame 

slope, analogous to shock waves. The flame relaxation transient process consists of a 

wave that propagates along the flame in the flow direction. The abrupt change in slope 

from the initial t=0 value, hi, to the final t >>0 value, hf, is initiated at the attachment point 

(x=0), and this slope discontinuity travels along the flame front at the “shock” velocity. 

This shock propagation velocity lies between the wave propagation velocities of the 

initial condition and final steady state solutions [4]. However, this slope discontinuity 

remains sharp during the propagation. 

Whereas this traveling slope discontinuity remains sharp/discontinuous for the 

premixed case, in the non-premixed solution the diffusion term helps smooth out the 

initially abrupt shock discontinuity as it convects downstream. The degree of and speed 
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of smoothing is dependent upon the Pe value; while in the Pe�∞ limit, as the diffusion 

term becomes vanishingly small, the smooth solutions converge non-uniformly to the 

appropriate discontinuous shock wave! 

 

                 

 

                 

Figure 2.7. Flame slope, h, for a premixed (dashed) and non-premixed (solid) flame, exposed 
to a step change in flow velocity, U0, at t=0, for various values of diffusion. The premixed solutions 
utilize a representative c value of 0.9. 

 

Figure 2.7 shows the normalized slope of a premixed (Eq.(2.54)) and non-

premixed (Eq.(2.51)) flame responding to a discontinuous step change (increase) in flow 

velocity for various Pe values (U0 was held constant while W  was modified). It can be 

seen that the non-premixed solution smooths with downstream motion, while the 
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premixed solution remains sharp. The smoothing effect of the diffusion term, no matter 

how small, prevents the appearance of a discontinuous shock. These solutions 

demonstrate how the wave equation is energy conserving, while the heat equation is 

energy dissipating. An additional subtle difference, visible from the high Pe case, is that 

the slope discontinuity propagation speed for the non-premixed solution is greater than 

that of the premixed case, due to the premixed front propagation controlling c(h). Lastly, 

as can be seen from the sub-unity Pe case, the condition Pe<1 for non-premixed flames is 

similar to flashback in premixed flames! 
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CHAPTER 3 

Isothermal Diffusion Flame Analysis – Fundamental Dynamics 

 

This chapter examines the basic dynamical characteristics of a non-premixed flame 

responding to harmonic flow perturbations. The key assumptions of this analysis are (1) 

infinitely fast chemistry, wherein the flame sheet collapses to the stZ  surface, (2) all 

species have equal diffusivities, (3) negligible radiative heat loss effects, (4) constant-

isotropic diffusion coefficients, (5) specified disturbance fields, and (6) small 

perturbation amplitudes. Following assumption (2), the space-time dynamics of a non-

premixed flame with constant species diffusivities is described by the mixture fraction 

field using the Z -equation. 

In this study the flame front is continuously perturbed by spatially uniform field, 

i.e. bulk flow, disturbances, although the flame front can also be excited through 

unsteady motion of the flame base, as was shown for a premixed flame by D.H. Shin [92]. 

Significantly, the steady and fluctuating velocity fields are imposed, thus decoupling the 

momentum equation from the energy and species equations – this assumption implicitly 

assumes an isothermal field. The analytical formulation is presented and explicit 

expressions are obtained for the fluctuating flame position and spatially integrated heat 

release for various flame/system configurations. The first section presents a detailed 

walkthrough for the case of a two-dimensional confined axially bulk forced system. The 

important Pe�∞ limit is discussed, along with term-by-term analysis of the various 

explicit analytical expressions for the space-time and heat release dynamics. Then, the 

effects of various features, such as system confinement and forcing direction/type, on the 
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steady flame location and fluctuating dynamics are discussed. Lastly, the complications 

of differential diffusion, i.e. F Ox≠W W  are discussed, and a model problem is introduced 

to gain insight into the implications on the dynamics. Additional, more mathematically 

intensive dynamical features, resulting from the inclusion of additional system physics, 

will be covered in Chapter 4. 

As mentioned, previous studies have also analyzed this problem within the 

infinite reaction rate, Z -equation formulation for the mixture fraction [62-64, 66, 93] 

and implicit  solutions were developed for the flame position and heat release for several 

problems, including the flame response to axial velocity and mixture fraction oscillations. 

However, this work, and thesis, is unique in that explicit expressions are presented and 

the dynamical / physical features dissected from them. 

3.1 Two-dimensional Bulk Axial Forcing 

In a multidimensional duct, the presence of external forcing can excite motions 

associated with multiple natural duct modes [4]. The behavior of the system is 

fundamentally different depending on whether the forcing frequency is higher or lower 

than natural transverse duct frequency [94]. Below this “cutoff frequency”, only one-

dimensional plane waves propagate while all multidimensional disturbances decay 

exponentially. Thus, “one-dimensional analyses of the acoustic frequencies and mode 

shapes in complex, multidimensional geometries are often quite accurate in describing 

the bulk acoustic features of the system for frequencies below cutoff” [4]. Additionally, 

the assumed spatially uniform disturbance field, is most valid for these low frequencies. 

Thus, this section formulates the two-dimensional problem of spatially uniform one-

dimensional velocity fluctuations, which is illustrated in Figure 3.1. The analysis begins 
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with a confined system since most combustion instabilities occur within confined 

chambers, an assumption which is relaxed in the next section. 

WI

WII

x

y ( ),x tξ
Zst

iso-Z
lines

Oxidizer

Oxidizer

Fuel

 

Figure 3.1. Schematic of the forced two-dimensional non-premixed flame model problem. 

 

We consider a two-dimensional flame in a uniform axial flow field, ,0xu . At the 

inlet (x=0), fuel and oxidizer flow into the domain as indicated in the figure, leading to 

the following step inflow conditions: 

                                             
1  for 0 <

( 0, )
0  for

f

f w

y R
x y

R y R

 ≤= = 
≤ <

Z
                                         

(3.1) 

The solution can also be easily generalized to include more general inflow fuel/oxidizer 

compositions (e.g., such as if the fuel were diluted) by shifting and rescaling the value of 

stZ . Enforcing this boundary condition enables an analytic solution of the problem. 

However, in reality there is axial diffusion of fuel into the oxidizer and vice versa, so that 

the solution must actually be solved over a larger domain that includes the fuel/oxidizer 

supply systems. As such, the boundary condition in Eq.(3.1) implicitly neglects axial 

diffusion at 0x= , a point we will return to in Chapter 4. Assuming symmetry at 0y = and 

no diffusion through the walls at wy R= , leads to the following two additional boundary 

conditions:  

                                    ( , 0) 0 ( , ) 0wx y x y R
y y

∂ ∂= = = =
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Z Z
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Rf 

Rw 
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For reasons discussed in Chapter 2, we will derive the solution in the limit of 

small perturbations, and so expand each variable as( ) ( ) ( ) ( ) ( ) ( )0 1
, , , , ,x y t x y x y t= + . 

Neglecting higher order terms, the steady state, i.e. unforced, mixture fraction field, for a 

system with no transverse flow, i.e. ,0 0yu = , can be acquired from Eq.(2.21) as:  

                                                       
2 2

0 0 0
0 2 2

U b
x y x

∂ ∂ ∂= +
∂ ∂ ∂
Z Z Z

W W                         (3.3) 

where ,0 0xu U=  for visual compactness and “b” is an axial diffusion indicator, taking 

values of unity and zero, depending upon whether axial diffusion effects are enabled or 

disabled within the domain, respectively. Similarly, the dynamical equation for the 

fluctuating, i.e. forced, component, of the mixture fraction field can be obtained from 

Eq.(2.22) and written in the frequency domain as: 

                           
2 2

1 1 1 0 0
1 0 ,1 ,12 2

ˆ ˆ ˆ
ˆ ˆ ˆx yi U b u u

x y x x y
ω ∂ ∂ ∂ ∂ ∂− + − − = − −

∂ ∂ ∂ ∂ ∂
Z Z Z Z ZZ W W           (3.4) 

The solution to these equations can be derived in an analogous way as the Burke-

Schumann solution, using separation of variables. The full solution, including axial 

diffusion (b=1), for the steady state mixture fraction field, utilizing Eqs.(3.2) and (3.1)  as 

boundary and inlet conditions, respectively, is given by: 

           ( )
2 4 2 2

0
1

42
sin cos exp

2
f n

n n
nw f f

R Pe Pe Pey x

R n R PeRπ

∞

=

    − +
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∑
A

A AZ     (3.5) 

where ( / )n f wn R Rπ=A  are the eigenvalues and the Peclet number, Pe, is given by 

Eq.(2.25).  
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For the subsequent analysis, we will focus on the following simplified version of 

the solution that neglects axial diffusion, since we have already done so implicitly in 

formulating the boundary condition in Eq.(3.1). The resulting steady state mixture 

fraction field solution is:   

                              ( ) 2
0

1

2
sin cos expf

n n n
nw f f

R y x

R n R PeRπ

∞

=

   
= + −      

   
∑Z A A A                  (3.6) 

This equation can be derived by solving Eq.(3.3) and neglecting the axial diffusion term, 

i.e. setting b=0, or equivalently, taking the Pe�∞ limit of Eq.(3.5). We next consider the 

solution for the fluctuating flame position responding to uniform bulk axial fluctuations 

in flow velocity:  

                                                             [ ],1 0 expxu U i tε ω= −
                                             

     (3.7) 

The resulting full solution for the fluctuating mixture fraction field, 1Z , is: 
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where the Strouhal number based on the half-width of the fuel nozzle is defined by 

Eq.(2.27)  ( ,f RSt St= ), and 
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Again we will focus the subsequent analysis in the absence of axial diffusion, i.e. 

in the Pe�∞ limit, whose solution is:  
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Alternatively, this expression can also be written in terms of 0Z  as: 

              [ ]0
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ZZ        (3.11) 

This form is significant in that it no longer contains the mathematically complicating 

infinite summation, a key point that will be emphasized and utilized shortly. 

3.1.1 Space-time Dynamics 

An implicit expression for the flame sheet position, 0( )xξ , can be determined from 

Eq.(2.32), yielding:  
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Similarly, the position of the fluctuating flame can be determined from the implicit 

expression, Eq.(2.29). However, as was previously discussed, Eq.(2.33) is an explicit 

expression for the fluctuating flame position. Utilizing Eq.(3.11), this expression can be 

re-written as: 
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where 1,nξ  is measured normal to the mean flame surface in the direction of the oxidizer. 

The 0

0

/ x ∂ ∂
  ∇ 

Z
Z

 term can be written in terms of the local angle of the flame, using the 

geometric relation: 
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where 0θ  denotes the angle of the mean flame with respect to the axial coordinate. Using 

these results, and a modified definition for St for ease of comparison 

( , ,0 ,/
fL f L f f f RSt St L R St= = × ), the solution for ( )1, ,n x tξ

 
can be written as: 

             ( ) [ ]0
1, 0

,0

sin ( ) 1 exp 2 exp 2
2

,
fn L

f

i U x
x i St i ft

f L
x t

εξ θ π π
π

   = − −   
   

        (3.15) 

This expression is an important contribution of this thesis and very significant in 

that it is an explicit equation for the space-time dynamics of the flame position. For 

reference, the corresponding fluctuations of an attached premixed flame with constant 

burning velocity subjected to bulk flow oscillations are given by [86]: 

              ( ) [ ]0
1,

,0

sin 1 exp 2 exp 2
2

,n p
f

i U x
i St i ft

f L
x t εξ θ π π

π
   = − −   
   

               (3.16) 

where Stp is the flame Strouhal number for premixed flames, defined as 

2/ cos
fp LSt St θ= , and the angle θ  is a constant (the expression is more involved if θ is 

varying, which would occur if the flow or flame speed varies spatially).  

Notice the similarities in the premixed and non-premixed solutions, with the 

exception of the spatial phase dependence, 021 i f x Ue π− term. Both solutions contain a 

magnitude term, depicting the low-pass filter characteristic of the flame, i.e. as the 

forcing frequency is increased the response magnitude degreases, and a flame angle term, 

showing the importance of the fluctuations normal to the mean flame surface in 

generating wrinkles. Although the flame angle term contains a subtle difference, being 

the axial dependence of the flame location for the non-premixed case, the primary 
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difference in these solutions is contained within the waveform term, and reflects the 

influence of premixed flame propagation on wrinkle convection speeds; i.e., the wrinkle 

convection speed in the axial direction, 2
0 / cosU θ , is the vector superposition of the 

axial flow velocity and the axial projection of a vector pointing normal to the flame with 

a magnitude equal to the burning velocity, ds . In contrast, the non-premixed flame does 

not propagate and wrinkles convect downstream at a speed of 0U , as is depicted in 

Figure 3.2. 

                  
Figure 3.2. Schematics depicting the difference in wrinkle convection speed for non-

premixed and premixed flame system. 

In both cases, local maxima and minima arise through this 021 i f x Ue π−  waveform 

term, due to interference between wrinkles generated at the x=0 boundary and 

disturbances excited locally. This can be seen by re-writing it as: 

                            ( )0 02 ( /2)
01 2sini f x U i f x Ue f x U eπ π ππ −− =                          (3.17) 

For both premixed and non-premixed flames, wrinkles are generated at the boundary 

because of flame attachment. For the premixed flame, this is invoked through the 

attachment boundary condition i.e.,1, ( 0, ) 0n x tξ = = . In the non-premixed case, wrinkles 

are generated through the assumption of constant mixture fraction at the burner outlet, 

i.e., 1( 0, ) 0x t= =Z .  
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Finally, we note that incorporating stretch effects into the premixed flame analysis 

modifies Eq.(3.17) by multiplying the complex exponential inside the braces by the factor 

( )2 2
,0exp 4  /c p fSt x Lπ σ−  [87], where cσ  is the Markstein length normalized by the burner 

half-width. For a thermo-diffusively stable flame, this stretch correction leads to an 

exponential decay in wrinkle magnitude because of the flame front curvature. These 

additional flame dynamics will be revisited in Chapter 4. 

We next present several illustrative solutions of the space-time dynamics for the 

flame position. Note that the solution is a function of the four dimensionless parameters 

fLSt ,
 

/f wR R ,
 
Pe, and stZ . The temporal evolution of the flame position is plotted in 

Figure 3.3 at two Strouhal numbers. Note the bulk axial pulsing of the flame at lower 

Strouhal numbers, and the spatial wrinkling at higher values. The unforced flame is 

indicated by the dashed lines. 

 

 
Figure 3.3. Shapshots showing four instantaneous positions of a forced non-premixed flame 

at two different forcing frequencies using nominal values of 
st 0.3Z =  and 50Pe=  (left) ε 0.2= , 

0.0018St =R
,

fL 0.3St =  (right) ε 1.0= , 0.012St =R
, 

fL 2.0St = .  

 

Mohammed et al. [56] have reported measurements and computations of a forced 

CH4-air diffusion flame, which are reproduced in Figure 3.4 (left). In this experiment, 
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only the fuel flow rate was perturbed, as opposed to both fuel and air flow oscillations in 

these calculations. However it is still useful to compare results, using conditions that 

approximately simulate those from the experiment. Figure 3.4 (right) shows calculations 

of the unsteady flame position at several instants of time for similar conditions. Similar 

bulk axial pulsing of the flame is evident in the measurements. 

 
Figure 3.4. (left) CH mole fraction isopleths of the steady and time-varying laminar CH4-air 

diffusion flame [56]. Experimental isopleths at steady state, 0.00, 0.01, 0.02, 0.03, and 0.04 s. (right) 
Theoretical results using parameters chosen to match experiments of Pe = 0.86, 

fL 1.82St = , 

st 0.13Z = , andε 0.5=  for CH4-air diffusion flame. 

 

An alternative way to visualize these results is through the magnitude and phase 

of 1,nξ , illustrated in Figure 3.5. The nodes and local maxima and minima referred to 

above are clearly evident in the figure. The phase rolls off linearly with axial distance, 

again reflecting the convection process described by the interference waveform term in 

Eq.(3.17), and jumps 180 degrees across the nodes. 
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Figure 3.5. Axial dependence of (left) magnitude and (right) phase of flame response, where 

0

2ref

U

Pe f

εξ
π

⋅=
⋅

,  and using nominal values of 
st 0.3Z =  and 50Pe =  for 

fLSt values of 0.3 and 2.0. 

Note the abscissa, (x/U0/f), can equivalently be written as x/L f*
fLSt . 

 

Lastly, the speed of the flamelet (differing from that of a passive scalar) with 

respect to the flow, can be determined for this non-premixed system. In analogy with 

premixed flames, we will refer to this velocity as sd (x,t) (recognizing that the non-

premixed flamelet does not propagate, being  a constant property surface) defined by: 

                      ( ) du s
t

∂ + ⋅ ∇ = ∇ ⋅ ∇ = ∇
∂

�
W

Z Z Z Z                     (3.18) 

This spatio-temporally varying quantity can be non-dimensionalized and expressed as: 
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or similarly, decomposed into steady and fluctuating components as: 
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Representative results are shown in Figure 3.6. These results agree with those 

formulated for premixed flames, and similarly can be justified since from a quasi-steady 

viewpoint the flame front is stationary, and hence the relative flamelet speed must be 

equal to the flow velocity normal to the flame front. Interestingly, now sd can be either 

positive or negative, and varies with both x and t, whereas for premixed flames it was 

strictly positive with the possibility to have non-spatiotemporally varying values. Also 

note how the fluctuating burning speed amplitude looks similar to the flame wrinkle 

amplitude plot, having the same noding pattern. The slight difference in magnitude 

results from the definition of the fluctuating flame angle (θ1), having dependence upon 

the significantly axially varying steady angle (θ0). 

                   

Figure 3.6. Non-dimensionalized relative burning speed along the non-premixed flame 
surface, using nominal values of 

st 0.3Z = , 20Pe =  , St
fR = 0.05 , and, ε = 0.01. 
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3.1.2 Heat Release Analysis 

Having considered the local space-time wrinkling of this two-dimensional flame, 

we next consider the spatially integrated heat release, ( )Q tɺ , which was discussed in 

Section 2.4.3, including expressions for both premixed and non-premixed flames. For this 

particular two dimensional system, Eq.(2.40) can be written as: 

                        
2(1 )

( ) sin cosox
R

oxflame

Q t dA
x y

ϕ ρ θ θ
ϕ

 + ∂ ∂= − ∂ ∂ 
∫ɺ Z Zh W

             

(3.22) 

The first term in Eq.(3.22) includes the effect of axial diffusion and is, consequently, 

neglected in the following analysis, yielding: 

        
( ) 2

0

(1 ) ( , ( , ))
( )

fL t

ox
R

ox

x x t
Q t dx

y

ϕ ξρ
ϕ

− + ∂=
∂∫ɺ Zh W

                      

(3.23) 

DecomposingZ , Lf, and ξ into their mean and fluctuating components results in: 

  

( ) ( )( ) ( )( )
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(3.24) 

Then, linearizing this expression yields: 
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where the steady and fluctuating components are given by: 
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Note that fluctuations in Lf do not contribute to this linearized expression since 0 / y∂ ∂Z  

is zero along the centerline and, therefore, at the flame tip (axial diffusion would provide 

a non-zero contribution).  

The transfer function, defined by Eq.(2.41), can be rewritten for this two-

dimensional axially forced system as: 

                                                   1 0

,1 0

ˆ /
ˆ /x

Q Q

u U
=
ɺ ɺ

Y

             

(3.28) 

Additionally, the mass burning rate and flame (weighted) area fluctuation contributions, 

given by Eq.(2.42), will be retooled for further clarity. Benefitting from the substitution 

of dx by cos dAθ  in Eq.(3.25) and similarly expanding the solution, the resulting mass 

burning rate contribution to the transfer function is:  
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Similarly, the weighted area contribution is given by: 
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(3.30) 

The physical meaning of these terms was discussed in Chapter 2. It is important to 

recall that the weighting term, i.e. the time averaged burning rate, is a very strong 

function of the axial coordinate for non-premixed flames, but is constant for comparable 

premixed flames, as is shown by Figure 3.7. 
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Figure 3.7. Depiction of the time averaged burning rate for comparable non-premixed and 

premixed systems. 
 

The un-weighted area transfer function (important for constant burning velocity premixed 

flames) can be formulated using Eq.(2.43) and can be cast as: 

    

( ) ( )

,0

,0

1,0
& , 1/221/22 0

0
0

0

( , )1

11 /

f

f

L

y
N P a L

x td dx
dx

xd dxd dx dx

ξξ

ξε ξ

∂
=

∂ + +   

∫
∫

Y

         

(3.31) 

or equivalently: 
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There are significant variations in time averaged heat release rate along the non-

premixed flame, as was shown by Figure 3.7 (e.g., no heat release at the tip in the 

absence of axial diffusion). Thus, the weighting of flame area is a very significant effect 

influencing how area fluctuations lead to heat release. Moreover, the characteristics of the 

weighted and un-weighted area transfer functions are quite different for non-premixed 

flames, while they are identical for premixed flames with spatially uniform burning 

velocities. For example, in the low Strouhal number limit, the non-premixed flame 
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weighted and un-weighted area transfer functions differ in phase by 180 degrees and have 

appreciably different magnitudes.  

            
Figure 3.8. Plots shedding light onto the behavior of the weighted area and area transfer 

functions. (left) Shows mean flame positions for two different mean flow velocities and (right) shows 
the fluctuations over one forcing cycle for the various terms. 

 

Figure 3.8 illustrates this behavior. The first plot (on the left) shows the mean 

flame position for two different mean flow velocities. As is expected, the higher velocity 

case, produces a flame with a larger total area. However, Figure 3.7 showed that for non-

premixed flames, the near base-region is of greater importance, containing the dominant 

portion of the mean mass burning rate. Significantly, restricting our attention to the near-

base region of the flame, i.e. the white region in Figure 3.8, it can be observed that the 

resulting (weighted) area actually decreases with increasing mean flow velocities. The 

second plot (on the right) shows how for low forcing frequencies, the area contribution is 

in-phase with the velocity forcing, while the weighted area contribution is 180 degrees 

out of phase. 

The solutions for the premixed flame transfer functions are simpler, as the 

unforced flame is flat in a uniform velocity field. Following Wang et al. [87], and 

retaining only leading order terms in Markstein length, the transfer function is: 
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where ˆ cσ  is given by ˆ sin tanc cσ σ θ θ= . 

 
Figure 3.9. Strouhal number dependence of the magnitude of the heat release, area, and 

mass burning rate transfer functions for a (left) non-premixed flame with parameters 

st 0.06Z = , Pe=10 , and (right) premixed flame with parameters ˆcσ 0.05=  and 932/ =f fL R . 

Typical solutions for the overall unsteady heat release, as well as the contributions 

from flame area and mass burning rate are shown in Figure 3.9 for the non-premixed and 

premixed flame. Both premixed and non-premixed transfer functions have magnitudes of 

identically unity at zero St, indicating a direct 1:1 relation between the fluctuation in 

velocity and induced fluctuation in heat release, and then roll off with increasing St, 

indicating a progressively smaller induced heat release fluctuation [4]. Starting with the 

left plot, note how the non-premixed flame heat release fluctuations for 
fLSt <<1 are 

dominated by mass burning rate fluctuations over the entire Strouhal number range. For 

St<<1, the mass burning rate contributions to Y  are of O(1) and O(Stp) for non-

premixed and premixed flames, respectively. In contrast, premixed flames at low and 
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O(1) Strouhal numbers are dominated by area fluctuations, shown in the right plot. The 

mass burning rate fluctuations are a much smaller effect and only exert a comparable 

response as area fluctuations at high Strouhal numbers where fSt 1ˆ~ ( )
c

σ −Ο [87]. The 

mass burning rate fluctuations do also exert an indirect influence on the flame area 

perturbations when fSt ~ 1/2ˆ( )
c

O σ − , by smoothing out flame wrinkles, causing the 

"smoothing" of the area gain curve in the premixed case, relative to the much more 

oscillatory curve for the non-premixed flame.  

 
Figure 3.10. Strouhal number dependence of the magnitude and phase of the heat release 

transfer function for a non-premixed and premixed flame with the same properties as Figure 3.9. 

Direct comparisons of the gain and phase response of the premixed and non-

premixed flame results are shown in Figure 3.10. Significantly, these results show that 

non-premixed flames are significantly more sensitive to flow perturbations than premixed 

flames when 
fLSt >O(1), an important and somewhat unexpected conclusion. It will be 

shown, and proven, in later chapters, that the St>>1 response of both flames scales as 

Y ~O(1/St) under certain assumptions. Interestingly, this figure shows that the non-
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premixed flame considered here has an intermediate/high region where its response rolls 

off more slowly; the analytical derivation of this regions St sensitivity is also deferred till 

Chapter 5, however, for now it suffices to note that computations suggest that 

NY ~O(1/St1/2) in this region. The 1/St scaling is less obvious for the corresponding 

premixed case as stretch effects do modify the results for the Strouhal number ranges 

shown in the plot. 

The corresponding phases of the premixed and non-premixed flame transfer 

functions are also included in Figure 3.10. Both curves start at zero for low Strouhal 

numbers, indicating that low frequency flow modulation induces heat release fluctuations 

that are in phase. The curves roll off with different slopes toward negative values and 

asymptote to -90 degrees (for a stretch-insensitive flame; as shown in the graph, stretch 

modifies this result), indicating the delay in heat release relative to the forcing, due to 

convection of disturbances along the front. Note also the nearly constant phase in the 

non-premixed flame in the intermediate Strouhal number range discussed above. The 

undulations in phase for the premixed flame correspond to ripples in the gain, and reflect 

the influence of interference processes in controlling the flame area. The differences in 

phase between the two flames again reflects the different processes controlling unsteady 

heat release. The corresponding phases of the area contributions alone are much closer 

between the two flames for a broader 
fLSt range for 1/2ˆ

c
σ −  <<1.  

 

 

3.1.3 One Term Approximations 

Although various parameters, such as the steady flame length, remain confined in 

implicit equations, simple and approximate explicit solutions are obtainable by retaining 
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a single term of the infinite summation. For example, retaining a single term of Eq.(3.6), 

an explicit equation for the steady flame location can be obtained: 
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                     (3.34) 

where s is the ratio of fuel port to wall radius, i.e. /f ws R R= . This approximation is 

suitable for large arguments of the exponential function, except near x=0. Using the same 

approximations, we can derive an expression for the flame length, Lf, since at x = Lf , 

0( )xξ  is equal to 0: 
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3.1.4 Explicit Governing Equation Validation 

Section 3.1.1 presented the general procedure utilized throughout this thesis to 

obtain explicit equations for the fluctuating wrinkle dynamics for non-premixed flames, 

yielding Eq.(3.15) as a major contribution of this work. Section 2.5 showed how this 

method was different from that of premixed flames, which utilized an arbitrary 

substitution of variables to yield an explicit flame front governing equation. Although not 

general, a similar explicit governing equation, Eq.(2.49), was presented for the specific 

case of an infinitely long, flat non-premixed flame. Although physically unrealistic, it is 

interesting to observe under what conditions and parameters, a non-premixed flame could 

be considered flat enough to make this governing equation valid. 

Figure 3.11 shows steady flame location contours for various parameters, such as 

Pe and stZ . It can be observed that as Pe is increased the flame becomes longer, and thus 
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flatter in the near base region. Consequently, in the Pe�∞ limit the flame becomes both 

infinitely long and flat. Additionally, a proactive choice of stZ  can make this flat-flame 

assumption more convincing, as seen by the plot on the right. As the results presented in 

this section, Section 3.1, have focused on the Pe�∞ limit, they should agree with the 

solution obtained via the explicit governing equation. Thus, in order to validate the 

solution given by Eq.(3.15), we will utilize the explicit governing equation and compare 

corresponding solutions. 

   
Figure 3.11. Steady state flame locations for various Pe values and 

stZ  values of 0.3 (left) 

and 0.5 (right). 

This condition of “flat-enough” was further validated by ensuring the condition 

,x xxα α α>>  was met computationally, where α  was previously defined by Eq.(2.46). 

Figure 3.12 shows these terms for a non-premixed flame with Pe=100, clearly showing 

the dominance of α  over the extent of the flame, except at the tip. However, in the Pe�∞ 

limit, the flame becomes infinitely long and this issue irrelevant. 
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Figure 3.12. Validating the assumptions made in the derivation of the non-premixed explicit 

governing equation, for a non-premixed flame for Pe=100 and 
stZ =0.3. 

Assuming a harmonic velocity disturbance, and resulting flame position, of the 

form: 

                                                           { }0 1
ˆRe i tu u u e ω−= +� � �

                                        (3.36) 

                                         ( ) ( ) ( ){ }0 1̂, , , Re , i t
st st stx t x x e ωξ ξ ξ −= +Z Z Z                       (3.37) 

then Eq.(2.49) can be rewritten as steady and fluctuating equations: 
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Once again we will accept that the steady flame location remains locked in an implicit 

equation, and focus our attention on the fluctuating flame dynamical equation, i.e. 

Eq.(3.39). The right hand side of this equation contains all the velocity perturbation 

inputs. Utilizing geometric relations, this right hand side can be rewritten as: 
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Furthermore, since the steady flame is essentially flat, 0 / 1xξ∂ ∂ << , and thus the 

equation simplifies to: 

                                   
2

1 1
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x x

ξ ξωξ θ θ∂ ∂− + = −
∂ ∂

W      (3.41) 

 This is a general form of the explicit governing equation for harmonic 

disturbances. Considering the previous case of bulk axial forcing, i.e. ,1 0ˆxu Uε=  and 

,1ˆ 0yu = , this equation can be solved and yields: 
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and for consistency, in the Pe�∞ limit the exponential term simplifies to: 
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      (3.43) 

 Thus, Eq.(3.43) is the solution to the explicit governing equation for the non-

premixed system considered in this section. Notice how this solution exactly matches and 

validates Eq.(3.15), which was derived via the other method, noting that in the Pe�∞ 

limit for an infinitely long flat flame, 1, 1,y nξ ξ= . 

3.2 Confinement Effects 

Most combustion systems of industrial interest are confined, however, there exist 

some which are unconfined and vulnerable to combustion instabilities, such as gas ranges 

and rocket plumes. Thus, an interesting question is the extent to which confinement 

effects modify the flame dynamics, assuming a similar disturbance field, compared to the 

results presented in Section 3.1. 
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As was done previously, the full solution, including axial diffusion, for the steady 

and fluctuating mixture fraction fields can be obtained. Considering now an unbounded 

domain, a modified form of the step inlet boundary condition, given by Eq.(3.1), must be 

utilized: 
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along with the absence of the wall boundary condition listed in Eq.(3.2). The resultant 

steady state mixture fraction field is given by: 
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while the corresponding general solution for the fluctuating mixture fraction field, 

exposed to spatially uniform axial velocity oscillations, given by Eq.(3.7), subject to the 

flame attachment boundary condition, i.e. 1( 0, , ) 0x y t= =Z , at the fuel port lip, is: 
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∫Z       (3.46) 

where variables c, d, g, h, and k are defined in Appendix A, along with their 

corresponding high Pe series expansions. 

As was done for the confined case, we will focus on the following simplified 

version of the solution that neglects axial diffusion, since we have already done so 

implicitly in formulating the boundary condition in Eq.(3.44). The resulting steady state 

and fluctuating mixture fraction field solutions are given:   
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Z   (3.48) 

This equation can be derived by solving Eq.(3.3) neglecting the axial diffusion term, i.e. 

setting b=0. Analytical convergence of Eq.(3.45) and Eq.(3.46) into Eq.(3.47) and 

Eq.(3.48), respectively, in the Pe�∞ limit has not been attained due to the complex 

improper integrals. This convergence has, however, been verified computationally.  

Dealing with these simplified solutions in the absence of axial diffusion, once 

again provides a major mathematical benefit of eliminating the improper integrals, 

making analytical progress for the space-time and heat release dynamics possible. 

Unfortunately, these expressions are still non-invertible, due to the dual error/exponential 

function form, making explicit solutions for the flame position non-obtainable. 

As was done previously, the fluctuating field solution can be written in terms of 

the steady field, utilizing 0 / x∂ ∂Z , and flame angle relations used, i.e. Eq.(3.14), to 

rewrite Eq.(2.33) as: 

                  ( ) [ ]0
1, 0sin ( ) 1 exp 2 exp 2

2
,n

f

i U x
x i St i ft

f R
x t

εξ θ π π
π

   = − −   
   

        (3.49) 

Significantly, this expression is identical to Eq.(3.15), reflecting the same dynamical 

features of the flame sheet winkles: the low-pass filter magnitude behavior, flame angle 
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dependence, i.e. velocity fluctuations normal to the flame sheet, and wave form 

interference term. However, this does not mean that confinement has no effect on the 

wrinkle dynamics – rather, these influences occur through the mean field, θ0(x). Figure 

3.13 shows the steady state flame position extracted from unconfined, Eq.(3.47), and 

confined, Eq.(3.6), mixture fraction field solutions for various degrees of confinement. 

Note that these comparisons involve Rf /Rw values where s < stZ , so that the flame 

remains over-ventilated, closing at the flame tip. This was done since the under-ventilated 

configuration is not possible for the unconfined case. 

     
Figure 3.13. Steady state flame locations for an unconfined and confined non-premixed 

flames experiencing different degrees of bounding, i.e. s values, for Pe = 10 and 
stZ = 0.3. 

For small degrees of confinement (small s values), the bounded and unbounded 

solutions are coincident, as is expected. For larger degrees of confinement (increasing s 

towards stZ ) the flame becomes slightly wider and significantly longer, resulting in more 

spatial wrinkles and an extended middle portion of the flame, where the flame is flatter. 

Additionally the location of maximum width moves downstream. This location is 

significant because for the axially forced case, this is the where the forcing is parallel to 

the flame position, and as was shown from our analytical solution, yields no unsteady 
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flame motion, i.e. is a spatial node. The importance of these effects can also be seen by 

observing the wrinkle magnitude and phase plots, shown in Figure 3.14. 

  
Figure 3.14. Wrinkle magnitude (left) and phase (right) plots for an unconfined and confined 

non-premixed flames experiencing different degrees of bounding, i.e. s values, for Pe = 10, 
stZ = 0.3, 

and St = 0.1. The corresponding steady flame positions are shown in Figure 3.13. 

As s is increased, there is more flame sheet, and thus more wrinkles exist overall. 

However, for equivalent axial locations, the wrinkle magnitude is lower for higher 

degrees of confinement. This is due to the shallower angle of the mean flame at this 

positon, an effect which can be seen from Figure 3.13. Additionally, as Figure 3.14 

considers an St value of 0.1, every 10Rf (disturbance wavelength) a spatio-temporal node 

occurs due to the forcing. However, there is an additional node due to the location of 

maximum width, independent of St, occurring around ~11Rf  for the unconfined solution 

and moving downstream with increasing confinement. 
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Figure 3.15. Heat release transfer function magnitude (left) and phase (right) plots for an 
unconfined and confined non-premixed flames experiencing different degrees of bounding, i.e. s 
values, for Pe = 10 and 

stZ = 0.3. 

Figure 3.15 shows comparisons of the heat release transfer functions. The 

magnitude plot reveals asymptotics which are independent of confinement. For low St 

values, the unity magnitude reflects a direct 1:1 relation between disturbance magnitude 

and resulting heat release fluctuations, while for large St values the curves all roll off as 

1/St1/2. However, for these large St values, the curves become smoother and the total 

magnitude of the transfer function increases with increasing degree of confinement, due 

to both the increased number of flame wrinkles and increased mean flame length. This 

smoothness can also be seen in the phase plot. 

3.3 Forcing Direction Effects 

The previous sections focused on longitudinal disturbances which, although 

important, are not the sole contributors to the issue of combustion instabilities. 

Thermoacoustic oscillations associated with transverse disturbances and acoustic modes 

are routinely encountered in combustion chambers [95]. For example, transverse 

oscillations in annular aircraft or aeroderivative combustors have been described and 
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documented by many industrial companies, such as General Electric, Pratt & Whitney, 

Rolls Royce, Alstom, and Siemens [6, 96-100] and have been discussed frequently in 

relevance to afterburner [101-104], solid rockets [105, 106], and liquid rockets [107-112]. 

Often referred to as “screech” due to its high-pitched tone (in the range of 150-600Hz), 

the transverse mode in augmentors can be excited, in addition to lower frequency 

longitudinal acoustic oscillations, referred to as “rumble” or “buzz” (in the range of 50-

120Hz) [103].  

A good portion of the existing work has been done on longitudinally forced 

systems, however, there are two key application regimes where transverse acoustic 

oscillations are of significant practical interest: the first being large scale annular 

combustion systems where lower frequency transverse instabilities occur, typical of and 

in the spectral vicinity of longitudinal instabilities, and the second being higher frequency 

transverse oscillations encountered in can-combustion systems [113]. An additional 

importance of transverse forcing, which ties into the previous sections, is the pathway in 

which transverse acoustics trigger/generates longitudinal acoustics. 

This section builds upon the previous ones, with a focus on the transverse forcing 

configuration. From a local point of view, the flame does not differentiate between 

transverse and longitudinal forcing, as both premixed and non-premixed flames are 

ultimately sensitive to the scalar component of the velocity fluctuations that are normal to 

the iso-Z  surfaces or the premixed flame front. In contrast, from a global heat release 

point of view, transverse and longitudinal excitation is fundamentally different. In the 

latter case, the fuel flow rate and/or reactant flow rate into the domain is modulated, 

which leads to heat release oscillations, at least in the quasi-steady case. In the former, 
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transversely forced case, they are not, implying that fluctuations in heat release may not 

be excited, even though significant local wrinkling of the flame may be induced. These 

points were emphasized by Acharya et al. [14] in the context of premixed flames, where 

they showed that bulk transverse forcing excited zero heat release fluctuations for all 

frequencies. Only if the there was a transverse phase lag in the transverse flow field were 

heat release fluctuations excited. Thus here we go through a similar analysis for non-

premixed flames in order to determine and isolate the influence of forcing direction on 

flame dynamics. 

Retaining the step inlet boundary condition, Eq.(3.1), the steady state mixture 

fraction field solutions presented in Section 3.1 are still valid, being independent of 

forcing. The familiar dynamical equation for the fluctuating mixture fraction field, 

Eq.(3.4), will also be reutilized, now exposed to spatially uniform transverse fluctuations 

in flow velocity of the form: 

                                                             [ ],1 0 expyu U i tε ω= −
                                             

     (3.50) 

Additionally, no penetration boundary conditions must be enforced at both walls, due to 

the lack of axial symmetry, modifying the boundary conditions to: 
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The resulting full solution for the fluctuating mixture fraction field, 1Z , is: 
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where the Strouhal number based on the half-width of the fuel nozzle is defined by 

Eq.(2.27) ( ,f RSt St= ), parameters nA , β− , and hβ −  are the same as from the axially 
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forced case (Section 3.1 and Eq.(3.9)), and s is the dimensionless ratio, /f wR R . Again 

we will focus the subsequent analysis in the absence of axial diffusion, i.e. in the Pe�∞ 

limit, whose solution is:  
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Alternatively, this expression can also be written in terms of 0Z  as: 
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An explicit expression for fluctuating flame position can be obtained in a similar 

manner as was done for the axial forced case in Section 3.1. Recall that 1,nξ  is measured 

normal to the mean flame surface in the direction of the oxidizer. Using mixture fraction 

and flame geometric relations similar to Eq.(3.14), i.e. [ ]0 0 0/ / cos ( )y xθ∇ = ∂ ∂∓Z Z , the 

solution for ( )1, ,n x tξ
 
can be written as: 
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π
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∓            (3.55)
                              

where 0θ  denotes the angle of the mean flame with respect to the axial coordinate and the 

– and + signs are for the top and bottom half-flame branches, respectively. These signs 

indicate the out of phase nature of the two flame branches. For reference, the 

corresponding fluctuations of an attached premixed flame with constant burning velocity 

subjected to transverse bulk flow oscillations with a similar coordinate system are given 

by: 
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Notice the similarities in the premixed and non-premixed solutions, with the 

exception of the spatial phase dependence, 021 i f x Ue π− term. This difference, once again, 

reflects the influence of premixed flame propagation on wrinkle convection speeds. In 

both cases, local maxima and minima arise through this term, due to interference between 

wrinkles generated at the x=0 boundary and disturbances excited locally as shown in our 

axially forced analysis in Section 3.1.1.  

Additionally this expression can be compared to Eq.(3.15), which shows the 

corresponding explicit equation for the axially forced case. Both solutions contain the 

exact same low-pass filter magnitude and wave form interference terms, and although the 

flame angle term differs in appearance, now showing a cosθ0(x), it retains the same 

dynamical significance, showing the importance of the fluctuations normal to the mean 

flame surface in generating wrinkles. As the system is now transversely forced, the 

location where the forcing is parallel to the steady flame sheet, and hence we expect a 

spatial node, is at the flame base and tip. 
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Figure 3.16. Snapshots showing the steady state (thick line) and four instantaneous (thin 
line) positions of a forced non-premixed flame with Pe=10 and stZ  = 0.3 exposed to forcing conditions 

of (left) 0.015ε = , StLf=0.337 [StR=0.01] and (right) 0.1ε = , StLf=3.37 [StR=0.1]. The instantaneous 
times are t = 0, 0.3, 0.5, 0.7 moving left to right, top to bottom. 

 
Figure 3.16 presents several illustrative solutions of the space-time dynamics for 

the flame position at two Strouhal numbers, while in general, the solution is a function of 

the four dimensionless parameters 
fLSt ,

 
s ,

 
Pe , and stZ . Note the bulk transverse 

swaying of the flame at lower Strouhal numbers, and the spatial wrinkling at higher 

values. Nodes occur at locations where 0cos θ  = 0 or where ( )0sin  / 0f x Uπ = , as shown 

by Eq.(3.55) and Eq.(3.56). In comparison to the axial forcing case where the sine term in 

the 1,nξ equation caused no flame spatial fluctuations where the mean flame was 

horizontal, now the cosine term causes no fluctuations at the flame base and tip for the 

transverse forcing case, i.e. where the mean flame is vertical.  

Figure 3.17 and Figure 3.18 show the magnitude and phase of 1,nξ  for a 

representative low and high St value, respectively. Also shown are the t=0 instantaneous 

flame positions for the top and bottom branches. The nodes and local maxima and 

minima referred to above are clearly evident in the figures, with more nodes occurring for 
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the higher St case. The phase rolls off linearly with axial distance, again reflecting the 

convection process described by Eq.(3.17), and jumps 180 degrees across the nodes. The 

magnitude drops off sharply at the tip due to the forced spatial node by the flame angle 

term. This effect at the base is less evident, as a spatiotemporal node is forced here due to 

the attachment condition as well. As Pe is increased the flame length also increases, and 

thus the flame angle 0θ  retains small values over a greater portion of the flame, while the 

large flame angles are condensed to the base and tip. 

 

                               

               

Figure 3.17. Steady (black line) and instantaneous (red:top, blue:bottom branch) flame 
position for t=0 (top), and corresponding axial dependence of (left) magnitude and (right) phase of 
flame response, using nominal values of 

st 0.3Z =  and 10Pe =  for 
fLSt [ ]StR values of 0.337 [0.01] 

and ε  of 0.01. 
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Figure 3.18. Steady (black line) and instantaneous (red:top, blue:bottom branch) flame 
position for t=0 (top), and corresponding axial dependence of (left) magnitude and (right) phase of 
flame response, using nominal values of 

st 0.3Z =  and 10Pe =  for 
fLSt [ ]StR values of 3.37 [0.1] and 

ε  of 0.01. 

Detailed decomposition steps, as well as explicit transfer function equations, can 

be found in Section 2.4.3 and Section 3.1. Typical solutions, utilizing the Pe�∞ limiting 

results, for the unsteady heat release of one half of the non-premixed flame are shown in 

Figure 3.19. The left image shows the magnitude of the mass burning rate and flame area 

transfer functions, given by Eq.(3.29) and Eq.(3.30) respectively, for a two-dimensional 

non-premixed flame. The right image shows the phase of these curves (solid for mass 

burning rate contribution, dashed for weighted area contribution). Notice how for all St 

values the area and mass burning rate contributions from a single branch have the same 

magnitude (coincident in the figure) and are out of phase by 180 degrees, resulting in no 

unsteady heat release for one-half of the flame! As the Peclet value is reduced these 
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magnitudes are increased, but the contributions remain equal and out of phase, resulting 

in: 

                                           ( ) 0N St =Y                                            (3.57) 

                            

Figure 3.19. Strouhal number dependence of the (left) magnitude and (right) phase of the 
heat release, area, and mass burning rate transfer functions for a non-premixed flame with 
parameters

st 0.3Z =  and Pe=100 . 

This behavior can be analytically shown to be a result of the unique cancellation 

of mass burning rate transfer function terms which occurs for the transverse bulk forcing 

mixture fraction solutions. The total transfer function is the sum of the mass burning rate 

and area contributions. However, as can be seen from Eq.(3.30), the weighted area 

contribution cancels with one of the mass burning rate terms, resulting in a simplified 

form of the transfer function: 
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By utilizing Eq.(3.54) and Eq.(3.55), this expression can be rewritten specifically for a 

transversely forced system: 
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Since in the Pe�∞ limit the flame becomes infinitely long and flat, 0cos ( ) ~ 1xθ  and thus 

the transfer function becomes zero, independent of any other parameters!  

In addition, the other half of the flame branch is 180 degrees out of phase with the 

original branch, i.e. the phase plot contributions are switched (solid for area contribution, 

dashed for mass burning rate). Thus, the unsteady heat release for the independent half-

flames, as well as the entire flame, is zero; a result that will be of importance in Chapter 

4, where this perfect mass burning rate term cancellation does not exist for finite Pe value 

results. This result could be anticipated, at least in the low Strouhal number limit, as 

transverse forcing causes no fluctuation in fuel and oxidizer flow rate into the domain. 

Since the heat release in the quasi-steady limit is directly proportional to the fuel flow 

rate into the domain, transverse fluctuations consequently lead to no heat release 

oscillations. Similar conclusions were developed for transversely forced premixed flames 

by Acharya et al. [114]. 

Significantly, this section emphasizes the important distinction between local and 

global heat release fluctuations. This topic which will be discussed in more depth in 

Chapter 4, however, for now it is important to state that even though there are no global 

heat release fluctuations, the local heat release by each segment of flame is fluctuating, as 

is the instantaneous flame position. 
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3.4 Differential Diffusion 

Throughout this section, the mixture fraction formulation and Z -equation have 

been utilized to solve for explicit flame dynamics. As was discussed in Chapter 2, this 

formulation relies on the assumption that the mixture fraction is a conserved scalar. It 

was shown that a sufficient condition for the mixture fraction to be a conserved scalar is 

for all species to have equal diffusivity, resulting in the disappearance of the species 

source terms. An inconsistency, however, arises when we attempt to incorporate 

differential diffusion effects into this formulation. 

To observe this effect, we return to Eq.(2.3), except now considering different 

isotropic diffusion coefficients for the various fuel, oxidizer, and product species. 

Utilizing a similar normalization and combination of the equations, Eq.(2.4) can be recast 

into the following form, once again using the existing mixture fraction definition from 

Eq.(2.5): 

                             ( ) Pr
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F

F
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D
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ρ ρ ρ

ϕ
 −− ∇ ⋅ ∇ = ∇ ⋅ ∇ + 

Z
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W W
W              (3.60) 

This equation reveals the presence of an additional term on the right hand side, 

one that becomes absent in the case of equal species diffusivities. This source term 

provides a direct measure of the degree to which the mixture fraction is not conserved, 

solely caused by differential diffusion [115]. This term can also be interpreted as the local 

effect of differential diffusion on the evolution of the mixture fraction.  

Most existing attempts to quantify differential diffusion are based on the 

difference between various definitions of the mixture fraction; for example the elemental 

mass fractions, which has been shown to yield a measure of the differential diffusion for 
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each element in a reacting system, thereby forming a complete measure [115]. Other 

studies measured the effect by examining the differences between elemental mixture 

fractions based on experimental data [116, 117] and simulations [118]. For turbulent non-

premixed flames, the modelling of differential diffusion has been investigated using a 

conditional moment closure method [119]. Additionally, recent theoretical work suggests 

that there may exist a refined definition of the mixture fraction variable which is 

conserved even in the presence of differential diffusion, however, no such definition has 

yet emerged [120]. Thus, the quantification of this effect has important implications for 

modelling approaches as well as on the fundamental understanding of non-premixed 

combustion. 

 To investigate the effects of differential diffusion on the fluctuating flame 

dynamics, we investigate the simplified case of a spatially developing reacting mixing 

layer, between pure fuel and pure oxidizer, i.e. a single planar non-premixed flame 

separating two semi-infinite regions containing fuel and oxidizer, shown by Figure 3.20.  

 

 

 

 

 

Figure 3.20. Schematic of the spatially developing mixing layer, utilized to investigate 
differential diffusion effects. 

Considering the steady case first, as each species is originally pure, independent 

species equations, similar in form to Eq.(3.3), can be written for each region. Outside of 

the infinitesimal reaction sheet, the chemical source terms are zero, and these equations, 
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and corresponding boundary conditions, can be written in terms of normalized mixture 

fractions for the fuel and oxidizer sides as: 
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Solutions will be considered in the absence of axial diffusion, due once again to 

their exclusion from the discontinuous step boundary condition utilized. Although no 

tractable equation exists in the combustion domain due to the discussed source term, the 

flame can be determined from interface conditions which couple the two equations. 

Respectively indicating no fuel-oxidizer interpenetration in the fast chemistry limit and 

stoichiometrically proportional diffusive fluxes at the flame position, these conditions can 

be represented as [121]:  

                  0, 0,F Ox stf f
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Similar to the solution of a Stefan problem, a similarity transformation, 

/y xψ =  , can be utilized to recast Eqs.(3.61) and (3.62) into a general form as: 
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with general mathematical solution: 
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Enforcing the boundary conditions and matching conditions for our steady non-premixed 

mixing layer results in: 
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where subscript “f” indicates quantities evaluated at the flame location. Thus, this is an 

implicit equation which can be solved for fψ , i.e. the locus of steady flame locations. 

Appendix B provides the explicit fuel and oxidizer mixture fraction field solutions. 

Additionally, by defining a dimensionless ratio of diffusion coefficients, /F OxΦ = W W , 

and utilizing ,x OxPe , defined from Eq.(2.24), this flame location equation can be non-

dimensionalized as: 
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           (3.68) 

Figure 3.21 shows the extracted steady state flame position for various values of 

Φ , revealing the complex dependence upon both stZ  and the diffusivities, both the ratio 

and individual magnitudes. Always displaying a “horizontal leveling” behavior, the ratio 

between the coefficients controls the relative position of the flame relative to the equal 

diffusivity case. Additionally, the Pex,Ox value also alters this flame shape, an effect which 

is not obvious due to the normalization of the horizontal axis. 
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Figure 3.21. Normalized steady non-premixed reacting mixing layer position, ψf, extracted 
from Eq.(3.68), for various degrees of differential diffusion, i.e. Φ, for st 0.3Z =  (left) and 0.5=stZ  
(right), for Pex,Ox=1. Arrows indicate direction of increasing Φ. 

 

Considering once again the axially bulk forced case, boundary conditions similar 

to Eqs.(3.63) and (3.64) can be written for the linearized axially forced instantaneous 

flame position as: 
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The general mathematical solution for the forced field, governed by Eq.(3.4), can be 

written as: 
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Enforcing the attachment boundary conditions and flame matching conditions for our 

non-premixed reacting mixing layer results in an implicit equation for the instantaneous 

flame position: 

st 0.3Z =  0.5=stZ  
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converging to Eq.(3.67) in the limit as ε�0. Once again non-dimensionalizing and 

utilizing the dynamically significant parameters Φ and Pex,Ox, yields: 
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Utilizing our steady and instantaneous matching boundary conditions, and realizing that 

there is only one ξ1 for the system, equations for the fluctuating fields can be related as: 

        
1, 1,

1

0, 0,

F Oxf f

F Oxf f

ξ
− −

= =
∇ ∇

Z Z

Z Z
       (3.74) 

and thus, the solution for ( )1, ,n x tξ
 
can be explicitly written as: 

             ( ) [ ]0
1, 0, ,sin ( ) 1 exp 2 exp 2

2
,n f f L

i U x
x i St i ft

f L
x t εξ θ π π

π
  = − −  

  
         (3.75) 

Significantly, this expression is identical in form to Eq.(3.15) and Eq.(3.49), reflecting 

the same dynamical features of the flame sheet winkles: the low-pass filter magnitude 

behavior, flame angle dependence, i.e. velocity fluctuations normal to the flame sheet, 

and wave form interference term. However, as was discussed in Section 3.2, a subtle 

difference lies within the flame angle term, representing the influence of the steady state 

flame position on the flame dynamics. The importance of the fluctuations normal to the 
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mean flame surface in generating wrinkles was previously shown, thus, modifications in 

the steady flame position due to differential diffusion would be important. 

Figure 3.22 shows some representative wrinkle amplitude results, complementing 

the results shown in Figure 3.21. Notice the monotonic decrease of wrinkle amplitude 

with axial distance downstream. Different Pex,Ox values would alter the relative 

magnitudes of these curves, due to the influence of the individual diffusion coefficient 

magnitudes on the steady flame position. The phase was omitted as it was the same for all 

the cases, showing no dependence on differential diffusion. This was expected as the 

convective velocity shown from Eq.(3.75) was not modified.  

 

                   

Figure 3.22. Wrinkle magnitude, ξ1,n, plots for the forced non-premixed reacting mixing 
layer position, extracted from Eq.(3.75), for various degrees of differential diffusion, i.e. Φ, for 

st 0.3Z =  (left) and 0.5=stZ  (right), for Pex,Ox=1, 0.01=ε , and 
, , 0.5=f L x OxSt Pe . 

 

As a note, analytical solutions isolating the effects of differential diffusion can be 

obtained for this single planar reacting mixing layer, i.e. flame, case. However, for the 

more advanced cases of fuel strips (which all our previous investigations were classified 

as, based on the inlet condition given in Eq.(3.1)), cylinders, or spheres, it is necessary to 
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apply a numerical method to solve the governing equations and inlet/matching boundary 

conditions provided in this section [121]! 
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CHAPTER 4 

Isothermal Diffusion Flame Analysis – Advanced Dynamics 

 

The results and analysis presented in Chapter 3 focused mainly on the Pe�∞ limit. 

Physically corresponding to the absence of axial diffusion, as axial convection dominated, 

this was done for analytical simplicity, enabling the development of explicit solutions for 

the space-time dynamics of the flame position and unsteady heat release, and consistency, 

since this assumption was already implicitly made when utilizing the step-inlet boundary 

condition. Within this limit, it was shown that forcing excited wrinkles on the flame sheet 

that advect axially along the flame at the mean flow speed, U0, leading to a 

monotonically decreasing phase of flame wrinkles along the flame in the axial direction.  

This chapter extends the previous analysis by investigating more advanced 

characteristics, both physics and system based, of non-premixed flames. First, being 

present in all real systems, we investigate the effects of finite axial diffusion on the flame 

dynamics. It is shown that axial diffusion influences both the flame wrinkle evolution 

dynamics, as well as the system inlet dynamics, each controlling specific dynamical 

features. The former was discussed in depth throughout Chapter 3, however, the latter 

was ignored, having been implicitly prescribed by our previously assumed steady and 

fluctuating inlet boundary conditions. As this inlet region was mentioned to be of extreme 

significance in the previous preliminary heat release analysis in Section 3.1.2, containing 

an integrable singularity, its importance will be reevaluated, along with its implications 

towards the heat release asymptotics (a topic which will be continued in Chapter 5). This 

study will be done both analytically, where tractable, and numerically, since it will be 
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shown that this is the proper way to completely and consistently include axial diffusion 

effects. Some additional intricate diffusion characteristics will also be considered, such as 

preferential diffusion, where the diffusion coefficient becomes anisotropic. 

Lastly, multi-dimensional system and forcing configurations will be considered, 

as real combustion systems are inherently three-dimensional, and are often times exposed 

to complex multi-dimensional forcing configurations, such as helical and/or convecting 

disturbances.  

4.1 Finite Axial Diffusion Effects – Analytical Pe>>1 Investigation 

Our prior analysis, detailed in Chapter 3, neglected axial diffusion; while this is 

an important simplification in high Peclet number flames, it causes the exclusion of some 

important physics, such as the dissipative and dispersive nature of wrinkle propagation 

along the reaction sheet. Additionally, while some results regarding the various 

asymptotic limits for the heat release were inferred based upon computations, it is not 

clear how general they are. Analyses of these issues are investigated in this section, with 

comparisons of related features for premixed flames. An additional goal of this section is 

to formulate the various dynamical solutions in such a way that one general explicit 

solution is applicable to multiple non-premixed flame system and forcing configurations. 

Once again, consider a two-dimensional flame in a uniform axial flow field, 0U , 

as was shown in Figure 3.1. As we are trying to generalize the final solution, we can 

additionally generalize the inflow ( 0x = ) condition by stating that arbitrary fuel and 

oxidizer advect into the domain with inflow mixture fractions given by *
fsZ

 
and *

osZ , 

respectively. For compactness, we can then define the familiar “rescaled” mixture 
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fraction which varies between zero and unity, * * * *( )os fs os= − −Z Z Z ) / (Z Z , as has been 

utilized throughout Chapter 3. 

Recall that we have steady state, Eq.(3.5), and various fluctuating, Eq.(3.8) and 

Eq.(3.52), mixture fraction field solutions utilizing the step inlet boundary condition. 

Although these solutions are formally valid for arbitrary Pe values, it was recognized that 

this boundary condition implicitly assumes infinite Pe values, and leads to an infinite 

transverse gradient in mixture fraction at the burner outlet. In reality, there is some finite 

gradient at the burner outlet due to axial diffusion effects which become important when 

the convective disturbance length scale, 0 /U f , is on the order of this species 

concentration boundary layer. However, an interesting question is for what large, yet 

finite Pe values this inlet condition is still essentially valid. Thus, rather than looking at 

dynamical solutions for infinite Pe values, i.e. Pe�∞ limit, now we will investigate 

solutions for large, yet finite Pe values, i.e. 1Pe>> . 

We consider the solutions for 1Z  in cases with either spatially uniform axial or 

transverse velocity fluctuations, of the form Eq.(3.7) and Eq.(3.50), respectively. A 

general solution for the mixture fraction field, subject to the step inlet condition, Eq.(3.1), 

and flame attachment boundary condition, i.e. 1( 0, , ) 0x y t= =Z , at the fuel port lip, 

for the bounded domain is: 

     ( ) ( ) { } [ ]1 h
1

2 sin
exp 1 exp expn

n
n f f

x x
y i t

n iSt PeR Pe Rω

ε
β β β ω

π

∞

− − −
=

     
= − − −                
∑

A
Z M G    (4.1) 

where the Strouhal number based on the half-width of the fuel nozzle is defined by 

Eq.(2.27) ( ,RSt Stω ω= ), parameters nA , β− , and hβ −  are the same as from the bulk 
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forced cases (Section 3.1 and Eq.(3.9), noting / 2St Stω π= ), s is the dimensionless ratio 

/f wR R , and the other terms, i.e. nM  and ( )yG , are specified in Table 4.1.  

Table 4.1. Definitions used in mixture fraction solutions 

      Axial Bulk Forcing Transverse Bulk Forcing 

nM                  Peβ−      n-A  

xynM     xy y
Peβ −      n-A  

( )yG           ( )cos n fy RA           ( )sin n fy RA  

             ( ),x yS     
0 x∂ ∂Z    0 y∂ ∂Z  

( )( )xθI       ( )sin xθ  ( )cos xθ±  

 

For completeness and generality, these expressions can also be written in a general form 

for both confined and unconfined flames in the Pe�∞ limit as: 

                                ( ) [ ]1 , 1 exp expf

f

i R x
x y i St i t

St Rω
ω

ε
ω

  −   = − −          
Z S                  (4.2) 

4.1.1 Space-time Dynamics 

An explicit expression for fluctuating flame position can be obtained in a similar 

manner as was done for the axial forced case in Section 3.1. Recall that 1,nξ  is measured 

normal to the mean flame surface in the direction of the oxidizer. Using mixture fraction 

and flame geometric relations, the solution for ( )1, ,n x tξ
 
can be written as: 
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where the terms ( )( )xθI , nM  and ( )( )0 xξG
 
are defined in Table 4.1. This is a general 

equation which includes the effects of axial diffusion for both axial and transverse 

forcing. 

Insight into wave propagation, dissipation, and dispersion effects, as well as direct 

comparisons between the non-premixed and premixed flame wrinkle dynamics can be 

obtained by expanding these expressions around the Pe→ ∞  limit in inverse powers of 

Pe. For example, the ( )h Peβ β− −−  term in Eq.(4.3) can be expanded as: 

 
{ } ( ) ( )

2 22 2 2 4
h 4

2 3

2 6 5n n
iSt StSt St St

iSt Pe
Pe Pe Pe Pe

ω ωω ω ω
ω

β β− − −
 +− + = − − + + Ο 
  

A A
     (4.4)

              

 

and will be referred to as the 1Pe>>  limit. The results of Wang et al.[87] for the 

linearized response of premixed flames to bulk axial forcing (generalized here to bulk 

transverse forcing) can be similarly expanded for flames that are thin relative to the 

burner radius; i.e., where Cσ << 1, and Cσ  is the scaled Markstein number, Ma: 

          
2

2

1

2C

f

Ma

R

ασ
α

 +=  
 

            (4.5) 

By following this procedure to O(1/Pe2) and O( 2
Cσ ), we can develop the 

following general result, valid for axial or transversely forced premixed or non-premixed 

flames in the 1Pe>>  limit:  

( ) ( ) ( )1, 2 3
3

( ) exp 1
1 exp exp exp ,

,c
n

C
f c f c

x i t i x x i x
St O

R iSt U R U Pe

x t
ω

ω

ξ ε θ ω ω ζ ωγ σ
  −     −  = − − +                   

I  (4.6) 
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where the waveform term is parameterized by a convection speed, Uc, axial dissipation 

rate, ζ, and dispersion term, γ, defined in Table 4.2. Note cotf fL Rα θ= =  is the 

premixed flame aspect ratio. 

Table 4.2. Propagation, dissipation, and dispersion terms 

 Premixed Non-premixed 

          Propagation speed, cU  2
0 cosU θ  2

0 (1 / )U O Pe+  

                 Dissipation, ζ 2
CStωσ  

2St

Pe
ω  

     Dispersion, γ 
2

2
2

1
C

ασ
α

−
+  

2

2

Pe

−
 

 

Consider the various terms in Eq.(4.6). The expression is led by a group of terms 

which describe the wave magnitude and harmonic time dependence, 

( ) ( )/ ( ) ( ) expiSt x i tωε θ ω−I . They show the familiar low-pass filter characteristic of 

flame wrinkle amplitude. The wave magnitude also has an axial dependence described by 

the term, ( )( )xθI , whose form depends upon whether the flame is forced axially or 

transversely. This shows the controlling nature of velocity fluctuations normal to the 

flame sheet. As shown in Table 4.1, the top and bottom flame branches are in-phase and 

are mirror images of each other for axial forcing, and are out-of-phase for transverse 

forcing. Finally, the non-premixed steady state flame angle is a function of axial 

coordinate, while for premixed flames with a comparable spatially uniform inflow, 0U , 

( )( )xθI
 
is not.  
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We next consider the general wave propagation term, contained in the expression 

( ) ( ) ( )21 exp / exp / exp /c f ci x U x R i St x Uωω ζ γ ω− − . The first unity term derives from the 

particular solution of the equation, and lacks spatial dependence because of the nature of 

the assumed bulk forcing. The second term describes a decaying, dispersive traveling 

wave generated at the boundary, 0x = , because of the assumption of flame attachment, 

i.e., 1, ( 0, ) 0n x tξ = = , or fixed mixture fraction at the burner outlet, 1( 0, , ) 0x y t= =Z , for 

the premixed and non-premixed cases, respectively.  

The leading order expansion of this expression, ( )1 exp / ci x Uω− , was previously 

presented in Section 3.1, i.e. Magina et al.[66]. It shows how flame wrinkles propagate 

without dissipation and non-dispersively in the Pe→ ∞  or 0Cσ →  limits. In this limit, 

the major difference between the space-time dynamics of non-premixed and premixed 

flame dynamics comes from the Uc parameter defined in Table 4.2. In both cases, local 

maxima and minima in flame wrinkle amplitude arise through interference between the 

two terms, revealed in Eq.(3.17). 

Consider next O(1/Pe) or O( Cσ ) terms, which as shown in Table 4.2, cause 

wrinkles to decay exponentially with downstream distance. This causes the interference 

effect discussed above to become imperfect, an effect that increases quadratically with 

Stω . The mechanism for wave dissipation for the two flame types are entirely different – 

for premixed flames, it is due to the dependence of the flame speed on the curvature, 

which causes positive Markstein length flames to be thermo-diffusively stable. For non-

premixed flames, it is due to the progressive smoothing by diffusion of the spatial 

variations in the Z  field with downstream distance. 
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We lastly consider O(1/Pe2) and O( 2
Cσ ) effects which, as shown in Table 4.2, 

introduce dispersion – i.e., a frequency dependent wave propagation speed. Explicit 

results for the premixed and non-premixed flames are shown in the table. An additional 

O(1/Pe2) effect for non-premixed flames is an alteration of the wave propagation speed, 

Uc, however, because the non-premixed result involves a ratio of two infinite sums, it is 

not possible to develop a simple expression for the confined case. 

Illustrative solutions from Eq.(4.6) are presented for the instantaneous non-

premixed flame position at several time instances in Figure 4.1, as well as the amplitude 

and phase of the wrinkles in Figure 4.2, for constant values of 
fLSt . The generation and 

downstream propagation of flame wrinkles can be observed, with a larger number of 

flame wrinkles being present within the flame length for increasing frequencies. Again, 

the spatial variation in the amplitude comes from the ( )( )xθI
 
term, as well as the spatial 

interference effect in Eq.(4.6). The local maxima and minima referred to above are 

clearly evident in the figures for the weakly dissipative solutions. The phase rolls off 

linearly with axial distance, reflecting the convection process described, and jumps 180 

degrees across the nodes. Note the smoothing of the wrinkles that occurs in the mid and 

far field with decreasing Pe, due to wave dissipation discussed in the context of Eq.(4.4). 

This effect reduces the overall peak-to-crest wrinkle amplitudes, as well as abolishing 

previously spatially stationary nodes, represented by the liftoff from the vertical axis. 

This leads to a complete loss of the spatial interference pattern for the 5Pe=  case 

relative to the Pe→ ∞  case. In addition, the phase does not roll-off linearly in the axial 

direction, and the discontinuous phase jumps are smoothed. Lastly, the steady state flame 

position becomes modified by axial diffusion. Both the flame tip location (i.e. overall 
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flame length), and the location of maximum width move downstream, as can be seen 

from Figure 4.2 by the movement of the flame angle forced node, an effect which was 

shown to impact the dynamics in Section 3.2. 

 

 

 
 

 
Figure 4.1. Temporal evolution of flame position for the Pe→ ∞  solution (top) and the 

general solution at two representative Pe values of 20 (middle), and 5 (bottom) for 4PeStω π=  and 

0.3st =Z . Note x-axis is rescaled by Pe. 

 

                 

Figure 4.2. Space-time dynamics presented via the magnitude (left) and phase (right) of 1,nξ
 

plotted against the ratio of axial coordinate to convective wavelength for the Pe→ ∞  limit and full 

solution at three representative Pe values of 100, 20, and 5 for 4PeStω π=  and 0.3st =Z . 
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4.1.1.1 Flame Clipping 

As noted in literature, an interesting spatiotemporal behavior of long, buoyancy 

dominated non-premixed flames is known as “clipping”, where the upper portion of the 

flame becomes detached from the main body due to extreme flame flicker, and convects 

downstream, much like a burning droplet [122, 123]. This phenomena can also happen 

for momentum dominated flames due to external forcing, but only beyond critical 

operational parameters. The considerable corrugation of the flame front causes it to self-

intersect and split, and the resulting disconnected region collapses while convecting 

downstream, even while the remainder of the surface enlarges near the base [59]. It has 

been noted in experimental and computational studies of forced coflow laminar diffusion 

flames that this clipping behavior only occurs below a certain frequency of excitation and 

above a critical amplitude for that frequency!  

Significantly, recent experimental [123] and computational [122] studies of soot 

volume fraction in flickering CH4/air diffusion flames have shown that for conditions in 

which the tip of the flame is clipped, soot production is significantly greater than similar 

unclipped flames, as well as being 4-5x greater than that measured for steady flames. 

This is due to the fact that the maximum downstream location obtained by a portion of 

clipped flame exceeds that for a similar conditioned, i.e. forcing frequency, unclipped 

flame, resulting in considerably longer soot growth times.  

As mixture fraction field solutions for forced non-premixed flame systems have 

been obtained, we can investigate this phenomena; and although these solutions were 

derived in the limit of small perturbation amplitudes, some preliminary conclusions can 

still be drawn. Figure 4.3 shows representative clipped and un-clipped flames positions 

extracted from our axially forced mixture fraction field solutions. 
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Figure 4.3. Representative clipped (ε=2; blue) and unclipped (ε=0.6; red) instantaneous 

flame positions, utilizing results from Section 3.1,  for Pe=20, 0.1fSt = , and 0.3st =Z . 

 

As it was noted that forcing amplitude and frequency were the two key 

parameters controlling clipping behavior, we investigated a two-dimensional parametric 

sweep over, ε and Stf, for both the axially forced mixture fraction results excluding (Pe�∞ 

results from Section 3.1) and including (Pe>>1 results from Section 4.1) axial diffusion. 

The computationally extracted results are shown in Figure 4.4, denoting the regions of 

parametric combinations in which clipping was detected. The resulting low frequency, 

large fluctuation amplitude regions agree with previous works. Additionally, it can be 

seen that the smoothing action of axial diffusion acts to eliminate clipping behavior at 

higher frequencies. This result makes sense as this wrinkle dissipation effect was shown 

to increases quadratically with St. Also placed on these figures were curves of the form: 

           0.5 b
faStε = +                 (4.7) 

indicating the critical values of ε, as a function of St, beyond which clipping would likely 

occur (although these curves do not capture some of the oscillatory behavior noticed 

computationally). The coefficients for the no axial diffusion case were, a=0.2 and b=2, 

and for the axial diffusion case were, a=15 and b=1, indicating how for a given forcing 

frequency including axial diffusion effects inhibits clipping. 
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Figure 4.4. Parametric sweep over ε and Stf indicating clipping tendencies of a forced non-

premixed flame excluding (left) and including (right) axial diffusion effects, for Pe=20 and 0.3st =Z . 

4.1.2 Heat Release Analysis 

Following Section 2.4.3 and Section 3.1.2, the instantaneous global heat release of 

the non-premixed flame, given by Eq.(2.40), and the specialized form for the two-

dimensional case, given by Eq.(3.22), can be linearized and expanded (retaining the axial 

diffusion term) to: 
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   (4.8) 

The terms in the top set of brackets are completely new, resulting from the inclusion of 

axial diffusion, i.e. the /d dxZ  term in Eq.(3.22). For each set of brackets, the first term 

on the top is the steady state contribution, the second term on the top denotes the 

contribution of flame area fluctuating area oscillations to heat release fluctuations, and 

the remaining three terms the contribution of mass burning rate oscillations to heat 

Clipping 
occurs 

Clipping 
occurs 

No 
clipping No 

clipping 
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release fluctuations. Note the sub and superscript – and + signs on the upper integration 

limits Lf(t), which indicate integration from 0 to Lf over the bottom and top flame 

branches respectively. This is important to keep in mind for forcing configurations which 

result in a non-axisymmetric instantaneous flame sheet. Additionally, in a rectangular 

coordinate system, the differential areas can be written in multiple ways, depending upon 

whether the integration is performed over the axial or transverse coordinate; e.g.,: 

             0 1
1 2

0

sin sin

cos
dA dx

θ θ
θ

=                0 1
1 2

0

cos sin

sin
dA dy

θ θ
θ

−=        (4.9) 

Representative computed transfer functions for finite Pe values, obtained from 

Eq.(4.8), are shown by the curves in Figure 4.5 and several finite Pe effects can be noted. 

First, Y  does not tend to unity for low St values. This is due to the fact that the 

instantaneous mass flux in the domain occurs not only through convection, but also 

diffusion. If the transfer function expression were generalized to account for both 

convective and diffusive flux, these transfer function values converge to unity. Second, 

the ripples in gain that occur near StLf ~1 are damped out at lower Pe values, due to 

dissipation mechanisms discussed previously. 

                    

Figure 4.5. Axially forced heat release transfer function curves for the Pe→ ∞  limit, full 
solution at two representative Pe values of 20 and 5, and asymptotic expression plotted vs 

fLSt for 

0.3st =Z . 

| Y
   

  | 
  

StLf 
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4.1.3 Explicit Governing Equation Validation 

Recall how in Section 2.5, an explicit governing equation, Eq.(2.49), was 

presented for the specific case of an infinitely long, flat non-premixed flame. 

Additionally in Section 3.1.4, this equation was refined for a two-dimensional 

harmonically forced system, and an explicit solution obtained, given by Eq.(3.42), which 

was shown to match previous results in the Pe�∞ limit. As we now have an explicit 

equation for the wrinkle dynamics for large, yet finite Pe values, i.e. Pe>>1, we can once 

again compare the solutions obtained.  

The exponential inside the waveform of Eq.(3.42), can be expanded around the 

Pe�∞ limit as: 

       
2 2 3

2 3

8 2 1
~

2

Pe Pe iPeSt St iSt
iSt O

Pe Pe Pe
ω ω

ω
π− −  − − +  

 
                (4.10) 

Comparing this expansion to Eq.(4.4), and the resulting solution given by Eq.(4.6), 

reveals the exact same solutions/parameters for the wrinkle convection, dissipation, and 

dispersion! Hence, once again the assumption of an infinitely long, flat flame validated 

our Pe>>1 assumption, providing the same explicit flame dynamics. 

4.2 Multi-dimensional Forcing Effects 

The previous Chapter and section have covered the idealistic case of two 

dimensional non-premixed flames exposed to unidirectional, spatially uniform, 

fluctuations in flow velocity. However, real combustion systems are not this simple, 

being inherently three-dimensional, and are often times exposed to much more advanced 

forcing configurations, such as helical and/or convecting disturbances. Additionally, swirl 
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is a common feature of many combustion designs, utilized for aerodynamic flame 

stabilization.  

Thus, the objective of this section is to continue analysis of this problem, with 

several key goals. First, while two-dimensional analyses were valuable for the 

development of the basic suite of analysis techniques and understanding of key 

controlling physics, real non-premixed flames take on a more axisymmetric shape, are 

often embedded in swirling flows, and are subjected to three dimensional disturbances. 

Such three dimensional disturbances may arise from helical vortical disturbances or 

transverse acoustic modes. In addition, helical modes may be excited during both axial 

and transverse acoustic instabilities. Analyses of these problems are described in this 

section, with comparisons of related features for premixed flames. 

Still working within the mixture fraction formulation, the instantaneous position 

of the three-dimensional reaction sheet, in cylindrical coordinates, is defined by 

( )  , ,r x tξ θ= , as shown in Figure 4.6. 

          
Figure 4.6. Schematic of the three-dimensional swirling non-premixed flame. Images show a 

steady over (red dashed line) and under (blue dashed line) ventilated flame. 
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Generalizing our previous inlet conditions, at the inflow ( 0x = ) fuel and oxidizer 

advect into the domain from the central and coflowing tubes, as indicated in the figure, 

with inflow mixture fractions given by *
fsZ and *

osZ , respectively. For compactness, we 

utilize the rescaled mixture fraction which varies between zero and unity, 

* * * *( )os fs os= − −Z Z Z ) / (Z Z . Once again we utilize a step inlet boundary condition, 

formulated for the three-dimensional domain as:  

                       
1        0 <

( , , 0)
0              

f

f

r R
r x

R r
θ

≤= =  ≤
Z         (4.11) 

No-diffusion at the side walls implies ( , , ) 0wr r R xθ∂ ∂ = =Z / , and we ensure that the 

solution remains finite at large axial distances. Further discussion of this approximate 

boundary condition can be found in Section 4.3. 

Once again, we derive the solution in the limit of small perturbations and so 

expand each variable as ( )( ) ( ) ( ) ( ) ( )0 1
, , , , , , , ,r x t r x r x tθ θ θ= + . The solution to the zeroth 

order form of the Z -equation, Eq.(2.21), in cylindrical coordinates, subject to the 

boundary condition in Eq.(4.11), and the flow conditions that ,0 0xu U= , swirl velocity, 

,0u rθ = Ω  (where Ω is the angular rate of swirl), and no radial velocity, ,0 0ru = , in a 

bounded domain is given by: 

             ( )
( )

12
0 02

1 0

2
( , , ) expn

n
n f fn n

sJ r s r x
r x s J r s

R Pe RJ r r
ζ

∞
−

=

   
= +          

∑
BZ        (4.12) 

where rn is the nth root of the first order Bessel function of the first kind, ( )1 0nJ r =  , s is 

the ratio of fuel port radius to wall radius, /f ws R R= , and −B  is given by: 
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( )22 4 24

2
nPe Pe r s Pe

−

− +
=B          (4.13) 

This form of the swirl velocity represents solid body rotation, and can also be 

written as ,0 02 ( / )fu St r R Uθ π σ= , where /σ ω= Ω  is the swirl parameter. Once again, 

while these solutions are formally valid for arbitrary Pe values, the use of the step inlet 

boundary condition implicitly assumes Pe�∞. This is an important point that will be 

utilized to elucidate dynamical features throughout this section. 

The first order form of the Z -equation, Eq.(2.22), in cylindrical coordinates takes 

the following form: 

2 2 2
,01 1 1 1 1 1 1 1

,0 ,0 2 2 2 2

,10 0 0
,1 ,1

1 1
r x

r x

u
u u

t r r x r r r r x

u
u u

r r x

θ

θ

θ θ

θ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + − + + + = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂= − − −
∂ ∂ ∂

W
Z Z Z Z Z Z Z Z

Z Z Z
       (4.14) 

It is helpful to write this equation out explicitly, for in the following sections we will 

discuss the mixture fraction solutions and space-time dynamics for swirling non-

premixed flames exposed to various forcing configurations. Each case has a unique set of 

forcing velocities ur,1, uθ,1, and ux,1  which produce unique solutions and dynamics. After 

these have all been presented, the various terms in these solutions will be examined and 

their influence on the flame dynamics clarified. Lastly we will compare these dynamical 

features to those of a three-dimensional swirling premixed flame exposed to similar 

forcing. 
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4.2.1 Bulk Axial Fluctuation Solutions 

As a building block, it is useful to revisit the simplest forcing case previously 

considered in our two-dimensional analyses in Section 3.1, axial bulk velocity 

fluctuations, which is given by the forcing velocity set: 

        ,1 0ru =      ,1 0uθ =     [ ],1 0 expxu U i tε ω= −    (4.15) 

The general solution for the fluctuating mixture fraction field, subject to the flame 

attachment boundary condition, i.e. 1( , , 0) 0r xθ = =Z , at the fuel port lip is: 

( ) [ ]
( )

{ }1 h
1 02

0 0

exp
( , , ) exp 1 expn

n
n f f fn n

s J r s i t r x x
r x t J r s

R Pe R Pe RiPeStJ r r

ε ω
π

∞
− −−

=

      − −
= −                  
∑

B B BBZ    (4.16) 

where 

                    
( )22 4 2 34 8

2
n

h

Pe Pe Pe r s iPe Stπ− + −
=B                    (4.17) 

Note that the solution is not a function of the angular coordinate or the swirl parameter, σ, 

due to the axisymmetric form of the mean flame and disturbance. Figure 4.7 shows 

representative instantaneous st=Z Z  iso-contours for the unforced case, and each of the 

forced problems, for both the over- and under-ventilated non-premixed flame 

configurations. Notice the clear wrinkling of the flame and its azimuthal dependence in 

the transverse and helically forced cases, a feature that will be discussed in the following 

subsections.  
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Figure 4.7. Steady state and fluctuating mixture fraction field iso-contours for an under (top 
row, stZ =0.055) and over (bottom row, stZ =0.08) ventilated non-premixed flame in a swirling 
convecting mean flow, subject to axial bulk disturbance, transverse bulk disturbance, and a helical 
disturbance with m= -1, kc= 5 (from left to right) for parameters Pe=10, St=0.1, s=0.25. 

 
Following the procedure outlined in Section 3.1, the first order flame position 

fluctuations can be extracted from this solution and written explicitly as: 

  
( ) [ ]

( )( )

{ }
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/exp
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       (4.18) 

where 0, /n x∂ ∂Z  is the nth term of the 0 / x∂ ∂Z  summation and 1,nξ  is the wrinkle 

fluctuation measured normal to the mean flame surface.  

As was shown by Section 4.1, more insight into this solution in the high Pe limit 

can be obtained by formally expanding it in inverse powers of Pe, following Magina et 

al. [67]. Retaining terms up to order 1/Pe yields: 

Pe>>1
( ) [ ] 2 2

1,
0 2

exp 4 1
sin ( ) 1 exp 2 exp

2

,n

f f f

i i t x St x
x iSt O

R St R Pe R Pe

x tξ ε ω πψ π
π

    −  = − − +      
         

(4.19) 

This solution is identical to that previously obtained for a two-dimensional flame, given 

by Eq.(4.6), although ψ0(x) has a different functional dependence on x (see Section 4.1.1 
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for discussion). Note, for this forcing configuration, swirl has no influence on the flame 

wrinkles, since the disturbance form is axisymmetric and independent of θ. Figure 4.8 

shows an illustrative solution of the flame wrinkle magnitude and phase for the axial bulk 

forced case. The spatial variation in the amplitude, resulting from the flame angle term, 

as well as the spatial interference effect, can be seen. Note the clear local maxima and 

minima for the weakly dissipative, i.e. no axial diffusion, solution. In addition, the phase 

rolls off linearly with axial distance, with 180 degree jumps across the nodes. Axial 

diffusion acts to make this spatial interference effect imperfect, smoothing the amplitude 

and phase plots. 

          
          

Figure 4.8. Wrinkle amplitude and phase for the axial bulk forced case for parameters 
Pe=10, St=0.1, ε=0.01, s=0.25, and stZ =0.055. 

 

4.2.2 Dimensionality Effects 

Both Section 3.1 and Section 4.2.1 investigate axial bulk velocity oscillations of 

confined non-premixed flame systems, the only difference being the dimensionality of 

the study. Thus comparing the explicit fluctuating wrinkle equations, i.e. Eq.(3.15) and 

Eq.(4.19), we can isolate the effects of dimensionality on the flame dynamics. 
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Comparing these two equations reveals the same dynamical features of the flame 

sheet winkles: the low-pass filter magnitude behavior, flame angle dependence, i.e. 

velocity fluctuations normal to the flame sheet, and wave form interference term. 

However, as was the case for the study on confinement effects, a subtle difference once 

again lies within the flame angle term, representing the influence of the steady state flame 

position on the flame dynamics. When the steady flame location is altered, so is the axial 

dependence of the normality of the fluctuations with respect to the flame surface, 

influencing wrinkle generation. Figure 4.9 shows a representative over- and under-

ventilated steady state flame position extracted from the two-dimensional, Eq.(3.6), and 

three-dimensional, Eq.(4.12), mixture fraction field solutions for two different stZ  values.  

                                     
Figure 4.9. Steady flame position for representative over-ventilated, stZ =0.3 (solid lines), 

and under-ventilated, stZ =0.05 (dashed lines) for two-dimensional (red) and three-dimensional 

(black) non-premixed flames for parameters Pe=10, and, s=0.25. 

These results make sense when we think about these two systems from a physical 

point of view. The two-dimensional system has a quantity of fuel proportional to 2Rf 

entering the domain, and two potential directions of diffusion thereafter (no axial 

diffusion case), while the three-dimensional system has a quantity of fuel proportional to 

πRf
2 entering with 2π radian potential directions of diffusion. Expanding upon this, Figure 
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4.10 shows the corresponding flame length and width (maximum) for the same over- and 

under-ventilated flames considered in Figure 4.9, over a stZ  range. An additional s 

configuration is also shown, for a value of 0.1, hence the abrupt width cutoff at 1/s. 

However, it is difficult to draw general conclusions due to the additional 

dependence of these solutions upon s. The peaks in the flame lengths in Figure 4.10 result 

from the flame switching from over-ventilated, attaching at the centerline at y=0 (r=0), to 

under-ventilated, attaching at the wall at y=Rw (r= Rw), as the stZ  value is reduced. The 

delineating mixture fraction value between these two flame configurations corresponds to 

the constant, non-spatially dependent term in each respective mixture fraction solution, 

i.e. s=Z  and 2s=Z  for the two-dimensional and three-dimensional solutions, 

respectively. At these delineating mixture fractions, the corresponding flames become 

infinitely long. 

 

   
Figure 4.10. Steady flame length and width for representative two-dimensional and three-

dimensional non-premixed flames for parameters Pe=10, s=0.25 (left) and s=0.1 (right). 

 



 129

4.2.3 Bulk Transverse Fluctuation Solutions 

The next forcing configuration we consider is bulk transverse velocity 

fluctuations. In a polar coordinate system, this equates to radial and angular velocity 

fluctuations of the form: 

     [ ],1 0 cos expru U i tε θ ω= −          [ ],1 0sin expu U i tθ ε θ ω= − −     ,1 0xu =    (4.20) 

The general solution for the fluctuating mixture fraction field, subject to the flame 

attachment boundary condition at the fuel port lip is: 
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where: 
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=B                    (4.22) 

Following the same procedure as for the axial bulk case, we obtain an explicit expression 

for fluctuating flame position for the general and O(1/Pe), Pe>>1 expansion, 

respectively: 
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Pe>>1 ( ) [ ]
( ) ( ) ( )

( ) ( ) ( )

22 2

1,

0 222 2

exp 4 1
1 exp 2 1 exp

(1 )exp 1
cos ( )

4 exp 4 1
1 exp 2 1 exp

(1 )

, , f fn

f

f f

i Stx x
iSt

R Pe Ri i t
x O

R St Pei Stx x
iSt

R Pe R

x t

θ π σ
π σ

σξ ε ω
ψ

π θ π σ
π σ

σ

θ

     −  − − − +   −      −     = +
    − +  − + −   +          


 
 

  
(4.24)

 



 130

This solution has similar low-pass filter and mean flame angle axial dependence, 

now a 0cos ( )xψ  term, as the axial bulk forced solution, and is identical to that previously 

obtained for a two-dimensional flame (although ψ0(x) has a different functional 

dependence on x), only for the case where σ = 0. The controlling nature of velocity 

fluctuations normal to the flame sheet is also seen by the additional ( )exp / (1 )iθ σ± ∓  

terms, which now accounts for direct versus glancing forcing angles. For the no-swirl 

case, this term demonstrates how maximum and null responses in the flame space-time 

dynamics are separated by 90o in the azimuthal direction. However, in the presence of 

swirl, there are no azimuthal locations at which the flame is unwrinkled, due to 

simultaneous azimuthal and axial propagation of wrinkles by the flow. Swirl acts to 

azimuthally carry wrinkles around the flame to other θ angles, contributing to the 

imperfect nature of the spatial interference at a given angle, thus eliminating previously 

existing spatial nodes due to azimuthal convection.  

Similar to premixed flames [114], the axial phase speed at a fixed azimuthal 

location can even become negative for high swirl numbers. Since we are considering 

azimuthal slices through the flame, it is important to note that the flame wrinkles are not 

actually moving backward, but rather they are moving along the characteristic curve – 

this will become evident when we consider a phase result for a convecting helical 

disturbance in the next section. Figure 4.11 shows an example image of this “slicing” as a 

way to visualize a three-dimensional system in two-dimensions. 
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Figure 4.11. Example image of slicing plane used to visualize the three-dimensional system in 

two-dimensions. 

 

Figure 4.12 shows illustrative solutions of the flame wrinkle magnitude for a case 

with and without swirling flow, at two perpendicular cut angles. The transverse forcing 

hits the θ=0 and θ=π/2 cuts at normal and grazing angles, respectively. The spatial 

variation in the amplitude, resulting from the flame angle term, as well as the spatial 

interference effect, can once again be seen, as well as the influence of the azimuthal 

convection of wrinkles. 

           
        

Figure 4.12. Wrinkle amplitude of two perpendicular azimuthal cuts (0 and π/2 radians) for 
the transverse bulk forced case for dimensionless swirl values of σ = 0 (left) and 0.05 (right) and 
parameters Pe=10, St=0.1, ε=0.01, s=0.25, and stZ =0.055. 
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4.2.4 Convecting Helical Disturbance Solutions 

The last forcing configuration we consider is a convecting helical disturbance of 

the form: 

                ,1 0ru =                    ,1 0uθ =                 [ ],1 0expxu U i t ikx imε ω θ= − + +    (4.25) 

where k=ω/Uc is the helical convective disturbance velocity, kc=Uc/U0 is the phase speed 

of the disturbance normalized by the axial flow velocity, and m is the helical mode 

number. Note that m=0 is the axisymmetric mode, whereas m > 0 and < 0 denote the co-

swirling and counter-swirling modes, respectively. In both non-premixed and premixed 

flames, it is well known that important interference effects control the axial flame 

wrinkling character, as vortices disturbing the flame, and the flame wrinkles excited by 

these convecting vortices, do not generally travel at the same speed. 

The full mixture fraction solution for this problem is quite complex. However, if 

we assume that radial and axial diffusion terms are much larger than the azimuthal 

diffusion term (an approximation which holds true in many circumstances, see Appendix 

C), we can neglect the azimuthal diffusion term in Eq.(4.14), significantly simplifying the 

solution form, making it analytically interpretable. The general solution for the 

fluctuating mixture fraction field, subject to the flame attachment boundary condition at 

the fuel port lip is: 
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with the explicit expression for fluctuating flame position for the general and O(1/Pe), 

Pe>>1 expansion given by, respectively: 
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Pe>>1    
( ) [ ] [ ] ( )22 2

1,

02 2 2
0

2

exp exp 4 12 1
sin ( )exp 1 exp 2 exp

4
2

, ,n

nf c f f f

c

im i t St miSt x x x
x iSt O

StR k R R Pe R Pe
iSt

k Pe

x tξ ε θ ω π σπψ π χ
ππ χ

θ ∞

=

     − − −   = − − +       
             −

∑

  
(4.29)

 

where 

         1 1/ cm kχ σ= − −                       (4.30) 

This solution has similar low-pass filter and mean flame angle axial dependence 

as the previous bulk forced solutions, however, the leading wrinkle magnitude and 

waveform terms are more complicated due to the convective nature of the disturbance 

and the parameter χ. To leading order in Pe, the denominator shows how the complex 

interaction of swirl strength, helical mode, and disturbance phase speed act to alter the 

flame wrinkle magnitude, an interaction which produces a maximum in local spatial 

response for 0χ = , or corresponding mode number given by: 

                                          1 1 /s cm kσ = −                       (4.31) 

Similar criterion holds for premixed flames, and corresponds to the case where 

the azimuthal forcing exactly mirrors the wrinkle convection, so that no destructive 

interference occurs; rather they constructively superpose to cause the magnitude of flame 

wrinkling to grow monotonically with downstream distance. It is also important and 

significant to point out that for this axisymmetric mean flow, helical modes in the flow 

excite a corresponding helical motion in the flame response. 
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The two new additional parameters which emerge as significant controllers of 

flame wrinkle dynamics are kc and mσ , the latter of which is always grouped, indicating 

that swirl only influences the flame response through helical modes. Both of these alter 

the wrinkle interference pattern as well as the flames relative sensitivity to various co- 

and counter-rotating helical modes, an effect which can be more easily observed by 

rewriting Eq.(4.30) as, ( )sm mχ σ= − . To leading order in Pe, mode numbers closer to 

the value ms produce a lower value of χ and hence a higher flame motion response 

amplitude, and vica versa. In full, this response magnitude is a rich non-monotonic 

function of these controlling parameters.  

An additional important point is that to leading order in Pe, the wrinkle magnitude 

is independent of the sign of χ, whereas this is important for the phase of the flame 

response. At a given azimuthal location, the axial phase varies linearly with downstream 

distance with a slope given by ( 2 / )cSt kπ χ − . Thus for the delineating case of 2 / ckχ = , 

the flame response fluctuations at all axial locations, for a given azimuthal location, are in 

phase with each other. When 2 / ckχ > , the phase rolloff is positive, indicating an 

apparent negative phase speed, as discussed previously. 

These points are slightly modified if order 1/Pe terms are included, due to the 

additional term in the denominator of the magnitude term, and as a result, the traveling 

nature of the disturbance acts to alter the wrinkle magnitude and phase rolloff. In 

addition, the O(1/Pe) waveform term ( )2
1 mσ− acts to alter the dissipation term non-

monotonically, leading to minimum wrinkle dissipation when 1mσ = . These features can 

be seen in Figure 4.13 which shows illustrative solutions of the flame wrinkle magnitude 
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and phase for various values of χ for a near-bulk (kc=20) and convecting disturbance 

(kc=3.33) case.  

             
 

                 
        

Figure 4.13. Wrinkle amplitude (left) and phase (right) for axial convecting helical 
disturbances case for various χ values and kc=20 (top) and kc=3.33 (bottom), and parameters Pe=10, 
St=0.1, ε=0.01, s=0.25, and stZ =0.055. 

Additionally, Figure 4.14 shows a surface plot of the flame response magnitude 

versus a parametric sweep over kc and σ for both the first axial wrinkle, as well as the 

largest wrinkle on the flame sheet. The maximum in local spatial response for 0χ = , is 

clearly evident from the red dotted line. Notice how along this ridge the wrinkle 

magnitude blows up.  
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Figure 4.14. Isometric (left column) and birds-eye (right column) view of the first axial (top 

row) and largest overall (bottom row) wrinkle along the flame sheet, for a parametric sweep over kc 
and σ for axial convecting helical disturbance parameters Pe=10, St=0.1, ε=0.01, s=0.25, and 

stZ =0.055. The red dotted line shows Eq.(4.31), where χ=0 and thus the response is unbounded. 

 

4.2.5 Premixed Flame Comparisons 

It is useful to compare these results to those obtained for axisymmetric swirling 

premixed flames under similar forcing conditions. From the results of Acharya et al. 

[114, 124], flame wrinkle dynamical equations for the axial / transverse bulk and 

convecting helical disturbance cases can be obtained and compared to Eqs.(4.19), (4.24), 

and (4.29) in the Pe�∞ limit (since the premixed expressions do not include stretch 

effects, which was shown to relate to the inclusion of axial diffusion effects [67]). These 

expressions are almost identical in form to those for the non-premixed case, with a few 

subtle differences. First, the premixed flame angle term is independent of the axial 
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coordinate, owing to the flat nature of the steady state flame sheet, whereas for the non-

premixed case this term is a complex function of x, Pe, stZ , and s. Second, the wrinkle 

convection parameter for the premixed case has an additional 2cos ψ , due to the fact that 

premixed flames propagate normal to the flame surface, making their wrinkle phase 

speed the vector addition of the axial flow velocity and the burning velocity normal to the 

flame.  

Although no stretch sensitive swirling premixed flame solutions exist, there is 

evidence showing that the disturbance decay rate is a function of the helical mode 

number, in addition to the forcing frequency [125], a result which Eq.(4.29) shows to be 

true for non-premixed flames.  

4.2.6 Heat Release Discussion 

By relating the fuel mass fraction and the mixture fraction gradients, the heat 

release, given by Eq.(2.40), can be analogously written for a three-dimensional system as:  

 

             
2(1 )

( ) sin cosOx
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Q t rdxd
x r

ϕ ρ ψ θ θ
ϕ
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∫ɺ Z ZhW

              

   (4.32) 

 
Notice there are no / θ∂ ∂Z  terms, since eθ

�
is always perpendicular to ne

�
. We will 

assume fixed composition fuel and oxidizer, so that the heat of reaction and mixture 

density are constant. The instantaneous global heat release of the non-premixed flame, 

given by Eq.(2.42), can be linearized and expanded to: 
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where the top and bottom set of brackets result from the inclusion of axial and radial 

diffusion respectively. Within each set of brackets, the first term on the top is the steady 

state heat release and the remaining terms are the contributions of area and mass burning 

rate oscillations to heat release fluctuations.  

As swirl does not influence the axial bulk forced case, the flame transfer function 

for the three-dimensional case takes the same form as that for our previous two-

dimensional analysis, i.e. Section 3.1.2, once again keeping in mind the flame angle term 

has a new axial dependence. For the transversely forced case, similarly to the two-

dimensional case, heat release oscillations cancel each other on opposite sides of the 

flame, thus resulting in no unsteady heat release. This same cancellation occurs for the 

helical disturbance case for all mode numbers except m=0, which corresponds to the 

axially forced case! Thus, as is the case for premixed flames, the m=0 mode is the sole 

contributor to the heat release oscillations, with kc being the only new parameter 

influencing the transfer functions. Figure 4.15 shows heat release transfer function 

magnitude and phase for various values of kc. For slight changes, some trends can be 

observed, such as reducing the St dropoff, decreasing the phase rolloff, and modifying the 

oscillatory nature of the curves. For large modifications in kc, this final effect is so 

dominant in further complicating the interference effect of the disturbance wrinkles, that 

no real trends can be observed. 
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Figure 4.15. Convecting helical disturbance heat release transfer function magnitude (left) 
and phase (right) curves for various values of kc and parameters Pe=100, ε=0.01, s=0.1, and stZ =0.3. 

The axial bulk case corresponds to kc=∞. Top row shows slight modifications, while bottom row 
shows significant modifications. 

Recall from Section 4.2.4 that for a swirling flow, a non-axisymmetric mode, ms, 

dominated the flame response amplitude. This is significant given the fact that only the 

axisymmetric mode, m=0, contributes to the global spatially integrated heat release 

fluctuations. Thus, different measures of the flame response, such as local wrinkling, 

local heat release, and global heat release, have very different sensitivities to swirl and 

different azimuthal modes. In fact, m and σ influence local heat release significantly, 

which is non-zero for various theta cuts, however cancelation on opposite sides of the 

flame produces no net global heat release fluctuations.  
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4.3 Finite Axial Diffusion Effects – Numerical Extended Inlet Study 

The current work in this Chapter utilizes the same two-dimensional co-flowing 

fuel-oxidizer geometry, but relaxes the Pe�∞ assumption, made in Chapter 3, and 

discusses the implications that axial diffusion has on the mixture fraction field, space-

time dynamics, and spatially integrated heat release. Sections 4.1 and 4.2 started this task 

by enabling axial diffusion in the governing Z -equation, and obtaining explicit 

dynamical equations for large, yet finite Pe values, i.e. Pe>>1.  

Several questions still remain about the flame position and heat release dynamics 

of finite Peclet number flames. In particular, axial diffusion effects manifest themselves 

in a variety of ways, not all of which have been captured in prior analyses. Most 

theoretical analyses of the problem impose inflow conditions on the mean and fluctuating 

conditions, even in studies that capture axial diffusion effects in the domain itself. For 

example, our earlier study in Section 4.1 that demonstrated how axial diffusion 

introduced damping of flame wrinkles utilized a prescribed step-inlet boundary condition. 

This simplification introduces a singularity in the solution, as there is an infinite gradient 

in mixture fraction at the fuel port lip. As we will show here, the high frequency 

characteristics of the heat release are quite sensitive to the inflow profile and the step-

inflow boundary condition leads to incorrect conclusions on these asymptotic 

characteristics of the heat release transfer function, even in the Pe >>1 limit. Stated 

differently, specifying an inflow step boundary conditions neglects axial diffusion effects 

in the region where these effects are most important – in the near-burner exit region 

where high transverse gradients and mass burning rates control the heat release dynamics.  

Thus, a key goal of the present investigation is to completely and consistently capture 
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finite Pe effects for the entire non-premixed flame system. This requires computational 

solutions of the governing equations, as explicit analytical solutions are not possible in 

this case.    

           
Figure 4.16. Illustration of the forced non-premixed flame model problem, referred to as the 

“extended inlet” geometry. The x<0 and x>0 domains are denoted the fuel/oxidizer ports and 
combustion region, respectively. 

 

The new domain of interest is shown in Figure 4.16. Much like a real combustion 

system it is connected to two reservoirs, one fuel and one oxidizer, located at x = -∞, 

where: 
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Previous theoretical analysis of the unsteady problem have specified the inflow 

conditions of fuel and oxidizer at x=0. However, to properly include and account for axial 

diffusion effects, and to properly describe the fuel/oxidizer gradients near the burner lip, 

we must include the x<0 fuel and oxidizer ports, since fuel can diffuse back into the 

oxidizer port and vice versa, altering the inlet profile. Thus we will solve the two-

dimensional steady and fluctuating mixture fraction field equations, Eq.(3.3) and Eq.(3.4) 

respectively, utilizing the extended inlet geometry shown in Figure 4.16, subject to the 



 142

above boundary condition. In addition, no-penetration boundary conditions are applied at 

the side walls and fuel port walls as: 

      ( , ) 0 ( 0, ) 0w fx y R x y R
y y

∂ ∂= ± = < = ± =
∂ ∂
Z Z       (4.35) 

as well as ensuring finite mixture fraction values at large axial distances. For 

compactness, we explicitly define the following rescaled mixture fraction, now 

incorporating the reservoir rather than stream conditions, which too varies between zero 

and unity: 
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        (4.36) 

As mentioned, this problem is considered both analytically, where explicit 

solutions are possible in cases where the inflow boundary condition at x = 0 is specified, 

and computationally, for the general problem where the inflow conditions at x = 0 must 

be solved simultaneously with the rest of the domain of interest. As we will show next, 

explicitly specifying an inflow step boundary condition neglects axial diffusion effects in 

the region where they are most important, and imposes an artificial infinite transverse 

gradient in mixture fraction at the fuel port lip. Likewise, specifying a local diffusive flux 

boundary condition leads to a discontinuity in local mass flux between the fuel/oxidizer 

ports and combustion solution domains, both of whose effects will be discussed later. 

 The computational solutions are obtained with finite element methods, using the 

Comsol Multiphysics solver. The multi-frontal massively parallel sparse direct solver 

(MUMPS) was utilized with a convergence criterion set to 10-5 and relative tolerance of 

0.001. This direct solver is based on LU decomposition and can take advantage of all 

processor cores for increased computational speed. In addition, a mapped rectangular 
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mesh was utilized with increasing resolution closer to the fuel port lip where high 

transverse gradients occur. The maximum element size, occurring near the exit plane was 

on the order of Rf, while the minimum element size, occurring near the fuel port lip, was 

on the order of Rf / 103. Dirichlet and Neumann boundary conditions were utilized at the 

inlet/outlet and at the port/walls, respectively.  

4.3.1 Inflow and Inlet Conditions 

This section considers system inflow and inlet conditions. Previous investigations 

into non-premixed flame dynamics were performed in the large Pe limit, although this 

assumption was not always explicitly stated. For example, most studies utilized a step 

inlet boundary condition for inflow mixture fraction at x=0. However, when we start 

considering finite/lower Pe value effects and, thus, axial diffusion effects, this inlet 

boundary condition, as well as simple rectangular domain of interest, becomes invalid 

due to time varying back diffusion of fuel into the oxidizer port and vice versa. Thus, 

now we further discuss the inflow conditions and their relation to the inlet (defined as the 

x=0 plane) conditions, denoted as: 

        0 0 1 1( 0, ) ( ) ( 0, ) ( )x y y x y y= = = =Z f Z f                 (4.37) 

Standard solution techniques can be used to solve Eq.(3.3) and Eq.(3.4) for a 

given steady and fluctuating inflow profile, 0( )yf  and 1( )yf , respectively, for spatially 

uniform forcing. Once again, defining our forcing to be spatially uniform axial velocity 

fluctuations, represented by Eq.(3.7), and including axial diffusion in the governing 

equations by setting b=1, mixture fraction field solutions for the combustion region, i.e.  

x > 0  can be obtained: 
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where nA  are the eigenvalues previously defined in Section 3.1 ( n n sπ=A ) and A0, An, 

and, Bn are given by: 
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and the Strouhal number, defined by Eq.(2.27), parameters s, β− , and hβ −  are the same 

as from the bulk forced cases (Section 3.1 and Eq.(3.9)). 

The b=0 solutions can be obtained by taking the Pe�∞ limit of these solutions. As 

noted above, most studies have previously considered the following inflow condition, 

generalized from previous sections, given by: 
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f                             (4.42) 

                         {1( ) 0y y= ∀f                                (4.43) 

This boundary condition implies that 1( 0, ) 0x y= =Z , eliminating the need for 

simultaneously solving for the port regions, i.e. x < 0. The steady state and fluctuating 

mixture fraction field solutions for this step inlet boundary condition were treated in 

previous sections. However, this boundary condition creates a non-physical infinite 

transverse gradient in mixture fraction at the fuel port lip, a singularity that dominates 
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certain solution characteristics such as the flame attachment and asymptotic heat release 

characteristics – a key motivator for this study. In reality, axial diffusion smoothes out 

this step boundary condition, as fuel diffuses upstream into the oxidizer “port” and vice 

versa. Thus, applying the inlet boundary condition, given by Eq.(4.42), to the geometry in 

Figure 4.16 implicitly neglects axial diffusion effects and, in reality, 0( )yf  and 1( )yf , 

cannot be imposed on the problem but must be solved as part of the problem. 

Insight into the “correct and consistent” x=0 inlet condition can be obtained by 

integrating the Z -equation, Eq.(2.7), from known values at the x=-∞ reservoirs to the 

inflow plane. This leads to the following expressions relating the values at the reservoir 

and inlet: 

                        
0 0 2
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dx u u dx b
t y x= =−∞

=−∞ −∞

∂ ∂ ∂+ = + +
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where xu
�

 is the instantaneous axial velocity. Note that, as the reservoirs are pure fuel and 

oxidizer respectively, 1/ ( , ) ( , ) 0x x y x y∂ ∂ = −∞ = = −∞ =Z Z . In addition, due to our no-

flux boundary conditions at the solid duct walls, / ( 0, , ) 0f wy x y R R∂ ∂ −∞ < < = =Z . 

Utilizing these boundary conditions and expanding Eq.(4.44) into nominal and 

fluctuating values, leads to: 
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Note the existence of the second derivative term in y, on the right hand side of 

these equations. While this term is zero at the centerline (for symmetric axial forcing), 
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this transverse gradient will be quite high in some regions, particularly near the nozzle 

edges. We can also obtain a transversely averaged expression by integrating Eq.(4.45) 

transversely in the fuel and oxidizer domains, respectively, resulting in: 
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Defining the transversely averaged mixture fractions with a superscript “ * ”, and taking 

advantage of our no-flux boundary conditions at the centerline and solid duct walls, 

/ ( 0, 0, , ) 0f wy x y R R∂ ∂ −∞ < < = =Z , these expressions can be represented as: 

         
*

* 0
0 ,0

0

0f
f res fx

x

bR
y R

Pe x=
=

 ∂− = < < ∂ 

ZZ Z         (4.49) 

  
*

* 0
0 ,0

0

f
ox res f wx

x

bR
R y R

Pe x=
=

 ∂− = < < ∂ 

ZZ Z     (4.50) 

This expression is identical to the inflow conditions used by Tyagi et al. [64] who utilized 

the following condition locally:  

   0
0 ,0

0

0f
f res fx

x

R
y R

Pe x=
=

∂− = < <
∂
ZZ Z           (4.51) 

  0
0 ,0

0

f
ox res f wx

x

R
R y R

Pe x=
=

∂− = < <
∂
ZZ Z      (4.52) 

Physically, these latter two expressions state that the instantaneous mass flux 

associated with both convection and diffusion at the inlet equals the value at the 

reservoir, locally (i.e., at every y station). Comparing Tyagi et al.’s inflow conditions 

with Eq.(4.45) shows that they are correct as integral expressions, but not locally. 
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Transverse averaging allows for the elimination of the second derivative with respect to 

the y term by taking advantage of the no-flux boundary condition. Significantly, 

Eq.(4.49) and (4.50) are not recovered as leading order corrections to Eq.(4.47) and 

(4.48) with a formal asymptotic expansion of the boundary condition in Eq.(4.45) in 

powers of 1/Pe, as is shown in Appendix D. Additionally, replacing Eq.(4.42) with 

Eqs.(4.51) and (4.52) as an inlet boundary condition and using it to solve for the mixture 

fraction field solutions in regions x<0 and x>0 leads to a discontinuity in local mass flux 

at x=0 at each y location. These solutions, along with accompanying discussion are 

provided in Appendix E. 

In general, the distributions of ( )yf  must be determined computationally by 

simultaneously solving for the flow in the x<0 and x>0 domains. Figure 4.17 illustrates 

the results of such a computation for various values of Pe. Note that the inlet mixture 

fraction distribution tends to the step profile, given by Eq.(4.42) for Pe>>1, but 0( )yf  is 

significantly smoothed in the y direction with decreasing Pe. 

 

    

Figure 4.17. Computed steady state inlet mixture fraction profiles, 0( )f y , as a function of 
Peclet value with axial diffusion effects, for a geometry defined by Rw/Rf = 10. Right image shows the 
same result, but focused on the y/Rf=1 region. Curves are shown for Pe values of 0.1, 1, 10, 100, 1000, 
and 10000 respectively. 
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4.3.2 Flame Attachment Point 

This section considers the location of the flame at the burner and discusses the 

oscillatory attachment point induced by axial diffusion effects. The inclusion of axial 

diffusion influences the instantaneous flame attachment point, i.e. the location where the 

reaction sheet intersects with the fuel port wall. In the Pe�∞ limit, this location is 

stationary and always at the fuel port lip, x=0 and y=Rf, valid for all values of Pe and 

stZ , directly resulting from our inlet condition, i.e. 1( 0, , ) 0x y t= =Z . However, coupled 

axial and transverse diffusion effects move the flame attachment point away from the 

outlet and into the fuel or oxidizer ports (depending on stZ  and Pe values); i.e., into the 

x<0 domain. A detail of the unforced flame position near the burner exit is illustrated in 

Figure 4.18 for various values of stZ and Pe. Notice how, for large Pe values, the 

attachment points for all the iso-contours are relatively close to the fuel port tip (all 

converging to a single point in the Pe�∞ limit). As Pe is decreased these positions move 

upstream, either into the fuel or oxidizer port depending upon stZ .  

 

         

Figure 4.18. Steady state flame attachment point and near-wall position at several values of 
Pe and stZ . The curves shown are for stZ  values of 0.1, 0.3, 0.5, 0.7, and 0.9 respectively, where the 

arrow indicates the direction of increasing stZ . Note the unique x-axis for each figure. 
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Figure 4.19 shows a summary plot of the steady state attachment point vs stZ  for 

various Pe values. Positive values represent attachment locations inside the oxidizer port 

on the top side of the fuel port lip, whereas negative values represent attachment 

locations inside the fuel port on the bottom side of the fuel port lip. The large Pe values 

show near independence of attachment point on stZ , while the smaller values show large 

alterations in attachment point location with stZ . Additionally, it can be shown 

computationally that the stZ  value required for steady state flame attachment at the burner 

lip follows the trend: 
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Figure 4.19. Steady state flame attachment point summary plot of xattach / Rf (location where 

x<0 and y=Rf) vs stZ  for several different Pe values. The curves shown are for Pe values of 0.5, 1, 3, 
10, and 100 respectively, where the arrows indicate the direction of decreasing Pe. Positive and 
negative values represent attachment locations inside the oxidizer port on the top side of the fuel port 
lip, and inside the fuel port on the bottom side of the fuel port lip, respectively. 
 

In addition, the instantaneous attachment point moves over a forcing period, as 

shown in Figure 4.20. Notice how the magnitude of this axial motion depends upon the 
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Eq.(2.7). Figure 4.21 shows this more clearly through magnitude and phase plots of the 

instantaneous flame attachment point transfer function for various dimensionless 

frequency values. The transfer function, defined as (xattach/Rf) / (u1/U0) quantifies the 

input-output relation between forcing and flame attachment point motion. In addition to 

the low pass filter characteristic, the increased motion at low Pe values as shown by the 

previous figures can also be seen. The stZ  value also has an influence upon the transfer 

functions, an effect which is coupled to Pe, whose degree can be deduced from Figure 

4.19. For example, very low and very high stZ  values have larger transfer function 

amplitudes than intermediate values. 

                                                           

Figure 4.20. Instantaneous flame attachment point motion for Pe = 1, 
stZ  = 0.3, and ε = 0.01 

for various StR values. 
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Figure 4.21. Magnitude (left) and phase (right) of the instantaneous attachment point 
transfer function. 

4.3.3 Space-time Dynamics of the Reaction Sheet 

As before, we are interested in the reaction sheet location, specifically the position 

of the fluctuating flame, which can be determined from the explicit expression given by 

Eq.(2.33) for many cases. Although no analytical expression for 1,nξ
 has been obtained 

for the extended inlet axial diffusion case, it can be extracted from the numerical solution 

results. Additionally, in order to aid in the interpretation of the computations, it is helpful 

to revisit the analytical solution obtained using the step inlet boundary condition, derived 

previously in Section 4.1, in the Pe >> 1 limit for axial bulk forcing, specifically Eq.(4.6). 

The Pe�∞ analytical solutions, along with various extended inlet numerically 

computed results are shown in Figure 4.22, which depicts the axial dependence of the 

flame response magnitude for various forcing frequencies and Pe values. It can be seen 

from the plots that the results incorporating axial diffusion have many similarities, but 

clearly the node/anti-node behavior discussed above is smoothed out by the action of 

axial diffusion, as expected based upon the discussion in Section 4.1.1. This flame 

wrinkle smoothing leads to imperfect interference between the terms, as previously 
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mentioned, and abolishes previous spatiotemporal magnitude nodes. This effect becomes 

more pronounced at higher forcing frequencies, where more spatial wrinkles exist, and 

also at larger axial distances downstream. Note also that the magnitude of flame 

movement is nonzero at x=0 in the smaller Peclet number cases, as explained in Section 

4.3.2. 

 

         

   

Figure 4.22. Axial dependence of the magnitude of flame response using nominal values of 

stZ =0.3 for various degrees of axial diffusion for three forcing frequencies PeStR = 0.1, 1.0, and 10. 
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4.3.4 Spatially Integrated Heat Release 

Our previous investigations into non-premixed flame heat release dynamics have 

focused solely on the spatially integrated quantity, due to its utility for combustion 

instability or noise problems where the flame is small relative to the acoustic wavelength 

[4]. However, the heat release per unit area, ( , )q x t
�
ɺ , is also an interesting quantity worth 

of some attention due to its relation to the heat release asymptotics (to be discussed in 

Chapter 5). Additionally, for axisymmetric single-valued flames, the heat release per unit 

area can be simplified and expressed as a function of only the axial coordinate, i.e. 

( , )q x tɺ .  Its relation to the spatially integrated quantity is given by the following surface 

integral over the reaction sheet: 

          ( ) ( ) F R

A A

Q t q t dA m dA′′= =∫ ∫ɺ ɺ ɺ h      (4.54) 

where as before ''Fmɺ  is the reactant mass burning rate per unit area, and Rh is the heat 

release per unit mass of reactant consumed. The next few sections analyze various 

important features of this equation. The distributions of the mean and fluctuating heat 

release will be investigated along with how they influence the heat release transfer 

function trends and asymptotics. 

 

4.3.4.1 Distribution of the Mean and Fluctuating Heat Release 

In two-dimensional premixed flames, the axial distribution of heat release does 

not vary strongly, as the mass burning rate per unit area is directly proportional to the 

laminar burning velocity, which is not usually a strong function of the axial position. For 

this reason, premixed flame heat release oscillations are closely correlated with 

oscillations in flame surface area. In contrast, the axial distribution of heat release in non-
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premixed flames can vary by several orders of magnitude, as the strong transverse 

gradients that drive fuel/oxidizer flux near the burner outlet are smoothed with 

downstream distance. To illustrate, Figure 4.23 shows the steady state distribution of heat 

release per unit area, q0(x), along the flame sheet, for various Pe values. The cumulative 

heat release distribution, q0,c, is also plotted, defined as: 

                 ( )
( )00

0,
0

x

c

q x dx
q x

Q
= ∫        (4.55) 

where Q0 is the steady state heat release defined as:  

                  ( ),0

0 00

fL
Q q x dx= ∫        (4.56) 

Also plotted for reference is the axial distribution for a constant burning velocity 

premixed flame, indicated by “PM Flame” in the legend. This abbreviation will be used 

throughout to denote the values for a corresponding premixed flame. 

 

Figure 4.23. Axial dependence of steady state heat release, both distributed (left) and 
cumulative (right), for Zst

= 0.3 and various Pe values. 
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x=0 is reduced. In addition, the heat release contribution from the tip increases with 

decreasing Pe value. Comparing and contrasting the premixed and non-premixed flame 

curves shows that half of the average heat release occurs in roughly the first 15-20% of 

the non-premixed flame, while it occurs at the 50% flame midpoint for the premixed 

flame. This result clearly shows the need for particular care in accounting for inflow 

conditions that influence the x/Rf<<1 region for non-premixed flame problems. 

Figure 4.24 shows the corresponding unsteady heat release distribution, ( )1q̂ x , for 

various Pe and St values. The cumulative heat release distribution is plotted in Figure 

4.25 with two different normalizations, defined as:  
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Figure 4.24. Axial dependence of fluctuating heat release distributions for Pe values of 25 
(left) and 1 (right) and various values St. 
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Figure 4.25. Axial dependence of fluctuating cumulative heat release distributions 
normalized by q1,c1(left) and q1,c2 (right) for various values of Pe and St. 

 

The first normalization definition, given by Eq.(4.57), uses the steady state heat 

release for normalization so that its value at x/Lf,0 = 1 corresponds to the flame transfer 

function’s value (discussed later). The second normalization uses the spatially integrated 

unsteady heat release, so that its value at x/Lf,0 = 1 goes to unity, thus allowing one to 

visualize which parts of the flame contribute to its unsteady heat release. Figure 4.24 

shows that, for  Pe >>1 and St <<1, the largest values of local fluctuating heat release 

occur at both the flame base, due to the sharp inlet gradient, and at the flame tip, due to 

the pulsing flame length. However, neither of these regions contributions to the 

cumulative heat release are dominant, as shown in Figure 4.25.  

For Pe >>1 and St ~O(1) or >>1, the local heat release at the tip diminishes, and 

the largest local values occur at the flame base. Moreover, the cumulative distributions 

show that the majority of the unsteady heat release occurs at the flame base – a fact 

which enables the development of simple asymptotic expressions for the St>>1 heat 

release, to be discussed in the next Chapter. The same St trends hold for lower finite Pe 
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values, yet the base and tip (for low St values), contributions are reduced and the middle 

length of flame has a larger contribution due to axial diffusion. 

 

4.3.4.2 Heat Release TF – General Results 

Having considered the spatial distributions of the heat release, we next consider 

its spatially integrated value and the flame transfer function, Y , previously defined by 

Eq.(3.28). Figure 4.26 plots the computed amplitude and phase of Y  as a function of St 

for various Pe values, utilizing Eq.(4.8), as well as the Pe�∞ result previously obtained, 

given by Eq.(3.58). For the amplitude, the most prominent difference between the results 

which include and neglect axial diffusion are the asymptotic characteristics; the Pe�∞ 

result having a two-zone structure, while the results with axial diffusion show a three 

zone asymptotic structure. These asymptotic roll off values, along with the transitional St 

values (some of which are dependent upon Pe) will be focused upon in Chapter 5. The 

phase plot also shows some differences between the results, although they all appear 

qualitatively similar.  

      

Figure 4.26. Heat release transfer function amplitude (left) and phase (right) as a function of 
StLf for Zst = 0.3 for various Pe values. 
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Detailed discussions regarding the heat release asymptotic characteristics, and 

accompanying elucidating model problems, are left for Chapter 5. However, preliminary 

observation of the computed results show that three different St ranges exist, each with a 

well defined St roll off; transitioning from St0 roll off, at low St values, to 1/(St1/2), for 

intermediate St values, to 1/St, for high St values. Additionally, these transitional St 

values appear to have some functional dependence upon Pe. 

 

4.4 Anisotropic Diffusion 

 This section considers the topic of anisotropic, i.e. preferential, diffusion, where 

the diffusion coefficient is the same for all species, enabling use of the mixture fraction 

formulation, however is anisotropic for each. Treating this as a mathematical exercise, we 

can return to Eq.(2.24) and define a Pex,y and Pex,x representing the different degrees of 

diffusion in the various directions. For compactness and since we only consider the case 

of axial flow, we will denote ,x x xPe Pe≡  and ,x y yPe Pe≡ .  

The resulting full solution (b=1) for the steady state mixture fraction field can be 

obtained by solving a modified form of Eq.(3.3) (one differentiating between xW and 

yW ), and utilizing Eqs.(3.2) and (3.1) as boundary and inlet conditions, respectively, and 

is given by: 

                    ( )0
1

2
sin cos expf

n n xy
nw f y f

R y x

R n R Pe R
β

π

∞

−
=

   
= +       

   
∑Z A A       (4.58) 

where ( / )n f wn R Rπ=A  and xyβ −  is a modified form of Eq.(3.9), defined as:  

  



 159

     

2 2 2

2 2 2 2

h

4

2

4 8

2

y x y x y x n

xy

y x y x y x n x y

xy

Pe Pe Pe Pe Pe Pe

Pe Pe Pe Pe Pe Pe iPe Pe St

β

π
β

−

−

− +
=

− + −
=

A

A

        (4.59) 

Similarly, the resulting full solution for the fluctuating mixture fraction field, 1Z , 

exposed to axial or transverse bulk forcing, is: 
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utilizing terms defined in Table 4.1 for each configuration. 

Insight into the effects of anisotropic diffusion can be obtained by expanding 

these expressions around the ,x yPe Pe → ∞  limit in inverse powers of Pe, as was done 

previously. Thus, the ( )hxy xy Peβ β− −−  term can be expanded as: 
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Interestingly, an explicit equation for flame wrinkle dynamics can be expressed in 

the exact same form as Eq.(4.6), with different propagation, dissipation, and dispersion 

terms shown in Table 4.3. This table also shows the terms for the isotropic diffusion case, 

considered in Section 4.1. 
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Table 4.3. Preferential diffusion propagation, dissipation, and dispersion terms 

 
x yPe Pe≠  x yPe Pe Pe= =  

Propagation speed, cU  0 (1 / )x yU O Pe Pe+  2
0 (1 / )U O Pe+  

Dissipation, ζ 
2

x

St

Pe
ω  

2St

Pe
ω  

Dispersion, γ 2

2

xPe

−

 
2

2

Pe

−
 

 

Based on the discussion in Section 4.1, this result makes sense. It is the magnitude 

of the diffusion coefficient in the axial direction which controls the dominant features of 

the waveform term, i.e. wrinkle dissipation and dispersion as the wrinkles convect 

downstream. The transverse diffusion only coming into effect with the modification to 

the wrinkle convection term. However, the transverse diffusion magnitude dominates the 

flame angle term, governing the shape of the steady state flame, an effect which can be 

seen by expanding the xyβ −  term around Pex,Pey>>1 as: 

( )
2 4

3
2

xy n n

y y y x

Pe
Pe Pe Pe Pe

β − − − = + + Ο 
  

A A
          (4.62) 
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CHAPTER 5 

Heat Release Asymptotics 

 

This chapter describes numerical and theoretical analyses of the heat release dynamics 

and asymptotics of harmonically forced, non-premixed flames. A key objective of this 

work is to analyze and understand the interesting heat release transfer function results 

from the various studies in the previous Chapters. It was observed that some 

system/forcing configurations yielded rich complex heat release and transfer function 

results, dependent upon numerous dynamical parameters, while others yielded bland 

conclusions. The assumptions made during the analyses were also shown to influence the 

results. Solutions excluding axial diffusion, i.e. the Pe�∞ limiting results, showed a two-

zone transfer function asymptotic structure, while the results with axial diffusion showed 

three zones. Additionally, whether axial diffusion was included in only the combustion 

domain, Pe>>1 analytical results in Section 4.1, or in the fuel and oxidizer ports too, 

computational results in Section 4.3, impacted the zone transition St values. These 

asymptotic rolloff values, along with the transitional St values (some of which are 

dependent upon Pe) will be focused upon here. The relative contributions of the mass 

burning rate and area fluctuations to the overall unsteady heat release will also be 

investigated. 

5.1 General Asymptotics 

While we will discuss more advanced analytical and computed results later, it is 

useful to first set the stage by studying the solution characteristics in the Pe→ ∞  limit 
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where analytical progress is possible and the asymptotic structure lucid. As stated in 

Section 3.1.2, in this limit, two important simplifications can be made; first, only the 

/  cosy θ∂ ∂Z  terms remain in Eq.(3.22) and second, the weighted area contribution 

cancels out the first mass burning rate term, analytically shown by Eq.(3.30), resulting in 

Eq.(3.58).  

By utilizing previous expressions for mixture fraction and fluctuating flame 

position for the spatially uniform forced case, this transfer function can be written as: 
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2
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where 0( , )g x ξ  is an axial distribution function, which will be utilized extensively in the 

next sections, defined as: 

  
2 2
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0 0 2

( , ) ( , )
( , ) tan( )

x d x
g x

y dxdy

ξ ξξ θ ∂= +
∂

Z Z
       (5.2) 

For transverse forcing, it was explicitly shown by Eq.(3.59) that the two mass 

burning rate contributions in 0( , )g x ξ , are of equal amplitude and are out of phase by 180 

degrees for all St values, thus resulting in no unsteady heat release for each flame branch. 

As was discussed in Section 3.3, this result could be anticipated, at least in the low 

Strouhal number limit, as transverse forcing causes no fluctuation in fuel and oxidizer 

flow rate into the domain – thus, transverse fluctuations consequently lead to no heat 

release oscillations. A similar result, no unsteady global heat release, was also obtained 

for transversely forced premixed flames [114]. 
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No such mutual cancelation occurs for the axial bulk forced configuration. 

Explicit expressions for Qɺ  cannot be developed in general, because only an implicit 

expression for the time average flame position, 0( )xξ  and, consequently, 0( , )g x ξ , are 

available. However, approximate expressions can be developed in the high Pe limit, by 

taking advantage of the fact that 0( )xZ  becomes nearly independent of x as the flame 

becomes infinitely flat and long (see Figure 3.11 and corresponding discussion), and thus 

the flame position can be approximated by 0( )xξ ~Rf (1+O(1/Pe)) except near the flame 

tip. However, near the tip the heat release is proportional to axial diffusive fluxes 

(because the flame is normal to the flow at this location), which also is of O(1/Pe). The 

solution obtained by applying these approximations to Eq.(5.2) is indicated in Figure 5.1. 

 

  
 

Figure 5.1. Axially forced heat release transfer function curves for the Pe→ ∞  (Eq.(4.8)) 
and approximate 0( ) fx Rξ =

 
(Eq.(5.1)) solutions, along with asymptotic expression plotted vs 

fLSt for 

0.3st =Z . 

It can be seen, and will be proven in the upcoming sections, that the transfer 

function, Y , has a value of unity for low St values. Furthermore, it was shown in 

Section 4.3.4 that the high St limit of Eq.(5.1) is controlled by the features of 0( , )g x ξ  

near 0x = , which to leading order is given by ( a result derived in Appendix F): 
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=        (5.3) 

Substituting this expression into Eq.(5.1) reveals that in the limit of large St (also 

indicated in the figure): 

                  
( )1

4
fL

i

St

− +
≈Y           (5.4) 

Figure 5.1 presents illustrative exact (Eq.(4.8)), approximate (Eq.(5.1) where 0( ) fx Rξ = ), 

and asymptotic (Eq.(5.4)) expressions for Y  at 100Pe=  and 0.3st =Z . Y  has a value 

of unity at low St values and rolls-off as 1/(St1/2) at high St values. The transition between 

these two zones can be observed to occur at ~ (1)
fLSt O . 

Note that oscillatory integrals of the following form: 

                 
2

1

( )exp( )
x

x

f x iStx dx∫           (5.5) 

are controlled by the values of the integrand at the boundary, i.e., at f(x1) and f(x2), and 

generally lead to a 1/St asymptotic behavior. However, the mass burning rate has an 

integrable singularity at the 0x =  inlet boundary in the Pe→ ∞  limit due to the infinite 

transverse gradient in Z  imposed by the step-inlet boundary condition, a singularity that 

ends up controlling the heat release asymptotics and leads to the indicated 1/(St1/2) 

behavior. When axial diffusion is included, this 1/(St1/2) behavior persists for a range of 

Strouhal numbers where the convective wrinkle wavelength is much longer than the 

thickness of the transition zone of fuel/oxidizer profiles at 0x = . However, once the 

convective wavelength becomes of the order of this layer, the standard 1/St behavior 

should occur, as expected for oscillatory integrals. Thus, as will be derived in the 
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following sections, the Strouhal number at which the 1/St1/2 to 1/St transition occurs is a 

function of the thickness of this layer that, which in turn, is a function of Pe. As we have 

so far assumed a discontinuous profile at 0x = , no such 1/St behavior occurs at high St 

for Eq.(5.2), however. Significantly, the 1/(St1/2) behavior in the heat release transfer 

function is a much slower roll-off than the 1/St roll-off that occurs to leading order Cσ  in 

premixed flames, causing the heat release response of non-premixed flames to exceed 

that of premixed flames at high Strouhal numbers for this problem. 

As previously pointed out in Section 3.1.2, another significant difference between 

the transfer function of axial bulk forced premixed and non-premixed flames is the 

relative significance of area and mass burning rate terms. Premixed flames are dominated 

by area fluctuations, whereas non-premixed flames are mass burning rate fluctuation 

dominated; the ratio of these contributions will be analyzed further in the next section. 

 

5.2 Heat Release TF - Low St Asymptotic Results 

Expanding Y  , as given by Eq.(5.1), in powers of St (see Appendix G), leads to: 

St << 1       
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Thus, |Y | = 1 + O(St2) for St << 1. This value of unity can be understood physically 

from the fact that in the quasi-steady limit, the instantaneous heat release is proportional 

to the instantaneous mass flow rate of fuel and oxidizer into the combustion domain, i.e. 

across the inlet plane; in other words, a 1% fluctuation in velocity induces a 1% 

fluctuation in heat release [4]. The low St phase behavior can also be extracted from this 
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expression, since  ےY = tan-1(Im( Y )/Re(Y )). This can then be cast in terms of a n-τ 

model as [126]: 

    [ ]exp iη ωτ=Y             (5.7) 

or likewise, represented in the time domain as: 
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where the gain is unity, i.e. η =1, and the time delay is given by: 
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This time delay is equivalent to replacing the distributed flame by a concentrated 

source at some fractional distance of the flame length. While the gain is straightforward, 

the time delay is a complex function of parameters such as Pe and stZ . These parametric 

dependencies of τ cannot be calculated analytically but must be extracted from the 

computations due to the implicit nature of the mean flame position, at which these 

integrand values are evaluated. This value (normalized by Lf,0 / U0), for example, is 

around 0.2 for a methane-air, non-premixed system, which has a stZ  value of 0.055. For 

reference, the constant burning velocity two-dimensional bulk axially forced premixed 

flame result is ,0 0/ ( / ) 0.5fL Uτ ≈  (assuming the flow velocity is much greater than the 

flame speed), showing that the non-premixed flame time delay is about a factor of two 

smaller than a premixed flame with the same length. This result directly follows from the 

heat release distributions shown in Figure 4.23. Figure 5.2 plots calculations of 

,0 0/ ( / )fL Uτ  as a function of Pe for several stZ  values, representative of positive and 
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negative (nomenclature defined in Section 4.3.2) fuel port attachment location diffusion 

flame configurations. The corresponding premixed flame value is also plotted for 

reference. The solid lines indicate the numerical extended inlet results, while the dashed 

lines show the corresponding Pe�∞ analytical results, given by Eq.(5.9). The deviation of 

the asymptotic results from the computed ones for lower Pe values is due to both axial 

diffusion effects upon this effective time delay, but also reflects the importance of how 

flame length is defined; i.e., the flames base moves upstream into the fuel/oxidizer ports 

with decreasing Pe, see Figure 4.18, while Lf,0 used in the figure is defined as the distance 

of the flame tip from the burner outlet.  

                    
 

Figure 5.2. Normalized time delay parameter, ,0 0/ ( / )fL Uτ , shown as a function of Pe for 

various stZ  values (0.3, 0.6, 0.8, 0.9). The corresponding (based on geometry, assumptions, and 

configuration) premixed flame value is also displayed. For each stZ  value, the corresponding Pe�∞ 
solution is shown by a dashed line. 
 

As noted in the context of Eq.(2.42), the heat release fluctuations can be 
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oscillations have little influence on the overall heat release because the local burning rate 

is so low over most of the flame.  

In the absence of axial diffusion, some analytical progress can be made about the 

ratio of these unsteady heat release contributions in the low St limit. The ratio of the mass 

burning rate, Eq.(3.29), and weighted area, Eq.(3.30), transfer functions is given by: 

       
( )

,0 ,0 ,0

,0

2
1 0 0 0 0 0

1 1 2
, 0 0 0

, 0 0
0 1

0

( , ) ( , ) ( , )
sin( ) ,

( , )
cos( )

f f f

f

L L L

N mbr
L

N wa

x x x
dx dx x t dx

y x y

x
dA

y

ξ ξ ξθ ξ

ξ θ

∂ ∂ ∂+ +
∂ ∂ ∂

=
∂

∂

∫ ∫ ∫

∫

Y

Y

Z Z Z

Z      

(5.10) 

Utilizing the mixture fraction and fluctuating wrinkle explicit solutions given in Section 

3.1, in the low St limit these terms scale as: 
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Thus, in the absence of axial diffusion, the ratio of mass burning rate to area 

contributions from the unsteady heat release is revealed to be of order O(Pe2) in the low 

St limit. However, there is still a functional dependence of this ratio upon stZ .  

More generally, Figure 5.3 plots the ratio of the magnitudes of the spatially 

integrated mass burning rate and area terms, for a representative low St value, as a 

function of Pe, defined as: 

                       ( ) ( ),0 ,0

0 0
ˆ ˆf fL L

MBR MBR A AQ q x dx Q q x dx= =∫ ∫
                 

(5.12) 

where ˆMBRq  and ˆAq  were previously denoted in Eq.(4.8). Note the excellent agreement of 

the computed and Pe�∞ results at large Pe values, both with each other and to the 

analytically obtained scaling. At higher Strouhal numbers, the mass burning rate 
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continues to dominate relative to area fluctuations, but has a more complex dependency 

on St and Pe.  

 

Figure 5.3. Ratio of mass burning rate to area terms in the unsteady heat release expression 
for the computed extended inlet and Pe�∞ limiting solution cases; showing the ratio for a fixed value 
of StR=10-5. 

Figure 5.4 attempts to comment on this complex behavior by showing plots with 

additional dependence upon other parameters. The left plot shows various Pe value 

curves as a function of St for a representative stZ  value of 0.055. Notice the convergence 

to unity (y-axis being normalized by Pe2) at low St values for the high Pe curves, with 

increased divergence as Pe is reduced. There is also increased modulation at higher St 

values. The right plot brings in the additional stZ  dependence for completeness, revealing 

the slightly modified low St value trends, and drastically altered high St modulation. 
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Figure 5.4. Ratio of mass burning rate to area terms in the unsteady heat release expression, 
showing the ratio normalized by O(Pe2) and its complex dependence upon (left) StR in two-
dimensional Pe cuts for stZ =0.055 and (right) for the Pe�∞ limiting solution case upon StR and stZ . 

 

As a final comment, consider the quantitative heat release in the quasi-steady 

limit. Under these conditions, the quantity of fuel-bound-energy which travels (via both 

convection and diffusion) across the inlet plane (x=0), must equal that which diffuses 

normally across the flame sheet. As was discussed in Section 4.3.1, and specifically in 

Appendix D and Appendix E, the inclusion of axial diffusion greatly complicates this 

issue, thus for our simplified Pe�∞ case, this balance can be expressed mathematically, 

utilizing Eq.(2.40), as: 
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Transforming our integration limits and simplifying, an equation for the steady state heat 

release balance, utilizing Eq.(3.26), can be written as: 
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The corresponding value for spatially uniform velocity fluctuations can be obtained 

utilizing Eq.(3.27) and Eq.(3.7), and realizing that transverse fluctuations move no fluid 

across the inlet plane, and is given by:  
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Utilizing these results, along with Eq.(2.41), the unity low St limit can also be observed 

and validated. 

5.3 Heat Release TF - High St Asymptotic Results 

Having considered the low St results, we next consider higher frequency transfer 

function characteristics. As was previously shown by the cumulative unsteady heat 

release distribution results in Figure 4.25, in this limit the unsteady heat release is 

dominated by its value at x/Lf,0<<1. It is common for highly oscillatory integrals, similar 

in form to Eq.(5.5), to be controlled by the values of the integrand at the boundaries (i.e. 

x=0 and x=Lf,0), and generally lead to a 1/St asymptotic behavior. However, as is shown 

in Figure 4.26, the transfer function has a 1/(St1/2) behavior for the Pe�∞ case, and only 

for finite Pe values does it transition to 1/St at some sufficiently high St.  

For a step inflow profile, the mass burning rate has an integrable singularity at the 

x=0 inlet boundary in the Pe�∞ limit, a singularity which controls the heat release 

asymptotics. It was shown previously that the St >>1 transfer function is given by 

Eq.(5.4); i.e., |Y |~1/(St1/2), as indicated in Figure 4.26. Since we have shown in Section 

5.2, the flame transfer function amplitude is unity in the limit of low St values, the 

Strouhal number at which this first transition occurs, from O(1) to O(St-1/2), will be 

denoted St1 and can be obtained from the following expression, representing the 

intersection of limits: 
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Even for more realistic inflow profiles that are smooth but very thin relative to the 

convective wavelength at x=0 (i.e., the finite Pe case), |Y | still has a 1/St1/2 character, 

for the same reasons as the step inlet, for some range of St values. However, for 

disturbances with length scales that are on the order of the inflow profile thickness, 

different asymptotic considerations apply which ultimately cause the non-premixed flame 

to exhibit a 1/St asymptotic behavior that one would expect of highly oscillatory 

integrals.  

At this point, it is important that we differentiate and isolate the various effects of 

axial diffusion, discussed in Chapter 4, on the heat release fluctuations, i.e., inflow 

boundary effects and dynamical effects. By “dynamical effects”, we are referring to the 

inclusion of axial diffusion in the unsteady mixture fraction equation, i.e. setting b=1 in 

Eq.(3.4). These effects upon the space-time dynamics were noted previously in Section 

4.1, resulting in dissipation and dispersion of flame wrinkles. By “inflow boundary 

effects”, we are referring to the inclusion of axial diffusion in the steady mixture fraction 

equation, i.e., by setting b=1 in Eq.(3.3), effects previously discussed in Section 4.3.   

                                                   

Figure 5.5. Flame transfer function amplitude curves isolating dynamical and inflow 
boundary effects on high St asymptotic trends. 
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These two effects can be isolated and the resulting transfer function magnitudes are 

plotted in Figure 5.5. These results were generated by repeating the calculations by 

including or neglecting axial diffusion in the steady and unsteady mixture fraction 

equations. To isolate the dynamical effects, axial diffusion was not included in the steady 

governing equation, thus retaining the sharp step inlet boundary condition, and was 

included in the dynamical fluctuating equation; this solution is indicated by “0Z : Pe�∞ & 

1Z : Pe finite” in the figure. To isolate the inlet effects, axial diffusion was included in the 

steady governing equation, allowing the smoothing of the inlet profile, and was excluded 

from the dynamical fluctuating equation, denoted as “ 0Z : Pe finite & 1Z : Pe �∞” in the 

figure. Also shown are cases where axial diffusion is excluded in both equations and 

included in both. 

5.3.1 Piecewise Linear Inlet Boundary Condition Model Problem 

The figure clearly shows that it is the smoothed inflow profile that controls the 

high St asymptotic features. In other words, the key effect of axial diffusion on the 

asymptotic characteristics of Y  is on the time averaged profiles of Z , specifically the 

inlet profile – i.e., axial diffusion effects on the unsteady dynamics of Z  have minor 

influences on Y , although they have important influences on the downstream evolution 

of the flame position, as shown by Eq.(4.6).   

To demonstrate this point explicitly, it is useful to consider solution properties of 

a model problem with a finite thickness 0Z  transition layer, parameterized by δ, shown in 

Figure 5.6. In reality, the non-dimensional profile thickness parameter, δ, simulates the 

extent to which axial diffusion has altered the inlet boundary condition, and is 



 174

proportional to the inverse of Pe. In this model problem, however, we decouple this 

dependence of δ upon Pe. 

 

 

 

 

 

Figure 5.6. Piecewise linear inlet mixture fraction boundary condition utilized to analytically 
evaluate the effects of a smoothed inflow profile on high St asymptotic trends. 

 

Utilizing this inflow boundary condition for the unconfined system (the lack of 

infinite summations making the math more tractable), and the governing equation given 

by Eq.(3.3), with b=0 (thus isolating the inflow boundary effect), the full steady state 

mixture fraction solution can be solved and is provided in Appendix H. In order to make 

analytical progress, we consider the limiting characteristics of this solution for large, but 

finite, Pe values (small δ values) and small axial locations. Tending towards a step-

profile as Pe�∞ or δ�0 enables comparisons to previous results, while the latter limit is 

of interest as the majority of unsteady heat release occurs near the burner lip, as was 

shown in Figure 4.23 and Figure 4.25. This simplified mixture fraction solution is 

provided below: 
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Since as was discussed, the key effect of axial diffusion on the asymptotic 

characteristics of Y  is on the time averaged profiles of Z , rather than the unsteady 

dynamics, it is useful to consider the Pe�∞ solution shown in Eq.(5.1) utilizing these 

smoothed, time average inflow profiles. Inclusion of finite Pe effects in the solution for 

the flame position, such as dissipation, into the heat release transfer function would not 

alter these high St asymptotics. This is because in the high St limit all the exponential 

terms tend towards zero and it is the unity constant that results in the highest St 

asymptotic region rolling off as 1/St. Further exponential terms, such as exp[-4π2StR2x / 

(Pe*Rf)], would just drive this term to zero sooner. Thus, this model problem simulates 

the smoothing effect of axial diffusion on the inlet boundary condition, eliminating the 

singularity caused by the step inlet boundary condition, while maintaining the Pe�∞ limit 

for the unsteady governing equation. Returning to Eq.(5.1), the function 0( , )g x ξ  is given 

for the smoothed profile as: 

       0 3/2
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( , )

42 f
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g x

xx R
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δπ
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(5.18) 

Substituting this expression into Eq.(5.1) revealss that in the limit of large St : 
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and λ is Euler’s constant, with numerical value 0.577216λ ≃ . Note how the leading 

order St>>1 term is O(St-1/2), while the next term is of O(St-1). Thus, while a St-1/2 
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behavior occurs for the step inlet function profiles, a smooth mixture fraction at the base 

of the flame (resulting from finite Pe values) leads to the 1/St asymptotic behavior that 

one would expect of highly oscillatory integrals. For this model problem we can develop 

an explicit expression for the Strouhal number at which St-1/2 to St-1 transition occurs, 

denoted as St2, by equating these two terms: 
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(5.21) 

Physically, this transition Strouhal number coincides with conditions where the 

convective disturbance wavelength is on the order of the axial extent required for 

fuel/oxidizer to diffuse across the inlet transition layer, i.e: 

        
( )2

00 fU RU

f

δ
∼

W
        

(5.22) 

However, in reality (and our computational world), Pe and δ are not independent. As was 

stated previously, the profile thickness parameter, δ, is proportional to the inverse of Pe 

under these conditions, a point which should make sense as the inlet profile steepens, and 

becomes thinner, as Pe is increased, converging to a step function in the Pe�∞ limit. 

Figure 5.7 demonstrates this point explicitly by showing computed profile thicknesses, 

based on the computations detailed in Section 4.3.1 and Figure 4.17, for various Pe value 

computational cases, where δ is defined as the distance from 00.95 ( 0)y× =f  to 

00.05 ( )wy R× =f . Note the agreement with the O(1/Pe ) curve. Also shown is a plot of 

the slope of the inlet profile evaluated at the fuel port lip, i.e. 
0 0,

/
fx y R

y
= =

∂ ∂f , for various 
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Pe value computational cases. Notice the multi-zonal structure, and corresponding high 

Pe1/2 scaling. 

 

         
Figure 5.7. Computed inlet profile thicknesses (left) and inlet profile slope at the fuel port lip 

(right) for the extended inlet geometry considered in Section 4.3, for Rf=1 and Rw=10. 
 

The resulting relation between fuel port lip inlet slope and inlet thickness can then 

be obtained for large Pe values (Pe>>1) as: 
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Keep in mind the difference in shape between the computational inlet profiles, shown in 

Figure 4.17, from the piecewise linear model. Figure 5.8 shows some representative inlet 

profile slope values evaluated at the fuel port lip. The un-normalized plot shows how the 

magnitude of this slope monotonically increases with increasing Pe, while the normalized 

plot shows the broadening effect influencing the profile thickness. 

 

0( )yf  

  1 / Pe 
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Figure 5.8. Computed un-normalized (left) and normalized (right) inlet profile slope for the 

extended inlet geometry considered in Section 4.3, for Rf=1 and Rw=10. 
 

Thus, if we substitute in δ~1/Pe into Eq.(5.21), this shows that: 
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As St2 is a function of Pe and Lf, the St transition points previously discussed in Section 

4.3.4 and specifically Figure 4.26, are more easily observed by rescaling the axes. Figure 

5.9 replots the data shown in Figure 4.26 by normalizing the horizontal axis by St2 and 

the vertical axis by C1  / (St2)1/2. The figure shows how this scaling properly and 

efficiently collapses the high St results at the different Pe values. 

 
                                              

Figure 5.9. Normalized heat release transfer function amplitude plot for various degrees of 
axial diffusion, i.e. Pe values. The original horizontal axis, StLf, and vertical axis, |Y |, have been 
normalized so as to collapse the high St results. The 1/St1/2 and 1/St lines are the asymptotic values for 
the Pe=20 case for visual representation. 
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CHAPTER 6 

Non-isothermal Diffusion Flame Analysis – Experimental Efforts 

 

This chapter analyzes the dynamics of harmonically forced, non-premixed flames, both 

experimentally and computationally, and compares the measured space/time dynamics of 

the flame to that predicted from the forced mixture fraction equation, i.e. the Z -

equation, Eq.(2.7). By investigating tangible, i.e. real-life, flames absent of mathematical 

assumptions for simplicity and tractability, insight can be gained into non-premixed 

flame response, as well as the validity and impact of various assumptions made in 

previous analyses. Additionally, enhanced predictive capabilities could result from 

utilizing measured velocity field data as model inputs. Thus, high speed PIV data was 

taken on a coflowing methane-air diffusion flame, equipped with speakers for harmonic 

forcing, over a variety of flow velocities, forcing frequencies, and forcing amplitudes. 

These measured velocity fields were used as inputs to a Z -equation solver, and the 

resulting space-time dynamics of iso-Z  surfaces were extracted from the Z  field 

solutions.  

6.1 Introduction 

This chapter describes measurements and analysis of the space-time evolution of 

disturbances on real harmonically forced, laminar, non-premixed flames. A significant 

experimental and modeling literature exists on the response of premixed flames to 

harmonic flow disturbances [4, 21-27]. Measurements have experimentally characterized 

both the local space-time dynamics of wrinkles on laminar flames [41, 127-129], as well 
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as the spatially integrated heat release [130]. These measurements show that wrinkles are 

excited at the flame stabilization point and locations of spatial non-uniformities in 

disturbance velocity, and subsequently convect down the flame. The response of the 

flame at a given point in space and time is non-local – i.e., it is not only a function of the 

local disturbance, but is, rather, a convolution of disturbances excited at upstream 

locations at appropriate convective time delays. For these reasons, a variety of 

interference behaviors and spatially non-monotonic variations in flame wrinkle 

magnitude occur [92]. Similar analytical studies of flame wrinkling behavior have also 

been performed in harmonically excited turbulent flames. In this case, the flame’s local 

wrinkling and heat release consists of both the narrowband excitation, as well as 

broadband turbulent fluctuations – additionally these two types of disturbances 

nonlinearly interact with each other. For example, the harmonic forcing modulates the 

phase-averaged turbulent burning velocity, and the turbulent flame disturbances increase 

the rate of destruction of harmonic flame wrinkles [131, 132]. A particularly large 

literature has developed for global heat release response of turbulent flames to harmonic 

forcing, referred to as the heat release transfer function [37, 133]. Indeed, many industrial 

companies now possess capabilities for measuring flame transfer functions in high 

pressure, high flow facilities in order to screen their designs for instabilities [28, 134, 

135]. 

Once again, there is significantly less literature on forced, non-premixed flames. 

Experimental efforts have elucidated some of the natural flame dynamics, such as flicker 

characteristics or buoyancy-related instabilities, and flow field characterization [44, 48, 

49, 51, 58, 136, 137]. The impact of forcing on the flames emissive properties, 
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specifically soot generation and suppression, has also been investigated [53, 138, 139]. 

One study reported on the flame wrinkle evolution characteristics of non-premixed 

flames, including wrinkle magnitude as a function of axial position for unforced 

flickering flames [140]. We are not aware of any experimental studies of the space-time 

dynamics of flame wrinkles on forced, non-premixed flames. Additionally, some work 

has reported the spatially integrated heat release and flame transfer function dynamics of 

non-premixed flames [52, 141, 142].  

A number of recent analytical studies have also been reported for forced, non-

premixing flames, considering the space-time wrinkle dynamics, the space-time heat 

release dynamics, and the thermoacoustic system behavior which the non-premixed flame 

is part of [59, 62-64, 66, 67, 93, 143]. These studies have analyzed this problem within 

the infinite reaction rate,Z -equation formulation for the mixture fraction. This problem 

admits analytical solutions for certain types of imposed mean and fluctuating velocity 

fields (e.g., bulk forcing, convecting disturbance fields, and so forth), and constant 

diffusion coefficients. For example, Chapter 3 and Chapter 4 developed various explicit 

solutions, such as Eq.(3.15) and Eq.(4.6), for the fluctuating flame position, ξ1,n(x,t), of a 

non-premixed flame exposed to spatially uniform, axial flow oscillations. 

In real flames with temperature gradients, more complex shear flows, and 

convecting vortical disturbances, it can be anticipated that the evolution of flame 

wrinkles will be more complex, as wrinkles excited at one location and convecting 

downstream, and those excited further downstream by a spatially varying disturbing field, 

will set up more complex interference fields. Motivated by the above studies, the 

objective of this chapter is to experimentally characterize the gain and phase 
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characteristics of the flame wrinkle behavior, as well as to use actual measured mean and 

disturbance velocities as inputs to the governing flame dynamics equations in order to 

predict the flame response. Due to the spatially varying nature of the velocity and 

diffusivity, these problems must be solved computationally; however, the analytical work 

presented in prior chapters provides useful interpretive insight into these results. 

Specifically, experimental measurements of the flame response allow us to determine the 

spatial evolution of the amplitude and phase of induced flame wrinkles. In addition, 

simultaneous particle image velocimetry (PIV) measurements enable characterization of 

the velocity field disturbances, showing both the disturbance field that is exciting the 

flame, as well as the influence of the flame on the disturbance field, a physical feature 

that was previously intractable. Finally, by substituting these measured velocity 

disturbances into the species equation (or Z -equation), we also can predict the response 

of the flame and compare these measurements to the actual flame wrinkling. While a 

similar modeling effort has been done for premixed flames that used measured velocity 

fields as inputs to the flame dynamics equations [127, 128, 144], we are not aware of a 

prior study of this nature for the non-premixed flame case. 

6.2 Experimental Facilities and Diagnostics 

Figure 6.1 shows the experimental facility and diagnostic setup used in this study. 

Appendix I shows additional images of the tangible equipment. The key components of 

the facility are the fuel and air conditioning sections, combustor section, forcing section, 

and exhaust. Natural gas, ~98% CH4 with the balance consisting of higher hydrocarbons 

and inerts, passes through an 25psi system regulator and flows up the central fuel tube, of 

inner radius Rf  = 4.50mm and 0.254mm wall thickness. Non-preheated air passes through 



 183

a 75psi line regulator/filter and flows up a coflowing annular passage, of inner radius Rw 

= 4.0cm and 5.0mm wall thickness, that surrounds the fuel tube port outside diameter. 

The air passes through a hexagonal honeycomb flow straightener, with 4.78mm apothem 

and nominal wall thickness of 0.8mm, 1.10m upstream of the burner outlet. Time-

averaged air and fuel volumetric fluxes (i.e., spatially averaged velocities) were matched 

to within 1% in order to minimize shear layer strength, so that the dominant source of 

excitation of the flame was from the acoustic forcing, and not the acoustically excited 

shear layers. The facility was operated at velocities of 20-90cm/s. This velocity range and 

fuel (air) diameter correspond to Froude numbers in the range of 0.95-4.3, based upon 

/x fFr U gR= .  

            
 

Figure 6.1. Picture of the vertical co-flowing non-premixed flame experimental facility (left), 
a detailed view of the burner (top-right), and a model showing the PIV laser diagnostic setup and the 
beam path (bottom-right). 
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It is known that, for low Froude numbers, i.e. the buoyancy dominated regime, 

non-premixed flames are globally unstable and exhibit narrowband oscillations at a low 

frequency on the order of fb ~10 Hz [42, 43]. When present in this facility, these 

instabilities were quite evident from the presence of a low frequency peak in the 

luminosity spectrum images. All data presented in this paper were obtained from 

conditions where this peak was at least 20 times smaller than the spectral peak at the 

forcing frequency, over a large axial extent. Figure 6.2 shows representative spectra of 

the flame position, ξ, for an unforced and forced system. Note the absence of the flicker 

frequency, and the dominance of the forcing frequency at ff for the forced system. The 

burner tube diameter was chosen as large as possible, with the constraint of having a ratio 

of Rf/Rw << 1 (to minimize confinement effects) and a momentum-dominated flame. The 

flow velocities were set by balancing between the competing requirements of a laminar 

flow and a momentum dominated flame. For reference, a flow velocity of 40cm/s 

corresponds to Reynolds numbers on the order of ~200 and 2000, based upon fuel and 

oxidizer port diameters, respectively.   

 

                

Figure 6.2. Frequency spectra of the transverse flame location, ξ1, at x/Rf=5.13 for the 
U0=0.4m/s case for the unforced (left) and forced at 30Hz (right) configurations. Vertical arrows 
indicate the forcing frequency, ff, and the buoyant instability frequency, fb. 
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Moving into the combustor section, the fuel and air tubes terminate into a 30.5cm 

long cylindrical quartz tube of inner radius Rw = 3.75cm and 2.0mm wall thickness, that 

provides confinement and minimizes the influence of ambient disturbances on the flame, 

whilst allowing optical access from all sides. The combustion products then flow into an 

exhaust section, which consists of a 0.6m long tube of inner radius Rw = 4.0cm and 5.0mm 

wall thickness. Connected perpendicular to this exhaust, 0.46m above the termination of 

the combustor section, are two antipodal 30.5cm long tubes of inner radius 1.75cm and 

3.55mm wall thickness, which are attached to loudspeakers. These loudspeakers are 

driven by a harmonic function generator and amplifier, in order to obtain desired forcing 

amplitudes, i.e. 1 ,0ˆ / xu Uε =  values, between 0.05-0.3. In general, this forcing 

configuration excites both axial (i.e., one-dimensional) acoustic disturbances and 

transverse, multidimensional duct modes. However, the 10-100Hz forcing frequency 

range used for this study is well below the ~4930Hz cut-off frequency, defined by 

0.58 /c wf c R= , of the exhaust section [4]. Consequently, multi-dimensional disturbances 

are evanescent and decay quickly in the axial direction. As such, the acoustic excitation 

source utilized here is essentially one-dimensional. For reference, the first transverse duct 

mode decays as ( )22 2exp
w

x
w Rm kRπ − −  

 [4], where 2 2/k cω= , so that its value is less 

than 1.4×10-6 % of its original value once it reaches the combustor section. 

The primary experimental diagnostics consisted of high speed, line of sight 

integrated, imaging of flame luminosity, and high speed particle image velocimetry 

(PIV), see Figure 6.1. High speed imaging was performed with a Photron SA5 camera, 

operating at a 1000Hz frame rate, with 0.2ms exposure time, and 1024 × 1024 pixel 

resolution. The camera was outfitted with a f/2.8, 135mm lens, such that a physical 



 186

window of 90mm × 90mm region of the test section was imaged. This imaging region 

spanned from the burner lip to 15Rf downstream. The flame was imaged through a 

bandpass optical filter, centered at 527nm, with greater than 93% transmission between 

517nm and 537nm. A total of 10,918 images were acquired in each run. Figure 6.3 shows 

two representative luminosity images of the forced non-premixed flame, along with an 

image of a forced premixed flame for comparison. Notice the clear presence of wrinkles 

along the flame surface. However, the premixed flame develops a prominent cusp 

downstream, a manifestation of flame propagation, which is absent in non-premixed 

flames. 

                   

Figure 6.3. Schlieren image of a conical methane-air forced premixed flame at 150Hz (left) 
(reproduced from Ducruix et al. [145]) along with line of sight luminosity images of forced methane-
air non-premixed flames at 30Hz (middle) and 50Hz (right) forcing frequency. 

 

Mie scattering images for high speed PIV were also obtained. A dual-flow seeder 

was utilized to independently seed both the fuel and air flows with 0.3-1µm Al2O3 

particles, chosen due to their durability in reacting flows and their high refractive index 
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[146]. This particle size was chosen due to the relatively low flow velocities used in this 

testing, so that the particles could accurately track the flow at the frequencies of interest. 

For reference, the Stokes number, representing a characteristic non-dimensional 

frequency of the particle response, for the largest excitation frequency considered 

(100Hz) is Sk=0.004, from the definition /pSk d ω υ=  [146], utilizing a nominal 

particle size of 0.7µm and a viscosity of υ=1.72 × 10-5m2/s, calculated at 298K. The 

Stokes number is 4 times smaller, Sk=0.001, when calculated at the approximate product 

temperature, 1800 K. The seed was dried in an oven for an excess of 24 hours, then 

placed into the two separate vertical seed holders. During operation, the fuel and air flows 

passed thru supercritical orifices, directly below the seed holders, before passing through 

the seed. A pneumatic shaker was attached adjacent to both seed holders, to ensure 

continued seed pickup. 

The particle-laden flow then passed through the respective passages to the 

combustor, where they were illuminated with a double-pulsed Nd:YAG laser, with 

wavelength of 532nm, pulse duration of 100ns, and 4mJ/pulse energy. Each of the two 

lasers in the double-pulsed system is operated at 500Hz. The laser beams were expanded 

with a -50mm cylindrical lens into an expanding sheet, which was then shaped with a 

750mm cylindrical lens. The time-delay between the two illuminating laser pulses of a 

given pair was 1ms, chosen such that for our intended flow velocity range, seed particles 

would move roughly 1/4th of the PIV (final pass) interrogation window (to be discussed 

next). This is a significant enough spatial change to ensure good velocity calculations, 

while reducing loss of pairs. The measurement plane was located through the concentric 

central axis of the fuel and oxidizer ports, as shown by Figure 6.3. Defocusing introduces 
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challenges due to the high curvature of the non-premixed flame sheet as will be discussed 

later in the experimental results. 

Data was obtained over a parametric grid of experimental input variables, 

specifically flow velocity, forcing frequency, and forcing amplitude, all of which have 

been shown to be dynamically significant factors for non-premixed (as well as premixed 

flames). These conditions are summarized in Table 6.1.   

 

Table 6.1. Range of experimental input parameters. “*” indicates forcing frequency data sets 
where only limited flow velocity and forcing amplitude combinations were obtainable. 

Input parameter Value set 
Fuel/Air flow velocity, U0,des (m/s) 0.1, 0.2, 0.4, 0.7 
Forcing Frequency, ff (Hz) 10, 20, 30, 40, 50, 70*, 100* 
Forcing Amplitude, ε 0.05, 0.15 

 

6.3 Data Analysis 

The two key experimental observables are the instantaneous flame position, and 

instantaneous velocity field at the flame. The processing methods for extracting these 

data are described in this section. A representative luminosity/Mie image of a wrinkled 

non-premixed flame, obtained from the experimental setup, is shown in Figure 6.4(a). 

These images are used to characterize the space-time dynamics of the flame sheet, which 

requires determining the instantaneous flame edge.  
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                      (a)                                      (b)                                    (c)                                       (d) 

Figure 6.4. (a) Raw luminosity image of a forced non-premixed flame (b) bilateral filtered 
image (c) inverse Abel transformed image (d) and edge detected image. 
 

To reduce noise without blurring edges, a bilateral filter was used. Implementing 

this spatially varying nonlinear filter, the intensity value at each spatial location was 

replaced by a weighted average of the intensity values from nearby locations. The 

weights, based on a Gaussian distribution, are dependent upon both spatial orientation as 

well as quantitative intensity differences. Systematically looping through each location 

and modifying the weights accordingly makes this procedure edge preserving, as can be 

seen from Figure 6.4(b). An inverse Abel transform was then used on the left and right 

halves of the images, independently (being a symmetric operator), in order to estimate an 

intensity slice from the line-of-sight integrated image. The combination of these 

procedures is shown in Figure 6.4(c). The flame edge, defined as the instantaneous 

transverse location of the calculated edge and denoted ξ(x,t), was then determined from 

y 

x 

ξ (x,t) 
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the intensity peak, shown in Figure 6.4(d). Note that an edge is calculated separately for 

the left and right transformed images – these two values would coincide if the images 

were perfectly axisymmetric, and for our results they generally agree to within 5% 

(comparisons are shown later; see Figure 6.13). The Fourier transform of the fluctuating 

component ξ1(x,t), denoted 1̂( )xξ , then quantifies the wrinkle amplitude and phase (with 

respect to its value at the left flame branch base) as a function of axial location. 

We next describe the velocity calculations, obtained from the PIV measurements. 

Velocity vectors were computed from the Mie scattering image pairs using a cross-

correlation algorithm [147] with a multi-pass approach [148] and two-dimensional 

Gaussian sub-pixel interpolation [147]. Image preprocessing was implemented with a 

particle intensity normalization of 3 pixels. The multi-pass analysis consisted of two 

preliminary passes with 64 × 64 pixel interrogation windows and 75% overlap between 

interrogation windows, followed by 2 passes with 24 × 24 pixel interrogation windows 

and 50% overlap between the interrogation windows, resulting in velocity vectors 

calculated at 0.8mm × 0.8mm spatial intervals. Post-processing algorithms were used to 

discard a small number of spurious vectors, defined as points with 1.7 times the root 

mean square (rms) values of the neighbors. In addition, a local validation method 

discarded neighboring vectors whose ratio of difference-to-average velocity magnitude 

was greater than 1.9 times the rms of the nearest neighbors. These post-processing 

techniques resulted in less than 1% of the total velocity vectors being discarded. 

Discarded values were replaced with the instantaneous average of neighboring vectors.  

The PIV measurement was calibrated by imaging a black anodized aluminum 

calibration plate with a laser etched pattern, which was located in-plane with the laser 
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light sheet. The laser etched pattern consisted of a regularly spaced grid of crosses, 

composed of 0.3mm thick lines, with spacing of 6mm and with positional uncertainty of 

0.004%. The spatial coordinates of the Mie scattering images and resultant velocity fields 

were mapped to this grid. The worst-case calibration error was estimated to be 1 pixel 

over the large 160 mm calibration plate. 

Near the flame tip, the highly curved flame defocuses the cameras view of the 

Mie particles, sometimes blurring them. When compounded with the luminosity 

emissions that partially saturate the signal at flame tip, these effects lead to highly 

spurious results. An example image displaying this effect is shown in Figure 6.5, showing 

the spurious velocity data near the upper portion of the image.  

 



 192

       
Figure 6.5. Representative PIV data showing spurious result near upper edge of image due 

to intensity saturation and flame curvature distortion (a). The void filling procedure is also depicted 
by the axial velocity gradient, dUx,0/dx at a representative axial location below the void, xref (b), along 
with transverse (c) and axial (d) cuts of the raw velocity data (thin lines) and extrapolated data (thick 
lines). The line styles correspond to the various traverses show in top left image. 
 

In these regions, the velocity is extrapolated from upstream locations of good 

data. This is done by looking at the axial velocity gradient, i.e. dUx,0/dx at an axial 

location upstream (below the void), where valid data exists, denoted xref. A Gaussian 

curve is fit to this gradient profile, shown in Figure 6.5, and the downstream velocity 

values are then extrapolated at locations x > xref. Representative transverse and axial cuts 

are also shown in Figure 6.5, showing both the raw and extrapolated data. The calculation 

results shown later will indicate the regions of actual and extrapolated data.  
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6.4 Experimental Results 

Having the ability to track the instantaneous flame edge, characteristics of the 

experimental flame wrinkle dynamics can be investigated. We will refer to four 

representative conditions throughout the rest of this paper, shown in Table 6.2. 

Table 6.2. Representative operational condition sets.  

Case Set U0,des (m/s) ff (Hz) ε 
Case A  0.1 50 0.15 
Case B  0.2 20 0.05 
Case C  0.4 30 0.05 
Case D 0.4 40 0.05 

 

Representative results showing the instantaneous spatial dependence of ξ(x,t) at 

different time instances over a forcing period is shown in Figure 6.6. Notice the clear 

downstream axial convection of the flame wrinkle crests with time, a result predicted by 

the waveform portion of the various explicit equations. Flame wrinkle convection can 

also be directly inferred from the phase of ˆ( , )fx f fξ = . Note that a wrinkle convecting 

axially at a constant speed, Uc, leads to a linear phase-axial location dependence, with a 

slope given by: 

          
2

ˆ( , ) /
f

c
f

f
U

x f f x

π
ξ

=
∂∠ = ∂

       (6.1) 

Figure 6.6 also plots the axial dependence of Uc calculated using this formula, 

overlaid upon measured steady velocity results along various three axial profiles through 

the domain. Note the very close correspondence of the wrinkle velocity to the mean flow 

velocity. This result is consistent with prior analytical work that used simpler model 

velocity profiles, and showed that to leading order in Pe, Uc = Ux,0. Note that this is not 



 194

the case in premixed flames, where the flame wrinkle speed is the vector superposition of 

the flow velocity and flame speed projected normal to the flame front.  

                 
 
 

        
 

Figure 6.6. (top-left) Instantaneous flame positions at various time instances over a forcing 
period (left; black and blue lines indicate raw and smoothed experimental data, respectively, while 
arrows indicate increasing time), (top-right) steady flow velocity cuts, at the centerline [y=0], burner 
lip [ y=Rf], and mean flame position [y=ξ0(x)], and wrinkle convection speed (right) results for Case C, 
and (bottom) representative axial evolution of the wrinkle crests for Case C, where the line indicates 
a convective velocity of 0.6 m/s.   

 

The fluctuating flame position, ξ1(x,t) is calculated as the transverse distance of 

the instantaneous flame position from the average; i.e., ξ1(x,t)=ξ(x,t)-ξ0(x). The 

fluctuating response can then be extracted from the Fourier transform at the forcing 

frequency, ̂ ( , )fx f fξ = . Representative results for the magnitude and phase of the flame 

wrinkle are shown in Figure 6.7 for Case C.  
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Figure 6.7. Representative experimental flame wrinkle amplitude (left) and phase (right) 
results for Case C. 
 

Note the nearly stationary behavior of the flame at the base near the burner lip, i.e. 

1̂( ~ 0, ) ~ 0fx f fξ = , indicative of flame attachment – these results are consistent with 

prior theoretical results developed for non-premixed flames in the fast chemistry, Pe>>1 

limit, see Chapter 4. Additionally in this near base region, the response magnitude grows 

with downstream distance. This characteristic has been previously attributed to the 

amplification of the disturbances in the convectively unstable shear layer [127]. Further 

downstream the magnitude of flame wrinkling peaks at x/Rf = 6 and oscillates. This 

behavior is suggestive of an interference phenomenon and is consistent with the 

predictions of prior calculations of forced non-premixed flames from previous Chapters. 

Similar interference results have been observed for axially forced premixed flame 

systems [149]. The phase rolls off nearly linearly with axial distance, for the reasons 

discussed earlier in the context of Figure 6.6. Additional flame wrinkle results will be 

shown in Section 6.6 where we compare results with modeling predictions. 

We next show representative velocity results. The time averaged axial Ux,0 and 

radial Ur,0 velocity component fields are shown in Figure 6.8 for the same conditions 

| ξ
1 

/ R
f  

| 

ے
 (

 ξ
1 

/ R
f )

 (
ra

di
an

s)
 

^ 

^ 

x / Rf x / Rf 



 196

shown in Figure 6.5 thru Figure 6.7. The time averaged centerline of the flame, extracted 

from the procedure outlined in Figure 6.4 and demonstrated instantaneously in Figure 

6.6, is also indicated. The figure clearly shows the axial flow acceleration. In addition, 

the radial velocity result shows the induced radially expanding (both inflowing and 

outflowing) velocities inside and outside the flame, respectively, an expected result based 

on the gas expansion occurring on both sides of the flame sheet.  

         
 

Figure 6.8. Representative experimental velocity fields (using corrections described in the 
context of Figure 6.5) showing the time averaged axial, Ux,0 (left), and radial, Ur,0 (right; positive 
direction being radially outward), velocity fields for Case C, along with overlaid steady flame 
position (line). Fuel port walls are shown in black and the colorbars show velocity in m/s. 

 

Figure 6.9 shows the axial and radial magnitude and phase values of the velocity 

fluctuations at ξ0(x) for Case C. The phase of the radial velocity disturbance shows clear 

signs of downstream convection (the phase slope corresponds to a value of ~0.6 m/s), 

suggesting that it is dominated by vortical disturbances. Being convectively unstable in 

its own right [150], harmonic excitation causes the shear layer to roll up into vortices at 

the frequency of excitation [151]. The axial velocity phase is more complex, but its 

general flatness with respect to axial distance is more suggestive of it being dominated by 

an acoustic standing wave. Also, the complex axial disturbance magnitude distribution is 

perhaps due to the influence of the flame density jump upon the acoustic field. 
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Figure 6.9. Representative experimental axial, ,1ˆxu , and radial, ,1ˆru , disturbance velocity 
magnitude (left) and phase (right) curves extracted along the mean flame for Case C. 
 

This data can also be interpreted through the use of a joint progress variable field, 

as shown by Figure 6.10, which indicates the spatiotemporal likelihood of the 

instantaneously tracked flame edge existing throughout the domain. Shown is the variable 

field for Case C, along with fields obtained utilizing analytical results both in the Pe�∞ 

limit and Pe>>1 limit (Eq.(4.18)) for similar conditions for comparison of nodal 

locations. The experimental flame brush is also marked. 

                

Figure 6.10. Joint progress variable field for (left) experimentally measured instantaneous 
flame edges for Case C with marked flame brush and (right) analytical mixture fraction field 
solutions for Pe=10, ff=30Hz, and 0.055st =Z . 
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6.5 Modeling 

This section presents the flame dynamics modeling approach, which utilizes the 

experimentally measured mean and fluctuating velocity fields as inputs to the mixture 

fraction equation. The predicted space-time dynamics of the reaction sheet are extracted 

from these calculations and compared to the actual measured flame positions for various 

flow velocities and forcing frequencies.  

6.5.1 Equation Formulation 

This section presents the background equations and corresponding assumptions 

fundamental to this analysis. The key assumptions of this analysis are (1) infinitely fast 

chemistry, wherein the flame sheet collapses to the stoichiometric surface of the mixture 

fraction field, stZ , (2) all species have equal diffusivities, (3) negligible radiative heat 

loss effects, (4) small perturbation amplitudes so that the products of disturbances can be 

neglected, (5) unity Lewis number, and (6) local diffusivity is only a function of 

temperature and determined from the Hirschfelder-Bird-Spotz equation [152].           

Unique to this analysis, the velocity and diffusion coefficient terms are 

completely general and vary in space and time. Note that prior analytical treatments of 

this problem have prescribed these profiles, generally using relatively simple spatial 

profiles to enable analytical tractability. As this equation is solved computationally in this 

study, no such assumption is necessary. 

Following assumptions (1) and (4), and working in cylindrical coordinates, the 

resulting steady and fluctuating mixture fraction field governing equations are: 
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Thus, provided adequate inputs, such as prescribed diffusion coefficient and velocity 

fields over the entire computational domain, along with boundary conditions, the steady 

and fluctuating mixture fraction fields can be solved for over the domain of interest.  

Part of these necessary inputs, i.e. the prescribed steady and fluctuating velocity 

fields, were experimentally obtained and presented in Section 6.4, while others, such as 

the boundary conditions, will be discussed in the next subsection. The sole remaining 

quantity of concern is the spatially variant diffusion coefficient, which can be re-written 

using the chain rule as: 

                     
i ix x

∂ ∂ ∂ ∂=
∂ ∂ ∂ ∂
W W g

g

Z
Z

              

    (6.4)

  

 

The specification of /∂ ∂W g , following assumption (6), was calculated via the 

Hirschfelder-Bird-Spotz equation, with empirical correlation coefficients developed by 

Fuller specifically for methane air systems as [153]: 
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where P, M, and V are the absolute pressure in atmospheres, molecular weights, and 

atomic diffusion volumes [154] of the various species, i.e. methane and air. The pressure 

is assumed to be ambient along with the reference values for the molecular weights and 

diffusion volumes. Similarly, /∂ ∂g Z  is determined using assumption (5) of unity 

Lewis number, where the temperature dependence can be related to the mixture fraction 

by: 
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6.5.2 Boundary Conditions and Inflow Mixture Fraction Specification 

There are a number of complications in comparing experimental and numerical 

data for the non-premixed problem, which are not present in the premixed flame problem. 

In prior related studies for premixed flame dynamics, all modeling inputs can be directly 

obtained from measurements – these are the velocity field at the flame (i.e., the mean and 

fluctuating velocity field upstream over the entire experimental domain is not required, as 

it is for the non-premixed problem) and the time averaged position of the flame [128].  In 

contrast, due to the elliptic nature of the mixture fraction equations, it is not sufficient to 

only specify the time averaged flame position and fluctuating velocity field at the flame. 
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Rather, as shown by the Z -equation, the mixture fraction field, its gradient, and the 

fluctuating velocity field in the whole domain must be specified. This section describes 

the boundary conditions and approach used to specify the velocity field in regions outside 

of the measurement window, as well as the time averaged mixture fraction field, which 

was not measured.   

A physical window of 90mm × 90mm region of the test section was imaged, 

oriented symmetrically above the fuel port, spanning from the burner lip to 15Rf  

downstream, with PIV velocity data available as far as 12Rf  downstream. Figure 6.11 

shows these various regions schematically.  As the transverse extent of the PIV camera 

capture region, ~7.5Rf, was smaller than the total experimental region, ~10Rf, the velocity 

field in the exterior radial region, i.e. r>7.5Rf, was determined by extrapolation of the 

measurements in the viewing window. Figure 6.5 shows how these values become 

constant far into the oxidizer domain, and thus U0(x,r>Rf) was set equal to U0(x,r=7.5Rf), 

for both the axial and radial components, respectively. The radial velocity was also set to 

zero at the walls, Ur,0(x>0,r=Rw)=0. Similarly, the velocity field was extrapolated 

downstream, i.e x>12Rf, utilizing the procedure previously described in Section 6.3 and 

Figure 6.5. Finally, the velocity in the fuel and oxidizer inflow regions, x<0, were set 

equal to their value at the inlet plane (the velocity field in this region was used to 

compute the inflow mixture fraction profile, described next); i.e. Ux,0(x<0,r) = Ux,0(x=0,r) 

was utilized, with no radial component. No penetration boundary conditions were once 

again utilized at the fuel and oxidizer port walls, i.e. Ur,0(x<0,r=Rf)=0. Figure 6.11 also 

shows the various regions of actual (textured) and extrapolated (blank space) velocity 
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data. The same extrapolation procedure was utilized on the corresponding fluctuating 

velocity fields, which are also used as model inputs.  

 

 

 

 

 

 

 

Figure 6.11. Schematic of the computational/experimental domain and the regions of various 
data types, boundary conditions, and inflow conditions. The white, diagonal texture, and cross-
hatched textured regions indicate areas of no data, both luminosity and PIV, and only luminosity, 
respectively. 
 

Consistent with the procedure followed in Section 4.3 ,the mixture fraction inlet 

profiles, and corresponding field, were determined by assuming pure, i.e. transversely 

uniform, fuel ( 1=Z ) and oxidizer ( 0=Z ) reservoirs, also shown in Figure 6.11, far 

upstream of the inflow (we used x=-50Rf). The mixture fraction inflow profile at x=0 was 

not specified, but rather computed as part of the problem, and extracted from the resulting 

computed mixture fraction field solutions, Eq.(6.2) and (6.3). Figure 6.12 shows various 

computed time-averaged inflow mixture fraction profiles extracted for a representative 

U0,des span. An alternative, more analytically tractable and less computationally expensive 

approach, is to simply assume that at the x=0 inlet plane, Z =1 for fr R≤  and Z =0 for 

fr R> . However, axial diffusion of fuel and oxidizer modifies these results near the tube 

outlet, which was shown to have several dynamically significant effects in Chapter 4. 

Consequently, this computational approach was used, which smoothes the mixture 
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fraction profile at x=0, an effect which decreases with increasing U0,des; i.e., increasing Pe 

value. Dirichlet boundary conditions were utilized at the upstream reservoir location as, 

Z =1 for fr R≤  and Z =0 for fr R> , while Neumann boundary conditions were 

utilized at the various port and side walls as, / 0r∂ ∂ =Z , as well as far downstream, 

/ 0x∂ ∂ =Z . 

                     
Figure 6.12. Computational time-averaged inflow mixture fraction profiles extracted for 

various experimental cases with U0,des values of 0.1 m/s, 0.2 m/s, and 0.4 m/s and ff = 30Hz. 
 

6.5.3 Computational Approach 

Solutions of Eq.(6.2) and (6.3) were obtained with finite element methods, using 

the Comsol Multiphysics solver due to its balance of computational freedom and 

efficiency. The multifrontal massively parallel sparse direct solver, denoted MUMPS, 

was utilized with a convergence criterion set to 10-5 and relative tolerance of 0.001. This 

direct solver is based on LU decomposition and can take advantage of all processor cores 

for increased computational speed. Also, since our previous studies revealed large spatial 

gradients in the near burner lip region, a mapped rectangular mesh was employed, 

containing increased grid resolution closer to the fuel port lip. The maximum element 
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size, occurring near the exit plane at x=18Rf was on the order of Rf /10, while the 

minimum element size, occurring near the fuel port lip, was on the order of Rf / 103. Grid 

sensitivity studies were performed which showed that a uniform increase in mesh density 

by 9, yielded less than 2% modification in field and contour results. 

 As the inflow was experimentally designed and controlled to be non-swirling and 

laminar, the mean and fluctuating azimuthal velocity was set to zero, resulting in a 

simplified steady field equation: 
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while the fluctuating equation, Eq.(6.3), can be cast into spectral space as:                            
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6.5.4 Time-averaged Flame Shapes and Model Comparisons 

Once Eq.(6.7) and (6.8) are solved, iso-Z  contours can be extracted from the 

resulting steady and forced field solutions which, following assumption (1), are utilized 

to denote the flame sheet position. Figure 6.13 shows representative results of the 0Z  

fields, where the time averaged flame position is also indicated. If the 0Z  field were 

calculated perfectly, the measured flame shape would lie on the 0 0.055st= =Z Z  

contour. Clearly it does not – rather, in the mid and far-field, i.e. x / Rf >3, the flame more 
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closely follows the *
0 0.11= =Z Z  contour, while near the burner lip it follows a lower 

valued iso-contour, dependent upon the specific case. Note how the case on the left 

shows much better near-field agreement with the experimental results than the case on 

the right. This difference in near field characteristics is likely a result of errors in the 

computed 0( 0, )x r=Z  inflow profile. Additionally, the nature of the mixture fraction 

boundary condition contributes to this discrepancy, requiring the computed flame sheet to 

attach normally to the fuel port wall, thru use of the no penetration mixture fraction 

condition, i.e. ( 0, ) / 0fx r R r∂ < = ∂ =Z . In reality attachment occurs at some finite 

angle, hence lengthening the steady flame shape, and pushing the location of maximum 

width downstream. Nozzle heating has been shown to significantly influence the nozzle 

exit region [155], while body force and gravitational effects have been shown to 

influence the entire mixture fraction field and resulting flame shape [156]. 

 
Figure 6.13. Experimental and modeled steady state flame position for two representative 

results for (left) Case B and (right) Case C. Also plotted are various computed iso-mixture fraction 
contours (thin lines) for iso-Z  values of 0.055, 0.11, 0.15, 0.3, and 0.8. Note the difference in x-axis 
between figures. 
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Further downstream, the fact that the flame does not lie on the 0 st=Z Z  line may 

reflect some of the other model assumptions; e.g., neglecting radiation effects (which 

would influence temperature distributions and, therefore the assumed diffusion 

coefficient field), and differential diffusion effects. Other studies have also shown 

occasional significant differences in mean flame shape between experimental results and 

computationally extracted iso-contour methods [157, 158]. A comprehensive study 

further investigating the various influencing factors on the steady flame shape is deferred 

to, and presented in Appendix J. 

Again, as mentioned in the opening comments of Section 6.3, these issues do not 

create challenges for prediction of premixed flame wrinkle dynamics, as one can simply 

specify the time averaged flame shape, which is measured. Given these issues, we 

adopted the following approach for prediction of the fluctuating flame position – a 

modified flame identifying mixture fraction value, i.e. *=Z Z , was utilized for the 

temperature-diffusion coefficient-mixture fraction relationship, needed for Eq.(6.6). The 

steady, 0Z , and fluctuating, 1Z , mixture fraction fields were then calculated via, Eq.(6.7) 

and Eq.(6.8), with the use of the spatially varying diffusion coefficient, Eq.(6.5).  Then 

the mixture fraction properties were determined along the *
0 =Z Z  iso-contour. Of 

particular interest, which can be seen from Eq.(2.33) and will be discussed in the next 

section, is the value of 0 / y∂ ∂Z  needed to relate 1Z  and ξ1. By following this procedure, 

we use a consistent approach for calculating 
0Z  and 

1Z , and relating mixture fraction, 

temperature, and diffusivity. Given the lack of general near-field agreement between the 

measured flame slope, denoted 0 / xξ∂ ∂ , and that of the *
0 =Z Z  iso-contour shown in 



 207

Figure 6.13 near x=0, we can anticipate discrepancies in the comparison of flame 

dynamics near x=0, an issue we will return to in the next section.  

 

6.6 Space-time Dynamic Result Comparisons 

This section presents comparisons of the measured flame response characteristics 

to those predicted from the mixture fraction equation using the measured velocity field as 

model inputs. While these previously discussed expressions, or computational fields, for 

0Z  and 1Z  provide solutions for the mixture fraction values over the entire domain, we 

are particularly interested in the reaction sheet location, which is still given by the 

implicit equation ( , ( , )) stx x tξ =Z Z . Following the discussion in Section 6.5.4, an implicit 

expression for the time averaged flame sheet position, 0( )xξ , can be determined from the 

coordinates where *
0( , ( ))x xξ =Z Z . Following the procedure outlined in earlier chapters, 

in the limit of small disturbances, an explicit expression for fluctuating flame position can 

be obtained, given by Eq.(2.33), where 1ξ  is measured in the radial direction, as indicated 

in Figure 6.4. Utilizing this expression, flame wrinkle magnitude and phase results can be 

obtained utilizing the modeled mixture fraction fields, and can be compared to the 

experimental results for both the left and right flame branches. Some representative 

comparisons are shown in Figure 6.14 for various flow and forcing conditions, given in 

Table 6.2, representative of the range of operational parameters. Additional results are 

provided in Appendix K, for additional operational conditions, listed in Table 6.1. Note 

results are only shown for axial extents where measured data exists and the experimental 

flame was located, hence the shorter axial extent for the lower flow velocity cases. 
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Figure 6.14. Representative space-time dynamic magnitude (left column) and phase (right 

column) comparisons between experimental (measured) and modeling (computed) results for a 
representative set of data for various U0,des and  ff  values. Note: axial velocity extrapolation occurs 
downstream of presented results, i.e. x / Rf > 12. 
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Figure 6.14 continued. 
 

First, note the qualitative similarities between the experimental and computational 

results. Specifically, both results predict the rise, peaking and then falloff (possibly 

accompanied by some modulation) of the amplitude. The values of the peak wrinkle 

amplitudes are always in good agreement with the predictions. Additionally, the phase 

results also show the near linear rolloff with axial distance, with extremely comparable 

slopes. However, while the modeled result always captures the general trend of the 

wrinkle amplitude, the predicted slope of the initial magnitude rise, along with the axial 

location of the first peaks, does not always compare well to the experiments; for example, 

in Figure 6.14, Case B compares much better than Case C in terms of both initial 

amplitude rise and peak locations. We will consider this deviation in more detail at the 

end of this section. 

Further downstream, the amplitude shows a maxima/minima pattern caused by 

wrinkle interference, between flame sheet wrinkles generated at the x=0 boundary and 

disturbances excited locally. The spatial length scale of these maxima depend upon the 

forcing frequency, with more modulations occurring for higher forcing frequencies, as 
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both expected from the physics and predicted by the calculations. With regards to the 

phase, the calculated curves tend to have more non-linearity than the purely experimental 

curves, with similar qualitative trends.  

The difference in near field dependence of |ξ1| upon x could be expected from the 

discussion in Section 6.5.4, where it was noted that the predicted and measured flame 

shape also differed near x=0. Referring back to Eq.(4.6) (derived for a much simpler, bulk 

velocity field), note that this equation can be expanded about x in the near field, and to 

leading order in Pe results in: 

                1,
0

~0

ˆ| |
sin ( )n

x

d
x

dx

ξ
ε θ=   

          

(6.9)     

Note how this equation directly shows the relationship between the slope of |ξ1| 

and 0sin ( )xθ  for small x. Figure 6.15 shows how this flame angle quantity was defined, 

capturing a representative value for the near base region, x~0, rather than simply the 

attachment location (which would result in 0sin (min( )) ~ 1xθ  for all computational cases 

via normal attachment). In order to evaluate the effect of these near field flame position 

prediction errors, we define a discrepancy parameter as: 

         ( ) ( )exp comp
~0 ~0 ~0

expparameter comp parameterx x x

−∆ ≡ −   

      

(6.10)     
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Figure 6.15. Zoomed view of boxed region of Figure 6.13, for Case C, explicitly denoting the 

x~0 computed and experimentally measured flame slopes. 
 

Figure 6.16 plots the difference in the experimental and computed wrinkle 

amplitude rise in the near-base region, exp comp
~0 1̂| (| / |) / |x fd R dxξ−∆ , as a function of the 

difference in the experimentally extracted and computed time-averaged flame slope, 

exp comp
~0 0| sin ( ) |x xθ−∆ , for  the majority of the experimental cases noted in Table 6.1. 

Notice, how for the cases where the initial flame slope is captured more accurately 

computationally, the resulting amplitude slope is also more accurate. The two cases 

previously utilized in Figure 6.13 and Figure 6.14 are explicitly noted on Figure 6.16 for 

reference. This result shows the importance in capturing the true near-field mixture 

fraction field characteristics, and how they are essential to accurately predicting the flame 

dynamics. 
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Figure 6.16. Plot showing the relation between the difference in the near-base experimental 

and computed (denoted utilizing exp comp
~0x

−∆ ) flame slope, i.e. 0sin ( )xθ , and wrinkle amplitude slope, 

i.e. 
1̂(| / |) /fd R dxξ , for all edge tractable experimental cases (see Table 6.1). Cases from Table 6.2 

are explicitly marked. 
 

6.7 Revised Analytical Model – Accelerating U0 

As the above PIV results have shown, the steady state axial velocity can vary 

greatly in the non-premixed system, in contrast to the analytical models presented in 

Chapters 3 and 4, which utilized a constant, spatially invariant steady axial flow velocity. 

Thus, this final section addresses that issue by reinvestigating the dynamics, exposed to 

an axially varying steady flow velocity. The revised Z -equation can be represented as: 

                                           ( )( , )
( , ) ( , ) ( , )

x t
u x t x t x t

t

∂ + ⋅ ∇ = ∇ ⋅ ∇
∂

�Z Z ZW                    (6.11) 

Once again utilizing the simplified case of a two-dimensional system in the absence of 

axial diffusion, a form of the steady state mixture fraction field, governed by Eq.(3.3), 

with axially varying steady flow velocity, i.e. U0(x), can be solved for utilizing the 

familiar step inlet boundary condition and no-wall diffusive flux condition. The resulting 

solution is given by: 
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Notice how Pe still retains the previous definition, given by Eq.(2.25), however is now a 

function of axial location due to the varying steady flow velocity. Insight into this 

modified axial dependence term can be gained by looking at various approximations for 

the axial dependence of U0(x), i.e. Pe(x), several of which are shown in Table 6.3. 

 

Table 6.3. Example axial dependencies of the steady mixture fraction solution 

 [ ]exp  

( )Pe x Pe=  2exp n
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Pe RPePe

−
  
  −

  
  

A

 

 

The corresponding axially forced solution is also obtainable, however, it is 

dependent upon the definition of the fluctuation magnitude, ε. For example, if this term is 

a function of the axial location downstream as well, i.e. ( ) ( ),1 0ˆxu x U xε= , the solution is 

different from if the term is a constant, i.e. ( ),1 0ˆxu x Uε= . Although for physical systems 

the latter is more realistic, both solutions can be considered simultaneously by 

considering the fluctuating mixture fraction field equation, similar to Eq.(3.4), in non-

dimensional form as: 
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where 

                                       ( ) ( )0

,1ˆx

U

u

ε η
η =U                        (6.14) 

Utilizing this representation, no further restrictions need to be made on the form of 

( ),1ˆxu x . The Leibniz integration rule must be utilized on the right hand side of Eq.(6.13) 

due to the differentiation of 0Z , which contains an integral with variable bounds. The 

corresponding fluctuating mixture fraction field solution can be obtained as: 

( )
[ ]

( ) ( )

/ /2 2
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1 1 2
1 2 20 0

exp 22 sin( )ˆ cos exp 2 exp
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n n n
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n f f

iSty x
iSt d d

n R R Pe Pe

π ψε π ψ ψ
π ψ ψ ψ
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=

         −−=                         
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A A AZ A
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   (6.15) 

Similarly, utilizing Eq.(2.33), an explicit equation for the flame wrinkle can be obtained 

as: 

                  ( ) [ ] [ ]
( ) ( ) [ ]1,

0
20

exp 2
sin ( ) exp 2 expn

f

iSt
x Pe iSt d i t

R Pe

ηξ π ψ
ε θ η π η ψ ω

ψ ψ
 −

= − 
  
∫U

       (6.16) 

Comparing this expression with the corresponding one for the steady mean axial 

flow solution, Eq.(3.15), reveals similar features. The familiar flame angle term 

dependence is evident, along with the magnitude / low-pass filter characteristic, which is 

now built into the integrated quantity. The major difference comes with the waveform 

term, which is altered by the spatially varying flow velocity, resulting in a modified 

oscillatory mixture fraction interference pattern. 
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CHAPTER 7 

Conclusions and Future Work 

This chapter summarizes the results of this thesis and illustrates the key contributions of 

this work on the combustion research community, related industries, and the world. Then, 

several suggestions are made for future work, manifesting as both continuation studies, 

building upon results presented here, as well as new topics of investigation, discovered to 

be relevant based on results and lessons learned from this work. These investigations 

would continue to further our understanding of flame dynamics and lead to enhanced 

predictive capabilities.   

 

7.1 Concluding Remarks 

 Overall, this thesis focuses on the spatiotemporal dynamics of flame response, 

comparing the relatively unexplored topic of non-premixed flames to the well-established 

set of premixed flame results. Utilizing the research trifecta, analytical, 

numerical/computational, and experimental analyses were employed to study the 

excitation, convection, and dissipation of wrinkles on the flame front. These analyses 

identified key controlling physics, many of which could be identified explicitly, along 

with key dimensionless parameters and investigatory techniques, providing insight into 

the complex topic of flame dynamics. Chapter 2 introduced the arsenal of exploratory 

tools utilized throughout, while new findings were presented from Chapter 3 through 

Chapter 6. 
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Chapter 3 presented results demonstrating the fundamental dynamics for the 

flame sheet motion and unsteady heat release of a harmonically forced isothermal 

diffusion flame. Significantly, an explicit expression for the space-time dynamics of the 

flame sheet was developed, along with an expression for the heat release transfer 

function, for bulk forced non-premixed systems. This expression demonstrated the role of 

axial convection in propagating flame wrinkles downstream, leading to nodes and anti-

nodes in the flame response, similar to premixed flames. Additionally, the controlling 

nature of velocity fluctuations normal to the mean flame was demonstrated through 

influencing factors, such as forcing direction, confinement, and differential diffusion 

effects; the latter two of which altered the mean flame shape, and hence the unsteady 

dynamics. While the space-time dynamics were shown to be similar to premixed flames, 

their heat release dynamics were revealed to be quite different, premixed flames being 

dominated by area fluctuations and non-premixed flames by mass burning rate 

fluctuations. Their gain sensitivities both tend towards unity at low St values, but the non-

premixed flame response is larger than premixed flames for St~O(1).  

Chapter 4 built upon these results, introducing more advanced system physics and 

configurations, and as a result, dynamical features. Some physical effects, such as system 

dimensionality and anisotropic diffusion, were shown to influence wrinkle dynamics only 

through modifications in the steady flame position. Others, such as multi-dimensional 

forcing and finite axial diffusion effects, resulted in more entwined modifications of the 

dynamics.  

Swirl was shown to influence three-dimensional diffusion flames differently 

depending upon the forcing configuration. Only influential on the flame dynamics when 
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the forcing was non-axisymmetric, such as transverse bulk and helical disturbances, the 

effect of swirl influenced the flame spatial wrinkling and heat release fluctuations 

differently. Whereas these two quantities are related, they exhibit different sensitivities to 

frequency, dimensionless swirl number, and other flame parameters. Starting with flame 

wrinkling characteristics, the simultaneous azimuthal and axial propagation of wrinkles 

by the flow greatly altered the wrinkle structure at a given azimuthal location. For an 

axisymmetric flame, the helical modes in the fluctuating flow field generated an identical 

azimuthal dependence in the flame wrinkling behavior. In addition, it was shown that a 

given helical mode, ms, dominated the amplitude of flame wrinkling, whose value was a 

function of swirl number, flow velocity, forcing frequency, and disturbance phase speed. 

In general it was shown that this mode was non-axisymmetric and could be either co- or 

counter- rotating relative to the mean swirl. Contrary to this rich modal behavior, for the 

unsteady heat release, only the axisymmetric contribution of the flame wrinkling 

behavior, i.e. the m=0 mode, contributed to the global heat release fluctuations of these 

axisymmetric flames, a result in accordance with premixed flame results. Although the 

non-axisymmetric modes produce local heat release oscillations, the contributions on 

opposite sides of the flame cancel, due to the 2π periodicity of these modes, leading to no 

global heat release fluctuations. 

Numerical computations revealed that axial diffusion smoothed out the flame 

wrinkles as they moved downstream, eliminating spatially invariant nodes that occurred 

in the Pe�∞ limit. This effect was verified analytically, along with a dispersive 

convecting nature, when O(Pe-1) and O(Pe-2) terms were included, respectively, at large 

yet finite Pe values for simplified mixture fraction field solutions. The inlet boundary 
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condition was also discussed. Although several approximate forms exist in the literature, 

it was shown that in general, the distributions of the inlet boundary profile, must be 

determined computationally by simultaneously solving for the flow in the x<0 and x>0 

domains. In addition the influence of axial diffusion on both the steady state and 

instantaneous flame positions was discussed. It was observed that with this additional 

physics, the instantaneous flame attachment point was a function of both Pe and stZ , as 

opposed to remaining fixed at the fuel port lip.   

Chapter 5 focused more on the unsteady heat release dynamics of non-premixed 

flames, utilizing various asymptotic analyses to isolate and identify general results and 

limiting roll-off values. Preliminary results performed in the Pe�∞ limit showed that the 

transfer function curves exhibited St0 and St-1/2 dependencies in the low and high St limits 

respectively, while axial diffusion effects were shown to smooth the transfer function 

curves. An n-τ model was obtained for the low St asymptotics of the heat release transfer 

functions, while finite axial diffusion effects were shown to alter the corresponding high 

St asymptotics, producing an additional St roll off region of 1/St at large values, due to 

the smoothing action of the mixture fraction gradient at the fuel port lip. Significantly, 

these high Strouhal number solution characteristics were shown to be controlled by the 

gradients in the fuel/oxidizer composition at the burner outlet. While a St-1/2 behavior 

occurred for the step function exit profiles, a smooth mixture fraction at the base of the 

flame was demonstrated to cause the non-premixed flame to exhibit a 1/St asymptotic 

behavior that one would expect of the integral with a non-singular kernel, and no points 

of stationary phase.  
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Lastly, Chapter 6 discusses the non-isothermal diffusion flame analysis and 

corresponding experimental efforts associated with this work. A vertical coflowing non-

premixed flame facility was developed with axial forcing capabilities. Various diagnostic 

techniques, such as luminosity and PIV were utilized to experimentally investigate and 

characterize the spatiotemporal dynamics of the forced non-premixed flame. Utilizing the 

experimentally measured spatially variant velocity field, along with computed spatially 

variant diffusion coefficient as model inputs, a revised model was developed for 

predicting the space-time dynamics of forced diffusion flames. Good qualitative 

agreement was demonstrated between the experimental and modeled results with regards 

to flame wrinkle magnitude and phase. Near-base wrinkle amplitude growth, followed by 

downstream modulatory interference patterns, were captured along with general far-field 

trends and phase rolloff values. However, not measuring the mixture fraction field as a 

model input resulted in some computational limitations, specifically in the near-base 

region, where the largest differences occurred in terms of the axial dependence of | ξ1 |. 

Arising from discrepancies between the modeled and experimental time-averaged flame 

position, these results emphasize the importance of capturing the appropriate physics 

essential to the development of a spatio-temporally accurate mixture fraction field, if 

predictive dynamics are desired. These results could be further enhanced with additional 

experimentation by broadening the operational velocity range, as the results presented 

here were primarily axial convection dominated, extending the axial extent containing 

PIV data, and with better mitigation of the shear layer through sub-inlet velocity 

uniformity and matching. 
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7.2 Summary of Key Contributions 

This thesis describes local and global response characteristics of non-premixed 

flames subject to harmonic velocity disturbances. The analyses were approached from 

various directions and utilized multiple techniques, each containing distinct strengths, 

limitations, and enabling a unique perspective into the flame dynamics. The problems 

investigated followed a logical progression, each one building upon the previous, with 

either increasing complexity, additional included physics, or enhanced accuracy. When 

tractable, separation of variables was utilized to provide analytical mixture fraction field 

solutions, enabling the (implicit via its own accord) investigation of non-premixed flame 

dynamics. For problems where analytical approaches were shown to be inadequate in 

consistently and completely capturing the desired physics, computational approaches 

were implemented for field solutions. Furthermore, experimental investigations were 

undertaken to reveal the various dynamical features, still obscured by mathematical 

simplifications. Additionally, measurements were utilized to validate, as well as, improve 

established models. These solution techniques, along with asymptotic analyses, provide 

comprehensive insights to the dynamics of non-premixed flames.  

The first key finding is the establishment of a technique for obtaining explicit 

solutions for unsteady non-premixed flame dynamic problems. Beneficial to both space-

time and heat release dynamics, the non-premixed flame realm is an inherently different 

problem from the premixed case, being controlled by different fundamental physics, and 

as such, obtaining explicit equations is not analogous or straightforward. Linearization 

techniques, along with intricate parametric and mathematical manipulation had to be 

implemented.  
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The second key finding is identifying and explaining the fundamental relationship 

between the velocity excitation and the flame response. Various elements of the 

dynamics were observable explicitly, such as the low-pass filter characteristic, controlling 

nature of locally normal velocity fluctuations, and the waveform interference behavior. 

Some problem conditions (boundary or assumptions) altered the wrinkle interference 

effects and introduced new physics to the problem, while others modified the dynamics 

through altering the mean flame location. The importance of accurately capturing the 

core physics of the problem was reinforced with experimental efforts. 

The last key finding is the development of results, consistent in form although 

different in acquisition, which allowed for the direct comparison between established 

premixed and unexplored non-premixed flame dynamics. It was revealed how the overall 

space-time dynamics are similar, having the same dynamically relevant features. 

However, the heat release characteristics are fundamentally different, being dominated by 

different physics and having different asymptotic trends. Significantly, the resulting tri-

zonal asymptotic structure demonstrates the fact that non-premixed flames are more 

sensitive to velocity fluctuations than premixed flames at most disturbance frequencies of 

relevance.  

The results and findings presented here have a wide range of beneficiaries. To the 

research and academic realm, this work has identified and begun to fill a void present in 

the intellectual domain, regarding non-premixed flame dynamics; one which had become 

extremely lopsided in favor of premixed flame dynamics. To the combustion harnessing 

industries, a better understanding of fundamental flame dynamics allows for better 

products, systems, and, procedures. Enhanced predictive capabilities, instability 
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screening procedures, proactive hardware life extension, and increased efficiency are all 

feasible outcomes, saving time and money. To the world, these results can help make 

devices, big and small, which help people achieve tasks, goals, and dreams safely, 

efficiently, eco-friendly, and cost-effectively. 

7.3 Reflections 

The earliest non-premixed flame response dynamics results presented in this 

thesis were derived from a rather substantial list of assumptions, desiring mathematical 

simplicity and analytical tractability. Throughout this work, these restrictions were 

systematically alleviated, making the results presented more inclusive and complete, 

amid discussing the manner in which specific assumptions modified the system physics 

and flame dynamics. However, due to mathematical tractability of this physical system, 

some assumptions could not be lifted. It is important that we reflect back on some of 

these key assumptions and mention how they would potentially alter the results.  

Central to the interpretation of flames, especially mathematically and 

computationally, the infinitely fast chemistry, i.e. thin flamelet, assumption imposed 

provided a compact and complete definition of the spatial flame location. In reality, finite 

chemistry and rate effects exist, which muddle this definition [159]. Previous studies 

have found that finite rate effect have little to no effect on the natural flickering dynamics 

of non-premixed flames [160]. Thus, the wrinkle dynamic characteristics presented here, 

i.e. convection, dissipation, dispersion, are still expected to hold. However, it is known 

that the internal structure of the flame front strongly depends on the flame thickness, 

which as is discussed in Appendix L, is dependent upon the imposed forcing. Thus, slight 
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alterations in wrinkle magnitude and convection velocity could be anticipated since as the 

flame thickness becomes finite, the gradients in mixture fraction are expected to diminish. 

Radiation and heat loss effects were also excluded. Previous studies have assessed 

these effects, for both steady and unsteady non-premixed flames, and observed that the 

effect of radiation on the flame response and extinction becomes important only for 

weakly strained diffusion flames, characterized by large thicknesses (coupling in the 

above discussion) [161, 162]. Resulting from the competition between the mechanisms of 

reactant leakage and radiative loss with reducing strain rate, this effect could be 

potentially large near the dynamically significant flame base and flame tip. These 

radiative effects have also been shown to trigger nonlinear diffusion flame oscillation 

evolution. Nonlinear effects have been studied for both premixed and non-premixed 

flames, potentially introducing additional wrinkle destruction processes [62, 92]. 

Lastly, the results presented here have utilized flame base attachment conditions, 

both analytically and numerically. Even though the experimental results show this to be 

qualitatively true, this near base region is still somewhat ambiguous, potentially being 

lifted by multiple flame thicknesses. In turn, some discrepancy between the near base 

experimental flame angle and the imposed normal fuel port attachment due to the no-

penetration boundary condition, discussed in Section 6.6 and Figure 6.16, could be 

altered by near base/port heat loss effects and flame extinction [47]. Additionally, the 

configuration of the flame attaching here could be fundamentally different, adopting 

more a triple flame or edge flame structure [163, 164]. This would alter the entire flame 

shape, and impact both the space-time dynamics, as they are a function of the steady 
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flame location, as well as the heat release dynamics, which revealed the significance of 

the near-base region. 

7.4 Recommendations for Future Work 

Firstly, there needs to be a stronger link between the mathematical tools and 

solutions available to the combustion systems of interest. A plethora of mathematical 

solutions exist, however, linking ones correspondence to a physical system or problem of 

interest and relevance (simplified or not) is where true progress is made. Accurate 

capturing of the mixture fraction field was shown to be of key importance throughout this 

thesis. Thus, a modified form of the mixture fraction equation, or even a new conserved 

scalar and corresponding governing equation, must be developed, one which includes a 

larger set of essential physics to the general non-premixed system. For example, an 

expression capable of providing analytical solutions for multi-dimensional anisotropic 

problems, completely and consistently, with body force effects, is needed.. 

Of similar accord, additional studies related to the general dynamics of surfaces 

should be pursued. A key contribution of this work was dealing with how to extract 

meaningful and explicit iso-surface dynamics from field equations. Being vastly 

applicable to various academic and industrial applications, enhanced understanding of 

these general dynamics would be helpful.    

The next suggestion is to follow the logical flow of the results presented here, and 

to take some of these studies a step or two further. For example, an explicit expression 

was presented for the second order fluctuating flame response in terms of the mixture 

fraction fields, however, these were not transformed into interpretable explicit analytical 

expressions from which response characteristics could be extracted.  
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 Additionally, made feasible through the various tools and techniques established 

here, other new and challenging problems can now be embarked upon. The non-premixed 

jet-in-crossflow problem, being one of extreme relevance, should be tackled with similar 

mixture fraction equations and analyses. Furthermore, turbulence should be introduced 

into the non-premixed flame problem, through the development of an ensemble averaged 

Z -equation, in order to get insight as to the effects of turbulence on the iso-surface 

dynamics, wrinkle evolution characteristics, and, heat release. Additionally, through 

proper merging with premixed flame dynamics, a governing equation for partially 

premixed combustion dynamics should be investigated. 

Lastly, a comprehensive investigation of forced non-premixed flame dynamics 

through computational fluid dynamic would be a valuable study. With the ability to 

omnipotently control various features of the systems physics and boundary conditions, 

various ambiguous response characteristics could be linked to controlling system 

features. Additionally, more complex geometries, flows, and forcing configurations could 

be investigated.   
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Appendix A 

 

The general fluctuating mixture fraction field solution, Eq.(3.46), presented in 

Section 3.2 analyzed an unconfined non-premixed flame exposed to bulk axial flow 

oscillations, with the inclusion of axial diffusion. The variables utilized in this solution 

are defined here: 
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Additionally, the high Pe series expansions of these variables are also provided: 
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Appendix B 

 

Here we present the explicit fuel and oxidizer mixture fraction field solutions for 

the example problem in Section 3.4 of the reacting mixing layer. The steady state and 

fluctuating field solutions are provided below, where subscript “f” indicates quantities 

evaluated at the flame sheet: 
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Appendix C 

 

Returning to the assumption made in Section 4.2.4 of negligible azimuthal 

diffusion for the convecting helical disturbance solution, Figure C0.1 shows the 

magnitudes of the various diffusion terms along an instantaneous flame branch for a 

representative θ value, for a moderate level of swirl. The continual dominance of radial 

and axial diffusion along the length of the flame, compared to that of azimuthal diffusion, 

is evident. 

 

 
Figure C0.1. Representative plots of the instantaneous comparisons of the diffusion terms 

along the flame sheet for an axial convecting helical disturbance for parameters m= -1, σ=0.1, kc=20, 
Pe=10, St=0.001, ε=0.01, s=0.25, and stZ =0.055. 
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Appendix D 

 

Regarding the various proposed inlet boundary conditions discussed in Section 

4.3.1, an interesting question is whether, Eq.(4.49) and (4.50) are recovered as leading 

order corrections to Eq.(4.47) and (4.48) with a formal asymptotic expansion of the 

boundary condition in Eq.(4.45) in powers of 1/Pe. Utilizing the general inlet mixture 

fraction solutions from Section 4.1, this condition can be expressed as: 
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Note that as the convergence is uniform, we can differentiate/integrate this infinite 

summation term-by-term. Simplifying and evaluating the integral and limiting bounds: 
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Finally expanding these terms in orders of 1/Pe, similar to Eq.(4.4), and rearranging 

yields: 
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Notice how, to leading order, Eq.(4.49) and (4.50) are not recovered due to the presence 

of the last term, which is actually O(Pe) larger!  
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Appendix E 

 

A series of analytic steady state mixture fraction field solutions can be obtained 

for the extended inlet geometry discussed in Section 4.3 by replacing Eq.(4.42) with 

Eqs.(4.51) and (4.52) as an inlet boundary condition, and using it to solve Eq.(3.3), with 

axial diffusion included (b=1), in the fuel/oxidizer port (x<0) and combustion regions 

(x>0). The new combustion region solution, valid for 0x ≥  & 0 wy R≤ ≤  and denoted 

0
+Z , can be obtained utilizing the same symmetry and no penetration boundary conditions 

as before, given by Eq.(3.2). Additionally, fuel and oxidizer port solutions, valid for 

0x <  & 0 fy R≤ ≤  and 0x <  & f wR y R< ≤ , respectively, and denoted 0
fZ  and 0

oxZ  can 

be obtained. Additional no penetration at the fuel port wall, finite mixture fraction values, 

and mixture fraction matching boundary conditions, must be applied to get meaningful 

solutions, given respectively:  
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These mixture fraction solutions are shown below, along with Figure E0.1 which 

shows the various solution domains: 
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Figure E0.1. Illustration of the extended inlet geometry with the various solution domains 
utilized for the modified inlet boundary condition case denoted. The fuel port, oxidizer port, and 
original domains are enclosed by red, blue, and green boundaries, respectively.  
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where the various eigenvalues are: 
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 n n sπ=A  (E.8) 
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and the various coefficients are: 
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    Physically, the two new inlet boundary condition expressions state that the 

mass flux associated with both convection and diffusion at the inlet equals the value at 

the reservoir, locally (i.e., at every y station). Comparing these proposed inflow 

conditions with Eq.(4.42) shows that Eqs.(4.51) and (4.52) are correct as an integral 

expression, but not locally, and in fact, utilizing them leads to a discontinuity in local 
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mass flux at x=0 at each y location. This is shown in Figure E0.2 (top-left) which plots 

iso- 0Z  contours of this extended inlet domain. Note that three analytical solutions had to 

be obtained for the fuel port, oxidizer port, and combustion zone and solutions matched 

between these domains utilizing continuous mixture fraction values. Figure E0.2 (top-

right) shows the slope of a representative iso-contour at the inlet for the various solutions. 

Note the large discontinuity in solutions at the fuel port lip, an artifact which is elucidated 

in Figure E0.2 (bottom) which shows the value of 0 / x∂ ∂Z  for these solutions across the 

inlet. 

     

  
Figure E0.2. Extended inlet solutions utilizing proposed inlet boundary condition for (top 

left) iso-contours of mixture fraction, (top right) iso-contour of slope at the inlet, and (bottom) 
diffusive flux at the inlet. 



 235

Appendix F 

 

Presented are the details of the heat release transfer function high St asymptotics, 

mainly Eq.(5.3). This expression can be obtained by simplifying Eq.(5.2), utilizing 

various physical features present in the Pe�∞ and high St limits. It is helpful to note that 

Eq.(5.2) can be recast utilizing geometric relations between the flame angle and the 

mixture fraction fields as: 
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First, in the high Pe limit, Figure 3.11 and the corresponding discussion showed 

that 0( )xZ  becomes nearly independent of x as the flame becomes infinitely flat and long, 

and thus the flame position can be approximated by 0( )xξ ~Rf (1+O(1/Pe)) except at the 

tip (a point which will be made irrelevant soon). Utilizing the unconfined Pe�∞ mixture 

fraction field solutions from Section 3.2 for analytical clarity (same results obtainable 

from the confined solutions, requiring various infinite summation limit evaluations), 

substituting 0( ) fx Rξ =  into Eq.(F.1) and simplifying yields:  

3
2

3
2

2

0

2

2 11 1 1 expexp

( , )

4
1

2 exp 1

f

ff

f
f

f

f

PeR

x xx
PeRPeR

g x
x

Pe R
PeRx

xR
PeR x

PeR

ξ

π
π

   
   

     + − −− −                               = +
    
           − −                  

    (F.2) 



 236

Next, as was shown in Section 4.3 (specifically Section 4.3.4.1), in the high St limit, the 

global heat release is controlled by the features of 0( , )g x ξ  near 0x = . Thus, expanding 

Eq.(F.2) around small values of x, yields: 

                             3
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         (F.3) 

which can be rearranged to match the form of Eq.(5.3). 
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Appendix G 

 

Presented are the details of the heat release transfer function low St asymptotics. 

Starting with an expansion of 1Z  in the Pe�∞, low St limit:  
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Using Eq.(2.33) and the geometric relation, 0 0tan /d dxθ ξ≡ , it can be shown that in the 

low St limit, the flame position fluctuation can be expressed in terms of the steady flame 

position as: 
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Noting that: 
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And utilizing these expressions, Eq.(3.27) can be rewritten in the low St limit as: 
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This integral can be simplified using integration by parts, and results in: 
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Notice how the leading order term resembles the steady state heat release, Q0, given by 

Eq.(3.26). Thus putting this in terms of the transfer function, i.e. Eq.(3.29): 
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Appendix H 

 

Presented is the steady state mixture fraction solution for an unconfined system, 

that excludes axial diffusion (i.e. setting b=0 in the governing equation given by Eq.(3.3)

), and utilizes the piecewise linear inlet boundary condition shown in Figure 5.6. 
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where non-dimensional coordinates are being utilized for compactness and were 

previously defined by Eq.(2.23). 
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Appendix I 

  

Presented are various additional views and images of the forced non-premixed 

experimental facility. 

                

               

Figure I0.1. Pictures of the experimental rig facility. 
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Figure I0.1 continued. 
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Appendix J 

 

This appendix describes the computational fluid dynamic (CFD) efforts taken in 

order to broaden our understanding of non-premixed flame dynamics. The results, both 

analytical and numerical, from previous chapters revealed the importance of the steady 

flame location on the unsteady flame dynamics. Chapter 6 revealed the extreme 

sensitivity of accurate spatiotemporal dynamic predictions/modeling on accurately 

capturing the steady field and flame location, while Section 6.5.4 identified various 

limitations and discrepancies of the mixture fraction model approach and experimental 

results. Thus, here we present a through investigating of the influencing factors on the 

steady flame shape. 

Additionally, the various results presented have utilized varying degrees of 

restrictive assumptions. These have been from as brash as ignoring the flames heat 

release, to as reserved as the thin flamelet assumption. A secondary objective of this work 

extension is to examine the effects of these various assumptions on the flame dynamics. 

Chapter 6 started on this endeavor by examining experimental non-premixed flame 

systems, however, due to the uncontrollability of real life systems, it was difficult to 

isolate the various “realistic” effects, such as viscous effects from flame heat release 

effects, as everything was coupled within the results obtained. Thus, this study also seeks 

to answer these questions by utilizing computational fluid dynamics, and the ANSYS 

Fluent solver, to methodically investigate the influence of various restrictive assumptions 

imposed.  
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J.1 Overview 

The key to obtaining meaningful results from CFD for combustion related 

applications is the use of an appropriate combustion model within the solver. The choice 

of a particular model should be based on the capability of the model to capture the 

essential and characteristic physics of the problem considered. For example, the 

characteristics of many industrially relevant flame problems involve lifted, swirl-

stabilized flames, and if the turbulent combustion model does not contain the physics 

essential to capturing the flame lift-off, it will not have any subsequent predictive 

capability for features such as space-time dynamics or pollutant emissions. In other 

words, the basic physics and relevant tools must be right. Fluent has proven to excel at 

thermal fluid flow and heat transfer combustion problems, containing advanced, flamelet-

based combustion models which have proven to yield substantial improvements as 

compared to default models available in other CFD software packages.  

Specifically, we will take advantage of Fluent’s non-premixed combustion model, 

which uses a modelling approach that solves transport equations for one or two conserved 

scalars and the mixture fractions. Multiple chemical species, including radicals and 

intermediate species, may be included in the problem definition, and their concentrations 

can be derived from the predicted mixture fraction distribution. Thus, combustion is 

simplified to a mixing problem, and the difficulties associated with closing non-linear 

mean reaction rates are avoided. Once mixed, the chemistry can be modeled as being in 

chemical equilibrium with the equilibrium model, or being near chemical equilibrium 

with the steady laminar flamelet model. Additionally, to use this model, turbulence must 

be enabled in the viscous model. 
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J.2 Meshing 

As for all computational solvers, the computational domain needs to be divided 

into small finite volume elements, i.e. meshing. Utilized here is a mesh of structured 

hexahedral elements, although other polyhedrals may also be used, meaning that each 

element connects to as many elements as it has faces and the mesh is arranged in an 

orderly topological fashion. With eight vertices necessary for a single block of mesh, 

these points were defined for our various combustion and port regions, and the interior 

hexagonal mesh was built with OpenFOAMs blockmesh utility, utilizing evenly spaced 

elements, i.e. simple-grading. Specifically, domain extents were divided into 0.01m 

segments. Blockmesh was utilized due to its fast, efficient, and easily dynamic mesh 

construction excelling for simple geometries, specifically this inverse wedge flow. A 

wire-frame view of the mesh domain is shown in Figure J0.1, consisting of 280,224 cells, 

563563 faces, and 283340 nodes with minimum orthogonal quality and max aspect ratio 

of 0.99998 and 2.97, respectively. Inflow, wall, and outflow conditions were then 

imposed on the respective faces. Lastly, note the finite thickness of the fuel port wall, 

having a value of 0.001m at the far upstream “reservoir” location. 
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Figure J0.1. Fluent axi-symmetric computational domain depicted by a (top) wire-frame 
view and (bottom) schematically labeled side view. 
 

J.3 Details of Schemes 

The specific solver utilized was an axisymmetric three-dimensional pressure-

based solver, with absolute velocity formulation, including the energy equation, viscous 

standard k-epsilon equation, and species non-premixed combustion model in Fluent, and 

utilizing Chemical Equilibrium state relation and non-adiabatic energy treatment. 

Gravitational effects could be turned on and off in the axial direction as pleased. When 

studying steady-state problems, the SIMPLE (semi-implicit method for pressure-linked 

equations) pressure-velocity coupling algorithm was utilized, as it was not necessary to 

fully resolve the linear pressure-velocity coupling, since changes between consecutive 

solutions were no longer small. The gradient was computed utilizing a least squares cell 

based method, while second order spatial discretization was used for all species and 

parameters, with second order upwind schemes. 
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J.4 Equations and Solver Sets 

A list of all the equations utilized throughout this study (in various combinations) 

is provided, for reference throughout this appendix:  

E1) user defined scalar (mixture fraction equation) with unity and nil inflow 

boundary conditions at the fuel and oxidizer inflow faces, respectively  

E2) flow equations with specified inflow velocities and outlet fluxes 

E3) turbulence k-epsilon equations with set turbulence intensity and viscosity 

ratios to model laminar flow  

E4) energy equation with set inflow reactant temperatures  

E5) species non-premixed combustion model with probability density function 

(PDF) mixture fraction model  

E6) species transport model.  

Preliminary axisymmetric results were validated with a similar configuration three-

dimensional cylindrical mesh, to ensure axisymmetric solver validity. 

One major advantage of using a solver such as Fluent is the flexibility to solve our 

non-premixed flame system with various physical flame characteristics included or 

excluded. This allows for the comparison of the various analytical and computational 

results presented throughout this work, with the experimental results. We will also be 

able to isolate which assumptions were the most important and impactful on the various 

solution characteristics.  

To do this requires various solver sets to be defined. The first, denoted “Z” 

(solving E1), solves over the solution domain for a conserved scalar (with diffusive 

properties similar to methane), with inflow conditions given similar to Eq.(4.34). This 
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solver utilizes a prescribed steady flow velocity and correlates to the solvers previously 

utilized throughout Chapter 4 and 5, utilized primarily for validation and as a control. The 

next solver, denoted “ZF” (solving E1 and E2), introduces viscous effects by solving the 

flow equations, along with the conserved scalar equation, thus modifying the velocity 

fields. The next solver, denoted “ZFS” (solving E1, E2, E3, E4, E6), introduces multi-

species transport effects to the previous solver, by solving the species transport equations 

along with the flow and conserved scalar equations. This will allow for differential 

diffusion effects to occur. The next solver, denoted “ZFR” (solving E1, E2, E3, E4, E5), 

introduces heat release effects by solving for non-premixed reacting flow equations, 

utilizing the described non-premixed combustion model (rather than the species transport 

equations). These latter two solvers are also taken one step further by the inclusion of 

body force and gravitational effects, and will be denoted “ZFSG” and “ZFRG”, 

respectively.  

J.5 Steady Results 

Figure J0.2 shows various computationally extracted steady state flame position 

solutions, utilizing these various solvers. When applicable, we track both stoichiometric 

contours of the conserved scalar, as well as those of the CH4 field. The conserved scalar 

profiles are modified due to the impact of the various species transport and reaction 

equations on the flow fields, which in turn modify the conserved scalar. 
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Figure J0.2. Various fluent solution sets for the axi-symmetric non-premixed flame model 
problem, for fuel and oxidizer inflow velocities of 0.4 m/s for a system consisting of pure methane and 
air reservoirs for the fuel and oxidizer streams, respectively. 
 



 249

           

Figure J0.2 continued. 

 

Some key effects can be noted from Figure J0.2. The inclusion of viscous/flow 

effects drastically reduces the overall flame length and width, presumably due to 

modifications to the inlet mixture fraction profile. Heat release effects, generating flow 

expansion on both sides of the flame sheet, act to widen the flame position. Differential 

diffusion acts to alter the shape slightly, however, it is not until gravitational effects are 

included, that the flame shape begins to resemble tangible diffusion flames, such as 

candles. Significant narrowing of the flame is evident, even with flame lift-off attachment 

required. Previous studies have also observed the significant influence of body forces on 

the steady flame shape [156, 165-167]. For example, Figure J0.3 shows the effects of 

gravity on the steady candle diffusion flame shape. Notice how the flame in microgravity 

(absent of co-flow however) resembles many of the steady iso- 0Z  contours from the 

various analytical studies, while the flame in standard Earth gravity resembles many of 

the experimentally extracted edges! 

 



 250

                        

Figure J0.3. Images of a candle diffusion flame (left) in microgravity and (right) normal 
earth gravity [168]. 
 

A final subtlety of this study involves the various potential flame location 

defining definitions. Previously restricted to iso-mixture fraction contours, we are now 

able to investigate alternate mathematical definitions, such as individual species or 

maximum property contours. Figure J0.4 shows various different flame position 

definitions, compared to the experimentally measured values for the diffusion flame rig, 

discussed in Section 6.2, operated at U0,des=0.4 m/s, in the absence of forcing. 

Interestingly, the temperature and OH species contours show the best agreement to the 

experimentally observed shapes. 
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Figure J0.4. Fluent solution sets for the axi-symmetric non-premixed flame model problem 

showing the various steady flame position definitions, for fuel and oxidizer inflow velocities of 0.4 m/s 
and consisting of pure methane and air reservoirs for the fuel and oxidizer streams, respectively. For 
the temperature and OH species curves, the thin lines indicate 90% maximum iso-contours, while the 
thick lines indicate the axial dependence of the transverse maximums. 
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Appendix K 

 

Presented are additional results, extending the discussion in Section 6.6 regarding 

Figure 6.14, for additional operational conditions, listed in Table 6.1. Note results are 

only shown for axial extents where measured data exists and the experimental flame was 

located, hence the shorter axial extent for the lower flow velocity cases.         

 

         

 

 

                 
 
 

Figure K0.1. Additional space-time dynamic magnitude (left column) and phase (right 
column) comparisons between experimental (measured) and modeling (computed) results for an 
expanded set of data for U0,des = 0.1m/s and various ff  values. Note: axial velocity extrapolation 
occurs downstream of presented results, i.e. x / Rf > 12. 
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Figure K0.1 continued. 
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Figure K0.1 continued. 
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Figure K0.1 continued. 

 

 

                  
 

 

                  
 

Figure K0.2. Additional space-time dynamic magnitude (left column) and phase (right 
column) comparisons between experimental (measured) and modeling (computed) results for an 
expanded set of data for U0,des = 0.2m/s and various ff  values. Note: axial velocity extrapolation 
occurs downstream of presented results, i.e. x / Rf > 12. 
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Figure K0.2 continued. 
 
 

                  
 

 

                  
 

Figure K0.3. Additional space-time dynamic magnitude (left column) and phase (right 
column) comparisons between experimental (measured) and modeling (computed) results for an 
expanded set of data for U0,des = 0.4m/s and various ff  values. Note: axial velocity extrapolation 
occurs downstream of presented results, i.e. x / Rf > 12. 
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Figure K0.3 continued. 
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Figure K0.3 continued. 
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Appendix L 

 

Section 7.4 discussed the limitations of the infinitely fast chemistry assumption. 

The modification of the flame thickness with velocity fluctuations was also discussed. 

Here we show a representative experimentally extracted fluctuating flame thickness, δf, 

amplitude as a function of axial location for Case C (listed in Table 6.2). To obtain the 

flame thickness, transverse cuts were taken from the filtered and transformed luminosity 

images, described in Figure 6.4. For each flame branch, the thickness was defined as the 

distance between the 80% max-branch luminosity intensity locations, as shown in the left 

plot of Figure L0.1. Computed at each axial location, results describing the fluctuating 

thickness amplitude as a function of axial location are shown on the right. A clear 

modulatory behavior can be observed, indicating that velocity fluctuations do in fact 

influence the flame thickness. Thus, the degree of finite rate effects, which are dependent 

upon flame thickness, would also be altered. 

 

               

Figure L0.1. Representative results for Case C, describing (left) the experimental flame 
thickness extraction technique at an axial location of x / Rf = 4, and (right) the fluctuating flame 
thickness amplitude. 
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