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A B S T R A C T

Fractal calculus is very simple but extremely effective to deal with phenomena in hierarchical or porous media.
Its operation is almost same with that by the advanced calculus, making it much accessible to all non-mathe-
maticians. This paper begins with the basic concept of fractal gradient of temperature, i.e., the temperature
change between two points in a fractal medium, to reveal the basic properties of fractal calculus. The fractal
velocity and fractal material derivative are then introduced to deduce laws for fluid mechanics and heat con-
duction in fractal space. Conservation of mass in a fractal space is geometrically explained, and an approximate
transform of a fractal space on a smaller scale into its continuous partner on a larger scale is illustrated by a
nanofiber membrane, which is smooth on any observable scales, but its air permeability has to studied in a nano
scale, under such a small scale, the nanofiber membrane becomes a porous one. Finally an example is given to
explain cocoon’s heat-proof property, which cannot be unveiled by advanced calculus.

Introduction

Fractal geometry, fractal calculus and fractional calculus have been
becoming hot topics in both mathematics and engineering for non-
differential solutions. Fractal theory is the theoretical basis for the
fractal spacetime [1,2], El Naschie’s E-infinity theory [3], and life sci-
ence [4] as well. Fractional calculus was introduced in Newton’s time,
and it has become a very hot topic in various fields, especially in
mathematics and engineering for porous media [5–13], where classic
mechanics becomes invalid to describe any phenomena on the porous
size scale. For example, molecule diffusion in water is similar to a
stochastic Brownian motion in view of continuum mechanics, but the
diffusion follows fractal Fick laws if we observe the motion on a mo-
lecule scale. However, the fractional calculus is now such a mess that an
engineer has no ability to select a suitable fractional derivative for his
practical applications, most publications on fractional calculus are of
pure mathematics though some authors claimed possible applications,
and there are too many definitions on fractional derivative and new
ones arise everyday [14–18]. Among all fractional derives, He’s frac-
tional derivative [19–21] and the local fractional derivative [22,23] are
of mathematical correctness, physical foundation, and practical re-
levance. In 2012 the geometrical explanation of fractional calculus was
given [24], and in 2014 a tutorial review was published on fractional
calculus from its very beginning and physical understanding to prac-
tical applications [1].

Many researchers have already found the intrinsic relationship be-
tween the fractional dimensions and the fractional order [25]. This

paper will focus itself on the fractal calculus, a relatively new branch of
mathematics with easy understanding and ready applications.

Fractal calculus

The fractal calculus is relatively new, it can effectively deal with
kinetics, which is always called as the fractal kinetics [26–28], where
the fractal time replaces the continuous time. Nottale revealed that time
does be discontinuous in microphysics [29], that means that fractal
kinetics takes place on very small time scale.

The fractal derivative (Hausdorff derivative) on time fractal is de-
fined as [30–36]
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where σ is the fractal dimensions of time.
A more general definition is given as follows [30–36]
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where τ is the fractal dimensions of space.
There are other definitions for fractal derivative, and we will not

discuss all definitions, because some definitions are of only mathema-
tical interest.
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Fractal gradient

To elucidate the basic ideas of the fractal calculus, we begin with
the concept of gradient, which is widely used in mathematics and en-
gineering. For the one-dimensional case, the gradient of temperature
between two points A and B can be defined as
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where T represents temperature or other variables. The gradient can be
understood as the slope between two points:
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For three-dimensional case, the gradient is defined as
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The gradient is defined on a smooth space, and it becomes invalid
for discontinuous space, and a new definition on a fractal space is much
needed for practical applications.

In a fractal space as illustrated in Fig. 1, the gradient between points
A and B cannot be described using the above definition.

We define average gradient, initial gradient, and terminal gradient,
respectively, as follows
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For a continuous space, we have

∇ = ∇ = ∇∞T T T0 (9)

In a fractal space, however, the above equation becomes invalid,
and we define a fractal gradient as follows

∇ = −T T T
L

α B A

AB (10)

where LAB is the length of the broken line in Fig. 1. According to fractal
geometry, we have

=L kLAB
α (11)

where L is distance between A and B, α is the fractal dimension value. In
practical applications, hierarchical structure and porous medium can be
approximately considered as a fractal space [1,7–10,24], that means
there is a lowest hierarchy or minimal porous size. If the lowest hier-
archical distance is L0 (the side length of the shaded square in Fig. 1),
beyond which no physical meaning exists. For example, L0 is the na-
noporous size of a nanofiber member [37–39], or the minimal porous
size of a cocoon [40]. Using L0, Eq. (9) can be updated as

=L k L( )AB
α

0 0 (12)

where k0 is a constant.
When LAB tends to extremely small but larger than L0, we have

[1,41]
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We can define the fractal gradient in form [1,41]
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For the three dimensional case, the fractal gradient can be written in
the form
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where ∂
∂xα is the partial fractal derivative defined as [1,41]
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where α is the fractal dimensions in x-direction, L0 is the lowest hier-
archical distance.

The fractal derivative given in Eq. (16) has widely been used to deal
with porous or hierarchical structures [42–45] with great success.

A fractal space is always not isotropic, that means the fractal di-
mensions in x-, y- and z-directions are different. We replace Eq. (16) by
the following one
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where α β γ, , and are, respectively, the fractal dimensions in x-, y- and
z-directions,
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where L0x, L0y, and L0z are the minimal porous sized in x-, y- and z-
directions, respectively.

One-dimensional heat equation with a source in a fractal medium
can be written in the form
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where k is the material’s conductivity, Q0 is the heat source.
Three-dimensional heat equation with a source in a fractal medium

reads
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where kx, ky, and kz are, respectively, the material’s conductivity in x-,
y- and z-directions.

In order to establish laws in fractal media, it is necessary to in-
troduce the concept of fractal velocity, which is defined as follows

Fig. 1. Fractal gradient. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Eq. (23) can be understood as an average velocity of a particle moving
from A to B in a fractal space (The red discontinuous line in Fig. 1).

Now consider a control volume in a fractal space as illustrated in
Fig. 2 for 2-dimensional steady incompressible, and assume the fractal
gradients of the velocities at x- and y-directions are, respectively,
∂ ∂u x/ α and ∂ ∂v y/ α. The conservation of mass requires
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This results in the following mass equation in a fractal medium:

∂
∂

+ ∂
∂

=u
x

v
y

0α α (25)

For a general case, the mass equation can be written in the form

∂
∂

+
∂
∂

+
∂
∂

+
∂

∂
=

ρ
t

ρu
x

ρv
y

ρw
z

( ) ( ) ( )
0α β γ (26)

where ρ is the density of the fluid, α β γ, , and are, respectively, the
fractal dimensions in x-, y- and z-directions, u, v, and w are, respec-
tively, the fractal velocities in x-, y- and z-directions.

We define a fractal streamline in a fractal medium:
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where u, v, and w are, respectively, the fractal velocities in x-, y- and z-
directions,
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We introduce a new space (X, Y, Z) defined as
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In the new space, we have
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That means that the space (X,Y, Z) can be approximately considered
as a smooth one, making the solution process much simple. To elucidate
this, we consider a nanofiber membrane by bubble electrospinning
[37–39], it is smooth enough at any observable scales (see Fig. 3),
however, if we want to study the effect of the diameter of nanofibers on
the air permeability, we have to use a nano scale, under such case, the
nanofiber membrane becomes discontinuous, and a fractal calculus can
be effectively used [38].

The material derivative in fractal space can be written in the form
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Using fractal material derivative, we can obtain various conservation
laws in fluid mechanics and thermal science, for examples the fractal
Navier-Stokes equations are
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where D/Dt is defined in Eq. (35), fi (i= x,y,z) are body forces,

Fig. 2. A control volume in a fractal medium.

(a)                         (b) 
Fig. 3. A nanofiber membrane obtained by bubble electrospinning, continuous or discontinuous? (a) a photo taken by a camera, (b) SEM illustration.
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= =σ i x y z j x y z( , , ; , , )ij are viscous forces.
Diffusion or heat conduction in fractal media in a moving fluid can

be written in the form
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where C can be either concentration or temperature.
Equation for diffusion at rest is
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An example

In classic mechanics, we always assume the space is continuous, the
air flow is continuous, the water flow is continuous, the continuum
hypothesis works well for many practical applications. However, if we
want to study, for example, molecule diffusion in water, the water
becomes discontinuous, and the fractal calculus has to be adopted to
describe the motion of molecules, otherwise molecule motion becomes
completely unpredictable in the frame of the continuum hypothesis. In
this section we give an example of cocoon’s heat conduction by fractal
calculus.

One-dimensional steady heat conduction for cocoon [46,47] can be
written in the form
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with initial conditions

=T T(0) 0 (42)

=dT
dx

(0) 0α (43)

Introducing a transform:
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we can convert Eq. (41) into the following one
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We give a geometrical explanation of Eq. (44), on scale of x, the
cocoon is a porous one, but on a larger scale of s defined in Eq. (44), the
cocoon becomes approximately continuous, that means on scale of s,
the porous structure can not be observed, see Fig. 4.

Eq. (44) is an approximate transform of a fractal space to a con-
tinuous one, it is similar to the fractional complex transform suggested
by He and Li [48].

In view of the initial conditions, we obtain the following solution
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It is easy to find that for α > 1.5 we have
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Eqs. (47)–(49) reveal that the temperature change on the cocoon’s
inner surface is extremely slow regardless of environmental tempera-
ture. Fig. 5 reveals the basic solution properties for different values of
the fractal dimensions. When >α 1, the inner temperature inside the
cocoon changes extremely slowly regardless of temperature change
outside of the cocoon.

Discussion and conclusions

Due to various definitions of fractional derivative, most fractional
models have only mathematical interest, and its fractal partner has
physical insight and practical applications. It is extremely easy for non-
mathematicians to deal with practical problems where the continuum
models fail. All phenomena in porous media or hierarchical structures
can be effectively modelled using the fractal calculus, and we can unveil
hidden mechanisms which can never be found by the continuum me-
chanics. For example, if the cocoon wall is assumed as a continuous
medium, we can not obtain Eqs. (48) and (49).

This paper gives a tutorial introduction to the fractal calculus from
very beginning, and it is accessible to all audience. For fractional cal-
culus, the audience is recommended to read Refs. [49–53].
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