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This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat
and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for
horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and
energy conservation principles are utilized to relate the left and right states across the step-type bottom
topography. The resulting system of algebraic equations is solved iteratively. Different numerical case
studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers
are compared with the approximate solutions of central upwind scheme.
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Introduction

The shallow water equations are used to simulate a large class
of physical phenomena, such as currents in estuaries, bore propa-
gation, and flood waves in surges and tsunamis. The Ripa model
contains the shallow water equations and the terms accounting
for horizontal temperature gradients. The Ripa model was intro-
duced in [16,17,4] to analyze the behavior of ocean currents. The
model equations form a set of nonlinear hyperbolic equations
and were derived by taking into account multi-layered models
and in each layer the velocity field, density and horizontal pressure
gradient are vertically integrated. The presence of horizontal pres-
sure gradients which are dependent on temperature cause the
variations in fluid density within each layer. Recently, different
numerical schemes were introduced to solve the Ripa model, see
for instance [5,3,9,18].

The goal of this article is to derive exact Riemann solutions for
the Ripa model incorporating both flat and non-flat bottom
topographies. In this work, a particular shaped non-flat bottom is
considered which is a step-type bottom having a fixed position
of the step at which the flow variables are initially discontinuous.
The knowledge about exact Riemann solution is helpful to assess
and develop numerical schemes and provides a reference solution
for checking their performance. As the nature of the Ripa system is
hyperbolic, it admits discontinuous solutions in addition to smooth
solutions. The exact Riemann solution of Ripa model with flat bot-
tom only consists of elementary waves, such as rarefaction, shock,
and contact discontinuity. For further study about elementary
waves see [20,14].

The Ripa model with non-flat bottom topography is not
expressible in conservative form because the presence of source
term, which accounts for bottom variation, prevents the model
from being conservative. This differential source term introduces
several difficulties in solving the model equations analytically or
numerically and conventional methods produce invalid results. In
recent years, different numerical solution techniques have been
introduced for better approximation of the differential source term
in shallow water equations with non-flat bottom topographies
[12,10,6,7,21,19]. Meanwhile the exact Riemann solvers are also
introduced to handle the particular type of bottom topographies
efficiently, for example see [1,2,11,8] and references therein. How-
ever, this serious issue still open for further investigation.

In present work,the Rankine-Hugoniot conditions are derived in
the neighborhood of bottom discontinuity by using the principles
of conservation of mass, momentum and energy. In this case, a
new wave arises along the other elementary waves, which we call
the stationary shock wave which is located at the step-type bot-
tom. At the end, the system of two algebraic equations is solved
for two unknowns. Once this system of algebraic equations is
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solved, the remaining solution procedure is analogous to the case
of flat-bottom topography.

The rest of article is organized as follows. In Section ‘‘The one-
dimensional Ripa system for flat bottom”, the exact Riemann solu-
tion of the Ripa system with flat bottom topography is constructed.
In Section ‘‘One dimensional Ripa system with non-flat bottom”,
the Rankine-Hugoniot jump conditions are derived by using the
conservation laws of mass, momentum and energy. These condi-
tions are utilized to construct the exact Riemann solution of the
Ripa system for non-flat bottom topography. In Section ‘‘Solution
procedure”, we summarize the solution procedures of Ripa model
for flat and non-flat bottom topographies. In Section ‘‘Numerical
tests”, the solutions of developed exact Riemann are assessed by
comparing them with the results of central upwind scheme, see
[15]. Finally, conclusion are drawn in Section ‘‘Conclusions”.

The one-dimensional Ripa system for flat bottom

The one-dimensional Ripa system with flat bottom topography
has the following form [3]

@thþ @xðhuÞ ¼ 0;

@thuþ @x hu2 þ gh2h
2

 !
¼ 0;

@thhþ @x huhð Þ ¼ 0:

ð1Þ

Here, h is free surface elevation, g is the acceleration due to
gravity, u is the x-component of velocity, and h > 0 is the temper-
ature of liquid. In compact form, the system in Eq. (1) can be
rewritten as

@wi

@t
þ @f i

@x
¼ 0; i ¼ 1;2;3; ð2Þ

where w1 ¼def h; w2 ¼def hu; w3 ¼def hh, and the fluxes are given as

f 1 ¼def w2; f 2 ¼def ðw2Þ2
w1

þ g
2
ðw1Þðw3Þ; f 3 ¼def ðw2Þðw3Þ

w1
: ð3Þ
Eigen-structure of the Ripa system for flat bottom

The quasi-linear form of the Ripa system is given as

@twþ AðwÞ@xðwÞ ¼ 0; ð4Þ
where w ¼ ðw1;w2;w3ÞT , and AðwÞ is a Jacobian matrix of the form

AðwÞ ¼
0 1 0

� w2
2

w2
1
þ gw3

2 2 w2
w1

gw1
2

� w2w3
w2

1

w3
w1

w2
w1

0
BB@

1
CCA ¼

0 1 0
�u2 þ ghh

2 2u gh
2

�uh h u

0
B@

1
CA: ð5Þ

The eigenvalues of the matrix A are given as

k1 ¼ u� a; k2 ¼ u; k3 ¼ uþ a; ð6Þ
where a ¼

ffiffiffiffiffiffiffiffi
ghh

p
and k1 < k2 < k3. Thus, the given system is strictly

hyperbolic. The corresponding eigenvectors are expressed as

r1 ¼
1

u� a

h

0
B@

1
CA; r2 ¼

1
u

�h

0
B@

1
CA; r3 ¼

1
uþ a

h

0
B@

1
CA: ð7Þ
Fig. 1. Schematic diagram of four solution regions in the case of constant bottom
topography.
Riemann solution of the Ripa system for flat Bottom

In this case, the bottom function BðxÞ is assumed constant. The
structure of Riemann solution consists of three waves, one for each
eigenvalue ki; i ¼ 1;2;3. The left most wave is either a shock wave
or a rarefaction wave. Similarly, the right most wave is either a
shock wave or a rarefaction wave depending on the given initial
data. The third central wave is called a contact wave which always
lies between the other two waves. These three waves form four dif-
ferent regions which are schematically depicted in Fig. 1, such as
wLðhL;uL; hLÞ-left initial state, wRðhR;uR; hRÞ-right initial state,
wL�ðhL�;uL�; hL�Þ-an unknown left state to the contact wave, and
wR�ðhR�;uR�; hR�Þ-an unknown right state to the contact wave. In
the following subsections, the above-mentioned three types of
waves are further elaborated and their relations are derived.

Rarefaction waves
Rarefaction waves are continuous waves in a genuinely nonlin-

ear 1- and 3-characteristic fields. These waves must satisfy the Rie-
mann invariant condition

dw1

ri1
¼ dw2

ri2
¼ dw3

ri3
;

where superscript i denotes the ith component of a corresponding
eigenvector. We consider 1- and 3-waves as rarefaction waves. By
using the Riemann invariant equalities, we obtain

u� 2
ffiffiffiffiffiffiffiffi
ghh

p
¼ constant across k1 ¼ u� a; ð8Þ

uþ 2
ffiffiffiffiffiffiffiffi
ghh

p
¼ constant across k2 ¼ uþ a; ð9Þ

and

h ¼ constant: ð10Þ
The last equation implies that across the rarefaction wave the

temperature h remains constant. If the rarefaction wave lies on
the left hand side, the left known state wL is connected to the
unknown state wL� through the relation (9) as

uL þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
ghLhL

q
¼ uL� þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ghL�hL�

q
: ð11Þ

According to Eq. (10), hL ¼ hL�. Thus, Eq. (11) becomes

uL� ¼ uL þ 2
ffiffiffiffiffi
hL

p
ð
ffiffiffiffiffiffiffi
ghL

q
�

ffiffiffiffiffiffiffiffiffi
ghL�

q
Þ: ð12Þ

Similarly, for the right rarefaction wave, the above expression
modifies to

uR� ¼ uR � 2
ffiffiffiffiffi
hR

p ffiffiffiffiffiffiffiffi
ghR

q
�

ffiffiffiffiffiffiffiffiffi
ghR�

q� �
: ð13Þ

The rarefaction wave has a fan-type shape bounded by two
curves, called as tail and head. When the wave is moving to left
the head is uL � aL and the tail is uL� � aL�. At the fan area, the veloc-
ity of all particles between the head and tail obey the expression:

ðx� xoÞ
t

¼ uL� � aL�: ð14Þ
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Here xo is the position where the flow variables are initially dis-
continuous. By using Eqs. (11) and (14), we can derive relations for
the velocity and free-surface elevation in the fan-type area as
expressed below:

uLm� ¼ 1
3

uL þ 2 aL þ ðx� xoÞ
t

� �� �
; ð15Þ

hLm� ¼ 1
9gh

uL þ 2aL � ðx� xoÞ
t

� �2
; ð16Þ

where Lm� denotes the left intermediate state in the fan-type area.
Similarly we can derive relations for the velocity and free-surface
elevation in a fan-type area if the right wave is a rarefaction wave.
Thus, we get

uRm� ¼ 1
3

uR � 2aR þ 2
ðx� xoÞ

t

� �
; ð17Þ

hRm� ¼ 1
9gh

�uR þ 2aR þ ðx� xoÞ
t

� �2
; ð18Þ

where Rm� denotes the right intermediate state in the fan-type
area.

Shock waves
Shock waves are discontinuous waves in a genuinely nonlinear

1- and 3-characteristic fields. Similar to the rarefaction wave, the
shock can also move to either left or to the right. Shocks require
the use of Rankine-Hugoniot jump conditions

SðwL �wRÞ ¼ fðwLÞ � fðwRÞ; ð19Þ
where S denotes the shock speed, w is the vector of conserved vari-
ables, and fðwÞ is the vector of fluxes. These conditions are
expressed as

�S½h� þ ½hu� ¼ 0;

�S½hu� þ ½hu2� þ ½g2h
2h� ¼ 0;

�S½hh� þ ½hhu� ¼ 0;

ð20Þ

where ½�� denotes a jump across the discontinuity. More precisely,
Eq. (20) is rewritten as

SðhL � hRÞ ¼ ðhLuLhRuRÞ;

SðhLuL � hLuRÞ ¼ ðhLu2
L � hRu2

RÞ þ g
2h

2
LhL � g

2h
2
RhR

� �
;

SðhLhL � hRhRÞ ¼ ðhLhLuL � hRhRuRÞ:

ð21Þ

It is convenient to transform the coordinates to a new frame of
reference so that shock speed is zero in the new frame of reference.
During transformation, only velocities are changed to new relative
velocities ûL and ûR as defined below:

ûL ¼ uL � S; ûR ¼ uR � S: ð22Þ
Now, Eq. (21) becomes

hLûL ¼ hRûR; ð23Þ
hLû2

L þ
g
2
h2
LhL ¼ hRû2

R þ
g
2
h2
RhR; ð24Þ

hLhLûL ¼ hRhRûR: ð25Þ
First we consider the right wave is the shock wave, so by using

Eq. (23) the mass flux is defined as

hLûL ¼ hRûR ¼ �M: ð26Þ
By using Eqs. (24) and (26), we get the following relation

M2 ¼ g
2

hLhR
ðh2

RhR � h2
LhLÞ

hR � hL

 !
: ð27Þ
From Eq. (21), we can easily derive a relation for the tempera-
ture across the shock wave:

h ¼ constant: ð28Þ
Assuming the right wave as a shock wave, we can connect the

initial right state wR to the unknown state wR� by using Eq. (21):

uR� ¼ uR þ ðhR� � hRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
2
ðhRhR þ hR�hR�Þ

hRhR�

s
; ð29Þ

or by using Eq. (28), which implies that hR ¼ hR�, Eq. (29) becomes

uR� ¼ uR þ ðhR� � hRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ghR
2

ðhR þ hR�Þ
hRhR�

s
: ð30Þ

Now, we obtain a relation for the speed of right shock by using
Eqs. (26) and (27).

S ¼ uR� þ M
uR�

: ð31Þ

Similarly, we can derive relations for velocity and shock speed if
the left wave is a shock wave, i.e.

uL� ¼ uL � ðhL� � hLÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ghL
2

ðhL þ hL�Þ
hLhL�

s
; ð32Þ

and

S ¼ uL� � M
uL�

: ð33Þ
Contact waves
The contact wave marks the boundary at which two fluids of

different densities are in contact with each other and it is associ-
ated with linearly degenerate characteristic field. By using the Rie-
mann invariant condition

dðhÞ
1

¼ dðhuÞ
u

¼ dðhhÞ
�h

;

we obtain u ¼ constant and h2h ¼constant across the contact wave
discontinuity. To relate the states across the contact discontinuity,
we use the Rankine-Hugoniot conditions which are given as

ScðhL� � hR�Þ ¼ hL�uL� � hR�uR�; ð34Þ
ScðhL�uL� � hL�uR�Þ ¼ hL�u2

L� � hR�u2
R� þ

g
2
h2
L�hL� �

g
2
h2
R�hR�; ð35Þ

ScðhL�hL� � hR�hR�Þ ¼ hL�hL�uL� � hR�hR�uR�; ð36Þ
where Sc is the propagating speed of contact discontinuity. More-
over, the speed of contact discontinuity is k2 ¼ u and, therefore,
Sc ¼ u. The Eq. (34) implies that uL� ¼ uR� ¼ Sc .

One dimensional Ripa system with non-flat bottom

In this case, the bottom function BðxÞ is assumed as a step-type.
This step-type bottom is positioned at x0, where the flow variables
are initially discontinuous. The one-dimensional Ripa system with
non-flat bottom topography has the following form [3]

@thþ @xðhuÞ ¼ 0;

@thuþ @x hu2 þ gh2h
2

� �
¼ �ghh@xB;

@thhþ @x huhð Þ ¼ 0;
@tB ¼ 0:

ð37Þ

where h is the free surface elevation, H ¼ hþ B is the total depth,
B ¼ BðxÞ is the height of bottom from a given level, u is the x-
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component of velocity, g is the acceleration due to gravity and h > 0
is the temperature of liquid.

The system (37) can be written as in compact form as

@wi

@t
þ @f i

@x
¼ si; i ¼ 1;2;3;4; ð38Þ

where w1 ¼def h; w2 ¼def hu; w3 ¼def hh; w4 ¼def B, and the fluxes are given
as

f 1 ¼def w2; f 2 ¼def ðw2Þ2
w1

þ g
2
ðw1Þðw3Þ; f 3 ¼def ðw2Þðw3Þ

w1
; f 4 ¼def 0:

ð39Þ
Moreover,

s1 ¼ 0; s2 ¼def �gw3
@B
@x

s3 ¼ 0 s4 ¼ 0: ð40Þ
Eigenstructure for the Ripa system with non-flat bottom

The quasi-linear form of Ripa system is given as

@twþ AðwÞ@xðwÞ ¼ 0; ð41Þ
wherew ¼ ðw1;w2;w3;w4ÞT and the Jacobian matrix AðwÞ is defined
as

AðwÞ ¼

0 1 0 0

�w2
2

w2
1
þ gw3

2 2w2
w1

gw1
2 gw3

�w2w3
w2

1

w3
w1

w2
w1

0

0 0 0 0

0
BBBBBBB@

1
CCCCCCCA

¼

0 1 0 0

�u2 þ ghh
2 2u gh

2 ghh

�uh h u 0

0 0 0 0

0
BBBBB@

1
CCCCCA:

ð42Þ

The eigenvalues of the matrix A are expressed as

k1 ¼ u� a; k2 ¼ u; k3 ¼ uþ a; k4 ¼ 0 where a ¼
ffiffiffiffiffiffiffiffi
ghh

p
The corresponding eigenvectors are given by

r1 ¼

1

u� a

h

0

0
BBBBB@

1
CCCCCA; r2 ¼

1

u

�h

0

0
BBBBB@

1
CCCCCA; r3 ¼

1

uþ a

h

0

0
BBBBB@

1
CCCCCA; r4 ¼

�a

0

�ah

u2 � ghh

0
BBBBB@

1
CCCCCA:

ð43Þ

Lemma 1. The first and fourth characteristic speeds and the third and
fourth characteristic speeds can coincide on a hypersurface. Hence, the
Ripa system becomes non-strictly hyperbolic.

Here, we consider only strictly hyperbolic system which is only
possible when juj–

ffiffiffiffiffiffiffiffi
ghh

p
.

Proposition 2. The characteristic fields k1ðwÞ and k3ðwÞ are gen-
uinely nonlinear fields and the characteristic fields k2ðwÞ and k4ðwÞ
are linearly degenerate fields.
Proof. As a first step, we prove that the characteristics fields k1ðwÞ
and k3ðwÞ are genuinely nonlinear fields.

rk1ðwÞ � r1ðwÞ ¼ �u
h

;
1
h
;�0:5 �

ffiffiffiffiffiffi
g
hh

r
;0

� �
� ð1; u� a; h;0Þ

¼ �a
h

� 0:5 �
ffiffiffiffiffiffi
gh
h

r
– 0; ð44Þ
rk3ðwÞ � r3ðwÞ ¼ �u
h

;
1
h
;0:5 �

ffiffiffiffiffiffi
g
hh

r
;0

� �
� ð1;uþ a; h;0Þ

¼ a
h
þ 0:5 �

ffiffiffiffiffiffi
gh
h

r
– 0: ð45Þ

Next, we prove that the characteristic fields k2ðwÞ and k4ðwÞ are
linearly degenerate fields.

rk3ðwÞ � r3ðwÞ ¼ �u
h

;
1
h
;0;0

� �
� ð1;u;�h;0Þ ¼ 0;

rk4ðwÞ � r4ðwÞ ¼ ð0;0;0;0Þ � ð�a;0;�ah;u2 �uhÞ ¼ 0:

This completes the proof. h
Solution of the Ripa system with non-flat bottom

The structure of the solution of the Riemann problem consists of
four waves, one for each eigenvalue ki; i ¼ 1;2;3;4. The left most
wave is either a shock wave or a rarefaction wave and, similarly,
the right most wave is either a shock wave or a rarefaction wave
depending on the given initial data. The third wave is called con-
tact wave which always lies between shock wave and rarefaction
waves. The fourth wave is called stationary shock wave located
at x0. These four waves make five different regions as shown in
the Fig. 2, such as wLðhL;uL; hLÞ-left initial state, wRðhR;uR; hRÞ-
right initial state, wL�ðhL�;uL�; hL�Þ-an unknown state left to the sta-
tionary shock wave, wR�ðhR�;uR�; hR�Þ-an unknown state right to the
stationary shock wave, and w�ðh�;u�; h�Þ-an unknown state right to
the contact wave.

Rankine-Hugoniot relation for step bottom topography

By using the principles of mass, momentum and energy conser-
vations, we can derive the Rankine-Hugoniot jump conditions
across the stationary shock wave, for detail see [2]. Assume that
single moving discontinuity connects the initial left and right
states. We take flow region made up of water lying between two
planes for the derivation of Rankine-Hugoniot conditions. Consider
the xR and xL are the position of initial right and left planes and the
single moving discontinuity is positioned at d. By dividing the inte-
gral in (51) into two parts at d, then taking the limit xL ! d; xR ! d,
the Rankine-Hugoniot jump conditions for the Ripa system (37)
becomes

� S½h� þ ½hu� ¼ 0; ð46Þ

� S½hu� þ ½hu2 þ 1
2
gh2h� ¼ b; ð47Þ

� S½hh� þ ½hhu� ¼ 0; ð48Þ
� S½B� ¼ 0; ð49Þ
Fig. 2. Schematic diagram of five solution regions in the case of variable bottom.
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where ½�� denotes jump across the discontinuity. The term b, repre-
senting the force exerted on step-type bottom by fluid (with the
minus sign) which is responsible for the bottom variation, is defined
as

b ¼ R xR
xL

�ghhBxdx ¼ R xR
xL

�ghðH � BÞBxdx

¼ R xR
xL

�ghHBxdxþ
R xR
xL

ghBBxdx

¼ R xR
xL

�ghHBxdxþ
R xR
xL

1
2 ghB

2
xdx

¼ �g ðhLHLþhRHRÞ
2 ðBR � BLÞ

h i
þ g

2
ðhLþhRÞ

2 ðB2
R � B2

L Þ
h i

:

ð50Þ
From Lemma 3, hL ¼ hR. Hence we can write

b ¼ �ghL
ðHLþHRÞ

2 ðBR � BLÞ
h i

þ ghL
2 ðB2

R � B2
L Þ

h i
¼ ghL

2 �ðHL þ HRÞðBR � BLÞ þ ðB2
R � B2

L Þ
h i

¼ ghL
2 ðBR � BLÞ �ðHL þ HRÞ þ ðBR þ BLÞ½ �

¼ ghL
2 ðBR � BLÞ �HL þ BL � HR þ BRÞ½ �

¼ ghL
2 ðBR � BLÞ �hL � hRÞ½ �

¼ ghL
2 ðBL � BRÞ hL þ hRÞ½ �:

ð51Þ

From Eq. (49) there are two possibilities [13].
ðiÞ The bottom function BðxÞ remains constant across the prop-

agating discontinuity.
ðiiÞ The bottom function BðxÞ does not remain constant but the

stationary shock wave has zero speed.
Firstly, assume that bottom function is constant. Then, Eqs.

(46)–(49) become

�S½h� þ ½hu� ¼ 0;ð52Þ
�S½hu� þ ½hu2 þ g

2
h2h� ¼ 0;ð53Þ

�S½hh� þ ½hhu� ¼ 0:ð54Þ
This case is similar as discussed in the previous section.
Secondly, assume that the bottom function BðxÞ is not constant

so that the speed S vanishes ðS ¼ 0Þ. Then Eqs. (46)–(49) become

½hu� ¼ 0;

hu2 þ g
2
h2h

h i
¼ b;

½hhu� ¼ 0:

ð55Þ

Hence, the stationary shock waves have zero speed and satisfy
the Rankine-Hugoniot jump conditions in Eq. (55). The system in
Eq. (55) can be rewritten as

hL�uL� ¼ hR�uR�;

hL�u2
L� þ g

2h
2
L�hL� ¼ hR�u2

R� þ g
2h

2
R�hR� þ b;

hL�hL�uL� ¼ hR�hR�uR�:

ð56Þ

These conditions define a relation between the left and right
states across a step-type bottom discontinuity. Also, these mass,
momentum and energy conservation laws across the bottom step
are satisfied by left and right columns of mass of water.

Properties of stationary shock waves

Lemma 3. The temperature remains constant across the stationary
shock wave.
Proof. We can easily prove this lemma by using the first and third
equations of system of Eqs. (55).

Suppose a state wL ¼ ðhL;uL; hL; BLÞ and B– BL are given, and the
state on the other side of stationary shock wave is w ¼ ðh;u; h;BÞ
which is issued from a given state wL. By putting u ¼ hLuL
h from the

first equation of system of Eqs. (55) into the second equation of
system of Eqs. (55), we obtain

rðhÞ ¼ �hLu2
L �

g
2
h2
LhL þ

ðhLuLÞ2
h

þ g
2
h2h� ghL

2
ðhL þ hÞðBL � BÞ;

or by using Lemma 3, we get

rðhÞ ¼ �hLu2
L �

g
2
h2
LhL þ

ðhLuLÞ2
h

þ g
2
h2hL � ghL

2
ðhL þ hÞðBL � BÞ: �

ð57Þ
Now, we analyze some useful properties of rðhÞ.
Lemma 4. Suppose a state wL ¼ ðhL;uL; hL;BLÞ and B are given with
uL – 0. The function rðhÞ is smooth and convex. Furthermore, the
function rðhÞ is decreasing in the interval ð0;hminÞ and increasing in
the interval ðhmin;1Þ for h > 0, with

lim
h!0

rðhÞ ¼ lim
h!1

rðhÞ ¼ 1:

Proof.

The smoothness of function is obvious and for the value of hmin,
we differentiate Eq. (57) as

drðhÞ
dh

¼ �ðhLuLÞ2
h2 þ ghhL � 0:5ghLðBL � BÞ:

By setting

drðhÞ
dh

¼ �ðhLuLÞ2
h2 þ ghhL � 0:5ghLðBL � BÞ ¼ 0;

we have

h3 � 0:5ðBL � BÞh2 � ðhLuLÞ2
ghL

¼ 0:

The last equation is of the form

x3 þ ax2 þ b ¼ 0; ð58Þ

where a ¼ �0:5ðBL � BÞ; b ¼ � ðhLuLÞ2
ghL

and x ¼ h. After solving Eq. (58),

we get

uminðwLÞ ¼ �q
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
þ p

3

� �33

r !

� q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
þ p

3

� �33

r !
� a
3
; ð59Þ

where p ¼ �a2
3 and q ¼ ð2a3þ27bÞ

27 .

For ui – 0 and u > 0; drðhÞdh > 0if and only if h > hminðwLÞ. This
means that the function rðhÞ is monotone. As hL > 0 and h > 0, we
have

d2rðhÞ
dh2 ¼ 2

ðhiuLÞ2
h3 þ ghL P 0:

In other words, the function rðhÞ is convex. h
Corollary 1. i) If rðhminÞ < 0 then the equation rðhÞ ¼ 0 has two
roots, as shown in Fig. 3 (a). iiÞ If rðhminÞ > 0 then the equation
rðhÞ ¼ 0 has no root, as shown in Fig. 3(b). iiiÞ If rðhminÞ ¼ 0 then
the equation rðhÞ ¼ 0 has exactly one root.
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0 2 4 6 8 10 12
0

20

40

60

80

100

120

x

σ

(b) The function σ has no root.

Fig. 3. For figure (a) uL ¼ 1;hL ¼ 1;Bi ¼ 3;B ¼ 0; g ¼ 1 and for figure (b) uL ¼ 1;hL ¼ 1;Bi ¼ 0;B ¼ 3; g ¼ 1.
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Solution procedure

For the solution procedure of Ripa system with constant bot-
tom, we take start at the contact discontinuity where uL� ¼ uR�

and h2
L�hL ¼ h2

R�hR. Therefore, by equating the equations

uL� ¼
uL � 2

ffiffiffiffiffiffiffi
ghL

p ð
ffiffiffiffiffiffiffi
hL�

p
�

ffiffiffiffiffi
hL

p
Þ hL� < hL;

uL � ðhL� � hLÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ghL
2

ðhLþhL�Þ
hLhL�

q
hL� > hL;

8<
: ð60Þ

and
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Fig. 4. H; h, and p are computed by the proposed exact Rie
uR� ¼
uR þ 2

ffiffiffiffiffiffiffiffi
ghR

p ð
ffiffiffiffiffiffiffi
hR�

p
�

ffiffiffiffiffi
hR

p
Þ hR� < hR;

uR þ ðhR� � hRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ghR
2

ðhRþhR�Þ
hRhR�

q
hR� > hR;

8<
: ð61Þ

we get a nonlinear equation with two unknowns hL� and hR�. We put

the value of hL� ¼ hR�
ffiffiffiffi
hR
hL

q
in that nonlinear equation and solve the

resulting equation iteratively for the value of hR�. Once the nonlin-
ear equation is solved, we continue our solution procedure in a con-
ventional manner, see [14] for more detail. Usually this nonlinear
equation is solved by using the Newton–Raphson iterative method
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and an initial guess hð0Þ
R� for this iterative procedure is taken as

hð0Þ
R� ¼ 1

2 ða2L þ a2RÞ, or two rarefaction approximation as

hð0Þ
R� ¼ 1

g
1
2 ðaL þ aRÞ þ 1

4 ðuR � uLÞ
	 
2, for more detail see [20]. For the

solution of Ripa system with non-flat bottom, we use the Eqs.
(60) and (61) in the Eq. (56) and solve the resulting system of alge-
braic equations for hL� and hR�. After obtaining the values of hL� and
hR� we complete our solution procedure in the same way as done for
the case of constant bottom topography. In this article, both the
nonlinear equation and system of nonlinear equations are solved
by using the MATLAB function ‘‘fsolve”.
Numerical tests

This section presents several numerical case studies for the Ripa
system with constant and variable bottom topographies. For veri-
fication, the analytical results are compared with the numerical
results of central upwind scheme obtained in a computational
domain ½0;600�. In all case studies, the computational domain is
divided into 2400 grid points for the numerical scheme, the value
of gravity g ¼ 1 and the bottom step is positioned at x ¼ 300 with
height 3 to the right of the origin. To elaborate each solution of
given examples, we sketch the state wave diagram

w1 �!RW w2 �!SSW w3 �!CW w4 �!SW w5;

which tells us that the given initial left state w1 is connected with
state w2 by a rarefaction wave ‘RW’ and the state w2 is connected
with the state w3 by a stationary shock wave ‘SSW’ and the state
w3 is connected with the state w4 by a contact wave ‘CW’, and
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Fig. 5. H; h, and p are computed by the proposed exact Rie
the state w4 is connected with the state w5 by a shock wave ‘SW’.

Test Problem 1: Consider the dam break problem over a flat
bottom with the following initial conditions

ðH;u; hÞðx;0Þ ¼ ð20;0;10Þ; x � 300;
ð15;0;5Þ; x > 300:

�

In Fig. 4, the exact and approximate solutions are plotted in the
computational domain ½0;600� at time ¼ 12 for the total depth H,

the pressure p ¼ gu2h
2 and the temperature h. The state wave dia-

gram for the solution is given as

w1 �!RW w2 �!CW w3 �!SW w4:

Good agreements among analytical and numerical results verify
the correctness of analytical solutions and accuracy of the pro-
posed numerical algorithm.

Test Problem 2: Next, we consider the dam break problem over
a discontinuous bottom topography for the following initial
conditions:

ðH;u; h;BÞðx;0Þ ¼ ð20;0;10;0Þ; x � 300;
ð15;0;5;3Þ; x > 300:

�

The state wave diagram for the solution is expressed as

w1 �!RW w2 �!SSW w3 �!CW w4 �!SW w5;

The analytical and numerical solutions are presented in Fig. 5.
Both analytical and numerical results agree with each other.
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Fig. 6. H; h, and p are computed by the suggested exact Riemann solver and by central upwind scheme at time = 12.
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Fig. 7. H; h, and p are computed by the suggested exact Riemann solver and by central upwind scheme at time = 12.

A. Rehman et al. / Results in Physics 8 (2018) 104–113 111



0 100 200 300 400 500 600
5

6

7

8

9

10

11

12

13

14

15

x

To
ta

l d
ep

th
analytical
central upwind

0 100 200 300 400 500 600
0.8

1

1.2

1.4

1.6

1.8

2

2.2

x

Te
m

pe
ra

tu
re

analytical
central upwind

0 100 200 300 400 500 600
20

30

40

50

60

70

80

90

100

x

Pr
es

su
re

analytical
central upwind

Fig. 8. H; h, and p are computed by the suggested exact Riemann solver and by central upwind scheme at time = 16.
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Test Problem 3: Consider the problem of discontinuous bottom
topography which is subjected to the following initial conditions:

ðH;u; h;BÞðx;0Þ ¼ ð20;3;10;0Þ; x � 300;
ð25;10;5;3Þ; x > 300:

�

The solution is presented in Fig. 6 and the state wave diagram
for the solution takes the form

w1 �!RW w2 �!SSW w3 �!CW w4 �!RW w5:

Both analytical numerical results show a good agreement with
each other.

Test Problem 4: Consider the problem of discontinuous bottom
topography with the following initial conditions

ðH;u; h;BÞðx;0Þ ¼ ð20;22;10;0Þ; x 6 300
ð20;0;5;3Þ; x > 300:

�

In this example the state wave diagram takes the form

w1 �!CW w2 �!SSW w3 �!CW w4 �!SW w5;

and solution is presented in Fig. 7. Excellent agreement can be seen
in analytical and numerical results.

Test Problem 5: The initial conditions for such type of a prob-
lem are

ðH;u; h;BÞðx;0Þ ¼ ð10;�9;2; 0Þ; x < 300
ð12;�5;1;3Þ; x > 300:

�

The state wave diagram for the solution is
w1 �!RW w2 �!CW w3 �!RW w4 �!SSW w5 ¼ w6:

In this example, the flow is from right to left and two rarefaction
waves are pushed to the left as shown in the Fig. 8. The solution is
obtained at t ¼ 16. Once again, both analytical and numerical solu-
tions agree well with each other.

Test Problem 6: This is a test problem of discontinuous bottom
topography in which two shocks are pushed to the right of the step
as shown in the Fig. 9. The system is subjected to the following ini-
tial conditions:

ðH;u; h;BÞðx;0Þ ¼ ð12;16;2;0Þ; x < 300
ð4;2;8;3Þ; x > 300:

�

In this example, the state wave diagram takes the following
form

w1 ¼ w2 �!SSW w3 �!SW w4 �!CW w5 �!SW w6:

Once more time, both analytical and numerical solutions agree
well with each other.
Conclusions

The analytical Riemann solutions of the Ripa model for flat and
non-flat bottom topographies are presented. In the case of non-flat
bottom topography, the Rankine-Hugoniot jump conditions across
the step-type bottom were derived by employing the mass,
momentum and energy conservation laws. The analytical results
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Fig. 9. H; h, and p are computed by the suggested exact Riemann solver and by central upwind scheme at time = 16.
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are compared with numerical solutions of high resolution central
scheme. A good agreement was found between the solutions of
both types of solvers.
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