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creases respectlvely.

The approximate analytical solutions of the Schrédinger equation for Eckart potential is obtained via super-
symmetry shape invariance approach. The energy equation and the corresponding wave function are obtained in
a closed and compact form. The wave function was used to calculate the Rényi entropy. The results of the Rényi
entropy was used to study the mass energy parameter, temperature and heat capacity of the black hole. From the
results obtained, the temperature of the black hole becomes stable as the two Eckart potential parameters in-

Introduction

In the recent years, a lot of articles have focused on the analytical
and approximate solutions of the non-relativistic Schrodinger equation
and the relativistic Klein-Gordon and Dirac equations. The most sin-
gular reason is the fact that the solutions of these wave equations
contain all the necessary information for the quantum system under
consideration. The non-relativistic Schrodinger equation has been used
to study the spinless particles while the relativistic Klein-Gordon
equation and Dirac equation have been used to study spin 0 and spin
-1/2 particles respectively. The wave equations in the presence of
various potential function have been studied extensively using different
techniques such as asymptotic iteration method (AIM) [1-6], exact/
proper quantization rule [7-10], conventional and parametric Niki-
forov-Uvarov method [11-20], supersymmetric approach [21-27],
factorization method [28], ansatz approaches [29-31], Formula
method [32] and others.

The investigation of the non-relativistic Schrédinger equation for a
particle in a strong potential field gives the complete description of such
particle in the non-relativistic quantum mechanics. However, it is
clearly observed that each potential model has its own advantages and
failures. For example, some potentials such as Yukawa, Hellmann,
Frost-Musulin, do not admit exact solutions due to the centrifugal
barrier. Thus, to obtain the solutions of any wave equation with such
potential model, the use of approximation scheme is high significant.
The choice of approximation scheme depends on the nature of potential
under consideration. In this study, we considered Eckart potential. The
Eckart potential was introduced in 1930 [33] and is widely used in
physics [34] and chemical physics [35,36]. The Eckart potential under
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consideration is of the form

aexp(—r/a)
1—exp(—r/a)

Bexp(—r/a)
(1—exp(-r/a))*’ @

where a and 8 are Eckart potential parameters that describe the depth
of the potential well and a is a parameter to control the width of the
potential well [37]. On a remarkable note, « > 0 and § > 0 but a > .
Eckart potential is an exponential-type potential. The exponential-type
potentials have great applications and interest in physics ranging from
solid state physics to nuclear physics. This gives the motivation for the
present study. Hassanabadi et al. [38] pointed out in one of their papers
that in many cases, the exponential-type potential are even superior to
their normally used partners which appear as Coulomb or inverse
square ones. The present study is divided into two folds: in the first fold,
we investigate the Schrodinger equation in the presence of Eckart po-
tential. In the second fold, we calculate the Rényi entropy and then used
the result to study the mass-energy parameter and temperature of the
black hole. The scheme of our work is arranged as follows: In the next
section, we obtained the solution of Schrédinger equation. The Rényi
entropy and its application to black hole are studied in Section “Rényi
Entropy” while discussion and conclusion are given in Sections
“Schwarzschild black holes” and “Discussion” respectively (Table 1.).

V()=

Approximate solutions of the Schrédinger equation

Given the radial Schrodinger equation in 3-dimensional space as
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Table 1
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Comparison of the energy eigenvalues for Eckart potential obtained using SUSY approach with other methods for 2p. 3p, 3d, 4p, 4d and 4f in atomic unitu = % =1,

A =11and A, = 0.98.

State 1/a B = 0.0001 B = 0.00005
Present [46] [47] Present [46] [47]
2p 0.025 0.101594 0.100888 0.100836 0.107350 0.106526 0.106474
0.050 0.098298 0.098050 0.097836 0.099905 0.099630 0.099416
0.075 0.088588 0.088880 0.088418 0.089306 0.089590 0.089128
3p 0.025 0.040132 0.040178 0.040125 0.042057 0.041894 0.041840
0.050 0.032396 0.032454 0.032248 0.032853 0.032905 0.032701
0.075 0.023773 0.023998 0.023555 0.023965 0.024188 0.023746
3d 0.025 0.041479 0.041519 0.041364 0.042590 0.042616 0.042459
0.050 0.032108 0.032811 0.032197 0.032384 0.033089 0.032474
0.075 0.022965 0.024150 0.022799 0.023078 0.024624 0.022915
4p 0.025 0.018547 0.018514 0.018463 0.019271 0.019230 0.019179
0.050 0.010855 0.010908 0.010716 0.011026 0.011078 0.010885
0.075 0.004792 0.004874 0.004506 0.004850 0.004936 0.004564
4d 0.025 0.018977 0.019076 0.018922 0.019435 0.019529 0.019375
0.050 0.010686 0.011042 0.010460 0.010788 0.011146 0.010563
0.075 0.004505 0.004924 0.003766 0.004539 0.004958 0.003800
4f 0.025 0.018946 0.019331 0.019022 0.019276 0.019661 0.019353
0.050 0.010219 0.011102 0.009914 0.010290 0.011175 0.009988
0.075 0.003991 0.004946 0.002500 0.004014 0.004972 0.002532
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Fig. 1. The approximation scheme given in equation for various potential
range.

where E,, is the non-relativistic energy, U,,(r) is the radial wave
function, V (r) is the potential function, y is the reduced mass, # is the
reduced Planck' s constant while n and ¢ are the momentum and orbital
quantum number respectively. It is noted that Eq. (2) cannot be solved
for ¢ # 0 without the use of approximation scheme. Here, we resort to

employ the following approximation scheme for a short potential range:
—20r 7 e—or

a?(1-e%)’ 3)

1 7€

1

r2 ~ a2 (l_e—5r)2

where 7, and 7, are dimensionless constants. Substituting Eqgs. (1) and
(3), into Eq. (2), we obtain

d2U,.(r) _ | 166 + DR*n e + 2upa*]e

dl’2 ath(l_e—dr)z
[6(¢ + Di*n,—2uaa®]e™®  2uE,, U ()
ath(l_e—ér) h2 nerJ: )

where 6 = % denote the range of the potential. We now apply the basic
concept of supersymmetric quantum mechanics formalism and shape

B

Fig. 2. Rényi entropy R(p) versus the potential parameter § with 4, = 1.1,
A =098,a=40,h=pu=1and ¢ = 0 for the ground state.
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Fig. 3. Rényi entropy R(p) versus the potential parameter § with 4, = 1.1,
A =098, §=0.001, 7 =u =1 and ¢ = 0 for the ground state.
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Fig. 4. The variation of the mass energy parameter M and temperature against
the potential parameter 8 withu =% =1,¢ =0,a =40, 4; = 1.1 and 4, = 0.98
at the ground state level.
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Fig. 5. Temperature versus mass energy parameter M with4; = 1.1, A, = 0.98,
a=40,h=pu=1,f and ¢ = 0 for the ground state.
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Fig. 6. Temperature versus q parameter with 4 =1.1, 4, =0.98, a = 40,
h=u=1,p and ¢ = 0 for the ground state.

invariance technique [25-27] to solve the differential equation in Eq.
(4). The ground state wave function Uy, (1) is written in the form

Upe = exp(—fW(r)dr), 5)

where W (r) is known as the superpotential function in supersymmetric
quantum mechanics. Substituting Eq. (5) into Eq. (4) we have the fol-
lowing equation for the superpotential function W (r)
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Fig. 7. The variation of the mass energy parameter M against the potential
parameter a withu =h=1,¢ =0, 8 =0.0001 a = 40, 4; = 1.1 and 4, = 0.98 at
the ground state level.

dw(r) _ [€(¢ + Di*n,e™® + 2ufa?le™
dr a?h?(1—e%r)?
[6¢ + D’y —2uaa®|e™  2uE,,
a2h2(l_e—5r) K2 .

W?2(r)

(6)

Eq. (6) is a basic equation to which the energy equation can be obtained
via supersymmetric quantum mechanics methodology. To obtain a
desirable result, we proposed a superpotential function which gives a
solution to a non-linear Riccati equation of Eq. (6). The proposed su-
perpotential function is written in the following form:

—or

e
W) = o2t

_e—ér ’

)

where p, and p, are two parametric constants to be determine later.
Now, substituting Eq. (7) into Eq. (6), we have the following values for
the parametric constants

2 _ _Z#Ene
Po=""p ®)
) 4¢(¢ + Dy,  8uB
=—|1t 1+ —-5—+ =55 |
P 2( \/ 26 s> ©)
2pcr €€+ 1)y —ny) 2
00 = et 2 A
o 2, 10)

In this work, we considered the bound-state solution in which the radial
wave function must satisfy the boundary condition that U,,(r)/r be-
comes zero when r — oo and U,,(r)/r is finite at r = 0. However, it is
when r = oo, U, (r) is finite and U,,(r) = 0 at the origin when r = 0.
The radial wave function U,,(r)/r can satisfy the boundary conditions.
In view of the proposed superpotential function given in Eq. (7), we can
now conveniently construct a pair of supersymmetric partner potentials
Ve(r) = W2(r) + W) a5 follows:

dr

dw (r) =p? ooy + 200)e™  py(py + 8)e®

Vi(r) = W2(r) +

dr 0 1—e=0r (1—e0)2
11)
aw (r + 20,)e% —8)e-or
V_(r) = W2(r) ) _ ol Piey _/Zo p1(py o
dr 1—e™" (1—e™") (12)

Using the shape invariance technique and formalism [39-42], it can
readily be shown that the two partner potentials are shape invariant
which simply means, the potentials are the same apart from a constant.
Therefore, a relationship is established between V,(r) and V_(r) as

follows
Vi(r, ap) = V_(r, a)) + R(ay), (13)

where q; is a new set of parameters uniquely determined from the old
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set of parameters a, via mapping of the form: @ = f(ao) = ap—96,
a, = ap—nd, a3 =ap—38 and subsequently a, = a,—nd whereas
P, = p,—96. However, the residual term R(a;) is independent of the
variable r. In terms of the parameters of the problem, we write

[ 2uc | o@D -m) 2] [ 2w | eC@Dm-m) 2]
=+ —5——a; ot

+
2 2 2 2
R (01) — h a _| . a ,
2(10 2(11 (14)
[ Z,uza + 5)(5)1)(7722—771)_1112_ _2,117201 + €(€1)('722—'71)_a22_
n a n a
R(a) = - ,
24 2a, 1s)
>2/472a + 5(51)(7722—771)_‘1227 >2;472a + 0(01)(7722—771)_a327
h a h a
R(a;) = - ,
2a, 2a3 16)
2H20¢ + f(fl)(nz n) anz—l 2H201 + 5(51)(7722 -n) —a,f
R(a ) — h a? h a
n
2a,_1 2a, a7

Having satisfied all the desirable results, the energy equation can be
obtained via

n

Ey = Ene + Eyp = ), R(@),

k=1 (18)
where
E,, =0, 19
this gives a complete energy equation for the system as
2
w2 WAL 1 0(6 + 1)(n,—ny)
-— =,
R P \/1 + 4606 + 1)n, + s’fza
2
8, 2
2n+1+\/1+4€(6’+1)7)2+ “fz“
4
(20)

In other to obtained the corresponding wave function, we defined a
variable of the form y = ¢=%" and substitute it into Eq. (4) to have

d Une()’) 1 dUné’(y) _Ay2 + By—c U (y) =0

ar Ty dr Ga-»r @1
where

_ 2uaa® ZuEnga
A= 7 7 + (¢ + D)(1,—1y), (22)

2u(a—p)a® | 4uE,.a*

B= = + o —0(¢ + n,, (23)
C=— 2,uEnga2

e (24)

Analyzing the asymptotic behaviour of Eq. (21) at origin and at infinity,
it can be tested thatasr — 0 (y — 1) and asr — oo (y — 0), Eq. (21) has
a solution

P —_—
|_2uEned® % [1+\;‘1+4€(€+1)n2+ 8”52“ J
Ue ) =y\  #  (1-y) . 25)
This gives a complete wave function as
by, |- 2Enea —(H sl+4e(e+1)nz+wa ] [y
Une()=Nnee V2 (e’ ZFI[_", nE T #hz—ne +1
8upa® [—8uaEnea? _s
w1+4ee+1 + | THAEne @ s,
oy EHDmt =T e ¢ 26)

where the normalization constant N, is given as
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[Qu + DT Qu + n)TA + n + 2u + 2v)

Nue = s
\/ an!T(2u)’T(2v + n + 2) 27)
101 8upa?
==+ = |1+46( + Dy, + ,
R TR R (28)
. \/ 2,uEnga2
- 2 (29)
Rényi entropy
The Rényi entropy is defined as [43]
1 o 1 oo
R(p) = —In4 2(r)dr = =Ind 2(r)dr,
® 1_qnnf0 PAr)dr = —Indw [ p(r)dr 30)
where 1 = 1—q.
1 1 0 1
R(p) = —Indm— 2(y)—dy, =7,
() = indm [7 P*0)Sdy. 1)
R(p) = n (z)—dz z7=1-2
/1 "2 # LAY (32)

Here, the probability density p(r) = U?(r). Thus, with the value of the
probability density, Eq. (32) becomes

x+1
1 > IR 142) 2 e g
R(p) = In47z25NM, S 1( 5 ) > [PP) (z)Pdz,

(33)
where we have defined the following
JFi(=n, n+2(p + 1), 2p + 12) = [PPY ()] (34)
p = 2u and x = 2v—1. Using integral of the form:
_~\a—-1 b
fl (1_1) (1 + z) [P (7)PPdz = 2f(a+n+1DI(b+n+1)
-1\ 2 2 nlal(a+b+n+ 1)
(35)
we have the Rényi entropy as
1 ((2u + DIrQu+mTQu+2v+n+ DIQu+n+ DI(n+v + 1))
R(p) = —Indr
A (n)2ulQu)’TQv + n + 2)T(n + +2u + v+ 1)
(36)

Schwarzschild black holes

In classical approach, Schwarzschild black holes appears to be thermo-
dynamically unstable in the canonical treatment due to the frequent nega-
tivity of heat capacity of the black hole. This was report by Czinner and
Iguchi [44] as a conclusion from Hessian analysis. So far, the thermo-
dynamic properties of Schwarzschild black holes has been studied. The
studies includes the work of Bir6 and Czinner [45], Czinner and Iguchi [44].
Here, we use our usual Rényi entropy in quantum computation to compute
the mass-energy parameter of the black holes in terms of the work of
Czinner and Iguchi. Following the work of Czinner and Iguchi, the Rényi
entropy of a black hole can be computed as

1
Sk = Eb’l [1 + /LSBH], 37)
and for the Schwarzschild solution, it results to [44]
_1 2
Sg = Aln(l + 4nAM?), (38)

where Spy is the Bekenstein-Hawking entropy and M is the mass-energy
parameter of the black hole. As earlier pointed out, our aim is to use the
usual Rényi entropy in quantum computation to study the effect of some
potential parameters on the mass-energy parameter of the black hole. In
other to achieve this, we relate Eq. (36) to Eq. (38). Thus, we have
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Qu+DIrQu+nmlfQu+2v+n+ DIQu+n+ DNI(n+v+1) )q—ml

[
M= 1 472,
27{1\] M)2ul'Qu)>rv + n + 2)TQu +n+v+1)

39
The temperature
T L AM _1+4mM>
K gam " 2 T sam (40)

comparing with our Rényi entropy, we have the temperature of the
black hole as

Qu+DIQu+mQu+2v+n+1)IQu+n+1I'v+n+1) q
(n)22uTQu)’T(2v+n+2)TQu+v+n+1)

TR = .
\/I ar Qu+1DTQu+nmI@v+2v+n+DIQu+n+1)I(n+v+1) ‘1_7_[
A (n1)2ur Qu)?T(2v+n+ 1)L QRu+v+n+1) 41
The heat capacity C of the black hole is given as
_ 8aMm?
T a1 (42)
But

q
A1 = 47[((214 +DIFQu+nTQu+2v+n+ DIQu+n+ DI +n+ 1)) -

(n)22ul' Qu)’T'Qu + n + 2)TQu + v + n + 1)

(43)
Thus,
o @u+ DIQu+ MU+ 2+ 1+ DIQu+ 0+ DI(e+V+1) 7 .
(n)2urQu)2T (v +n+ DT Qu+v+n+1)
CR = A .
2T Qu+DIQu+mTQu+2v+n+)IrQu+n+1)Iv+n+1) q—l
(n)?2ur Qu)’rQu+n+2)TQu+v+n+1) 44)

Discussion

To test the accuracy of our energy (20), we numerically calculated
the energy eigenvalues for various values of n, ¢ and the screening
parameter 1/a. Our results are compared with results obtained from two
other methods. It is observed that the present results are in excellent
agreement with the previous results. It is also observed that for small
and large values of a, there are small differences between our result and
the results of Ref. [45]. However, the energy decreases as the parameter
a decreases. In Fig. 1, we plotted the approximation scheme used for
this studies with three values of the potential range. In Figs. 2 and 3, we
examined the variation of Rényi entropy against the potential para-
meters § and a respectively. In each case, the Rényi entropy decreases
as each of § and « increases. In Fig. 4, we plotted mass energy para-
meter and temperature against 8. It is observed that as the potential
parameter increases, both the mass energy and temperature decreases
respectively. At every value of the potential parameter, the temperature
is usually higher than the mass energy. But as the potential parameter
increases, the values of temperature and mass energy becomes closer
and both of them follow the same trend. However, as § becomes larger,
the temperature becomes stable. In Fig. 5, we plotted temperature
against mass. The temperature decreases as the mass increases. In
Fig. 6, we plotted temperature against q. It is observed that as g in-
creases, the temperature decreases. The temperature tends to be stable
as the parameter q increases from 0.6. In Fig. 7, we plotted mass energy
and temperature respectively against the potential parameter «, both
the temperature and mass energy decreases respectively as « increases.
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The temperature tends to be higher than the mass energy as « increases.
Similarly, the temperature gets to its stability as « increases from 0.5.

Conclusion

In this paper, we have studied the solutions of Schrodinger equation
with Eckart potential by employing a suitable approximation scheme in
the framework of supersymmetry shape invariance technique. The ef-
fect of the two Eckart potential parameters on the mass energy para-
meter and temperature of the black hole was investigated. It is observed
that the Black hole temperature becomes stable for an increase in each
of the two potential parameters. Our results are in good agreement with
the results previously obtained.
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