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A B S T R A C T

High transition temperature superconductors in cuprates exhibit the charge-density-wave fluctuations and the
ferromagnetic time-reversal-symmetry-breaking fluctuation in the polar Kerr rotation experiments. We de-
monstrate that they share the same root of origin, and the underlying mechanism also leads to the pseudogap
formation. The pseudogap formation, the charge-density-wave fluctuation, and the time-reversal-symmetry-
breaking fluctuation are the consequent phenomena of the correlation. They are the basic notions in strongly
correlated electron systems.

Introduction

Correlated electrons have exhibited many interesting phenomena
that deviate from the Fermi liquid theory and the theory of phase
transition. Taking the high transition temperature superconductors in
cuprates as an example [1], the pseudogap formation [2], charge-den-
sity-wave fluctuations observed in the scanning tunneling microscopes
and resonant soft X-ray scattering experiments [3–6], and ferromag-
netic time-reversal-symmetry-breaking fluctuations [7], occur simulta-
neously wide in the phase diagram. The onset of the time-reversal-
symmetry-breaking fluctuation coincides with formation temperature
of the pseudogap [7]. The charge-density-wave fluctuation resides well
in the pseudogap phase [8]. Those fluctuations have one common
property. Namely, there are no signatures of phase transition as they
occur. Their origins are mysterious. In this paper, we will demonstrate
that charge-density-wave fluctuation and time-reversal-symmetry-
breaking fluctuation are actually universal, if the correlated electrons
have the pseudogap phase.

Recently, one of us (CHC) proposed a theory of the pseudogap
formation [9]. The electrons weakly interacting with the U(1) gauge
field, originated from the spin Berry’s phase [10], open a gap-like
structure, when the gauge field acquires the mass. The mass acquisition
of the gauge field is due to the strong coupling with the anti-ferromag-
netic fluctuation, a remnant of the anti-ferromagnetism as the system is
doped. The basic assumption of this theory is that the spin anisotropy is
a relevant perturbation, so that the anti-ferromagnetic fluctuation can
be described by a phase field, → =

→
ϕ x t e( , ) q

iσ x t1 ( , ), where q is the cou-
pling between the gauge field and the anti-ferromagnetic fluctuation.
We emphasize that the anti-ferromagnetic fluctuation does not couple
to the elections directly. In two dimensions, the Kosterlitz-Thouless

(KT) transition takes place for the phase field at finite temperature.
Then, the anti-ferromagnetic fluctuation is absorbed by the gauge
transformation and becomes the longitudinal component of the gauge
field. Because the gauge field acquires mass, the interaction between
electrons becomes short-ranged. Due to the nature of the KT transition,
there are no conventional signatures of phase transitions. Translational
symmetry and the time reversal symmetry are well preserved.

At the first glance, it looks contradictory that the phase, preserving
both the translational and time reversal symmetries, hosts the charge-
density-wave fluctuation and the time-reversal-symmetry-breaking
fluctuation. We will show later that they are fluctuations and not the
ordering states. Electronic interaction mediated by the gauge field in-
fers that electrons exchange virtual particles of the pure imaginary
wave vectors. Nonetheless, due to the quantum fluctuation, gauge field
can be excited in the propagation modes of the real wave vector. The
charge-density-wave fluctuation is the direct consequence of the pro-
pagating gauge-electric field contributed from the longitudinal mode. On
the other hand, the ferromagnetic time-reversal symmetry-breaking
fluctuation originates from the propagating gauge-magnetic field of the
transverse modes.

This paper is organized as the following. We will discuss the effec-
tive interaction between electrons by integrating out the electronic
degree of freedom. The propagation modes of the gauge field can be
obtained by solving the classical equations of motion. Then, we con-
sider the classical motion of the electrons in the presence of the pro-
pagating gauge field. We will apply the current scheme to the high-Tc
superconductors. The presence of the anti-ferromagnetic fluctuation
and the emergence of the gauge interaction baptize the quantum cor-
relation. Once it is considered carefully, many of pseudogap phenom-
enology can be realized. The pseudogap formation, the charge-density-
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wave fluctuation, and the time-reversal-symmetry-breaking fluctuation
do not have the relation of causality. They are all the consequent
phenomena of the correlation.

Fluctuations

Effective theory of the gauge field

As the cuprates are doped, the anti-ferromagnetic ordering ceases,
the pseudogap phase is developed, and the gapless states are generated
in the nodal directions. It turns out that pseudogap structure is aniso-
tropic in the momentum space, which we believe that it is the sum of
the two causes: one mechanism to open an isotropic gap [9] and the
another mechanism to introduce the nodal quasiparticles [11]. In this
paper, we do not explain the phenomena associated with the nodal
quasiparticles. We focus on the consequences that relate to the pseu-
dogap. Let us consider the following Lagrangian density [9]
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where ψα is the electron variable with the spin index α, ( →a a,0 ) is the
gauge field, g is the coupling of the electrons to the gauge field, M0 and
M1 are the mass parameters, and = ∂ −D i qa0 0 0 and = − ∂ −D i qai i i are
the covariant derivative. In Eq. (1), we adopted the natural unit, where
ℏ and the speed of light c are set to be 1. It is equivalent to roughly set
197 eV· nm =1, which indicates that the mass of the gauge field de-
fines the length scale. In cuprates, the wavelength of the charge density
wave appears to be the only length scale, which implies =M M0 1.
Considering together the pseudogap magnitude, about 40meV [12], the
dimensionless gauge coupling g

m2

2
can be computed ∼ × −1.5 10 3 [9].

The weak-coupling nature allows us to compute the effective La-
grangian of the gauge field and the ϕ field perturbatively. Integrating
out the electronic degrees of freedom, the diagrams that renormalize
the gauge coupling are given in Fig. 1. Using the Green’s function of
electrons for the insulators [13,14], those diagrams are zero. Namely,
the gauge coupling is not renormalized by the electrons.

This result implies that the pseudogap magnitude and the onset
temperature are independent of the external magnetic field [15–19]. It
is because the external magnetic field couples only to the electrons, and
they have no contribution to renormalize the gauge coupling and the
mass of the gauge field.

Having integrated out the electron degrees of freedom, the classical
equations of motion of the gauge field and the =ϕ eq

iσ1
field can be

derived.
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The Hamiltonian density can be also computed.
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where
⎯→⎯

= −∇
→

−∂ →E a at0 is the gauge-electric field and
⎯→⎯

= ∇
→

× →B a is
the gauge-magnetic field. Solving Eq. (2) in the pseudogap phase,
where the expectation value of σ vanishes, we obtain
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There are two solutions in Eq. (4). The longitudinal mode has the dis-

persion relation = +ω k ML
M
M L

2 2
1
21

2

0
2 , and the transverse mode has the

dispersion relation = +ω k MT T
2 2

1
2.

Fluctuation of the density modulation

In the high temperature phase, the →ϕ x t( , ) field is fluctuating. The
gauge field is massless containing only the transverse mode. In the
pseudogap phase, the →ϕ x t( , ) field picks up a quasi-long-ranged order
through the Kosterlitz-Thouless transition and becomes the longitudinal
mode of the gauge field via the gauge transformation [9]. Interestingly,
the longitudinal mode has only

⎯→⎯
E field and no

⎯→⎯
B field. Excited by the

quantum fluctuation, the
⎯→⎯
E field gives the non-trivial dynamics to the

electrons. Without losing generality, we consider the standing-wave
solution and take the x direction as the longitudinal direction,

=a A e ω tcos( )ik x
L0 0 L and ̂→ = −

−
a A e ω t xsin( )ik ω

ω M
ik x

L0
L L

L
L

2
1
2 , where A0 is the

strength of the quantum fluctuation, and its magnitude will be de-
termined shortly. The energy density of the longitudinal mode can be

computed = + M( )L
A M

k4 0
2

L

0
2

0
4

2E . Likewise, the energy density of the

transverse mode can be computed = +k M( )T
A

T4
2

1
21

2
E , if

̂→ =a A e ω t ycos( )ik x
T1 T , where A1 is the strength of the quantum fluc-

tuation.
Apparently, the longitudinal mode and the transverse mode have

very different characters. From their energy density, the longitudinal
mode favors a big kL, and the transverse mode favors a long wavelength
kT . Therefore, the

⎯→⎯
E field modulation of the longitudinal mode must be

in the lattice scale, and the
⎯→⎯
B field of the transverse mode favors the

uniform distribution. As we will see later, the former is the driving force
of the charge-density-wave fluctuation. Driven by the longitudinal
mode, the electrons acquire the kinetic energy to form the orbital

Fig. 1. Feynman diagrams to compute the effective Lagrangian of the gauge field, that is proportional to f fμν μν in the long wavelength limit.
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magnetic moment in the presence of the uniform
⎯→⎯
B field of the

transverse mode, resulting in the ferromagnetic time-reversal-sym-
metry-breaking fluctuation in the polar Kerr rotation experiments.

Let us consider the classical dynamics of the electrons in the pre-
sence of

⎯→⎯
E field of the longitudinal mode which is given by

̂⎯→⎯
=E i e ω t xcos( )A M

k
ik x

LL
L0 0

2
. Taking the one that the origin is the node, It

causes the acceleration

̂→ = −x t
gA M
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k x ω t x¨ ( ) sin( )cos( ) .

L
L L

0 0
2

(5)

We solve Eq. (5) numerically. The initial conditions take the state of
uniform density with zero initial velocity. The values of the parameters
are taken from the experiments. Namely, the wavelength is about 4
lattice constants that is around 1.6 nm. In the natural unit, =kL

π
nm

2
1.6

≐
773 eV, = ≐M nm0

1
1.6 123 eV, g = 39.13 eV , and the electron mass m

= 0.5MeV. The A0 is strength of the quantum fluctuation of
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E field of

the energy = + = + A( 1) ( 1)
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E , which should be an ex-

perimentally determined parameter. Due to the energy conservation, it
should correspond to the onset temperature of the charge-density-wave
fluctuation, namely + ∼( )A k T1

π B CDW
1
4

1
4 0

2
2 . For =TCDW

=K A eV100 , 0.1830 . It is a quantum fluctuation in the sense that the
energy of the

⎯→⎯
E field is much smaller than the energy scale of M0.

Taking the length in the unit of the wavelength =∼x x λ/ CDW and the
time in the unit of the period ̃ =t M t0 , the dimensionless acceleration

̃ ̃ ̂⎯→⎯
= = − +∼→

X t πx π t x¨ ( ) sin(2 )cos( 1 4 )x t
k

gA M
mk

¨ ( ) 2
L L

0 0
2

2 . The magnitude of

the dimensionless acceleration gA M
mkL

0 0
2

2 is roughly × −3.6 10 7 in cuprates.

In Fig. (2a), we show the ∼x t( ) for several initial positions. The

standing wave of the
⎯→⎯
E field confines the electrons to move around the

nodes. The period T of the standing wave of the
⎯→⎯
E field is about

× −5.34 10 18 seconds. Since the acceleration is weak and the oscillation
of the

⎯→⎯
E field is fast, electrons shudder tiny distance in every oscilla-

tion of the
⎯→⎯
E field. It turns out that they take about 106 oscillations to

reach to the nodes, that is equivalent to the order of −10 11 seconds.
Different initial positions take different period to move around the
nodes, leading to a time-dependent pattern of the electron density
modulation. We can take snap shots of the density wave, and the results
are given in Fig. (3a). In our calculations, 349 electrons distribute
uniformly over 3.5 λCDW at =t 0. Here we use high electron density just
for the better data visualization. As all electrons oscillate around the
nodes, it generates a modulation of electron density in the real space. In
Fig. (3b), the time average of the density patterns is computed.

We emphasize that this effect is independent of the pseudogap
formation. The charge-density-wave fluctuation needs the propagating
longitudinal mode of the real wave vectors, but the pseudogap forma-
tion takes the virtual longitudinal mode of the imaginary wave vectors.
It is very similar to the electrodynamics, where there are both virtual
photons to mediate the electromagnetic interaction and the real elec-
tromagnetic waves. Consequently, it is possible that a system has the
pseudogap and no charge density wave is observed if the quantum
fluctuation is zero. Therefore, the onset temperature of the charge-
density-wave fluctuation is not necessarily the same as the one of the
pseudogap formation. Especially, in the heavily underdoped systems,
the low electron mobility additionally hampers the development of the
modulation. Nevertheless, it is also possible that the modulation is too
weak to be detected.

Let us also comment on the wavelength of charge density wave,
which is measured few lattice constants in experiments. As mentioned

Fig. 2. (a) Eq. (5) is solved numerically for several initial positions. ∼x is dimensionless in the unit of the wavelength. The time t is in the unit of the period. In this
figure, 3.6 × −10 6 of the acceleration magnitude is used for the better data illustration. Physics is the same for 3.6 × −10 7 acceleration, though uncontrollable
numerical error hinders to see more oscillations around the nodes. In the main text, all results are based on the calculations using the 3.6 × −10 7 acceleration. (b) The

cartoon to illustrate the electron motions. Blue dots represent the electron. Black curves represent the standing wave of the
⎯→⎯
E field.
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earlier, the
⎯→⎯
E field of the longitudinal mode favors a big kL. However,

the theory allows different wavelengths for different systems. Since A0
is kL dependent, systems determine the most energetically favorable
channel of kL, which can be commensurate or incommensurate. We do
not believe that it is predictable.

Furthermore, the nodes of the standing wave locate at the phases 0
and π , where the anti-nodes of the charge density wave locate. For the
systems of multi-electrons in a unit cell, the phases of the anti-nodes for
the different electrons in the same node of the

⎯→⎯
E field can be differed

by 0 or π . For example, if there are two electrons in the unit cell, the
phases of these two density waves can be the same or have π difference.
In different domains, the phase difference can be different, as well.

In conclusion, the occurrence of the fluctuating
⎯→⎯
E field of the

longitudinal mode provides the external driving force for the modula-
tion formation. It is very similar to the water ripples blown by the wind.
In fact, using a plane-wave solution of the

⎯→⎯
E field, we obtain a pro-

pagating modulation of density, which we believe that it also happens
in real systems. Unlike an ordering state due to the electron–electron or
the electron–phonon interaction, this mechanism does not need a phase
transition.

Ferromagnetic time-reversal-symmetry-breaking fluctuation

Taking the curl on the 2nd equation in Eq. (4), we have
∂ −∇ +

⎯→⎯
=M B( ) 0t

2 2
1
2 . The uniform solution then satisfies the equation

∂ +
⎯→⎯

=M B( ) 0t
2

1
2 , and ̂⎯→⎯

= +B B M t δ zsin( )0 1 , where δ are the initial

phases and
⎯→⎯
B only has the z component in two dimensional systems.

The energy density is given by = + +M x x[1 2 ( ) ]B
B
4 1

2
0

20
2

E , where x0 is
an arbitrary reference point and the magnetic energy and the electric
induction energy is included. Again, roughly taking the onset tem-
perature ∼ 100 K, the strength of the quantum fluctuation B0 is 21.14
(eV)

3
2 , that corresponds to 14.12 Tesla. In general, δ are different in

different domains. In order to reveal the ferromagnetic signal, the
quantum fluctuations has to be in phase. In the polar Kerr rotation

experiments, a magnetic field of 4 Tesla is applied to achieve this before
the measurement.

The ferromagnetic time-reversal-symmetry-breaking fluctuation is
due to the orbital motion of the electron in the presence of the quantum
fluctuation of the uniform B field. However, the magnetic moments by
the circular motion of electrons under the

⎯→⎯
B field simply cancel out,

since it oscillates rapidly in the frequency ∼ ×M1/ 2 101
17 Hz. In the

presence of the
⎯→⎯
E field of the longitudinal mode, electrons move

around the nodes collectively. In the real systems, the
⎯→⎯
E field can be

excited in both x and y directions, and the nodes distribute at
λ m n( , )CDW

1
2 , where m and n are integers. Then, electrons move around
the nodes in the ”radial” directions. Now, in the presence of the B field
fluctuation, Lorentz force provides the centrifugal force and electrons
rotate around the nodes. The rotational direction depends on the initial
phase of the magnetic field. Although the B field is rapidly oscillating,
the initial phase determines the tangential velocity in the beginning and
thus determines whether the orbital motion is clockwise or counter-
clockwise. The period is determined by the velocity of the collective
motion, that is ∼ × −2 10 11 seconds. The radius of the loop is about one
quarter of the wavelength of the density modulation, that is ∼ 0.4 nm.
Consequently, the magnetic moment is in the order of − μ10 B

4 , where μB
is the Bohr magneton.

In the experiments, the training field sometimes results in the totally
opposite magnetic moments. For example, in Ref.[7], the training field
of 3 Tesla has different results from the 4 Tesla ones. It is due to the
initial phase δ . For example, the tangential velocity for =δ π takes the
opposite direction to the one for =δ 0. The magnetic moment then
reverses. We believe that even the training field at 4 Tesla could have
both results. The training-field-dependent physics is the best evidence
for the existence of the fluctuating magnetic field. Furthermore, this
mechanism dictates that the time-reversal-symmetry fluctuation has the
close relation with the modulation formation. We predict that their
onset temperature should be correlated.

Fig. 3. (a) The snap shots of the density patterns taken at every ×5 104 oscillations which is equivalent to × −2.67 10 13 seconds. (data of × −3.6 10 6 acceleration) (b)
The time average of the electron density over × −4.2 10 12 seconds.
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Conclusion

We have provided a clear physical pictures and quantitatively de-
scribed the origins of the charge-density-wave fluctuation and the fer-
romagnetic time-reversal-symmetry fluctuation. Those effects are the
strong evidences of the existence of the gauge interaction, that also
leads to the pseudogap formation. Once the gauge interaction is prop-
erly considered, the phenomena in the correlated electron systems are
as traditional as General Physics. We believe that they are universal, if
the correlated electron systems have pseudogap and finite quantum
fluctuations. The pseudogap formation, the charge-density-wave fluc-
tuation, and the time-reversal-symmetry-breaking fluctuation are the
basic notions in the strongly correlated electron systems.
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